

conference

proceedings

Proceedings of the 16th USEN
IX Sym

posium
 on N

etw
orked System

s Design and Im
plem

entation
Boston, M

A
, USA

February 26–28, 2019

Sponsored by

In cooperation with ACM SIGCOMM
and ACM SIGOPS

ISBN 978-1-931971-49-2

16th USENIX Symposium on
Networked Systems Design
and Implementation

Boston, MA, USA
February 26–28, 2019

© 2019 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-931971-49-2

NSDI ’19 Sponsors

Media Sponsor
No Starch Press

Gold Sponsors

Silver Sponsors

Bronze Sponsors
Futurewei

Technologies, Inc.

USENIX Supporters

USENIX Patrons
Bloomberg • Facebook • Google

Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Two Sigma • VMware

USENIX Partners
BestVPN.com • Cisco Meraki
Teradactyl • TheBestVPN.com

Open Access Publishing Partner
PeerJ

General Sponsor Open Access Sponsor

USENIX Association

February 26–28, 2019
Boston, MA, USA

Proceedings of the
16th USENIX Symposium

on Networked Systems Design
and Implementation

Conference Organizers
Program Co-Chairs
Jay Lorch, Microsoft Research
Minlan Yu, Harvard University

Program Committee
Fadel Adib, Massachusetts Institute of Technology
Aditya Akella, University of Wisconsin—Madison
Katerina Argyraki, École Polytechnique Fédérale de Lausanne

(EPFL)
Aruna Balasubramanian, Stony Brook University
Sujata Banerjee, VMware Research
Paul Barham, Google
Ranjita Bhagwan, Microsoft Research
Kai Chen, Hong Kong University of Science and Technology
Vijay Chidambaram, The University of Texas at Austin and

VMware Research
Mosharaf Chowdhury, University of Michigan
Asaf Cidon, Barracuda Networks
Anja Feldmann, Technische Universität Berlin
Bryan Ford, École Polytechnique Fédérale de Lausanne

(EPFL)
Roxana Geambasu, Columbia University
Manya Ghobadi, Microsoft Research
Jana Giceva, Imperial College London
Ronghui Gu, Columbia University
Haryadi Gunawi, University of Chicago
Andreas Haeberlen, University of Pennsylvania
Haitham Hassanieh, University of Illinois at Urbana-

Champaign
Jon Howell, VMware Research
Rebecca Isaacs, Twitter
Xin Jin, Johns Hopkins University
Srikanth Kandula, Microsoft Research
Manos Kapritsos, University of Michigan
Dejan Kostić, KTH Royal Institute of Technology
Ramakrishna Kotla, Amazon Web Services
Arvind Krishnamurthy, University of Washington
Hongqiang Liu, Alibaba
Harsha V. Madhyastha, University of Michigan and Google
Dahlia Malkhi, VMware Research
Allison Mankin, Salesforce
Derek Murray, Google
Aurojit Panda, New York University
KyoungSoo Park, Korea Advanced Institute of Science and

Technology (KAIST)
Amar Phanishayee, Microsoft Research
Raluca Ada Popa, University of California, Berkeley

George Porter, University of California, San Diego
Lili Qiu, The University of Texas at Austin
K. K. Ramakrishnan, University of California, Riverside
Michael Schapira, Hebrew University of Jerusalem
Cole Schlesinger, Amazon Web Services
Vyas Sekar, Carnegie Mellon University
Ankit Singla, ETH Zurich
Anirudh Sivaraman, New York University
Alex C. Snoeren, University of California, San Diego
Michael Stumm, University of Toronto
Ryan Stutsman, University of Utah
Geoff Voelker, University of California, San Diego
Hakim Weatherspoon, Cornell University
John Wilkes, Google
Keith Winstein, Stanford University
Jie Xiong, University of Massachusetts Amherst
James Hongyi Zeng, Facebook
Irene Zhang, Microsoft Research
Xinyu Zhang, University of California, San Diego
Lin Zhong, Rice University

Poster Session Co-Chairs
Xin Jin, Johns Hopkins University
Ryan Stutsman, University of Utah

Test of Time Awards Committee
Tom Anderson, University of Washington
Jennifer Rexford, Princeton University
Emin Gun Sirer, Cornell University

Preview Sessions Chair
Aurojit Panda, New York University

Steering Committee
Aditya Akella, University of Wisconsin–Madison
Katerina Argyraki, École Polytechnique Fédérale de Lausanne

(EPFL)
Sujata Banerjee, VMware Research
Paul Barham, Google
Nick Feamster, Princeton University
Casey Henderson, USENIX Association
Jon Howell, VMware Research
Arvind Krishnamurthy, University of Washington
Jeff Mogul, Google
Brian Noble, University of Michigan
Timothy Roscoe, ETH Zurich
Srinivasan Seshan, Carnegie Mellon University

External Reviewers
David Andersen
Tom Barbetter
Nathan Beckmann
Ignacio Cano
Philip Carns
Alex Dimakis
Alireza Farshin
Michael J. Freedman

Cheng Huang
Ryan Huang
Georgios Katsikas
Swarun Kumar
Steffen Maass
Stephanos Matsumoto
Max Mellette
Jayashree Mohan

Ravi Netravali
Soujanya Ponnapalli
Waleed Reda
Amir Roozbeh
Edo Roth
Brian Sandler
Steffen Smolka
Jon Stewart

Ion Stoica
Paul Wankadia
Tian Yang
Xinhao Yuan
Ennan Zhai
Shizhen Zhao
Haitao Zheng

Message from the
NSDI ’19 Program Co-Chairs

Welcome to NSDI ’19!

NSDI is traditionally the top venue for papers on networked and distributed systems, and this year we continue that tradi-
tion with an excellent program featuring a record number of papers. The research and experiences described in this year’s
program include a wide range of topics including analytics, data center network architecture, distributed systems, host
networking, machine learning, modern network hardware, monitoring and diagnosis, operating systems, privacy, security, and
wireless networking.

This year, we made two major changes to the review process: we offered two submission deadlines (Spring and Fall) and we
provided the possibility of getting one-shot-revision decisions in lieu of rejection. We received 332 submissions (92 in Spring
and 240 in Fall), of which we accepted 49 papers. 45 of the 49 accepted papers were accepted outright; the remaining four
were submitted in Spring, given a one-shot-revision decision, and accepted on resubmission in Fall. Both the overall sub-
mission count and the overall acceptance count were higher than any past instance of NSDI, indicating a dramatic increase
in popularity this year. Having anticipated the high number of submissions, we also had a record-high program-committee
size: 59 experts, spanning research and industry.

The review process was double-blind, befitting its role in the scientific process. We had two rounds of reviews, provid-
ing papers that advanced to the second round at least five reviews. In total, the program committee and external reviewers
generated 1,191 reviews (338 in Spring, 853 in Fall). We strove to include valuable feedback in all these reviews, so we hope
it benefited all authors who submitted their work. After writing reviews, we held online discussions to select papers to be
discussed further at PC meetings or to be accepted without further need for discussion. We discussed 30 papers during the
Spring PC meeting (three hours online on each of two consecutive days) and 57 papers during the 1.5-day Fall PC meeting on
the Microsoft campus in Redmond, WA.

We’d like to thank the many, many people whose work was necessary to arrange this conference. Foremost, we thank all the
authors who chose to send their strong work to NSDI. We also thank the program committee whose diligence, professional-
ism, expertise, excitement, and courtesy made the review process go smoothly and successfully. Special thanks to those of
them who took on extra responsibilities beyond the considerable ones PC members already have: Ryan Stutsman and Xin
Jin for serving as poster chairs; Aurojit Panda for serving in the new-this-year role of preview-sessions chair; Jon Howell and
Lin Zhong for administering the review process for papers both chairs were conflicted with; and Geoff Voelker, KyoungSoo
Park, Lili Qiu, and Rebecca Isaacs for selecting the Best Paper and Community Awards. Thanks also to the members of the
Test of Time Awards Committee: Emin Gün Sirer, Jennifer Rexford, and Tom Anderson. We also want to thank the many
people who helped us create and refine the proposal for multiple deadlines and one-shot revision, including Aditya Akella,
Alex C. Snoeren, Apu Kapadia, Brad Karp, Bryan Parno, Casey Henderson, Dave Lomet, Dina Papagiannaki, Divesh Srivas-
tava, H. V. Jagadish, James Mickens, Jason Flinn, Jeff Mogul, Jon Howell, Justin Levandoski, Nick Feamster, Phil Bernstein,
Rachit Agarwal, Renata Teixeira, Timothy Roscoe, Zhi-Li Zhang, and the NSDI and SIGCOMM steering committees. The
NSDI steering committee was also helpful to us in many other ways, providing guidance when we needed it. The chairs of
recent NSDI conferences were also reliable sources of useful advice: Aditya Akella, Jon Howell, Katerina Argyraki, Rebecca
Isaacs, Srinivasan Seshan, and Sujata Banerjee. We also wish to thank Arvind Krishnamurthy for his help arranging confer-
encing for the Spring online PC meetings, and Marissa Storm and Shuk Kam for their help facilitating the use of a Microsoft
room for the Fall PC meeting. We’re also very grateful to the USENIX staff, including Casey Henderson, Ginny Staubach,
Jasmine Murcia, Jessica Kim, Michele Nelson, and Sarah TerHune, for the extraordinary levels of support they provided.

Jay Lorch, Microsoft Research
Minlan Yu, Harvard University
NSDI ’19 Program Co-Chairs

NSDI ’19: 16th USENIX Symposium on
Networked Systems Design and Implementation

February 26–28, 2019
Boston, MA, USA

Host Networking
Datacenter RPCs can be General and Fast . 1
Anuj Kalia, Carnegie Mellon University; Michael Kaminsky, Intel Labs; David Andersen, Carnegie Mellon University

Eiffel: Efficient and Flexible Software Packet Scheduling .17
Ahmed Saeed and Yimeng Zhao, Georgia Institute of Technology; Nandita Dukkipati, Google; Ellen Zegura and
Mostafa Ammar, Georgia Institute of Technology; Khaled Harras, Carnegie Mellon University; Amin Vahdat, Google

Loom: Flexible and Efficient NIC Packet Scheduling . 33
Brent Stephens, UIC; Aditya Akella and Michael Swift, UW-Madison

Distributed Systems
Exploiting Commutativity For Practical Fast Replication . 47
Seo Jin Park and John Ousterhout, Stanford University

Flashield: a Hybrid Key-value Cache that Controls Flash Write Amplification . 65
Assaf Eisenman, Stanford University; Asaf Cidon, Stanford University and Barracuda Networks; Evgenya Pergament and
Or Haimovich, Stanford University; Ryan Stutsman, University of Utah; Mohammad Alizadeh, MIT CSAIL; Sachin Katti,
Stanford University

Size-aware Sharding For Improving Tail Latencies in In-memory Key-value Stores . 79
Diego Didona, EPFL; Willy Zwaenepoel, EPFL and University of Sydney

Monoxide: Scale out Blockchains with Asynchronous Consensus Zones . 95
Jiaping Wang, ICT/CAS, Sinovation AI Institute; Hao Wang, Ohio State University

Modern Network Hardware
FreeFlow: Software-based Virtual RDMA Networking for Containerized Clouds . 113
Daehyeok Kim and Tianlong Yu, Carnegie Mellon University; Hongqiang Harry Liu, Alibaba; Yibo Zhu, Microsoft and
Bytedance; Jitu Padhye and Shachar Raindel, Microsoft; Chuanxiong Guo, Bytedance; Vyas Sekar and Srinivasan Seshan,
Carnegie Mellon University

Direct Universal Access: Making Data Center Resources Available to FPGA . 127
Ran Shu and Peng Cheng, Microsoft Research; Guo Chen, Microsoft Research & Hunan University; Zhiyuan Guo,
Microsoft Research & Beihang University; Lei Qu and Yongqiang Xiong, Microsoft Research; Derek Chiou and
Thomas Moscibroda, Microsoft Azure

Stardust: Divide and Conquer in the Data Center Network .141
Noa Zilberman, University of Cambridge; Gabi Bracha and Golan Schzukin, Broadcom

Blink: Fast Connectivity Recovery Entirely in the Data Plane .161
Thomas Holterbach, Edgar Costa Molero, and Maria Apostolaki, ETH Zurich; Alberto Dainotti, CAIDA/UC San Diego;
Stefano Vissicchio, UC London; Laurent Vanbever, ETH Zurich

Analytics
Hydra: a federated resource manager for data-center scale analytics .177
Carlo Curino, Subru Krishnan, and Konstantinos Karanasos, Microsoft; Sriram Rao, Facebook; Giovanni M. Fumarola,
Botong Huang, Kishore Chaliparambil, Arun Suresh, Young Chen, Solom Heddaya, Roni Burd, Sarvesh Sakalanaga,
Chris Douglas, Bill Ramsey, and Raghu Ramakrishnan, Microsoft

Shuffling, Fast and Slow: Scalable Analytics on Serverless Infrastructure . 193
Qifan Pu, UC Berkeley; Shivaram Venkataraman, University of Wisconsin, Madison; Ion Stoica, UC Berkeley

(continued on next page)

dShark: A General, Easy to Program and Scalable Framework for Analyzing In-network Packet Traces 207
Da Yu, Brown University; Yibo Zhu, Microsoft and Bytedance; Behnaz Arzani, Microsoft; Rodrigo Fonseca,
Brown University; Tianrong Zhang, Karl Deng, and Lihua Yuan, Microsoft

Data Center Network Architecture
Minimal Rewiring: Efficient Live Expansion for Clos Data Center Networks . 221
Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jeffrey C. Mogul, and Amin Vahdat, Google, Inc.

Understanding Lifecycle Management Complexity of Datacenter Topologies . 235
Mingyang Zhang, University of Southern California; Radhika Niranjan Mysore, VMware Research;
Sucha Supittayapornpong and Ramesh Govindan, University of Southern California

Shoal: A Network Architecture for Disaggregated Racks . 255
Vishal Shrivastav, Cornell University; Asaf Valadarsky, Hebrew University of Jerusalem; Hitesh Ballani and
Paolo Costa, Microsoft Research; Ki Suh Lee, Waltz Networks; Han Wang, Barefoot Networks; Rachit Agarwal
and Hakim Weatherspoon, Cornell University

Wireless Technologies
NetScatter: Enabling Large-Scale Backscatter Networks . 271
Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota, University of Washington

Towards Programming the Radio Environment with Large Arrays of Inexpensive Antennas 285
Zhuqi Li, Yaxiong Xie, and Longfei Shangguan, Princeton University; Rotman Ivan Zelaya, Yale University;
Jeremy Gummeson, UMass Amherst; Wenjun Hu, Yale University; Kyle Jamieson, Princeton University

Pushing the Range Limits of Commercial Passive RFIDs . 301
Jingxian Wang, Carnegie Mellon University; Junbo Zhang, Tsinghua University; Rajarshi Saha, IIT Kharagpur;
Haojian Jin and Swarun Kumar, Carnegie Mellon University

SweepSense: Sensing 5 GHz in 5 Milliseconds with Low-cost Radios .317
Yeswanth Guddeti, UC San Diego; Raghav Subbaraman, IIT Madras; Moein Khazraee, Aaron Schulman, and
Dinesh Bharadia, UC San Diego

Operating Systems
Slim: OS Kernel Support for a Low-Overhead Container Overlay Network . 331
Danyang Zhuo and Kaiyuan Zhang, University of Washington; Yibo Zhu, Microsoft and Bytedance; Hongqiang Harry
Liu, Alibaba; Matthew Rockett, Arvind Krishnamurthy, and Thomas Anderson, University of Washington

Shinjuku: Preemptive Scheduling for µsecond-scale Tail Latency . 345
Kostis Kaffes, Timothy Chong, and Jack Tigar Humphries, Stanford University; Adam Belay, Massachusetts Institute
of Technology; David Mazières and Christos Kozyrakis, Stanford University

Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter Workloads . 361
Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrishnan, MIT CSAIL

Monitoring and Diagnosis
End-to-end I/O Monitoring on a Leading Supercomputer . 379
Bin Yang, Shandong University, National Supercomputing Center in Wuxi; Xu Ji, Tsinghua University, National
Supercomputing Center in Wuxi; Xiaosong Ma, Qatar Computing Research institute, HBKU; Xiyang Wang, National
Supercomputing Center in Wuxi; Tianyu Zhang and Xiupeng Zhu, Shandong University, National Supercomputing
Center in Wuxi; Nosayba El-Sayed, Emory University; Haidong Lan and Yibo Yang, Shandong University; Jidong Zhai,
Tsinghua University; Weiguo Liu, Shandong University, National Supercomputing Center in Wuxi; Wei Xue, Tsinghua
University, National Supercomputing Center in Wuxi

Zeno: Diagnosing Performance Problems with Temporal Provenance . 395
Yang Wu, Facebook; Ang Chen, Rice University; Linh Thi Xuan Phan, University of Pennsylvania

Confluo: Distributed Monitoring and Diagnosis Stack for High-speed Networks . 421
Anurag Khandelwal, UC Berkeley; Rachit Agarwal, Cornell University; Ion Stoica, UC Berkeley

DETER: Deterministic TCP Replay for Performance Diagnosis . 437
Yuliang Li, Harvard University; Rui Miao, Alibaba Group; Mohammad Alizadeh, Massachusetts Institute of Technology;
Minlan Yu, Harvard University

Improving Machine Learning
Janus: Fast and Flexible Deep Learning via Symbolic Graph Execution of Imperative Programs 453
Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong Jeong, Dong-Jin Shin, and Byung-Gon Chun, Seoul National
University

BLAS-on-flash: An Efficient Alternative for Large Scale ML Training and Inference? . 469
Suhas Jayaram Subramanya and Harsha Vardhan Simhadri, Microsoft Research India; Srajan Garg, IIT Bombay;
Anil Kag and Venkatesh Balasubramanian, Microsoft Research India

Tiresias: A GPU Cluster Manager for Distributed Deep Learning . 485
Juncheng Gu, Mosharaf Chowdhury, and Kang G. Shin, University of Michigan, Ann Arbor; Yibo Zhu, Microsoft
and Bytedance; Myeongjae Jeon, Microsoft and UNIST; Junjie Qian, Microsoft; Hongqiang Liu, Alibaba;
Chuanxiong Guo, Bytedance

Network Functions
Correctness and Performance for Stateful Chained Network Functions . 501
Junaid Khalid and Aditya Akella, University of Wisconsin - Madison

Performance Contracts for Software Network Functions .517
Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Katerina Argyraki, and George Candea, EPFL

FlowBlaze: Stateful Packet Processing in Hardware . 531
Salvatore Pontarelli, Axbryd/CNIT; Roberto Bifulco, NEC Laboratories Europe; Marco Bonola, Axbryd/CNIT;
Carmelo Cascone, Open Networking Foundation; Marco Spaziani and Valerio Bruschi, CNIT/University of Rome Tor
Vergata; Davide Sanvito, Politecnico di Milano; Giuseppe Siracusano, NEC Laboratories Europe; Antonio Capone,
Politecnico di Milano; Michio Honda and Felipe Huici, NEC Laboratories Europe; Giuseppe Bianchi, CNIT/University
of Rome Tor Vergata

Network Characterization
SIMON: A Simple and Scalable Method for Sensing, Inference and Measurement in Data Center Networks 549
Yilong Geng, Shiyu Liu, and Zi Yin, Stanford University; Ashish Naik, Google Inc.; Balaji Prabhakar and
Mendel Rosenblum, Stanford University; Amin Vahdat, Google Inc.

Is advance knowledge of flow sizes a plausible assumption? . 565
Vojislav Ðukić, ETH Zurich; Sangeetha Abdu Jyothi, University of Illinois at Urbana–Champaign; Bojan Karlaš,
Muhsen Owaida, Ce Zhang, and Ankit Singla, ETH Zurich

Stable and Practical AS Relationship Inference with ProbLink . 581
Yuchen Jin, University of Washington; Colin Scott, UC Berkeley; Amogh Dhamdhere, CAIDA; Vasileios Giotsas,
Lancaster University; Arvind Krishnamurthy, University of Washington; Scott Shenker, UC Berkeley, ICSI

NetBouncer: Active Device and Link Failure Localization in Data Center Networks . 599
Cheng Tan, NYU; Ze Jin, Cornell University; Chuanxiong Guo, Bytedance; Tianrong Zhang, Microsoft; Haitao Wu,
Google; Karl Deng, Dongming Bi, and Dong Xiang, Microsoft

Privacy and Security
Riverbed: Enforcing User-defined Privacy Constraints in Distributed Web Services . 615
Frank Wang, MIT CSAIL; Ronny Ko and James Mickens, Harvard University

Hyperscan: A Fast Multi-pattern Regex Matcher for Modern CPUs . 631
Xiang Wang, Yang Hong, and Harry Chang, Intel; KyoungSoo Park, KAIST; Geoff Langdale, branchfree.org; Jiayu Hu
and Heqing Zhu, Intel

Deniable Upload and Download via Passive Participation . 649
David Sommer, Aritra Dhar, Luka Malisa, and Esfandiar Mohammadi, ETH Zurich; Daniel Ronzani, Ronzani Schlauri
Attorneys; Srdjan Capkun, ETH Zurich

CAUDIT: Continuous Auditing of SSH Servers To Mitigate Brute-Force Attacks . 667
Phuong M. Cao, Yuming Wu, and Subho S. Banerjee, UIUC; Justin Azoff and Alex Withers, NCSA; Zbigniew T. Kalbarczyk
and Ravishankar K. Iyer, UIUC

Network Modeling
Dataplane equivalence and its applications . 683
Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu, University Politehnica
of Bucharest

Alembic: Automated Model Inference for Stateful Network Functions . 699
Soo-Jin Moon, Carnegie Mellon University; Jeffrey Helt, Princeton University; Yifei Yuan, Intentionet; Yves Bieri, ETH
Zurich; Sujata Banerjee, VMware Research; Vyas Sekar, Carnegie Mellon University; Wenfei Wu, Tsinghua University;
Mihalis Yannakakis, Columbia University; Ying Zhang, Facebook, Inc.

Model-Agnostic and Efficient Exploration of Numerical State Space of Real-World TCP Congestion Control
 Implementations . 719
Wei Sun and Lisong Xu, University of Nebraska-Lincoln; Sebastian Elbaum, University of Virginia; Di Zhao, University
of Nebraska-Lincoln

Wireless Applications
Scaling Community Cellular Networks with CommunityCellularManager . 735
Shaddi Hasan, UC Berkeley; Mary Claire Barela, University of the Philippines, Diliman; Matthew Johnson, University of
Washington; Eric Brewer, UC Berkeley; Kurtis Heimerl, University of Washington

TrackIO: Tracking First Responders Inside-Out .751
Ashutosh Dhekne, University of Illinois at Urbana-Champaign; Ayon Chakraborty, Karthikeyan Sundaresan, and
Sampath Rangarajan, NEC Labs America, Inc.

3D Backscatter Localization for Fine-Grained Robotics . 765
Zhihong Luo, Qiping Zhang, Yunfei Ma, Manish Singh, and Fadel Adib, MIT Media Lab

Many-to-Many Beam Alignment in Millimeter Wave Networks . 783
Suraj Jog, Jiaming Wang, Junfeng Guan, Thomas Moon, Haitham Hassanieh, and Romit Roy Choudhury, UIUC

Datacenter RPCs can be General and Fast

Anuj Kalia Michael Kaminsky† David G. Andersen
Carnegie Mellon University †Intel Labs

Abstract
It is commonly believed that datacenter networking soft-
ware must sacri�ce generality to attain high performance.
The popularity of specialized distributed systems designed
speci�cally for niche technologies such as RDMA, lossless
networks, FPGAs, and programmable switches testi�es to
this belief. In this paper, we show that such specialization is
not necessary. eRPC is a new general-purpose remote proce-
dure call (RPC) library that o�ers performance comparable
to specialized systems, while running on commodity CPUs
in traditional datacenter networks based on either lossy Eth-
ernet or lossless fabrics. eRPC performs well in three key
metrics: message rate for small messages; bandwidth for
large messages; and scalability to a large number of nodes
and CPU cores. It handles packet loss, congestion, and back-
ground request execution. In microbenchmarks, one CPU
core can handle up to 10 million small RPCs per second, or
send large messages at 75 Gbps. We port a production-grade
implementation of Raft state machine replication to eRPC
without modifying the core Raft source code. We achieve
5.5 µs of replication latency on lossy Ethernet, which is faster
than or comparable to specialized replication systems that
use programmable switches, FPGAs, or RDMA.

1 Introduction
“Using performance to justify placing functions in a low-level subsys-
tem must be done carefully. Sometimes, by examining the problem
thoroughly, the same or better performance can be achieved at the
high level.”

— End-to-end Arguments in System Design
Squeezing the best performance out of modern, high-

speed datacenter networks has meant painstaking special-
ization that breaks down the abstraction barriers between
software and hardware layers. The result has been an explo-
sion of co-designed distributed systems that depend on niche
network technologies, including RDMA [18, 25, 26, 38, 50, 51,
58, 64, 66, 69], lossless networks [39, 47], FPGAs [33, 34], and
programmable switches [37]. Add to that new distributed
protocols with incomplete speci�cations, the inability to
reuse existing software, hacks to enable consistent views of
remote memory—and the typical developer is likely to give
up and just use kernel-based TCP.

These specialized technologies were deployed with the be-
lief that placing their functionality in the network will yield a

large performance gain. In this paper, we show that a general-
purpose RPC library called eRPC can provide state-of-the-art
performance on commodity datacenter networks without
additional network support. This helps inform the debate
about the utility of additional in-network functionality vs
purely end-to-end solutions for datacenter applications.

eRPC provides three key performance features: high mes-
sage rate for small messages; high bandwidth for large mes-
sages; and scalability to a large number of nodes and CPU
cores. It handles packet loss, node failures, congestion con-
trol, and long-running background requests. eRPC is not an
RDMA-based system: it works well with only UDP packets
over lossy Ethernet without Priority Flow Control (PFC),
although it also supports In�niBand. Our goal is to allow
developers to use eRPC in unmodi�ed systems. We use as
test-cases two existing systems: a production-grade imple-
mentation of Raft [14, 54] that is used in Intel’s distributed ob-
ject store [11], and Masstree [49]. We successfully integrate
eRPC support with both without sacri�cing performance.

The need for eRPC arises because the communication soft-
ware options available for datacenter networks leave much to
be desired. The existing options o�er an undesirable trade-o�
between performance and generality. Low-level interfaces
such as DPDK [24] are fast, but lack features required by
general applications (e.g., DPDK provides only unreliable
packet I/O.) On the other hand, full-�edged networking
stacks such as mTCP [35] leave signi�cant performance on
the table. Absent networking options that provide both high
performance and generality, recent systems often choose to
design and implement their own communication layer using
low-level interfaces [18, 25, 26, 38, 39, 55, 58, 66].

The goal of our work is to answer the question: Can a
general-purpose RPC library provide performance compara-
ble to specialized systems? Our solution is based on two key
insights. First, we optimize for the common case, i.e., when
messages are small [16, 56], the network is congestion-free,
and RPC handlers are short. Handling large messages, con-
gestion, and long-running RPC handlers requires expensive
code paths, which eRPC avoids whenever possible. Several
eRPC components, including its API, message format, and
wire protocol are optimized for the common case. Second,
restricting each �ow to at most one bandwidth-delay prod-
uct (BDP) of outstanding data e�ectively prevents packet
loss caused by switch bu�er over�ow for common tra�c
patterns. This is because datacenter switch bu�ers are much
larger than the network’s BDP. For example, in our two-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 1

layer testbed that resembles real deployments, each switch
has 12 MB of dynamic bu�er, while the BDP is only 19 kB.

eRPC (e�cient RPC) is available at https://github.com/
efficient/eRPC. Our research contributions are:

1. We describe the design and implementation of a high-
performance RPC library for datacenter networks. This
includes (1) common-case optimizations that improve
eRPC’s performance for our target workloads by up to
66%; (2) techniques that enable zero-copy transmission
in the presence of retransmissions, node failures, and
rate limiting; and (3) a scalable implementation whose
NIC memory footprint is independent of the number of
nodes in the cluster.

2. We are the �rst to show experimentally that state-of-the-
art networking performance can be achieved without
lossless fabrics. We show that eRPC performs well in a
100-node cluster with lossy Ethernet without PFC. Our
microbenchmarks on two lossy Ethernet clusters show
that eRPC can: (1) provide 2.3 µs median RPC latency;
(2) handle up to 10 million RPCs per second with one
core; (3) transfer large messages at 75 Gbps with one
core; (4) maintain low switch queueing during incast;
and (5) maintain peak performance with 20000 connec-
tions per node (two million connections cluster-wide).

3. We show that eRPC can be used as a high-performance
drop-in networking library for existing software. No-
tably, we implement a replicated in-memory key-value
store with a production-grade version of Raft [14, 54]
without modifying the Raft source code. Our three-way
replication latency on lossy Ethernet is 5.5 µs, which is
competitive with existing specialized systems that use
programmable switches (NetChain [37]), FPGAs [33],
and RDMA (DARE [58]).

2 Background and motivation
We �rst discuss aspects of modern datacenter networks rele-
vant to eRPC. Next, we discuss limitations of existing net-
working software that underlie the need for eRPC.

2.1 High-speed datacenter networking
Modern datacenter networks provide tens of Gbps per-
port bandwidth and a few microseconds round-trip la-
tency [73, §2.1]. They support polling-based network I/O
from userspace, eliminating interrupts and system call over-
head from the datapath [28, 29]. eRPC uses userspace net-
working with polling, as in most prior high-performance
networked systems [25, 37, 39, 56].

eRPC works well in commodity, lossy datacenter networks.
We found that restricting each �ow to one BDP of outstand-
ing data prevents most packet drops even on lossy networks.
We discuss these aspects below.

Lossless fabrics. Lossless packet delivery is a link-level
feature that prevents congestion-based packet drops. For ex-

ample, PFC for Ethernet prevents a link’s sender from over-
�owing the receiver’s bu�er by using pause frames. Some
datacenter operators, including Microsoft, have deployed
PFC at scale. This was done primarily to support RDMA,
since existing RDMA NICs perform poorly in the presence of
packet loss [73, §1]. Lossless fabrics are useful even without
RDMA: Some systems that do not use remote CPU bypass
leverage losslessness to avoid the complexity and overhead
of handling packet loss in software [38, 39, 47].

Unfortunately, PFC comes with a host of problems, in-
cluding head-of-line blocking, deadlocks due to cyclic bu�er
dependencies, and complex switch con�guration; Mittal et al.
[53] discuss these problems in detail. In our experience, dat-
acenter operators are often unwilling to deploy PFC due to
these problems. Using simulations, Mittal et al. show that
a new RDMA NIC architecture called IRN with improved
packet loss handling can work well in lossy networks. Our
BDP �ow control is inspired by their work; the di�erences
between eRPC’s and IRN’s transport are discussed in Sec-
tion 5.2.3. Note that, unlike IRN, eRPC is a real system, and
it does not require RDMA NIC support.

Switch bu�er � BDP. The increase in datacenter band-
width has been accompanied by a corresponding decrease
in round-trip time (RTT), resulting in a small BDP. Switch
bu�ers have grown in size, to the point where “shallow-
bu�ered” switches that use SRAM for bu�ering now provide
tens of megabytes of shared bu�er. Much of this bu�er is
dynamic, i.e., it can be dedicated to an incast’s target port,
preventing packet drops from bu�er over�ow. For example,
in our two-layer 25 GbE testbed that resembles real data-
centers (Table 1), the RTT between two nodes connected
to di�erent top-of-rack (ToR) switches is 6 µs, so the BDP
is 19 kB. This is unsurprising: for example, the BDP of the
two-tier 10 GbE datacenter used in pFabric is 18 kB [15].

In contrast to the small BDP, the Mellanox Spectrum
switches in our cluster have 12 MB in their dynamic bu�er
pool [13]. Therefore, the switch can ideally tolerate a 640-
way incast. The popular Broadcom Trident-II chip used in
datacenters at Microsoft and Facebook has a 9 MB dynamic
bu�er [9, 73]. Zhang et al. [70] have made a similar observa-
tion (i.e., bu�er� BDP) for gigabit Ethernet.

In practice, we wish to support approximately 50-way
incasts: congestion control protocols deployed in real dat-
acenters are tested against comparable incast degrees. For
example, DCQCN and Timely use up to 20- and 40-way in-
casts, respectively [52, 73]. This is much smaller than 640,
allowing substantial tolerance to technology variations, i.e.,
we expect the switch bu�er to be large enough to prevent
most packet drops in datacenters with di�erent BDPs and
switch bu�er sizes. Nevertheless, it is unlikely that the BDP-
to-bu�er ratio will grow substantially in the near future:
newer 100 GbE switches have even larger bu�ers (42 MB in
Mellanox’s Spectrum-2 and 32 MB in Broadcom’s Trident-III),
and NIC-added latency is continuously decreasing. For ex-

2 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/efficient/eRPC
https://github.com/efficient/eRPC

ample, we measured In�niBand’s RTT between nodes under
di�erent ToR’s to be only 3.1 µs, and Ethernet has historically
caught up with In�niBand’s performance.

2.2 Limitations of existing options
Two reasons underlie our choice to design a new general-
purpose RPC system for datacenter networks: First, exist-
ing datacenter networking software options sacri�ce per-
formance or generality, preventing unmodi�ed applications
from using the network e�ciently. Second, co-designing
storage software with the network is increasingly popular,
and is largely seen as necessary to achieve maximum per-
formance. However, such specialization has well-known
drawbacks, which can be avoided with a general-purpose
communication layer that also provides high performance.
We describe a representative set of currently available op-
tions and their limitations below, roughly in order of increas-
ing performance and decreasing generality.

Fully-general networking stacks such as mTCP [35] and
IX [17] allow legacy sockets-based applications to run un-
modi�ed. Unfortunately, they leave substantial performance
on the table, especially for small messages. For example, one
server core can handle around 1.5 million and 10 million 64 B
RPC requests per second with IX [17] and eRPC, respectively.

Some recent RPC systems can perform better, but are
designed for speci�c use cases. For example, RAMCloud
RPCs [56] are designed for low latency, but not high through-
put. In RAMCloud, a single dispatch thread handles all net-
work I/O, and request processing is done by other worker
threads. This requires inter-thread communication for every
request, and limits the system’s network throughput to one
core. FaRM RPCs [25] use RDMA writes over connection-
based hardware transports, which limits scalability and pre-
vents use in non-RDMA environments.

Like eRPC, our prior work on FaSST RPCs [39] uses only
datagram packet I/O, but requires a lossless fabric. FaSST
RPCs do not handle packet loss, large messages, congestion,
long-running request handlers, or node failure; researchers
have believed that supporting these features in software
(instead of NIC hardware) would substantially degrade per-
formance [27]. We show that with careful design, we can sup-
port all these features and still match FaSST’s performance,
while running on a lossy network. This upends conventional
wisdom that losslessness or NIC support is necessary for
high performance.

2.3 Drawbacks of specialization
Co-designing distributed systems with network hardware
is a well-known technique to improve performance. Co-
design with RDMA is popular, with numerous examples from
key-value stores [25, 38, 50, 65, 66], state machine replica-
tion [58], and transaction processing systems [21, 26, 41, 66].
Programmable switches allow in-network optimizations
such as reducing network round trips for distributed pro-

tocols [37, 43, 44], and in-network caching [36]. Co-design
with FPGAs is an emerging technique [33].

While there are advantages of co-design, such specialized
systems are unfortunately very di�cult to design, implement,
and deploy. Specialization breaks abstraction boundaries be-
tween components, which prevents reuse of components
and increases software complexity. Building distributed stor-
age systems requires tremendous programmer e�ort, and
co-design typically mandates starting from scratch, with new
data structures, consensus protocols, or transaction proto-
cols. Co-designed systems often cannot reuse existing code-
bases or protocols, tests, formal speci�cations, programmer
hours, and feature sets. Co-design also imposes deployment
challenges beyond needing custom hardware: for example,
using programmable switches requires user control over
shared network switches, which may not be allowed by dat-
acenter operators; and, RDMA-based systems are unusable
with current NICs in datacenters that do not support PFC.

In several cases, specialization does not provide even a per-
formance advantage. Our prior work shows that RPCs out-
perform RDMA-based designs for applications like key-value
stores and distributed transactions, with the same amount of
CPU [38, 39]. This is primarily because operations in these
systems often require multiple remote memory accesses that
can be done with one RPC, but require multiple RDMAs. In
this paper (§ 7.1), we show that RPCs perform comparably
with switch- and FPGA-based systems for replication, too.

3 eRPC overview
We provide an overview of eRPC’s API and threading model
below. In these aspects, eRPC is similar to existing high-
performance RPC systems like Mellanox’s Accelio [4] and
FaRM. eRPC’s threading model di�ers in how we sometimes
run long-running RPC handlers in “worker” threads (§ 3.2).

eRPC implements RPCs on top of a transport layer that pro-
vides basic unreliable packet I/O, such as UDP or In�niBand’s
Unreliable Datagram transport. A userspace NIC driver is
required for good performance. Our primary contribution
is the design and implementation of end-host mechanisms
and a network transport (e.g., wire protocol and congestion
control) for the commonly-used RPC API.

3.1 RPC API
RPCs execute at most once, and are asynchronous to avoid
stalling on network round trips; intra-thread concurrency is
provided using an event loop. RPC servers register request
handler functions with unique request types; clients use
these request types when issuing RPCs, and get continuation
callbacks on RPC completion. Users store RPC messages in
opaque, DMA-capable bu�ers provided by eRPC, called msg-
bufs; a library that provides marshalling and unmarshalling
can be used as a layer on top of eRPC.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 3

Each user thread that sends or receives RPCs creates an
exclusive Rpc endpoint (a C++ object). Each Rpc endpoint
contains an RX and TX queue for packet I/O, an event loop,
and several sessions. A session is a one-to-one connection
between two Rpc endpoints, i.e., two user threads. The client
endpoint of a session is used to send requests to the user
thread at the other end. A user thread may participate in
multiple sessions, possibly playing di�erent roles (i.e., client
or server) in di�erent sessions.

User threads act as “dispatch” threads: they must periodi-
cally run their Rpc endpoint’s event loop to make progress.
The event loop performs the bulk of eRPC’s work, including
packet I/O, congestion control, and management functions. It
invokes request handlers and continuations, and dispatches
long-running request handlers to worker threads (§ 3.2).

Client control �ow: rpc->enqueue_request() queues a
request msgbuf on a session, which is transmitted when
the user runs rpc’s event loop. On receiving the response,
the event loop copies it to the client’s response msgbuf and
invokes the continuation callback.

Server control �ow: The event loop of the Rpc that owns
the server session invokes (or dispatches) a request handler
on receiving a request. We allow nested RPCs, i.e., the handler
need not enqueue a response before returning. It may issue
its own RPCs and call enqueue_response() for the �rst
request later when all dependencies complete.

3.2 Worker threads
A key design decision for an RPC system is which thread runs
an RPC handler. Some RPC systems such as RAMCloud use
dispatch threads for only network I/O. RAMCloud’s dispatch
threads communicate with worker threads that run request
handlers. At datacenter network speeds, however, inter-
thread communication is expensive: it reduces throughput
and adds up to 400 ns to request latency [56]. Other RPC sys-
tems such as Accelio and FaRM avoid this overhead by run-
ning all request handlers directly in dispatch threads [25, 38].
This latter approach su�ers from two drawbacks when exe-
cuting long request handlers: First, such handlers block other
dispatch processing, increasing tail latency. Second, they pre-
vent rapid server-to-client congestion feedback, since the
server might not send packets while running user code.

Striking a balance, eRPC allows running request handlers
in both dispatch threads and worker threads: When regis-
tering a request handler, the programmer speci�es whether
the handler should run in a dispatch thread. This is the only
additional user input required in eRPC. In typical use cases,
handlers that require up to a few hundred nanoseconds use
dispatch threads, and longer handlers use worker threads.

3.3 Evaluation clusters
Table 1 shows the clusters used in this paper. They include
two types of networks (lossy Ethernet, and lossless In�ni-

Band), and three generations of NICs released between 2011
(CX3) and 2017 (CX5). eRPC works well on all three clus-
ters, showing that our design is robust to NIC and network
technology changes. We use traditional UDP on the Eth-
ernet clusters (i.e., we do not use RoCE), and In�niBand’s
Unreliable Datagram transport on the In�niBand cluster.

Currently, eRPC is primarily optimized for Mellanox NICs.
eRPC also works with DPDK-capable NICs that support �ow
steering. For Mellanox Ethernet NICs, we generate UDP
packets directly with libibverbs instead of going through
DPDK, which internally uses libibverbs for these NICs.

Our evaluation primarily uses the large CX4 cluster, which
resembles real-world datacenters. The ConnectX-4 NICs
used in CX4 are widely deployed in datacenters at Microsoft
and Facebook [3, 73], and its Mellanox Spectrum switches
perform similarly to Broadcom’s Trident switches used in
these datacenters (i.e., both switches provide dynamic bu�er-
ing, cut-through switching, and less than 500 ns port-to-port
latency.) We use 100 nodes out of the 200 nodes in the shared
CloudLab cluster. The six switches in the CX4 cluster are
organized as �ve ToRs with 40 25 GbE downlinks and �ve
100 GbE uplinks, for a 2:1 oversubscription.

4 eRPC design
Achieving eRPC’s performance goals requires careful design
and implementation. We discuss three aspects of eRPC’s
design in this section: scalability of our networking primi-
tives, the challenges involved in supporting zero-copy, and
the design of sessions. The next section discusses eRPC’s
wire protocol and congestion control. A recurring theme
in eRPC’s design is that we optimize for the common case,
i.e., when request handlers run in dispatch threads, RPCs are
small, and the network is congestion-free.

4.1 Scalability considerations
We chose plain packet I/O instead of RDMA writes [25, 66,
69] to send messages in eRPC. This decision is based on prior
insights from our design of FaSST: First, packet I/O provides
completion queues that can scalably detect received packets.
Second, RDMA caches connection state in NICs, which does
not scale to large clusters. We next discuss new observations
about NIC hardware trends that support this design.

4.1.1 Packet I/O scales well

RPC systems that use RDMA writes have a fundamental
scalability limitation. In these systems, clients write requests
directly to per-client circular bu�ers in the server’s memory;
the server must poll these bu�ers to detect new requests.
The number of circular bu�ers grows with the number of
clients, limiting scalability.

With traditional userspace packet I/O, the NIC writes an
incoming packet’s payload to a bu�er speci�ed by a descrip-
tor pre-posted to the NIC’s RX queue (RQ) by the receiver
host; the packet is dropped if the RQ is empty. Then, the

4 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Name Nodes Network type Mellanox NIC Switches Intel Xeon E5 CPU code

CX3 11 In�niBand 56 Gbps ConnectX-3 One SX6036 2650 (8 cores)
CX4 100 Lossy Ethernet 25 Gbps ConnectX-4 Lx 5x SN2410, 1x SN2100 2640 v4 (10 cores)
CX5 8 Lossy Ethernet Dual-port 40 Gbps ConnectX-5 One SX1036 2697 v3 (14 c) or 2683 v4 (16 c)

Table 1: Measurement clusters. CX4 and CX3 are CloudLab [59] and Emulab [68] clusters, respectively.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

R
D

M
A

re
ad

 ra
te

 (M
/s

)

Connections per NIC
Figure 1: Connection scalability of ConnectX-5 NICs

NIC writes an entry to the host’s RX completion queue. The
receiver host can then check for received packets in constant
time by examining the head of the completion queue.

To avoid dropping packets due to an empty RQ with no de-
scriptors, RQs must be sized proportionally to the number of
independent connected RPC endpoints (§ 4.3.1). Older NICs
experience cache thrashing with large RQs, thus limiting
scalability, but we �nd that newer NICs fare better: While a
Connect-IB NIC could support only 14 2K-entry RQs before
thrashing [39], we �nd that ConnectX-5 NICs do not thrash
even with 28 64K-entry RQs. This improvement is due to
more intelligent prefetching and caching of RQ descriptors,
instead of a massive 64x increase in NIC cache.

We use features of current NICs (e.g., multi-packet RQ
descriptors that identify several contiguous packet bu�ers)
in novel ways to guarantee a constant NIC memory footprint
per CPU core, i.e., it does not depend on the number of nodes
in the cluster. This result can simplify the design of future
NICs (e.g., RQ descriptor caching is unneeded), but its cur-
rent value is limited to performance improvements because
current NICs support very large RQs, and are perhaps overly
complex as a result. We discuss this in detail in Appendix A.

4.1.2 Scalability limits of RDMA

RDMA requires NIC-managed connection state. This limits
scalability because NICs have limited SRAM to cache con-
nection state. The number of in-NIC connections may be
reduced by sharing them among CPU cores, but doing so
reduces performance by up to 80% [39].

Some researchers have hypothesized that improvements in
NIC hardware will allow using connected transports at large
scale [27, 69]. To show that this is unlikely, we measure the
connection scalability of state-of-the-art ConnectX-5 NICs,
released in 2017. We repeat the connection scalability ex-
periment from FaSST, which was used to evaluate the older
Connect-IB NICs from 2012. We enable PFC on CX5 for this

H1 HNData1 DataN
a bc

Data2 H2

Figure 2: Layout of packet headers and data for an N -packet ms-
gbuf. Blue arrows show NIC DMAs; the letters show the order in
which the DMAs are performed for packets 1 and N .

experiment since it uses RDMA; PFC is disabled in all experi-
ments that use eRPC. In the experiment, each node creates a
tunable number of connections to other nodes and issues 16-
byte RDMA reads on randomly-chosen connections. Figure 1
shows that as the number of connections increases, RDMA
throughput decreases, losing ≈50% throughput with 5000
connections. This happens because NICs can cache only a
few connections, and cache misses require expensive DMA
reads [25]. In contrast, eRPC maintains its peak throughput
with 20000 connections (§ 6.3).

ConnectX-5’s connection scalability is, surprisingly, not
substantially better than Connect-IB despite the �ve-year
advancement. A simple calculation shows why this is hard to
improve: In Mellanox’s implementation, each connection re-
quires ≈375 B of in-NIC connection state, and the NICs have
≈2 MB of SRAM to store connection state as well as other
data structures and bu�ers [1]. 5000 connections require
1.8 MB, so cache misses are unavoidable.

NIC vendors have been trying to improve RDMA’s scala-
bility for a decade [22, 42]. Unfortunately, these techniques
do not map well to RPC workloads [39]. Vendors have not
put more memory in NICs, probably because of cost and
power overheads, and market factors. The scalability issue
of RDMA is exacerbated by the popularity of multihost NICs,
which allow sharing a powerful NIC among 2–4 CPUs [3, 7].

eRPC replaces NIC-managed connection state with CPU-
managed connection state. This is an explicit design choice,
based upon fundamental di�erences between the CPU and
NIC architectures. NICs and CPUs will both cache recently-
used connection state. CPU cache misses are served from
DRAM, whereas NIC cache misses are served from the CPU’s
memory subsystem over the slow PCIe bus. The CPU’s
miss penalty is therefore much lower. Second, CPUs have
substantially larger caches than the ∼2 MB available on a
modern NIC, so the cache miss frequency is also lower.

4.2 Challenges in zero-copy transmission
eRPC uses zero-copy packet I/O to provide performance
comparable to low-level interfaces such as DPDK and RDMA.
This section describes the challenges involved in doing so.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 5

4.2.1 Message bu�er layout

eRPC provides DMA-capable message bu�ers to applications
for zero-copy transfers. A msgbuf holds one, possibly multi-
packet message. It consists of per-packet headers and data,
arranged in a fashion optimized for small single-packet mes-
sages (Figure 2). Each eRPC packet has a header that contains
the transport header, and eRPC metadata such as the request
handler type and sequence numbers. We designed a msgbuf
layout that satis�es two requirements.

1. The data region is contiguous to allow its use in appli-
cations as an opaque bu�er.

2. The �rst packet’s data and header are contiguous. This
allows the NIC to fetch small messages with one DMA
read; using multiple DMAs for small messages would
substantially increase NIC processing and PCIe use,
reducing message rate by up to 20% [40].

For multi-packet messages, headers for subsequent pack-
ets are at the end of the message: placing header 2 imme-
diately after the �rst data packet would violate our �rst
requirement. Non-�rst packets require two DMAs (header
and data); this is reasonable because the overhead for DMA-
reading small headers is amortized over the large data DMA.

4.2.2 Message bu�er ownership

Since eRPC transfers packets directly from application-
owned msgbufs, msgbuf references must never be used by
eRPC after msgbuf ownership is returned to the application.
In this paper, we discuss msgbuf ownership issues for only
clients; the process is similar but simpler for the server, since
eRPC’s servers are passive (§ 5). At clients, we must en-
sure the following invariant: no eRPC transmission queue
contains a reference to the request msgbuf when the response
is processed. Processing the response includes invoking the
continuation, which permits the application to reuse the re-
quest msgbuf. In eRPC, a request reference may be queued
in the NIC’s hardware DMA queue, or in our software rate
limiter (§ 5.2).

This invariant is maintained trivially when there are no
retransmissions or node failures, since the request must exit
all transmission queues before the response is received. The
following example demonstrates the problem with retrans-
missions. Consider a client that falsely suspects packet loss
and retransmits its request. The server, however, received
the �rst copy of the request, and its response reaches the
client before the retransmitted request is dequeued. Before
processing the response and invoking the continuation, we
must ensure that there are no queued references to the re-
quest msgbuf. We discuss our solution for the NIC DMA
queue next, and for the rate limiter in Appendix C.

The conventional approach to ensure DMA completion
is to use “signaled” packet transmission, in which the NIC
writes completion entries to the TX completion queue. Unfor-
tunately, doing so reduces message rates by up to 25% by us-

ing more NIC and PCIe resources [38], so we use unsignaled
packet transmission in eRPC.

Our method of ensuring DMA completion with unsignaled
transmission is in line with our design philosophy: we choose
to make the common case (no retransmission) fast, at the
expense of invoking a more-expensive mechanism to handle
the rare cases. We �ush the TX DMA queue after queueing a
retransmitted packet, which blocks until all queued packets
are DMA-ed. This ensures the required invariant: when a re-
sponse is processed, there are no references to the request in
the DMA queue. This �ush is moderately expensive (≈2 µs),
but it is called during rare retransmission or node failure
events, and it allows eRPC to retain the 25% throughput
increase from unsignaled transmission.

During server node failures, eRPC invokes continuations
with error codes, which also yield request msgbuf owner-
ship. It is possible, although extremely unlikely, that server
failure is suspected while a request (not necessarily a retrans-
mission) is in the DMA queue or the rate limiter. Handling
node failures requires similar care as discussed above, and is
discussed in detail in Appendix B.

4.2.3 Zero-copy request processing

Zero-copy reception is harder than transmission: To pro-
vide a contiguous request msgbuf to the request handler
at the server, we must strip headers from received packets,
and copy only application data to the target msgbuf. How-
ever, we were able to provide zero-copy reception for our
common-case workload consisting of single-packet requests
and dispatch-mode request handlers as follows. eRPC owns
the packet bu�ers DMA-ed by the NIC until it re-adds the
descriptors for these packets back to the receive queue (i.e.,
the NIC cannot modify the packet bu�ers for this period.)
This ownership guarantee allows running dispatch-mode
handlers without copying the DMA-ed request packet to a
dynamically-allocated msgbuf. Doing so improves eRPC’s
message rate by up to 16% (§ 6.2).

4.3 Sessions
Each session maintains multiple outstanding requests to
keep the network pipe full. Concurrently requests on a ses-
sion can complete out-of-order with respect to each other.
This avoids blocking dispatch-mode RPCs behind a long-
running worker-mode RPC. We support a constant number
of concurrent requests (default = 8) per session; additional
requests are transparently queued by eRPC. This is inspired
by how RDMA connections allow a constant number of op-
erations [10]. A session uses an array of slots to track RPC
metadata for outstanding requests.

Slots in server-mode sessions have an MTU-size preallo-
cated msgbuf for use by request handlers that issue short
responses. Using the preallocated msgbuf does not require
user input: eRPC chooses it automatically at run time by
examining the handler’s desired response size. This opti-

6 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mization avoids the overhead of dynamic memory allocation,
and improves eRPC’s message rate by up to 13% (§ 6.2).

4.3.1 Session credits

eRPC limits the number of unacknowledged packets on a
session for two reasons. First, to avoid dropping packets
due to an empty RQ with no descriptors, the number of
packets that may be sent to an Rpc must not exceed the
size of its RQ (|RQ |). Because each session sends packets
independently of others, we �rst limit the number of sessions
that an Rpc can participate in. Each session then uses session
credits to implement packet-level �ow control: we limit the
number of packets that a client may send on a session before
receiving a reply, allowing the server Rpc to replenish used
RQ descriptors before sending more packets.

Second, session credits automatically implement end-to-
end �ow control, which reduces switch queueing (§ 5.2).
Allowing BDP/MTU credits per session ensures that each
session can achieve line rate. Mittal et al. [53] have proposed
similar �ow control for RDMA NICs (§ 5.2.3).

A client session starts with a quota of C packets. Sending
a packet to the server consumes a credit, and receiving a
packet replenishes a credit. An Rpc can therefore participate
in up to |RQ |/C sessions, counting both server-mode and
client-mode sessions; session creation fails after this limit is
reached. We plan to explore statistical multiplexing in the
future.

4.3.2 Session scalability

eRPC’s scalability depends on the user’s desired value of
C , and the number and size of RQs that the NIC and host
can e�ectively support. Lowering C increases scalability,
but reduces session throughput by restricting the session’s
packet window. Small values ofC (e.g.,C = 1) should be used
in applications that (a) require only low latency and small
messages, or (b) whose threads participate in many sessions.
Large values (e.g., BDP/MTU) should be used by applications
whose sessions individually require high throughput.

Modern NICs can support several very large RQs, so NIC
RQ capacity limits scalability only on older NICs. In our
evaluation, we show that eRPC can handle 20000 sessions
with 32 credits per session on the widely-used ConnectX-4
NICs. However, since each RQ entry requires allocating a
packet bu�er in host memory, needlessly large RQs waste
host memory and should be avoided.

5 Wire protocol
We designed a wire protocol for eRPC that is optimized for
small RPCs and accounts for per-session credit limits. For
simplicity, we chose a simple client-driven protocol, mean-
ing that each packet sent by the server is in response to a
client packet. A client-driven protocol has fewer “moving
parts” than a protocol in which both the server and client
can independently send packets. Only the client maintains

Client Server Client Server

Single-packet RPC Three-packet RPC

Credit return
Request data

Response data
Request-for-response

Figure 3: Examples of eRPC’s wire protocol, with 2 credits/session.

wire protocol state that is rolled back during retransmission.
This removes the need for client-server coordination before
rollback, reducing complexity. A client-driven protocol also
shifts the overhead of rate limiting entirely to clients, freeing
server CPU that is often more valuable.

5.1 Protocol messages

Figure 3 shows the packets sent with C = 2 for a small
single-packet RPC, and for an RPC whose request and re-
sponse require three packets each. Single-packet RPCs use
the fewest packets possible. The client begins by sending a
window of up to C request data packets. For each request
packet except the last, the server sends back an explicit credit
return (CR) packet; the credit used by the last request packet
is implicitly returned by the �rst response packet.

Since the protocol is client-driven, the server cannot im-
mediately send response packets after the �rst. Subsequent
response packets are triggered by request-for-response (RFR)
packets that the client sends after receiving the �rst response
packet. This increases the latency of multi-packet responses
by up to one RTT. This is a fundamental drawback of client-
driven protocols; in practice, we found that the added latency
is less than 20% for responses with four or more packets.

CRs and RFRs are tiny 16 B packets, and are sent only for
large multi-packet RPCs. The additional overhead of send-
ing these tiny packets is small with userspace networking
that our protocol is designed for, so we do not attempt com-
plex optimizations such as cumulative CRs or RFRs. These
optimizations may be worthwhile for kernel-based network-
ing stacks, where sending a 16 B packet and an MTU-sized
packet often have comparable CPU cost.

5.2 Congestion control

Congestion control for datacenter networks aims to reduce
switch queueing, thereby preventing packet drops and reduc-
ing RTT. Prior high-performance RPC implementations such
as FaSST do not implement congestion control, and some re-
searchers have hypothesized that doing so will substantially
reduce performance [27]. Can e�ective congestion control
be implemented e�ciently in software? We show that opti-
mizing for uncongested networks, and recent advances in
software rate limiting allow congestion control with only 9%
overhead (§ 6.2).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 7

5.2.1 Available options

Congestion control for high-speed datacenter networks is
an evolving area of research, with two major approaches
for commodity hardware: RTT-based approaches such
as Timely [52], and ECN-based approaches such as DC-
QCN [73]. Timely and DCQCN have been deployed at
Google and Microsoft, respectively. We wish to use these
protocols since they have been shown to work at scale.

Both Timely and DCQCN are rate-based: client use the
congestion signals to adjust per-session sending rates. We
implement Carousel’s rate limiter [61], which is designed
to e�ciently handle a large number of sessions. Carousel’s
design works well for us as-is, so we omit the details.

eRPC includes the hooks and mechanisms to easily im-
plement either Timely or DCQCN. Unfortunately, we are
unable to implement DCQCN because none of our clusters
performs ECN marking1. Timely can be implemented en-
tirely in software, which made it our favored approach. eRPC
runs all three Timely components—per-packet RTT measure-
ment, rate computation using the RTT measurements, and
rate limiting—at client session endpoints. For Rpc’s that host
only server-mode endpoints, there is no overhead due to
congestion control.

5.2.2 Common-case optimizations

We use three optimizations for our common-case workloads.
Our evaluation shows that these optimizations reduce the
overhead of congestion control from 20% to 9%, and that
they do not reduce the e�ectiveness of congestion control.
The �rst two are based on the observation that datacenter
networks are typically uncongested. Recent studies of Face-
book’s datacenters support this claim: Roy et al. [60] report
that 99% of all datacenter links are less than 10% utilized at
one-minute timescales. Zhang et al. [71, Fig. 6] report that
for Web and Cache tra�c, 90% of top-of-rack switch links,
which are the most congested switches, are less than 10%
utilized at 25 µs timescales.

When a session is uncongested, RTTs are low and Timely’s
computed rate for the session stays at the link’s maximum
rate; we refer to such sessions as uncongested.

1. Timely bypass. If the RTT of a packet received on
an uncongested session is smaller than Timely’s low
threshold, below which it performs additive increase,
we do not perform a rate update. We use the recom-
mended value of 50 µs for the low threshold [52, 74].

2. Rate limiter bypass. For uncongested sessions, we
transmit packets directly instead of placing them in the
rate limiter.

3. Batched timestamps for RTT measurement. Call-
ing rdtsc() costs 8 ns on our hardware, which is sub-

1The Ethernet switch in our private CX5 cluster does not support ECN
marking [5, p. 839]; we do not have admin access to the shared CloudLab
switches in the public CX4 cluster; and In�niBand NICs in the CX3 cluster
do not relay ECN marks to software.

stantial when processing millions of small packets per
second. We reduce timer overhead by sampling it once
per RX or TX batch instead of once per packet.

5.2.3 Comparison with IRN

IRN [53] is a new RDMA NIC architecture designed for lossy
networks, with two key improvements. First, it uses BDP
�ow control to limit the outstanding data per RDMA con-
nection to one BDP. Second, it uses e�cient selective acks
instead of simple go-back-N for packet loss recovery.

IRN was evaluated with simulated switches that have small
(60–480 kB) static, per-port bu�ers. In this bu�er-de�cient
setting, they found SACKs necessary for good performance.
However, dynamic-bu�er switches are the de-facto standard
in current datacenters. As a result, packet losses are very
rare with only BDP �ow control, so we currently do not
implement SACKs, primarily due to engineering complex-
ity. eRPC’s dependence on dynamic switch bu�ers can be
reduced by implementing SACK.

With small per-port switch bu�ers, IRN’s maximum RTT
is a few hundred microseconds, allowing a ∼300 µs retrans-
mission timeout (RTO). However, the 12 MB dynamic bu�er
in our main CX4 cluster (25 Gbps) can add up to 3.8 ms of
queueing delay. Therefore, we use a conservative 5 ms RTO.

5.3 Handling packet loss
For simplicity, eRPC treats reordered packets as losses by
dropping them. This is not a major de�ciency because dat-
acenter networks typically use ECMP for load balancing,
which preserves intra-�ow ordering [30, 71, 72] except dur-
ing rare route churn events. Note that current RDMA NICs
also drop reordered packets [53].

On suspecting a lost packet, the client rolls back the re-
quest’s wire protocol state using a simple go-back-N mecha-
nism. It then reclaims credits used for the rolled-back trans-
missions, and retransmits from the updated state. The server
never runs the request handler for a request twice, guaran-
teeing at-most-once RPC semantics.

In case of a false positive, a client may violate the credit
agreement by having more packets outstanding to the server
than its credit limit. In the extremely rare case that such an
erroneous loss detection occurs and the server’s RQ is out
of descriptors, eRPC will have “induced” a real packet loss.
We allow this possibility and handle the induced loss like a
real packet loss.

6 Microbenchmarks
eRPC is implemented in 6200 SLOC of C++, excluding tests
and benchmarks. We use static polymorphism to create an
Rpc class that works with multiple transport types without
the overhead of virtual function calls. In this section, we eval-
uate eRPC’s latency, message rate, scalability, and bandwidth
using microbenchmarks. To understand eRPC’s performance
in commodity datacenters, we primarily use the large CX4

8 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cluster CX3 (In�niBand) CX4 (Eth) CX5 (Eth)

RDMA read 1.7 µs 2.9 µs 2.0 µs
eRPC 2.1 µs 3.7 µs 2.3 µs

Table 2: Comparison of median latency with eRPC and RDMA

 0

 2

 4

 6

FaSST (CX3) eRPC (CX3) eRPC (CX4)

R
eq

ue
st

 ra
te

 (M
rp

s)

B = 3 B = 5 B = 11

3.9 3.7
5.0

4.4
3.8

4.94.8
3.9

4.8

Figure 4: Single-core small-RPC rate with B requests per batch

cluster. We use CX5 and CX3 for their more powerful NICs
and low-latency In�niBand, respectively. eRPC’s congestion
control is enabled by default.

6.1 Small RPC latency
How much latency does eRPC add? Table 2 compares the
median latency of 32 B RPCs and RDMA reads between two
nodes connected to the same ToR switch. Across all clusters,
eRPC is at most 800 ns slower than RDMA reads.

eRPC’s median latency on CX5 is only 2.3 µs, showing
that latency with commodity Ethernet NICs and software
networking is much lower than the widely-believed value of
10–100 µs [37, 57]. CX5’s switch adds 300 ns to every layer-3
packet [12], meaning that end-host networking adds only
≈850 ns each at the client and server. This is comparable to
switch-added latency. We discuss this further in § 7.1.

6.2 Small RPC rate
What is the CPU cost of providing generality in an RPC
system? We compare eRPC’s small message performance
against FaSST RPCs, which outperform other RPC systems
such as FaRM [39]. FaSST RPCs are specialized for single-
packet RPCs in a lossless network, and they do not handle
congestion.

We mimic FaSST’s experiment setting: one thread per
node in an 11-node cluster, each of which acts each acts
as both RPC server and client. Each thread issues batches
of B requests, keeping multiple request batches in �ight to
hide network latency. Each request in a batch is sent to a
randomly-chosen remote thread. Such batching is common
in key-value stores and distributed online transaction pro-
cessing. Each thread keeps up to 60 requests in �ight, spread
across all sessions. RPCs are 32 B in size. We compare eRPC’s
performance on CX3 (In�niBand) against FaSST’s reported
numbers on the same cluster. We also present eRPC’s per-
formance on the CX4 Ethernet cluster. We omit CX5 since it
has only 8 nodes.

Figure 4 shows that eRPC’s per-thread request issue rate
is at most 18% lower than FaSST across all batch sizes, and

Action RPC rate % loss

Baseline (with congestion control) 4.96 M/s –

Disable batched RTT timestamps (§5.2) 4.84 M/s 2.4%
Disable Timely bypass (§5.2) 4.52 M/s 6.6%
Disable rate limiter bypass (§5.2) 4.30 M/s 4.8%

Disable multi-packet RQ (§4.1.1) 4.06 M/s 5.6%
Disable preallocated responses (§4.3) 3.55 M/s 12.6%
Disable 0-copy request processing (§4.2.3) 3.05 M/s 14.0%

Table 3: Impact of disabling optimizations on small RPC rate (CX4)

 1

 10

 100

 1000

 0 2 4 6 8 10
La

te
nc

y
(m

ic
ro

se
co

nd
s)

Threads per node

99.99% 99.9% 99% Median

Figure 5: Latency with increasing threads on 100 CX4 nodes

only 5% lower for B = 3. This performance drop is accept-
able since eRPC is a full-�edged RPC system, whereas FaSST
is highly specialized. On CX4, each thread issues 5 million
requests per second (Mrps) for B = 3; due to the experi-
ment’s symmetry, it simultaneously also handles incoming
requests from remote threads at 5 Mrps. Therefore, each
thread processes 10 million RPCs per second.

Disabling congestion control increases eRPC’s request rate
on CX4 (B = 3) from 4.96 Mrps to 5.44 Mrps. This shows that
the overhead of our optimized congestion control is only 9%.

Factor analysis. How important are eRPC’s common-case
optimizations? Table 3 shows the performance impact of dis-
abling some of eRPC’s common-case optimizations on CX4;
other optimizations such as our single-DMA msgbuf format
and unsignaled transmissions cannot be disabled easily. For
our baseline, we use B = 3 and enable congestion control.
Disabling all three congestion control optimizations (§ 5.2.2)
reduces throughput to 4.3 Mrps, increasing the overhead of
congestion control from 9% to 20%. Further disabling preal-
located responses and zero-copy request processing reduces
throughput to 3 Mrps, which is 40% lower than eRPC’s peak
throughput. We therefore conclude that optimizing for the com-
mon case is both necessary and su�cient for high-performance
RPCs.

6.3 Session scalability
We evaluate eRPC’s scalability on CX4 by increasing the
number of nodes in the previous experiment (B = 3) to 100.
The �ve ToR switches in CX4 were assigned between 14 and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 9

 0

 20

 40

 60

 80

 100

 0.5 2 8 32 128 512 2048 8192
 0

 20

 40

 60

 80

 100
G

oo
dp

ut
 (G

bp
s)

Pe
rc

en
ta

ge

Request size (KB)

eRPC
RDMA write

Percentage of RDMA write

Figure 6: Throughput of large transfers over 100 Gbps In�niBand

27 nodes each by CloudLab. Next, we increase the number
of threads per node: WithT threads per node, there are 100T
threads in the cluster; each thread creates a client-mode
session to 100T − 1 threads. Therefore, each node hosts
T ∗ (100T − 1) client-mode sessions, and an equal number of
server-mode sessions. Since CX4 nodes have 10 cores, each
node handles up to 19980 sessions. This is a challenging
tra�c pattern that resembles distributed online transaction
processing (OLTP) workloads, which operate on small data
items [26, 39, 66, 69].

With 10 threads/node, each node achieves 12.3 Mrps on
average. At 12.3 Mrps, each node sends and receives 24.6 mil-
lion packets per second (packet size = 92 B), corresponding
to 18.1 Gbps. This is close to the link’s achievable bandwidth
(23 Gbps out of 25 Gbps), but is somewhat smaller because
of oversubscription. We observe retransmissions with more
than two threads per node, but the retransmission rate stays
below 1700 packets per second per node.

Figure 5 shows the RPC latency statistics. The median
latency with one thread per node is 12.7 µs. This is higher
than the 3.7 µs for CX4 in Table 2 because most RPCs now go
across multiple switches, and each thread keeps 60 RPCs in
�ight, which adds processing delay. Even with 10 threads per
node, eRPC’s 99.99th percentile latency stays below 700 µs.

These results show that eRPC can achieve high message
rate, bandwidth, and scalability, and low latency in a large
cluster with lossy Ethernet. Distributed OLTP has been a
key application for lossless RDMA fabrics; our results show
that it can also perform well on lossy Ethernet.

6.4 Large RPC bandwidth
We evaluate eRPC’s bandwidth using a client thread that
sends large messages to a remote server thread. The client
sends R-byte requests and keeps one request outstanding;
the server replies with a small 32 B response. We use up to
8 MB requests, which is the largest message size supported
by eRPC. We use 32 credits per session. To understand
how eRPC performs relative to hardware limits, we compare
against R-byte RDMA writes, measured using perftest.

On the clusters in Table 1, eRPC gets bottlenecked by
network bandwidth in this experiment setup. To understand
eRPC’s performance limits, we connect two nodes in the

Loss rate 10−7 10−6 10−5 10−4 10−3

Bandwidth (Gbps) 73 71 57 18 2.5

Table 4: eRPC’s 8 MB request throughput with packet loss

Incast degree Total bw 50% RTT 99% RTT

20 21.8 Gbps 39 µs 67 µs
20 (no cc) 23.1 Gbps 202 µs 204 µs

50 18.4 Gbps 34 µs 174 µs
50 (no cc) 23.0 Gbps 524 µs 524 µs

100 22.8 Gbps 349 µs 969 µs
100 (no cc) 23.0 Gbps 1056 µs 1060 µs

Table 5: E�ectiveness of congestion control (cc) during incast

CX5 cluster to a 100 Gbps switch via ConnectX-5 In�niBand
NICs. (CX5 is used as a 40 GbE cluster in the rest of this
paper.) Figure 6 shows that eRPC achieves up to 75 Gbps
with one core. eRPC’s throughput is at least 70% of RDMA
write throughput for 32 kB or larger requests.

In the future, eRPC’s bandwidth can be improved by
freeing-up CPU cycles. First, on-die memory copy accel-
erators can speed up copying data from RX ring bu�ers to
request or response msgbufs [2, 28]. Commenting out the
memory copies at the server increases eRPC’s bandwidth
to 92 Gbps, showing that copying has substantial overhead.
Second, cumulative credit return and request-for-response
(§ 5.1) can reduce packet processing overhead.

Table 4 shows the throughput with R = 8 MB (the largest
size supported by eRPC), and varying, arti�cially-injected
packet loss rates. With the current 5 ms RTO, eRPC is us-
able while the loss probability is up to .01%, beyond which
throughput degrades rapidly. We believe that this is su�-
cient to handle packet corruptions. RDMA NICs can handle
a somewhat higher loss rate (.1%) [73].

6.5 E�ectiveness of congestion control

We evaluate if our congestion control is successful at reduc-
ing switch queueing. We create an incast tra�c pattern by
increasing the number of client nodes in the previous setup
(R = 8 MB). The one server node acts as the incast victim.
During an incast, queuing primarily happens at the victim’s
ToR switch. We use per-packet RTTs measured at the clients
as a proxy for switch queue length [52].

Table 5 shows the total bandwidth achieved by all �ows
and per-packet RTT statistics on CX4, for 20, 50, and 100-way
incasts (one �ow per client node). We use two con�gurations:
�rst with eRPC’s optimized congestion control, and second
with no congestion control. Disabling our common-case con-
gestion control optimizations does not substantially a�ect
the RTT statistics, indicating that these optimizations do not
reduce the quality of congestion control.

10 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Congestion control successfully handles our target work-
loads of up to 50-way incasts, reducing median and 99th
percentile queuing by over 5x and 3x, respectively. For 100-
way incasts, our implementation reduces median queueing
by 3x, but fails to substantially reduce 99th percentile queue-
ing. This is in line with Zhu et al. [74, § 4.3]’s analysis,
which shows that Timely-like protocols work well with up
to approximately 40 incast �ows.

The combined incast throughput with congestion control
is within 20% of the achievable 23 Gbps. We believe that
this small gap can be further reduced with better tuning of
Timely’s many parameters. Note that we can also support
ECN-based congestion control in eRPC, which may be a
better congestion indicator than RTT [74].

Incast with background tra�c. Next, we augment the
setup above to mimic an experiment from Timely [52, Fig
22]: we create one additional thread at each node that is not
the incast victim. These threads exchange latency-sensitive
RPCs (64 kB request and response), keeping one RPC out-
standing. During a 100-way incast, the 99th percentile la-
tency of these RPCs is 274 µs. This is similar to Timely’s
latency (≈200-300 µs) with a 40-way incast over a 20 GbE
lossless RDMA fabric. Although the two results cannot be
directly compared, this experiment shows that the latency
achievable with software-only networking in commodity,
lossy datacenters is comparable to lossless RDMA fabrics,
even with challenging tra�c patterns.

7 Full-system benchmarks
In this section, we evaluate whether eRPC can be used in
real applications with unmodi�ed existing storage software:
We build a state machine replication system using an open-
source implementation of Raft [54], and a networked ordered
key-value store using Masstree [49].

7.1 Raft over eRPC
State machine replication (SMR) is used to build fault-
tolerant services. An SMR service consists of a group of
server nodes that receive commands from clients. SMR pro-
tocols ensure that each server executes the same sequence of
commands, and that the service remains available if servers
fail. Raft [54] is such a protocol that takes a leader-based
approach: Absent failures, the Raft replicas have a stable
leader to which clients send commands; if the leader fails,
the remaining Raft servers elect a new one. The leader ap-
pends the command to replicas’ logs, and it replies to the
client after receiving acks from a majority of replicas.

SMR is di�cult to design and implement correctly [31]: the
protocol must have a speci�cation and a proof (e.g., in TLA+),
and the implementation must adhere to the speci�cation. We
avoid this di�culty by using an existing implementation of
Raft [14]. (It had no distinct name, so we term it LibRaft.)
We did not write LibRaft ourselves; we found it on GitHub

Measurement System Median 99%

Measured at client NetChain 9.7 µs N/A
eRPC 5.5 µs 6.3 µs

Measured at leader ZabFPGA 3.0 µs 3.0 µs
eRPC 3.1 µs 3.4 µs

Table 6: Latency comparison for replicated PUTs

and used it as-is. LibRaft is well-tested with fuzzing over a
network simulator and 150+ unit tests. Its only requirement
is that the user provide callbacks for sending and handling
RPCs—which we implement using eRPC. Porting to eRPC
required no changes to LibRaft’s code.

We compare against recent consistent replication systems
that are built from scratch for two specialized hardware
types. First, NetChain [37] implements chain replication over
programmable switches. Other replication protocols such
as conventional primary-backup and Raft are too complex
to implement over programmable switches [37]. Therefore,
despite the protocol-level di�erences between LibRaft-over-
eRPC and NetChain, our comparison helps understand the
relative performance of end-to-end CPU-based designs and
switch-based designs for in-memory replication. Second,
Consensus in a Box [33] (called ZabFPGA here), implements
ZooKeeper’s atomic broadcast protocol [32] on FPGAs. eRPC
also outperforms DARE [58], which implements SMR over
RDMA; we omit the results for brevity.

Workloads. We mimic NetChain and ZabFPGA’s experi-
ment setups for latency measurement: we implement a 3-way
replicated in-memory key-value store, and use one client to
issue PUT requests. The replicas’ command logs and key-
value store are stored in DRAM. NetChain and ZabFPGA use
16 B keys, and 16–64 B values; we use 16 B keys and 64 B val-
ues. The client chooses PUT keys uniformly at random from
one million keys. While NetChain and ZabFPGA also imple-
ment their key-value stores from scratch, we reuse existing
code from MICA [45]. We compare eRPC’s performance
on CX5 against their published numbers because we do not
have the hardware to run NetChain or ZabFPGA. Table 6
compares the latencies of the three systems.

7.1.1 Comparison with NetChain

NetChain’s key assumption is that software networking adds
1–2 orders of magnitude more latency than switches [37].
However, we have shown that eRPC adds 850 ns, which is
only around 2x higher than latency added by current pro-
grammable switches (400 ns [8]).

Raft’s latency over eRPC is 5.5 µs, which is substantially
lower than NetChain’s 9.7 µs. This result must be taken with
a grain of salt: On the one hand, NetChain uses NICs that
have higher latency than CX5’s NICs. On the other hand,
it has numerous limitations, including key-value size and
capacity constraints, serial chain replication whose latency
increases linearly with the number of replicas, absence of

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 11

congestion control, and reliance on a complex and external
failure detector. The main takeaway is that microsecond-
scale consistent replication is achievable in commodity Eth-
ernet datacenters with a general-purpose networking library.

7.1.2 Comparison with ZabFPGA

Although ZabFPGA’s SMR servers are FPGAs, the clients are
commodity workstations that communicate with the FPGAs
over slow kernel-based TCP. For a challenging comparison,
we compare against ZabFPGA’s commit latency measured
at the leader, which involves only FPGAs. In addition, we
consider its “direct connect” mode, where FPGAs commu-
nicate over point-to-point links (i.e., without a switch) via
a custom protocol. Even so, eRPC’s median leader commit
latency is only 3% worse.

An advantage of specialized, dedicated hardware is low
jitter. This is highlighted by ZabFPGA’s negligible leader
latency variance. This advantage does not carry over directly
to end-to-end latency [33] because storage systems built
with specialized hardware are eventually accessed by clients
running on commodity workstations.

7.2 Masstree over eRPC
Masstree [49] is an ordered in-memory key-value store.
We use it to implement a single-node database index that
supports low-latency point queries in the presence of less
performance-critical longer-running scans. This requires
running scans in worker threads. We use CX3 for this exper-
iment to show that eRPC works well on In�niBand.

We populate a Masstree server on CX3 with one million
random 8 B keys mapped to 8 B values. The server has
16 Hyper-Threads, which we divide between 14 dispatch
threads and 2 worker threads. We run 64 client threads
spread over 8 client nodes to generate the workload. The
workload consists of 99% GET(key) requests that fetch a
key-value item, and 1% SCAN(key) requests that sum up the
values of 128 keys succeeding the key. Keys are chosen uni-
formly at random from the inserted keys. Two outstanding
requests per client was su�cient to saturate our server.

We achieve 14.3 million GETs/s on CX3, with 12 µs 99th
percentile GET latency. If the server is con�gured to run
only dispatch threads, the 99th percentile GET latency rises
to 26 µs. eRPC’s median GET latency under low load is 2.7 µs.
This is around 10x faster than Cell’s single-node B-Tree that
uses multiple RDMA reads [51]. Despite Cell’s larger key/-
value sizes (64 B/256 B), the latency di�erences are mostly
from RTTs: At 40 Gbps, an additional 248 B takes only 50 ns
more time to transmit.

8 Related work
RPCs. There is a vast amount of literature on RPCs. The
practice of optimizing an RPC wire protocol for small RPCs
originates with Birrell and Nelson [19], who introduce the
idea of an implicit-ACK. Similar to eRPC, the Sprite RPC

system [67] directly uses raw datagrams and performs re-
transmissions only at clients. The Direct Access File Sys-
tem [23] was one of the �rst to use RDMA in RPCs. It uses
SEND/RECV messaging over a connected transport to initi-
ate an RPC, and RDMA reads or writes to transfer the bulk
of large RPC messages. This design is widely used in other
systems such as NFS’s RPCs [20] and some MPI implemen-
tations [48]. In eRPC, we chose to transfer all data over
datagram messaging to avoid the scalability limits of RDMA.
Other RPC systems that use RDMA include Mellanox’s Ac-
celio [4] and RFP [63]. These systems perform comparably
to FaRM’s RPCs, which are slower than eRPC at scale by an
order of magnitude.
Co-design. There is a rapidly-growing list of projects that
co-design distributed systems with the network. This in-
cludes key-value stores [38, 46, 50, 65], distributed databases
and transaction processing systems [21, 25, 66, 69], state ma-
chine replication [33, 58], and graph-processing systems [62].
We believe the availability of eRPC will motivate researchers
to investigate how much performance these systems can
achieve without sacri�cing the networking abstraction. On
the other hand, there is a smaller set of recent projects
that also prefer RPCs over co-design, including RAMCloud,
FaSST, and the distributed data shu�er by Liu et al. [47].
However, their RPCs lack either performance (RAMCloud)
or generality (FaSST), whereas eRPC provides both.

9 Conclusion
eRPC is a fast, general-purpose RPC system that provides
an attractive alternative to putting more functions in net-
work hardware, and specialized system designs that depend
on these functions. eRPC’s speed comes from prioritiz-
ing common-case performance, carefully combining a wide
range of old and new optimizations, and the observation that
switch bu�er capacity far exceeds datacenter BDP. eRPC de-
livers performance that was until now believed possible only
with lossless RDMA fabrics or specialized network hard-
ware. It allows unmodi�ed applications to perform close
to the hardware limits. Our ported versions of LibRaft and
Masstree are, to our knowledge, the fastest replicated key-
value store and networked database index in the academic
literature, while operating end-to-end without additional
network support.

Acknowledgments We received valueable insights from our
SIGCOMM and NSDI reviewers, Miguel Castro, John Ousterhout,
and Yibo Zhu. Sol Boucher, Jack Kosaian, and Hyeontaek Lim
helped improve the writing. CloudLab [59] and Emulab [68] re-
sources were used in our experiments. This work was supported
by funding from the National Science Foundation under awards
CCF-1535821 and CNS-1700521, and by Intel via the Intel Science
and Technology Center for Visual Cloud Systems (ISTC-VCS). Anuj
Kalia is supported by the Facebook Fellowship.

12 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix A. eRPC’s NIC memory footprint

Primarily, four on-NIC structures contribute to eRPC’s NIC
memory footprint: the TX and RX queues, and their cor-
responding completion queues. The TX queue must allow
su�cient pipelining to hide PCIe latency; we found that
64 entries are su�cient in all cases. eRPC’s TX queue and
TX completion queue have 64 entries by default, so their
footprint does not depend on cluster size. The footprint of
on-NIC page table entries required for eRPC is negligible
because we use 2 MB hugepages [25].

As discussed in Section 4.3.1, eRPC’s RQs must have suf-
�cient descriptors for all connected sessions. If traditional
RQs are used, their footprint grows with the number of con-
nected sessions supported. Modern NICs (e.g., ConnectX-4
and newer NICs from Mellanox) support multi-packet RQ
descriptors that specify multiple contiguous packet bu�ers
using base address, bu�er size, and number of bu�ers. With
eRPC’s default con�guration of 512-way RQ descriptors, RQ
size is reduced by 512x, making it negligible. This optimiza-
tion has the added advantage of almost eliminating RX de-
scriptor DMA, which is now needed only once every 512
packets. While multi-packet RQs were originally designed
for large receive o�oad of one message [6], we use this
feature to receive packets of independent messages.

What about the RX completion queue (CQ)? By default,
NICs expect the RX CQ to have su�cient space for each
received packet, so using multi-packet RQ descriptors does
not reduce CQ size. However, eRPC does not need the infor-
mation that the NIC DMA-writes to the RX CQ entries. It
needs only the number of new packets received. Therefore,
we shrink the CQ by allowing it to overrun, i.e., we allow the
NIC to overwrite existing entries in the CQ in a round-robin
fashion. We poll the overrunning CQ to check for received
packets. It is possible to use a RX CQ with only one entry,
but we found that doing so causes cache line contention be-
tween eRPC’s threads and the CPU’s on-die PCIe controller.
We solve this issue by using 8-entry CQs, which makes the
contention negligible.

Appendix B. Handling node failures

eRPC launches a session management thread that handles
sockets-based management messaging for creating and de-
stroying sessions, and detects failure of remote nodes with
timeouts. When the management thread suspects a remote
node failure, each dispatch thread with sessions to the re-
mote node acts as follows. First, it �ushes the TX DMA queue
to release msgbuf references held by the NIC. For client ses-
sions, it waits for the rate limiter to transmit any queued
packets for the session, and then invokes continuations for
pending requests with an error code. For server-mode ses-
sions, it frees session resources after waiting (non-blocking)
for request handlers that have not enqueued a response.

Appendix C. Rate limiting with zero-copy

Recall the request retransmission example discussed in
§ 4.2.2: On receiving the response for the �rst copy of a
retransmitted request, we wish to ensure that the rate lim-
iter does not contain a reference to the retransmitted copy.
Unlike eRPC’s NIC DMA queue that holds only a few tens of
packets, the rate limiter tracks up to milliseconds worth of
transmissions during congestion. As a result, �ushing it like
the DMA queue is too slow. Deleting references from the
rate limiter turned out to be too complex: Carousel requires a
bounded di�erence between the current time and a packet’s
scheduled transmission time for correctness, so deletions
require rolling back Timely’s internal rate computation state.
Each Timely instance is shared by all slots in a session (§ 4.3),
which complicates rollback.

We solve this problem by dropping response packets re-
ceived while a retransmitted request is in the rate limiter.
Each such response indicates a false positive in our retrans-
mission mechanism, so they are rare. This solution does
not work for the NIC DMA queue: since we use unsignaled
transmission, it is generally impossible for software to know
whether a request is in the DMA queue without �ushing it.

References

[1] Private communication with Mellanox.
[2] Fast memcpy with SPDK and Intel I/OAT DMA Engine.

https://software.intel.com/en-us/articles/
fast-memcpy-using-spdk-and-ioat-dma-engine.

[3] A peek inside Facebook’s server �eet upgrade.
https://www.nextplatform.com/2017/03/13/
peek-inside-facebooks-server-fleet-upgrade/,
2017.

[4] Mellanox Accelio. http://www.accelio.org, 2017.
[5] Mellanox MLNX-OS user manual for Ether-

net. http://www.mellanox.com/related-
docs/prod_management_software/MLNX-
OS_ETH_v3_6_3508_UM.pdf, 2017.

[6] Mellanox OFED for Linux release notes.
http://www.mellanox.com/related-docs/prod_
software/Mellanox_OFED_Linux_Release_Notes_
3_2-1_0_1_1.pdf, 2017.

[7] Oak Ridge leadership computing facility - Summit.
https://www.olcf.ornl.gov/summit/, 2017.

[8] Aurora 710 based on Barefoot To�no switching sil-
icon. https://netbergtw.com/products/aurora-
710/, 2018.

[9] Facebook open switching system FBOSS and Wedge
in the open. https://code.facebook.com/posts/
843620439027582/facebook-open-switching-
system-fboss-and-wedge-in-the-open/, 2018.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 13

https://software.intel.com/en-us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine
https://software.intel.com/en-us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine
https://www.nextplatform.com/2017/03/13/peek-inside-facebooks-server-fleet-upgrade/
https://www.nextplatform.com/2017/03/13/peek-inside-facebooks-server-fleet-upgrade/
http://www.accelio.org
http://www.mellanox.com/related-docs/prod_management_software/MLNX-OS_ETH_v3_6_3508_UM.pdf
http://www.mellanox.com/related-docs/prod_management_software/MLNX-OS_ETH_v3_6_3508_UM.pdf
http://www.mellanox.com/related-docs/prod_management_software/MLNX-OS_ETH_v3_6_3508_UM.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_Release_Notes_3_2-1_0_1_1.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_Release_Notes_3_2-1_0_1_1.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_Release_Notes_3_2-1_0_1_1.pdf
https://www.olcf.ornl.gov/summit/
https://netbergtw.com/products/aurora-710/
https://netbergtw.com/products/aurora-710/
https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-the-open/

[10] RDMAmojo - blog on RDMA technology and program-
ming by Dotan Barak. http://www.rdmamojo.com/
2013/01/12/ibv_modify_qp/, 2018.

[11] Distributed asynchronous object storage stack. https:
//github.com/daos-stack, 2018.

[12] Tolly report: Mellanox SX1016 and SX1036
10/40GbE switches. http://www.mellanox.
com/related-docs/prod_eth_switches/
Tolly212113MellanoxSwitchSXPerformance.pdf,
2018.

[13] Jim Warner’s switch bu�er page. https://people.
ucsc.edu/~warner/buffer.html, 2018.

[14] C implementation of the Raft consensus protocol.
https://github.com/willemt/raft, 2018.

[15] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pfabric: Minimal near-
optimal datacenter transport. In Proc. ACM SIGCOMM,
Hong Kong, China, Aug. 2013.

[16] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In Proceedings of the SIGMETRICS’12, June
2012.

[17] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected data-
plane operating system for high throughput and low
latency. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14), 2014.

[18] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Za-
manian. The end of slow networks: It’s time for a
redesign. In Proc. VLDB, New Delhi, India, Aug. 2016.

[19] A. D. Birrell and B. J. Nelson. Implementing remote
procedure calls. ACM Trans. Comput. Syst., 1984.

[20] B. Callaghan, T. Lingutla-Raj, A. Chiu, P. Staubach,
and O. Asad. NFS over RDMA. In Proceedings of the
ACM SIGCOMMWorkshop on Network-I/O Convergence:
Experience, Lessons, Implications, 2003.

[21] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and
general distributed transactions using RDMA and HTM.
In Proc. 11th ACM European Conference on Computer
Systems (EuroSys), Apr. 2016.

[22] D. Crupnico�, M. Kagan, A. Shahar, N. Bloch, and
H. Chapman. Dynamically-connected transport ser-
vice, May 19 2011. URL https://www.google.com/
patents/US20110116512. US Patent App. 12/621,523.

[23] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent,
D. Noveck, T. Talpey, and M. Wittle. The direct ac-
cess �le system. In Proceedings of the 2Nd USENIX
Conference on File and Storage Technologies, 2003.

[24] DPDK. Data Plane Development Kit (DPDK). http:
//dpdk.org/, 2017.

[25] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast remote memory. In Proc. 11th USENIX NSDI,
Seattle, WA, Apr. 2014.

[26] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Ren-
zelmann, A. Shamis, A. Badam, and M. Castro. No com-
promises: Distributed transactions with consistency,
availability, and performance. In Proc. 25th ACM Sympo-
sium on Operating Systems Principles (SOSP), Monterey,
CA, Oct. 2015.

[27] A. Dragojevic, D. Narayanan, and M. Castro. RDMA
reads: To use or not to use? IEEE Data Eng. Bull., 2017.

[28] M. D. et al. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In
Proc. 15th USENIX NSDI, Renton, WA, Apr. 2018.

[29] D. Firestone et al. Azure accelerated networking: Smart-
NICs in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), Renton, WA, Apr. 2018.

[30] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. A.
Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z. Lin, and
V. Kurien. Pingmesh: A large-scale system for data
center network latency measurement and analysis. In
Proc. ACM SIGCOMM, London, UK, Aug. 2015.

[31] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill. IronFleet:
Proving practical distributed systems correct. In Proc.
25th ACM Symposium on Operating Systems Principles
(SOSP), Monterey, CA, Oct. 2015.

[32] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: wait-free coordination for internet-scale
systems. In Proc. USENIX Annual Technical Conference,
Boston, MA, June 2010.

[33] Z. István, D. Sidler, G. Alonso, and M. Vukolic. Consen-
sus in a box: Inexpensive coordination in hardware. In
Proc. 13th USENIX NSDI, Santa Clara, CA, May 2016.

[34] Z. István, D. Sidler, and G. Alonso. Caribou: Intelligent
distributed storage. Aug. 2017.

[35] E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park. mTCP: A highly scalable user-level TCP
stack for multicore systems. In Proc. 11th USENIX NSDI,
Seattle, WA, Apr. 2014.

[36] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,
and I. Stoica. NetCache: Balancing key-value stores
with fast in-network caching. In Proc. 26th ACM Sympo-
sium on Operating Systems Principles (SOSP), Shanghai,
China, Oct. 2017.

[37] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim,
and I. Stoica. NetChain: Scale-free sub-RTT coordina-
tion. In Proc. 15th USENIX NSDI, Renton, WA, Apr.
2018.

[38] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA e�ciently for key-value services. In Proc. ACM

14 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.rdmamojo.com/2013/01/12/ibv_modify_qp/
http://www.rdmamojo.com/2013/01/12/ibv_modify_qp/
https://github.com/daos-stack
https://github.com/daos-stack
http://www.mellanox.com/related-docs/prod_eth_switches/Tolly212113MellanoxSwitchSXPerformance.pdf
http://www.mellanox.com/related-docs/prod_eth_switches/Tolly212113MellanoxSwitchSXPerformance.pdf
http://www.mellanox.com/related-docs/prod_eth_switches/Tolly212113MellanoxSwitchSXPerformance.pdf
https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html
https://github.com/willemt/raft
https://www.google.com/patents/US20110116512
https://www.google.com/patents/US20110116512
http://dpdk.org/
http://dpdk.org/

SIGCOMM, Chicago, IL, Aug. 2014.
[39] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST:

Fast, scalable and simple distributed transactions with
two-sided RDMA datagram RPCs. In Proc. 12th USENIX
OSDI, Savannah, GA, Nov. 2016.

[40] A. Kalia, M. Kaminsky, and D. G. Andersen. Design
guidelines for high-performance RDMA systems. In
Proc. USENIX Annual Technical Conference, Denver, CO,
June 2016.

[41] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu,
J. Padhye, S. Raindel, S. Swanson, V. Sekar, and S. Se-
shan. HyperLoop: Group-based NIC-o�oading to ac-
celerate replicated transactions in multi-tenant storage
systems. In Proc. ACM SIGCOMM, Budapest, Hungary,
Aug. 2018.

[42] M. J. Koop, J. K. Sridhar, and D. K. Panda. Scalable
MPI design over In�niBand using eXtended Reliable
Connection. In 2008 IEEE International Conference on
Cluster Computing, 2008.

[43] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K.
Ports. Just say no to Paxos overhead: Replacing con-
sensus with network ordering. In Proc. 12th USENIX
OSDI, Savannah, GA, Nov. 2016.

[44] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-
free consistent transactions using in-network concur-
rency control. In Proc. 26th ACM Symposium on Oper-
ating Systems Principles (SOSP), Shanghai, China, Oct.
2017.

[45] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kamin-
sky, D. G. Andersen, O. Seongil, S. Lee, and P. Dubey.
Architecting to achieve a billion requests per second
throughput on a single key-value store server platform.
In ISCA, 2015.

[46] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-value
storage. In Proc. 11th USENIX NSDI, Seattle, WA, Apr.
2014.

[47] F. Liu, L. Yin, and S. Blanas. Design and evaluation of
an RDMA-aware data shu�ing operator for parallel
database systems. In Proc. 12th ACM European Confer-
ence on Computer Systems (EuroSys), Apr. 2017.

[48] J. Liu, J. Wu, and D. K. Panda. High performance RDMA-
based MPI implementation over In�niBand. Interna-
tional Journal of Parallel Programming, 2004.

[49] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In Proc. 7th ACM
European Conference on Computer Systems (EuroSys),
Bern, Switzerland, Apr. 2012.

[50] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA
reads to build a fast, CPU-e�cient key-value store. In
Proc. USENIX Annual Technical Conference, San Jose,
CA, June 2013.

[51] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li.
Balancing CPU and network in the Cell distributed B-
Tree store. In Proc. USENIX Annual Technical Conference,
Denver, CO, June 2016.

[52] R. Mittal, T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and
D. Zats. TIMELY: RTT-based congestion control for the
datacenter. In Proc. ACM SIGCOMM, London, UK, Aug.
2015.

[53] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krish-
namurthy, S. Ratnasamy, and S. Shenker. Revisiting
network support for RDMA. In Proc. ACM SIGCOMM,
Budapest, Hungary, Aug. 2018.

[54] D. Ongaro and J. Ousterhout. In search of an under-
standable consensus algorithm. In Proc. USENIX Annual
Technical Conference, Philadelphia, PA, June 2014.

[55] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout,
and M. Rosenblum. Fast crash recovery in RAMCloud.
In Proc. 23rd ACM Symposium on Operating Systems
Principles (SOSP), Cascais, Portugal, Oct. 2011.

[56] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee,
B. Montazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosen-
blum, S. Rumble, R. Stutsman, and S. Yang. The RAM-
Cloud storage system. ACM TOCS, 2015.

[57] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and
S. Shenker. NetBricks: Taking the V out of NFV. In
Proc. 12th USENIX OSDI, Savannah, GA, Nov. 2016.

[58] M. Poke and T. Hoe�er. DARE: High-performance state
machine replication on RDMA networks. In HPDC,
2015.

[59] R. Ricci, E. Eide, and The CloudLab Team. Introducing
CloudLab: Scienti�c infrastructure for advancing cloud
architectures and applications. USENIX ;login:, 2014.

[60] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the social network’s (datacenter) network. In
Proc. ACM SIGCOMM, London, UK, Aug. 2015.

[61] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam,
C. Contavalli, and A. Vahdat. Carousel: Scalable tra�c
shaping at end hosts. In Proc. ACM SIGCOMM, Los
Angeles, CA, Aug. 2017.

[62] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and
concurrent RDF queries with RDMA-based distributed
graph exploration. In Proc. 12th USENIX OSDI, Savan-
nah, GA, Nov. 2016.

[63] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu. RFP:
When RPC is faster than server-bypass with RDMA.
In Proc. 12th ACM European Conference on Computer
Systems (EuroSys), Apr. 2017.

[64] Y. Wang, X. Meng, L. Zhang, and J. Tan. C-hint: An
e�ective and reliable cache management for RDMA-
accelerated key-value stores. In Proc. 5th ACM Sym-
posium on Cloud Computing (SOCC), Seattle, WA, Nov.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 15

2014.
[65] Y. Wang, L. Zhang, J. Tan, M. Li, Y. Gao, X. Guerin,

X. Meng, and S. Meng. Hydradb: A resilient RDMA-
driven key-value middleware for in-memory cluster
computing. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, 2015.

[66] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-
memory transaction processing using RDMA and HTM.
In Proc. 25th ACM Symposium on Operating Systems
Principles (SOSP), Monterey, CA, Oct. 2015.

[67] B. B. Welch. The Sprite remote procedure call system.
Technical report, Berkeley, CA, USA, 1986.

[68] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed
systems and networks. In Proc. 5th USENIX OSDI, pages
255–270, Boston, MA, Dec. 2002.

[69] E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The
end of a myth: Distributed transactions can scale. In
Proc. VLDB, Munich, Germany, Aug. 2017.

[70] J. Zhang, F. Ren, X. Yue, R. Shu, and C. Lin. Sharing
bandwidth by allocating switch bu�er in data center
networks. IEEE Journal on Selected Areas in Communi-
cations, 2014.

[71] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy. High-
resolution measurement of data center microbursts. In
Proceedings of the 2017 Internet Measurement Conference,
IMC ’17, 2017.

[72] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski,
A. Singh, and A. Vahdat. WCMP: Weighted cost multi-
pathing for improved fairness in data centers. In Proc.
9th ACM European Conference on Computer Systems
(EuroSys), Apr. 2014.

[73] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang. Congestion control for large-scale RDMA
deployments. In Proc. ACM SIGCOMM, London, UK,
Aug. 2015.

[74] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye. ECN or
delay: Lessons learnt from analysis of DCQCN and
TIMELY. In Proc. CoNEXT, Dec. 2016.

16 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Eiffel: Efficient and Flexible Software Packet Scheduling

Ahmed Saeed†, Yimeng Zhao†, Nandita Dukkipati∗, Mostafa Ammar†, Ellen Zegura†,
Khaled Harras‡, Amin Vahdat∗

†Georgia Institute of Technology, ∗Google, ‡Carnegie Mellon University

Abstract

Packet scheduling determines the ordering of packets in a
queuing data structure with respect to some ranking func-
tion that is mandated by a scheduling policy. It is the core
component in many recent innovations to optimize network
performance and utilization. Our focus in this paper is on
the design and deployment of packet scheduling in soft-
ware. Software schedulers have several advantages over
hardware including shorter development cycle and flexibility
in functionality and deployment location. We substantially
improve current software packet scheduling performance,
while maintaining flexibility, by exploiting underlying fea-
tures of packet ranking; namely, packet ranks are integers
and, at any point in time, fall within a limited range of values.
We introduce Eiffel, a novel programmable packet schedul-
ing system. At the core of Eiffel is an integer priority queue
based on the Find First Set (FFS) instruction and designed to
support a wide range of policies and ranking functions effi-
ciently. As an even more efficient alternative, we also pro-
pose a new approximate priority queue that can outperform
FFS-based queues for some scenarios. To support flexibility,
Eiffel introduces novel programming abstractions to express
scheduling policies that cannot be captured by current, state-
of-the-art scheduler programming models. We evaluate Eif-
fel in a variety of settings and in both kernel and userspace
deployments. We show that it outperforms state of the art
systems by 3-40x in terms of either number of cores utilized
for network processing or number of flows given fixed pro-
cessing capacity.

1 Introduction
Packet scheduling is the core component in many recent in-
novations to optimize network performance and utilization.
Typically, packet scheduling targets network-wide objectives
(e.g., meeting strict deadlines of flows [34], reducing flow
completion time [14]), or provides isolation and differentia-
tion of service (e.g., through bandwidth allocation [40, 35]
or Type of Service levels [44, 15, 32]). It is also used for re-
source allocation within the packet processing system (e.g.,
fair CPU utilization in middleboxes [56, 30] and software
switches [33]).

Packet scheduling determines the ordering of packets in a
queuing data structure with respect to some ranking func-
tion that is mandated by a scheduling policy. In particular, as

packets arrive at the scheduler they are enqueued, a process
that involves ranking based on the scheduling policy and or-
dering the packets according to the rank. Then, periodically,
packets are dequeued according to the packet ordering. In
general, the dequeuing of a packet might, for some schedul-
ing policies, prompt recalculation of ranks and a reordering
of the remaining packets in the queue. A packet scheduler
should be efficient by performing a minimal number of op-
erations on packet enqueue and dequeue thus enabling the
handling of packets at high rates. It should also be flexible by
providing the necessary abstractions to implement as many
scheduling policies as possible.

In modern networks, hardware and software both play an
important role [23]. While hardware implementation of net-
work functionality will always be faster than its correspond-
ing software implementation, software schedulers have sev-
eral advantages. First, the short development cycle and flex-
ibility of software makes it an attractive replacement or pre-
cursor for hardware schedulers. Second, the number of rate
limiters and queues deployed in hardware implementations
typically lags behind network needs. For instance, three
years ago, network needs were estimated to be in the tens of
thousands of rate limiters [46] while hardware network cards
offered 10-128 queues [4]. Third, software packet sched-
ulers can be deployed in multiple platforms and locations, in-
cluding middleboxes as Virtual Network Functions and end
hosts (e.g., implementation based on BESS [33], or Open-
VSwitch [45]). Hence, we assert that software solutions will
always be needed to replace or augment hardware schedulers
[19, 36, 47, 22, 39]. However, as will be discussed in Section
2, current software schedulers do not meet our efficiency and
flexibility objectives.

Our focus in this paper is on the design and implemen-
tation of efficient and flexible packet scheduling in soft-
ware. The need for programmable schedulers is rising as
more sophisticated policies are required of networks [27, 50]
with schedulers deployed at multiple points on a packet’s
path. It has proven difficult to achieve scheduler efficiency
in software schedulers, especially handling packets at high
line rates, without limiting the supported scheduling policies
[47, 50, 36, 47, 19, 22]. Furthermore, CPU-efficient imple-
mentation of even the simplest scheduling policies is still an
open problem for most platforms. For instance, kernel packet
pacing can cost CPU utilization of up to 10% [47] and up
to 12% for hierarchical weighted fair queuing scheduling in

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 17

NetIOC of VMware’s hypervisor [37]. This overhead will
only grow as more programmability is added to the sched-
uler, assuming basic building blocks remain the same (e.g.,
OpenQueue [39]). The inefficiency of these systems stems
from relying on O(logn) comparison-based priority queues.

At a fundamental level, a scheduling policy that has m
ranking functions associated with a packet (e.g., pacing rate,
policy-based rate limit, weight-based share, and deadline-
based ordering) typically requires m priority queues in which
this packet needs to be enqueued and dequeued [49], which
translates roughly to O(m logn) operations per packet for a
scheduler with n packets enqueued. We show how to reduce
this overhead to O(m) for any scheduling policy (i.e., con-
stant overhead per ranking function).

Our approach to providing both flexibility and efficiency
in software packet schedulers is two fold. First, we observe
(§2) that packet ranks can be represented as integers that at
any point in time fall within a limited window of values.
We exploit this property (§3.1.1) to employ integer priority
queues that have O(1) overhead for packet insertion and ex-
traction. We achieve this by proposing a modification to pri-
ority queues based on the Find First Set (FFS) instruction,
found in most CPUs, to support a wide range of policies and
ranking functions efficiently. We also propose a new approx-
imate priority queue that can outperform FFS-based queues
for some scenarios (§3.1.2). Second, we observe (§3.2) that
packet scheduling programming models (i.e., PIFO [50] and
OpenQueue [39]) do not support per-flow packet scheduling
nor do they support reordering of packets on a dequeue oper-
ation. We augment the PIFO scheduler programming model
to capture these two abstractions.

We introduce Eiffel, an efficient and flexible software
scheduler that instantiates our proposed approach. Eiffel is
a software packet scheduler that can be deployed on end-
hosts and software switches to implement any scheduling al-
gorithm. To demonstrate this we implement Eiffel (§4) in: 1)
the kernel as a Queuing Discipline (qdisc) and compare it to
Carousel [47] and FQ/Pacing [26] and 2) the Berkeley Ex-
tensible Software Switch (BESS) [8, 33] using Eiffel-based
implementations of pFabric [14] and hClock [19]. We eval-
uate Eiffel in both settings (§5). Eiffel outperforms Carousel
by 3x and FQ/Pacing by 14x in terms of CPU overhead
when deployed on Amazon EC2 machines with line rate of
20 Gbps. We also find that an Eiffel-based implementation
of pFabric and hClock outperforms an implementation us-
ing comparison-based priority queues by 5x and 40x respec-
tively in terms of maximum number of flows given fixed pro-
cessing capacity and target rate.

2 Background and Objectives
In modern networks, packet scheduling can easily become
the system bottleneck. This is because schedulers are bur-
dened with the overhead of maintaining a large number of
buffered packets sorted according to scheduling policies.

Despite the growing capacity of modern CPUs, packet pro-
cessing overhead remains a concern. Dedicating CPU power
to networking takes from CPU capacity that can be dedicated
to VM customers especially in cloud settings [28]. One ap-
proach to address this overhead is to optimize the scheduler
for a specific scheduling policy [26, 25, 19, 47, 22]. How-
ever, with specialization two problems linger. First, in most
cases inefficiencies remain because of the typical reliance on
generic default priority queues in modern libraries (e.g., RB-
trees in kernel and Binary Heaps in C++). Second, even if
efficiency is achieved, through the use of highly efficient spe-
cialized data structures (e.g., Carousel [47] and QFQ [22]) or
hybrid hardware/software systems (e.g. SENIC [46]), this
efficiency is achieved at the expense of programmability.
The Eiffel system we develop in this paper is designed to be
both efficient and programmable. In this section we examine
these two objectives, show how existing solutions fall short
of achieving them and highlight our approach to successfully
combine efficiency with flexibility.

Efficient Priority Queuing: Priority queuing is funda-
mental to computer science with a long history of theoreti-
cal results. Packet priority queues are typically developed as
comparison-based priority queues [26, 19]. A well known
result for such queues is that they require O(logn) steps for
either insertion or extraction for a priority queue holding n
elements [52]. This applies to data structures that are widely
used in software packet schedulers such as RB-trees, used in
kernel Queuing Disciplines, and Binary Heaps, the standard
priority queue implementation in C++.

Packet queues, however, have the following characteristics
that can be exploited to significantly lower the overhead of
packet insertion and extraction:
• Integer packet ranks: Whether it is deadlines, transmis-

sion time, slack time, or priority, the calculated rank of a
packet can always be represented as an integer.

• Packet ranks have specific ranges: At any point in time,
the ranks of packets in a queue will typically fall within a
limited range of values (i.e., with well known maximum
and minimum values). This range is policy and load de-
pendent and can be determined in advance by operators
(e.g., transmission time where packets can be scheduled
a maximum of a few seconds ahead, flow size, or known
ranges of strict priority values). Ranges of priority values
are diverse ranging from just eight levels [1], to 50k for a
queue implementing per flow weighted fairness which re-
quires a number of priorities corresponding to the number
of flows (i.e., 50k flows on a video server [47]), and up to
1 million priorities for a time indexed priority queue [47].

• Large numbers of packets share the same rank: Mod-
ern line rates are in the range of 10s to 100s of Gbps.
Hence, multiple packets are bound to be transmitted with
nanosecond time gaps. This means that packets with small
differences in their ranks can be grouped and said to have

18 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

System Efficiency HW/SW
Flexibility

NotesUnit of Work- Supports ProgrammableScheduling Conserving Shaping
FQ/Pacing qdisc [26] O(logn) SW Flows No Yes No Only non-work conserving FQ

hClock [19] O(logn) SW Flows Yes Yes No Only HWPQ Sched.
Carousel [47] O(1) SW Packets No Yes No Only non-work conserving sched.

OpenQueue [39] O(logn) SW Packets & Flows Yes No On enq/deq Inefficient building blocks
PIFO [50] O(1) HW Packets Yes Yes On enq Max. # flows 2048

Eiffel O(1) SW Packets & Flows Yes Yes On enq/deq -

Table 1: Proposed work in the context of the state of the art in scheduling

the same rank with minimal or no effect on the accurate
implementation of the scheduling policy. For instance,
consider a busy-polling-based packet pacer that can de-
queue packets at fixed intervals (e.g., order of 10s of
nanoseconds). In that scenario, packets with gaps smaller
than 10 nanoseconds can be considered to have the same
rank.
These characteristics make the design of a packet prior-

ity queue effectively the design of bucketed integer priority
queues over a finite range of rank values [0,C] with num-
ber of buckets N, each covering C/N interval of the range.
The number of buckets, and consequently the range covered
by each bucket, depend on the required ranking granularity
which is a characteristic of the scheduling policy. The num-
ber of buckets is typically in the range of a few thousands to
hundreds of thousands. Elements falling within a range of a
bucket are ordered in FIFO fashion. Theoretical complexity
results for such bucketed integer priority queues are reported
in [53, 29, 52].

Integer priority queues do not come for free. Effi-
cient implementation of integer priority queues requires pre-
allocation of buckets and meta data to access those buckets.
In a packet scheduling setting the number of buckets is fixed,
making the overhead per packet a constant whose value is
logarithmic in the number of buckets, because searching is
performed on the bucket list not the list of elements. Hence,
bucketed integer priority queues achieve CPU efficiency at
the expense of maintaining elements unsorted within a single
bucket and pre-allocation of memory for all buckets. Note
that the maintaining elements unsorted within a bucket is in-
consequential because packets within a single bucket effec-
tively have equivalent rank. Moreover, the memory required
for buckets, in most cases, is minimal (e.g., tens to hundreds
of kilobytes), which is consistent with earlier work on buck-
eted queues [47]. Another advantage of bucketed integer pri-
ority queues is that elements can be (re)moved with O(1)
overhead. This operation is used heavily in several schedul-
ing algorithms (e.g., hClock [19] and pFabric [14]).

Recently, there has been some attempts to employ data
structures specifically developed or re-purposed for effi-
ciently implementing specific packet scheduling algorithms.
For instance, Carousel [47], a system developed for rate lim-
iting at scale, relies on Timing Wheel [54], a data struc-
ture that can support time-based operations in O(1) and re-
quires comparable memory to our proposed approach. How-

ever, Timing Wheel supports only non-work conserving
time-based schedules in O(1). Timing Wheel is efficient
as buckets are indexed based on time and elements are ac-
cessed when their deadline arrives. However, Timing Wheel
does not support operations needed for non-work conserving
schedules (i.e., ExtractMin or ExtractMax). Another ex-
ample is efficient approximation of popular scheduling poli-
cies (e.g., Start-Time Fair Queueing [31] as an approxima-
tion of Weighted Fair Queuing [24], or the more recent Quick
Fair Queue (QFQ) [22]). This approach of developing a new
system or a new data structure per scheduling policy does
not provide a path to the efficient implementation of more
complex policies. Furthermore, it does not allow for a truly
programmable network. These limitations lead us to our first
objective for Eiffel:
Objective 1: Develop data structures that can be em-
ployed for any scheduling algorithm providing O(1) process-
ing overhead per packet leveraging integer priority queues
(§3.1).

Flexibility of Programmable Packet Schedulers: There
has been recent interest in developing flexible, pro-
grammable, packet schedulers [50, 39]. This line of work is
motivated by the support for programmability in all aspects
of modern networks. Work on programmable schedulers fo-
cuses on providing the infrastructure for network operators
to define their own scheduling policies. This approach im-
proves on the current standard approach of providing a small
fixed set of scheduling policies as currently provided in mod-
ern switches. A programmable scheduler provides building
blocks for customizing packet ranking and transmission tim-
ing. Proposed programmable schedulers differ based on the
flexibility of their building blocks. A flexible scheduler al-
lows a network operator to specify policies according to the
following specifications:
• Unit of Scheduling: Scheduling policies operate either on

per packet basis (e.g., pacing) or on per flow basis (e.g.,
fair queuing). This requires a model that provides abstrac-
tions for both.

• Work Conservation: Scheduling policies can be work-
conserving or non-work-conserving.

• Ranking Trigger: Efficient implementation of policies can
require ranking packets on their enqueue, dequeue, or
both.
Recent programmable packet schedulers export primitives

that enable, the specification of a scheduling policy and its

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 19

parameters, often within limits. The PIFO scheduler pro-
gramming model is the most prominent example [50]. It
is implemented in hardware relying on Push-In-First-Out
(PIFO) building blocks where packets are ranked only on
enqueue. The scheduler is programmed by arranging the
blocks to implement different scheduling policies. Due to
its hardware implementation, the PIFO model employs com-
pact constructs with considerable flexibility. However, PIFO
remains very limited in its capacity (i.e., PIFO can handle a
a maximum of 2048 flows at line rate), and expressiveness
(i.e., PIFO can’t express per flow scheduling). OpenQueue
is an example of a flexible programmable packet scheduler
in software [39]. However, the flexibility of OpenQueue
comes at the expense of having three of its building blocks
as priority queues, namely queues, buffers, and ports. This
overhead, even in the presence of efficient priority queues,
will form a memory and processing overhead. Furthermore,
OpenQueue does not support non-work-conserving sched-
ules.

The design of a flexible and efficient packet scheduler re-
mains an open research challenge. It is important to note here
that the efficiency of programmable schedulers is different
from the efficiency of policies that they implement. An effi-
cient programmable platform aims to reduce the overhead of
its building blocks (i.e., Objective 1) which makes the over-
head primarily a function of the complexity of the policy it-
self. Thus, the efficiency of a scheduling policy becomes a
function of only the number of building blocks required to
implement it. Furthermore, an efficient programmable plat-
form should allow the operator to choose policies based on
their requirements and available resources by allowing the
platform to capture a wide variety of policies. To address
this challenge, we choose to extend the PIFO model due to
its existing efficient building blocks. In particular, we intro-
duce flows as a unit of scheduling in the PIFO model. We
also allow modifications to packet ranking and relative or-
dering both on enqueue and dequeue.
Objective 2: Provide a fully expressive scheduler program-
ming abstraction by extending the PIFO model (§3.2).

Eiffel’s place in Scheduling Research Landscape: This
section reviewed scheduling support in software 1. Table 1
summarizes the discussed related work. Eiffel fills the gap
in earlier work by being the first efficient O(1) and pro-
grammable software scheduler. It can support both per flow
policies (e.g., hClock and pFabric) and per packet schedul-
ing policies (e.g., Carousel). It can also support both work-
conserving and non-work-conserving schedules.

1Scheduling is widely supported in hardware switches using a short
list of scheduling policies, including shaping, strict priority, and Weighted
Round Robin [7, 6, 9, 50]. An approach to efficient hardware packet
scheduling relies on pipelined-heaps [18, 38, 55] to help position Eiffel.
Pipelined-heaps are composed of piplined-stages for enqueuing and dequeu-
ing elements in a priority queue. However, such approaches are not imme-
diately applicable to software.

Scheduler

Scheduler
Controller

DequeueQueueEnqueue

Scheduling
Policy Desc.

Packet
Annotator

Scheduler Configuration

Incoming
Packets

Data Plane

Outgoing
Packets

3.2 §

3.1 §

Figure 1: Eiffel programmable scheduler architecture high-
lighting Eiffel’s extensions.

3 Eiffel Design
Figure 1 shows the architecture of Eiffel with four main
components: 1) a packet annotator to set the input to the
enqueue component (e.g., packet priority), 2) an enqueue
component that calculates a rank for incoming packets, 3)
a queue that holds packets sorted based on their rank, and 4)
a dequeue component which is triggered to re-rank elements
in the queue, for some scheduling algorithms. Eiffel lever-
ages and extends the PIFO scheduler programming model
to describe scheduling policies [50, 2]. The functions of the
packet annotator, the enqueue module, and the dequeue mod-
ule are derived in a straightforward manner from the schedul-
ing policy. The only complexity in the Scheduler Controller,
namely converting scheduling policy description to code, has
been addressed in earlier work on the PIFO model [2]. The
two complicated components in this architecture, therefore,
correspond with the two objectives discussed in the previous
section: the Queue (Objective 1) and The Scheduling Pol-
icy Description (Objective 2). For the rest of this section,
we explain our efficient queue data structures along with our
extensions to the programming model used to configure the
scheduler.

3.1 Priority Queueing in Eiffel
A priority queue maintains a list of elements, each tagged
with a priority value. A priority queue supports one of two
operations efficiently: ExtractMin or ExtractMax to get
the element with minimum or maximum priority respec-
tively. Our goal, as stated in Objective 1 in the previous sec-
tion, is to enable these operations with O(1) overhead. To
this end we first develop a circular extension of efficient pri-
ority queues that rely on the FindFirstSet (FFS) operation,
found in all modern CPUs [3, 10]. Our extensions allow
FFS-based queues to operate over large moving ranges while
maintaining CPU efficiency. We then improve on the FFS-
based priority queue by introducing the approximate gradi-
ent queue, which can perform priority queuing in O(1) un-
der some conditions. The approximate priority queue can
outperform the FFS-based queue by up to 9% for scenarios
of a highly occupied bucketed priority queue (§5.2). Note

20 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5

0 0 0 0 1 1

Queue

Bitmap
Meta Data

Packets

Figure 2: FFS-based queue
where FFS of a bit-map of
six bits can be processed in
O(1).

0 1 2 3 4 5

1 0 0 0 1 1

Queue

Bitmap
Meta Data1 0 1 0

1 1

Packets

Root

Leaf

Figure 3: Hierarchical FFS-
based queue where FFS of
bit-map of two bits can be
processed in O(1) using a 3-
level hierarchy

that for all Integer Priority Queues discussed in this section,
enqueue operation is trivial as buckets are identified by the
priority value of their elements. This makes the enqueue op-
eration a simple bucket lookup based on the priority value of
the enqueued element.

3.1.1 Circular FFS-based Queue (cFFS)

FFS-based queues are bucketed priority queues with a
bitmap representation of queue occupancy. Zero represents
an empty bucket, and one represents a non-empty bucket.
FFS produces the index of the leftmost set bit in a machine
word in constant time. All modern CPUs support a version of
Find First Set at a very low overhead (e.g., Bit-Scan-Forward
(BSR) takes three cycles to complete [3]). Hence, a priority
queue, with a number of buckets equal to or smaller than the
width of the word supported by the FFS operation can obtain
the smallest set bit, and hence the element with the smallest
priority, in O(1) (e.g., Figure 2). In the case that a queue
has more buckets than the width of the word supported by
a single FFS operation, a set of words can be processed se-
quentially to represent the queue, with every bit representing
a bucket. This results in an O(M) algorithm that is very ef-
ficient for very small M, where M is the number of words.
For instance, realtime process scheduling in the linux kernel
has a hundred priority levels. An FFS-based priority queue
is used where FFS is applied sequentially on two words, in
case of 64-bit words, or four words in case of 32-bit words
[11]. This algorithm is not efficient for large values of M as
it requires scanning all words, in the worst case, to find the
index of the highest priority element. FFS instruction is also
used in QFQ to sort groups of flows based on the eligibil-
ity for transmission where the number of groups is limited
to a number smaller than 64 [22]. QFQ is an efficient im-
plementation of fair queuing which uses FFS efficiently over
a small number of elements. However, QFQ does not pro-
vide any clear direction towards implementing other policies
efficiently.

To handle an even larger numbers of priority levels, hier-
archical bitmaps may be used. One example is Priority Index
Queue (PIQ) [55], a hardware implementation of FFS-based
queues, which introduces a hierarchical structure where each
node represents the occupancy of its children, and the chil-

242 243 244 245 246 247

0 0 0 1 1 1

Queue

Bitmap
Meta Data0 1 1 0

1 1

248 249 250 251 252 253

1 0 0 0 0 0

1 0 0 0

1 0

Primary Secondary
Packets

Figure 4: Circular Hierarchical FFS-based queue is com-
posed of two Hierarchical FFS-based queues, one acting as
the main queue and the other as a buffer.

dren of leaf nodes are buckets. The minimum element can
be found by recursively navigating the tree using FFS oper-
ation (e.g., Figure 3 for a word width of two). Hierarchical
FFS-based queues have an overhead of O(logw N) where w
is the width of the word that FFS can process in O(1) and N
is the number of buckets. It is important to realize that, for a
given scheduling policy, the value of N is a given fixed value
that doesn’t change once the scheduling policy is configured.
Hence, a specific instance of a Hierarchical FFS-based queue
has a constant overhead independent of the number of en-
queued elements. In other words, once an implementation is
created N does not change.

Hierarchical FFS-based queues only work for a fixed
range of priority values. However, as discussed earlier, typ-
ical priority values for packets span a moving range. PIQ
avoids this problem by assuming support for the universe of
possible values of priorities. This is an inefficient approach
because it requires generating and maintaining a large num-
ber of buckets, with relatively few of them in use at any given
time.

Typical approaches to operating over a large moving range
while maintaining a small memory footprint rely on circular
queues. Such queues rely on the mod operation to map the
moving range to a smaller range. However, the typical ap-
proach to circular queuing does not work in this case as it re-
sults in an incorrect bitmap. For example, if we add a packet
with priority value six to the queue in Figure 2 selecting the
bucket with a mod operation, the packet will be added in slot
zero and consequently mark the bit map at slot zero. Hence,
once the range of an FFS-based queue is set, all elements en-
queued in that range have to be dequeued before the queue
can be assigned a new range so as to avoid unnecessary re-
setting of elements. In that scenario, enqueued elements that
are out of range are enqueued at the last bucket, and thus los-
ing their proper ordering. Otherwise, the bitmap meta data
will have to be reset in case any changes are made to the
range of the queue.

A natural solution to this problem is to introduce an over-
flow queue where packets with priority values outside the
current range are stored. Once all packets in the current
range are dequeued, packets from that “secondary” queue
are inserted using the new range. However, this introduces
a significant overhead as we have to go through all pack-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 21

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 5: A sketch of a curvature function for three states
of a maximum priority queue. As the maximum index of
nonempty buckets increases, the critical point shifts closer to
that index.

ets in the buffer every time the range advances. We solve
this problem by making the secondary queue an FFS-based
queue, covering the range that is immediately after the range
of the queue (Figure 4). Elements outside the range of the
secondary queue are enqueued at the last bucket in the sec-
ondary queue and their values are not sorted properly. How-
ever, we find that to not be a problem as ranges for the queues
are typically easy to figure out given a specific scheduling
policy.

A Circular Hierarchical FFS-based queue, referred to
hereafter simply as a cFFS, maintains the minimum priority
value supported by the primary queue (h_index), the num-
ber of buckets (q_size) per queue, two pointers to the two
sets of buckets, and two pointers to the two sets of bitmaps.
Hence, the queue “circulates” by switching the pointers of
the two queues from the buffer range to the primary range
and back based on the location of the minimum element
along with their corresponding bitmaps.

Note that work on efficient priority queues has a very long
history in computer science with examples including van
Emde Boas tree [53] and Fusion trees [29]. However, such
theoretical data structures are complicated to implement and
require complex operations. cFFS is highly efficient both in
terms of complexity and the required bit operations. More-
over, it is relatively easy to implement.

3.1.2 Approximate Priority Queuing
cFFS queues still require more than one step to find the min-
imum element. We explore a tradeoff between accuracy and
efficiency by developing a gradient queue, a data structure
that can find a near minimum element in one step.

Basic Idea The Gradient Queue (GQ) relies on an al-
gebraic approach to calculating FFS. In other words, it at-
tempts to find the index of the most significant bit using
algebraic calculations. This makes it amenable to approxi-
mation. The intuition behind GQ is that the contribution of
the most significant set bit to the value of a word is larger
than the sum of the contributions of the rest of the set bits.
We consider the weight of a non-empty bucket to be pro-
portional to its index. Hence, Gradient Queue occupancy is
represented by its curvature function. The curvature func-
tion of the queue is the sum of the weight functions of all
nonempty buckets in the queue. More specifically, a specific
curvature shape corresponds to a specific occupancy pattern.
A proper weight function ensures the uniqueness of the cur-

vature function per occupancy pattern. It also makes finding
the non-empty bucket with the maximum index equivalent
to finding the critical point of the queue’s curvature (i.e., the
point where the derivative of the curvature function of the
queue is zero). A sample sketch of a curvature function is
illustrated in Figure 5.

Exact Gradient Queue On a bucket becoming nonempty,
we add its weight function to the queue’s curvature function,
and we subtract its function when it becomes empty. We
define a desirable weight function as one that is: 1) easy to
differentiate to find the critical point, and 2) easy to maintain
when bucket state changes between empty and non-empty.
We use weight function, 2i(x− i)2 where i is the index of
the bucket and x is the variable in the space of the curvature
function.

This weight function results in queue curvature of the form
of ax2−bx+c, where the critical point is located at x= b/2a.
Hence, we only care about a and b where a = ∑i 2i and
b = ∑i i2i for all non-empty buckets i. The maintenance of
the curvature function of the queue becomes as simple as
incrementing and decrementing a and b when a bucket be-
comes non-empty or empty respectively. Theorem 1, in Ap-
pendix A, shows that determining the highest priority non-
empty queue can be calculated using ceil(b/a).

A Gradient Queue with a single curvature function is lim-
ited by the the range of values a and b can take, which is
analogous to the limitation of FFS-based queues by the size
of words for which FFS can be calculated in O(1). A natural
solution is to develop a hierarchical Gradient Queue. This
makes Gradient Queue an equivalent of FFS-based queue
with more expensive operations (i.e., division is more ex-
pensive than bit operations). However, due to its algebraic
nature, Gradient Queue allows for approximation that is not
feasible using bit operations.

Approximate Gradient Queue Like FFS-based queues,
gradient queue has a complexity of O(logw N) where w is the
width of the representation of a and b and N is the number
of buckets. Our goal is reduce the number of steps even fur-
ther for each lookup. We are particularly interested in hav-
ing lookups that can be made in one operation, which can
be achieved through approximation. The advantage of the
curvature representation of the Gradient Queue compared to
FSS-based approaches is that it lends itself naturally to ap-
proximation.

A simple approximation is to make the value of a and b
corresponding to a certain queue curvature smaller which
will allow them to represent a larger number of priority
values. In particular, we change the weight function to
2 f (i)(x− i)2 which results in a = ∑i 2 f (i) and b = ∑i i2 f (i)

where f (i) = i/α and α is a positive integer. This approach
leads to two natural results: 1) the biggest gain of the ap-
proximation is that a and b can now represent a much larger
range of values for i which eliminates the need for hierarchi-
cal Gradient Queue and allows for finding the minimum ele-

22 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ment with one step, and 2) the employed weight function is
no longer proper. While BSR instruction is 8-32x faster than
DIV [3], the performance gained from the reduced memory
lookups required per BSR operation.

This approximation stems from using an “improper”
weight function. This leads to breaking the two guarantees
of a proper weight function, namely: 1) the curvature shape
is no longer unique per queue occupancy pattern, and 2) the
index of the maximum non-empty bucket no longer corre-
sponds to the critical point of the curvature in all cases. In
other words, the index of the maximum non-empty bucket,
M, is no longer ceil(b/a) due the fact that the weight of the
maximum element no longer dominates the curvature func-
tion as the growth is sub-exponential. However, this ambi-
guity does not exist for all curvatures (i.e., queue occupancy
patterns).

We characterize the conditions under which ambiguity oc-
curs causing error in identifying the highest priority non-
empty bucket. Hence, we identify scenarios where using the
approximate queue is acceptable. The effect of f (i) = i/α

can be described as introducing ambiguity to the value of
ceil(b/a). This is because exponential growth in a and b
occurs not between consecutive indices but every α indices.
In particular, we find solving the geometric and arithmetic-
geometric sums of a and b that b

a = M
1−g(α,M) + u(α) where

g(α,M) = (21/α)−M−1 is a logarithmically decaying func-
tion of M and α . u(α) = 1/(1− 21/α) is non-linear but
slowly growing function of α . Hence, an approximate GQ
can operate as a bucketed-queue where indices start from I0
where g(α,M0)≈ 0 and end at Imax where 2 f (Imax) can be pre-
cisely represented in the CPU word used to represent a and
b. In this case, there is a constant shift in the value ceil(b/a)
that is calculated by u(α). For instance, consider an approx-
imate queue with an α of 16. The function g(α,M) decays
to near zero at M = 124 making the shift u(α) = 22. Hence,
I0 = 124 and Imax = 647 which allows for the creation of an
approximate queue that can handle 523 buckets. Note that
this configuration results in an exact queue only when all
buckets between I0 and Imax are nonempty. However, error
is introduced when some elements are missing. In Section
5.2, we show the effect of this error through extensive exper-
iments; more examples are shown in Appendix B.

Typical scheduling policies (e.g., timestamp-based shap-
ing, Least Slack Time First, and Earliest Deadline First) will
generate priority values for packets that are uniformly dis-
tributed over priority levels. For such scenarios, the approxi-
mate gradient queue will have zero error and extract the min-
imum element in one step. This is clearly not true for all
scheduling policies (e.g., strict priority will probably have
more traffic for medium and low level priorities compared to
high priority). For cases where the index suggested by the
function is of an empty bucket, we perform linear search un-
til we find a nonempty bucket. Moreover, for a cases of a
moving range, a circular approximate queue can be imple-

mented as with cFFS.
Approximate queues have been used before for differ-

ent use cases. For instance, Soft-heap [21] is an ap-
proximate priority queue with a bounded error that is in-
versely proportional to the overhead of insertion. In partic-
ular, after n insertions in a soft-heap with an error bound
0 < ε ≤ 1/2, the overhead of insertion is O(log(1/ε)).
Hence, ExtractMin operation which can have a large error
under Soft-heap. Another example is the RIPQ which is was
developed for caching [51]. RIPQ relies on a bucket-sort-like
approach. However, the RIPQ implementation is suited for
static caching, where elements are not moved once inserted,
which makes it not very suitable for the dynamic nature of
packet scheduling.

3.2 Flexibility in Eiffel
Our second objective is to deploy flexible schedulers that
have full expressive power to implement a wide range of
scheduling policies. Our goal is to provide the network op-
erator with a compiler that takes as input policy description
and produces an initial implementation of the scheduler us-
ing the building blocks provided in the previous section. Our
starting point is the work in PIFO which develops a model
for programmable packet scheduling [50]. PIFO, however,
suffers from several drawbacks, namely: 1) it doesn’t sup-
port reordering packets already enqueued based on changes
in their flow ranking, 2) it does not support ranking of ele-
ments on packet dequeue, and 3) it does not support shaping
the output of the scheduling policy. In this section, we show
our augmentation of the PIFO model to enable a completely
flexible programming model in Eiffel. We address the first
two issues by adding programming abstractions to the PIFO
model, and we address the third problem by enabling arbi-
trary shaping with Eiffel by changing how shaping is han-
dled within the PIFO model. We discuss the implementation
of an initial version of the compiler in Section 4.

3.2.1 PIFO Model Extensions
Before we present our new abstractions, we review briefly
the PIFO programming model [50]. The model relies on
the Push-In-First-Out (PIFO) conceptual queue as its main
building block. In programming the scheduler, the PIFO
blocks are arranged to implement different scheduling algo-
rithms.

The PIFO programming model has three abstractions: 1)
scheduling transactions, 2) scheduling trees, and 3) shap-
ing transactions. A scheduling transaction represents a sin-
gle ranking function with a single priority queue. Schedul-
ing trees are formed by connecting scheduling transactions,
where each node’s priority queue contains an ordering of
its children. The tree structure allows incoming packets to
change the relative ordering of packets belonging to differ-
ent policies. Finally, a shaping transaction can be attached
to any non-root node in the tree to enforce a rate limit on it.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 23

There are several examples of the PIFO programming model
in action presented in the original paper [50]. The primi-
tives presented in the original PIFO model capture schedul-
ing policies that have one of the following features: 1) dis-
tinct packet rank enumerations, over a small range of val-
ues (e.g., strict priority), 2) per-packet ranking over a large
range of priority values (e.g., Earliest Deadline First [41]),
and 3) hierarchical policy-based scheduling (e.g., Hierarchi-
cal Packet Fair Queuing [17]).

Eiffel augments the PIFO model by adding two additional
scheduler primitives. The first primitive is per-flow rank-
ing and scheduling where the rank of all packets of a flow
depend on a ranking that is a function of the ranks of all
packets enqueued for that specific flow. We assume that a
sequence of packets that belong to a single flow should not
be reordered by the scheduler. Existing PIFO primitives keep
per-flow state but use them to rank each packet individually
where an incoming packet for a certain flow does not change
the ranking of packets already enqueued that belong to the
same flow. The per-flow ranking extension keeps track of
that information along with a queue per flow for all packets
belonging to that flow. A single PIFO block orders flows,
rather than packets, based on their rank. The second primi-
tive is on-dequeue scheduling where incoming and outgoing
packets belonging to a certain flow can change the rank of
all packets belonging to that flow on enqueue and dequeue.

The two primitives can be integrated in the PIFO model.
All flows belonging to a per-flow transaction are treated as
a single flow by scheduling transactions higher in the hier-
archical policy. Also note that every individual flow in the
flow-rank policy can be composed of multiple flows that are
scheduled according to per packet scheduling transactions.
We realize that this specification requires tedious work to
describe a complex policy that handles thousands of differ-
ent flows or priorities. However, this specification provides a
direct mapping to the underlying priority queues. We believe
that defining higher level programming languages describing
packet schedulers as well as formal description of the expres-
siveness of the language to be topics for future research.

3.2.2 Arbitrary Shaping
A flexible packet scheduler should support any scheme of
bandwidth division between incoming flows. Earlier work
on flexible schedulers either didn’t support shaping at all
(e.g., OpenQueue) or supported it with severe limitations
(e.g., PIFO). We allow for arbitrary shaping by decoupling
work conserving scheduling from shaping. A natural ap-
proach to this decoupling is to allow any flow or group of
flows to have a shaper associated with them. This can be
achieved by assigning a separate queue to the shaped aggre-
gate whose output is then enqueued into its proper location
in the scheduling hierarchy. However, this approach is ex-
tremely inefficient as it requires a queue per rate limit, which
can lead to increased CPU and memory overhead. We im-

0.3
With a 10 Mbps limit

0.7

0.5
With a 7 Mbps limit

0.50.90.1

PQ1

PQ2

PQ3

Pace aggregate

Figure 6: Example of a policy that imposes two limits on
packets the belong to the rightmost leaf.

Priority
Queue
(PQ1)

Shaper
Priority
Queue

PQ2PQ3

1
Packet
Input

2.1

2.2

3.2

3.1

Figure 7: A diagram of the implementation of the example
in Figure 6.

prove the efficiency of this approach by leveraging recent
results that show that any rate limit can be translated to a
timestamp per packet, which yields even better adherence to
the set rate than token buckets [47]. Hence, we use only one
shaper for the whole hierarchy which is implemented using
a single priority queue.

As an example, consider the hierarchical policy in Fig-
ure 6. Each node represents a policy-defined flow with the
root representing the aggregate traffic. Each node has a share
of its parent’s bandwidth, defined by the fraction in the fig-
ure. Each node can also have a policy-defined rate limit. In
this example, we have a rate limit at a non-leaf node and a
leaf node. Furthermore, we require the aggregate traffic to
be paced. We map the hierarchical policy in Figure 6 to its
priority-queue-based realization in Figure 7. Per the PIFO
model, each non-leaf node is represented by a priority queue.
Per our proposal, a single shaper is added to rate limit all
packets according to all policy-defined rate limits.

To illustrate how this single shaper works, consider pack-
ets belonging to the rightmost leaf policy. We explore the
journey of packets belonging to that leaf policy through the
different queues, shown in Figure 7. These packets will be
enqueued to the shaper with timestamps set based on a 7
Mbps rate to enforce the rate on their node (step 1). Once
dequeued from the shaper, each packet will be enqueued to
PQ2 (step 2.1) and the shaper according to the 10 Mbps rate
limit (step 2.2). After the transmission time of a packet be-
longing to PQ2 is reached, which is defined by the shaper,
the packet is inserted in both the root’s (PQ1) priority queue

24 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(3.1) and the shaper according to the pacing rate (3.2). When
the transmission time, calculated based on the pacing rate, is
reached the packet is transmitted. To achieve this function-
ality, each packet holds a pointer to the priority queue they
should be enqueued to. This pointer avoids searching for the
queue a packet should be enqueued to. Note that having the
separate shaper allows for specifying rate limits on any node
in the hierarchical policy (e.g., the root and leaves) which
was not possible in the PIFO model, where shaping transac-
tions are tightly coupled with scheduling transactions.

4 Eiffel Implementation
Packet scheduling is implemented in two places in the net-
work: 1) hardware or software switches, and 2) end-host
kernel. We focus on the software placements (kernel and
userspace switches) and show that Eiffel can outperform the
state of the art in both settings. We find that userspace and
kernel implementations of packet scheduling face signifi-
cantly different challenges as the kernel operates in an event-
based setting while userspace operates in a busy polling set-
ting. We explain here the differences between both imple-
mentations and our approach to each. We start with our ap-
proach to policy creation.

Policy Creation: We extend the existing PIFO open
source model to configure the scheduling algorithm [50, 2].
The existing implementation represents the policy as a graph
using the DOT description language and translates the graph
into C++ code. We rely on the cFFS for our implementation,
unless otherwise stated. This provides an initial implemen-
tation which we tune according to whether the code is going
to be used in kernel or userspace. We believe automating
this process can be further refined, but the goal of this work
is to evaluate the performance of Eiffel algorithms and data
structures.

Kernel Implementation We implement Eiffel as a qdisc
[36] kernel module that implements enqueue and dequeue
functions and keeps track of the number of enqueued pack-
ets. The module can also set a timer to trigger dequeue. Ac-
cess to qdiscs is serialized through a global qdisc lock. In
our design, we focus on two sources of overhead in a qdisc:
1) the overhead of the queuing data structure, and 2) the
overhead of properly setting the timer. Eiffel reduces the
first overhead by utilizing one of the proposed data struc-
tures to reduce the cost of both enqueue and dequeue oper-
ations. The second overhead can be mitigated by improving
the efficiency of finding the smallest deadline of an enqueued
packet. This operation of SoonestDeadline() is required
to efficiently set the timer to wake up at the deadline of the
next packet. Either of our supported data structures can sup-
port this operation efficiently as well.

Userspace Implementation We implement Eiffel in the
Berkeley Extensible Software Switch (BESS, formerly Soft-
NIC [33]). BESS represents network processing elements as
a pipeline of modules. BESS is busy polling-based where

a set of connected modules form a unit of execution called
a task. A scheduler tracks all tasks and runs them accord-
ing to assigned policies. Tasks are scheduled based on the
amount of resources (CPU cycles or bits) they consume. Our
implementation of Eiffel in BESS is done in self-contained
modules.

We find that two main parameters determine the efficiency
of Eiffel in BESS: 1) batch size and 2) queue size. Batching
is already well supported in BESS as each module receives
packets in batches and passes packets to its subsequent mod-
ule in a batch. However, we find that batching per flow has an
intricate impact on the performance of Eiffel. For instance,
with small packet sizes, if no batching is performed per flow,
then every incoming batch of packets will activate a large
number of queues without any of the packets being actu-
ally queued (due to small packet size) which increases the
overhead per packet (i.e., queue lookup of multiple queues
rather than one). This is not the case for large packet sizes
where the lookup cost is amortized over the larger size of
the packet improving performance compared to batching of
large packets. Batching large packets results in large queues
for flows (i.e., large number of flows with large number of
enqueued packets). We find that batching should be applied
based on expected traffic pattern. For that purpose, we setup
Buffer modules per traffic class before Eiffel’s module in
the pipeline when needed. We also perform output batching
per flow in units of 10KB worth of payload which was sug-
gested as a good threshold that does not affect fairness at a
macroscale between flows [19]. We also find that limiting the
number of packets enqueued in Eiffel can significantly affect
the performance of Eiffel in BESS. We limit the number of
packets per flow to 32 packets which we find, empirically, to
maintain performance.

5 Evaluation
5.1 Eiffel Use Cases
Methodology: We evaluate our kernel and userspace im-
plementation through a set of use cases each with its cor-
responding baseline. We implement two common use cases,
one in kernel and another in userspace2. In each use case,
we evaluated Eiffel’s scheduling behavior as well as its CPU
performance as compared to the baseline. The comparison
of scheduling behavior was done by comparing aggregate
rates achieved as well as order of released packets. How-
ever, we only report CPU efficiency results as we find that
Eiffel matches the scheduling behavior of the baselines.

A key aspect of our evaluation is determining the metrics
of comparisons in kernel and userspace settings. The main
difference is that a kernel module can support line rate by
using more CPU. This requires us to fix the packet rate we
are evaluating at and look at the CPU utilization of different

2A third use case the implements hClock in userspace can be found in
the extended version of this paper [48]

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 25

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Number of Utilized CPU Cores for Networking

FQ
Carousel

Eiffel

Figure 8: A comparison between the CPU overhead of the
networking stack using FQ/pacing, Carousel, and Eiffel.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.4 0.8 1.2 1.6

C
D

F

Number of Utilized CPU
 Cores for System

Eiffel
Carousel

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.6 1.2 1.8 2.4

C
D

F

Number of Utilized CPU

 Cores for IRQ

Eiffel

Carousel

Figure 9: A Comparison between detailed CPU utilization of
Carousel and Eiffel in terms of system processes (left) and
soft interrupt servicing (right).

scheduler implementations. On the other hand, a userspace
implementation relies on busy polling on one or more CPU
cores to support different packet rates. Hence, in the case of
userspace, we fix the number of cores used, to one core un-
less otherwise is stated, and compare the different scheduler
implementations based on the maximum achievable rate.

5.1.1 Use Case 1: Shaping in Kernel
Traffic shaping (i.e., rate limiting and pacing) is an essential
operation for efficient utilization [16] and correct operation
of modern protocols (e.g., both TIMELY [43] and BBR [20]
require per flow pacing). Recently, it has been shown that
the canonical kernel shapers (i.e., FQ/pacing [26] and HTB
qdiscs [25]) are inefficient due to reliance on inefficient data
structures; there are outperformed by the userspace-based
implementation in Carousel [47]. To offer a fair comparison
we implement all systems in the kernel. We implement a rate
limiting qdisc whose functionality matches the rate limiting
features of the existing FQ/pacing qdisc [26].

We implemented Eiffel as a qdisc. The queue is config-
ured with 20k buckets with a maximum horizon of 2 sec-
onds and only the shaper is used. We implemented the qdisc
in kernel v4.10. We modified only sock.h to keep the state
of each socket allowing us to avoid having to keep track of
each flow in the qdisc. We conduct experiments for egress
traffic shaping between two servers within the same clus-
ter in Amazon EC2. We use two m4.16xlarge instances
equipped with 64 cores and capable of sustaining 25 Gbps.
We use neper [5] to generate traffic with a large number of
TCP flows. In particular, we generate traffic from 20k flows
and use SO_MAX_PACING_RATE to rate limit individual flows
to achieve a maximum aggregate rate of 24 Gbps. This con-
figuration constitutes a worst case in terms of load for all
evaluated qdiscs as it requires the maximum amount of cal-

#On enqueue of packet p of flow f :
f.rank = min(p.rank, f.rank)
#On dequeue of packet p of flow f :
f.rank = min(p.rank, f.front().rank)

Figure 10: Implementation of pFabric in Eiffel.

 0
 2000
 4000
 6000
 8000

 10000

 100 1000 10000 100000 1x10
6R

a
te

 (
M

b
p
s
)

Number of flows

pFabric - Eiffel
pFabric - Binary Heap

Figure 11: Performance of pFabric implementation using
cFFS and a binary heap showing Eiffel sustaining line rate
at 5x number of flows.

culations. We measure overhead in terms of the number of
cores used for network processing which we calculate based
on the observed fraction of CPU utilization. Without neper
operating, CPU utilization is zero, hence, we attribute any
CPU utilization during our experiments to the networking
stack, except for the CPU portion attributed to userspace pro-
cesses. We track CPU utilization using dstat. We run our
experiments for 100 seconds and record the CPU utilization
every second. This continuous behavior emulates the behav-
ior handled by content servers which were used to evaluate
Carousel [47].

Figure 8 shows the overhead of all three systems. It is
clear that Eiffel is superior, outperforming FQ by a median
14x and Carousel by 3x. We find the overhead of FQ to be
consistent with earlier results [47]. This is due to its com-
plicated data structure which keeps track internally of active
and inactive flows and requires continuous garbage collec-
tion to remove old inactive flows. Furthermore, it relies on
RB-trees which increases the overhead of reordering flows
on every enqueue and dequeue. To better understand the
comparison with Carousel, we look at the breakdown of the
main components of CPU overhead, namely overhead spent
on system processes and servicing software interrupts. Fig-
ure 9 details the comparison. We find that the main dif-
ference is in the overhead introduced by Carousel in firing
timers at constant intervals while Eiffel can trigger timers
exactly when needed (Figure 9 right). The overhead of the
data structures in both cases introduces minimal overhead in
system processes (Figure 9 left).
5.1.2 Use Case 2: Least/Largest X First in Userspace
One of the most widely used patterns for packet scheduling
is ordering packets such that the flow or packet with the least
or most of some feature exits the queue first. Many exam-
ples of such policies have been promoted including Least
Slack Time First (LSTF) [42], Largest Queue First (LQF),
and Shortest/Least Remaining Time First (SRTF). We refer
to this class of algorithms as L(X)F. This class of algorithms

26 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is interesting as some of them were shown to provide the-
oretically proven desirable behavior. For instance, LSTF
was shown be a universal packet scheduler that can emulate
the behavior of any scheduling algorithm [42]. Furthermore,
SRTF was shown to schedule flows close to optimally within
the pFabric architecture [14]. We show that Eiffel can im-
prove the performance of this class of scheduling algorithms.

We implement pFabric as an instance of such class of al-
gorithms where flows are ranked based on their remaining
number of packets. Every incoming and outgoing packet
changes the rank of all other packets belonging to the same
flow, requiring on dequeue ranking. Figure 10 shows the rep-
resentation of pFabric using the PIFO model with per-flow
ranking and on dequeue ranking provided by Eiffel. We also
implemented pFabric using O(logn) priority queue based on
a Binary Heap to provide a baseline. Both designs were im-
plemented as queue modules in BESS. We used packets of
size 1500B. Operations are all done on a single core with a
simple flow generator. All results are the average of ten ex-
periments each lasting for 20 seconds. Figure 11 shows the
impact of increasing the number of flows on the performance
of both designs. It is clear that Eiffel has better performance.
The overhead of pFabric stems from the need to continuously
move flows between buckets which has O(1) using bucketed
queues while it has an overhead of O(n) as it requires re-
heapifying the heap every time. The figure also shows that
as the number of flows increases the value of Eiffel starts to
decrease as Eiffel reaches its capacity.

5.2 Eiffel Microbenchmark
Our goal in this section is evaluate the impact of different
parameters on the performance of different data structures.
We also evaluate the effect of approximation in switches on
network-wide objectives. Finally, we provide guidance on
how one should choose among the different queuing data
structures within Eiffel, given specific scheduler user-case
characteristics. To inform this decision we run a number
of microbenchmark experiments. We start by evaluating the
performance of the proposed data structures compared to a
basic bucketed priority queue implementation. Then, we ex-
plore the impact of approximation using the gradient queue
both on a single queue and at a large network scale through
ns2-simulation. Finally, we present our guide for choosing a
priority queue implementation.

Experiment setup: We perform benchmarks using
Google’s benchmark tool [12]. We develop a baseline for
bucketed priority queues by keeping track of non-empty
buckets in a binary heap, we refer to this as BH. We ignore
comparison-based priority queues (e.g., Binary Heaps and
RB-trees) as we find that bucketed priority queues performs
6x better in most cases. We compare cFFS, approximate gra-
dient queue (Approx), and BH. In all our experiments, the
queue is initially filled with elements according to queue oc-
cupancy rate or average number of packet per bucket param-

 5
 10
 15
 20
 25
 30
 35

 2 4 6 8

R
a
te

 (
M

p
p

s
)

Packets per Bucket

Approx
cFFS

BH 5
 10
 15
 20
 25
 30
 35

 2 4 6 8

R
a
te

 (
M

p
p

s
)

Packets per Bucket

Figure 12: Effect of number of packets per bucket on queue
performance for 5k (left) and 10k (right) buckets.

 6
 8

 10
 12
 14
 16

 0.7 0.8 0.9 0.99

R
a
te

 (
M

p
p
s
)

Fraction of Nonempty Buckets

BH
Approx

cFFS 6
 8

 10
 12
 14
 16

 0.7 0.8 0.9 0.99

R
a
te

 (
M

p
p
s
)

Fraction of Nonempty Buckets

Figure 13: Effect of queue occupancy on performance of Ap-
proximate Queue for 5k (left) and 10k (right) buckets.

eters. Then, packets are dequeued from the queue. Reported
results (i.e., y-axis of figures 12 and 13) are in terms of mil-
lion packets per seconds.

Effect of number of packet per bucket: The number of
buckets configured in a queue is the main determining factor
for the overhead of a bucketed queue. Note that this param-
eter controls queue granularity which is the priority interval
covered by a bucket. High granularity (i.e., large number
of buckets) implies a smaller number of packets per bucket
for the same workload. Hence, the number of packets per
bucket is a good proxy to the configured number of buckets.
For instance, if we choose a large number of buckets with
high granularity, the chance of empty buckets increases. On
the other hand, if we choose a small number of buckets with
coarser granularity, we get higher number of elements per
bucket. This proxy is important because in the case of the
approximate queue, the main factor affecting its performance
is the number of empty buckets.

Figure 12 shows the effect of increasing the average num-
ber of packets per bucket for all three queues for 5k and 10k
buckets. For a small number of packets per bucket, which
also reflects choosing a fine grain granularity, the approx-
imate queue introduces up to 9% improvement in perfor-
mance in the case of 10k buckets. In such cases, the ap-
proximate queue function has zero error which makes it sig-
nificantly better. As the number of the packets per bucket in-
creases, the overhead of finding the smallest indexed bucket
is amortized over the total number of elements in the bucket
which makes FFS-based and approximate queues similar in
performance.

We also explore the effect of having empty buckets on the
performance of the approximate queue. Empty buckets cause
errors in the curvature function of the approximate queue
which in turn trigger linear search for non-empty buckets.
Figure 12 shows throughput of the queue for different ratios

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 27

 0
 2
 4
 6
 8

 10
 12
 14

 0.7 0.8 0.9 0.99A
v
e
ra

g
e
 e

rr
o
r

in

 p
ri
o
ri
ty

 s
e
le

c
ti
o
n

Ratio of Nonempty Buckets

5k Buckets
10k Buckets

Figure 14: Effect of having empty buckets on the error of
fetching the minimum element for the approximate queue.

 1

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8N
o
rm

a
liz

e
d
 F

C
T

Load

DCTCP
pFabric-Approx

pFabric

 1

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8N
o
rm

a
liz

e
d
 F

C
T

Load

DCTCP
pFabric-Approx

pFabric

 1

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8N
o
rm

a
liz

e
d
 F

C
T

Load

DCTCP
pFabric-Approx

pFabric

Figure 15: Effect of using an Approximate Queue on the per-
formance of pFabric in terms of normalized flow completion
times under different load characteristics: Average FCT for
(0, 100kB] flow sizes, 99th percentile FCT for (0, 100kB]
for sizes, and Average FCT for (10MB, inf) flow sizes.

of non-empty buckets. As expected, as the ratio increases
the overhead decreases which improves the throughput of the
approximate queue. Figure 14 shows the error in the approx-
imate queue’s fetching of elements. As the number of empty
buckets increases the error in the approximate queue is larger
and the overhead of linear search grows. We suggest that
cases where the queue is more than 30% empty should trig-
ger changes in the queue’s granularity based on the queue’s
CPU performance and to avoid allocating memory to buckets
that are not used.

The granularity of the queue determines the representation
capacity of the queue. It is clear for our results that pick-
ing low granularity (i.e., high number of packets per bucket)
yields better performance in terms of packets per second. On
the other hand, from a networking perspective, high gran-
ularity yields exact ordering of packets. For instance, a
queue with a granularity of 100 microseconds cannot insert
gaps between packets that are smaller than 100 microsec-
onds. Hence, we recommend configuring the queue’s gran-
ularity such that each bucket has at least one packet. This

Operating over a moving range of priority values
(e.g., deadline-based or transmission time-based)?

Use FFS

Number of priority levels > Threshold?

YesNo

Use any
priority queue

Are all priority levels expected
to serve a similar number of packets?

Use cFFS Use Approx

YesNo

YesNo

Figure 16: Decision tree for selecting a priority queue based
on the characteristics of the scheduling algorithm.

can be determined by observing the long term behavior of
the queue. We also note that this problem can be solved by
having non-uniform bucket granularity which is dynamically
set to achieve the result of at least one packet per bucket. We
leave this problem for future work.

Impact of Approximation on Network-wide Objec-
tives: A natural question is: how does approximate priori-
tization, at every switch in a network, affect network-wide
objectives? To answer that question, we perform simulations
of pFabric, which requires prioritization at every switch. Our
simulation are based on ns2 simulations provided by the au-
thors of pFabric [14] and the plotting tools provided by the
authors of QJump [32]. We change only the priority queuing
implementation from a linear search-based priority queue to
our Approximate priority queue and increase queue size to
handle 1000k elements. We use DCTCP [13] as a base-
line to put the result in context. Figure 15 shows a snapshot
of results of the simulations of a 144 node leaf-spine topol-
ogy. Due to space limitations, We show results for only web-
search workload simulations which are based on clusters in
Microsoft datacenters [13]. The load is varied between 10%
to 80% of the load observed. We note that the setting of
the simulations is not relevant for the scope of this paper,
however, what is relevant is comparing the performance of
pFabric using its original implementation to pFabric using
our approximate queue. We find that approximation has min-
imal effect on overall network behavior which makes perfor-
mance on a mircorscale the only concern in selecting a queue
for a specific scheduler.

A Guide for Choosing a Priority Queue for Packet
Scheduling Figure 16 summarizes our takeaways from
working with the proposed queues. For a small number of
priority levels, we find that the choice of priority queue has
little impact and for most scenarios a bucket-based queue
might be overkill due to its memory overhead. However,
when the number of priority levels or buckets is larger than
a threshold the choice of queues makes a significant differ-
ence. We found in our experiments that this threshold is
1k and that the difference in performance is not significant
around the threshold. We find that if the priority levels are

28 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

over a fixed range (e.g., job remaining time [14]) then an
FFS-based priority queue is sufficient. When the priority
levels are over a moving range, where the number of lev-
els are not all equally likely (e.g., rate limiting with a wide
range of limits [47]), it is better to use cFFS priority queue.
However, for priority levels over a moving range with highly
occupied priority levels (e.g., Least Slack Time-based [42]
or hierarchical-based schedules [19]) approximate queue can
be beneficial.

Another important aspect is choosing the number of buck-
ets to assign to a queue. This parameter should be chosen
based on both the desired granularity and efficiency which
form a clear trade-off. Proposed queues have minimal CPU
overhead (e.g., a queue with a billion buckets will require six
bit operations to find the minimum non-empty bucket using
a cFFS). Hence, the main source of efficiency overhead is
the memory overhead which has two components: 1) mem-
ory footprint, and 2) cache freshness. However, we find that
most scheduling policies require thousands to tens of thou-
sands of elements which require small memory allocation for
our proposed queues.

6 Conclusion
Efficient packet scheduling is a crucial mechanism for the
correct operation of networks. Flexible packet scheduling
is a necessary component of the current ecosystem of pro-
grammable networks. In this paper, we showed how Eif-
fel can introduce both efficiency and flexibility for packet
scheduling in software relying on integer priority queuing
concepts and novel packet scheduling programming abstrac-
tions. We showed that Eiffel can achieve orders of magni-
tude improvements in performance compared to the state of
the art while enabling packet scheduling at scale in terms
of both number of flows or rules and line rate. We believe
that our work should enable network operators to have more
freedom in implementing complex policies that correspond
to current networks needs where isolation and strict sharing
policies are needed.

We believe that the biggest impact Eiffel will have is mak-
ing the case for a reconsideration of the basic building blocks
of the packet schedulers in hardware. Current proposals for
packet scheduling in hardware (e.g., PIFO model [50] and
SmartNICs [28]), rely on parallel comparisons of elements
in a single queue. This approach limits the size of the queue.
Earlier proposals that rely on pipelined-heaps [18, 38, 55] re-
quired a priority queue that can capture the whole universe of
possible packet rank values, which requires significant hard-
ware overhead. We see Eiffel as a step on the road of improv-
ing hardware packet schedulers by reducing the number of
parallel comparisons through an FFS-based queue meta data
or through an approximate queue metadata. For instance,
Eiffel can be employed in a hierarchical structure with paral-
lel comparisons to increase the capacity of individual queues
in a PIFO-like setting. Future programmable schedulers can

implement a hardware version of cFFS or the approximate
queue and provide an interface that allows for connecting
them according to programmable policies. While the imple-
mentation is definitely not straight forward, we believe this
to be the natural next step in the development of scalable
packet schedulers.

Acknowledgments
The authors would like to thank the NSDI Shepherd, K. K.
Ramakrishnan, and the anonymous reviewers for providing
excellent feedback. This work is funded in part by NSF
grants NETS 1816331.

References
[1] IEEE Standard for Local and Metropolitan Area Networks—Virtual

Bridged Local Area Networks. IEEE Std 802.1Q-2005 (Incorporates
IEEE Std 802.1Q1998, IEEE Std 802.1u-2001, IEEE Std 802.1v-2001,
and IEEE Std 802.1s-2002) (May 2006), 1–300.

[2] C++ reference implementation for Push-In First-Out Queue,
2016. https://github.com/programmable-scheduling/

pifo-machine.

[3] Intel 64 and ia-32 architectures optimization refer-
ence manual. https://www.intel.com/content/

dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-optimization-manual.pdf,
2016.

[4] Intel 82599 10gbe controller. https://www.intel.com/

content/dam/www/public/us/en/documents/datasheets/

82599-10-gbe-controller-datasheet.pdf, 2016.

[5] neper: a Linux networking performance tool, 2016. https://

github.com/google/neper.

[6] Arista 7010T Gigabit Ethernet Data Center Switches.
https://www.arista.com/assets/data/pdf/Datasheets/

7010T-48_Datasheet.pdf, 2017.

[7] Arista 7500 series data center switch. https://www.arista.com/

assets/data/pdf/Datasheets/7500_Datasheet.pdf, 2017.

[8] Bess: Berkeley extensible software switch. https://github.com/
NetSys/bess/wiki, 2017.

[9] Cisco: Understanding Quality of Service on the Catalyst 6500 Switch.
https://www.cisco.com/c/en/us/products/collateral/

switches/catalyst-6500-series-switches/white_paper_

c11_538840.html, 2017.

[10] MD64 Architecture Programmer’s Manual Volume 3: General-
Purpose and System Instructions. https://support.amd.com/

TechDocs/24594.pdf, 2017.

[11] Real-Time Scheduling Class (mapped to the SCHED FIFO and
SCHED RR policies). https://elixir.bootlin.com/linux/

latest/source/kernel/sched/rt.c#L1494, 2017.

[12] Benchmark Tools, 2018. https://github.com/google/

benchmark.

[13] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PA-
TEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M.
Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM Con-
ference (New York, NY, USA, 2010), ACM, pp. 63–74.

[14] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,
N., PRABHAKAR, B., AND SHENKER, S. pfabric: Minimal near-
optimal datacenter transport. In Proceedings of the ACM SIGCOMM
Conference (New York, NY, USA, 2013), ACM, pp. 435–446.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 29

https://github.com/programmable-scheduling/pifo-machine
https://github.com/programmable-scheduling/pifo-machine
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://github.com/google/neper
https://github.com/google/neper
https://www.arista.com/assets/data/pdf/Datasheets/7010T-48_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7010T-48_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7500_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7500_Datasheet.pdf
https://github.com/NetSys/bess/wiki
https://github.com/NetSys/bess/wiki
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_538840.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_538840.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_538840.html
https://support.amd.com/TechDocs/24594.pdf
https://support.amd.com/TechDocs/24594.pdf
https://elixir.bootlin.com/linux/latest/source/kernel/sched/rt.c#L1494
https://elixir.bootlin.com/linux/latest/source/kernel/sched/rt.c#L1494
https://github.com/google/benchmark
https://github.com/google/benchmark

[15] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C., AND WANG,
H. Information-agnostic flow scheduling for commodity data centers.
In 12th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 15) (Oakland, CA, 2015), USENIX Association,
pp. 455–468.

[16] BEHESHTI, N., GANJALI, Y., GHOBADI, M., MCKEOWN, N., AND
SALMON, G. Experimental study of router buffer sizing. In Proceed-
ings of the 8th ACM SIGCOMM Conference on Internet Measurement
(New York, NY, USA, 2008), IMC ’08, ACM, pp. 197–210.

[17] BENNETT, J. C. R., AND ZHANG, H. Hierarchical packet fair queue-
ing algorithms. In Conference Proceedings on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications
(New York, NY, USA, 1996), SIGCOMM ’96, ACM, pp. 143–156.

[18] BHAGWAN, R., AND LIN, B. Fast and scalable priority queue archi-
tecture for high-speed network switches. In INFOCOM ’00 (2000),
pp. 538–547.

[19] BILLAUD, J.-P., AND GULATI, A. hclock: Hierarchical qos for
packet scheduling in a hypervisor. In Proceedings of the 8th ACM Eu-
ropean Conference on Computer Systems (2013), EuroSys ’13, ACM,
pp. 309–322.

[20] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH, S. H., AND
JACOBSON, V. BBR: Congestion-Based Congestion Control. ACM
Queue 14, September-October (2016), 20 – 53.

[21] CHAZELLE, B. The soft heap: an approximate priority queue with
optimal error rate. Journal of the ACM (JACM) 47, 6 (2000), 1012–
1027.

[22] CHECCONI, F., RIZZO, L., AND VALENTE, P. QFQ: Efficient packet
scheduling with tight guarantees. IEEE/ACM Transactions on Net-
working (TON) 21, 3 (2013), 802–816.

[23] DALTON, M., SCHULTZ, D., ADRIAENS, J., AREFIN, A., GUPTA,
A., FAHS, B., RUBINSTEIN, D., ZERMENO, E. C., RUBOW, E.,
DOCAUER, J. A., ALPERT, J., AI, J., OLSON, J., DECABOOTER,
K., DE KRUIJF, M., HUA, N., LEWIS, N., KASINADHUNI, N.,
CREPALDI, R., KRISHNAN, S., VENKATA, S., RICHTER, Y., NAIK,
U., AND VAHDAT, A. Andromeda: Performance, isolation, and ve-
locity at scale in cloud network virtualization. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18)
(Renton, WA, 2018), USENIX Association, pp. 373–387.

[24] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and simula-
tion of a fair queueing algorithm. In Symposium Proceedings on Com-
munications Architectures &Amp; Protocols (New York, NY, USA,
1989), SIGCOMM ’89, ACM, pp. 1–12.

[25] DEVERA, M. Linux Hierarchical Token Bucket, 2003. http:

//luxik.cdi.cz/~devik/qos/htb/.

[26] DUMAZET, E., AND CORBET, J. Tso sizing and the fq scheduler.
https://lwn.net/Articles/564978/, 2013.

[27] FEAMSTER, N., AND REXFORD, J. Why (and how) networks should
run themselves. arXiv preprint arXiv:1710.11583 (2017).

[28] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D.,
DABAGH, A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V.,
CAULFIELD, A., CHUNG, E., CHANDRAPPA, H. K., CHATUR-
MOHTA, S., HUMPHREY, M., LAVIER, J., LAM, N., LIU, F.,
OVTCHAROV, K., PADHYE, J., POPURI, G., RAINDEL, S., SAPRE,
T., SHAW, M., SILVA, G., SIVAKUMAR, M., SRIVASTAVA, N.,
VERMA, A., ZUHAIR, Q., BANSAL, D., BURGER, D., VAID, K.,
MALTZ, D. A., AND GREENBERG, A. Azure accelerated network-
ing: Smartnics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18) (Renton,
WA, 2018), USENIX Association, pp. 51–66.

[29] FREDMAN, M. L., AND WILLARD, D. E. Blasting through the in-
formation theoretic barrier with fusion trees. In STOC’ 90 (1990),
pp. 1–7.

[30] GHODSI, A., SEKAR, V., ZAHARIA, M., AND STOICA, I. Multi-
resource fair queueing for packet processing. In Proceedings of the
ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (New York, NY, USA, 2012),
SIGCOMM ’12, ACM, pp. 1–12.

[31] GOYAL, P., VIN, H. M., AND CHEN, H. Start-time fair queueing:
A scheduling algorithm for integrated services packet switching net-
works. In Conference Proceedings on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications (New York,
NY, USA, 1996), SIGCOMM ’96, ACM, pp. 157–168.

[32] GROSVENOR, M. P., SCHWARZKOPF, M., GOG, I., WATSON, R.
N. M., MOORE, A. W., HAND, S., AND CROWCROFT, J. Queues
don’t matter when you can JUMP them! In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15) (Oak-
land, CA, 2015), USENIX Association, pp. 1–14.

[33] HAN, S., JANG, K., PANDA, A., PALKAR, S., HAN, D., AND RAT-
NASAMY, S. Softnic: A software nic to augment hardware. Tech.
Rep. UCB/EECS-2015-155, EECS Department, University of Cali-
fornia, Berkeley, May 2015.

[34] HONG, C.-Y., CAESAR, M., AND GODFREY, P. B. Finishing flows
quickly with preemptive scheduling. ACM SIGCOMM Computer
Communication Review 42, 4 (Aug. 2012), 127–138.

[35] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M., GILL,
V., NANDURI, M., AND WATTENHOFER, R. Achieving high utiliza-
tion with software-driven wan. In Proceedings of the ACM SIGCOMM
Conference (New York, NY, USA, 2013), ACM, pp. 15–26.

[36] HUBERT, B., GRAF, T., MAXWELL, G., VAN MOOK, R., VAN
OOSTERHOUT, M., SCHROEDER, P., SPAANS, J., AND LARROY, P.
Linux advanced routing & traffic control. In Ottawa Linux Symposium
(2002), p. 213.

[37] INC., V. Performance Evaluation of Network I/O Control in
VMware vSphere 6. https://www.vmware.com/content/

dam/digitalmarketing/vmware/en/pdf/techpaper/

network-ioc-vsphere6-performance-evaluation-white-paper.

pdf, 2015.

[38] IOANNOU, A., AND KATEVENIS, M. G. H. Pipelined heap (priority
queue) management for advanced scheduling in high-speed networks.
IEEE/ACM Transactions on Networking 15, 2 (April 2007), 450–461.

[39] KOGAN, K., MENIKKUMBURA, D., PETRI, G., NOH, Y.,
NIKOLENKO, S., SIROTKIN, A. V., AND EUGSTER, P. A pro-
grammable buffer management platform. In ICNP ’17 (2017).

[40] KUMAR, A., JAIN, S., NAIK, U., RAGHURAMAN, A., KASINAD-
HUNI, N., ZERMENO, E. C., GUNN, C. S., AI, J., CARLIN, B.,
AMARANDEI-STAVILA, M., ROBIN, M., SIGANPORIA, A., STU-
ART, S., AND VAHDAT, A. BwE: Flexible, Hierarchical Bandwidth
Allocation for WAN Distributed Computing. In Proceedings of the
ACM SIGCOMM Conference (New York, NY, USA, 2015), ACM,
pp. 1–14.

[41] LIU, C. L., AND LAYLAND, J. W. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the ACM
(JACM) 20, 1 (1973), 46–61.

[42] MITTAL, R., AGARWAL, R., RATNASAMY, S., AND SHENKER, S.
Universal Packet Scheduling. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’16) (Mar. 2016), pp. 501–
521.

[43] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM, E., WASSEL, H.,
GHOBADI, M., VAHDAT, A., WANG, Y., WETHERALL, D., AND
ZATS, D. TIMELY: RTT-based Congestion Control for the Data-
center. In Proceedings of the ACM SIGCOMM Conference (2015),
pp. 537–550.

[44] MUNIR, A., BAIG, G., IRTEZA, S. M., QAZI, I. A., LIU, A. X.,
AND DOGAR, F. R. Friends, not foes: Synthesizing existing transport
strategies for data center networks. In Proceedings of the ACM SIG-
COMM Conference (New York, NY, USA, 2014), ACM, pp. 491–502.

30 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://luxik.cdi.cz/~devik/qos/htb/
http://luxik.cdi.cz/~devik/qos/htb/
https://lwn.net/Articles/564978/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/network-ioc-vsphere6-performance-evaluation-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/network-ioc-vsphere6-performance-evaluation-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/network-ioc-vsphere6-performance-evaluation-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/network-ioc-vsphere6-performance-evaluation-white-paper.pdf

[45] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E., ZHOU, A., RA-
JAHALME, J., GROSS, J., WANG, A., STRINGER, J., SHELAR, P.,
AMIDON, K., AND CASADO, M. The design and implementation of
open vswitch. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’15) (2015).

[46] RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR, V., KABBANI, A.,
PORTER, G., AND VAHDAT, A. SENIC: scalable NIC for end-host
rate limiting. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’14) (2014).

[47] SAEED, A., DUKKIPATI, N., VALANCIUS, V., LAM, T., CON-
TAVALLI, C., AND VAHDAT, A. Carousel: Scalable Traffic Shap-
ing at End-Hosts. In Proceedings of the ACM SIGCOMM Conference
(2017).

[48] SAEED, A., ZHAO, Y., DUKKIPATI, N., AMMAR, M., ZEGURA, E.,
HARRAS, K., AND VAHDAT, A. Eiffel: Efficient and Flexible Soft-
ware Packet Scheduling. arXiv preprint arXiv:1810.03060 (2018).

[49] SIVARAMAN, A., SUBRAMANIAN, S., AGRAWAL, A., CHOLE, S.,
CHUANG, S.-T., EDSALL, T., ALIZADEH, M., KATTI, S., MCKE-
OWN, N., AND BALAKRISHNAN, H. Towards programmable packet
scheduling. In HotNets-XIV (2015).

[50] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable Packet Scheduling at
Line Rate. In Proceedings of the ACM SIGCOMM Conference (2016),
pp. 44–57.

[51] TANG, L., HUANG, Q., LLOYD, W., KUMAR, S., AND LI, K. Ripq:
Advanced photo caching on flash for facebook. In FAST (2015),
pp. 373–386.

[52] THORUP, M. Equivalence between priority queues and sorting. J.
ACM 54, 6 (2007).

[53] VAN EMDE BOAS, P. Preserving order in a forest in less than loga-
rithmic time. In FOCS’ 75 (1975), pp. 75–84.

[54] VARGHESE, G., AND LAUCK, T. Hashed and hierarchical timing
wheels: Data structures for the efficient implementation of a timer
facility. In Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles (New York, NY, USA, 1987), SOSP ’87, ACM,
pp. 25–38.

[55] WANG, H., AND LIN, B. Per-flow queue management with succinct
priority indexing structures for high speed packet scheduling. IEEE
Transactions on Parallel and Distributed Systems 24, 7 (2013), 1380–
1389.

[56] WANG, W., FENG, C., LI, B., AND LIANG, B. On the fairness-
efficiency tradeoff for packet processing with multiple resources. In
Proceedings of the 10th ACM International on Conference on Emerg-
ing Networking Experiments and Technologies (New York, NY, USA,
2014), CoNEXT ’14, ACM, pp. 235–248.

A Gradient Queue Correctness

Theorem 1. The index of the maximum non-empty bucket,
N, is ceil(b/a).

Proof. We encode the occupancy of buckets by a bit string
of length N where zeros represent empty buckets and ones
represent nonempty buckets. The value of the bit string is
the value of the critical point x = b

a for queue represented
by the bit of strings. We prove the theorem by showing an
ordering between all bit strings, where the maximum value
is N and the minimum value is larger than N − 1. The
minimum value is when all buckets are nonempty (i.e., all

ones). In that case, a = ∑
N
i=1 2i and b = ∑

N
i=1 i2i. Note that

b is an Arithmetic-Geometric Progression that can be sim-
plified to N2N+1− (2N+1−2) and a is a Geometric Progres-
sion that can be simplified to 2N+1− 2. Hence, the critical
point x = N2N+1

2N+1−2 −1 = N
1−2−N −1 where N

1−2−N < N +1 and
ceil(x) = N. The maximum value occurs when only bucket
N is nonempty (i.e., all zeros). It is straightforward to show
that the critical point is exactly x = N. Now, consider any
N-bit string, where the Nth bit is 1, if we flip one bit from 1
to zero, the value of the critical point increases. It is straight
forward to show that b− j2 j

a−2 j − b
a > 0, where j is the index of

the flipped bit.

B Examples of Errors in Approximate Gradi-
ent Queue

To better understand the effect of missing elements on the
accuracy of the approximate queue, consider the following
cases of elements distribution for a maximum priority queue
with N buckets:

• Elements are evenly distributed over the queue with fre-
quency 1/α , which is equivalent to an Exact Gradient
Queue with N/α elements,

• N/2 elements are present in buckets from 0 to N/2 and
then a single element is present in bucket indexed 3N/4,
where the concentration of the elements at the beginning
of the queue will create an error on the estimation of the
index of the maximum element ε = ceil(b/a) + u(α)−
3N/4. We note that in this case ε < 0 because the esti-
mation of ceil(b/a) will be closer to the concentration of
elements that is pulling the curvature away from 3N/4.
The error in such cases grows proportional to size of the
concentration and inversely proportional to the distance
between the low concentration and the high concentration.

• All elements are present, which allows the value ε =
ceil(b/a)+ u(α) to be exactly where the maximum ele-
ment is.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 31

Loom: Flexible and Efficient NIC Packet Scheduling
Brent Stephens

University of Illinois at Chicago
Aditya Akella

University of Wisconsin-Madison
Michael M. Swift

University of Wisconsin-Madison

Abstract
In multi-tenant cloud data centers, operators need to ensure
that competing tenants and applications are isolated from
each other and fairly share limited network resources. With
current NICs, operators must either 1) use a single NIC queue
and enforce network policy in software, which incurs high
CPU overheads and struggles to drive increasing line-rates
(100Gbps), or 2) use multiple NIC queues and accept im-
perfect isolation and policy enforcement. These problems
arise due to inflexible and static NIC packet schedulers and
an inefficient OS/NIC interface.

To overcome these limitations, we present Loom, a new
NIC design that moves all per-flow scheduling decisions out
of the OS and into the NIC. The key aspects of Loom’s
design are 1) a new network policy abstraction: restricted
directed acyclic graphs (DAGs), 2) a programmable hierar-
chical packet scheduler, and 3) a new expressive and efficient
OS/NIC interface that enables the OS to precisely control how
the NIC performs packet scheduling while still ensuring low
CPU utilization. Loom is the only multiqueue NIC design
that is able to efficiently enforce network policy. We find
empirically that Loom lowers latency, increases throughput,
and improves fairness for collocated applications and tenants.

1 Introduction
Many large organizations today operate data centers (DCs)
with tens to hundreds of thousands of multi-core servers [54,
47, 24]. In virtualized DCs, there are many competing ten-
ants, and operators need to ensure that these tenants are
isolated from each other and share resources according to
what they are allocated. With VMs and containers, it is
currently possible to ensure that tenants fairly share CPU
and memory. However, providing network isolation for
competing tenants on a server continues to remain a prob-
lem [50, 30, 10, 32, 29, 41, 57]. Further, each tenant may run
a variety of applications with different performance needs,
ranging from latency-sensitive applications such as web ser-
vices, search, and key-value stores, to throughput-sensitive
applications such as Web indexing and batch analytics. It is
similarly difficult to ensure that tenants’ applications do not
harm each other’s network performance objectives [34].

Network isolation is hard because more functionality is
moving to the network interface card (NIC), including packet
scheduling. Data center operators are upgrading server NICs
from 10Gbps to 100Gbps and beyond. To drive these high
line-rates, NICs provide function offloading to reduce CPU
load and multiple queues to enable parallel processing of
packets [51, 52, 57, 43, 29]. Without these optimizations,
applications struggle to drive line-rates. However, with them,

it is not always possible to ensure suitable isolation among
competing applications/tenants/flows. System software multi-
plexes applications and tenants into a small number of queues,
and the NIC schedules packets from queues with coarse grain
policies. As a result, the on-NIC packet scheduler, and not the
OS, is now ultimately responsible for deciding which packets
to send and when to send them.

The main goal of our work is to enable rich hierarchies
of application-, tenant-, and DC operator-level policies to be
realized on NICs while driving high line rates. This helps to
simultaneously ensure that applications’ network SLOs can
be met, that tenants can be isolated from each other on the
data center network, and that operators’ network performance
objectives are satisfied.

To solve this problem, we created Loom, a new NIC design
that moves all per-flow scheduling decisions out of the OS and
into the NIC. Loom provides a customizable, hierarchical on-
NIC packet scheduler and an efficient OS/NIC interface with
a queue per flow. This enables Loom to implement a variety
of scheduling algorithms while also enabling the OS to drive
line-rates (100Gbps). Loom takes inspiration from recent
advances in switch design such as PIFOs and others [12, 55,
15, 56]. These switches utilize a programmable match+action
pipeline and generic scheduling queues to support a variety
of hierarchical scheduling algorithms. However, NICs are
a fundamentally different environment than switches, and
these existing approaches are not immediately applicable.
Loom addresses the problems that arise when implementing
programmable scheduling on NICs.

There are three key components to Loom. First, Loom in-
troduces a new network policy abstraction: restricted directed
acyclic graphs (DAGs). Existing abstractions, such as flat traf-
fic classes or strict hierarchies cannot express a common type
of end-host network policy. Specifically, hosts may want to
rate limit aggregated traffic by destination, such as over intra-
DC or WAN links (e.g., BwE [32] or EyeQ [30]). Loom’s new
DAG policy abstraction allows for per-destination rate-limits
to be expressed independently of the traffic classes used to
determine how tenants and applications share bandwidth.

Second, Loom introduces a new programmable packet
scheduling hierarchy designed for NICs. In switches, packet
headers are available to make scheduling decisions. How-
ever, NICs have limited on-NIC SRAM, so they must make
scheduling decisions prior to reading packet headers from
main memory via DMA. In Loom, the OS enqueues schedul-
ing metadata along with the descriptors used to notify the
NIC of new packets, and the NIC only fetches packet content
when it is scheduled to be sent.

Third, Loom contributes a new expressive and efficient

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 33

OS/NIC interface that utilizes batching and metadata in-lining
to reduce the CPU overheads of communicating the network
policy to the NIC. Specifically, Loom uses a doorbell queue
per core to efficiently aggregate both multiple packets and
policy changes into a single PCIe write.

We build a software Loom prototype based on BESS [1],
and conduct experiments at both 10Gbps and 40Gbps. We
find that Loom is able to enforce complex hierarchical net-
work policies. Also, we show that Loom is able to enforce
policies that are not expressible in existing policy abstrac-
tions. In contrast, we find that it is not possible to enforce
even simple policies with existing multiqueue NICs. Further,
we demonstrate that improving network isolation translates
into reductions in latency, increases in throughput, and im-
provements in fairness for competing tenants and applications
that are collocated on the same servers. Through an anal-
ysis of worst-case behavior, we argue that Loom can still
operate at 100Gbps line-rate, even with minimally sized pack-
ets. Finally, we evaluate the overheads of our new OS/NIC
interface and find that Loom can reduce the number of gener-
ated PCIe writes by up to 43x when compared with existing
approaches [43, 35].

2 Motivation
Different DC applications and tenants have different perfor-
mance requirements and service level objectives (SLOs). Ide-
ally, DC operators would be able to ensure that competing
applications and tenants are isolated according to some high-
level policy, and that application- and tenant-specific SLOs
are met [30, 10, 41, 11, 34]. Unfortunately, today, this is not
always possible. A key part of the reason is static and inflexi-
ble packet scheduling on server NICs today. We elaborate on
this issue in the rest of this section.

2.1 High-Level Network Policies
Multi-tenant DCs run different classes of applications, each
with their own performance objectives. Different applications
can benefit from customized scheduling algorithms [16, 18,
19, 17, 42, 59]. At the same time, cloud providers need to en-
sure that tenants on the same server fairly share resources, and
operators want high infrastructure utilization [34]. Meeting
these performance goals amounts to specifying and enforcing
a policy that determines how packets from all flows, applica-
tions, and tenants on a server are scheduled.

Figure 1 shows a possible high-level network policy for a
server. This policy should be enforced no matter how applica-
tions access the NIC, such as with SR-IOV that bypasses the
hypervisor and/or kernel. Our example is motivated by recent
work which demonstrated that there is significant potential for
increasing infrastructure utilization by collocating big data
applications with latency sensitive applications like key-value
stores (KVS) [34]. In this policy graph, the “leaves” shown
at the top are packet sources (e.g., different flows). Nodes
in this figure determine how packets from different flows are

Legend:

Flow

App

VM

Policy
Node

KVS
(memcached)

Big Data
(hadoop)

SQL
Analytics

(spark)

WFQ

PriVM 1

Dst-1
Rate-Limit

VM N
… …

Server
Monitoring

and
Mgmt
App(s)

WFQ
Pri

Wire (Logical)

FIFO

Dst-N
Rate-Limit

…

(1)

(2)

(3)

(4)
(5)

w:1 w:1

w:1 w:2 w:4

Figure 1: A scheduling hierarchy for a server. Different parts
of this hierarchy are specified by different entities (Section 3).
The OS is responsible for dynamically enforcing this policy.
scheduled. Policies at different levels of the graph come from
different entities (e.g., operator, tenant, application).

In VM 1 in Figure 1, first, all the flows from an application
are aggregated. Each application can specify the scheduling
algorithm used for its own flows. Next, the tenant that owns
VM 1 specifies how traffic from its applications is scheduled.
Node (1) specifies that the competing flows from Hadoop
and Spark should use weighted fair queuing (WFQ) to fairly
share bandwidth. Node (2) then specifies that traffic from the
key-value store (KVS) should have strict priority over both
Hadoop and Spark traffic. Together, these nodes specify a
work-conserving policy for how competing traffic from VM
1 should share limited NIC bandwidth.

Additionally, some network operators may want to specify
per-destination rate limits that are enforced at hosts. This
is useful for ensuring network isolation across intra-DC and
wide-area links (e.g., BwE [32] and EyeQ [30]). In the exam-
ple, an operator specifies separate per-destination rate-limits
to all the traffic created by VM 1 with the Dst-1 through
Dst-N nodes (3), which may be replicated for other VMs.

Finally, an operator specifies how traffic from competing
tenants is scheduled. Node (4) specifies that different ten-
ants should use weighted fair queuing to share bandwidth
in proportion to the resources they are allocated (w:1, w:2,
w:4). Node (5) then specifies that management and hypervisor
traffic have strict priority over tenant traffic.

2.2 Issues with Multiqueue NICs
As the above illustrates, it is desirable to schedule traffic leav-
ing a server according to a high-level policy. However, the
principle challenge in doing this is in ensuring that applica-
tions with competing network objectives (e.g., bandwidth-
hungry vs. latency sensitive) do not impact each other’s
network performance. This is currently not always possible
because OSes need to use many independent NIC transmit
queues to drive line-rate1. As a result, the NIC and not the OS

1From our own experiments, we have found that, even with batching [7, 2]
and TSO, single core throughput in Linux is limited to around 36-40 Gbps.

34 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SQ
(2Gbps)

16Q
(2Gbps per-Q)

16Q
(125Mbps per-Q)

0
1
2
3
4
5
6
7
8

T
hr

ou
gh

pu
t (

G
bp

s)

Figure 2: Achieved rate for memcached with 16 threads when
trying to enforce a 2 Gbps rate-limit.

is now ultimately responsible for deciding which packets to
send and when to send them. Unfortunately, current on-NIC
packet schedulers are static, inflexible, and only support a lim-
ited number of traffic classes and scheduling algorithms [57].

2.2.1 Background

Modern NICs provide multiple transmit/receive queues and
interrupt lines. This reduces overhead by allowing multiple
cores to simultaneously send and receive packets. Current
best practices are to configure a separate transmit queue for
each core. By default, most NICs service queues using simple
deficit round robin scheduling [53].

Many NICs support a few additional features for control-
ling the packet scheduler. NICs with DCB support [21] pro-
vide priority scheduling and partition the queues on a NIC into
a different pool of traffic for each of 8 DCB priorities. Some
advanced NICs allow the OS to set per-queue or per-priority
rate-limits [35, 43]. A few NICs support a one-queue-per-flow
(QPF) model [43, 35]. These NICs only provide rate limits,
deficit round robin [53], and a small number of priorities.

While these scheduling features provide a limited ability to
implement fair scheduling, today’s NICs are unable to enforce
many other useful, rich network policies.

2.2.2 Inflexible NIC Packet Schedulers

To illustrate the problems with enforcing network policy on
multiqueue NICs, we performed a few experiments with
Linux and an Intel 10 Gbps NIC [27]. For each transmit
queue, we configure Linux Qdisc to classify and schedule
packets according to a network policy. We find that this can
enforce policy when only a single transmit queue (SQ) is
used, but that network policy is violated when multiple NIC
queues (MQ) or a queue-per-flow (QPF) are used. Although
we use XPS [9] to pin transmit queues to cores in these MQ
experiments, we see similar results without XPS.

First, Figure 2 illustrates the difficulty in enforcing a rate-
limit for all traffic from a single multi-threaded application.
In this experiment, the policy is that the sum of all traffic from
a 16-threaded memcached application should be rate-limited
to 2 Gbps. Because network traffic is not uniformly spread
across application threads, it is not possible to configure a
per-queue rate limiter. Setting a rate-limit of 2 Gbps per-
queue leads to over-utilization, while setting a fair rate-limit
of 125 Mbps (2 Gbps/16) leads to under-utilization.

0 2 4 6 8 1012
Time (seconds)

0

2

4

6

8

10

T
hr

ou
gh

pu
t (

G
bp

s)

Job1 Job2

(a)

0 2 4 6 8 101214
Time (seconds)

0
1
2
3
4
5
6
7
8
9

T
hr

ou
gh

pu
t (

G
bp

s)

Job1 Job2

(b)

0 1 2 3 4
FM = |TPUTJ1 − TPUTJ2| (Gbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

SQ MQ QPF

(c)
Figure 3: Unfairness when two Spark jobs are allocated equal
bandwidth shares. (a) Time series of the achieved throughput
for two competing Spark jobs with the MQ configuration. (b)
Throughput with the QPF configuration. (c) CDF of the differ-
ence in aggregate throughput for two competing jobs.

0.0 2.5 5.0 7.5
FM (Gbps)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

SQ MQ MQ-Pri MQ-ETS

(a)

0 2500 5000
Avg Latency (us)

0.75
0.80
0.85
0.90
0.95
1.00

C
D

F

SQ MQ MQ-Pri MQ-ETS

(b)
Figure 4: Hybrid approaches that combine DCB and software
to enforce a policy. (a) Difference in Spark throughput for two
competing tenants. (b) Memcached latency for 32KB values.

Next, Figure 3 shows an experiment where the network
policy is that two Spark jobs (each with multiple tasks) should
share network bandwidth equally, and each task is allocated
its own CPU core. Figure 3a and 3b plot a time series show-
ing unequal throughput achieved by each job for the MQ
and QPS configurations, respectively, and Figure 3c plots a
CDF of a fairness metric FM = |T PUTJ1−T PUTJ2|, i.e., the
difference in achieved throughput for the two jobs when they
are both active. Even though each job has the same number
of queues, it is still not possible to enforce network policy in
MQ because the active flows are not uniformly spread across
the cores. Similarly, because the NIC performs per-queue fair
scheduling and each job does not have the same number of
active flows, QPF does not fairly schedule traffic (Figure 3b).
In contrast, the OS can ensure a fair bandwidth distribution
when using a single queue (SQ). This is shown in Figure 3c.

With DCB, it is reasonable to try to enforce part of a net-
work policy in hardware, such as prioritizing latency sensitive
traffic, and then enforce the rest in software. Figure 4 shows
the results from two hybrid approaches. In this experiment,
there are two tenants who should fairly share the link band-
width. The first only runs Spark. The second runs both
memcached and Spark. The second tenant’s local policy is
that memcached traffic should have strict priority. First, the
MQ-Pri approach assigns memcached traffic to a DCB traffic
class given strict priority over other traffic, while the traffic
from both Spark applications share a traffic class and the
cross-tenant fairness policy is enforced by software. Second,
the MQ-Fair approach does the opposite and assigns traffic
from each tenant to different DCB traffic classes, with each

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 35

class being given a equal share of bandwidth, and enforces
the priority policy for memcached traffic in software.

Figure 4a shows that MQ-Pri is unable to fairly share band-
width between the competing tenants but achieves low mem-
cached latency in Figure 4b. Conversely, MQ-Fair has good
fairness, but very high latencies. This demonstrates that it
is not possible to have an OS or hypervisor both use multi-
ple queues and enforce only part of the network policy in
software with the NIC enforcing the rest in hardware.

2.2.3 Inefficient OS/NIC Interfaces

It is possible to use a dynamic approach to enforcing network
policy by collapsing it into appropriate per-queue weights,
rate limits, and priorities. However, here, scheduling metadata
for each queue needs to be updated as flows start and stop.

We find two performance problems to this approach. First,
with current NIC interfaces drivers must write a per-queue
PCIe doorbell register after adding data to a queue; for small
flows across many queues, this can lead to many PCIe writes.
Each update requires a separate PCIe write, taking up to
900ns [23]. During this time, the CPU is otherwise unavail-
able. Furthermore, past research shows that when two cores
send data on different queues and write a doorbell for each
packet they are unable to achieve a 40 Gbps line rate [46].

Second, updating policy also requires expensive PCIe
writes. These overheads are prohibitive, especially if many
different flows/queues must be updated simultaneousy, and
they directly undermine the benefits of offloading packet
scheduling to NICs. In this case, it may not be possible to
both drive line-rate and update the NIC’s packet scheduler.

To illustrate this problem, we measured the overheads of
configuring per-queue rate-limiters on a Mellanox ConnectX-
4 NIC [35]. Installing a new limit takes a median of 2.07ms.
Setting a queue to use an existing limit takes a median of
64µs to complete. We also modified the driver to apply an
existing rate asynchronously, and not wait for completion
events (and errors). Even so, the median update takes 950ns!

3 DAG Policy Abstraction
Loom is a NIC design with a programmable packet scheduler
that offloads the enforcement of high-level network policy.
This section describes the design of the Loom policy DAG.

The key aspects of the policy DAG in Loom are: (1) what
scheduling algorithms can be expressed at each node in the
DAG, (2) how nodes in the DAG can be connected, (3) how
different sub-policies from individual applications and tenants
are composed, and (4) how traffic is classified into different
leaf nodes in the hierarchy.

Node Types. There are two types of non-leaf nodes in the
policy: work conserving scheduling nodes that determine the
relative ordering of different packets, and rate-limiting shap-
ing nodes that determine the timing of packets. Every node in
the policy is annotated with the specific scheduling or shaping
algorithm that should be used. All scheduling algorithms in

Legend:

Shaping
Node

Scheduling
Node

Child
1

(a)

Child
2

Parent P1 P2

Child

(b)

Child

(c)

FIFO

R1 R2 R3

Child

(d)

P1

R1 R2 R3

P2 P3

Figure 5: An illustration of the relationships allowed between
scheduling and shaping nodes in Loom. A check indicates that
the relationship is allowed ((a) and (c)), while an ‘x’ indicates
the relationship is forbidden ((b) and (d)).

Loom are expressed by enqueue and dequeue functions that
compute a priority (rank). For convenience, Loom provides
default implementations of common algorithms including
strict priority scheduling (Pri), rate-limits (RL), weighted fair
queuing (WFQ), and least slack time first (LSTF) schedul-
ing [38]. However, Loom also allows for installing custom
scheduling algorithms at a node.

Restricted DAG Hierarchy. Network policies in Loom
are expressed as a restricted DAG like what is shown in Fig-
ure 1. The restriction is that the policy graph forms a tree if
all shaping nodes are removed. Each shaping node may op-
tionally be a nested set of parallel shaping nodes. Once traffic
is aggregated for scheduling, it may only be separated again
for shaping. This prevents scheduling nodes from reorder-
ing packets that were already ordered by a child while still
allowing for separate per-destination and per-path rate-limits.

Ideally, an operator would be able to compose a network
policy that specifies both a work-conserving policy for shar-
ing the bandwidth of the local NIC port and separate rate-limit
classes to manage bandwidth in the network core and over
WAN links. Unfortunately, such policies are not expressible
as a tree because once flows for different destinations have
been aggregated, they cannot be disaggregated and have sep-
arate rate-limits applied. The Loom policy DAG, however,
allows for policies where the traffic classes used to order
competing requests (i.e., work-conserving scheduling classes)
may be different than the rate-limit classes used to shape traf-
fic. In contrast, such policies are not expressible via Qdisc.

In more detail, the DAG is restricted in the following way:
if a node N’s parent is a scheduling node, then N may have at
most one parent (and outgoing edge). Loom imposes the re-
striction that a node may have multiple parents (and outgoing
edges) only if the parents are all shaping nodes. Further, all
sibling shaping nodes must share a single FIFO parent. This
ensures that scheduling nodes closer to the root do not reorder
packets that were already ordered by a child node.

These DAG restrictions are illustrated in Figure 5. Fig-
ure 5(a) and Figure 5(b) show that each node may have only
one parent if the parent is a scheduling node. Figure 5(c) and
Figure 5(d) show that all parallel shaping nodes must share
the same parent and child.

Traffic Classification. When packets are sent to the NIC,
the OS tags them with the appropriate metadata, and the NIC
then uses lookup tables to map the packet to the appropriate

36 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

leaf nodes in the policy DAG. This happens before Loom
enqueues the packet. Example metadata includes per-socket
priorities, socket IDs, process IDs, users, cgroup names, and
virtual interface IDs. Policies may also be expressed in terms
of network addresses (e.g., IP destination). For example, this
is the case with per-destination rate-limits.

Composing Sub-Policies. As Figure 1 illustrates, different
sub-graphs of the network policy need to come from different
entities. For example, each application may have its own
local scheduling algorithms. In Loom, each entity expresses
its own local policy as a separate policy DAG. These sub
graphs are composed at each level, such as the OS or VM,
by attaching the root node of each sub-graph to a leaf node
in the next level of the policy. Finally, the VMM passes the
final graph to the Loom NIC. When policies are not specified
(e.g., when a legacy application does not specify how its flows
should be scheduled), Loom uses FIFO packet scheduling.

Policy Limitations. Although our DAG policy abstraction
addresses a key limitation with applying rate-limits in prior
work [56], there are still some limitations to this abstraction.
One limitation is that polices are local to a node. In a cloud
data center, it may be desirable to express network-wide poli-
cies across a cluster of servers [50, 30, 10, 32, 29, 41, 44],
e.g., “All of the servers for Tenant A and Tenant B fairly share
network bandwidth.” However, such a policy is not directly
expressible in our abstraction. It would have to be imple-
mented by (dynamically) mapping this high-level policy onto
a collection of per-server and possibly per-switch policies.
To enforce such policies, rate-limiters need to be updated
whenever either VMs [29] or flows [44] start and stop.

Another limitation is that Loom does not guarantee that
the algorithms expressed as part of a policy DAG are efficient
or that a policy will map well onto the underlying hardware.
Providing default implementations of common algorithms
helps overcome this limitation. We also allow the NIC to
reject policies when it cannot efficiently compute the enqueue
and dequeue functions or when the DAG is too large. This
avoids poor NIC performance from inefficient policies.

4 Loom Design
There are two key components to the Loom programmable
NIC design: (1) a new scheduling hierarchy, and (2) a new
OS/NIC interface that enables the OS to efficiently and pre-
cisely control how NICs perform packet scheduling while
still ensuring low CPU utilization. This section first provides
background on programmable scheduling for switches and
then discusses these two components.

4.1 Programmable Scheduling Background
Loom’s design leverages recent advances in switch design
for programmable and stateful match+action forwarding
pipelines [12, 55, 15], and programmable hierarchical packet
scheduling [56]. In these systems, lookup tables arranged in a
pipeline map packet headers to logical queues and scheduling

D2 (@TD2)

Q1.Shaping

D1
Q1.Sched

Q1

Q1.ShapingQ1.Shaping Q1.Shaping

TD2

D1

Q1 Q1

TD2

D1D1 D2

TD2

D2

D1

Q1.Shaping

Q1.Sched

T0 T1 T2 T3

Root.Sched

Q1.Sched Q1.Sched Q1.Sched

Root.Sched

Root.Sched

Root.SchedRoot.Sched D1

TD2+1

Root.Sched

Q1.Shaping

Q1.Sched

Figure 6: An illustration how a prior PIFO-based sched-
uler [56] operates that also shows how rate-limiters will be in-
correctly applied when only some of the packets at a scheduling
node should be rate-limited. Although the packet for D2 should
be rate-limited, the packet for D1 is incorrectly rate-limited be-
cause D2 has a higher rank than D1.

metadata. For example, the NIC needs the leaf traffic class
for the packet. Similarly, WFQ tracks virtual time and the
number of transmitted bytes per class. Once scheduling meta-
data for a packet has been found, packets are enqueued into a
logical scheduling hierarchy implemented by a tree of priority
queues, also known as push-in first-out queues, or PIFOs.
Scheduling: Because all policies in both these systems and
Loom are expressed by computing a priority (rank), many
policies can be implemented with a common tree of PIFOs.
Different scheduling algorithms are implemented by changing
how the rank is computed (e.g., priority, deadline, virtual time,
slack, etc.). In general, within a single node, this model is
sufficient to emulate any scheduling algorithm [38].

A scheduling algorithm is expressed through an enqueue
function, a dequeue function, and the state maintained across
function calls. The enqueue function runs when packet is
enqueued at a node in the DAG. Using the local state and
metadata associated with a packet, this function then com-
putes and returns a rank (priority). On dequeue, the node
returns the lowest rank packet and a dequeue function updates
local state. For example, an implementation of fair queuing
would update a global virtual time in the dequeue function.
Shaping algorithms behave similarly, but they compute a
transmit time as a rank. This enables Loom to implement a
wide range of scheduling and shaping algorithms.

For example, strict priority scheduling is implemented by
computing a priority on enqueue. WFQ is implemented by
computing a virtual time for the packet on enqueue and updat-
ing a global (to the node) virtual time on dequeue. Both strict
and token bucket rate-limits can be implemented by comput-
ing a wall clock transmit time on either enqueue or dequeue.
Other scheduling algorithms can also be implemented (e.g.,
for LSTF [38], we compute a slack time on enqueue).

Enqueuing and dequeuing from different nodes in the hi-
erarchy operates as follows. First, a match+action pipeline
finds all necessary metadata from the leaf traffic class. Then,
enqueuing starts at the leaf node. The enqueue function for
this node is used to compute a rank and enqueue a pointer
to the packet. Traversing the hierarchy from the leaf node to

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 37

the root, the local enqueue function at each node computes a
rank, and the NIC enqueues a pointer to the appropriate child
node at each parent.

The leftmost picture in Figure 6 illustrates this behavior.
When a new packet arrives at T0, it is first pushed into Q1, and
then a pointer to Q1 is pushed into the Root PIFO. Conversely,
when the transmit port is ready to transmit a packet, it starts
by dequeuing the element at the head of the root of the PIFO
tree, which will be a pointer to a child PIFO. After running
the dequeue function, dequeuing then continues to follow
this pointer chain (e.g., Q1 and Q2 could have other pointers
enqueued) until a leaf node is reached and the original packet
is ultimately dequeued.
Rate Limiting: To implement rate-limiting, each node in the
prior PIFO design uses both a shaping queue for rate-limiting
and a scheduling queue for ordering packets. When the en-
queue function at a node determines that a packet should be
rate-limited, its transmission time is pushed into the shaping
queue for the node and the packet is added to the scheduling
queue. However, no pointers are enqueued at subsequent
parent nodes. Then, only once the computed transmit time
has expired, is the packet enqueued at the rest of the parent
nodes and it will eventually be scheduled.

Unfortunately, this design cannot apply rate-limits to only
some of the packets sharing a PIFO node in the hierarchy
(e.g., those going to specific sets of destinations).

Figure 6 illustrates this behavior and the problem that it
causes. In this example, there are two queues in the hierarchy,
the Root queue, and Q1. At time T1, a packet for D1 that
should not be rate-limited is enqueued in the tree. Then at
T2 a high-priority packet for D2 that should be rate-limited
until time TD2 arrives. Because of its priority, it is ordered
in Q1 ahead of D1, but it is not enqueued higher up the tree
(per the PIFO rate limiting description above). Then, because
there is still a reference to Q1 at the root, the next time a
packet is dequeued from the root, the packet at the head of
the scheduling queue at Q1 will be returned. However, in this
case, the packet for D2 is dequeued because its rank in the
scheduling queue at Q1 for D2 is higher than the rank for D1.
At this point, there are no pointers to Q1 at the root, so D1
will not be sent. Later, at time TD2 a pointer to Q1 will be
enqueued at the root and D1 will eventually be sent. In effect,
the packet for D1 is rate-limited when it should not be, while
the packet for D2 is not rate-limited when it should be!

This problem occurs because the existing design does not
distinguish rate-limited from non-rate limited packets at a
node. For the same reason, having different rate limits at a
node can also lead to packets being sent at the wrong time.

4.2 Programmable Scheduling for NICs
NICs provide a different environment than switches, so exist-
ing approaches for programmable scheduling on switches are
not immediately usable on NICs. Switches have buffer space
to hold complete packet contents. In contrast, NICs perform

Main Memory:

Wire

Descriptor Qs

PCIe Bus

…

Completion Qs

…

CPU:
Core 1

MSI-X Interrupt

…

Core N
C

MSI-X Interrupt

Loom NIC:

DMA
Engine

MMIO
Region

Dev Registers

…

Reconfigurable and Stateful
Match+Action Table Pipeline

Reconfigurable Scheduling
Hierarchy (PIFO mesh)

SRAM

Match
+

Action
(1)

…
M
+
A

(N
MA

)

PIFO
1

…
PIFO

N
P

Doorbell Q 1

Doorbell Q N
C

Figure 7: A breakdown of the different components of Loom.
Note that descriptor queues are per-flow while the doorbell
queues are per-core.

scheduling over packet descriptors, and defer reading pack-
ets from main memory as long as possible to keep memory
requirements small. Reading just the headers is infeasible
because it would require two DMA operations per packet.
Instead, NICs must perform scheduling in advance of reading
a packet from main memory.

4.2.1 Scheduling Operations

To overcome this challenge, Loom relies on the OS to com-
municate any necessary scheduling metadata to the NIC. This
metadata may be explicitly set for each packet by includ-
ing scheduling information in-line with transmit descriptors
and doorbell writes. This metadata may also be implicitly
determined by the queue the OS uses to send a packet.

Figure 7 illustrates the design of our Loom prototype.
The OS assigns each flow its own descriptor queue. After
writing descriptors, the OS then rings an on-NIC doorbell.
Doorbells are then parsed and processed by an on-NIC state-
ful match+action pipeline. This pipeline is used to lookup
scheduling metadata (Section 4.3.2) and per-queue DMA
state (e.g., descriptor ring buffer address). Next, pointers to
descriptor queues are enqueued in a PIFO tree that is used
to schedule competing packet transmissions. At this step,
all scheduling ranks are computed using information from
the OS. When the request is dequeued, it is sent to the DMA
engine. Once the DMA engine has read the necessary de-
scriptor and packet data from main memory, packets are then
parsed and processed by the match+action pipeline before
being transmitted. For example, packet headers are updated
as needed to support features like segmentation offload (TSO)
and network virtualization in the match+action pipeline.

Regardless of whether metadata is explicitly in-lined with
descriptors and doorbells or implicitly associated with queues,
with this division of labor, it is possible to schedule the pro-
cessing of different transmit requests from different transmit
queues without already having access to the packet data. The

38 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

D2

Shaping

D1
Q1.SCHED

Q1

Root.SCHED

ShapingShaping Shaping

Q1.SCHED Q1.SCHED Q1.SCHED

Root.SCHED Root.SCHED

Root.SCHED

TD2

D1D1 D2

TD2

Q1 Q1Q1

TD2

Q1

Root.SCHEDD1

Shaping

D2
Q1.SCHED

T0 T1 T2 T3

Figure 8: An illustration how Loom enforces different rate-
limits for different packets sharing the same PIFO. When a
packet is dequeued before its computed transmission time, it
is instead pushed into a separate global shaping queue. After
its transmission time, it is re-enqueued in the hierarchy.

trade-off between these two approaches is that including meta-
data in descriptors and doorbells increases the descriptor and
doorbell size while using implicit per-queue metadata con-
sumes additional on-NIC SRAM.

4.2.2 DAG Rate-Limiting

To implement the rate-limiter DAG abstraction in Loom, we
created a new design for rate-limiting with PIFOs that allows
multiple rate-limiting classes to be applied at the same PIFO
node. Crucially, this design uses a global shaping queue
to implement rate-limits instead of per-node shaping queues.
This overcomes the limitations of previous designs that cannot
support separate scheduling and shaping queues.

When no rate-limits are exceeded, packets are enqueued
into the PIFO hierarchy as if no rate-limit were applied. In-
stead of pro-actively enforcing rate-limits, transmission times
are computed and stored. Then, on dequeue, if the transmis-
sion time is in the past, dequeuing continues as normal.

However, if the transmission time is in the future on de-
queue, the request is enqueued in a separate global shaping
queue. Because all shaping is done with respect to wall-clock
time, independent shaping queues are not needed for each
node in the hierarchy. Next, after the computed (rate-limited)
transmission time expires, the request is then re-enqueued
according to its previous ranks in the scheduling queues, after
which it will be transmitted according to the policy as normal.
This ensures that subsequent high-priority traffic can bypass
rate-limited traffic. In contrast with previous designs [56],
Loom can correctly enforce rate-limits even when different
transmission times are computed for different requests other-
wise sharing the same scheduling queue in the hierarchy.

Figure 8 illustrates this design with an example. At time
T0, a packet for D2 shows up that should be rate limited until
time TD2. However, at time T1, it is initially only enqueued
in the scheduling queues. Then, when it is dequeued from the
root PIFO at T2, it is re-enqueued in a global shaping queue
until its reaches its transmission time of TD2. At this point, it
is then re-inserted into the hierarchy.

4.2.3 Line-rate (100Gbps) Operation

An apparent trade-off of this design is that it can increase
the number of enqueue and dequeue operations performed
per packet. In the worst case, a packet in Loom may be
enqueued and dequeued two times from the PIFO hierarchy.
However, this does not prevent Loom from operating at line-
rate. Although our design, like prior work [56], uses PIFOs
that only support a single enqueue and dequeue operation per
cycle, a Loom NIC does not need to schedule a unique packet
every cycle to still be able to forward at line-rate.

Consider the following analysis: Assume a 100Gbps
NIC that operates at a frequency of 1GHz. The OS sends
minimum-sized 64-byte packets, and each packet requires the
worst-case 2 enq/deqs per packet. Even in this case, the NIC
can still schedule a packet every 2ns. Achieving line-rate only
needs to send a packet every 5.12ns. Further, we note that
this worst-case analysis is far from the common case. For
example, packets are often bigger, and only some rate limited
packets need multiple enq/deqs.

We employ other optimizations to further reduce opera-
tions. One such optimization is that we include a flag in
scheduling metadata that indicates whether a rate-limit class
is currently being rate-limited. This allows for packets to be
immediately enqueued in the shaping queue, reducing the av-
erage number of operations per packet. Second, to bound the
number of subsequent dequeue operations that do not yield
a transmittable packet, we limit the number of outstanding
packets from each traffic class.

However, deep policy hierarchies can require multiple aver-
age cycles per dequeue, preventing 100Gbps operation. While
different stages of the hierarchy can be pipelined, if the depth
of the hierarchy exceeds the number of PIFO blocks, again it
may not be possible to guarantee an average rate of 1 enq/deq
per cycle. We expect policies in practice to be not arbitrarily
deep. For example, the graph in Figure 1 is quite rich, yet
it is uses ≤ 5 PIFOs. A deeper policy graph is unlikely to
need more than 10 PIFOs. Thus, we believe we can support
100Gbps for practical policies.

4.3 OS/NIC Interface
Loom introduces an efficient and expressive OS/NIC interface
for notifying the NIC of new segments and communicating
network policy updates. Loom minimizes the total number of
PCIe writes needed by the OS. This is accomplished through
two mechanisms: First, the OS uses batched doorbells to
notify the NIC of new segments. Second, scheduling and
metadata updates are passed in-line with packet descriptors
to avoid generating additional PCIe writes.

4.3.1 Batched Doorbells

To efficiently support a large number of transmit queues,
doorbells are separated from (per-flow) transmit descriptor
queues in Loom (Figure 7). Instead of writing to a separate

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 39

doorbell for each queue, in Loom, doorbells are written in-
directly through doorbell queues. When the driver needs to
notify the NIC about new segments from different flows it
writes a batch of doorbell descriptors (16-bit integers) to a
per-core doorbell queue. These queues are stored on the NIC,
and, with write-combining, 32 doorbells (1 cacheline) can
be written in a single PCIe write. This design builds on top
of the fact that modern OSes already send segments to the
NIC in batches [7, 2]. Unlike existing NICs that generate a
PCIe write per queue to ring per-queue doorbells, Loom only
generates a single PCIe write per batch.

Figure 7 illustrates this design by showing the different
types of queues that are used in Loom for OS/NIC commu-
nication and where they are located in memory. The control
flow when the OS needs to send a batch of packets in Loom
is as follows: first, descriptors for individual packets and con-
figuration updates (described below) are written to per-flow
descriptor queues. These are fast writes to main memory. Ad-
ditionally, descriptors for all of the packets in the batch that
belong to the same flow are created in a single write. Next,
the OS writes a batch of doorbell descriptors to a doorbell
queue. The NIC detects the write, finds the queues from the
doorbell descriptors, and processes the segments in the batch.

Although Loom relies on batching to reduce the number of
PCIe writes, it still provides low latency. If there are fewer
packets than can fit in a batch, the OS and/or application
need not wait before ringing a doorbell. If new packets are
generated in the interim, they will be part of the next batch.
Similarly, due to per-flow queues and on-NIC scheduling,
high-priority packets in later batches are not blocked by pack-
ets in earlier batches.

4.3.2 Scheduling Metadata

In Loom, the OS provides the NIC with the necessary meta-
data to compute scheduling ranks before the NIC has read
segment data. This is accomplished in one of two ways. First,
when the metadata applies to all the traffic in a flow (i.e.,
transmit descriptor queue), scheduling metadata updates are
sent through doorbell descriptors. Second, when the policy
applies to individual segments, scheduling metadata is passed
in segment descriptors. By passing metadata inline, there is
no extra OS overhead to communicate new scheduling in-
formation when new flows arrive. Furthermore, Loom saves
per-queue metadata in on-NIC lookup tables, which allows
for future segments to be sent without any additional meta-
data. All of the information needed by the NIC (e.g., the
address of the queue in main memory) is already implicitly
associated with the queue the segment is enqueued in.

Because the match+action pipeline processes packets se-
quentially, dynamically reconfiguring the scheduling hierar-
chy is straightforward. When processing a segment or door-
bell, each stage in the pipeline saves provided configuration
values (if present) to local SRAM as the stage processes the
segment or doorbell. These values can include scheduling

metadata, shared memory regions, algorithms, and traffic
classes. With Loom’s efficient doorbells this can be accom-
plished without additional PCIe writes.

4.4 Discussion
There are a wide spectrum of different NIC designs, ranging
from NICs with specialized ASICs [3, 35], NICs with some
FPGAs [36, 33, 22], NICs built from tiled or network proces-
sors [39, 13, 14, 58, 37], and purely virtual NICs [48, 1]. We
believe that Loom’s design is applicable to all of these differ-
ent NIC types. While the PIFO abstraction is well suited for
efficient hardware implementation (ASIC) [56], recent work
has proved that all local scheduling algorithms are expressible
with PIFOs [38]. Thus, the Loom design can be applied even
to NICs with more flexible architectures. Similarly, all NIC
types benefit from an efficient OS/NIC interface. Even in a
virtual NIC, the use of doorbell queues reduces the number of
memory regions that need to be polled by the NIC’s backend.

Self-virtualizing NICs (e.g., SR-IOV) can reduce the CPU
overheads of virtual networking. Supporting SR-IOV with
Loom is straightforward. Instead of providing per-core door-
bells, Loom provides per-VCPU doorbells. VMs are then
allocated their own doorbells and events. For security, queue
creation/initialization is controlled by the hypervisor. How-
ever, common case operations like updating scheduling meta-
data are handled directly by the guest.

Similarly, Loom is also compatible with kernel bypass
frameworks like RDMA, DPDK [28], and netmap [45]. Like
netmap [45], we require such applications to call into the
kernel to ring doorbells and configure queues. Even with a
large number of kernel-bypass queues and applications, this
still allows for efficient doorbell batching and scheduling of
competing doorbells from different traffic classes.

5 Implementation
There are two major aspects to our implementation. The first
is a compiler for the Loom policy DAG, and the second is a
prototype Loom NIC. Loom is open source and available at
https://github.com/bestephe/loom.

For the policy DAG compiler, we made modifications to an
existing compiler for scheduling trees written in Domino [5].
Scheduling policies are expressed as a DAG, and each node
contains both an enqueue and a dequeue function. The Loom
network policy is expressed in a restricted subset of C++. The
output of the compiler is C++ code that combines generic
PIFOs with custom scheduling algorithms.

We created a software prototype Loom NIC using the
Berkeley Extensible Software Switch (BESS [1], formerly
SoftNIC [25]). To interface with the OS, BESS loads a ker-
nel module that registers a new Ethernet adapter. The driver
for this adapter communicates with a backend userspace ap-
plication that emulates the functionality of the Loom NIC
hardware. The driver and backend in BESS communicate
through descriptor queues implemented with shared memory.

40 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/bestephe/loom

We modified the BESS kernel driver to implement Loom’s
OS/NIC interface. We replaced BESS’s per-core descriptor
queues with per-flow descriptor queues and per-core doorbell
queues. Also, we modified the descriptor format and the
driver so that OS and flow-level metadata is included along
with transmit descriptors and doorbells. We also identified
and fixed a problem in the driver that caused excessive packet
loss when transmitting packets.

To implement the compiled Loom policy in the NIC back-
end, we extended a C++ implementation of a pipeline of
PIFOs [6]. We modified the shaping queues used for rate-
limiting to support our DAG abstraction (Section 4). We also
modified the model to support functions called on dequeue.

6 Methodology
For a baseline in our experiments, we compare our Loom
prototype against three different BESS configurations. The
first uses a single transmit descriptor queue for all packets
(SQ), the second uses a descriptor queue per-core (MQ), and
the third uses one queue per-flow (QPF) with round-robin
scheduling between competing queues. Although SQ is not
able to always drive line-rate in our experiments, it provides
a baseline where the OS is able to enforce network policy. In
contrast, while MQ and QPF are able to drive line-rate, they
provide a baseline that is not able to enforce network policy.

In both the SQ and MQ configurations, when possible
we configure Qdisc to try to enforce the network policy in
software (Loom policies that use DAG rate-limits are not
expressible in the Qdisc tree hierarchy). Because Qdisc does
not allow for packet scheduling to be configured based on
container, process, or socket ids, we rely on IP addresses and
ports to express the network policy when using Qdisc.

We perform two different types of experiments to evaluate
Loom. First, we use network-bound applications to profile
the network behavior of our implementation. Specifically, we
use the iperf3 [4] program to saturate network throughput and
the sockperf [8] application to measure end-to-end latency.
In these experiments, applications from different tenants are
isolated by placing them in their own containers (cgroups).
Second, we run real data center applications. We try to cap-
ture the performance of both latency and bandwidth sensitive
applications. We use memcached for a latency-sensitive ap-
plication. As a bandwidth-sensitive application, we use Spark
with the TeraSort benchmark to perform a 25 GB shuffle. We
compute throughput over a 50ms window.

We evaluate both types of experiments by sending data
between two servers on CloudLab [20]. In order to stress
Loom’s packet processing, we use a 1500 byte MTU for
all experiments, and do not use large segments, either for
transmit segmentation offload (TSO) or large receive offload
(LRO). The small packet size increases the number of packets
per second that must be scheduled by a single core.

The software NIC in every experiment uses one core for
packet transmission and one core for reception. This implies

that the CPU utilization of the software prototype is 200%.
We use two different experiment configurations. In the first

configuration (HW1), we use two servers with Intel X520
10GbE NICs, two Intel E5-2683 v3 14-core CPUs (Haswell)
and 256GB of memory. In this configuration, all servers use
the Loom prototype NIC for both sending and receiving.

In the second configuration (HW2), we use two servers
with 40 Gbps Mellanox ConnectX-3 NICs, two Intel E5-2650
8-core CPUs (Haswell) and 64GB of memory. These experi-
ments are asymmetric: only the server sending uses the Loom
prototype NIC. The BESS SoftNIC [25], upon which our
prototype is based, is currently unable to receive at 40 Gbps
with a 1500 byte MTU with a single receive core (although
it can receive at 40 Gbps with 9000B jumbo frames)2. To
demonstrate that Loom can schedule and transmit packets at
40 Gbps with a 1500 MTU, we perform asymmetric experi-
ments where the receiving host uses a vanilla driver.

7 Evaluation
First, we evaluate the ability of our Loom prototype to enforce
network policies. Next, we evaluate the efficiency of our new
OS/NIC interface. Finally, we evaluate the performance of
two different DC applications when used with Loom.

7.1 Policy Enforcement
Our first experiments demonstrate that our Loom prototype
can isolate tenants. We perform the following experiment:
There are five active tenants (T0-T4). Fair queuing (FQ)
with equal shares is used to share bandwidth between tenants.
The first tenant runs a single latency-sensitive application
(sockperf). Then, in successive two-second intervals, another
tenant starts running a bandwidth-hungry application. Start-
ing with Tenant T1, each tenant i starts 4i flows (4-256). Two
seconds after the final tenant starts, the applications for each
tenant successively finish at two-second intervals.

Figure 9 shows the throughput achieved over time by dif-
ferent tenants in the single queue (SQ), multi-queue (MQ),
queue-per-flow (QPF), and Loom configurations. Figure 9a
shows that SQ is able to approximately enforce this policy
of tenant bandwidth isolation. However, because only a sin-
gle transmit queue is used, SQ is not able to fully drive the
10 Gbps line-rate. Next, Figure 9b shows that MQ is not
able enforce this policy. Instead, each successive tenant is
able to use more than its fair share of bandwidth because it
has more flows. As shown in Figure 9c QPF also leads to
unfairness because the NIC’s per-queue deficit round robin
scheduling favors the tenant with the most flows. In contrast,
Figure 9d shows that Loom is able to more precisely enforce
the network policy than SQ while also driving full line-rate.

Next, Figure 10 shows the 90th percentile latency observed
in each 250ms interval by tenant T0 in the same experiment

2The limit is not intrinsic to Loom. It arises from a BESS design choice
to copy packet data in the kernel and not in the backend, and we are working
with the BESS authors to address the problem.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 41

5 10 15 20
Time (seconds)

0
2
4
6
8

10
T

pu
t (

G
bp

s)

T1 T2 T3 T4

(a) Throughput with a single
NIC queue (SQ).

5 10 15 20
Time (seconds)

0
2
4
6
8

10

T
pu

t (
G

bp
s)

T1 T2 T3 T4

(b) Throughput with a NIC
queue per-core (MQ).

5 10 15 20
Time (seconds)

0
2
4
6
8

10

T
pu

t (
G

bp
s)

T1 T2 T3 T4

(c) Throughput with a NIC
queue per-flow (QPF).

5 10 15 20
Time (seconds)

0
2
4
6
8

10

T
pu

t (
G

bp
s)

T1 T2 T3 T4

(d) Throughput with Loom.

Figure 9: Aggregate throughput achieved by different tenants when each tenant should receive an equal share of bandwidth.

0 5 10 15 20
Time (seconds)

0

2

4

La
te

nc
y

(m
s)

SQ MQ QPF Loom

Figure 10: 90th Percentile la-
tency over time for a latency
sensitive application (T0) that
is configured to fairly share
bandwidth with up to four
other bandwidth hungry appli-
cations (T1-T4) for SQ, MQ,
and Loom.

5.0 7.5 10.0 12.5
Time (seconds)

0.0

2.5

5.0
(a) 10Gbps

5.0 7.5 10.0 12.5
Time (seconds)

0
10
20
30

T
hr

ou
gh

pu
t (

G
bp

s)

(b) 40Gbps

J0 J1 J2

Figure 11: Throughput for the
different jobs from tenant T1
when only jobs J1 and J2 are
subject to a combined 2.5 Gbps
and 10 Gbps rate-limit on a
10 Gbps and 40 Gbps network,
respectively.

for the SQ, MQ, QPF, and Loom configurations. Because T0
uses less than its share of bandwidth, its packets are prioritized
ahead of those from the other tenants. When the number of
flows is small, Figure 10 shows that all of the approaches are
able to provide similar latency. However, as the number of
flows increases, only Loom is able to provide consistent low
latency. QPF incurs the highest latency of any configuration
because it uses more queues than SQ and MQ.

We compared the CPU utilization of Loom to existing
designs: SQ, MQ, and QPF3. Loom performs similarly to
MQ and QPF because there is little CPU scheduling work and
no coordination across cores. In contrast, SQ has 25-300%
higher CPU utilization due to complicated packet scheduling
in software and contention for a single queue.

We study Loom’s ability to enforce shaping policies where
the rate-limit classes are different than the traffic classes used
for scheduling. This experiment uses the same tenants as
the previous one, but replaces Tenant T1. It now runs three
competing jobs: J0 for Dst-1, and J1 and J2 for Dst-2. The
traffic for Dst-2 is rate-limited to 10 Gbps, and for Dst-1 is
not rate-limited. As before, every two seconds, an additional
tenant starts flows, but in this case all stop at the same time.

The results of this experiment are shown in Figure 11.

3Note that this CPU utilization is in addition to that used by our software
prototype, which uses two cores.

5 10 15 20
Time (seconds)

0
10
20
30
40

(a) SQ

5 10 15 20
Time (seconds)

0
10
20
30
40

(b) MQ

5 10 15 20
Time (seconds)

0
10
20
30
40

T
hr

ou
gh

pu
t (

G
bp

s)

(c) QPF

5 10 15 20
Time (seconds)

0
10
20
30
40

T
hr

ou
gh

pu
t (

G
bp

s)

(d) Loom

T1 T2 T3 T4

Figure 12: Aggregate throughput achieved on a 40 Gbps net-
work when the network policy is that each tenant should receive
an equal share of bandwidth.4

When the only active flows are from T1 (5-7 seconds),
together, jobs J1 and J2 are appropriately rate-limited to
10 Gbps while J0 receives the remaining bandwidth. Fur-
ther, according to the scheduling policy, jobs J1 and J2 fairly
share the bandwidth available to their rate-limit class. How-
ever, after Tenant T2 and T3 have started flows at 9 seconds,
tenant T1’s fair share is 3.3 Gbps and the fair share of jobs J1
and J2 are less than 10 Gbps, we see that Jobs J1, J2, and J3
fairly share tenant T1’s bandwidth.

From Figure 11, we see that Loom is able to enforce the
policy DAG. In contrast, this policy is not expressible with
the static Linux Qdisc or the scheduling tree policies used by
prior work if the number of jobs is dynamic [56]. In a strict
hierarchy, the rate limit must be applied before applying fair
queuing across jobs, but the relative weight of the shaped and
not shaped traffic changes with each new job.
Performance at 40 Gbps and Beyond: To demonstrate that
our prototype scales with increasing line rates, we repeated
some of the previous experiments at 40 Gbps line-rates with
the small change that tenant T1 starts 16 flows instead of 4.
These results are shown in Figure 12 and Figure 11(b). In
both of these experiments, the trends stay the same. Figure 12
shows that SQ is only able to drive roughly ∼10 Gbps due
to contention for the queue. In contrast, while MQ, QPF,
and Loom are able to drive ∼37 Gbps, only Loom is able to

4Our current prototype has a small throughput hit (1.3% median and 3.4%
average) when compared with MQ that we are working on improving.

42 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SENIC/QPF Loom
Number of Tenants write/s write/s % Reduction

32 Tenants 150K 128K 19.2%
64 Tenants 243K 205K 15.8%
96 Tenants 303K 263K 13.2%

Table 1: The median number of PCIe writes per second gen-
erated by SENIC/QPF and Loom and the percent reduction in
number of PCIe writes with Loom’s batched doorbells.

enforce network policy. Similarly, Figure 11(b) shows that
Loom can rate-limit traffic while also driving a 40 Gbps link.

Based on these results, we believe that it should be possible
to continue to scale Loom with increasing line-rates, e.g.,
100 and 200 GbE. These results demonstrate that a single
CPU core can schedule 1500B packets at 40 Gbps, and we
expect that a hardware NIC implementation should be able
to exceed this performance. NPU-based NICs can parallelize
computing ranks in enqueue and dequeue functions. Also,
prior work has already demonstrated that custom hardware
can enqueue/dequeue a billion packets per-second [56].

7.2 OS/NIC Interface
To evaluate Loom’s batched doorbells, we estimate the differ-
ence in number of PCIe writes using Loom’s batched door-
bells and a NIC that has a queue-per-core with unbatched
doorbells, such as SENIC [43] and the ConnectX-4. We in-
strument Linux to count how many doorbells Loom would
use, and how many extra doorbell rings are needed without
batching. With Loom, there is one PCIe write to the doorbell
queue for a batch of segments added to any queue by a single
core; this is approximately the same Linux behavior with a
queue-per-core, which adds a batch of segments from multi-
ple flows to a single queue. We calculate the number of PCIe
doorbell writes in Loom as the number of skbs for which
the xmit more flag is false, indicating the OS has no more
data to enqueue. Without batching, additional PCIe doorbell
writes are needed for each different flow. We calculate the
number of additional writes as the number of times a segment
in a batch comes from a different flow than the preceding
packet, indicating it would be sent on a different queue.

We evaluate the interface efficiency with a variable number
of tenants each with 16 active flows sending traffic with iperf3.
We note that this experiment is a best case scenario because
it uses long-lived flows that are able to benefit from segmen-
tation offload, which reduces the total number of segments
sent to the NIC. Table 1 shows total number of writes per
second and the percent reduction in number of PCIe writes
with Loom when compared with current approaches. In these
experiments, the total number of writes generated by the one
flow per-queue approach varies from 150K–303K writes per
second. Even with this benign workload, batched doorbells
can reduce the number of writes by up to 19.2%. As part of
future work, we are working to improve batching in Linux,
which we expect can lead to even further reductions.

Next, because the benefits of batched doorbells are work-

64KB Batch 256KB Batch
SENIC/QPF Loom SENIC/QPF Loom

Line-rate write/s write/s write/s write/s

10 Gbps 833K 19K 833K 4.8K
40 Gbps 3.3M 76K 3.3M 19K
100 Gbps 8.3M 191K 8.3M 48K

Table 2: The number of PCIe writes per second generated by
SENIC/QPF and Loom given a worst-case traffic pattern.

0 1 2 3 4 5
FM = |TPUTT1 − TPUTT2| (Gbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F SQ
MQ
QPF
Loom

(a)

0 1000 2000 3000 4000 5000 6000
90th Percentile Latency (us)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
D

F SQ
MQ
QPF
Loom

(b)

Figure 13: Hierarchical policy performance. (a) CDF of fair-
ness for Tenants 1 and 2. (b) CDF of memcached latency

load dependent, we also performed a worst case analysis to
estimate the benefits of Loom’s approach. We approximate
an RPC-style workload with many clients and assume that
each 1500B packet in a batch is sent from a different flow.
In this scenario, existing approaches such as SENIC that use
a queue per flow generate a write per packet, while Loom
generates one write per batch. Table 2 shows computed write
rates of SENIC/QPF and Loom for different batch sizes and
line-rates. At 40 Gbps with 64KB batches, SENIC generates
3.3M writes/second, while Loom causes only 76,000, a 43x
reduction! For context, prior work found that the Intel XL710
40 Gbps NIC cannot drive line-rate when the OS generates
more than 3.3M writes per second (i.e., a single doorbell is
rung per 1500B packet) [46].

This analysis demonstrates that existing one flow per-queue
approaches will have difficulty driving increasing line-rates
for workloads with many short flows. Additionally, this analy-
sis shows that Loom can reduce PCIe overheads by increasing
the batch size, which is not possible with existing one flow
per-queue approaches under some workloads.

Finally, we also note that current approaches would gener-
ate even more PCIe writes than we estimate as flows start and
stop to update scheduling metadata and the network policy.
In contrast, configuration updates in Loom do not generate
any additional updates as they are inlined with data.

7.3 DC Applications
We also used applications that are not always network bound
to evaluate Loom. We show that Loom addresses the prob-
lems associated with using multiqueue NICs demonstrated in
in Section 2. We omit most graphs due to lack of space.

Memcached rate limit. First, we found that despite using
multiple queues, Loom can accurately rate-limit memcached
traffic to 2 Gbps in the experiment from Figure 2.

Equal shares. When two Spark jobs are active (cf. Fig-
ure 3), Loom is able to fairly schedule traffic from the com-
peting jobs, even as different flows start and stop. In contrast,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 43

MQ and QPF lead to job-level unfairness. SQ provides the
same fairness as Loom, but is not able to drive line rate.

Priority. We evaluated Loom’s ability to prioritize flows
from one Spark job over those of another. We find that Loom
can enforce this policy while MQ cannot. With Loom, the
average and 90th percentile job completion times for the high-
priority Job are 51.8s and 59.2s, respectively. In contrast, with
MQ, the average and 90th percentile job completion times are
69.38s and 151.6s, respectively.

Multi-workload priority. We conducted an experiment
where a single tenant is running two multi-threaded and multi-
process applications with different performance requirements
(memcached and Spark). The policy is that all of the traffic
from memcached should have strict priority over that from
Spark. We measure the impact that traffic from Spark has
on memcached latency by examining the 90th percentile la-
tency each 1 second interval. Both SQ and Loom isolate
memcached from the Spark job, but MQ and QPF have 2.5X
worse latencies in at least 25% of the intervals. Thus, even
though each application thread has its own core in MQ and
each flow has its own queue in QPF, neither is able to en-
sure that memcached response times are not impacted by a
competing Spark job.

Hierarchical policy. Figure 13 shows that Loom can en-
force hierarchical policies that cannot be enforced by DCB.
In this experiment, tenants T1 and T2 are allocated equal
shares of bandwidth. Tenant T1 runs memcached and Spark
with the local policy that memcached has strict priority over
Spark. Tenant T2 only runs Spark. 1’s memcached latency
should not be impacted by T1’s Spark job, and each tenant
should receive at most their fair share of throughput when
they are both active. Figure 13a plots per-tenant unfairness,
and Figure 13b plots the 90th percentile memcached request
latency in each one second interval during the experiment.
These figures show that Loom provides both isolation and
fairness, while MQ and QPF cannot.

8 Related Work
SENIC [43] is related to Loom because it provides each flow
with its own transmit descriptor queue and uses a doorbell
FIFO to notify the NIC of new segments. However, SENIC
only provides a single shared doorbell FIFO that requires
synchronization across multiple cores. Further, SENIC writes
individual 16B queue updates, and SENIC does not support
programmable policies.

The ConnectX-4 [35] (CX-4) NIC is also similar to Loom.
It supports many hundreds of thousands of descriptor queues
and uses per-CPU registers for doorbell updates. However,
individual doorbells and configuration updates need to be
written to the NIC one at a time. The CX-4 also does not
support hierarchical or programmable policies.

Titan [57] and MQFQ [26] can both improve fairness on
multiqueue NICs. However, neither can enforce traffic priori-
ties or hierarchical policies, and Titan incurs high scheduling

update overheads with dynamic workloads.
Carousel [48] and PSPAT [46] both use multiple dedicated

CPU cores to onload packet scheduling. However, both ap-
proaches still need to use multiple independent cores to drive
100 Gbps line-rates. Although they both use as few cores
as possible, this does not solve the problems associated with
multiqueue NICs. Further, Carousel can only express rate-
limits, and, while PSPAT can express the same policies as
Qdisc, it is still not able to express some policies that use
per-destination rate-limits.

Like PSPAT [46], Neugebauer et. al [40] also benchmark
PCIe performance. They find that PCIe can significantly
impact the performance of end host networking. Both of these
projects motivate the need for an efficient OS/NIC interface.

Eiffel [49] improves the efficiency of software packet
scheduling, and, like Loom, Eiffel also addresses some short-
comings of PIFOs. Eiffel and Loom are complementary.
Eiffel would benefit from Loom if it is ever not able to drive
line-rate with a single core, and Eiffel can be used to enforce
Loom policy sub-trees in software.

FlexNIC [31] introduces new interface for receiving pack-
ets on a programmable NIC. Loom’s focus on packet trans-
mission makes it complementary to FlexNIC.

Silo [29] also finds that multiqueue NICs prevent per-
destination rate-limits from being enforced. However, Silo
cannot ensure that competing applications share NIC band-
width according to a high-level policy and has difficulty driv-
ing high line-rates because it only uses a single NIC queue.

9 Conclusions
DCs need to enforce a high-level hierarchical network policy.
However, with today’s multiqueue NICs, this is not possi-
ble. To address this deficiency, we created Loom, a new NIC
design that moves all per-flow scheduling decisions out of
the OS and into the NIC. Loom contributes 1) a new policy
DAG abstraction that can express per-destination rate-limits
independent of scheduling traffic classes, 2) a new flexible
programmable scheduling hierarchy designed for NICs, and
3) a new expressive and efficient OS/NIC interface. Together,
these aspects enable Loom to completely offload all packet
scheduling to the NIC with low CPU overhead while still
driving increasing line-rates (100Gbps). For collocated ten-
ants’ applications, these benefits translate into reductions in
latency, increases in throughput, and improvements in fairness
for competing tenants and applications.
Acknowledgments: We would like to thank the anonymous
reviewers and our shepherd Alex C. Snoeren for their thought-
ful feedback. Brent Stephens, Aditya Akella, and Michael
Swift are supported in part by the NSF grant CNS-1717039.

References
[1] BESS: Berkeley Extensible Software Switch. https://github.

com/NetSys/bess.

44 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/NetSys/bess
https://github.com/NetSys/bess

[2] Bulk network packet transmission. https://lwn.net/
Articles/615238/.

[3] Intel ethernet switch fm10000 datasheet. https://www.intel.
com/content/dam/www/public/us/en/documents/
datasheets/ethernet-multi-host-controller-
fm10000-family-datasheet.pdf.

[4] iperf3: Documentation. http://software.es.net/iperf/.

[5] pifo-compiler: Compiler for packet scheduling programs. https:
//github.com/programmable-scheduling/pifo-
compiler.

[6] pifo-machine: C++ reference implementation for push-in
first-out queue. https://github.com/programmable-
scheduling/pifo-machine.

[7] qdisc: bulk dequeue support. https://lwn.net/Articles/
615240/.

[8] sockperf: Network benchmarking utility. https://github.com/
Mellanox/sockperf.

[9] xps: Transmit packet steering. https://lwn.net/Articles/
412062/.

[10] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROWSTRON, A.
Towards predictable datacenter networks. In SIGCOMM (2011).

[11] BALLANI, H., JANG, K., KARAGIANNIS, T., KIM, C., GUNAWAR-
DENA, D., AND O’SHEA, G. Chatty tenants and the cloud network
sharing problem. In NSDI (2013).

[12] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN,
N., IZZARD, M., MUJICA, F. A., AND HOROWITZ, M. Forward-
ing metamorphosis: fast programmable match-action processing in
hardware for SDN. In SIGCOMM (2013).

[13] CAVIUM CORPORATION. Cavium CN63XX-NIC10E. http:
//cavium.com/Intelligent_Network_Adapters_
CN63XX_NIC10E.html.

[14] CAVIUM CORPORATION. Cavium LiquidIO. http:
//www.cavium.com/pdfFiles/LiquidIO_Server_
Adapters_PB_Rev1.2.pdf.

[15] CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A., VARGAFTIK,
S., BERGER, A., MENDELSON, G., ALIZADEH, M., CHUANG, S.-T.,
KESLASSY, I., ORDA, A., AND EDSALL, T. dRMT: Disaggregated
programmable switching. In SIGCOMM (2017).

[16] CHOWDHURY, M., AND STOICA, I. Coflow: A networking abstraction
for cluster applications. In HotNets (2012).

[17] CHOWDHURY, M., AND STOICA, I. Efficient coflow scheduling
without prior knowledge. In SIGCOMM (2015).

[18] CHOWDHURY, M., ZAHARIA, M., MA, J., JORDAN, M. I., AND
STOICA, I. Managing data transfers in computer clusters with orchestra.
In SIGCOMM (2011), ACM.

[19] CHOWDHURY, M., ZHONG, Y., AND STOICA, I. Efficient coflow
scheduling with Varys. In SIGCOMM (2014).

[20] Cloudlab. http://cloudlab.us/.

[21] DATA CENTER BRIDGING TASK GROUP. http://www.ieee802.
org/1/pages/dcbridges.html.

[22] EXABLAZE. ExaNIC V5P. https://exablaze.com/
/exanic-v5p.

[23] FLAJSLIK, M., AND ROSENBLUM, M. Network interface design for
low latency request-response protocols. In USENIX ATC (2013).

[24] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ,
D., LIU, Z., WANG, V., PANG, B., CHEN, H., LIN, Z.-W., AND
KURIEN, V. Pingmesh: A large-scale system for data center network
latency measurement and analysis. In SIGCOMM (2015).

[25] HAN, S., JANG, K., PANDA, A., PALKAR, S., HAN, D., AND RAT-
NASAMY, S. SoftNIC: A software NIC to augment hardware. Tech.
Rep. UCB/EECS-2015-155, EECS Department, University of Califor-
nia, Berkeley, May 2015. http://www.eecs.berkeley.edu/
Pubs/TechRpts/2015/EECS-2015-155.html.

[26] HEDAYATI, M., SCOTT, M. L., SHEN, K., , AND MARTY, M.
Multi-queue fair queuing. Tech. Rep. UR CSD / 1005, Depart-
ment of Computer Science, University of Rochester, October 2018.
http://hdl.handle.net/1802/34380.

[27] INTEL. Intel 82599 10 GbE controller datasheet. http:
//www.intel.com/content/dam/www/public/us/en/
documents/datasheets/82599-10-gbe-controller-
datasheet.pdf.

[28] Intel Data Plane Development Kit. http://dpdk.org.

[29] JANG, K., SHERRY, J., BALLANI, H., AND MONCASTER, T. Silo:
Predictable message latency in the cloud. In SIGCOMM (2015).

[30] JEYAKUMAR, V., ALIZADEH, M., MAZIERES, D., PRABHAKAR, B.,
KIM, C., AND GREENBERG, A. EyeQ: Practical network performance
isolation at the edge. In NSDI (2013).

[31] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND
KRISHNAMURTHY, A. High performance packet processing with
FlexNIC. In ASPLOS (2016).

[32] KUMAR, A., JAIN, S., NAIK, U., KASINADHUNI, N., ZERMENO,
E. C., GUNN, C. S., AI, J., CARLIN, B., AMARANDEI-STAVILA,
M., ROBIN, M., SIGANPORIA, A., STUART, S., AND VAHDAT, A.
BwE: Flexible, hierarchical bandwidth allocation for WAN distributed
computing. In SIGCOMM (2015).

[33] LI, J., MICHAEL, E., SHARMA, N. K., SZEKERES, A., AND PORTS,
D. R. K. Just say NO to paxos overhead: Replacing consensus with
network ordering. In OSDI (2016).

[34] LO, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN, P., AND
KOZYRAKIS, C. Heracles: Improving resource efficiency at scale. In
ISCA (2015).

[35] MELLANOX TECHNOLOGIES. ConnectX-4 VPI. http:
//www.mellanox.com/related-docs/prod_adapter_
cards/PB_ConnectX-4_VPI_Card.pdf.

[36] MELLANOX TECHNOLOGIES. Innova - 2 Flex Programmable
Network Adapter. http://www.mellanox.com/related-
docs/prod_adapter_cards/PB_Innova-2_Flex.pdf.

[37] MELLANOX TECHNOLOGIES. Mellanox BlueField Smart-
NIC. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_BlueField_Smart_NIC.pdf.

[38] MITTAL, R., AGARWAL, R., RATNASAMY, S., AND SHENKER, S.
Universal packet scheduling. In NSDI (2016).

[39] NETRONOME. NFP-6xxx flow processor. https://netronome.
com/product/nfp-6xxx/.

[40] NEUGEBAUER, R., ANTICHI, G., ZAZO, J. F., AUDZEVICH, Y.,
LÓPEZ-BUEDO, S., AND MOORE, A. W. Understanding PCIe perfor-
mance for end host networking. In SIGCOMM (2018).

[41] POPA, L., KUMAR, G., CHOWDHURY, M., KRISHNAMURTHY, A.,
RATNASAMY, S., AND STOICA, I. FairCloud: Sharing the network in
cloud computing. In SIGCOMM (2012).

[42] QIU, Z., STEIN, C., AND ZHONG, Y. Minimizing the total weighted
completion time of coflows in datacenter networks. In SPAA (2015).

[43] RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR, V., KABBANI, A.,
PORTER, G., AND VAHDAT, A. SENIC: Scalable NIC for end-host
rate limiting. In NSDI (2014).

[44] RAGHAVAN, B., VISHWANATH, K., RAMABHADRAN, S., YOCUM,
K., AND SNOEREN, A. C. Cloud control with distributed rate limiting.
In SIGCOMM (2007).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 45

https://lwn.net/Articles/615238/
https://lwn.net/Articles/615238/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
http://software.es.net/iperf/
https://github.com/programmable-scheduling/pifo-compiler
https://github.com/programmable-scheduling/pifo-compiler
https://github.com/programmable-scheduling/pifo-compiler
https://github.com/programmable-scheduling/pifo-machine
https://github.com/programmable-scheduling/pifo-machine
https://lwn.net/Articles/615240/
https://lwn.net/Articles/615240/
https://github.com/Mellanox/sockperf
https://github.com/Mellanox/sockperf
https://lwn.net/Articles/412062/
https://lwn.net/Articles/412062/
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://cloudlab.us/
http://www.ieee802.org/1/pages/dcbridges.html
http://www.ieee802.org/1/pages/dcbridges.html
https://exablaze.com//exanic-v5p
https://exablaze.com//exanic-v5p
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://hdl.handle.net/1802/34380
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://dpdk.org
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://netronome.com/product/nfp-6xxx/
https://netronome.com/product/nfp-6xxx/

[45] RIZZO, L. netmap: A novel framework for fast packet I/O. In USENIX
ATC (2012).

[46] RIZZO, L., VALENTE, P., LETTIERI, G., AND MAFFIONE, V. PSPAT:
Software packet scheduling at hardware speed. http://info.iet.
unipi.it/˜luigi/pspat/. Preprint; accessed May 31 2017.

[47] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN, A. C.
Inside the social network’s (datacenter) network. In SIGCOMM (2015).

[48] SAEED, A., DUKKIPATI, N., VALANCIUS, V., LAM, T., CON-
TAVALLI, C., AND VAHDAT, A. Carousel: Scalable traffic shaping at
end-hosts. In SIGCOMM (2017).

[49] SAEED, A., ZHAO, Y., DUKKIPATI, N., AMMAR, M., ZEGUR, E.,
A KHALED HARRAS, AND VAHDAT, A. Eiffel: Efficient and flexible
software packet scheduling. In NSDI (2019).

[50] SHIEH, A., KANDULA, S., GREENBERG, A., AND KIM, C. Sharing
the data center network. In NSDI (2011).

[51] SHINDE, P., KAUFMANN, A., KOURTIS, K., AND ROSCOE, T. Mod-
eling NICs with Unicorn. In PLOS (2013).

[52] SHINDE, P., KAUFMANN, A., ROSCOE, T., AND KAESTLE, S. We
need to talk about NICs. In HotOS (2013).

[53] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queueing using
deficit round robin. In SIGCOMM (1995).

[54] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD,
A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., KANAGALA, A., PROVOST, J., SIMMONS, J., TANDA, E.,
WANDERER, J., HÖLZLE, U., STUART, S., AND VAHDAT, A. Jupiter
rising: A decade of clos topologies and centralized control in Google’s
datacenter network. In SIGCOMM (2015).

[55] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C., ALIZADEH,
M., BALAKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND
LICKING, S. Packet transactions: High-level programming for line-rate
switches. In SIGCOMM (2016).

[56] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable packet scheduling at
line rate. In SIGCOMM (2016).

[57] STEPHENS, B., SINGHVI, A., AKELLA, A., AND SWIFT, M. Titan:
Fair packet scheduling for commodity multiqueue NICs. In USENIX
ATC (2017).

[58] TILERA. Tile Processor Architecture Overview For the TILE-
GX Series. http://www.mellanox.com/repository/
solutions/tile-scm/docs/UG130-ArchOverview-
TILE-Gx.pdf.

[59] ZHAO, Y., CHEN, K., BAI, W., TIAN, C., GENG, Y., ZHANG, Y., LI,
D., AND WANG, S. RAPIER: Integrating routing and scheduling for
coflow-aware data center networks. In INFOCOM (2015).

46 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://info.iet.unipi.it/~luigi/pspat/
http://info.iet.unipi.it/~luigi/pspat/
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf

Exploiting Commutativity For Practical Fast Replication

Seo Jin Park
Stanford University

John Ousterhout
Stanford University

Abstract
Traditional approaches to replication require client requests
to be ordered before making them durable by copying them to
replicas. As a result, clients must wait for two round-trip times
(RTTs) before updates complete. In this paper, we show that
this entanglement of ordering and durability is unnecessary
for strong consistency. The Consistent Unordered Replica-
tion Protocol (CURP) allows clients to replicate requests that
have not yet been ordered, as long as they are commutative.
This strategy allows most operations to complete in 1 RTT
(the same as an unreplicated system). We implemented
CURP in the Redis and RAMCloud storage systems. In
RAMCloud, CURP improved write latency by ∼2x (14 µs
→ 7.1 µs) and write throughput by 4x. Compared to un-
replicated RAMCloud, CURP’s latency overhead for 3-way
replication is just 1 µs (6.1 µs vs 7.1 µs). CURP transformed
a non-durable Redis cache into a consistent and durable
storage system with only a small performance overhead.

1 Introduction
Fault-tolerant systems rely on replication to mask individ-

ual failures. To ensure that an operation is durable, it cannot
be considered complete until it has been properly replicated.
Replication introduces a significant overhead because it
requires round-trip communication to one or more additional
servers. Within a datacenter, replication can easily double
the latency for operations in comparison to an unreplicated
system; in geo-replicated environments the cost of replication
can be even greater.

In principle, the cost of replication could be reduced or
eliminated if replication could be overlapped with the execu-
tion of the operation. In practice, however, this is difficult to
do. Executing an operation typically establishes an ordering
between that operation and other concurrent operations, and
the order must survive crashes if the system is to provide
consistent behavior. If replication happens in parallel with
execution, different replicas may record different orders for
the operations, which can result in inconsistent behavior
after crashes. As a result, most systems perform ordering
before replication: a client first sends an operation to a server
that orders the operation (and usually executes it as well);
then that server issues replication requests to other servers,
ensuring a consistent ordering among replicas. As a result,
the minimum latency for an operation is two round-trip
times (RTTs). This problem affects all systems that provide
consistency and replication, including both primary-backup
approaches and consensus approaches.

Consistent Unordered Replication Protocol (CURP) re-
duces the overhead for replication by taking advantage of the
fact that most operations are commutative, so their order of ex-
ecution doesn’t matter. CURP supplements a system’s exist-
ing replication mechanism with a lightweight form of replica-
tion without ordering based on witnesses. A client replicates
each operation to one or more witnesses in parallel with send-
ing the request to the primary server; the primary can then ex-
ecute the operation and return to the client without waiting for
normal replication, which happens asynchronously. This al-
lows operations to complete in 1 RTT, as long as all witnessed-
but-not-yet-replicated operations are commutative. Non-
commutative operations still require 2 RTTs. If the primary
crashes, information from witnesses is combined with that
from the normal replicas to re-create a consistent server state.

CURP can be easily applied to most existing systems
using primary-backup replication. Changes required by
CURP are not intrusive, and it works with any kind of backup
mechanism (e.g. state machine replication [31], file writes to
network replicated drives [1], or scattered replication [26]).
This is important since most high-performance systems
optimize their backup mechanisms, and we don’t want to lose
those optimizations (e.g. CURP can be used with RAMCloud
without sacrificing its fast crash recovery [26]).

To show its performance benefits and applicability, we
implemented CURP in two NoSQL storage systems: Re-
dis [30] and RAMCloud [27]. Redis is generally used as
a non-durable cache due to its very expensive durability
mechanism. By applying CURP to Redis, we were able to
provide durability and consistency with similar performance
to the non-durable Redis. For RAMCloud, CURP reduced
write latency by half (only a 1 µs penalty relative to RAM-
Cloud without replication) and increased throughput by 3.8x
without compromising consistency.

Overall, CURP is the first replication protocol that com-
pletes linearizable deterministic update operations within
1 RTT without special networking. Instead of relying
on special network devices or properties for fast replica-
tion [21, 28, 22, 12, 3], CURP exploits commutativity, and it
can be used for any system where commutativity of client re-
quests can be checked just from operation parameters (CURP
cannot use state-dependent commutativity). Even when
compared to Speculative Paxos or NOPaxos (which require
a special network topology and special network switches),
CURP is faster since client request packets do not need to de-
tour to get ordered by a networking device (NOPaxos has an
overhead of 16µs, but CURP only increased latency by 1µs).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 47

2 Separating Durability from Ordering
Replication protocols supporting concurrent clients have

combined the job of ordering client requests consistently
among replicas and the job of ensuring the durability of
operations. This entanglement causes update operations to
take 2 RTTs.

Replication protocols must typically guarantee the
following two properties:
• Consistent Ordering: if a replica completes operation a

before b, no client in the system should see the effects of
b without the effects of a.
• Durability: once its completion has been externalized

to an application, an executed operation must survive
crashes.

To achieve both consistent ordering and durability, current
replication protocols need 2 RTTs. For example, in master-
backup (a.k.a. primary-backup) replication, client requests
are always routed to a master replica, which serializes
requests from different clients. As part of executing an
operation, the master replicates either the client request itself
or the result of the execution to backup replicas; then the
master responds back to clients. This entire process takes 2
RTTs total: 1 from clients to masters and another RTT for
masters to replicate data to backups in parallel.

Consensus protocols with strong leaders (e.g. Multi-
Paxos [17] or Raft [25]) also require 2 RTTs for update
operations. Clients route their requests to the current leader
replica, which serializes the requests into its operation log.
To ensure durability and consistent ordering of the client
requests, the leader replicates its operation log to a majority
of replicas, and then it executes the operation and replies
back to clients with the results. In consequence, consensus
protocols with strong leaders also require 2 RTTs for updates:
1 RTT from clients to leaders and another RTT for leaders to
replicate the operation log to other replicas.

Fast Paxos [19] and Generalized Paxos [18] reduced the
latency of replicated updates from 2 RTTs to 1.5 RTT by
allowing clients to optimistically replicate requests with
presumed ordering. Although their leaders don’t serialize
client requests by themselves, leaders must still wait for a
majority of replicas to durably agree on the ordering of the
requests before executing them. This extra waiting adds 0.5
RTT overhead. (See §B.3 for a detailed explanation on why
they cannot achieve 1 RTT.)

Network-Ordered Paxos [21] and Speculative Paxos [28]
achieve near 1 RTT latency for updates by using special net-
working to ensure that all replicas receive requests in the same
order. However, since they require special networking hard-
ware, it is difficult to deploy them in practice. Also, they can’t
achieve the minimum possible latency since client requests
detour to a common root-layer switch (or a middlebox).

The key idea of CURP is to separate durability and
consistent ordering, so update operations can be done in 1
RTT in the normal case. Instead of replicating totally ordered

Figure 1: CURP clients directly replicate to witnesses. Witnesses
only guarantee durability without ordering. Backups hold data that
includes ordering information. Witnesses are temporary storage to ensure
durability until operations are replicated to backups.

operations in 2 RTTs, CURP achieves durability without
ordering and uses the commutativity of operations to defer
agreement on operation order.

To achieve durability in 1 RTT, CURP clients directly
record their requests in temporary storage, called a witness,
without serializing them through masters. As shown in Fig-
ure 1, witnesses do not carry ordering information, so clients
can directly record operations into witnesses in parallel with
sending operations to masters so that all requests will finish in
1 RTT. In addition to the unordered replication to witnesses,
masters still replicate ordered data to backups, but do so
asynchronously after sending the execution results back to the
clients. Since clients directly make their operations durable
through witnesses, masters can reply to clients as soon as
they execute the operations without waiting for permanent
replication to backups. If a master crashes, the client requests
recorded in witnesses are replayed to recover any operations
that were not replicated to backups. A client can then
complete an update operation and reveal the result returned
from the master if it successfully recorded the request in
witnesses (optimistic fast path: 1 RTT), or after waiting for
the master to replicate to backups (slow path: 2 RTT).

CURP’s approach introduces two threats to consistency:
ordering and duplication. The first problem is that the order
in which requests are replayed after a server crash may not
match the order in which the master processed those requests.
CURP uses commutativity to solve this problem: all of the
unsynced requests (those that a client considers complete,
but which have not been replicated to backups) must be com-
mutative. Given this restriction, the order of replay will have
no visible impact on system behavior. Specifically, a witness
only accepts and saves an operation if it is commutative with
every other operation currently stored by that witness (e.g.,
writes to different objects). In addition, a master will only
execute client operations speculatively (by responding before
replication is complete), if that operation is commutative with
every other unsynced operation. If either a witness or master
finds that a new operation is not commutative, the client must
ask the master to sync with backups. This adds an extra RTT
of latency, but it flushes all of the speculative operations.

The second problem introduced by CURP is duplication.

48 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

When a master crashes, it may have completed the replication
of one or more operations that are recorded by witnesses. Any
completed operations will be re-executed during replay from
witnesses. Thus there must be a mechanism to detect and
filter out these re-executions. The problem of re-executions is
not unique to CURP, and it can happen in distributed systems
for a variety of other reasons. There exist mechanisms to
filter out duplicate executions, such as RIFL [20], and they
can be applied to CURP as well.

We can apply the idea of separating ordering and durability
to both consensus-based replicated state machines (RSM) and
primary-backup, but this paper focuses on primary-backup
since it is more critical for application performance. Fault-
tolerant large-scale high-performance systems are mostly
configured with a single cluster coordinator replicated by
consensus and many data servers using primary-backup (e.g.
Chubby [6], ZooKeeper [15], Raft [25] are used for cluster
coordinators in GFS [13], HDFS [32], and RAMCloud [27]).
The cluster coordinators are used to prevent split-brains for
data servers, and operations to the cluster coordinators (e.g.
change of master node during recovery) are infrequent and
less latency sensitive. On the other hand, operations to data
servers (e.g. insert, replace, etc) directly impact application
performance, so the rest of this paper will focus on the CURP
protocol for primary-backup, which is the main replication
technique for data servers. In §B.2, we sketch how the same
technique can be applied for consensus.

3 CURP Protocol
CURP is a new replication protocol that allows clients

to complete linearizable updates within 1 RTT. Masters in
CURP speculatively execute and respond to clients before
the replication to backups has completed. To ensure the
durability of the speculatively completed updates, clients
multicast update operations to witnesses. To preserve
linearizability, witnesses and masters enforce commutativity
among operations that are not fully replicated to backups.
3.1 Architecture and Model

CURP provides the same guarantee as current primary-
backup protocols: it provides linearizability to client requests
in spite of failures. CURP assumes a fail-stop model and does
not handle byzantine faults. As in typical primary-backup
replications, it uses a total of f + 1 replicas composed of 1
master and f backups, where f is the number of replicas that
can fail without loss of availability. In addition to that, it
uses f witnesses to ensure durability of updates even before
replications to backups are completed. As shown in Figure 2,
witnesses may fail independently and may be co-hosted
with backups. CURP remains available (i.e. immediately
recoverable) despite up to f failures, but will still be strongly
consistent even if all replicas fail.

Throughout the paper, we assume that witnesses are
separate from backups. This allows CURP to be applied to
a wide range of existing replicated systems without modi-

Figure 2: CURP architecture for f =3 fault tolerance.

fying their specialized backup mechanisms. For example,
CURP can be applied to a system which uses file writes to
network replicated drives as a backup mechanism, where
the use of witnesses will improve latency while retaining its
special backup mechanism. However, when designing new
systems, witnesses may be combined with backups for extra
performance benefits. (See §B.1 for details.)

CURP makes no assumptions about the network. It
operates correctly even with networks that are asynchronous
(no bound on message delay) and unreliable (messages
can be dropped). Thus, it can achieve 1 RTT updates on
replicated systems in any environment, unlike other alter-
native solutions. (For example, Speculative Paxos [28] and
Network-Ordered Paxos [21] require special networking
hardware and cannot be used for geo-replication.)
3.2 Normal Operation
3.2.1 Client

Client interaction with masters is generally the same as it
would be without CURP. Clients send update RPC requests
to masters. If a client cannot receive a response, it retries the
update RPC. If the master crashes, the client may retry the
RPC with a different server.

For 1 RTT updates, masters return to clients before replica-
tion to backups. To ensure durability, clients directly record
their requests to witnesses concurrently while waiting for
responses from masters. Once all f witnesses have accepted
the requests, clients are assured that the requests will survive
master crashes, so clients complete the operations with the
results returned from masters.

If a client cannot record in all f witnesses (due to failures or
rejections by witnesses), the client cannot complete an update
operation in 1 RTT. To ensure the durability of the operation,
the client must wait for replication to backups by sending
a sync RPC to the master. Upon receiving sync RPCs, the
master ensures the operation is replicated to backups before
returning to the client. This waiting for sync increases the
operation latency to 2 RTTs in most cases and up to 3 RTT in
the worst case where the master hasn’t started syncing until it
receives a sync RPC from a client. If there is no response to
the sync RPC (indicating the master might have crashed), the
client restarts the entire process; it resends the update RPC to
a new master and tries to record the RPC request in witnesses
of the new master.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 49

3.2.2 Witness
Witnesses support 3 basic operations: they record opera-

tions in response to client requests, hold the operations until
explicitly told to drop by masters, and provide the saved
operations during recovery.

Once a witness accepts a record RPC for an operation, it
guarantees the durability of the operation until told that the
operation is safe to drop. To be safe from power failures,
witnesses store their data in non-volatile memory (such as
flash-backed DRAM). This is feasible since a witness needs
only a small amount of space to temporarily hold recent client
requests. Similar techniques are used in strongly-consistent
low-latency storage systems, such as RAMCloud [27].

A witness accepts a new record RPC from a client only
if the new operation is commutative with all operations that
are currently saved in the witness. If the new request doesn’t
commute with one of the existing requests, the witness must
reject the record RPC since the witness has no way to order
the two noncommutative operations consistent with the
execution order in masters. For example, if a witness already
accepted “x←1”, it cannot accept “x←5”.

Witnesses must be able to determine whether operations are
commutative or not just from the operation parameters. For
example, in key-value stores, witnesses can exploit the fact
that operations on different keys are commutative. In some
cases, it is difficult to determine whether two operations com-
mute each other. SQL UPDATE is an example; it is impos-
sible to determine the commutativity of “UPDATE T SET
rate = 40 WHERE level = 3” and “UPDATE T SET
rate = rate + 10 WHERE dept = SDE” just from
the requests themselves. To determine the commutativity of
the two updates, we must run them with real data. Thus, wit-
nesses cannot be used for operations whose commutativity
depends on the system state. In addition to the case explained,
determining commutativity can be more subtle for complex
systems, such as DBMS with triggers and views.

Each of f witnesses operates independently; witnesses
need not agree on either ordering or durability of operations.
In an asynchronous network, record RPCs may arrive at
witnesses in different order, which can cause witnesses to
accept and reject different sets of operations. However, this
does not endanger consistency. First, as mentioned in §3.2.1,
a client can proceed without waiting for sync to backups
only if all f witnesses accepted its record RPCs. Second,
requests in each witness are required to be commutative
independently, and only one witness is selected and used
during recovery (described in §3.3).
3.2.3 Master

The role of masters in CURP is similar to their role in
traditional primary-backup replications. Masters in CURP
receive, serialize, and execute all update RPC requests from
clients. If an executed operation updates the system state, the
master synchronizes (syncs) its current state with backups by
replicating the updated value or the log of ordered operations.

Figure 3: Sequence of executed operations in the crashed master.

Unlike traditional primary-backup replication, masters
in CURP generally respond back to clients before syncing
to backups, so that clients can receive the results of update
RPCs within 1 RTT. We call this speculative execution since
the execution may be lost if masters crash. Also, we call
the operations that were speculatively executed but not yet
replicated to backups unsynced operations. As shown in
Figure 3, all unsynced operations are contiguous at the tail of
the masters’ execution history.

To prevent inconsistency, a master must sync before
responding if the operation is not commutative with any
existing unsynced operations. If a master responds for a non-
commutative operation before syncing, the result returned to
the client may become inconsistent if the master crashes. This
is because the later operation might complete and its result
could be externalized (because it was recorded to witnesses)
while the earlier operation might not survive the crash
(because, for example, its client crashed before recording it
to witnesses). For example, if a master speculatively executes
“x← 2” and “read x”, the returned read value, 2, will not be
valid if the master crashes and loses “x←2”. To prevent such
unsafe dependencies, masters enforce commutativity among
unsynced operations; this ensures that all results returned to
clients will be valid as long as they are recorded in witnesses.

If an operation is synced because of a conflict, the master
tags its result as “synced” in the response; so, even if the
witnesses rejected the operation, the client doesn’t need to
send a sync RPC and can complete the operation in 2 RTTs.
3.3 Recovery

CURP recovers from a master’s crash in two phases: (1)
restoration from backups and (2) replay from witnesses.
First, the new master restores data from one of the backups,
using the same mechanism it would have used in the absence
of CURP.

Once all data from backups have been restored, the new
master replays the requests recorded in witnesses. The new
master picks any available witness. If none of the f witnesses
are reachable, the new master must wait. After picking
the witness to recover from, the new master first asks it to
stop accepting more operations; this prevents clients from
erroneously completing update operations after recording
them in a stale witness whose requests will not be retried
anymore. After making the selected witness immutable, the
new master retrieves the requests recorded in the witness.
Since all requests in a single witness are guaranteed to be
commutative, the new master can execute them in any order.
After replaying all requests recorded in the selected witness,
the new master finalizes the recovery by syncing to backups
and resetting witnesses for the new master (or assigning a new
set of witnesses). Then the new master can start accepting

50 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

client requests again.
Some of the requests in the selected witness may have been

executed and replicated to backups before the master crashed,
so the replay of such requests will result in re-execution of
already executed operations. Duplicate executions of the
requests can violate linearizability [20].

To avoid duplicate executions of the requests that are
already replicated to backups, CURP relies on exactly-once
semantics provided by RIFL [20], which detects already
executed client requests and avoids their re-execution. Such
mechanisms for exactly-once semantics are already neces-
sary to achieve linearizability for distributed systems [20],
so CURP does not introduce a new requirement. In RIFL,
clients assign a unique ID to each RPC; servers save the IDs
and results of completed requests and use them to detect and
answer duplicate requests. The IDs and results are durably
preserved with updated objects in an atomic fashion. (If a
system replicates client requests to backups instead of just
updated values, providing atomic durability becomes trivial
since each request already contains its ID and its result can be
obtained from its replay during recovery.)

This recovery protocol together with the normal operation
protocol described in §3.2 guarantee linearizability of client
operations even with server failures. An informal proof of
correctness can be found in appendix §A.
3.4 Garbage Collection

To limit memory usage in witnesses and reduce possible
rejections due to commutativity violations, witnesses must
discard requests as soon as possible. Witnesses can drop the
recorded client requests after masters make their outcomes
durable in backups. In CURP, masters send garbage collec-
tion RPCs for the synced updates to their witnesses. The
garbage collection RPCs are batched: each RPC lists several
operations that are now durable (using RPC IDs provided by
RIFL [20]).
3.5 Reconfigurations

This section discusses three cases of reconfiguration:
recovery of a crashed backup, recovery of a crashed witness,
and data migration for load balancing. First, CURP doesn’t
change the way to handle backup failures, so a system can
just recover a failed backup as it would without CURP.

Second, if a witness crashes or becomes non-responsive,
the system configuration manager (the owner of all cluster
configurations) decommissions the crashed witness and
assigns a new witness for the master; then it notifies the
master of the new witness list. When the master receives the
notification, it syncs to backups to ensure f -fault tolerance
and responds back to the configuration manager that it is now
safe to recover from the new witness. After this point, clients
can use f witnesses again to record operations. However,
CURP does not push the new list of witnesses to clients. Since
clients cache the list of witnesses, clients may still use the
decommissioned witness (if it was temporarily disconnected,
the witness will continue to accept record RPCs from clients).

This endangers consistency since requests recorded in the old
witnesses will not be replayed during recovery.

To prevent clients from completing an unsynced update op-
eration with just recording to old witnesses, CURP maintains
a monotonically increasing integer, WitnessListVersion, for
each master. A master’s WitnessListVersion is incremented
every time the witness configuration for the master is updated,
and the master is notified of the new version along with the
new witness list. Clients obtain the WitnessListVersion when
they fetch the witness list from the configuration manager. On
all update requests, clients include the WitnessListVersion,
so that masters can detect and return errors if the clients used
wrong witnesses; if they receive errors, the clients fetch new
witness lists and retry the updates. This ensures that clients’
update operations can never complete without syncing to
backups or recording to current witnesses.

Third, for load balancing, a master can split its data into
two partitions and migrate a partition to a different master.
Migrations usually happen in two steps: a prepare step
of copying data while servicing requests and a final step
which stops servicing (to ensure that all recent operations are
copied) and changes configuration. To simplify the protocol
changes from the base primary-backup protocol, CURP
masters sync to backups and reset witnesses before the final
step of migration, so witnesses are completely ruled out of
migration protocols. After the migration is completed, some
clients may send updates on the migrated partition to the old
master and old witnesses; the old master will reject and tell
the client to fetch the new master information (this is the same
as without CURP); then the client will fetch the new master
and its witness information and retry the update. Meanwhile,
the requests on the migrated partition can be accidentally
recorded in the old witness, but this does not cause safety
issues; masters will ignore such requests during the replay
phase of recovery by the filtering mechanism used to reject
requests on not owned partitions during normal operations.
3.6 Read Operations

CURP handles read operations in a fashion similar to that
of primary-backup replication. Since such operations don’t
modify system state, clients can directly read from masters,
and neither clients nor masters replicate read-only operations
to witnesses or backups.

However, even for read operations, a master must check
whether a read operation commutes with all currently
unsynced operations as discussed in §3.2.3. If the read
operation conflicts with some unsynced update operations,
the master must sync the unsynced updates to backups before
responding for the read.
3.7 Consistent Reads from Backups

In primary-backup replication, clients normally issue
all read operations to the master. However, some systems
allow reading from backups because it reduces the load on
masters and can provide better latency in a geo-replicated
environment (clients can read from a backup in the same

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 51

Figure 4: Three cases of reading the value of x from a backup replica
while another client is changing the value of x from 0 to 1: (a) client R first
confirms that a nearby witness has no request that is not commutative with
“read x,” so the client directly reads the value of x from a nearby backup.
(b) Just after client W completes “x ← 1”, client R starts another read.
Client R finds that there is a non-commutative request saved in a nearby
witness, so it must read from a remote master to guarantee consistency.
(c) After syncing “x ← 1” to the backup, the master garbage collected
the update request from witnesses and acknowledged the full sync to
backups. Now, client R sees no non-commutative requests in the witness
and can complete read operation by reading from the nearby backup.

region to avoid wide-area RTTs). However, naively reading
from backups can violate linearizability since updates in
CURP can complete before syncing to backups.

To avoid reading stale values, clients in CURP use a nearby
witness (possibly colocated with a backup) to check whether
the value read from a nearby backup is up to date. To perform
a consistent read, a client must first ask a witness whether the
read operation commutes with the operations currently saved
in the witness (as shown in Figure 4). If it commutes, the client
is assured that the value read from a backup will be up to date.
If it doesn’t commute (i.e. the witness retains a write request
on the key being read), the value read from a backup might be
stale. In this case, the client must read from the master.

In addition, we assume that the underlying primary-backup
replication mechanism prevents backups from returning new
values that are not yet fully synced to all backups. Such mech-
anism is neccessary even before applying CURP since return-
ing a new value prematurely can cause inconsistency; even if
a value is replicated to some of backups, the value may get lost
if the master crashes and a new master recovers from a backup
that didn’t receive the new value. A simple solution for this
problem is that backups don’t allow reading values that are not
yet fully replicated to all backups. For backups to track which
values are fully replicated and ok to be read, a master can pig-
gyback the acknowlegements for successful previous syncs
when it sends sync requests to backups. When a client tries
to read a value that is not known to be yet fully replicated, the
backup can wait for full replication or ask the client to retry.

Thanks to the safety mechanisms discussed above, CURP
still guarantees linearizability. With a concurrent update,
reading from backups could violate linearizability in two
ways: (1) a read sees the old value after the completion
of the update operation and (2) a read sees the old value

after another read returned the new value. The first issue
is prevented by checking a witness before reading from a
backup. Since clients can complete an update operation only
if it is synced to all backups or recorded in all witnesses, a
reader will either see a noncommutative update request in the
witness being checked or find the new value from the backup;
thus, it is impossible for a read after an update to return the
old value. For the second issue, since both a master and
backups delay reads of a new value until it is fully replicated
to all backups, it is impossible to read an older value after
another client reads the new value.

4 Implementation on NoSQL Storage
This section describes how to implement CURP on low-

latency NoSQL storage systems that use primary-backup
replications. With the emergence of large-scale Web ser-
vices, NoSQL storage systems became very popular (e.g.
Redis [30], RAMCloud [27], DynamoDB [33] and Mon-
goDB [7]), and they range from simple key-value stores to
more fully featured stores supporting secondary indexing and
multi-object transactions; so, improving their performance
using CURP is an important problem with a broad impact.

The most important piece missing from §3 to implement
CURP is how to efficiently detect commutativity violations.
Fortunately for NoSQL systems, CURP can use primary
keys to efficiently check the commutativity of operations.
NoSQL systems store data as a collection of objects, which
are identified by primary keys. Most update operations in
NoSQL specify the affected object with its primary key (or a
list of primary keys), and update operations are commutative
if they modify disjoint sets of objects. The rest of this section
describes an implementation of CURP that exploits this
efficient commutativity check.
4.1 Life of A Witness

Witnesses have two modes of operation: normal and
recovery. In each mode, witnesses service a subset of
operations listed in Figure 5. When it receives a start RPC,
a witness starts its life for a master in normal mode, in
which the witness is allowed to mutate its collection of saved
requests. In normal mode, the witness services record RPCs
for client requests targeted to the master for which the witness
was configured by start; by accepting only requests for the
correct master, CURP prevents clients from recording to
incorrect witnesses. Also, witnesses drop their saved client
requests as they receive gc RPCs from masters.

A witness irreversibly switches to a recovery mode once
it receives a getRecoveryData RPC. In recovery mode,
mutations on the saved requests are prohibited; witnesses
reject all record RPCs and only service getRecoveryData
or end. As a recovery is completed and the witness becomes
useless, the cluster coordinator may send end to free up the
resources, so that the witness server can start another life for
a different master.

52 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CLIENT TO WITNESS:
record(masterID, list of keyHash, rpcId, request) → {ACCEPTED or
REJECTED}

Saves the client request (with rpcId) of an update on keyHashes.
Returns whether the witness could accomodate and save the request.

MASTER TO WITNESS:
gc(list of {keyHash, rpcId})→ list of request

Drops the saved requests with the given keyHashes and rpcIds. Returns
stale requests that haven’t been garbage collected for a long time.

getRecoveryData()→ list of request
Returns all requests saved for a particular crashed master.

CLUSTER COORDINATOR TO WITNESS:
start(masterId)→ {SUCCESS or FAIL}

Start a witness instance for the given master, and return SUCCESS. If
the server fails to create the instance, FAIL is returned.

end()→ NULL
This witness is decommissioned. Destruct itself.

Figure 5: The APIs of Witnesses.

4.2 Data Structure of Witnesses
Witnesses are designed to minimize the CPU cycles spent

for handling record RPCs. For client requests mutating a
single object, recording to a witness is similar to inserting
in a set-associative cache; a record operation finds a set of
slots using a hash of the object’s primary key and writes
the given request to an available slot in the set. To enforce
commutativity, the witness searches the occupied slots in
the set and rejects if there is another request with the same
primary key (for performance, we compare 64-bit hashes of
primary keys instead of full keys). If there is no slot available
in the set for the key, the record operation is rejected as well.

For client requests mutating multiple objects, witnesses
perform the commutativity and space check for every affected
object; to accept an update affecting n objects, a witness must
ensure that (1) no existing client request mutates any of the
n objects and (2) there is an available slot in each set for all n
objects. If the update is commutative and space is available,
the witness writes the update request n times as if recording
n different requests on each object.
4.3 Commutativity Checks in Masters

Every NoSQL update operation changes the values of one
or more objects. To enforce commutativity, a master can
check if the objects touched (either updated or just read) by
an operation are unsynced at the time of its execution. If an
operation touches any unsynced value, it is not commutative
and the master must sync all unsynced operations to backups
before responding back to the client.

If the object values are stored in a log, masters can
determine if an object value is synced or not by comparing its
position in the log against the last synced position.

If the object values are not stored in a log, masters can use
monotonically increasing timestamps. Whenever a master
updates the value of an object, it tags the new value with a
current timestamp. Also, the master keeps the timestamp of
when last backup sync started. By comparing the timestamp
of an object against the timestamp of the last backup sync,
a master can tell whether the value of the object has been
synced to backups.

4.4 Improving Throughput of Masters
Masters in primary-backup replication are usually the bot-

tlenecks of systems since they drive replication to backups.
Since masters in CURP can respond to clients before syncing
to backups, they can delay syncs until the next batch without
impacting latency. This batching of syncs improves masters’
throughput in two ways.

First, by batching replication RPCs, CURP reduces the
number of RPCs a master must handle per client request.
With 3-way primary-backup replication, a master must
process 4 RPCs per client request (1 update RPC and 3
replication RPCs). If the master batches replication and syncs
every 10 client requests, it handles 1.3 RPCs on average. On
NoSQL storage systems, sending and receiving RPCs takes a
significant portion of the total processing time since NoSQL
operations are not compute-heavy.

Second, CURP eliminates wasted resources and other inef-
ficiencies that arise when masters wait for syncs. For example,
in the RAMCloud [27] storage system, request handlers use
a polling loop to wait for completion of backup syncs. The
syncs complete too quickly to context-switch to a different
activity, but the polling still wastes more than half of the CPU
cycles of the polling thread. With CURP, a master can com-
plete a request without waiting for syncing and move on to the
next request immediately, which results in higher throughput.

The batch size of syncs is limited in CURP to reduce
witness rejections. Delaying syncs increases the chance of
finding non-commutative operations in witnesses and mas-
ters, causing extra rejections in witnesses and more blocking
syncs in masters. A simple way to limit the batching would be
for masters to issue a sync immediately after responding to a
client if there is no outstanding sync; this strategy gives a rea-
sonable throughput improvement since at most one CPU core
will be used for syncing, and it also reduces witness rejections
by syncing aggresively. However, to find the optimal batch
size, an experiment with a system and real workload is neces-
sary since each workload has a different sensitivity to larger
batch sizes. For example, workloads which randomly access
large numbers of keys uniformly can use a very large batch
size without increasing the chance of commutativity conflicts.
4.5 Garbage Collection

As discussed in §3.4, masters send garbage collection RPCs
for synced updates to their witnesses. Right after syncing to
backups, masters send gc RPCs (in Figure 5), so the witnesses
can discard data for the operations that were just synced.

To identify client requests for removal, CURP uses 64-bit
key hashes and RPC IDs assigned by RIFL [20]. Upon
receiving a gc RPC, a witness locates the sets of slots using
the keyHashes and resets the slots whose occupying requests
have the matching RPC IDs. Witnesses ignore keyHashes
and rpcIds that are not found since the record RPCs might
have been rejected. For client requests that mutate multiple
objects, gc RPCs include multiple 〈keyHash, rpcIds〉 pairs
for all affected objects, so that witnesses can clear all slots

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 53

occupied by the request.
Although the described garbage collection can clean up

most records, some slots may be left uncollected: if a client
crashes before sending the update request to the master,
or if the record RPC is delayed significantly and arrives
after the master finished garbage collection for the update.
Uncollected garbage will cause witnesses to indefinitely
reject requests with the same keys.

Witnesses detect such uncollected records and ask masters
to retry garbage collection for them. When it rejects a record,
a witness recognizes the existing record as uncollected
garbage if there have been many garbage collections since
the record was written (three is a good number if a master
performs only one gc RPC at a time). Witnesses notify
masters of the requests that are suspected as uncollected
garbage through the response messages of gc RPCs; then the
masters retry the requests (most likely filtered by RIFL), sync
to backups, and thus include them in the next gc requests.
4.6 Recovery Steps

To recover a crashed master, CURP first restores data
from backups and then replays requests from a witness.
To fetch the requests to replay, the new master sends a
getRecoveryData RPC (in Figure 5), which has two effects:
(1) it irreversibly sets the witness into recovery mode, so that
the data in the witness will never change, (2) it provides the
entire list of client requests saved in the witness.

With the provided requests, the new master replays all of
them. Since operations already recovered from backups will
be filtered out by RIFL [20], the replay step finishes very
quickly. In total, CURP increases recovery time by the exe-
cution time for a few requests plus 2 RTT (1 RTT for getRe-
coveryData and another RTT for backup sync after replay).
4.7 Zombies

For a fault-tolerant system to be consistent, it must neutral-
ize zombies. A zombie is a server that has been determined
to have crashed, so some other server has taken over its
functions, but the server has not actually crashed (e.g., it may
have suffered temporary network connectivity problems).
Clients may continue to communicate with zombies; reads or
updates accepted by a zombie may be inconsistent with the
state of the replacement server.

CURP assumes that the underlying system already has
mechanisms to neutralize zombies (e.g., by asking backups
to reject replication requests from a crashed master [27]).
The witness mechanism provides additional safeguards.
If a zombie responds to a client request without waiting
for replication, then the client must communicate with all
witnesses before completing the request. If it succeeds before
the witness data has been replayed during recovery, then
the update will be reflected in the new master. If the client
contacts a witness after its data has been replayed, the witness
will reject the request; the client will then discover that the
old master has crashed and reissue its request to the new
master. Thus, the witness mechanism does not create new

RAMCloud cluster Redis cluster
CPU Xeon X3470 (4x2.93 GHz) Xeon D-1548 (8x2.0 GHz)
RAM 24 GB DDR3 at 800 MHz 64 GB DDR4
Flash 2x Samsung 850 PRO SSDs Toshiba NVMe flash

NIC Mellanox ConnectX-2 Mellanox ConnectX-3
InfiniBand HCA (PCIe 2.0) 10 Gbps NIC (PCIe 3.0)

Switch Mellanox SX6036 (2 level) HPE 45XGc
OS Linux 3.16.0-4-amd64 Linux 3.13.0-100-generic

Table 1: The server hardware configuration for benchmarks.

safety issues with respect to zombies.
4.8 Modifications to RIFL

In order to work with CURP, the garbage collection
mechanism of RIFL described in [20] must be modified. See
§C.1 for details.

5 Evaluation
We evaluated CURP by implementing it in the RAMCloud

and Redis storage systems, which have very different backup
mechanisms. First, using the RAMCloud implementation, we
show that CURP improves the performance of consistently
replicated systems. Second, with the Redis implementation,
we demonstrate that CURP can make strong consistency
affordable in a system where it had previously been too
expensive for practical use.
5.1 RAMCloud Performance Improvements

RAMCloud [27] is a large-scale low latency distributed
key-value store, which primarily focuses on reducing latency.
Small read operations take 5 µs, and small writes take
14 µs. By default, RAMCloud replicates each new write to 3
backups, which asynchronously flush data into local drives.
Although replicated data are stored in slow disk (for cost sav-
ing), RAMCloud features a technique to allow fast recovery
from a master crash (it recovers within a few seconds) [26].

With the RAMCloud implementation of CURP, we
answered the following questions:
• How does CURP improve RAMCloud’s latency and

throughput?
• How many resources do witness servers consume?
• Will CURP be performant under highly-skewed work-

loads with hot keys?
Our evaluations using the RAMCloud implementation

were conducted on a cluster of machines with the specifica-
tions shown in Table 1. All measurements used InfiniBand
networking and RAMCloud’s fastest transport, which by-
passes the kernel and communicates directly with InfiniBand
NICs. Our CURP implementation kept RAMCloud’s fast
crash recovery [26], which recovers from master crashes
within a few seconds using data stored on backup disks.
Servers were configured to replicate data to 1–3 different
backups (and 1–3 witnesses for CURP results), indicated as
a replication factor f . The log cleaner of RAMCloud did not
run in any measurements; in a production system, the log
cleaner can reduce the throughput.

For RAMCloud, CURP moved backup syncs out of
the critical path of write operations. This decoupling not
only improved latency but also improved the throughput of

54 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1x10
-6

1x10
-5

1x10
-4

1x10
-3

1x10
-2

1x10
-1

1x10
0

5 6 7 20 30 200 10 100

F
ra

c
ti
o

n
 o

f
W

ri
te

s

Latency (µs)

Original (f = 3)
CURP (f = 3)
CURP (f = 2)
CURP (f = 1)
Unreplicated

Figure 6: Complementary cumulative distribution of latency for 100B
random RAMCloud writes with CURP. Writes were issued sequentially
by a single client to a single server, which batches 50 writes between
syncs. A point (x,y) indicates that y of the 1M measured writes took at
least x µs to complete. f refers to fault tolerance level (i.e. number of
backups and witnesses). “Original” refers to the base RAMCloud system
before adopting CURP. “Unreplicated” refers to RAMCloud without any
replication. The median latency for synchronous, CURP (f = 3), and
unreplicated writes were 14 µs, 7.1 µs, and 6.1 µs respectively.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30W
ri
te

 T
h

ro
u

g
h

p
u

t
(k

 w
ri
te

 p
e

r
s
e

c
o

n
d

)

Client Count (number of clients)

Unreplicated
CURP (f = 1)
Async (f = 3)
CURP (f = 2)
CURP (f = 3)
Original (f = 3)

Figure 7: The aggregate throughput for one server serving 100B
RAMCloud writes with CURP, as a function of the number of clients.
Each client repeatedly issued random writes back to back to a single
server, which batches 50 writes before syncs. Each experiment was
run 15 times, and median values are displayed. “Original” refers to the
base RAMCloud system before adding CURP. “Unreplicated” refers to
RAMCloud without any replication. In “Async” RAMCloud, masters
return to clients before backup syncs, and clients complete writes without
replication to witnesses or backups.

RAMCloud writes.
Figure 6 shows the latency of RAMCloud write operations

before and after applying CURP. CURP cuts the median write
latencies in half. Even the tail latencies are improved overall.
When compared to unreplicated RAMCloud, each additional
replica with CURP adds 0.3 µs to median latency.

Figure 7 shows the single server throughput of write
operations with and without CURP by varying the number
of clients. The server batches 50 writes before starting a
sync. By batching backup syncs, CURP improves throughput
by about 4x. When compared to unreplicated RAMCloud,
adding an additional CURP replica drops throughput by∼6%.

To illustrate the overhead of CURP on throughput (e.g.
sending gc RPCs to witnesses), we measured RAMCloud
with asynchronous replication to 3 backups, which is identical
to CURP (f =3) except that it does not record information on
witnesses. Achieving strong consistency with CURP reduces

 0

 200

 400

 600

 800

 1000

 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t
(k

 o
p
s
/s

)

Zipfian Skew Parameter (θ)

YCSB-A (50% read, 50% write)

Unreplicated
CURP (f=1)

CURP (f=3)
Original

 0

 200

 400

 600

 800

 1000

 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t
(k

 o
p
s
/s

)

Zipfian Skew Parameter (θ)

YCSB-B (95% read, 5% write)

Unreplicated
CURP (f=1)
CURP (f=3)
Original (f=3)

Figure 8: Throughput of a single RAMCloud server for YCSB-A and
YCSB-B workloads with CURP at different Zipfian skewness levels.
Each experiment was run 5 times, and median values are displayed with
errorlines for min and max.

throughput by 10%. In all configurations except the original
RAMCloud, masters are bottlenecked by a dispatch thread
which handles network communications for both incoming
and outgoing RPCs. Sending witness gc RPCs burdens the
already bottlenecked dispatch thread and reduces throughput.

We also measured the latency and throughput of RAM-
Cloud read operations before and after applying CURP, and
there were no differences.
5.2 Resource Consumption by Witness Servers

Each witness server implemented in RAMCloud can
handle 1270k record requests per second with occasional
garbage collection requests (1 every 50 writes) from master
servers. A witness server runs on a single thread and con-
sumes 1 hyper-thread core at max throughput. Considering
that each RAMCloud master server uses 8 hyper-thread
cores to achieve 728k writes per second, adding 1 witness
increases the total CPU resources consumed by RAMCloud
by 7%. However, CURP reduces the number of distinct
backup operations performed by masters, because it enables
batching; this offsets most of the cost of the witness requests
(both backup and witness operations are so simple that most
of their cost is the fixed cost of handling an RPC; a batched
replication request costs about the same as a simple one).

The second resource overhead is memory usage. Each
witness server allocates 4096 request storage slots for each as-
sociated master, and each storage slot is 2KB. With additional
metadata, the total memory overhead per master-witness pair
is around 9MB.

The third issue is network traffic amplification. In CURP,
each update request is replicated both to witnesses and
backups. With 3-way replication, CURP increases network
bandwidth use for update operations by 75% (in the original
RAMCloud, a client request is transferred over the network
to a master and 3 backups).
5.3 Impact of Highly-Skewed Workloads

CURP may lose its performance benefits when used
with highly-skewed workloads with hot keys; in CURP, an
unsynced update on a key causes conflicts on all following
updates or reads on the same key until the sync completes. To
measure the impact of hot keys, we measured RAMCloud’s
performance with CURP using a highly-skewed Zipfian
distribution [14] with 1M objects. Specifically, we used two
different workloads similar to YCSB-A and YCSB-B [9];

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 55

 0

 5

 10

 15

 20

 25

 0.5 0.6 0.7 0.8 0.9 1

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

µ
s
)

Zipfian Skew Parameter (θ)

YCSB-A (50% read, 50% write) @ 250 kops

Original (f=3)
CURP (f=3)
CURP (f=1)
Unreplicated

 0

 2

 4

 6

 8

 10

 12

 0.5 0.6 0.7 0.8 0.9 1

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

µ
s
)

Zipfian Skew Parameter (θ)

YCSB-B (95% read, 5% write) @ 700 kops

Original (f=3)
CURP (f=3)
CURP (f=1)
Unreplicated

Figure 9: Average RAMCloud client request latency for YCSB-A and
YCSB-B workloads with CURP at different Zipfian skewness levels. 10
clients issued requests to maintain a certain throughput level (250 kops
for YCSB-A and 700 kops for YCSB-B). Each experiment was run 5
times, and median values are displayed with errorlines for min and max.
Latency values are averaged over both read and write operations.

since RAMCloud is a key-value store and doesn’t support
100B field writes in 1k objects, we modified the YCSB
benchmark to read and write 100B objects with 30B keys.

Figure 8 shows the impact of workload skew (defined
in [14]) on the throughput of a single server. For YCSB-A
(write-heavy workload), the server throughput with CURP
is similar to an unreplicated server when skew is low, but
it drops as the workload gets more heavily skewed. For
YCSB-B, since most operations are reads, the throughput is
less affected by skew. CURP’s throughput benefit degrades
starting at a Zipfian parameter θ =0.8 (about 3% of accesses
are on hot keys) and almost disappears at θ =0.99.

Figure 9 shows the impact of skew on CURP’s latency;
unlike the throughput benefits, CURP retains its latency
benefits even with extremely skewed workloads. We mea-
sured latencies under load since an unloaded system will not
experience conflicts even with extremely skewed workloads.
For YCSB-A, the latency of CURP increases starting at
θ = 0.85, but CURP still reduces latency by 42% even at
θ = 0.99. For YCSB-B, only 5% of operations are writes, so
the latency improvements are not as dramatic as YCSB-A.

Figure 10 shows the latency distributions of reads and
writes separately at θ = 0.95 under the same loaded con-
ditions as Figure 9. For YCSB-A, CURP increases the tail
latency for read operations slightly since reads occasionally
conflict with unsynced writes on the same keys. CURP
reduces write latency by 2–4x: write latency with CURP
is almost as low as for unreplicated writes until the 50th
percentile, where conflicts begins to cause blocking on syncs.
Overall, the improvement of write latency by CURP more
than compensates for the degradation of read latency.

For YCSB-B, operation conflicts are more rare since
all reads (which compose 95% of all operations) are com-
mutative with each other. In this workload, CURP actually
improved the overall read latency; this is because, by batching
replication, CURP makes CPU cores more readily available
for incoming read requests (which is also why unreplicated
reads have lower latency). For YCSB-A, CURP doesn’t
improve read latency much since frequent conflicts limit
batching replication. In general, read-heavy workloads
experience fewer conflicts and are less affected by hot keys.

5.4 Making Redis Consistent and Durable
Redis [30] is another low-latency in-memory key-value

store, where values are data structures, such as lists, sets, etc.
For Redis, the only way to achieve durability and consistency
after crashes is to log client requests to an append-only file
and invoke fsync before responding to clients. However,
fsyncs can take several milliseconds, which is a 10–100x
performance penalty. As a result, most Redis applications do
not use synchronous mode; they use Redis as a cache with no
durability guarantees. Redis also offers replication to multi-
ple servers, but the replication mechanism is asynchronous,
so updates can be lost after crashes; as a result, this feature is
not widely used either.

For this experiment, we used CURP to hide the cost of
Redis’ logging mechanism: we modified Redis to record
operations on witnesses, so that operations can return
without waiting for log syncs. Log data is then written
asynchronously in the background. The result is a system
with durability and consistency, but with performance
equivalent to a system lacking both of these properties. In
this experiment the log data is not replicated, but the same
mechanism could be used to replicate the log data as well.

With the Redis implementation of CURP, we answered the
following questions:
• Can CURP transform a fast in-memory cache into a

strongly-consistent durable storage system without
degrading performance?

• How wide a range of operations can CURP support?
Measurements of the Redis implementation were con-

ducted on a cluster of machines in CloudLab [29], whose
specifications are in Table 1. All measurements were col-
lected using 10 Gbps networking and NVMe SSDs for Redis
backup files. Linux fsync on the NVMe SSDs takes around
50–100 µs; systems with SATA3 SSDs will perform worse
with the fsync-always option.

For the Redis implementation, we used Redis 3.2.8 for
servers and “C++ Client” [34] for clients. We modified “C++
Client” to construct Redis requests more quickly.

Figure 11 shows the performance of Redis before and after
adding CURP to its local logging mechanism; it graphs the
cumulative distribution of latencies for Redis SET operations.
After applying CURP (using 1 witness server), the median
latency increased by 3 µs (12%). The additional cost is
caused primarily by the extra syscalls for send and recv on
the TCP socket used to communicate with the witness; each
syscall took around 2.5 µs.

When a second witness server is added in Figure 11,
latency increases significantly. This occurs because the
Redis RPC system has relatively high tail latency. Even for
the non-durable original Redis system, which makes only a
single RPC request per operation, latency degrades rapidly
above the 80th percentile. With two witnesses, CURP must
wait for three RPCs to finish (the original to the server,
plus two witness RPCs). At least one of these is likely

56 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

|———— YCSB-A @ 250 kops, Zipfian param (θ): 0.95 ————-| |———— YCSB-B @ 700 kops, Zipfian param (θ): 0.95 ————-|

 0.01

 0.1

 1

 0 5 10 15 20 25 30

F
ra

c
ti
o

n
 o

f
R

e
a

d
s

Latency (µs)

READ (50%)

Unreplicated
Original (f=3)

CURP (f=3)

 0.01

 0.1

 1

 0 20 40 60 80 100 120

F
ra

c
ti
o

n
 o

f
W

ri
te

s

Latency (µs)

WRITE (50%)

Unreplicated
CURP (f=3)

Original (f=3)

 0.01

 0.1

 1

 0 5 10 15 20 25 30

F
ra

c
ti
o

n
 o

f
R

e
a

d
s

Latency (µs)

READ (95%)

Unreplicated
CURP (f=3)

Original (f=3)

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70

F
ra

c
ti
o

n
 o

f
W

ri
te

s

Latency (µs)

WRITE (5%)

Unreplicated
CURP (f=3)

Original (f=3)

Figure 10: Complementary cumulative distribution of read and write latencies with CURP on a loaded server (250 kops for YCSB-A and 700 kops for
YCSB-B). 10 clients issued read and write operations (using the read / write mix ratio of YCSB) for 1 min to a single server. The workloads used a Zipfian
distribution with θ =0.95, which means 16% of operations are on keys that were accessed within the last 100 executed operations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140

F
ra

c
ti
o

n
 o

f
W

ri
te

s

Latency (µs)

Original Redis (non-durable)
CURP (1 Witness)

CURP (2 Witnesses)
Original Redis (durable)

Figure 11: Cumulative distribution of latency for
100B random Redis SET requests with CURP.
Writes were issued sequentially by a single client
to a single Redis server. CURP used one or two
additional Redis servers as witnesses. “Original
Redis (durable)” refers to the base Redis without
CURP, configured to invoke fsync on a backup file
before replying to clients.

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

W
ri
te

 T
h
ro

u
g
h
p
u
t
(k

 w
ri
te

 /
 s

e
c
)

Client Count (number of clients)

Original Redis (non-durable)
CURP (1 Witness)

CURP (2 Witnesses)
Original Redis (durable)

Figure 12: The aggregate throughput for one
server serving 100B Redis SET operations with
CURP, as a function of the number of clients. Each
client repeatedly issued random writes back to back
to a single server. “Original Redis (durable)” refers
to the base Redis without CURP, but configured to
invoke fsync before replying to clients.

 0

 10

 20

 30

 40

 50

SET HMSET INCR

L
a
te

n
c
y
 (

µ
s
)

Original Redis (non-durable)
CURP (1 Witness)
CURP (2 Witness)

Figure 13: Median latencies before and after
applying CURP on various Redis commands.
All experiments select a random 30B key over
2M unique keys. SET used 100B random val-
ues, and each HMSET operation sets 1 member
with a 100B value. The member key was 1B.
Commands were issued sequentially by a sin-
gle client to a single Redis server, with one or
two additional Redis witness servers in CURP.

to experience high tail latency and slow down the overall
completion. We didn’t see a similar effect in RAMCloud
because its latency is consistent out to the 99th percentile:
when issuing three concurrent RPCs, it is unlikely that any of
them will experience high latency.

Figure 12 shows the throughput of Redis SET operations
for a single Redis server with varying numbers of clients.
Applying CURP reduced the throughput of Redis about 18%.
With a large number of clients, the original synchronous
form of Redis can offer throughput approaching non-durable
Redis. The reason for this is that Redis batches fsyncs in
synchronous mode: in each cycle through its event loop, it
processes all of the requests waiting on its incoming sockets,
issues a single fsync, then responds to all of those requests.
The disadvantage of this approach is that it results in very
high latency for clients.
5.5 Applicability of CURP

CURP can be applied to a variety of operations, not just
write operations in key-value stores. Redis supports many
data structures, such as strings, hashmaps, lists, counters, and
so on. All of these update operations (including ones that
are non-idempotent or return read values) can benefit from
CURP. Since each data structure is assigned to a specific key,
CURP can execute many update operations on different keys
without blocking on syncs.

Figure 13 shows the median latency with and without
CURP on three different Redis commands: SET, which
writes ASCII data to a string data structure; HMSET, which

writes data to a member of a hashmap; and INCR, which
increments an integer counter and returns its current value.
For all three operations, latency overheads were small for
CURP with 1 witness. CURP with 2 witnesses increased
latency about 10 µs because of tail latency issues. We believe
that the TCP transport library used by the C++ client is
inefficient for waiting for multiple responses concurrently,
and we will continue to investigate this.

6 Related work
Table 2 summarizes the performance of CURP and other

fast replication protocols. The paragraphs below explain
these numbers in detail. We present analytical performance
instead of emprical results since empirical performance de-
pends too much on implementation and underlying systems
(e.g. CURP on RAMCloud and CURP on Redis have very
different absolute performance).

Generalized Paxos [18] allows clients to complete op-
erations (i.e. receive execution results) in 1.5 RTTs and
supersedes Fast Paxos [19]. Both protocols allow clients to
send requests directly to replicas and reduce latency from 2
RTTs to 1.5 RTT. Fast Paxos has a contention problem and
performs well only at low throughput. Generalized Paxos
resolves the contention problem by using commutativity; it
groups commutative requests from concurrent clients into
an unordered set, and it only orders between sets. Although
Generalized Paxos allows a leader replica to learn that oper-
ations are committed in 1 RTT, clients need to wait another
half RTT to receive the execution results from the leader; so

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 57

CURP Gen.Paxos EPaxos NOPaxos

L
at

en
cy L
A

N read 1 RTT 1.5 RTTs 2 RTTs 1 RTT + α

write 1 RTT 1.5 RTTs 2 RTTs 1 RTT + α

W
A

N read ∼0 RTT 1.5 RTTs ∼1 RTT Not Avail.
write 1 RTT 1.5 RTTs ∼1 RTT Not Avail.

load on read <1 RPC ∼n RPCs ∼2 RPCs 1 RPC
leader write 1 RPC ∼n RPCs ∼2 RPCs 1 RPC

Table 2: Performance comparisons of replication protocols. “LAN”
means intra-datacenter replications. “WAN” means geo-replication and
assumes that all clients have a local replica; clients in a datacenter without
local replicas must send requests to a remote replica and experience the
WAN RTTs same as in “LAN”. NOPaxos’s RTT is longer than usual since
network packets must detour through a sequencer. All latency numbers
omitted the time to make data persistent, which is same for all protocols
(1 persistence time per request) and insignificant with the use of modern
fast storage technologies. “Load on leader” shows how many RPCs a
leader (or master) processes per client request. “n” denotes the number of
replicas.

its end-to-end latency becomes 1.5 RTTs, as opposed to 1
RTT for CURP. (See §B.3 for a detailed explanation why they
cannot achieve 1 RTT.)

Egalitarian Paxos (EPaxos) [22] relies on commutativity
to allow multiple leaders to propose and execute operations
concurrently. This approach improves throughput. In geo-
replicated environments, EPaxos allows clients to choose a
nearby replica as leader, so operations can complete in 1 wide-
area RTT. However, in LAN environments, EPaxos clients
cannot hide the message delay to a leader, so operations take
2 RTT. Also, since EPaxos does not have a strong leader, read
operations must run through full consensus and be written to
replicated command logs; for read-heavy workloads, EPaxos
will perform worse than traditional 2 RTT protocols with
read leases, such as Raft [25]. On the other hand, CURP can
directly execute read operations in masters or even in backups
with the help of witnesses. Another limitation of EPaxos is
that clients in a datacenter that doesn’t host a replica must use
a remote leader, increasing its latency to 2 wide-area RTTs.

Speculative Paxos [28] and Network-Ordered Paxos
(NOPaxos) [21] reduce latency almost to 1 RTT by seri-
alizing client requests within network. Both protocols use
SDNs to detour requests from all clients through a single
network device (a root layer switch or middlebox); so, they
can be deployed only in specialized environments (e.g. a
privately-owned datacenter). Also, due to detouring of
packets, they actually add latency overhead over unreplicated
systems; Speculative Paxos (∼25 µs) or NOPaxos(∼16 µs)
have higher latency overhead compared to CURP (∼1 µs).

TAPIR [37] and Janus [23] commit distributed transactions
in 1 wide-area RTT; before them, transaction commits took
2 RTTs: 1 for transaction prepares and 1 for geo-replicating
the data of prepare. They flattened out these serial steps by
replicating data before the prepare is executed. They mod-
ified concurrency control protocols to fix inconsistencies in
replications. They also require commutativity of workloads
for 1 RTT commits.

To avoid the performance penalty of consistent replica-
tions, eventual consistency [36] has been widely adopted in

industry [10, 8, 5]. Systems using eventual consistency return
from updates before replication is complete, and replications
happen asynchronously; since nearby replicas are stale,
clients must read from far-away masters for consistency.
Pileus [35] and Tuba [2] allowed applications to declare
their consistency and latency priorities, and they dynamically
select replicas to read from.

Broadcast-broadcast (BB) protocols [4, 3, 12, 16] for total
order broadcasts [11] have similarities to CURP. Senders in
BB protocols broadcast a message to all destinations (repli-
cated processes) plus a sequencer before ordering, followed
by a second broadcast from the sequencer about the ordering
information. Some variants of BB protocols [3, 12] exploit
the fact that broadcasts are mostly delivered in-order in small
LAN environments and let processes optimistically consume
messages without waiting for the ordering information from
the sequencer. If the suspected order turned out to be different
from the order determined by the sequencer, the process must
rollback to correct the inconsistency. On the other hand, in
CURP, replicas wait for the ordered replication from a master
instead of executing operations with a presumed ordering, so
CURP doesn’t require rollbacks, which is expensive and diffi-
cult to implement. Furthermore, even if client requests arrive
in a master and witnesses out of order, CURP still achieves 1
RTT as long as the reordered requests are commutative.

7 Conclusion
In this paper we have uncovered an opportunity for intro-

ducing concurrency into mechanisms for consistent replica-
tion. By exploiting the commutativity of operations, replica-
tion without ordering can be performed in parallel with send-
ing requests to an execution server. This general approach can
be applied to improve a variety of replication mechanisms,
including primary-backup approaches and consensus proto-
cols with strong leaders. We presented Consistent Unordered
Replication Protocol (CURP), which supplements standard
primary-backup replication mechanisms. CURP reduces the
latency to complete operations from 2 RTTs to 1 RTT while
retaining strong consistency. We implemented CURP in
RAMCloud and Redis to demonstrate its benefits.

Acknowledgements
We thank our shepherd, Manos Kapritsos, and our anony-

mous NSDI and OSDI reviewers for their feedback. Thanks
to Stephen Yang and Collin Lee for helping on improving
the clarity of this paper. This work was supported by the
industrial affiliates of the Stanford Platform Lab and by the
Samsung Scholarship.

References
[1] GlusterFS. https://www.gluster.org, 2017.

Accessed: 2017-09-22.

[2] ARDEKANI, M. S., AND TERRY, D. B. A self-
configurable geo-replicated cloud storage system. In
11th USENIX Symposium on Operating Systems Design

58 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.gluster.org

and Implementation (OSDI 14) (Broomfield, CO, 2014),
USENIX Association, pp. 367–381.

[3] BALAKRISHNAN, M., BIRMAN, K., AND PHAN-
ISHAYEE, A. PLATO: Predictive latency-aware total or-
dering. In Proceedings of the 25th IEEE Symposium on
Reliable Distributed Systems (Leeds, UK, 2006), SRDS
’06, IEEE Computer Society, pp. 175–188.

[4] BIRMAN, K., SCHIPER, A., AND STEPHENSON, P.
Lightweight causal and atomic group multicast. ACM
Trans. Comput. Syst. 9, 3 (Aug. 1991), 272–314.

[5] BRONSON, N., AMSDEN, Z., CABRERA, G.,
CHAKKA, P., DIMOV, P., DING, H., FERRIS, J., GI-
ARDULLO, A., KULKARNI, S., LI, H., MARCHUKOV,
M., PETROV, D., PUZAR, L., SONG, Y. J., AND
VENKATARAMANI, V. TAO: Facebook’s distributed
data store for the social graph. In Presented as part of the
2013 USENIX Annual Technical Conference (USENIX
ATC 13) (San Jose, CA, 2013), USENIX, pp. 49–60.

[6] BURROWS, M. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
Symposium on Operating Systems Design and Imple-
mentation (Seattle, WA, 2006), OSDI ’06, USENIX As-
sociation, pp. 335–350.

[7] CHODOROW, K., AND DIROLF, M. MongoDB: The
Definitive Guide, 1st ed. O’Reilly Media, Inc., 2010.

[8] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA,
U., SILBERSTEIN, A., BOHANNON, P., JACOBSEN,
H.-A., PUZ, N., WEAVER, D., AND YERNENI, R.
PNUTS: Yahoo!’s hosted data serving platform. Proc.
VLDB Endow. 1, 2 (Aug. 2008), 1277–1288.

[9] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmarking
cloud serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing (Indianapo-
lis, IN, 2010), SoCC ’10, ACM, pp. 143–154.

[10] DECANDIA, G., HASTORUN, D., JAMPANI, M.,
KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND VO-
GELS, W. Dynamo: Amazon’s highly available key-
value store. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles
(Stevenson, WA, 2007), SOSP ’07, ACM, pp. 205–220.

[11] DÉFAGO, X., SCHIPER, A., AND URBÁN, P. Total or-
der broadcast and multicast algorithms: Taxonomy and
survey. ACM Comput. Surv. 36, 4 (Dec. 2004), 372–421.

[12] FELBER, P., AND SCHIPER, A. Optimistic active
replication. In Proceedings of the The 21st Interna-
tional Conference on Distributed Computing Systems

(Phoenix, AZ, USA, 2001), ICDCS ’01, IEEE Com-
puter Society, pp. 333–341.

[13] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T.
The Google file system. SIGOPS Oper. Syst. Rev. 37,
5 (Oct. 2003), 29–43.

[14] GRAY, J., SUNDARESAN, P., ENGLERT, S., BA-
CLAWSKI, K., AND WEINBERGER, P. J. Quickly gen-
erating billion-record synthetic databases. SIGMOD
Rec. 23, 2 (May 1994), 243–252.

[15] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED,
B. ZooKeeper: Wait-free coordination for internet-
scale systems. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference
(Boston, MA, 2010), USENIXATC’10, USENIX Asso-
ciation, pp. 11–11.

[16] KAASHOEK, M. F., AND TANENBAUM, A. S. Group
communication in the amoeba distributed operating sys-
tem. In [1991] Proceedings. 11th International Con-
ference on Distributed Computing Systems (May 1991),
pp. 222–230.

[17] LAMPORT, L. The part-time parliament. ACM Transac-
tions on Computer Systems 16, 2 (May 1998), 133–169.

[18] LAMPORT, L. Generalized consensus and Paxos. Tech.
rep., March 2005.

[19] LAMPORT, L. Fast Paxos. Distributed Computing 19
(October 2006), 79–103.

[20] LEE, C., PARK, S. J., KEJRIWAL, A., MATSUSHITA,
S., AND OUSTERHOUT, J. Implementing linearizabil-
ity at large scale and low latency. In Proceedings of
the 25th Symposium on Operating Systems Principles
(Monterey, CA, 2015), SOSP ’15, ACM, pp. 71–86.

[21] LI, J., MICHAEL, E., SHARMA, N. K., SZEKERES,
A., AND PORTS, D. R. K. Just say no to Paxos over-
head: Replacing consensus with network ordering. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation (Savannah,
GA, 2016), OSDI’16, USENIX Association, pp. 467–
483.

[22] MORARU, I., ANDERSEN, D. G., AND KAMINSKY,
M. There is more consensus in egalitarian parlia-
ments. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles (Farminton,
PA, 2013), SOSP ’13, ACM, pp. 358–372.

[23] MU, S., NELSON, L., LLOYD, W., AND LI, J. Con-
solidating concurrency control and consensus for com-
mits under conflicts. In Proceedings of the 12th USENIX

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 59

Conference on Operating Systems Design and Imple-
mentation (Savannah, GA, 2016), OSDI’16, USENIX
Association, pp. 517–532.

[24] OKI, B. M., AND LISKOV, B. H. Viewstamped repli-
cation: A new primary copy method to support highly-
available distributed systems. In Proceedings of the
Seventh Annual ACM Symposium on Principles of Dis-
tributed Computing (Toronto, Ontario, Canada, 1988),
PODC ’88, ACM, pp. 8–17.

[25] ONGARO, D., AND OUSTERHOUT, J. In search
of an understandable consensus algorithm. In 2014
USENIX Annual Technical Conference (USENIX ATC
14) (Philadelphia, PA, 2014), USENIX Association,
pp. 305–319.

[26] ONGARO, D., RUMBLE, S. M., STUTSMAN, R.,
OUSTERHOUT, J., AND ROSENBLUM, M. Fast crash
recovery in RAMCloud. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Princi-
ples (Cascais, Portugal, 2011), SOSP ’11, ACM, pp. 29–
41.

[27] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRI-
WAL, A., LEE, C., MONTAZERI, B., ONGARO, D.,
PARK, S. J., QIN, H., ROSENBLUM, M., RUMBLE,
S., STUTSMAN, R., AND YANG, S. The RAMCloud
storage system. ACM Trans. Comput. Syst. 33, 3 (Aug.
2015), 7:1–7:55.

[28] PORTS, D. R. K., LI, J., LIU, V., SHARMA, N. K.,
AND KRISHNAMURTHY, A. Designing distributed sys-
tems using approximate synchrony in data center net-
works. In Proceedings of the 12th USENIX Confer-
ence on Networked Systems Design and Implementation
(Oakland, CA, 2015), NSDI’15, USENIX Association,
pp. 43–57.

[29] RICCI, R., EIDE, E., AND TEAM, C. Introducing
CloudLab: Scientific infrastructure for advancing cloud
architectures and applications. ; login:: the magazine of
USENIX & SAGE 39, 6 (2014), 36–38.

[30] SANFILIPPO, S., ET AL. Redis. https://redis.
io/, 2015. Accessed: 2017-04-18.

[31] SCHNEIDER, F. B. Implementing fault-tolerant ser-
vices using the state machine approach: A tutorial. ACM
Comput. Surv. 22, 4 (Dec. 1990), 299–319.

[32] SHVACHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The Hadoop distributed file system. In
2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST) (May 2010), pp. 1–10.

[33] SIVASUBRAMANIAN, S. Amazon dynamoDB: A seam-
lessly scalable non-relational database service. In Pro-
ceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data (Scottsdale, AZ, 2012),
SIGMOD ’12, ACM, pp. 729–730.

[34] SPRENKER, L., AND HAMMOND, B. Redis
C++ Client. https://github.com/mrpi/
redis-cplusplus-client, 2011. Accessed:
2017-04-20.

[35] TERRY, D. B., PRABHAKARAN, V., KOTLA, R., BAL-
AKRISHNAN, M., AGUILERA, M. K., AND ABU-
LIBDEH, H. Consistency-based service level agree-
ments for cloud storage. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples (Farminton, PA, 2013), SOSP ’13, ACM, pp. 309–
324.

[36] VOGELS, W. Eventually consistent. Commun. ACM 52,
1 (Jan. 2009), 40–44.

[37] ZHANG, I., SHARMA, N. K., SZEKERES, A., KR-
ISHNAMURTHY, A., AND PORTS, D. R. K. Build-
ing consistent transactions with inconsistent replication.
In Proceedings of the 25th Symposium on Operating
Systems Principles (Monterey, CA, 2015), SOSP ’15,
ACM, pp. 263–278.

[38] ZHAO, W. Fast Paxos made easy: Theory and imple-
mentation. International Journal of Distributed Systems
and Technologies (IJDST) 6, 1 (2015), 15–33.

60 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://redis.io/
https://redis.io/
https://github.com/mrpi/redis-cplusplus-client
https://github.com/mrpi/redis-cplusplus-client

A Informal Proof of Correctness
With the normal operation behaviors described in §3.2,

the recovery protocol in §3.3 guarantees the following
correctness properties.
• Durability: if a client completes an operation, it survives

server crashes.
• Consistency: if a client completes an operation, its result

returned to an application remains consistent after server
crash recoveries.

• Linearizability: an operation appears to be executed
exactly once between start and completion.

Before presenting proofs, we reiterate some key behaviors
of the CURP protocol.

(Rule 1) from §3.2.1, a client only completes an update
operation if (1) it is recorded in all f witnesses or (2) it is
replicated to f backups.

(Rule 2) a completed unsynced operation must be individ-
ually commutative with all preceding operations that are not
synced yet. This is the behavior described in §3.2.3; a master
must sync before responding if the current operation is not
commutative with any other existing (preceding) unsynced
operations.

Now, we present proof sketches for the properties.
Durability: recovery of a master only completes after

recovery from 1 backup and 1 witness, and the completed
operation must exist in the backup or the witness by (Rule 1);
thus, the completed operation must be recovered when the
recovery is completed. �

Consistency: Consider an individual completed operation
α and its consistency. To prove that α’s result doesn’t change
even after crash recovery, we will think about the operation
execution sequence before α , which we will call history of α

(or Hα).
Case 1: the operation α has been synced to the backup

used for recovery. This operation will be recovered from
the backup (phase 1) and any replay from witnesses (phase
2) will be ignored (by RIFL). Since backup syncs preserve
the execution order of operations, the Hα didn’t change; so
the post-recovery execution sequence should regenerate the
original execution result of α .

Case 2: the operation α has not been synced to the backup
used for recovery. α must have been recorded in all witnesses
by (Rule 1) and will be recovered during phase 2. We can
split the original execution history of α into two parts as in
Figure 3: 〈synced〉 followed by 〈unsynced〉. The 1st phase
of recovery will recover the exactly same execution history
for the 〈synced〉 part. By (Rule 2), we know that losing any
〈unsynced〉 part of history after crash will not change the
execution result of α . During phase 2 of recovery (from
a witness), we may replay some other operations before
replaying α , but the result of α doesn’t change since all
operations recorded in the witness must be commutative. �

Linearizability: we assume that the underlying system
before applying CURP guarantees linearizability for op-

erations that are replicated to backups. CURP may break
the linearizability of the underlying system since masters in
CURP return before syncing to backups. So, we will reason
about how CURP recovers from master crashes without
breaking linearizability.

The definition of linearizability can be reworded as
following: if the execution of an operation is observed by
the issuing client or other clients, no contrary observation
can occur afterwards (i.e. it should not appear to revert or
be reordered). Since we only care about what happens after
recovery, we prove the following proposition: if the execution
of an individual operation α is observed before crash, no
contrary observation can occur after recovery.

Case 1: the execution of α was observed by other depen-
dent operations (e.g. reads). By (Rule 2), the master must
have synced α to backups since dependent operations don’t
commute with α . Since it was replicated to backups, α will
be linearizable as long as the underlying system is.

Case 2: the execution was observed only by the completion
of α . α must be recovered because of the Durability property.
The only observation about α before crash was the returned
execution result, and it must be still consistent even after
recovery because of the Consistency property.

Case 3: no observation was made before crash. α may
be lost if it didn’t reach to either the backup or witness used
for recovery. In CURP, the client keeps retrying until it can
complete α . Regardless of whether α was recovered or not,
RIFL ensures the retry will only execute α at-most once and
return the result of the sole execution. �

B Extra Discussions
B.1 Why Are Witnesses Separate from Backups?

By having witnesses separated from backups, CURP
requires fewer changes to the existing systems and is more
applicable to many wildly different backup mechanisms.
Both of our two implementations leveraged this flexibility:
in RAMCloud, a master keeps changing backups to which
it replicates (to spread data over the entire cluster), so
clients don’t know which backups are currently used by the
master; in Redis, operation logs are stored in local disks to
ensure durability, so there are no separate backup servers
to which CURP clients can record inputs. Thus, separating
witnesses from backups improves CURPs applicability to
many existing primary-backup systems.

On the other hand, when designing a new storage system,
combining witnesses and backups can bring extra perfor-
mance benefits. When they are combined, clients directly
send requests to a master and backups, which now also serve
as witnesses. The key change is masters now sync operation
orders (by listing IDs as in witness gc RPCs) instead of full
client requests; then backups lookup the matching requests
from their witness storage and move them to backup logs.
This approach will lower network bandwidth consumption.
Also, most witness gc RPCs can be eliminated; immediately

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 61

after handling the sync, the requests in the witness storage
can be deleted as they are now safe in the backup log. (For
safety, the recovery protocol must pick 1 witness/backup
combo and must not mix.) This saving of gc RPCs will
improve masters’ throughput and will reduce the chance of
commutativity conflicts.
B.2 Extending CURP to Consensus Protocols

This section illustrates how CURP can be extended to
reduce the latency of consensus protocols. CURP can be in-
tegrated in most consensus protocols with strong leaders (e.g.
Raft [25], Viewstamped Replication [24]). In such protocols,
clients send requests to the current leader, which serializes
the requests into its command log. The leader then replicates
its command log to a majority of replicas before executing
the requests and replying back to clients with the results. This
process takes 2 RTTs, and CURP can reduce it to 1 RTT.

As in primary-backup replication, CURP on consensus
allows clients to replicate requests to witnesses in parallel
with sending requests to the leader; the leader then specu-
latively executes the requests and responds to clients before
replicating the requests to a quorum of replicas. A client can
complete an operation if it is accepted by a superquorum of
witnesses or committed in a quorum of replicas.

To mask f failures, consensus protocols use 2 f + 1 repli-
cas, and systems stay available with f failed replicas. For the
same guarantee, CURP also uses 2 f + 1 replicas, but each
replica also has a witness component in addition to existing
components for consensus. Although CURP can proceed
with f +1 available replicas, it needs f +d f/2e+1 replicas
(for superquorum of witnesses) to use 1 RTT operations.
With less than f +d f/2e+1 replicas, clients must ask masters
to commit operations in f +1 replicas before returning result
(2 RTTs).

Like masters in regular CURP, leader replicas execute oper-
ations speculatively if they are commutative with existing un-
synced operations; for an incoming client request, the leader
serializes it into its command log, executes it, and responds
to the client before committing it in a majority of replicas.

For clients to complete an operation in 1 RTT, it must be
recorded in a superquorum of f + d f/2e+1 witnesses. The
reason why CURP needs a superquorum instead of a simple
majority is to ensure commutativity of replays from witnesses
during recovery. During recovery, only f + 1 out of 2 f + 1
replicas (each of which embeds a witness) might be available.
If a client could complete an operation after recording to
f + 1 witnesses, the completed operation may exist in only
1 witness out of available f + 1 witnesses during recovery
(since intersection of two quorums is 1 replica). If the other f
witnesses accepted other operations that are not commutative
with the completed operation (since each witness enforces
commutativity individually), recovery cannot distinguish
which one is the completed one; executing all appearing
in any f + 1 witnesses is also not safe since they are not
commutative, so they must be replayed in a correct order.

For correctness, the client requests replayed from witnesses
during recovery must be commutative and inclusive of all
completed operations that are not yet committed in a major-
ity of replicas. By recording to a superquorum, all completed
operations (but not yet committed) are guaranteed to exist in
a majority (d f/2e+1) of any quorum of f +1 witnesses, and
any operations that don’t commute with the completed oper-
ations cannot exist in more than b f/2c (less than majority of
any quorum). Thus, during recovery, all requests that appear
in a majority (d f/2e+1) from any quorum of f +1 witnesses
are guaranteed to be commutative and include all completed
operations; so, recovery can replay requests that appear in
more than d f/2e+1 witnesses out of any f +1 witnesses.

When leadership changes (e.g. leader election in Raft [25]
or view change in Viewstamped Replication [24]), the new
leader must recover from witnesses before accepting new op-
erations. To do so, the new leader must collect saved requests
from at least f +1 witnesses. This collection can be included
in the existing data collection (e.g. Raft votes) that is required
by most leadership change protocols. As mentioned in the
previous paragraph, the new leader should only replay client
requests that are recorded in at least d f/2e+ 1 witnesses to
ensure commutativity.

After leadership changes, the state machine of the old
leader could have diverged from other replicas due to
speculatively executed operations that were not recovered
from witnesses. To fix this, the old leader must reload from
a checkpoint that does not have speculative executions.
However, we can avoid reloading from checkpoints if the
leadership change was not because of a crash or disconnect of
the old leader; instead of requring old leader to reload from a
checkpoint, we can require the new leader to fetch and commit
all uncommitted operations in the old leader’s command log.

The last problem introduced by speculative execution is
that clients may use old zombie leaders (which believe they
are current leaders). Zombie leaders were not possible before
CURP since an operation must be committed in a majority
before being executed and at least one replica would reject
the operation. To prevent clients from completing operations
with an old (possibly disconnected) leader, they tag record
RPCs with a term number (e.g. a Raft term or a view-number
in Viewstamped Replication), which increments every time
when leadership changes. A witness checks the term number
against the term used by its replica (recall that a witness is a
part of a consensus replica); if the record RPC has an old term
number, the witness rejects the request and tells the client to
fetch new leader information.

CURP can use read leases like many consensus protocols
so that read operations can be executed solely by leaders
within 1 RTT without recording to witnesses. Optimizing
read operations using read leases is common for consensus
protocols with strong leaders. A leader replica with a
valid read lease can safely execute read operations without
committing the read operations through consensus. For the

62 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

optimization, each replica grants the read lease to the current
leader, promising not to agree on a leader change for a lease
period. With valid leases from a majority of replicas, the
leader knows that no operations can be committed from other
replicas, so it can safely execute read operations without
consulting with other replicas. CURP does not interfere with
this read lease mechanism.
B.3 Why Do Fast / Generalized Paxos require 1.5 RTTs?

There is a widespread misunderstanding that both Fast
Paxos and Generalized Paxos already achieve 1 RTT opera-
tions. The confusion probably stems from the fact that both
Fast and Generalized Paxos allow Paxos learners to know
about acceptance of an operation in 1 RTT.

However, 1 RTT is sufficient to know only that an operation
is committed but not enough to know the result: that requires
another 0.5 RTT. The abstract for Generalized Paxos says that
a server can execute the command in two message delays;
however, it take an additional message delay for the result to
reach a client, for a total of three message delays (1.5 RTT). It
doesn’t help for the client to be a Paxos learner, because even
learners don’t know the result after 1 RTT.

For most operations, results are not trivial and clients must
wait for the results from real executions before completing
operations. Many writes, such as conditional writes or read-
modify-writes, have results that clients cannot know before
executions. Blind writes (those that don’t return results)
could potentially complete in 1 RTT. However, truly blind
writes are rarely feasible because they can return exceptions,
such as “table no longer on this server” or “permission
denied”; clients must be aware of these exceptions.

As a result, Fast/Generalized Paxos are generally con-
sidered to have 1.5 RTT latency for clients to complete
operations. [21, 28, 38]

C Implementation Details
C.1 Modifications to RIFL

RIFL [20] is a mechanism for detecting duplicate invoca-
tions of RPCs. With RIFL, masters make a durable comple-
tion record of each RPC that updates state, which includes
the RPC result. The completion record survives crashes and
can be used to detect duplicate invocations of the RPC. When
a duplicate is detected, the master skips the execution of the
RPC and returns the result from the completion record.

RIFL has two mechanisms for garbage collecting com-
pletion records: (1) on RPC requests, clients piggyback
acknowledgments of the results of their previous requests (so
servers can safely delete these completion records), and (2)
clients maintain leases in a central server; if a client’s lease
expires, masters can delete all completion records for that
client. Both of these must be modified to work with CURP.

Since both garbage collection mechanisms assume that
retries always come from the same client that made the
original request, RIFL must be modified to accommodate
retries from witnesses. Firstly, once clients acknowledge

 0

 200

 400

 600

 800

 1000

 1200

 1400

 500 1000 1500 2000 2500 3000 3500 4000 4500N
u

m
b

e
r

o
f

re
c
o

rd
s
 b

e
tw

e
e

n
 c

o
n

fl
ic

ts

Number of slots in a witness

8-way associative
4-way associative
2-way associative
Direct mapping

Figure 14: Simulation results for the expected number of recordings
before a collision occurs in a witness’ cache, assuming a random
distribution of keys. Each data point is the average of 10000 simulations.
Introducing associativity reduces the chance of collisions significantly.

the receipts of results, masters remove their completion
records and start to ignore (not returning results) the duplicate
requests. Since replays from witnesses happen in random
orders, acknowledgements piggybacked on later requests can
make masters to ignore the replay of earlier requests. Thus,
clients’ acknowledgments included in RPC requests must be
ignored during recovery from witnesses.

Secondly, if a client crashes and its lease expires, masters
remove all of the completion records for the client; then any
requests from the expired client are ignored. This can be
a problem in CURP since the replay of the expired client’s
requests will be ignored during witness-based recovery. To
prevent this, masters must sync all operations to backups
before expiring a client lease. In practice, the period of syncs
is much smaller than the grace period between the time of
a client crash and the time of its lease expiration; so, most
systems are safe automatically.
C.2 Why Use Set-associative Cache for Witnesses?

We initially used a direct-mapped cache instead of set-
associative cache, but this resulted in a high rate of rejections
because of conflicts (i.e. no slot is available for the mapped
set). Figure 14 shows the expected number of recordings
before a conflict occurs on a witness slot. Using a direct
mapping and 4096 total slots, it is expected to have a false
conflict after about 80 insertions. Thus, we switched to
4-way associative cache, to reduce witness rejections. We
didn’t need 8-way associativity (a bit slower than 4-way)
since the number of requests in witnesses is already limited
by commutativity. (Once a master hits a non-commutative
operation and syncs to backups, all saved requests in the
witness are garbage collected.)

D Additional Evaluations
D.1 RAMCloud’s Throughput by Batch Size

Figure 15 shows the single-server throughput of write
operations with CURP while varying the aggressiveness of
syncs. After introducing CURP, RAMCloud can delay the
sync to backups after responding back to clients; delaying
and batching sync to backups makes the server more efficient
and improves throughput about 4 times. Since RAMCloud

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 63

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50

W
ri
te

 T
h

ro
u

g
h

p
u

t
(k

 w
ri
te

 p
e

r
s
e

c
o

n
d

)

Minimum Batch Size (number of writes before starting sync)

Unreplicated
Async (f = 3)
CURP (f = 1)
CURP (f = 2)
CURP (f = 3)
Original RAMCloud

Figure 15: The aggregate throughput for one server serving 100B RAM-
Cloud writes with CURP, as a function of sync batch size. Each client
repeatedly issued random writes back to back to a single server. “Original
RAMCloud” refers to the base RAMCloud system before adding CURP.
“Unreplicated” refers to RAMCloud without any replication. Each
datapoint was measured 15 times, and median values are displayed.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

µ
s
)

Write Throughput (k write per second)

Original Redis (non-durable)
CURP (1 Witness)
CURP (2 Witnesses)
Original Redis (durable)

Figure 16: Observed latency at a specific throughput level for one
server serving 100B Redis SET operations with CURP. “Original Redis
(durable)” refers to the base Redis without CURP, but configured to
invoke fsync before replying to clients. Original Redis processes requests
from multiple clients, fsyncs once per eventloop, and replies to all clients.

allows only one outstanding sync, syncs are naturally batched
for around 15 writes even at 1 minimum batch size.
D.2 Redis Latency vs. Throughput

Figure 16 shows observed latency during the throughput
benchmark. Both CURP and non-durable Redis maintains la-
tency low until it reaches 80% of max throughput. The latency
of durable Redis increases almost linearly due to bathcing.
The original Redis is designed to provide maximum through-
put under high load and natively batches fsyncs; for each
event-loop cycle, Redis iterates through TCP sockets for all
clients and executes all requests from them; after the iteration,
Redis fsyncs once and responds to the clients. This batching
amortizes the cost of fsync, and throughput of durable Redis
approaches that of non-durable Redis as the number of clients
increases. However, this batching adds extra delay before
responding back to clients, so latency increases linearily.

64 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Flashield: a Hybrid Key-value Cache that Controls Flash Write Amplification

Assaf Eisenman1, Asaf Cidon1,2, Evgenya Pergament1, Or Haimovich1, Ryan Stutsman3, Mohammad
Alizadeh4, and Sachin Katti1

1Stanford University, 2Barracuda Networks, 3University of Utah, 4MIT CSAIL

Abstract
As its price per bit drops, SSD is increasingly becoming

the default storage medium for hot data in cloud application
databases. Even though SSD’s price per bit is more than 10×
lower, and it provides sufficient performance (when accessed
over a network) compared to DRAM, the durability of flash
has limited its adoption in write-heavy use cases, such as
key-value caching. This is because key-value caches need to
frequently insert, update and evict small objects. This causes
excessive writes and erasures on flash storage, which signif-
icantly shortens the lifetime of flash. We present Flashield, a
hybrid key-value cache that uses DRAM as a “filter” to con-
trol and limit writes to SSD. Flashield performs lightweight
machine learning admission control to predict which ob-
jects are likely to be read frequently without getting updated;
these objects, which are prime candidates to be stored on
SSD, are written to SSD in large chunks sequentially. In or-
der to efficiently utilize the cache’s available memory, we
design a novel in-memory index for the variable-sized ob-
jects stored on flash that requires only 4 bytes per object
in DRAM. We describe Flashield’s design and implemen-
tation, and evaluate it on real-world traces from a widely
used caching service, Memcachier. Compared to state-of-
the-art systems that suffer a write amplification of 2.5× or
more, Flashield maintains a median write amplification of
0.5× (since many filtered objects are never written to flash
at all), without any loss of hit rate or throughput.

1 Introduction
Flash has an order of magnitude lower cost per bit com-

pared to DRAM. Consequently, it has become the preferred
storage medium for hot data that requires high through-
put and low latency. For example Google [36] and Face-
book [30] use it for storing photos, and databases like Lev-
elDB [5] and RocksDB [9] are deployed on top of flash.

Key-value caches are an essential layer in modern web
scale applications, and are widely used by almost all web ser-
vices, including Facebook, Twitter and Airbnb. Large web
service providers run their own key-value cache clusters,

SSD+DRAM DRAM only

Count Cost Count Cost

Dell 2×10 core server
with 256 GB DRAM

1 $7,700 17 $130,900

Samsung 1 TB enter-
prise SSD

4 $4,800 0 0

Total $12,500 $130,900

Table 1: The cost of a hybrid cache server with combined capacity
of 4.25 TB, versus the cost of multiple DRAM-only cache servers
with the same aggregate capacity. SSD’s superior cost per bit results
in a 10× lower total cost of ownership for a hybrid cache server.

while smaller providers often utilize caching-as-a-service so-
lutions like Amazon ElastiCache [1] and Memcachier [7].

However, due to its limited endurance under writes,
flash is typically not used for key-value caches like Mem-
cached [6] and Redis [8]. This is all the more perplexing
since these caches are typically deployed in a dedicated re-
mote cluster [31] or remote data center [1, 7] or with client-
side batching [31]. As a result, client-observed accesses
times can be hundreds of microseconds to milliseconds, so
flash would only increase delays by a small fraction when
compared to using DRAM.

Furthermore, since the performance of caches is primar-
ily determined by the amount of memory capacity they pro-
vide [13, 14], and the cost per bit of SSD is more than 10×
lower than DRAM, flash promises significant financial ben-
efits compared to DRAM. Table 1 demonstrates that the cost
difference between DRAM-only cache and hybrid cache,
both with 4.25 TB capacity, is more than 10×. The Total
Cost of Ownership (TCO) difference would be even greater
due to power costs, since flash consumes significantly less
power than DRAM, and can be powered down when there
are fewer requests without requiring re-warming the cache.

The reason flash has not been widely adopted as a key-
value cache is that cache workloads wear out flash drives
very quickly. These workloads typically consist of small ob-
jects, some of which need to be frequently updated [10, 31].
But, modern flash chips within SSDs can only be written a

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 65

few thousand times per location over their lifetime.
Further, SSDs suffer from write amplification (WA). That

is, for each byte written by the application (e.g., the key-
value cache), several more bytes are written to the flash at the
device level. WA occurs because flash pages are physically
grouped in large blocks. Pages must be erased before they
can be overwritten, but that can only be done in the granular-
ity of blocks. The result is that over time, these large blocks
typically contain a mix of valid pages and pages whose con-
tents have been invalidated. Any valid pages must be copied
to other flash blocks before a block can be erased. This
garbage collection process creates device-level write amplifi-
cation (DLWA) that can increase the amount of data written
to flash by orders of magnitude. Modern SSDs exacerbate
this by striping many flash blocks together (512 MB worth or
more) to increase sequential write performance (§2.1, [38]).

To minimize the number of flash writes, SSD storage
systems are constrained to writing data in large contiguous
chunks. This forces a second-order form of write amplifi-
cation, which is unique to caches, that we name cache level
write amplification (CLWA). CLWA occurs when the cache
is forced to relocate objects to avoid DLWA. For example,
when a hot object occupies the same flash block as many
items that are ready for eviction, the cache faces a choice.
It can evict the hot object with the cold objects, or it can
rewrite the hot object as part of a new, large write. There-
fore, in existing SSD cache designs, objects get re-written
multiple times into flash.

To deal with this problem, the state-of-the-art system,
RIPQ [38], proposes to store hot and cold objects together on
flash, by inserting them in different physical regions. How-
ever, efficient data placement on flash is not sufficient to pro-
tect against high CLWA, and in fact, may further increase
CLWA in certain scenarios. For example, consider an appli-
cation, in which a large number of objects are infrequently
accessed (or frequently updated). Since RIPQ admits all ob-
jects (hot and cold) into flash, infrequently accessed objects
will get inserted into a “cold” insertion point, and will typi-
cally get evicted before it is accessed again. Therefore, these
objects can get inserted and evicted multiple times. We show
that under such workloads, RIPQ suffers from a CLWA of up
to 150 (§5), which means it will wear out flash devices too
quickly for many applications.

The flash reliability problem will become even greater
over time, since as flash density increases, its durability will
continue to decrease [20]. In particular, the next generation
of flash technology (QLC), can endure 30× fewer writes than
the existing technology (TLC) [3, 29, 32].

We present Flashield, a novel hybrid key-value cache that
uses both DRAM and SSDs. Our contribution is a novel
caching strategy that significantly extends the lifetime of
SSDs, such that it is comparable to DRAM by controlling
and minimizing the number of writes to flash. Our main ob-
servation is that not all objects entering the cache are good

candidates for placement in SSD. In particular, the cache
should avoid writing objects to flash that will be updated or
that will not be read in the near future. However, when ob-
jects first enter the cache, it does not know which objects are
good candidates for SSD and which are not.

Therefore, a key idea in Flashield’s design is that objects
inserted into the cache always spend a period of time in
DRAM, during which the cache learns whether they are good
candidates for flash storage. If they indeed prove themselves
as flash-worthy, Flashield will move them into flash. If not,
they are never moved into flash, which reduces the result-
ing write amplification. Since the flash layer is considerably
larger than DRAM (e.g., 10× larger), objects moved to flash
on average will remain in the cache much longer than those
that stay in DRAM.

To dynamically decide which objects are flash-worthy un-
der varying workloads, we implement the admission control
algorithm using machine-learning based Support Vector Ma-
chine (SVM) classification. We train a different classifier
for each application in the cache. To train the classifiers, we
design a lightweight sampling technique that uniformly sam-
ples objects over time, collecting statistics about the number
of past reads and updates. The classifier predicts whether an
object will be read more than n times in the future without
getting updated, which is used to determine its suitability for
storage on flash. We term this metric flashiness.

The second main idea in Flashield’s design is its novel
DRAM-based lookup index for variable-length objects
stored on flash that requires less than 4 bytes of DRAM per
object. This is more than 5× less than RIPQ, which con-
sumes 22 bytes per object. Since the flash layer’s capacity
is much larger than the DRAM’s, a naı̈ve lookup index for
objects stored on flash would consume the entire capacity of
the DRAM. Our index consumes a relatively small amount
of memory by not storing the location of the objects and their
corresponding keys. Instead, for each object stored on flash,
the index contains a pointer to a region in the flash where the
object is stored, and it stores an additional 4 bits that specify
a hash function on the object key that indicates the insertion
point of the object in its region on flash. The index lever-
ages bloom filters to indicate whether the object resides on
flash or not without storing full keys in DRAM. On average,
Flashield’s lookup index only requires 1.03 reads from the
SSD to return an object stored on it.

We implement Flashield in C and evaluate its perfor-
mance on a set of real-world applications that use Mem-
cachier [7], a popular cloud-based caching service, using
week-long traces. We show that compared with RIPQ [38],
Flashield reduces write amplification by a median of 5× and
an average of 16×, and the index size by more than 5×,
while maintaining the same average hit rates. We show that
when objects are read from SSD, Flashield’s read latency and
throughput is close to the SSD’s latency and throughput, and
when objects are written to the cache or read from DRAM,

66 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Random Sequential

l

l

l

l

l

l

l

l

l

l
l

l

l l

l l

l

l

l l l1

2

3

4

5

6

7

8

0.5 0.75 1 0.5 0.75 1
Flash Utilization

D
ev

ic
e−

le
ve

l W
rit

e
A

m
pl

ifi
ca

tio
n

Write Size
l

l

l

l

l

1 MB

8 MB

64 MB

256 MB

512 MB

Figure 1: Device-level write amplification after writing 4 TB ran-
domly and sequentially using different write sizes.

its latency and throughput are similar to that of DRAM-based
caches like Memcached.

This paper makes three main contributions:
1. Flashield is the first SSD storage system that explicitly

uses DRAM as an admission control filter for deciding
which objects to insert into flash.

2. Flashield’s novel in-memory lookup index for flash
takes up less than 4 bytes per object in DRAM, without
sacrificing flash write amplifiction and read amplifica-
tion.

3. Flashield is the first key-value cache that uses a
machine-learning based admission control algorithm
and lightweight temporal sampling to predict which ob-
jects will be good candidates for flash.

As new generations of flash technology can tolerate even
fewer writes [3,20,29,32], our dynamic admission control to
flash can be extended to other systems beyond caches, such
as flash databases and file systems.

2 The Problem
Designing an SSD-based cache requires solving two con-

flicting challenges. SSDs perform poorly and wear out
quickly unless writes are large and sequential. This con-
flicts with the characteristics of cache workloads. Caches
store small objects with highly variable lifetimes; this drives
caches to prefer small random I/O for writes which will wear
flash drives out quickly.

The lifetime of an SSD is defined by flash device manu-
facturers as the amount of time before a device has a non-
negligible probability of producing uncorrectable read errors
(e.g., a probability of 10−15 of encountering a corrupt bit).
The lifetime of an SSD depends on several factors, includ-
ing the number of writes and erasures (termed program-erase
cycles), the average time between refresh cycles of the SSD
cells, the cell technology, the error correction code and more.
The typical lifetime of a flash cell is between 3-5 years as-
suming it is written 3-5 times a day on average.

The key metric for device wear is write amplification.
Many write patterns force the SSD to perform additional
writes to flash in order to reorganize data. Write amplifica-
tion is the ratio of the bytes written to flash chips compared
to the bytes sent to the SSD by the application. A write am-

plification of 1 means each byte written by the application
caused a one byte write to flash. A write amplification of 10
means each byte written by the application caused an extra
9 bytes of data to be reorganized and rewritten to flash.

2.1 Device-level Write Amplification
Device-level write amplification (DLWA) is write ampli-

fication that is caused by the internal reorganization of the
SSD. The main source of DLWA comes from the size of the
unit of flash reuse. Flash is read and written in small (˜8 KB)
pages. However, pages cannot be rewritten without first be-
ing erased. Erasure happens at a granularity of groups of sev-
eral pages called blocks (˜256 KB). The mismatch between
the page size (or object sizes) and the erase unit size induces
write amplification when the device is at high utilization.

For example, when an application overwrites the contents
of a page, the SSD writes it to a different, fresh block and
maintains a relocation mapping called the Flash Translation
Layer (FTL). The original block cannot be erased yet, be-
cause the other pages in the same block may still be live.
When the flash chips are completely occupied, the SSD must
erase blocks in order to make room for newly written pages.
If there are no blocks where all of the pages have been su-
perseded by more recently written data, then live pages from
mutiple blocks must be consolidated into a single flash block.

This consolidation or garbage collection is the source of
DLWA. If a device is at 90% occupancy, its DLWA can be
very high. Figure 1 shows DLWA under sequential and ran-
dom writes. The measurements were taken on a 480 GB
Intel 535 Series SSD using SMART, a system for monitor-
ing the internal formation of the device. For each data point,
4 TB of randomly generated data is written either randomly
or sequentially to the raw logical block addresses of the de-
vice with varying buffer sizes. Specifically, in the random
workload the logical block space is broken into contiguous
fixed buffer-sized regions; each write overwrites one of the
regions at random with a full buffer of random data. The se-
quential workload is circular; regions are overwritten in or-
der of their logical block addresses, looping back to the start
of the device as needed. For both patterns, we varied the de-
vice space utilization by limiting writes to a smaller portion
of the logical block addresses.

The results show that random, aligned 1 MB flash writes
experience a nearly 8×DLWA. This is surprising, since flash
erase blocks are smaller than 1 MB. The reason for this write
amplification is because SSDs are increasingly optimized for
high write bandwidth. Each flash package within an SSD is
accessed via a relatively slow link (50-90 MB/s today); SSDs
stripe large sequential writes across many flash packages in
parallel to get high write bandwidth. This effectively fuses
erase blocks from several packages into one logical erase
block. A 1 MB random write marks a large region of pages
as ready for erase, but that region is striped across several
erase units that still contain mostly live pages. Others have

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 67

Avg Object Size Read / Write / Update % Unread Writes %

257 B 90.0% / 9.5% / 0.5% 60.6%

Table 2: Statistics of the 20 applications with the most requests in
the week-long Memcachier trace.

0.000000

0.900000

0.990000

0.999000

0.999900

0.999990

0.999999

0 250 500 750 1000
Object Size (KB)

Fr
ac

tio
n

of
 It

em
s

Figure 2: CDF of the object sizes written to memory by the top 20
applications in the Memcachier trace.

corroborated this effect as well [38].
There are two ways to combat this effect. The first is to

write in units of B ·W where B is the erase block size and
W is how many blocks the SSD stripes writes across. Our
results show that a cache would have to write in blocks of
512 MB in order to eliminate DLWA. The second approach
is to write the device sequentially, in FIFO-order at all times.
This works because each B ·W written produces one com-
pletely empty B ·W unit, even if writes are issued in units
smaller than B ·W . Figure 1 shows that 8 MB sequential
writes also eliminate DLWA.

This means our cache is extremely constrained in how it
writes data to flash. To minimize DLWA the cache must
write objects in large blocks or sequentially. In either case,
this gives the cache little control on precisely which objects
should be replaced on flash.

2.2 Cache-level Write Amplification
Writing to flash in large segments (contiguous chunks of

data) is a necessary but not sufficient condition for mini-
mizing overall write amplification. The main side effect
of writing in large segments is cache-level write amplifica-
tion (CLWA). CLWA occurs when objects that were removed
from the SSD are re-written to it by the cache eviction policy.
If the size of the segments (MBs) is significantly larger than
the size of objects (bytes or KBs), it is difficult to guarantee
that high-ranking objects in the cache will always be stored
physically separate from low-ranked objects or objects that
contain old values. Therefore, when a segment that has many
low-ranked objects is erased from the cache, it may also in-
advertently erase some high-ranking objects.

Table 2 presents general statistics of a week-long
trace of Memcachier, a commercial Memcached service
provider [13, 14], and Figure 2 presents the distribution of
the sizes of objects written in the trace. The figure demon-
strates that object sizes vary widely, and in general they are
very small: the average size of objects written to the cache
is 257 bytes, and 80.67% of objects are smaller than 1 KB.
Therefore, even with a segment size of 8 MB using sequen-

Hit Rate CLWA

Victim Cache 69.72% 4.00
RIPQ 70.59% 2.59

Table 3: Hit rate and cache-level write amplification of RIPQ and
the victim cache policy under the entire Memcachier trace.

tial writes, which is the the smallest possible segment size
that does not incur extra write amplification, each segment
will contain on average over 32,000 unique objects.

In addition, 60.6% of writes (and 5.8% of all requests) are
unread writes, which means they are never read after they are
written, and 0.5% of all requests are updates. Both unread
writes and updates contribute to write amplification. Ideally,
unread writes should not be written to the cache. In the case
of updates, to reclaim the space of an object after it was up-
dated, the cache needs to erase and rewrite the object.

RIPQ [38] represents the state-of-the-art in minimizing
CLWA; it is an SSD-based photo cache that minimizes
CLWA by inserting objects that were read k times in the
past together 1. When objects are first inserted into the
cache, they are buffered in memory, and periodically they
are moved into flash together as a segment with other objects
that have been read the same number of times. The idea is
that objects that were read k times in the past might share a
similar future eviction rank. For example, an object that was
read once is stored on flash in the same segment with other
objects that were read once. Segments that contain objects
that have been read fewer times will be evicted faster than
segments with objects that have been read many times.

RIPQ works for photos, which are large and immutable,
but it breaks down on web cache workloads where values are
small and updated more frequently. To illustrate, we simu-
lated the CLWA of RIPQ (the RIPQ implementation is not
publicly available) with the Memcachier traces using a seg-
mented LRU with 8 queues. We also compared it with a
victim cache policy, a naı̈ve approach where the SSD simply
serves as an L2 cache (i.e., every object evicted from DRAM
is written to SSD). This policy is used by TAO [11], Face-
book’s graph data store, which leverages a limited amount of
flash as a victim cache for data stored in DRAM. The simula-
tion assigns the same amount of memory for each application
in the trace, with a ratio of DRAM to SSD of 1:7.

The results are presented in Table 3 and show that, while
RIPQ considerably improves upon victim cache, it still suf-
fers from a very high CLWA. Note that the victim cache
would suffer from an even greater total WA, because it also
suffers from DLWA (since it does not write to flash in large
segments). RIPQ suffers from CLWA for two reasons. First,
RIPQ has no admission policy and it writes all incoming
objects to flash; even unread objects or objects that are fre-
quently updated. Second, when the frequency of reads of a

1Non-cache SSD key-value systems that store data persistently [5, 9, 25,
27] are not affected by CLWA, because they do not evict objects (all data
fits in the database)

68 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DRAM Flash

. . .

Segment of
flashy objects

Eviction priority Write

Evict

Evict Write back into DRAM

Figure 3: Lifetime of an object in Flashield. Objects always enter
into DRAM. Objects that are a good fit for flash (flashy objects)
are aggregated and moved into flash as a segment. The decision of
whether to evict objects from DRAM or flash is based on a global
eviction priority.

certain object changes, it creates additional writes. For ex-
ample, if an object was read twice over a period of time after
it was written, it is grouped with other objects that were read
twice on flash. However, if it was read five more times, RIPQ
needs to rewrite it to group it with other higher ranking ob-
jects. Since the objects are much smaller than the segment
size, and there is a relatively high ratio of writes in the trace,
RIPQ struggles to guarantee that objects that have been read
around the same time will be stored in the same segment.

These results give two clues on how a cache should ex-
ploit DRAM differently to minimize CLWA for web cache
workloads. First, not every object inserted into the cache by
the application is a good candidate to be stored on SSD. For
example, objects that are updated soon after they are first
written or objects that have a low likelihood of being read in
the future. However, the occurrence of such objects varies
widely across different applications. For example, in some
applications of the Memcachier trace, more than half of writ-
ten objects are never read again, and in some applications, a
vast majority of objects are read many times and should be
written to the cache. Second, due to the disparity between
the segment size and the object size, it is difficult to guar-
antee that objects that were similarly ranked by the eviction
policy will be stored in physically adjacent regions on SSD.

Both of these insights motivate Flashield, a cache that suc-
cessfully minimizes CLWA with no DWLA.

3 Design
The design goal of Flashield is to minimize cache-level

and device-level write amplification, while maintaining com-
parable hit rate. The key insights of Flashield’s design are to
use DRAM as a filter, which prevents moving objects into
flash that will be soon thereafter evicted or updated, and
to maintain an efficient in-memory index which retains low
write and read amplification.

Figure 3 illustrates the lifetime of an object in Flashield.
Objects are first always written to DRAM. After the object is
read for the first time, Flashield starts collecting features that
describe its performance. These contain information about

when and how many times the object has been read and up-
dated. An object may be evicted from DRAM by Flashield’s
eviction algorithm.

Periodically, Flashield moves a segment (e.g., 512 MB)
composed of many DRAM objects into flash. Flashield uses
a machine learning classifier to rank objects based on their
features. If an object passes a rank threshold, it will be con-
sidered as a candidate to move to flash. The candidates to
flash are then ranked based on their score, which determines
the order they are moved by Flashield into flash. This order
is important when there are more flashy candidates than can
fit in a single segment. After it gets moved to flash, an object
will live in the cache for a relatively long duration. It will get
moved out of flash once its segment is erased from flash, in
FIFO order. At that point, the object will be evicted if it is
low in terms of eviction priority, or it will get re-inserted into
DRAM if it has a high eviction priority. Once the object is
re-inserted into DRAM, it will have to prove itself again as
flash worthy before it is re-written to flash. For more details,
see §4.3.

In Flashield, DRAM serves three purposes. First, it is
used as a filter to decide which objects should be inserted
into SSD. Second, it stores the metadata for looking up and
evicting objects on flash. Third, it serves as a caching layer
for objects before they are moved to SSD and for objects that
are not candidates for SSD.

3.1 DRAM as a Filter
In Flashield, DRAM serves as a proving ground for mov-

ing objects into flash. When objects are first written into
DRAM, Flashield does not have a-priori knowledge whether
they will be good candidates for flash. Furthermore, applica-
tions have unique workloads, so their access patterns need to
be learned individually.

A strawman approach for determining which objects are
flash-worthy is to rank them based on simple metrics like re-
cency or frequency, as done by standard cache replacement
polices like LRU or LFU. However, it is difficult to set a sin-
gle threshold for flash-worthiness that will work for all ap-
plications. For example, the system can define a frequency-
based threshold, requiring that an object will be read more
than once before it enters flash. However, for some applica-
tions, such a threshold proves too stringent where the access
patterns are long and reduces the hit rate due to premature
evictions. It can also be too lenient for other applications, in
which objects would be unnecessarily written to flash. Even
for a single application, such a threshold is a heuristic that
would have to be manually tuned (see the example described
below and depicted in Table 4).

Instead of using a one-size-fits-all approach, machine
learning can be used as a way to dynamically learn which
objects are flash-worthy for each individual application.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 69

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
c
y

Number of future accesses (n)

a
b
c
d
e
f

g

Figure 4: Accuracy of SVM classifier in different Memcachier ap-
plications, for predicting whether an object will be accessed at least
n times in the future without updates.

3.2 Flashiness
We define flashiness as a metric that predicts whether an

object will be a good fit for flash. An object that has a high
flashiness score is an object that meets two criteria. First, it
is an object that will be accessed n times in the near future
(where n is a configurable parameter). This guarantees that it
will not be evicted by the cache’s eviction function. Second,
it needs to be immutable in the near future, since updating an
object in SSD requires an additional write.

Note that the threshold n, the number of times an object
will be read in the future, can be used by the system to in-
dicate how sensitive it is to write amplification. If the sys-
tem is very sensitive to write amplification, it can set n to a
relatively high number, which will ensure that Flashield will
only move objects into flash that it predicts will be read many
times in the future. On the other hand, if the system is more
sensitive to hit rate, n will be set as a low number. In addi-
tion, Flashield allows the operator to set a fixed limit on the
flash write rate to maintain a certain target lifetime.

Both of the above flashiness criteria can be captured by
predicting the number of times an object will be read in the
near future (e.g., one hour), and omitting objects that are pre-
dicted to be updated during this preiod.

Flashield uses a binary classifier using Support Vector Ma-
chine (SVM) to predict flashiness, by collecting two features:
(1) number of past reads and (2) number of past updates. Fig-
ure 4 provides the accuracy of the classifier on different ap-
plications from the Memcachier traces, with variable n val-

ues. Accuracy is defined as
t p+ tn

t p+ tn+ f p+ f n
, where t p is

true positives, tn is true negatives, f p is false positives, and
f n is false negatives. The classifier tries to predict whether
an object will be accessed at least n times in the future with-
out being updated, using a training time of one hour.

The accuracy of the prediction varies among the different
applications (from 75% to 99%), due to their varying work-
loads. In addition, the accuracy generally decreases as n in-
creases. This is because as n increases, the classifier is trying
to predict more rare events, of which it has observed fewer

App a b c d e f g

Num Accesses 5 4 5 2 4 4 6

Table 4: The threshold of the number of past accesses that predict
whether an object will be accessed 5 times or more in the next hour.

training data points. For example, there are more objects
that have been read more than once in the following hour,
than objects that have been been read five times or more.

To demonstrate why machine learning is more effective
than having a fixed threshold of the number of past accesses
for determining flashiness, consider the following example.
We trained a simple classifier across the applications from
the trace, which tries to predict flashiness with n = 5, utiliz-
ing a single feature (number of past reads), using a decision
tree with a depth of 1. Table 4 presents the thresholds that
the decision tree chose for each application, which would
provide the highest prediction accuracy, based on its train-
ing samples. The results demonstrate that there is no one
single static threshold that would be optimal for all applica-
tions. This also shows that it is difficult to determine what
this threshold would be a-priori. For example, for application
d, only two reads occurring in the past is sufficient to predict
that it will be read 5 more times or more in the future.

3.3 Flashiness Design Discussion

We experimented with several different features related to
the number and frequency of reads and updates. We found
that the only features that were impactful in the prediction
and capture past information on reads and update are: (1)
number of past reads and (2) number of past updates.

To our surprise, we found that across all the applications
we measured, features related to recency (e.g., time between
reads, time since the last read) had no positive impact on
predictions, and in fact, in some instances reduced classifier
accuracy. This supports our design choice to decouple the
flashiness metric, which is based on number and type of past
accesses, from the eviction policy, which is typically based
on recency (e.g., LRU or one of its derivatives, see §3.4).

In addition, we experimented with several different clas-
sification algorithms. Initially, we tried predicting this num-
ber directly using a logistic regression. We ran this classi-
fier on the Memcachier trace and found the prediction was
highly inaccurate. After trying different features and classi-
fiers, we found it is difficult to accurately predict exactly how
many times an object will be accessed in the future, which is
why we use binary classification, which predicts whether the
number of future reads is above n. We also tried using a dif-
ferent binary classifier, decision trees, which provided very
similar accuracy to SVM. We decided to use SVM, because
they provide a continuous score, which is used to provide a
global flashiness rank for objects. With decision trees, the
range of the score is limited to the number of leaves.

70 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.4 DRAM as an Index for Flash
Unlike log-structured merge trees (LSM), Flashield stores

the index in DRAM (both for objects in DRAM and in flash).
This allows Flashield to service requests at much lower la-
tency, since the index is read from DRAM. More impor-
tantly, storing the index on flash requires LSMs to constantly
update the index when objects get updated, which creates a
large number of writes [24, 27, 39]. When the index is on
DRAM, it is trivial to update it. However, since Flashield
uses DRAM also as an admission control layer, we must en-
sure that indexes will consume a minimal amount of space
on DRAM.

Similar to Memcached, Flashield stores its index in a
hash-table to enable efficient lookups. A naı̈ve index would
contain the identity of the keys stored in flash, the location of
the values, and their position in an eviction queue. However,
such an index would be prohibitively expensive. If we take
an example of a 6 TB flash device with an average object
size of 257 bytes (equal to the average object size of the top
20 applications in the Memcachier trace), storing a hash of
the key for each object that avoids collisions requires at least
8 bytes, storing the exact location of each object would be
43 bits, and keeping a pointer to a position in a queue would
be 4-8 bytes. Storing 17 bytes per object on DRAM would
require 406 GB of DRAM. This would take up (or exceed)
all of the DRAM of a high end server. In RIPQ, for ex-
ample, each in-memory index entry is 22 bytes. We design a
novel in-memory lookup index for variable-sized objects that
uses less than 4 bytes per object, without incurring additional
flash write amplification.
Identities of keys. Rather than storing the identities of
keys in the index, Flashield keeps them only in the flash de-
vice, as part of the object metadata. In order to identify hash
collisions in the lookup hash-table, Flashield compares the
key from flash. To limit the number of flash reads during
key lookup and avoid complex table expansions, Flashield
utilizes a multiple-choice hash-table without chains. Dur-
ing lookup, pre-defined hash functions are used one by one,
such that if the key is not found, the next hash function is
used. If all hash functions are used and the key was still not
found then Flashield returns a miss. Similarly if a collision
happens during insertion, the key is re-hashed with the next
hash function to map it to another entry in the lookup table.
If all hash functions are used and there is still a collision, the
last collided object is evicted to make space for the new key.

To reduce the number of excess reads from the flash
in case of hash collisions, Flashield utilizes an in-memory
bloom filter for each segment, which indicates whether a key
is stored in the segment. We decided to use a bloom filter
per segment, rather than a global bloom filter, to eliminate
the need of the bloom filter to support deletions (since each
segment is immutable). We use bloom filters with a false
positive rate of 1%. For the Memcachier trace, this trans-
lates to an average of 1.03 accesses to flash for every hit in

New lookup

Does hashed
key points
to a valid
lookup entry?

Does hashed
key exist in
the segment
bloom filter?

Hash key again Tried all hash
functions?

Does object
from flash have
the same key
as lookup key?

Read object

Return miss

Yes Yes

No No No

No Yes

Yes

Figure 5: Algorithm for determining if an object exists in flash.

the flash and an extra memory overhead of 10 bits per item.

Object location. Instead of directly storing the location of
the SSD object, the index contains two separate fields: seg-
ment number and the ID of a predefined hash function. The
segment number represents a contiguous segment in flash
where the object is stored. Hashing the object’s key using
the predefined hash function provides the offset of the object
within the segment. Using a hash function to indicate the
object location in the segment may reduce flash utilization,
because it limits the number of possible positions for placing
an object within a segment. Note that these hash functions
are orthogonal to the hash functions used for the hash-table
lookup. We chose to utilize 16 pre-defined hash functions
(i.e., up to 16 possible positions for an object) since increas-
ing the number of hash functions beyond that provided neg-
ligible improvement in the flash utilization. We explore the
flash utilization in §5.3. Note that since data is written to
flash sequentially, segment sizes of 8 MB or larger achieves
minimal DLWA. We use 512 MB segments in order to reduce
the indexing overhead.

Eviction policy. To avoid the overhead of maintaining a
full eviction queue composed of a doubly-linked list of point-
ers, Flashield uses the CLOCK algorithm [16], similar to
other memory key-value caches [18]. CLOCK approximates
the LRU policy, so to evaluate its impact we ran the top
5 applications in the Memcachier trace in a simulation and
compared the results between CLOCK and LRU. The results
show that by keeping just two bits per object for CLOCK
timestamps, the hit rate decreases by an average of only 0.1%
compared to LRU.

Figure 5 summarizes Flashield’s lookup process. The
lookup key is first hashed to find the corresponding entry
ID in the lookup hash-table, which provides the segment
ID. Then, Flashield performs a key lookup in the segment’s
bloom filter. If the key is found in the bloom filter, Flashield
reads the object from the segment on flash. Since the bloom
filter may cause a false positive, if the object that was read
from flash does not have the same key as the object which is
being looked up, the key will be hashed again and Flashield
will look it up again in the lookup hash-table. Similarly, if
the key is not found in the bloom filter, the key is hashed
again and Flashield performs another lookup in the lookup
hash-table. Flashield will attempt to lookup an object using
all the configured hash functions (16 by default) until the ob-
ject is found. If the object is not found after all attempts, the
object does not exist in flash and Flashield returns a miss.

The hash-table entry format is summarized in Figure 6.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 71

01234567891011121314151617181920

Segment NumberHash
Function ID

Clock

G
ho

st

Figure 6: Hash-table entry format for objects stored on flash.

DRAM Flash

Flash Index Hashtable

Flash Bloom Filters

DRAM Cache

. . .

Segment 0

Segment 1

Segment 12288

Segment 12287

Figure 7: Flashield’s architecture. The flash index is an in-memory
hash table. The bloom filters provide fast lookups for object exis-
tence in flash, and the rest of the DRAM is a cache. Most of the
cache objects are stored on flash in segments.

The index contains an extra bit (ghost), that indicates
whether the object is scheduled for deletion from flash. We
describe the purpose of this flag at §4.3.

4 Implementation
This section presents the implementation of Flashield. We

implemented Flashield in C from scratch, except for the
transport, dispatch, request processing, and the hash table
for DRAM objects, which are borrowed from Memcached
1.4.15. Flashield has four main functions: read, write,
move data to flash and evict. Figure 7 depicts the high
level components of Flashield’s architecture. It supports
the generic Memcached protocol, so applications that deploy
Memcached can transparently utilize Flashield.

For reads, Flashield first checks whether the object exists
in the hash table for DRAM objects, which is based on Mem-
cached’s hash table. If not, it checks whether the object ex-
ists in flash using a separate hash table for flash objects. If the
object exists either in DRAM or flash, Flashield returns it,
otherwise the request is counted as a miss. Incoming writes
and updates are always stored in DRAM first. In the case of
updates, the updated object is stored in DRAM, and the old
version is invalidated. Flashield always maintains free space
in the size of a segment in DRAM for incoming writes.

Flashield uses a configurable number of worker threads
that process the client requests in parallel. To maintain
enough free space on DRAM, Flashield uses a dedicated
cleaner thread that works in the background and is not on
the critical path for normal request (read/write) processing.
In addition, Flashield let the operator configure a flash write
limit to guarantee a certain target lifetime. When the free
space on DRAM drops below a segment size, if there are
enough objects that meet a threshold for their flashiness score
and the flash write rate limit was not reached, the cleaner
copies them into a segment buffer. When the buffer is full,
the cleaner writes the segment to flash and then frees the
space the objects occupied in DRAM. Objects are moved to

flash in an order based on their flashiness score. When the
SSD is full, the cleaner will remove the last segment from
flash based on FIFO order.

For eviction, Flashield maintains a global priority rank
for all objects, whether they are stored in DRAM or flash.
Objects are evicted from Flashield based on this global pri-
ority. By default the priority is an approximation of LRU
using CLOCK. If the next object for eviction is in DRAM,
Flashield simply evicts it. If the next object for eviction is
in flash, Flashield marks it as a ghost object, and it will be
evicted when its segment is removed from flash. Note that
the movement of data from DRAM into flash is decoupled
from eviction. They are conducted in parallel and use differ-
ent metrics to rank objects. Objects that are moved between
the flash and DRAM always keep their global priority rank-
ing. When there are not enough objects in DRAM that meet
a threshold for their flashiness score, or the flash write rate
reached its limit, the cleaner will evict items from DRAM to
maintain sufficient free space.

The rest of the section describes in detail how Flashield
moves objects into flash, and the implementation of
Flashield’s classifier and eviction algorithm.

4.1 Writing Objects to Flash
Flashield constructs a flash-bound segment in DRAM, by

greedily trying to find space for the objects in the segment
one-by-one. The output bits of the pre-determined hash func-
tions provide different possible insertion points in the seg-
ment for each object. Flashield first assembles a group of ob-
jects that need to be moved to flash based on the their flashi-
ness. It then tries to insert the objects from this group based
on their size. Larger objects go first, because they require
more contiguous space than smaller objects. In this process,
some objects will not have available space in the segment.
Flashield skips these objects and tries to insert them again
next time it creates a new segment. We evaluate the resulting
segment utilization in § 5.3.

4.2 Classifier Implementation
Flashield’s flashiness score is computed based on two fea-

tures for each object. Since these features depend on infor-
mation across multiple object accesses, the features for an
object are only generated after an object has been read at
least once. If an object has never been read, its flashiness
score is automatically equal to zero.

Flashield periodically trains a separate classifier for each
application. For the commercial traces we used, we found
that a training period of one hour at the beginning of the
trace was sufficient.

The naı̈ve way to train the classifier would be to update
the features at each access to the DRAM. However, this ap-
proach may oversample certain objects, which can create an
unbalanced classifier. For example, if a small set of objects
account for 99% of all accesses, multiple sets of features
would be created for these objects, and the flashiness esti-

72 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mation would be biased towards popular objects.
To tackle this problem, we implemented a sampling tech-

nique that generates a single sample for each object, cho-
sen uniformly over all of its accesses during the training pe-
riod. Instead of updating the features at each object access,
Flashield does it only with a probability of 1

n , where n is the
number of times the object was read and updated so far.

To illustrate this sampling technique, consider the follow-
ing example. Suppose an object was written for the first time,
and then read. Its feature vector is:

[
1,0

]
(number of past

reads, number of past updates). Since the number of reads
and updates is equal to 1, the feature vector generated by its
first read will be the feature we use for training at a proba-
bility of 1. If the object is updated (feature vector is now:[
1,1

]
), Flashield will keep the second set of features with a

probability of 1
2 , since the number of reads and updates is

equal to 2. This is equal to uniformly sampling the features
from the first or second access. Each subsequent access will
be sampled at a uniform probability of 1

n , and the probability
of prior accesses to be sampled will also be uniform.

After collecting the samples for an hour, we measure the
number of times each of the objects is hit in the subsequent
hour. This number is used as the target function for the train-
ing. After these two periods, Flashield trains the classifier
using these training samples and labels.

4.3 Eviction
Flashield uses the CLOCK algorithm to rank objects for

eviction. Instead of keeping precise priority rank, each object
has only two CLOCK bits in its hash table entry that signify
priority. In order to approximate LRU, when the object is
read, its bits are all set to 1. MFU (Most Frequently Used) is
approximated by incrementing the bits by 1 at each read.

When a set operation inserts an object into the cache, it
may trigger an eviction. On eviction, Flashield walks round-
robin through each object entry in the index, decrementing
its CLOCK value by one. It stops the walk when it reaches
an entry that has a CLOCK value of zero. This object is cho-
sen as the next victim for eviction. If the victim object is
in DRAM, its space is freed and may be reused for the in-
coming value. In case there is sufficient space after freeing
the victim, eviction stops, otherwise the process repeats as
needed. If the object is in flash, Flashield cannot delete it
immediately from flash, since fine-grained writes to the SSD
would incur high DLWA. Instead, the entry is marked as a
ghost object, which acts as a hint to the flash cleaning pro-
cess. Later, when the on-flash segment that the object resides
is about to be overwritten, the ghost object will not be pre-
served, effectively freeing the storage as part of the bulk flash
cleaning process. Even so, a ghost object is still accessible if
it is the most current value associated with a particular key,
so long as the flash cleaning process has not yet overwritten
its segment on flash. In a sense, ghost objects approximate
the bottom of the global eviction rank (including both flash

New	segment	is	ready	in	
DRAM	

Is	there	enough	free	space	in	
flash?

Flush	the	segment	
to	flash

Pick	victim	segment	and	
allocate	its	non-ghost	objects	

to	DRAM

Delete	the	victim	segment

No Yes

Write-rate	limit	reached?

Yes

No

There	are	enough	flashy	
items	to	fill	up	a	segment

Figure 8: Flashield’s process of allocating and deleting a segment
to and from flash.

and DRAM); non-ghost objects, are considered to be at the
top of the global eviction rank and we call them hot objects.

Flashield triggers a segment deletion once a new segment
is allocated and ready to be moved from DRAM to flash,
given that the flash is full and the configured write rate limit
was not exceeded. The cleaner removes the last segment
from flash in FIFO order. During segment erasure, its ghost
objects are removed from the cache, while hot objects are re-
inserted into the DRAM. Figure 8 summarizes this process.

Moving objects from flash back to DRAM will trigger
evictions; left unchecked this can create two issues. First,
hit rates could suffer if objects are prematurely evicted from
DRAM without proving they are flashy. Second, if too many
flashy objects are evicted it can contribute to write amplifica-
tion. Flashield guards against this with a hot data threshold
(HDT), which ensures that in the limit enough objects can
be discarded during cleaning to free up sufficient space on
flash, without placing too much pressure on eviction. With-
out HDT, the cleaner could re-allocate low ranked objects, at
the expense of higher ranked objects residing in the DRAM.

The HDT is defined as DRAM+ SSD · hot, where DRAM
is the available object storage in DRAM, SSD is the total size
of the SSD, and hot is the percentage of SSD that is allocated
for hot objects. Flashield strives to maintain the HDT, even
when an incoming object has sufficient space in DRAM. To
do so, whenever the amount of hot data exceeds the HDT,
Flashield triggers a new eviction, which marks additional ob-
jects as ghost if they reside on flash. By default, hot is 70%,
so about 30% of the objects on flash are ghost objects.

Ghost objects can still be accessed after they were marked
as ghosts, since they are not immediately removed from
flash. If a ghost object is accessed, it is not considered a
ghost anymore and Flashield marks it as a hot object (the
ghost bit is set to zero). Since Flashield always maintains
the HDT, switching a ghost object from ghost to hot may
trigger an eviction. To avoid unnecessary DRAM evictions,
Flashield will not evict low ranking objects from DRAM in
such case, but only walk through flash objects to mark ob-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 73

Figure 9: Flashield’s eviction process.

jects as ghosts.
Although the cleaner is responsible for maintaining

enough free space in DRAM (by allocating new segments
to flash), in rare occasions the DRAM may not have enough
free space to accommodate an incoming write. This may
happen when the flash write rate limit is reached, or if the
number of objects with flashiness score above the threshold
is not enough for forming a new segment. In such scenario,
Flashield will trigger a special eviction where it will walk
through the DRAM objects only, and will evict low ranking
objects from DRAM to accommodate the incoming write.

Figure 9 demonstrates Flashield’s flow chart when a set
operation inserts new object to the cache.

Delete operations in Flashield do not incur writes to flash.
If the object is in DRAM, it is simply deleted. If it resides
in flash, it is not immediately removed from flash, since that
would incur DLWA. It is also not marked as a ghost, be-
cause ghost objects can still be accessed. Instead, Flashield
deletes the object’s lookup entry. During segment eviction,
the cleaning process identifies deleted objects by comparing
the segment ID in their corresponding lookup entry with the
evicted segment ID, and will not preserve them. Building on
that, Flashield handles update operations as a delete opera-
tion followed by a new insertion.

5 Evaluation
In this section we evaluate the end-to-end performance

of Flashield compared to existing systems. Unfortunately,
to the best of our knowledge, there are no public traces of
large-scale key-value caches. We use real-world traces of an
entire week, provided by Memcachier, a widely used Mem-
cached service provider. Since the Memcachier traces are
fairly sparse in terms of their request rate, we ran a set of
synthetic microbenchmarks to stress the performance of the
system to measure its throughput and latency.

5.1 End-to-end Performance
We compare the end-to-end hit rate and write amplifica-

tion of Flashield to RIPQ and the victim cache policy, by re-
running real-world applications from the Memcachier traces.
Since no public implementation of RIPQ is available [38],
we are forced to run and compare a simulation of the three
systems. Each one of the policies uses the same amount of
memory that was allocated in the Memcachier trace, with a

Flashield RIPQ Victim Cache
App Hit % CLWA Hit % CLWA Hit % CLWA

a 98.8% 5.8 98.5% 151.9 99.3% 4536.3
b 98.6% 2.8 98.8% 4.4 98.9% 21.7
c 83.1% 0.4 83.1% 2.9 93.3% 3.7
d 98.1% 0.2 98.7% 12.4 99.3% 34.0
e 96.0% 0.8 96.0% 1.6 96.2% 1.3
f 90.1% 0.2 91.3% 1.8 94.4% 2.4
g 97.3% 0.5 97.3% 1.4 97.4% 1.0

Table 5: Hit rates and CLWA of Flashield using a threshold of one
future read, RIPQ and victim cache.

Flashield 1 Flashield 10 Flashield 100
App Hit % CLWA Hit % CLWA Hit % CLWA

a 98.8% 5.8 99.0% 9.2 98.9% 5.0
b 98.6% 2.8 98.6% 2.7 95.2% 0.0
c 83.1% 0.4 83.1% 0.4 83.0% 0.4
d 98.1% 0.2 98.1% 0.2 98.1% 0.2
e 96.0% 0.8 95.9% 0.7 95.9% 0.7
f 90.1% 0.2 85.5% 0.0 85.2% 0.0
g 97.3% 0.5 97.3% 0.5 97.3% 0.5

Table 6: Hit rates and CLWA of Flashield using a flashiness pre-
diction threshold of 1, 10 and 100 future reads.

ratio of 1:7 of DRAM and SSD. We run Flashield with a
threshold of one future read. In other words, objects that are
predicted to have at least one future read are deemed suffi-
ciently flash-worthy. Since Flashield utilizes a separate SVM
for each application, we compare the results of individual ap-
plications. To run RIPQ with 8 insertion points, and there-
fore at least 8 different segments on flash, we only run ap-
plications that were allocated a sufficient amount of memory
by Memcachier.

Table 5 presents the results comparing Flashield and
RIPQ. The results show that Flashield achieves significantly
lower CLWA than RIPQ and victim cache. The median
CLWA of Flashield is 0.54, the median of RIPQ is 2.85 and
the median of victim cache is 3.67. Even though Flashield
uses a low threshold for flashiness of one future read, it still
prevents a large number of writes that are not a good fit for
SSD from being written to flash. Flashield and RIPQ have an
almost identical hit rate. Both have a lower hit rate than vic-
tim cache, but victim cache suffers from significantly higher
CLWA (and since it does not handle DLWA, also a much
higher overall write amplification).

Table 6 compares Flashield with different flashiness pre-
diction thresholds n. While the results vary from application
to application, generally speaking, the higher the threshold
the lower the CLWA and the lower the hit rate. Note that
in some applications, such as in application a, this trade off
does not hold, since we train the classifier individually on
each application, and each application performs differently.

Table 7 depicts the results when we vary the ratio of
DRAM and SSD, while keeping the total amount of memory
constant for each application. The results show that if we re-
duce the amount of DRAM too much, the hit rate drops. This
is due to the fact that when the DRAM is low, objects do not

74 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DRAM 1:15 DRAM 1:7 DRAM 1:3
App Hit % CLWA Hit % CLWA Hit % CLWA

a 99.0% 5.1 99.0% 4.6 99.0% 2.6
b 98.3% 3.1 98.6% 4.1 98.8% 4.9
c 81.4% 0.4 83.2% 0.4 92.7% 0.8
d 97.6% 1.2 98.4% 0.9 98.9% 2.2
e 95.7% 0.7 96.0% 0.8 96.2% 0.9
f 89.0% 0.2 91.0% 0.3 94.3% 0.4
g 97.2% 0.5 97.3% 0.5 97.3% 0.5

Table 7: Hit rates and CLWA of Flashield using a threshold of 1,
with varying ratios of DRAM and SSD. The results use a smaller
segment size (2 MB).

Flashield Memcached

SSD
Hits

DRAM
Hits

Misses Hits Misses

Throughput (IOPS) 150K 270K 239K 275K 287K
Latency (µs) 106 13.5 19 13 12

Table 8: Throughput and latency of SSD hits, DRAM hits and
cache misses for Flashield and Memcached.

have sufficient time to prove themselves as flashy enough to
be moved to SSD before they are evicted from DRAM. Note
that we used a smaller segment size in these runs, in order to
be able to display results for a 1:15 ratio of DRAM.

5.2 Microbenchmarks
We drive Flashield’s implementation with microbench-

marks to stress the performance of the system, and com-
pare its latency and throughput with Memcached. We use
4-core 3.4 GHz Intel Xeon E3-1230 v5 (with 8 total hard-
ware threads), 32 GB of DDR4 DRAM at 2133 MHz with a
480 GB Intel 535 Series SSD. All experiments are compiled
and run using the stock kernel, compiler, and libraries on De-
bian 8.4 AMD64. The microbenchmark requests are based
on random keys, with an average object size of 257 bytes,
which is the average object size of the top 20 application
in the Memcachier trace. We disabled the operating system
buffer cache to guarantee that SSD reads are routed directly
to the SSD drive. Since the performance of SSD and DRAM
is an order of magnitude different, we separately measured
SSD and DRAM hits. Finally, we measured the latency and
throughput of Memcached 1.4.15 as a baseline.

Table 8 presents the throughput and latency of the mi-
crobenchmark experiment. Note that in the case of both
Memcachier and Facebook, Memcached is not CPU bound,
but rather memory capacity bound [14, 15]. The latency and
throughput of DRAM hits in Flashield are very similar to
the latency and throughput of Memcached. While the aver-
age latency of SSD hits is significantly higher than DRAM,
their latencies become similar when deploying over the net-
work (network access times are typically 100 µs or more).
The miss latency of Flashield is similar to the latency of
DRAM hits, because all of Flashield’s lookup indices are
stored in DRAM, and the only case it needs to access flash in
a miss is when one of the in-memory bloom filters returns a

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Total Candidate Data Considered (MB)

S
eg

m
en

t O
cc

up
an

cy

Hash
Functions

32

16

8

4

2

1

Figure 10: Utilization of a 512 MB segment on flash when
Flashield tries to allocate space with a varying number of objects
from the Memcachier trace. As Flashield tries to allocate more ob-
jects, it achieves higher utilization.

false positive. The write throughput and latency of Flashield
were identical to Memcached, because writes always enter
Flashield’s DRAM.

5.3 Utilization on Flash
When moving data from DRAM to flash, Flashield tries

to allocate space for objects in different possible insertion
points in the flash segment, using pre-defined hash functions.
If none of the insertion point references to sufficient conti-
gious free space for the object, Flashield skips the object and
will try to insert it during the next segment allocation.

Figure 10 depicts the utilization of Flashield’s flash alloca-
tion algorithm. To measure the utilization, we ran Flashield’s
allocation algorithm on the Memcachier traces with different
number of hash functions over a segment size of 512 MB.
The allocation greedily tries to allocate space to more data
and measures the resulting utilization. Note that after the
segment reaches about 60% utilization, its utilization curve
gradient decreases, since when Flashield tries to allocate ob-
jects there is a higher probability of collisions with other ex-
isting objects in the segment. Using 16 hash functions, it
takes about 1 GB of objects to reach a 99% utilization, and
on average each object needs to be hashed 8.2 times until it
finds an insertion point with enough space.

6 Related Work
There are two types of prior research. There are several

prior SSD-based key-value caches for specific workloads
(e.g., photo cache, graph database), but all of them suffer
from low flash lifetime under a general-purpose key-value
workload with small keys and variable objects without lever-
aging specialized hardware. There is also a large number of
prior SSD-based persistent key-value stores. Unlike caches,
persistent stores do not maintain an admission control and
eviction policies and do not suffer from CLWA, hence their
write amplification problems are less severe.
SSD-based Key Value Caches Facebook’s flash-based
photo cache evolved from McDipper [19] to BlockCache [2],
and then to RIPQ [38], trying to improve hit rates while
maintaining low write amplification. McDipper uses a sim-
ple FIFO policy, which causes it to suffer from low hit

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 75

rates. BlockCache improves cache hit rates by leveraging
the SLRU policy which co-locates similarly prioritized con-
tent on flash, but incurs much higher write amplifcation than
McDipper. RIPQ achieves even higher hit rates than Block-
Cache, while keeping its write amplication comparable to
McDipper [2]. RIPQ performs insertions with priority-aware
memory blocks, and uses virtual blocks to track the increased
priority value when an item is accessed. However, in a
general purpose key-value service like Memcachier, RIPQ
suffers from more than 5× higher write amplification than
Flashield, and up to 150× on specific applications. Further-
more, RIPQ’s in-memory index map occupies 22 bytes per
entry, consuming a very large amount of DRAM. Flashield’s
novel index requires less than 4 bytes of DRAM per ob-
ject. TAO [11], Facebook’s graph data store, uses a limited
amount of flash as a victim cache for data stored in DRAM.
Therefore, it suffers from a high rate of writes, because items
which are not frequently accessed are written into flash and
evicted soon after.

Twitter has explored SSD-based caching for its data center
cache with Fatcache [21], a modified version of Memcached
that buffers small writes and utilizes FIFO as an eviction pol-
icy. Flashield has better write amplification than Fatcache,
since not all write requests are written to flash, and higher hit
rates, because it uses eviction policies similar to LRU, which
provide a higher hit rate than FIFO. Moreover, Fatcache’s in-
memory index requires 32 bytes (or more) per entry, which
is 8× larger than Flashield.

A couple of systems try to support SSD-based caches by
modifying the SSD’s Flash Translation Layer (FTL). Dura-
cache [26] tries to extend the life of the SSD cache, by dy-
namically increasing the flash device’s error correction ca-
pabilities. Shen et al [37] allow the cache to directly map
keys to the device itself, and remove the overhead of the flash
garbage collector. Unlike these systems, Flashield addresses
CLWA without any changes in the flash device.

Other than key-value caches, there are several systems that
utilize flash as a block-level cache for disk storage [4,22,23,
33, 35, 40]. Unlike Flashield, storage blocks in these sys-
tems are always written to flash, and are fixed-sized (typ-
ically kilobytes in size). For this reason, they use a naive
(inefficient) in-memory index to map from block’s key to a
location in flash. These properties make them impractical for
general purpose key-value workloads with a variable and on
average small object sizes.

Cheng et al [12] present an offline analysis of the trade-off
between write amplification and eviction policies in block-
level caches. They generalize Belady’s MIN algorithm to
flash-based caches, and demonstrate that LRU-based evic-
tion is far from the optimal oracle eviction policy. However,
they do not provide an online algorithm and an implementa-
tion that reduces write amplification of SSD-based caches.
SSD-based Key Value Stores Since these systems are per-
sistent stores, all objects must be eventually written to flash,

and thus they do not maintain an admission control and evic-
tion policies, which are necessary for cache systems like
Flashield. Consequently, persistent key-value stores do not
suffer from CLWA and its implications, so their lifetime con-
straints are less severe than in a cache workload. However,
they still strive to minimize write amplification for perfor-
mance, since they must still suffer write amplification costs
to compact data and update their indexes.

Systems such as LevelDB [5] and RocksDB [9] store the
entire dataset and index on flash using Log-structure Merge-
trees (LSM), and buffer writes to flash in DRAM to avoid
DLWA. To enable efficient lookups, LSM-trees continuously
perform a background compaction process that sorts and re-
writes key-value pairs to flash, creating a major write am-
plification, particularly for workloads like key-value caches.
WiscKey [27] reduces write amplification by separating keys
and values. Keys are kept sorted in the LSM-tree, while val-
ues are stored separately in a log, which is helpful for work-
loads with large value sizes. PebblesDB [34] aims to reduce
write amplification during compaction by using Fragmented
Log-Structured Merge Trees (FLSM), avoiding rewriting
data in the same tree level. In addition, NVMKV [28] is
a key-value store that relies on advanced FTL capabilities
(advanced multi-block writes) to deliver higher performance
and lower write amplification. SILT [25] is a flash key-value
database that minimizes the index stored in memory by uti-
lizing three basic key-value stores. Objects are inserted first
to a write-optimized store, and then re-written and merged
into increasingly more memory-efficient stores. The major-
ity of the objects are stored in the most memory-efficient
store, making the average index cost per key low. However,
unlike Flashield, SILT is not optimized for write amplifica-
tion, and assumes values are fixed-length.

7 Conclusions
SSD faces unique challenges to its adoption for key-value

cache use cases, since the small object sizes and the frequent
rate of evictions and updates create excessive writes and era-
sures. Flashield is the first key-value cache that uses DRAM
as a filter for objects that are not ideal for SSD. Flashield
profiles objects using lightweight machine learning, and dy-
namically learns and predicts which objects are the best fit
for flash. It introduces a novel in-memory index for variable
sized objects with an overhead of less than 4 bytes per object,
without sacrificing the flash write and read amplifictions.

The ideas in this paper can be extended to other use cases.
For example, non-volatile memory (NVM) faces durabil-
ity challenges too, especially when used as a replacement
for DRAM, and may also require an admission policy [17].
This is also the case in multi-tiered storage systems, where
cheaper storage layers offer more capacity at the expense of
decreased performance. Finally, dealing with the durability
of flash becomes an ever more pressing issue, as its density
increases (and its ability to tolerate writes decreases).

76 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Amazon Elasticache. aws.amazon.com/elasticache/.

[2] The evolution of advanced caching in the face-
book cdn. https://research.fb.com/

the-evolution-of-advanced-caching-in-the-facebook-cdn/.

[3] Facebook asks for QLC NAND, Toshiba answers
with 100TB QLC SSDs with TSV, author = Alcorn,
P, note = http://www.tomshardware.com/news/

qlc-nand-ssd-toshiba-facebook,32451.html,.

[4] Flashcache. github.com/facebookarchive/flashcache.

[5] LevelDB. leveldb.org/.

[6] Memcached. memcached.org/.

[7] Memcachier. www.memcachier.com.

[8] Redis. http://redis.io/. 7/24/2015.

[9] RocksDB. rocksdb.org//.

[10] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems (New York, NY, USA, 2012), SIGMETRICS ’12, ACM,
pp. 53–64.

[11] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DIMOV,
P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI, S., LI,
H., MARCHUKOV, M., PETROV, D., PUZAR, L., SONG, Y. J., AND
VENKATARAMANI, V. TAO: Facebook’s Distributed Data Store for
the Social Graph. In Presented as part of the 2013 USENIX An-
nual Technical Conference (USENIX ATC 13) (San Jose, CA, 2013),
USENIX, pp. 49–60.

[12] CHENG, Y., DOUGLIS, F., SHILANE, P., WALLACE, G., DESNOY-
ERS, P., AND LI, K. Erasing belady’s limitations: In search of flash
cache offline optimality. In 2016 USENIX Annual Technical Confer-
ence (USENIX ATC 16) (Denver, CO, June 2016), USENIX Associa-
tion, pp. 379–392.

[13] CIDON, A., EISENMAN, A., ALIZADEH, M., AND KATTI, S. Dy-
nacache: Dynamic cloud caching. In 7th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 15) (Santa Clara, CA, July
2015), USENIX Association.

[14] CIDON, A., EISENMAN, A., ALIZADEH, M., AND KATTI, S.
Cliffhanger: Scaling performance cliffs in web memory caches. In
13th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16) (Santa Clara, CA, Mar. 2016), USENIX Associ-
ation, pp. 379–392.

[15] CIDON, A., RUSHTON, D., RUMBLE, S. M., AND STUTSMAN, R.
Memshare: a dynamic multi-tenant key-value cache. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17) (Santa Clara, CA,
2017), USENIX Association, pp. 321–334.

[16] CORBATO, F. J. A paging experiment with the multics system. Tech.
rep., DTIC Document, 1968.

[17] EISENMAN, A., GARDNER, D., ABDELRAHMAN, I., AXBOE, J.,
DONG, S., HAZELWOOD, K., PETERSEN, C., CIDON, A., AND
KATTI, S. Reducing DRAM footprint with NVM in Facebook. In
Proceedings of the Thirteenth EuroSys Conference (New York, NY,
USA, 2018), EuroSys ’18, ACM, pp. 42:1–42:13.

[18] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. MemC3: Com-
pact and concurrent MemCache with dumber caching and smarter
hashing. In Proceedings of the 10th USENIX Conference on Net-
worked Systems Design and Implementation (Berkeley, CA, USA,
2013), nsdi’13, USENIX Association, pp. 371–384.

[19] GARTRELL, A. Mcdipper: A key-value cache for flash stor-
age. https://code.facebook.com/posts/223102601175603/

mcdipper-a-key-value-cache-for-flash-storage/.

[20] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The bleak future
of NAND flash memory. In Proceedings of the 10th USENIX Confer-
ence on File and Storage Technologies (Berkeley, CA, USA, 2012),
FAST’12, USENIX Association, pp. 2–2.

[21] HOERNER, B., RAJASHEKHAR, M., YUE, Y., AND NYMEN, T.
Fatcache. engineering.twitter.com/opensource/projects/

fatcache.

[22] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMALDONE, S., AND
WALLACE, G. Nitro: A capacity-optimized SSD cache for primary
storage. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (Berkeley, CA, USA, 2014), USENIX
ATC’14, USENIX Association, pp. 501–512.

[23] LI, C., SHILANE, P., DOUGLIS, F., AND WALLACE, G. Pannier: A
container-based flash cache for compound objects. In Proceedings of
the 16th Annual Middleware Conference (New York, NY, USA, 2015),
Middleware ’15, ACM, pp. 50–62.

[24] LIM, H., ANDERSEN, D. G., AND KAMINSKY, M. Towards ac-
curate and fast evaluation of multi-stage log-structured designs. In
14th USENIX Conference on File and Storage Technologies (FAST 16)
(Santa Clara, CA, Feb. 2016), USENIX Association, pp. 149–166.

[25] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. SILT: A
memory-efficient, high-performance key-value store. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2011), SOSP ’11, ACM, pp. 1–13.

[26] LIU, R.-S., YANG, C.-L., LI, C.-H., AND CHEN, G.-Y. Duracache:
A durable ssd cache using mlc nand flash. In Proceedings of the 50th
Annual Design Automation Conference (New York, NY, USA, 2013),
DAC ’13, ACM, pp. 166:1–166:6.

[27] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. WiscKey: Separating keys from values in SSD-
conscious storage. In 14th USENIX Conference on File and Storage
Technologies (FAST 16) (Santa Clara, CA, Feb. 2016), USENIX As-
sociation, pp. 133–148.

[28] MARMOL, L., SUNDARARAMAN, S., TALAGALA, N., RAN-
GASWAMI, R., DEVENDRAPPA, S., RAMSUNDAR, B., AND GANE-
SAN, S. NVMKV: A scalable and lightweight flash aware key-value
store. In 6th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 14) (Philadelphia, PA, 2014), USENIX Associa-
tion.

[29] MELLOR, C. Toshiba flashes 100TB QLC flash drive, may go on sale
within months. really. http://www.theregister.co.uk/2016/

08/10/toshiba_100tb_qlc_ssd//.

[30] MEZA, J., WU, Q., KUMAR, S., AND MUTLU, O. A large-scale
study of flash memory failures in the field. In Proceedings of the 2015
ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (New York, NY, USA, 2015), SIG-
METRICS ’15, ACM, pp. 177–190.

[31] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE,
H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB,
P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V. Scaling
Memcache at Facebook. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13) (Lombard, IL, 2013), USENIX, pp. 385–398.

[32] OHSHIMA, S., AND TANAKA, Y. New 3D flash technolo-
gies offer both low cost and low power solutions. https:

//www.flashmemorysummit.com/English/Conference/

Keynotes.html.

[33] OUYANG, J., LIN, S., JIANG, S., HOU, Z., WANG, Y., AND WANG,
Y. Sdf: Software-defined flash for web-scale internet storage systems.
SIGARCH Comput. Archit. News 42, 1 (Feb. 2014), 471–484.

[34] RAJU, P., KADEKODI, R., CHIDAMBARAM, V., AND ABRAHAM,
I. PebblesDB: Building Key-Value Stores using Fragmented Log-
Structured Merge Trees. In Proceedings of the 26th ACM Symposium

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 77

on Operating Systems Principles (SOSP ’17) (Shanghai, China, Octo-
ber 2017).

[35] SAXENA, M., SWIFT, M. M., AND ZHANG, Y. FlashTier: A
lightweight, consistent and durable storage cache. In Proceedings of
the 7th ACM European Conference on Computer Systems (New York,
NY, USA, 2012), EuroSys ’12, ACM, pp. 267–280.

[36] SCHROEDER, B., LAGISETTY, R., AND MERCHANT, A. Flash re-
liability in production: The expected and the unexpected. In 14th
USENIX Conference on File and Storage Technologies (FAST 16)
(Santa Clara, CA, Feb. 2016), USENIX Association, pp. 67–80.

[37] SHEN, Z., CHEN, F., JIA, Y., AND SHAO, Z. Optimizing flash-based
key-value cache systems. In 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 16) (2016).

[38] TANG, L., HUANG, Q., LLOYD, W., KUMAR, S., AND LI, K. RIPQ:
Advanced photo caching on flash for Facebook. In 13th USENIX Con-
ference on File and Storage Technologies (FAST 15) (Santa Clara, CA,
Feb. 2015), USENIX Association, pp. 373–386.

[39] WU, X., XU, Y., SHAO, Z., AND JIANG, S. LSM-trie: An
LSM-tree-based ultra-large key-value store for small data items. In
2015 USENIX Annual Technical Conference (USENIX ATC 15) (Santa
Clara, CA, July 2015), USENIX Association, pp. 71–82.

[40] YANG, Q., AND REN, J. I-CASH: Intelligently coupled array of SSD
and HDD. In Proceedings of the 2011 IEEE 17th International Sympo-
sium on High Performance Computer Architecture (Washington, DC,
USA, 2011), HPCA ’11, IEEE Computer Society, pp. 278–289.

78 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Size-aware Sharding For Improving Tail Latencies in In-memory Key-value Stores

Diego Didona
EPFL

Willy Zwaenepoel
EPFL and University of Sydney

Abstract

This paper introduces the concept of size-aware sharding to
improve tail latencies for in-memory key-value stores, and
describes its implementation in the Minos key-value store.

Size-aware sharding distributes requests for keys to cores
according to the size of the item associated with the key.
In particular, requests for small and large items are sent to
disjoint subsets of cores. Size-aware sharding improves tail
latencies by avoiding that a request for a small item gets
queued behind a request for a large item.

Minos uses hardware dispatch for all requests for small
items, which form the very large majority of all requests,
to achieve high throughput, and achieves load balancing by
adapting the number of cores handling requests for small and
large items to their relative presence in the workload.

We compare Minos to three state-of-the-art designs of in-
memory KV stores. Compared to its closest competitor, Mi-
nos achieves a 99th percentile latency that is up to 20 times
lower. Put differently, for a target 99th percentile latency
equal to 10 times the mean service time, Minos achieves a
throughput that is up to 7.4 times higher.

1 Introduction

Many distributed applications use in-memory key-value
(KV) stores as caches or as (non-persistent) data reposito-
ries [3, 10, 13, 34, 41, 44, 51, 55]. Many of these applica-
tions exhibit a high fan-out pattern, i.e., they issue a large
number of requests in parallel [55]. From the application’s
standpoint, the overall response time is then determined by
the slowest of the responses to these requests, hence the cru-
cial importance of tail latency for KV stores [17].

The performance of KV stores has been the subject
of much work, both in terms of software and hardware.
Software optimizations include zero-copy network stacks,
polling, run-to-completion processing, and sharding of re-
quests among cores [37, 45, 57]. Hardware optimizations
primarily rely on the use of RDMA [35, 36], programmable

NICs [38, 41] or GPUs [30, 64]. The work reported in this
paper does not require any particular hardware support. We
assume only commodity NICs with multiple queues and a
hardware mechanism to direct requests to a particular queue.

Variable item sizes and tail latency. The workload ob-
served for many KV stores consists of a very large number
of requests for small items and a much smaller number of re-
quests for large items [3, 9, 55]. Because of their higher ser-
vice times, however, handling the requests for larger items
consumes a significant share of the available resources. Pro-
cessing these large items therefore increases the probability
of head-of-line blocking, a situation in which a request for a
small item ends up waiting while a large item is being pro-
cessed. As a result of the wait, that request experiences addi-
tional latency, which in turn may increase the tail latency of
the KV store. Even a very small number of requests for large
items can significantly drive up tail latencies. As we show in
Section 2.2, a percentage of large requests smaller than N%
can lead to a substantial increase of the (100-N)th percentile.

Size-aware sharding. This paper introduces the notion of
size-aware sharding to address this issue. In general, size-
aware sharding means that requests for items of different
sizes go to different cores. In its simplest form, it means
that, for some cutoff value between small and large, small
and large items are served by disjoint sets of cores. The in-
tuition behind size-aware sharding is that by isolating the re-
quests for small items, they do not experience any head-of-
line blocking, and, given that they account for a very large
percentage of requests, the corresponding percentile of the
latency distribution is improved.

The implementation of size-aware sharding poses several
challenges. A first challenge is how to use hardware dispatch
of an incoming request to the right core. In general, a client
of the KV store does not know the size of an item to be read,
and moreover it does not know which cores are responsi-
ble for small or large items. Therefore, size-aware sharding
would seem to necessitate a software handoff in which an
I/O core reads incoming requests and dispatches them to the

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 79

proper core. Instead, we demonstrate a method by which
software dispatch is required only for the very small number
of requests for large items. Second, cutoff values between
large and small items must be chosen and the proper num-
ber of cores must be allocated for handling small and large
items. We show that, even in the presence of a workload that
varies over time, this can be done by a simple control loop.
Minos. This paper describes the Minos in-memory KV store
that implements size-aware sharding. We compare Minos
to alternative size-unaware designs based on keyhash-based
request sharding, software handoff and work stealing, im-
plemented by state-of-the-art systems such as MICA [45],
RAMCloud [57] and ZygOS [58].

We show that Minos achieves a 99th percentile latency
that is up to two 20 times lower than the second best ap-
proach. Put differently, for a given value for the 99th per-
centile latency equal to 10 times the mean service time, Mi-
nos achieves a throughput that is up to 7.4 times higher.
Contributions. The contributions of this paper are:
1) the introduction of the notion of size-aware sharding for
in-memory KV stores,
2) the design and implementation of the Minos KV store that
implements size-aware sharding efficiently, and
3) the evaluation of Minos against state-of-the-art size-
unaware designs.
Outline of the paper. Section 2 provides background on KV
store workloads and discusses the shortcomings of existing
approaches in achieving low tail latency. Section 3 presents
Minos’ size-aware sharding approach. Section 4 discusses
implementation details. Section 5 describes the experimental
environment. Section 6 presents experimental results. Sec-
tion 7 discusses related work. Section 8 concludes the paper.

2 Background

2.1 Item Sizes in Production KV Workloads
The sizes of the items stored and manipulated by KV stores
in production environments can span orders of magnitude.
For instance, large variations in item size have been re-
ported in several deployments of the popular memcached KV
store [51]. The Facebook ETC memcached pool stores items
that vary in size from a handful of bytes to 1 Mbyte [3].
The size distribution is heavy-tailed: the 5th percentile in
the regional pool is 231 bytes, while the 99th percentile
is 381KB [55]. A similar degree of variability in item size
has also been reported for other KV deployments such as
Wikipedia [46] and Flickr [9], where item sizes span up to 4
orders of magnitude, from 500B to 1 MB.

Moreover, Atikoglu et al. report that in the ETC

memcached pool at Facebook requests for large items, de-
spite being rare, consume a large share of the computa-
tional resources, because service times are closely related

0.2
1

10

100

1000

 0.001 0.01 0.1 1 10 100 1000

T
im

e
 (

µ
s
e

c
,

lo
g

)

Item size (KB, log)

Avg. request service time

Figure 1: Service time of GET operations on items of dif-
ferent sizes on our platform (axes in log scale). The service
time measures the interval from the reception of the client
request on the server to the transmission of the reply. To
avoid queueing effects, only one client performs operations.
The time to process a large item can be up to almost four
orders of magnitude higher than what is needed for a small
one. This is due to the higher time needed to copy the con-
tent of the item to the network packets that are placed on the
TX queue of the NIC.

to item size, and account for a significant fraction of the
transfered data [3]. This dynamic is consistent with obser-
vations from similar application domains, such as, e.g., web
servers [2, 15] and large-scale clusters [62].

2.2 Variations in Item Size and Tail Latencies
Variations in item size have profound implications for tail la-
tencies. As anecdotal evidence, Nishtala et al. report that in
the Facebook memcached servers the median response time
is 333 microseconds, while the 95th percentile is 1.135 mil-
liseconds [55]. In this section we show that this finding goes
beyond the anecdotal, and that all common size-unaware
sharding techniques exhibit high tail latencies for workloads
in which even only a small fraction of requests targets large
items. In particular, we show that, even under moderate
loads, the (100-N)th percentile is affected dramatically by a
fraction, much smaller than N%, of requests for large items.
In the following we report on the 99th percentile, commonly
used in Service Level Objective (SLO) definitions, but the
results apply also to other high percentiles.

We simulate three common size-unaware sharding tech-
niques on a server with 8 cores, each with a queue to store
incoming requests1:
• Early binding: requests are dispatched to a queue for a
particular core, often based on a keyhash, similar to what is
used, for instance, in the EREW version of MICA [45].
• Late binding: requests are kept in a single queue and dis-
patched to a core when it becomes idle, similar to what is
used, for instance, in RAMCloud [57].

1The goal of this simulation is not to predict quantitatively the perfor-
mance differences between these strategies in any real implementation, as
their performance is affected by factors such as locality, cost of synchro-
nization, and cost of dispatching, which we do not simulate. Our goal is to
demonstrate, for all three methods, the substantial increase in tail latency as
a result of the presence of a small fraction of requests for large items.

80 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

50000

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

9
9

p
 (

lo
g

)

Throughput (norm w.r.t. max with K = 1)

K = 1
10

100
1000

(a) Early binding.

 0 0.2 0.4 0.6 0.8 1
Throughput (norm w.r.t. max with K = 1)

K = 1
10

100
1000

(b) Late binding.

 0 0.2 0.4 0.6 0.8 1
Throughput (norm w.r.t. max with K = 1)

K = 1
10

100
1000

(c) Early binding + work stealing.

Figure 2: Throughput vs. 99th percentile of response times for different types of size-unaware sharding techniques (y axis in
log scale). The workload distribution is bimodal: 0.125% of requests is for large items, whose service time is K time units; the
remaining is for small ones, whose service time is 1 time unit. K is varied from 1 to 1,000. K = 1 corresponds to a baseline
workload with only small requests. A small (<1%) fraction of large requests suffices to hamper greatly the 99th percentile of
response times, and to considerably reduce the achievable throughput.

• Early binding with work stealing: requests are handled
as in the early binding case, but in addition idle cores steal
requests from the queues of other cores, similar to what is
used, for instance, in ZygOS [58].

For simplicity, we use a workload with a bimodal size dis-
tribution. Small requests form 99.875% of the workload, and
have a service time of 1 time unit. Large requests form the re-
maining 0.125%. We run different simulations in which the
service time of large requests is, respectively, K = 1, 10, 100
and 1,000 time units. These values are in line with the order-
of-magnitude differences in service time between small and
large items observed on our platform (see Figure 1). We use
K = 1 to establish a baseline where all requests are small.
Inter-arrival times follow an exponential distribution.

Figure 2 shows the 99th percentiles for the three sharding
strategies under the bimodal workload compared to a work-
load with an identical offered load, but with only requests
for small items. Even though the fraction of large items re-
quested is much smaller than 1%, all three strategies suffer
from a considerable increase in the 99th percentile latency.
For K = 100 and K = 1,000, at only 10% utilization the 99th
percentile for the early binding design is two orders of mag-
nitude higher than the 99th percentile in the workload com-
posed only of small requests. Stealing and late binding are
more resilient to service time variability at low load, but at
higher loads they also suffer from one or two orders of mag-
nitude degradation of the 99th percentile, with respect to the
workload with only small requests.

The reasons for these increases in the 99th percentile la-
tency are different from one strategy to the next. Early bind-
ing suffers from head-of-line blocking when a request for a
small item ends up in a queue behind a request for a large
item, or behind a request for a large item being executed by
this core. The late binding of requests to cores is more re-
silient to head-of-line blocking, a well known result from
queueing theory [28], but it does not avoid it. Late binding
is vulnerable to cases in which the arrival of many large re-

quests in a short period of time leads many (or even all) cores
to be busy serving large requests. Such an event temporarily
reduces the amount of resources available to serve small re-
quests, which impacts tail latency. Stealing improves the tail
latency of the early binding design, as it steals some of the
requests that would otherwise experience head-of-line block-
ing but it cannot completely avoid head-of-line-blocking.
First, stealing only occurs when a core is idle, and the like-
lihood of a core being idle decreases as the load increases.
Second, by the time a core becomes idle, a request that it
steals is likely to have already experienced some head-of-
line blocking in the queue from which it is stolen.

In light of these results, Minos processes requests for
small and large items on disjoint set of cores, a technique
we call size-aware sharding. This addresses the shortcom-
ings of existing approaches, by avoiding that a small request
waits for the completion of a large one.

3 Minos design

3.1 Size-aware sharding

Preliminaries. We consider a server with n cores. The
server has a NIC with multiple receive (RX) and transmit
(TX) queues. We configure the NIC to use n RX queues
and n TX queues. At any time, there are nl cores handling
requests for large items and ns cores handling requests for
small items (nl + ns = n). With a slight abuse of language,
we say that a request for a small (large) item is a small (large)
request, and that a core handling small (large) requests is a
small (large) core. In addition to an RX and a TX queue,
each large core maintains a software queue.

In the following, we assume all n cores are within the
same NUMA domain, so that KV item accesses and inter-
core communication happen within the same NUMA do-
main. Minos can seamlessly scale to multiple NUMA do-
mains by running an independent set of small and large cores

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 81

within each NUMA domain, and by having clients send re-
quests to the NUMA domain that stores the target key [45].

We consider a KV store with the usual CRUD (Create,
Read, Update, Delete) semantics. A client can perform a
GET(key) and a PUT(key, value). Create and delete are con-
sidered special versions of PUT, and not discussed any fur-
ther. When a client issues GET and PUT operations, the
client software puts in the request the id of the RX queue in
which the corresponding packets are deposited when they ar-
rive at the server. The target RX queue is chosen at random
for GET operations, and depends on the keyhash for PUT
operations (as we describe in Section 4.2). A PUT request
also includes the size of the item that is being written. The
client does not know the size of an item to be read. Further-
more, the client does not need to know which or how many
cores on the server handle small or large requests.

In the following discussion we initially assume that we
know the threshold on the item size that separates small and
large items. We explain later how the threshold is deter-
mined. We first explain size-aware sharding with a given
number of small cores and one large core. Then, we show
how the number of small and large cores is determined, and
how the system operates with more than one large core.
Receiving incoming requests. Only the small cores read in-
coming requests from the RX queues. They do so in batches,
to amortize the cost of communicating with the NIC. Each
small core repeats the following sequence of actions w.r.t.
the RX queues. First, it reads a batch of B requests from its
own RX queue. Then it reads a batch of B/ns requests from
the RX queue of the large core. In this way, all RX queues
are drained at approximately the same rate. The reason a
large core never reads incoming requests from its RX queue
is that, if it were to receive a small request, this request could
experience head-of-line blocking behind large requests.

We start by explaining how GET operations are handled.
Operation of the small cores. For each request, a small core
starts processing the request by looking up the item associ-
ated with the requested key. If its size is below the threshold,
the small core continues the GET operation and replies to the
client with the requested item (by putting the corresponding
reply packet(s) on its TX queue). Else, the small core puts
the request in the software queue of the large core.
Operation of a large core. For each request in its software
queue, a large core finds the corresponding item, and replies
to the client by putting the reply packet(s) on its TX queue.

The operation of a PUT is mostly similar, except that the
size is present in the request. Hence, there is no need to do
a lookup to find the size. Depending on the size, the request
is handled either immediately by the small core or passed on
by the small core to the large core, and handled there.
How to find the threshold between large and small re-
quests. Each small core maintains a histogram of the number
of requests that correspond to item sizes in certain ranges.

Each range corresponds to a size class. This histogram is
updated on the receipt of every request according to the size
of the target item. Periodically, core 0 aggregates these his-
tograms, finds the size class corresponding to the Nth per-
centile of item sizes, declares that class to be the threshold
for the next epoch, and resets the histograms.

To be resilient to workload oscillations, core 0 smooths
the values in the aggregated histogram (noted H) according
to a moving average that uses the histogram obtained in the
previous epoch (noted Hcurr). For each entry i, core 0 com-
putes Hcurr[i] = (1−α)Hcurr[i] +αH[i], and uses the new
Hcurr to determine the Nth percentile. α is a discount fac-
tor in the range [0,1], and determines the weight of the new
measurements over previous ones. Because Minos targets
high throughput workloads, many requests are sampled dur-
ing an epoch. Hence, H is highly representative of the cur-
rent workload, and is assigned a weight equal to 0.9 [65].
How to choose the number of small cores. Minos main-
tains a cost function that gives us for a request of a given
size a certain processing cost. Minos can use various cost
functions, but currently uses the number of network pack-
ets handled to serve the request as cost, either the number of
packets in an incoming PUT request or the number of packets
in an outgoing GET reply. Alternatives could be the number
of bytes or a constant plus the number of bytes. The number
of small cores is then set to the ceiling of the fraction of the
total processing cost for small requests times the total num-
ber of cores. The remaining cores are used as large cores.
Operating with a number of large cores different from
one. If, as a result of the above calculation, there is more
than one large core, then Minos distributes the large requests
over the large cores such that each large core handles a non-
overlapping contiguous size range of requests, and such that
the cumulative processing cost of requests assigned to each
large core is the same. By doing so, not only does Minos
balance the load on large cores, but it also shards large re-
quests in a size-aware fashion. That is, the smallest among
the large requests are assigned to the first large core, and
larger requests are progressively assigned to other cores. A
small core that receives a large request puts the request in the
software queue of the large core that is handling the size of
the requested item.

If all cores are deemed to be small cores, then one core is
designated a standby large core. In other words, it handles
small requests, but if a large request arrives, it is sent to this
core, which then becomes a large core.

3.2 Discussion

Design rationale. The goal of Minos is to improve the Nth
percentile. To that end, Minos identifies the smallest N per-
cent of the requests, and isolates the processing of these re-
quests from the processing of larger requests, such that no

82 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

head-of-line blocking occurs. Furthermore, Minos assigns
a number of cores to small/large requests proportionally to
the expected load generated by requests of that size, so as to
balance the load across cores.

The use of randomization and of the hashed value of the
key to decide the target RX queue for a request leads to rea-
sonable load balance among the RX queues. A similar ob-
servation was made in the context of MICA [45]. Since the
small cores handle the requests that arrive in their own RX
queue, and an equal portion of the requests that arrive in the
RX queues of the large cores, overall the load is balanced
among the small cores. By using purely hardware dispatch
for the small requests we eliminate any unnecessary over-
head in their processing, such as, for instance, software dis-
patches. We achieve these results while never dropping large
requests, since there is always at least one core available for
handling large requests.

The only overheads compared to a purely hardware dis-
patch solution such as MICA are then: 1) software dispatch
for the very small number of large requests, 2) synchroniza-
tion on the RX queue and the software queue of the large
cores, for which we found contention to be low, and 3) some
minor loss in locality for the small requests that arrive in the
RX queues of large cores.
Not sharding small requests. Minos could implement size-
aware sharding for small requests. This would allow for iso-
lating requests of different sizes at a finer granularity. Minos
eschews this design choice because it targets SLOs expressed
in terms of a single response time percentile. Hence, it is less
important to further improve the performance of smaller re-
quests than to achieve the highest throughput with low target
tail latency. Sharding small requests across multiple class
sizes, instead, may result into a less efficient design because
small cores would spend much of their resources in dispatch-
ing requests that are served by other cores, and may be idle
while waiting to receive dispatched requests. We have ex-
perimented with a design in which we shard small requests,
and it proved to perform poorly. Assigning all small requests
to the same set of cores allows Minos to perform software
handoff only for the few large operations, and to achieve high
throughput and low Nth percentile latency.
Target percentile setting. The latency benefits brought by
Minos naturally depend on the setting of the target percentile
and the item size distribution. For example, an item size dis-
tribution could be such that the 95th percentile is 10B, the
96th percentile is 500KB and the 99th percentile is 1MB.
Then, optimizing for the 95th percentile would benefit the
latency of the smallest 95% of operations more than what
would happen for the smallest 99% of operations if Minos
was set to optimize for the 99th percentile. However, if the
target SLO of the application using the key value store is ex-
pressed in terms of the 99th percentile, it is less important
to achieve a very good 95th percentile by separating 10B re-
quests from the rest, and Minos should be configured to tar-

get the 99th percentile. In this setting, Minos would improve
the 99th percentile latency as much as possible by segregat-
ing 1MB operations and larger ones from the rest.

In the current design, Minos takes the target percentile
as input. The system administrator may determine such
percentile with the aid of workload traces collected offline,
which are typically available in production systems [3, 5,
59]. Automatically determining a suitable percentile that re-
sults in high latency gains and high throughput is an orthog-
onal research issue that we are currently investigating.

Trade-offs. In Minos small and large operations each have
access only to a subset of the processing power available on
the machine. This may lead some requests to experience a
longer queueing time than what they would experience if the
request could be served by any core. The impact of this ad-
ditional delay on short requests is outweighed by the benefits
that stem from avoiding head-of-line blocking. This design,
however, penalizes large requests. The rationale underly-
ing this trade-off is that Minos aims to reduce a target Nth
percentile of the response time distribution by favoring the
smallest N% of the operations. Larger requests that fall out
of such percentile, then, are processed in a best effort fashion
–and, importantly, never dropped.

Penalizing larger request is an inevitable price to pay to
favor smaller ones, as shown by the theoretical and quanti-
tative analysis of scheduling policies similar to size-aware
sharding [1, 6, 18]. We assess the effects of this trade-off on
performance in Section 6.1, and we discuss the differences
between size-aware sharding in Minos and related schedul-
ing techniques in Section 7.

Alternative designs. We now discuss alternative designs to
address item size variability, and why we do not adopt them.
1) Use a dedicated set of machines to serve large requests,
as suggested in [45]. This solution may lead to waste of re-
sources because the workloads of large and small requests
cannot be consolidated. It also requires migrating items
across machines in case an item changes size, and adds one
network hop to redirect large requests.
2) Splitting large operations in smaller chunks. This allows
interleaving the processing of such chunks with small re-
quests. This design may lead to lower resource efficiency
with respect to the run-to-completion model adopted by Mi-
nos. First, it may lead to worse data locality, by access-
ing memory regions corresponding to different requests, and
by interleaving request processing with networking opera-
tions. Second, it requires the implementation of nontrivial
scheduling mechanisms, whose costs may be not negligible
with µsecond scale SLOs. Instead, the run-to-completion
model enables high efficiency [57], and allows us to re-use
state-of-the-art techniques proposed for such model [45]. In
addition, it allows Minos to avoid head-of-line blocking by
implementing a simple FIFO scheduling policy within each
core.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 83

4 Implementation

4.1 Network stack

Minos relies on the availability of a multi-queue NIC with
support for redirecting, in hardware, a packet to a specific
queue on the NIC (e.g., RSS [32] or Flow Director [33]).
This feature is now commonplace in commodity NICs.

To reduce packet processing overhead, Minos uses the In-
tel DPDK library [23] to implement a user-level zero-copy
network stack. All memory for the DPDK library is stati-
cally allocated and accessible by all cores. Packets are re-
ceived directly in memory, thus enabling zero-copy packet
processing. Furthermore, Minos uses DPDK-provided lock-
less software rings to dispatch large requests from small to
large cores without any copies [39]. Small cores check for
incoming requests by means of polling, to avoid costly inter-
rupts [57]. Similarly, large cores use polling to check for
incoming requests on their software queue. Requests are
moved in batches to further limit overhead.

Clients and servers communicate using UDP, imple-
mented on top of Ethernet and IP. Clients use the UDP header
to specify the target RX queue for a given packet. Requests
that span multiple frames (large PUT requests and large GET
replies) are fragmented and defragmented at the UDP level.

Retransmission is handled by the client. Similar to pre-
vious work [45], Minos does not support exactly-once se-
mantics and assumes idempotent operations. Exactly-once
semantics can be achieved by means of request identifiers.

4.2 KV store and memory management

Data structures. Minos employs the KV data structures
used in MICA [45]. Keys are split in partitions. Each parti-
tion is a hash table, each entry of which points to a bucket,
equal in size to a cache line. Each bucket contains a num-
ber of slots, each of which contains a tag and a pointer to
a key-value item. A first portion of the keyhash is used to
determine the partition, a second portion to map a key to
a bucket within a partition, and a third portion forms the
tag [22, 45], which is used to reduce the number of random
memory accesses when performing a key lookup. Overflow
buckets are dynamically assigned to a bucket when it has
reached its maximum capacity.
Memory management. The current prototype of Minos em-
ploys the memory manager of the DPDK library to handle
allocation of memory regions for key-value entries. Minos
can be extended to integrate more efficient memory alloca-
tors, such as the one based on segregated fits of MICA, or a
dynamic one as in Facebook’s memcached deployment [55].

Concurrency control. Minos uses a concurrency control
scheme that is similar to Concurrent Read Exclusive Write
(CREW) [45]. Each core is the master of one partition, and

each key can be written only by the master core of corre-
sponding partition. This serializes write operations on a key.

The concurrency control scheme in Minos differs slightly
from CREW, as a result of the distinction between small and
large cores. PUTs on keys whose master core is a small core
proceed along the lines of CREW. PUTs on keys whose mas-
ter core is a large core may be served by any core (either
because the request is small, or because it is dispatched to a
large core different from the one which receives the request).
In addition, two concurrent PUT operations on the same key
may be assigned to two different cores (a small and a large
one, or two large ones), depending on the size of the corre-
sponding values. Hence, all PUTs are guarded by a spinlock.

We argue (and we experimentally show) that the corre-
sponding overhead of spinlocks is largely outweighed by
the benefits of size-aware sharding, especially for the read-
dominated workloads that are prevalent in production envi-
ronments [3, 10, 55, 56]. First, in such workloads PUTs are
rare. Second, PUTs on large cores proceed mostly without
contention, because large cores serve non-overlapping size
ranges, so requests for the same large item are sent to the
same core. Third, PUTs on small cores mostly proceed with-
out contention because of the CREW nature of the concur-
rency protocol for keys whose master is a small core.

GETs can be served by any core, and are processed by
means of an optimistic concurrency control scheme [45].
Each bucket has a 64-bit epoch, which is incremented when
starting and ending a write on a key stored in that bucket.
Upon reading, a core looks at the epoch. If it is odd, then
there is an ongoing write on a key of the bucket, and the
read is stalled until the epoch becomes even. If (or when) the
epoch is even, the core saves the current epoch value and per-
forms the read. After the read, the core re-reads the epoch of
the bucket. If the value is the same as when the read started,
the read is successful. Else, a conflicting write might have
taken place, and the read is restarted. Because all memory is
pre-allocated, a writer thread can safely modify/erase a KV
entry that is concurrently accessed by a read.

5 Experimental Platform

5.1 Hardware
Our platform is composed of 8 identical machines equipped
with an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz with
8 physical cores and 64 GB of main memory. The machines
run Ubuntu 16.04.2 with a 4.4.0-72-generic kernel. One ma-
chine acts as server and the other 7 run the client processes.
We disable hyperthreading and power-saving modes on all
the machines. All the machines are equipped with a 40Gbit
Mellanox MT27520 NIC (ConnectX-3 Pro), are located in
the same physical rack, and are connected via a top-of-rack
switch. The network stack relies on the Intel DPDK library
(version 17.02.1), to which we allocate 50 1GB huge pages.

84 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Our NIC supports only RSS to implement hardware
packet-to-RX queue redirection [50]. RSS determines the
RX queue for an incoming packet by performing the hash of
the quintuplet composed of source and destination IP, source
and destination port and the transport layer protocol. To al-
low the clients and the server to send packets to specific RX
queues, we ran a set of preliminary experiments to determine
to which port to send a packet so that it is received by a spe-
cific RX queue. More flexible hardware packet redirection
methods can be used on NICs that support them. For exam-
ple Minos can use Flow Director [33, 49] to set the target RX
queue as UDP destination port of a packet.

5.2 Systems used in comparison

We compare Minos with three systems that implement state-
of-the-art designs of KV store, and that are based on the
queueing models that we have described in Section 2.
•Hardware Keyhash-based sharding (HKH). This system
implements early binding of requests to cores, as done in
MICA [45]. Requests are redirected in hardware to the target
core, according to the CREW policy. This policy performs
the best on skewed read-dominated workloads [45], such as
our default workload.
• Software hand-off (SHO). This system implements the
late binding of requests to cores, as in RAMCloud [57]. SHO
uses disjoint sets of handoff and worker cores. Each handoff
core has a software queue, in which it deposits the requests
taken from its RX queue. Worker cores pull one request at
a time from the handoff queues, process the corresponding
KV request, and reply to the client. The best number of
handoff cores depends on whether the workload is CPU or
network bound. We have experimented with 1,2 and 3 hand-
off cores. We report experimental results corresponding to
the best configuration for each workload.
• HKH + work stealing (HKH+WS). This system imple-
ments request stealing on top of HKH, as in ZygOS [58].
Each core has a software queue where it places the requests
taken from its own RX queue. An idle core can steal requests
from the software queues of other cores, and from their RX
queues, if no request is found in any software queue.

All designs are implemented in the same codebase. This
allows us to focus on the effects of item size heterogeneity on
performance, and to factor out implementation differences
(e.g., in the KV store data structure and concurrency control
scheme) and limitations (e.g., leak of support for multi-frame
packets and additional overheads to support richer APIs) of
the existing systems that implement the designs we consider.

The internal parameters of Minos are set as follows.
Workload statistics are collected by core 0 every second. The
byte range corresponding to the i-th size class is [2(i−1),2i),
and i ranges from 1 to 10. The size of a batch of requests
read from a RX queue is 32, and the same batch size is used

% large reqs (pL) Max size (sL) % data for large reqs

0.125
250 KB 25
500 KB 40

1000 KB 60
0.0625

500 KB

25
0.25 60
0.5 75

0.75 80

Table 1: Item size variability profiles.

for other systems as well.

5.3 Workloads
We use workloads characterized by different degrees of item
size variability and GET:PUT ratios.
Item size variability. We use, as a starting point, the charac-
terization of the ETC workload at Facebook [3]. Specifically,
we consider a trimodal item size distribution, according to
which an item can be tiny (1-13 bytes), small (14-1400 bytes)
or large (1500-maximum size). The size of an item within a
class is drawn uniformly at random. To generate workloads
with different degrees of item size variability, we vary both
the percentage of large requests, (noted pL), and the size of
items corresponding to large requests, by changing the max-
imum size of large items (noted sL). We let sL range from
250KB to 1MB. These values are consistent with the pro-
duction workloads we discussed in Section 2.1. Similarly to
what is seen for the ETC workload, we set pL < 1%, so that
the 99th percentile of the requests service times corresponds
to small and tiny items only. Specifically, we vary pL from
0.0625 to 0.75. Table 1 reports the combinations of pL and
sL we consider. It also reports the corresponding percentage
of bytes that are exchanged because of large requests.
Key popularity. We consider a skewed workload that fol-
lows a zipfian distribution with parameter 0.99. This repre-
sents the default value in YCSB [14], is widely used in the
evaluation of several KV stores [45, 35], and is representa-
tive of the strong skew of many production workloads [3].

We use the zipfian distribution on the sets of tiny and small
items, because they are many and they exhibit small vari-
ability in size. Large items, instead, are much fewer and ex-
hibit much higher variability, and are therefore chosen uni-
formly at random. This avoids pathological cases in which
the most accessed large item is the biggest or the smallest
item, thereby skewing the results.

We consider a dataset of 16M key-value pairs, out of
which 10K are large elements. Of the remaining key-value
pairs, 40% correspond to tiny items, and 60% to small ones.
This setting is consistent with the item size distribution and
the low access probability of individual large keys that char-
acterize the ETC workload. Each large item has, in fact, a
probability pL/100 · 10K/16M of being accessed. For sim-
plicity, we keep the size of the keys constant to 8 bytes.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 85

Write intensity. We consider a read-dominated and a write-
intensive workloads, corresponding, respectively, to a 95:5
and 50:50 GET:PUT ratio. These values are used as default
values in YCSB and KV store evaluations [45, 35] (the ETC
workload has a 97:3 GET:PUT ratio).
Default workload. We set a default value for each parame-
ter, and generate different workloads by changing the value
of one parameter at a time while keeping the other ones to
their default values. The default workload is skewed with a
95:5 GET:PUT ratio, a percentage of large requests equal to
0.125 and a maximum large item size of 500 KB.

5.4 Benchmarking methodology
Load generation. We spawn 8 threads per client machine,
each pinned to a separate physical core and to an RX queue.
Client threads simulate an open system by generating re-
quests at a given rate, which varies depending on the target
throughput. The time between two consecutive requests of a
thread is exponentially distributed.
Measurements. Each request is timestamped with the send
time at the client, which is piggybacked by the server on the
reply message. Client threads constantly check their own RX
queues for replies, and compute the end-to-end latency of a
request using the timestamp in the reply message.

A client thread can have multiple requests in flight, so
for simplicity packet retransmission is not enabled. For this
reason, we only report performance values corresponding to
scenarios in which the packet loss rate is equal to 0.

Each workload runs for 60 seconds. The first and last 10
seconds are not included in the reported results.
Performance metrics. We focus on maximum achievable
throughput (number of of successful operations completed
per second) and 99th percentile of end-to-end latencies, since
large requests correspond to less than 1% of the total. We
also measure the utilization of the server NIC to evaluate
whether Minos is able to fully use the available bandwidth.

We consider SLOs in the form “The 99th percentile of la-
tencies must be within X µsec“. We use X = 50 and X =
100 to evaluate the performance gains of Minos as a func-
tion of the strictness of the SLO. These values correspond to
10 and 20 times the mean service time for a GET request in
our default workload (similarly to previous work [58]).

6 Evaluation

6.1 Default workload
Throughput vs. 99th percentile latency. Figure 3 shows
the 99th percentile latency (99p) as a function of the through-
put with the default workload. Minos achieves the high-
est peak throughput (6.2 Mops) and the lowest latency (≤
50µsec up to 90% of peak throughput).

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9

p
 (

µ
s
e

c
,

lo
g

)

Throughput (Mops/s)

Minos
HKH+WS

HKH
SHO

Figure 3: Throughput vs. 99th percentile latency (y axis
in log scale) with the default workload. Minos matches
the throughput of the purely hardware-based design and
achieves the lowest latency.

Minos achieves the same peak throughput as HKH and
HKH+WS, reflecting the fact that all three systems rely
mostly or entirely on hardware handoff for request distribu-
tion (at very high load, stealing in HKS+WS rarely happens).
SHO achieves 10% less peak throughput, because it is bottle-
necked by the software handoff. In terms of 99th percentile,
Minos does better than HKH at any load, with improvements
reaching one order of magnitude as soon as the load exceeds
1 Mops. HKH+WS and SHO start out with similar 99th per-
centile latencies as Minos under loads below 1 Mops, but
under high load their 99th percentile latencies rapidly deteri-
orate to reach values similar to HKH. For an SLO on the 99th
percentile latency of 50 µsec Minos can perform 5.6 Mops,
2.4 times the throughput of its best competitor (HKH+WS).
For an SLO of 100 µsec, Minos still achieves 1.75 times the
throughput of its best competitor.

Minos achieves the best performance by overcoming the
limitations of existing designs when dealing with variable-
size items, and that we have discussed in Section 2.2. Inter-
estingly, the performance curves of the competitor systems
we consider follow the ones depicted in Figure 2, which por-
trays the behavior of the same systems in idealized condi-
tions (i.e., without dispatching and synchronization costs).
This indicates that the reason for the worse 99th percentile
tail latency exhibited by such systems is primarily due to the
shortcomings of their designs in presence of item size vari-
ability, and not to low level implementation details.
Latency of large requests. Minos leverages the insight that
the latency of the largest N% of the requests should not im-
pact the (100-N)th percentile. Minos restricts the N% largest
requests to a subset of the cores (N=1 in our setting), which
may result in increased latencies for such requests. We now
evaluate the performance penalty incurred by large requests
in Minos as a consequence of size-aware sharding. Figure 4
reports the 99th percentile latency of large requests in Minos
and HKH+WS (the best alternative).

Inevitably, Minos imposes some penalty on the perfor-
mance of large requests, reaching up to a factor of 2 for the
99th percentile latency of large requests before the system
goes into saturation. We argue that moderately penalizing

86 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

400

1000

1500

2500

 0 1 2 3 4 5 6 7 8

9
9
p
 (

µ
s
e
c
,
lo

g
)

Throughput (Mops/s)

Minos HKH+WS

Figure 4: Throughput vs. 99th percentile latency of large re-
quests with the default workload (y axis in log scale). Minos
trades its large benefits in terms of the overall 99th percentile
for a moderate penalty on the large requests, which represent
a small fraction of the workload.

large requests is a reasonable price to pay for the order-of-
magnitude improvement for the target (100-N)th percentile.

Minos can improve the latency of large requests by allo-
cating more cores to them. Minos currently determines the
number of small cores by taking the ceiling of the total num-
ber of cores times the fraction of load generated by small
requests. For this workload, it allocates only one core to the
large requests. This represents an over-allocation to small
requests to completely isolate them from large requests, and
hence an under-allocation for large requests. An alternative
strategy is to allocate one more core to large requests, and let
large cores steal from the RX queues of small ones to fully
use any extra capacity. To avoid re-introducing head-of-line
blocking, stealing can be done one request at a time, so that
there is never a small request queued behind a large request.
We are currently experimenting with this alternative design,
which would improve performance for large requests, while
only introducing a small degradation for small requests.

6.2 Write-intensive workload

We now investigate the effect of write intensity on Minos.
Figure 5 reports the 99th percentile of response times with
all four systems and a 50:50 GET:PUT workload.

Minos continues to deliver a 99th percentile latency one
order of magnitude lower than alternative approaches, up to
the saturation point at 6.3 Mops, but overall achieves a lower
(by 10%) throughput than HKH and HKH+WS. Throughput
values are in general higher than with the 95:5 workload,
because replying to a PUT requires less network bandwidth,
since the response message does not contain any item value
payload. This behavior is consistent with that observed by
previous work [45]. SHO is the only exception, as handoff
cores represent the bottleneck.

Minos achieves a lower throughput with respect to HKH
and HKH+WS because of the overhead stemming from pro-
filing the workload and periodically aggregating them on
core 0 to compute the 99th percentile of the item sizes. We
are currently investigating techniques to reduce such over-

10

50

400

 100

 0 1 2 3 4 5 6 7 8

9
9
p
 (

µ
s
e
c
,
lo

g
)

Throughput (Mops/s)

Minos
HKH+WS

HKH
SHO

Figure 5: Throughput vs. 99th percentile latency for Minos
vs. existing designs with the 50:50 GET:PUT workload (y
axis in log scale).

head, e.g., sampling only a subset of the requests. Alterna-
tively, the threshold between large and small requests can be
set statically if it does not vary over time and traces of the tar-
get workload are available for off-line analysis (as typical in
production workloads [3, 55, 59]). With this variant, Minos
is able to match the throughput of HKH and HKH+WS.

6.3 Sensitivity to item size distribution

We vary the percentage of large requests in the workload (pL)
and the maximum size of large requests (sL). When changing
the value of one, the other parameter keeps the default value.
We then measure the maximum throughput achievable under
the two SLOs we consider.

Figure 6 and Figure 7 report the increase in throughput
achieved by Minos compared to the other designs (y axis in
log scale). Figure 6 shows the results of the experiments in
which we change pL. Figure 7 refers to changing sL. The
graph on the left uses an SLO of 50 µsec, the one on the
right 100 µsec. When varying pL, the maximum through-
put achieved by Minos within the 50µsec (100µsec) SLO
ranges from 6.2 to 1.7 Mops (6.9 to 2.3 Mops), correspond-
ing to pL = 0.0625 and pL = 0.75. When varying sL, the
maximum throughput achieved by Minos within the 50µsec
(100µsec) ranges from 6.2 to 4.7 Mops (6.9 to 4.7 Mops),
corresponding to sL = 250KB and sL = 1000KB.

Minos outperforms existing designs, achieving consis-
tently higher throughput for a given workload and a given
SLO. The throughput speedup grows with pL and sL, because
the increased presence of large(r) requests negatively affects
the latency of small requests, and hence the 99th percentile,
in alternative designs. As expected, the throughput gains are
higher with the stricter SLO: the looser is the performance
target, the smaller is the impact of Minos’ design. For the
stricter SLO, Minos achieves a speedup of up to 7.4 w.r.t
HHK+WS (corresponding to the pL = 0.75 case), i.e., the
second best design. For the looser SLO, the speedup ranges
from 1.34 (sL = 250KB) to 3.9 (pL = 0.75).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 87

2

5

20

 0.1

 1

 10

0.0625 0.125 0.25 0.5 0.75M
in

o
s
 t
h
ro

u
g
h
p
u
t
s
p
e
e
d
u
p

% large requests

HKH HKH+WS SHO

(a) 99p ≤ 50µsec.

2

5

20

 0.1

 1

 10

0.0625 0.125 0.25 0.5 0.75M
in

o
s
 t
h
ro

u
g
h
p
u
t
s
p
e
e
d
u
p

% large requests

HKH HKH+WS SHO

(b) 99p ≤ 100µsec.

Figure 6: Maximum throughput achievable for a given 99th percentile latency SLO with different percentages of large requests
(y axis in log scale). Each bar represents the speedup of Minos over an alternative design (higher is better).

2

5

20

 0.1

 1

 10

250 KB 500 KB 1000 KBM
in

o
s
 t

h
ro

u
g
h
p
u

t
s
p
e

e
d
u
p

Max. size of large requests

HKH HKH+WS SHO

(a) 99p ≤ 50µsec.

2

5

20

 0.1

 1

 10

250 KB 500 KB 1000 KBM
in

o
s
 t

h
ro

u
g
h
p
u

t
s
p
e

e
d
u
p

Max. size of large requests

HKH HKH+WS SHO

(b) 99p ≤ 100µsec.

Figure 7: Maximum throughput achievable for a given 99th percentile latency SLO with different maximum sizes of large
requests (y axis in log scale). Each bar represents the speedup of Minos over an alternative design (higher is better).

6.4 Higher network bandwidth

With the default workload, the NIC is 93% utilized. With
higher percentages of large requests, the system becomes
even more network-bound. In this section we investigate
whether Minos can take advantage of larger network band-
widths. Because we cannot provision our machines with
more bandwidth, we relieve the NIC bottleneck by sampling
the number of replies that the server sends back to clients.
That is, the server processes requests as before, up to the
time at which it would otherwise send the reply to the client.
Then, instead, it only sends replies to a percentage S% of
the total requests, and drops the remaining ones. We vary S
from 100 to 25, and we measure the achieved performance
(throughput and 99th percentile latency), as well as the uti-
lization of the NIC. We choose the read-intensive workload
with pL = 0.75, as it quickly saturates the NIC with S = 100.

Figure 8 reports the results of the experiment. The left plot
shows the throughput vs. 99th percentile latency (y axis in
log scale). The right one shows the utilization of the NIC
as a function of the throughput. As S decreases, Minos can
sustain higher loads, because the bottleneck is increasingly
shifted towards the CPU. Minos is able to fully utilize the
available resources, by reaching throughput values that sat-
urate (or almost saturate) the NIC (S = 100,75,50) except
when the bottleneck is query processing (S = 25).

6.5 Load balancing

We now evaluate the ability of Minos to distribute the load
evenly across cores according to the provided cost function.
To this end, we measure the load sustained by each core
with pl = 0.0625, 0.25, 0.75, corresponding to low, medium
and high load posed by large requests. Figure 9a reports the
percentage of requests performed, and Figure 9b reports the
percentage of packets processed by each core (y axis in log
scale). Two conclusions can be drawn. First, all cores pro-
cess roughly the same number of packets, and hence roughly
perform the same amount of work. Small cores obviously
process more requests per second, as these requests involve
less work. Large cores process different requests per sec-
ond among each other, as a consequence of the size-aware
sharding that Minos implements also within large requests.
Second, Minos varies the number of small and large cores as
a function of the workload, such that enough resources are
allocated to small and large requests.

6.6 Dynamic workload

We finally demonstrate the capability of Minos to adapt to
changing workloads. To this end, we run a workload in
which the percentage of large operations pL varies every 20
seconds. It first grows gradually from 0.125 to 0.75, and

88 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10

50

 200

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

9
9

p
 (

µ
s
e

c
)

Throughput (Mops/s)

S = 25
S = 50

S = 75
S = 100

(a) Throughput vs. 99th percentile latency

90

 0

 25

 50

 75

 100

 125

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
IC

 u
ti
liz

a
ti
o

n
 (

%
)

Throughput (Mops/s)

S = 25
S = 50

S = 75
S = 100

(b) Throughput vs. NIC utilization.

Figure 8: Scalability of Minos with more network bandwidth (pL = 0.75). S is the sampling percentage used to simulate more
network bandwidth. Minos processes and replies to S% of the requests. The remainder is processed, but the reply is dropped.
Minos scales with more bandwidth (a) and saturates the NIC (b), except when query processing is the bottleneck ((b), S = 25).

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75

%
 O

ps
 p

er
fo

rm
ed

% large requests

Small core Large core

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75

%
 T

hr
ou

gh
pu

t

% large requests

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75

%
 O

ps
 p

er
fo

rm
ed

% large requests

(a) Operations per second.

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75
%

 p
ac

ke
ts

 p
ro

ce
ss

ed

% large requests

Small core Large core

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75
%

 p
ac

ke
ts

 p
ro

ce
ss

ed

% large requests

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75
%

 p
ac

ke
ts

 p
ro

ce
ss

ed

% large requests

(b) Packets per second.

Figure 9: Breakdown of the load per core in Minos (y axis in log scale). Large cores process fewer requests per second than
small cores (a), but the number of packets processed per second is uniformly distributed across cores (b).

then shrinks back to 0.125. We keep the request arrival rate
fixed at 2.25 Mops, corresponding to high load for pL = 0.75.
Figure 10(top) compares the performance achieved by Mi-
nos and HKH+WS, i.e., the second best design. Each point
represents the 99th percentile latency as measured over a
1 second window (y axis in log scale). Figure 10(bottom)

 10

 100

 1000

P
9

9
 (

µ
s
e

c
,

lo
g

) Minos HKH+WS

 1
 2
 3
 4

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

#
 C

o
re

s
 (

in
 M

in
o

s
)

Time (sec)

large cores

Figure 10: Evolution over time of the 99th percentile latency
of Minos and HKH+WS with a dynamic workload (top, with
y axis in log scale) and evolution over time of number of
large cores in Minos (bottom). Every 20 seconds the per-
centage of large requests changes, first growing from 0.125
to 0.75 and then shrinking back. Minos adapts to changing
workload conditions and delivers up to 20X lower 99th per-
centile latencies.

shows how many cores Minos assigns to large requests over
time. Minos achieves latencies up to 20 times lower than
HKH+WS (70 µsec vs ≈ 1.5 msec with pL = 0.75). Minos
achieves this result by programmatically allocating cores to
small and large requests proportionally to their correspond-
ing loads.

7 Related Work

To the best of our knowledge, Minos is the first KV store to
introduce the concept of size-aware sharding to address the
challenges of delivering µsec-scale tail latency in presence
of item size variability. We now discuss related systems.
In-memory KV stores. A plethora of in-memory KV
stores have been proposed in the last years. These sys-
tems propose different designs based on new data-structures
(CPHash [52], Masstree [48], MemC3 [22]) and lightweight
network stacks (Chronos [37], MICA [43, 45], Ram-
Cloud [57], RockSteady [40]), or on the use of RDMA (Pi-
laf [53], Herd [35], FaRM [21], RFF [60], FaSST [36],
TailWind [61]), FPGAs (KV-Direct [41]), GPUs (Mega-
KV [64], MemcacheGPU [30]), HTMs (DrTM [11, 63]), or
other specialized hardware ([38, 9]).

None of these systems addresses the problem of achieving
low tail latency in presence of item size variability, which

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 89

is the primary focus of Minos. In addition, Minos only as-
sumes the availability of commodity hardware. Investigating
the synergies between the design of Minos and specialized
hardware is an interesting avenue for future work.
Size-aware data-stores. We are aware of a few data stores
that take into account the size of items or requests to improve
performance. Rein [59] supports multi-key get requests and
processes them taking into account the number of keys in-
volved in a request. Rein relies on the assumption that there
is only a weak correlation between the size of an item and
the service time of a request for that item. Minos, instead,
targets workloads with high item size variability, for which
the service time of a request strongly depends on the size of
the corresponding item (see Figure 1).

AdaptSize [8] is a caching system that reduces the proba-
bility of caching large objects, so as to increase the hit rate
of smaller, more frequently accessed ones. AdaptSize tar-
gets a problem that is orthogonal to Minos, which assumes
the presence in memory of both small and large items.

The systems in [12, 29, 65] target static content and lever-
age a central component (the Linux kernel on a single-
core architecture [29] or a scheduler in a distributed sys-
tem [12, 65]) to implement request scheduling. By contrast,
Minos deals with mixed read/write workloads and targets
multi-core architectures with multi-queue NICs.
Operating systems. IX [7] and ZygOS [58] use lightweight
network stacks to meet µsec-scale SLOs. ZygOS uses work
stealing to avoid core idleness and reduce head-of-line block-
ing. As we show by means of simulation (§ 2.2) and exper-
imental data (§ 6), this approach cannot fully avoid head-
of-line blocking as done by Minos, because work stealing i)
is agnostic of the CPU time corresponding to serving a re-
quest; and ii) is only triggered by idle cores, whose presence
becomes less likely as the load increases.
Scheduling systems. There is a vast literature on schedul-
ing requests with heterogeneous service demands. Several
approaches have been applied in the context of flow schedul-
ing [1, 4, 24, 25, 31, 54], single-server request schedul-
ing [26, 42, 47] and cluster request scheduling [18, 20, 19].
Proposed approaches include workload partitioning [16, 18,
29], preempting [6, 19] or migrating requests [26, 27], and
stealing [20, 42]. One common result of these approaches is
that favoring small requests inevitably comes at the expense
of the performance of the largest requests.

Size-aware sharding draws from these techniques, and
makes the same trade-off between the latencies of small and
large requests. However, Minos substantially deviates from
these systems, to apply size-aware sharding in an in-memory
key value store efficiently. In particular,
•Minos does not rely on any a priori information on the size
of a request. This contrasts with existing systems that rely on
request runtime estimates, such as Hawk [20].
• Minos avoids head-of-line blocking by processing short

and large requests on disjoint sets of cores. This contrasts
with systems like 2DFQ [47], where all resources are shared
between short and large requests, and hence a burst of large
requests may delay shorter ones.
• The design of Minos is tailored for the in-memory key
value store domain. i) Minos integrates size-aware shard-
ing with the run-to-completion model, which avoids inter-
rupts and context switches, enhances locality, and reduces
cache pollution [45, 57]. This is unlike the aforementioned
systems, which target the classic multi-threaded approach
and migrates requests across cores [26, 42, 44], or across
servers [27]. ii) Minos leverages the hardware request-to-
core dispatching enabled by multi-queue NICs to reduce the
amount of software hand-offs. This allows Minos to achieve
throughput values equal or close to those achievable by pure
hardware request-to-core dispatching. iii) Minos co-designs
size-aware-sharding and the concurrency control scheme to
both achieve load balance and avoid head-of-line blocking.
These characteristics allow Minos to target µscale tail laten-
cies, whereas the aforesaid scheduling approaches reportedly
support SLOs in the order of the milliseconds or higher.

8 Conclusion

This paper presents Minos, an in-memory key-value store
designed to deliver µsec-scale tail latency with workloads
characterized by highly variable item sizes, as frequent in
production workloads. Minos implements size-aware shard-
ing, a new technique that assigns small and large requests to
disjoint set of cores. This ensures small requests never wait
due to the collocation with a long request. Minos identifies at
runtime the size threshold between long and short requests,
and the amount of cores to allocate to them. We compare Mi-
nos to three state-of-the-art designs and we show that, com-
pared to its closest competitor, Minos achieves a 99th per-
centile latency that is up to 20 times lower. Put differently,
for a given value for the 99th percentile latency equal to 10
times the mean service time, Minos achieves a throughput
that is up to 7.4 times higher.

Acknowledgements

We thank the anonymous reviewers, Richard L. Sites and
our shepherd Amar Phanishayee for their feedback. We also
thank Hyeontaek Lim for his help in setting up the DPDK
library. This research has been supported by an EcoCloud
post-doctoral research fellowship.

References
[1] ALIZADEH, M., KABBANI, A., EDSALL, T., PRABHAKAR, B.,

VAHDAT, A., AND YASUDA, M. Less is more: Trading a little band-
width for ultra-low latency in the data center. In Proceedings of the 9th

90 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2012), NSDI’12, USENIX Association,
pp. 19–19.

[2] ARLITT, M. F., AND WILLIAMSON, C. L. Internet web servers:
Workload characterization and performance implications. IEEE/ACM
Trans. Netw. 5, 5 (Oct. 1997), 631–645.

[3] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value store.
In Proc. of SIGMETRICS (2012).

[4] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C., AND WANG, H.
Information-agnostic flow scheduling for commodity data centers. In
Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation (Berkeley, CA, USA, 2015), NSDI’15,
USENIX Association, pp. 455–468.

[5] BALMAU, O., DIDONA, D., GUERRAOUI, R., ZWAENEPOEL, W.,
YUAN, H., ARORA, A., GUPTA, K., AND KONKA, P. TRIAD: Cre-
ating synergies between memory, disk and log in log structured key-
value stores. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17) (Santa Clara, CA, 2017), USENIX Association, pp. 363–375.

[6] BANSAL, N., AND HARCHOL-BALTER, M. Analysis of srpt schedul-
ing: Investigating unfairness. In Proceedings of the 2001 ACM SIG-
METRICS International Conference on Measurement and Modeling of
Computer Systems (New York, NY, USA, 2001), SIGMETRICS ’01,
ACM, pp. 279–290.

[7] BELAY, A., PREKAS, G., PRIMORAC, M., KLIMOVIC, A., GROSS-
MAN, S., KOZYRAKIS, C., AND BUGNION, E. The ix operating
system: Combining low latency, high throughput, and efficiency in a
protected dataplane. ACM Trans. Comput. Syst. 34, 4 (Dec. 2016),
11:1–11:39.

[8] BERGER, D. S., SITARAMAN, R. K., AND HARCHOL-BALTER, M.
Adaptsize: Orchestrating the hot object memory cache in a content
delivery network. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17) (Boston, MA, 2017), USENIX
Association, pp. 483–498.

[9] BLOTT, M., LIU, L., KARRAS, K., AND VISSERS, K. Scaling out
to a single-node 80gbps memcached server with 40terabytes of mem-
ory. In Proceedings of the 7th USENIX Conference on Hot Topics in
Storage and File Systems (Berkeley, CA, USA, 2015), HotStorage’15,
USENIX Association, pp. 8–8.

[10] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DIMOV,
P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI, S., LI,
H., MARCHUKOV, M., PETROV, D., PUZAR, L., SONG, Y. J., AND
VENKATARAMANI, V. Tao: Facebook’s distributed data store for
the social graph. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference (Berkeley, CA, USA, 2013), USENIX
ATC’13, USENIX Association, pp. 49–60.

[11] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast and
general distributed transactions using rdma and htm. In Proceedings of
the Eleventh European Conference on Computer Systems (New York,
NY, USA, 2016), EuroSys ’16, ACM, pp. 26:1–26:17.

[12] CIARDO, G., RISKA, A., AND SMIRNI, E. Equiload: a load bal-
ancing policy for clustered web servers. performance evaluation. In
Performance Evaluation 46 (2001), 46–101.

[13] CIDON, A., RUSHTON, D., RUMBLE, S. M., AND STUTSMAN, R.
Memshare: a dynamic multi-tenant key-value cache. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17) (Santa Clara, CA,
2017), USENIX Association, pp. 321–334.

[14] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,
AND SEARS, R. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing (New
York, NY, USA, 2010), SoCC ’10, ACM, pp. 143–154.

[15] CROVELLA, M. E., AND BESTAVROS, A. Self-similarity in world
wide web traffic: Evidence and possible causes. IEEE/ACM Trans.
Netw. 5, 6 (Dec. 1997), 835–846.

[16] CROVELLA, M. E., HARCHOL-BALTER, M., AND MURTA, C. D.
Task assignment in a distributed system (extended abstract): Improv-
ing performance by unbalancing load. In Proceedings of the 1998
ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems (New York, NY, USA, 1998),
SIGMETRICS ’98/PERFORMANCE ’98, ACM, pp. 268–269.

[17] DEAN, J., AND BARROSO, L. A. The tail at scale. Commun. ACM
56, 2 (Feb. 2013), 74–80.

[18] DELGADO, P., DIDONA, D., DINU, F., AND ZWAENEPOEL, W. Job-
aware scheduling in eagle: Divide and stick to your probes. In Pro-
ceedings of the Seventh ACM Symposium on Cloud Computing (New
York, NY, USA, 2016), SoCC ’16, ACM, pp. 497–509.

[19] DELGADO, P., DIDONA, D., DINU, F., AND ZWAENEPOEL, W.
Kairos: Preemptive data center scheduling without runtime estimates.
In Proceedings of the Ninth ACM Symposium on Cloud Computing
(2018), SoCC ’18.

[20] DELGADO, P., DINU, F., KERMARREC, A.-M., AND
ZWAENEPOEL, W. Hawk: Hybrid datacenter scheduling. In
Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (Berkeley, CA, USA, 2015), USENIX ATC
’15, USENIX Association, pp. 499–510.

[21] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND CAS-
TRO, M. Farm: Fast remote memory. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2014), NSDI’14, USENIX Association,
pp. 401–414.

[22] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3: Com-
pact and concurrent memcache with dumber caching and smarter
hashing. In Proceedings of the 10th USENIX Conference on Net-
worked Systems Design and Implementation (Berkeley, CA, USA,
2013), nsdi’13, USENIX Association, pp. 371–384.

[23] FOUNDATION, T. L. Data plane development kit. https://dpdk.org,
2017.

[24] GROSVENOR, M. P., SCHWARZKOPF, M., GOG, I., WATSON, R.
N. M., MOORE, A. W., HAND, S., AND CROWCROFT, J. Queues
don’t matter when you can jump them! In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2015), NSDI’15, USENIX Association,
pp. 1–14.

[25] GUO, L., AND MATTA, I. The war between mice and elephants. In
Proceedings of the Ninth International Conference on Network Proto-
cols (Washington, DC, USA, 2001), ICNP ’01, IEEE Computer Soci-
ety, pp. 180–.

[26] HAQUE, M. E., HE, Y., ELNIKETY, S., NGUYEN, T. D., BIAN-
CHINI, R., AND MCKINLEY, K. S. Exploiting heterogeneity for
tail latency and energy efficiency. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture (New
York, NY, USA, 2017), MICRO-50 ’17, ACM, pp. 625–638.

[27] HARCHOL-BALTER, M. Task assignment with unknown duration. J.
ACM 49, 2 (Mar. 2002), 260–288.

[28] HARCHOL-BALTER, M. Performance Modeling and Design of Com-
puter Systems: Queueing Theory in Action, 1st ed. Cambridge Uni-
versity Press, New York, NY, USA, 2013.

[29] HARCHOL-BALTER, M., SCHROEDER, B., BANSAL, N., AND
AGRAWAL, M. Size-based scheduling to improve web performance.
ACM Trans. Comput. Syst. 21, 2 (May 2003), 207–233.

[30] HETHERINGTON, T. H., O’CONNOR, M., AND AAMODT, T. M.
Memcachedgpu: Scaling-up scale-out key-value stores. In Proceed-
ings of the Sixth ACM Symposium on Cloud Computing (New York,
NY, USA, 2015), SoCC ’15, ACM, pp. 43–57.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 91

[31] HONG, C.-Y., CAESAR, M., AND GODFREY, P. B. Finishing flows
quickly with preemptive scheduling. In Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (New York, NY,
USA, 2012), SIGCOMM ’12, ACM, pp. 127–138.

[32] HUDEK, T. Introduction to receive side scal-
ing. https://docs.microsoft.com/en-us/windows-
hardware/drivers/network/introduction-to-receive-side-scaling.

[33] INTEL. Intel 82599 10 gigabit ethernet controller: Datasheet.
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-
10-gbe-controller-datasheet.html, 2014.

[34] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOSTER, N.,
KIM, C., AND STOICA, I. Netcache: Balancing key-value stores
with fast in-network caching. In Proceedings of the 26th Symposium
on Operating Systems Principles (New York, NY, USA, 2017), SOSP
’17, ACM, pp. 121–136.

[35] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using rdma
efficiently for key-value services. In Proceedings of the 2014 ACM
Conference on SIGCOMM (New York, NY, USA, 2014), SIGCOMM
’14, ACM, pp. 295–306.

[36] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst: Fast,
scalable and simple distributed transactions with two-sided (rdma)
datagram rpcs. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (Berkeley, CA, USA,
2016), OSDI’16, USENIX Association, pp. 185–201.

[37] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M., AND
VAHDAT, A. Chronos: Predictable low latency for data center ap-
plications. In Proceedings of the Third ACM Symposium on Cloud
Computing (New York, NY, USA, 2012), SoCC ’12, ACM, pp. 9:1–
9:14.

[38] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND
KRISHNAMURTHY, A. High performance packet processing with
flexnic. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2016), ASPLOS ’16, ACM, pp. 67–81.

[39] KIT, D. P. D. Ring library.
http://dpdk.org/doc/guides/prog guide/ring lib.html, 2017.

[40] KULKARNI, C., KESAVAN, A., ZHANG, T., RICCI, R., AND
STUTSMAN, R. Rocksteady: Fast migration for low-latency in-
memory storage. In Proceedings of the 26th Symposium on Operating
Systems Principles (New York, NY, USA, 2017), SOSP ’17, ACM,
pp. 390–405.

[41] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUTNAM, A.,
CHEN, E., AND ZHANG, L. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings of the 26th
Symposium on Operating Systems Principles (New York, NY, USA,
2017), SOSP ’17, ACM, pp. 137–152.

[42] LI, J., AGRAWAL, K., ELNIKETY, S., HE, Y., LEE, I.-T. A., LU, C.,
AND MCKINLEY, K. S. Work stealing for interactive services to meet
target latency. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (New York, NY,
USA, 2016), PPoPP ’16, ACM, pp. 14:1–14:13.

[43] LI, S., LIM, H., LEE, V. W., AHN, J. H., KALIA, A., KAMINSKY,
M., ANDERSEN, D. G., SEONGIL, O., LEE, S., AND DUBEY, P.
Architecting to achieve a billion requests per second throughput on a
single key-value store server platform. In Proceedings of the 42Nd An-
nual International Symposium on Computer Architecture (New York,
NY, USA, 2015), ISCA ’15, ACM, pp. 476–488.

[44] LI, X., SETHI, R., KAMINSKY, M., ANDERSEN, D. G., AND
FREEDMAN, M. J. Be fast, cheap and in control with switchkv. In
13th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16) (2016).

[45] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M. Mica:
A holistic approach to fast in-memory key-value storage. In Proceed-
ings of the 11th USENIX Conference on Networked Systems Design
and Implementation (Berkeley, CA, USA, 2014), NSDI’14, USENIX
Association, pp. 429–444.

[46] LIM, K., MEISNER, D., SAIDI, A. G., RANGANATHAN, P., AND
WENISCH, T. F. Thin servers with smart pipes: Designing soc ac-
celerators for memcached. In Proceedings of the 40th Annual Inter-
national Symposium on Computer Architecture (New York, NY, USA,
2013), ISCA ’13, ACM, pp. 36–47.

[47] MACE, J., BODIK, P., MUSUVATHI, M., FONSECA, R., AND
VARADARAJAN, K. 2dfq: Two-dimensional fair queuing for multi-
tenant cloud services. In Proceedings of the 2016 ACM SIGCOMM
Conference (New York, NY, USA, 2016), SIGCOMM ’16, ACM,
pp. 144–159.

[48] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache craftiness for fast
multicore key-value storage. In Proceedings of the 7th ACM European
Conference on Computer Systems (New York, NY, USA, 2012), Eu-
roSys ’12, ACM, pp. 183–196.

[49] MELLANOX. Mellanox connectx-3 prod-
uct brief. http://www.mellanox.com/related-
docs/prod adapter cards/ConnectX3 EN Card.pdf, 2013.

[50] MELLANOX. Mellanox dpdk release notes (v 16.11.1.5.
http://www.mellanox.com/related-docs/prod software/, 2017.

[51] MEMCACHED. memcached. http://www.memcached.org.

[52] METREVELI, Z., ZELDOVICH, N., AND KAASHOEK, M. F. Cphash:
A cache-partitioned hash table. In Proceedings of the 17th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming (New York, NY, USA, 2012), PPoPP ’12, ACM, pp. 319–320.

[53] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided rdma reads to
build a fast, cpu-efficient key-value store. In Proceedings of the 2013
USENIX Conference on Annual Technical Conference (Berkeley, CA,
USA, 2013), USENIX ATC’13, USENIX Association, pp. 103–114.

[54] MONTAZERI, B., LI, Y., ALIZADEH, M., AND OUSTERHOUT, J.
Homa: A receiver-driven low-latency transport protocol using net-
work priorities. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (New York, NY,
USA, 2018), SIGCOMM ’18, ACM, pp. 221–235.

[55] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE,
H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB,
P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V. Scaling
memcache at facebook. In Proc. of NSDI (2013).

[56] NOGHABI, S. A., SUBRAMANIAN, S., NARAYANAN, P.,
NARAYANAN, S., HOLLA, G., ZADEH, M., LI, T., GUPTA, I., AND
CAMPBELL, R. H. Ambry: Linkedin’s scalable geo-distributed object
store. In Proceedings of the 2016 International Conference on Man-
agement of Data (New York, NY, USA, 2016), SIGMOD ’16, ACM,
pp. 253–265.

[57] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL, A., LEE,
C., MONTAZERI, B., ONGARO, D., PARK, S. J., QIN, H., ROSEN-
BLUM, M., RUMBLE, S., STUTSMAN, R., AND YANG, S. The ram-
cloud storage system. ACM Trans. Comput. Syst. 33, 3 (Aug. 2015),
7:1–7:55.

[58] PREKAS, G., KOGIAS, M., AND BUGNION, E. Zygos: Achieving
low tail latency for microsecond-scale networked tasks. In Proceed-
ings of the 26th Symposium on Operating Systems Principles (New
York, NY, USA, 2017), SOSP ’17, ACM, pp. 325–341.

[59] REDA, W., CANINI, M., SURESH, L., KOSTIĆ, D., AND BRAITH-
WAITE, S. Rein: Taming tail latency in key-value stores via multiget
scheduling. In Proceedings of the Twelfth European Conference on
Computer Systems (New York, NY, USA, 2017), EuroSys ’17, ACM,
pp. 95–110.

92 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[60] SU, M., ZHANG, M., CHEN, K., GUO, Z., AND WU, Y. Rfp: When
rpc is faster than server-bypass with rdma. In Proceedings of the
Twelfth European Conference on Computer Systems (New York, NY,
USA, 2017), EuroSys ’17, ACM, pp. 1–15.

[61] TALEB, Y., STUTSMAN, R., ANTONIU, G., AND CORTES, T. Tail-
wind: Fast and atomic rdma-based replication. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18) (2018).

[62] WANG, F., XIN, Q., HONG, B., BRANDT, S. A., MILLER, E. L.,
LONG, D. D. E., AND MCLARTY, T. T. File system workload analy-
sis for large scientific computing applications. In NASA/IEEE Confer-
ence on Mass Storage Systems and Technologies (MSST 2004) (Apr.
2004), p. 139152.

[63] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast in-
memory transaction processing using rdma and htm. In Proceedings
of the 25th Symposium on Operating Systems Principles (New York,
NY, USA, 2015), SOSP ’15, ACM, pp. 87–104.

[64] ZHANG, K., WANG, K., YUAN, Y., GUO, L., LEE, R., AND
ZHANG, X. Mega-kv: A case for gpus to maximize the throughput of
in-memory key-value stores. Proc. VLDB Endow. 8, 11 (July 2015),
1226–1237.

[65] ZHANG, Q., RISKA, A., SUN, W., SMIRNI, E., AND CIARDO,
G. Workload-aware load balancing for clustered web servers. IEEE
Trans. Parallel Distrib. Syst. 16, 3 (Mar. 2005), 219–233.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 93

Monoxide: Scale Out Blockchain with Asynchronous Consensus Zones

Jiaping Wang
ICT/CAS & Sinovation AI Institute

Hao Wang
Ohio State University

Abstract
Cryptocurrencies have provided a promising infras-

tructure for pseudonymous online payments. However,
low throughput has significantly hindered the scalability
and usability of cryptocurrency systems for increasing
numbers of users and transactions. Another obstacle to
achieving scalability is the requirement for every node
to duplicate the communication, storage, and state repre-
sentation of the entire network.

In this paper, we introduce the Asynchronous Con-
sensus Zones, which scales blockchain system linearly
without compromising decentralization or security. We
achieve this by running multiple independent and paral-
lel instances of single-chain consensus systems termed
as zones. The consensus happens independently within
each zone with minimized communication, which parti-
tions the workload of the entire network and ensures a
moderate burden for each individual node as the network
grows. We propose eventual atomicity to ensure trans-
action atomicity across zones, which achieves the effi-
cient completion of transactions without the overhead of
a two-phase commit protocol. Additionally, we propose
Chu-ko-nu mining to ensure the effective mining power
in each zone to be at the same level of the entire network,
making an attack on any individual zone as hard as that
on the full network. Our experimental results show the
effectiveness of our work: on a testbed including 1,200
virtual machines worldwide to support 48,000 nodes, our
system delivers 1,000× throughput and 2,000× capacity
over the Bitcoin and Ethereum networks.

1 Introduction

Since the peer-to-peer electronic cash system [37] was
published in 2008, decentralized consensus systems con-
tinuously enlarged its community and exerted bigger im-
pacts on our society. However, low transaction con-
firming throughput measured as transaction-per-second

(TPS) has significantly hindered the usability of such
systems with increased amounts of users and transac-
tions. Besides network latency, the root cause of the
throughput issue is the sequential nature of block cre-
ation. In a blockchain, blocks are created sequentially
with sufficient propagation time in between, which yields
a fixed low TPS1 regardless of how many full nodes and
miners participate in the network.

Additionally, a consensus system can not scale out
when every full node needs to duplicate the communi-
cation, storage, and state representation of the entire net-
work, which are cases of Bitcoin and Ethereum. Even if
a high throughput is achieved, workloads requiring fast
communication, adequate storage and sufficient comput-
ing power will soon set a high barrier for full nodes to
participate in, which in turn dramatically hinders decen-
tralization in practice. Therefore, a scalable blockchain
system needs to consider the scalability of its consen-
sus protocol with the resource usage of communication,
storage, computation and memory for state representa-
tion while preserving decentralization and security. Pre-
viously, the Ethereum community has investigated shard-
ing in blockchain systems [39] (see Section 8 for more
discussions). Motivation of the proposed method echoes
many considerations discussed in this article regarding
duplicated workload, low entry barrier, importance of ef-
ficient cross-shard transaction handling, and the security
issue of diluted mining power.

A scalable Blockchain system is desired so that fu-
ture applications at the Internet scale can be supported.
VisaNet payment and clearance [46] takes roughly 4k
TPS on average. Alipay mobile payment exceeded 256k
TPS at peak traffic [3] in 2017. Rapid growth of DApps
on blockchain [44] also exhibits huge demand for scal-
able Blockchain systems with high throughput and large
capacity to support games and decentralized exchanges.

1Roughly 7 TPS for Bitcoin with 1MB block and 10-minutes in-
tervals; and 15 TPS for Ethereum with roughly 32KB block and 15-
seconds intervals.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 95

Those demands motivate our work.

Asynchronous Consensus Zones is the main idea in this
paper, which aims to design a scalable blockchain sys-
tem without weakening decentralization or security. We
scale out blockchain systems by partitioning and han-
dling workloads in multiple independent and parallel in-
stances, or Consensus Zones. The state of the entire net-
work are partitioned by zones, and each zone is respon-
sible for its own piece. The core data structures, such as
blocks and transactions, are zone-specific, and are repli-
cated and stored only within their own zones. Mining
competition, chain growth, and transaction confirmation
are carried out separately and asynchronously in each
zone.

Consensus zones exhibit natural linear scalability for
capacity by having the amount of storage, computation
power, and state-representing memory proportional to
the total number of zones. There are two major chal-
lenges to design such a blockchain system: (1) high
throughput should be ensured in a scalable fashion when
handling cross-zone transactions; (2) security should be
reinforced as honest mining power diluted due to inde-
pendent growths of chains in individual zones.

Cross-Zone Atomicity is crucial to the correctness and
robustness of the blockchain system. In consensus zones,
a transaction might involve multiple parties in different
zones. It is challenging since state-updating of those par-
ties occurs independently in different zones. Efficient
handling of such cases is the key to the throughput scala-
bility and the performance of the entire system. We pro-
pose Eventual Atomicity to ensure transaction atomicity
across zones. With this technique, all operations will
complete and will eventually achieve the correct end-
state instead of serializing transactions like the two-phase
commit protocol [27] does. Eventual atomicity allows in-
terleaving of transactions in an asynchronous and lock-
free manner to keep zones concurrent and fully utilized.
Eventual atomicity decouples a cross-zone transaction
into multiple steps (relay transactions), each involves a
single zone. Those steps are relayed and executed across
zones by miners. Our system doesn’t guarantee miners
to handle all relay transactions, just like transaction han-
dling is not guaranteed in Bitcoin or Ethereum. Instead,
miners in each zone are incentivized to complete each
step by handling relay transaction and ensuring the atom-
icity eventually.

Effective Mining Power Amplification is introduced to
reinforce the security for consensus zones. A blockchain
system relies on the majority of mining power to out-
pace attackers. However, when the mining power is dis-
tributed to different zones, an attacker can gather the

mining power toward a single zone and may easily ex-
ceed the 51% threshold within that zone. To address this
problem, we propose Chu-ko-nu2 Mining to ensure the
per-zone security. With Chu-ko-nu mining, a miner is
allowed to create multiple blocks in different zones by
solving one proof-of-work puzzle. This greatly amplifies
the effective mining power of honest miners who evenly
distribute the mining power across zones. Such amplifi-
cations, on the other hand, doesn’t apply to attackers be-
cause the amplified mining power is forced to be evenly
distributed to multiple zones, which can not be gathered
towards a single zone. In this way, the effective mining
power in each zone will be at the same level of total phys-
ical mining power in the entire network, which makes at-
tacking an individual zone as hard as attacking the entire
network.

Contributions in this paper include the following:

1. A scale-out blockchain system that divides work-
loads of communication, computation, storage, and
memory for state representation into independent
and parallel zones. Our system keeps the burden of
individual full nodes at a low level as the network
grows.

2. An eventual atomicity technique for efficient han-
dling of cross-zone transactions, ensuring correct-
ness and robustness in zones that work asyn-
chronously.

3. Chu-ko-nu mining, a novel proof-of-work scheme,
to prevent lowering the attack bar when the mining
power is dispersed into multiple zones.

To demonstrate the effectiveness of our system, we
carry out a set of experiments on a testbed includ-
ing 1,200 virtual machines worldwide with the histor-
ical data of ERC20 payments from the Ethereum net-
work. In these experiments, our system has delivered
1,000× throughput and 2,000× capacity over Bitcoin
and Ethereum networks.

2 Background

We now provide necessary background of this work in-
cluding details of blockchain systems and a high-level
comparison of two consensus mechanisms, i.e., Proof-
of-Work (PoW) and Proof-of-Stake (PoS). Lastly, we
discuss the differences between the UTXO and Ac-
count/Balance transaction models.

2Chu-ko-nu is a repeating crossbow shooting multiple arrows at
once. It was invented by Zhuge Liang during the warring states pe-
riod in ancient China.

96 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.1 Blockchain System
A blockchain system such as Bitcoin [37] and Ethereum
[6] contains many compute nodes as miners and full
nodes. Transactions are incremental updates of the state,
which are confirmed and carried by blocks. Blocks are
created by miners. The verification of a block is in-
volved with a mathematical puzzle (also called the proof-
of-work, PoW), which is moderately hard on the request
side but easy to check for the network. Miners compete
with each other, and the first miner who solves the puz-
zle will be given rewards and the one-time privilege for
creating a new block. A newly-created block has to be
sufficiently propagated among miners and full nodes be-
fore the next block can be created. Due to the network
delay, other miners may still work on different blocks,
and diverge the chain into different paths when append-
ing blocks on the chain. The divergence of the chain is
called a fork, and the blocks not in the main chain are
called orphaned blocks. Enlarging the block size (higher
propagation latency) or lessening the creation interval
may lead to more orphaned blocks, and even prevent the
system from converging to a single longest chain in ex-
treme circumstances (e.g. orphan rate > 50%). We will
provide detailed discussions on related studies in Section
8.

We summarize other aspects that affect the overall per-
formance of a blockchain system with the consensus pro-
tocol as below:

• Consensus: The sequential nature of block creation
and confirmation required by the consensus proto-
col is the major challenge of scalability. This is
bound by the throughput as analyzed above.

• Communication: Information, including uncon-
firmed transactions and newly-created blocks, needs
to be exchanged between all miners and full nodes.
It is bound by the local bandwidth.

• Storage: All accepted blocks of the chain need to be
stored persistently in every miners and full nodes.
These are bound by the local disk space.

• Representation: The global states of the entire net-
work, e.g. per-address balance and smart con-
tract state, are maintained by every miners and full
nodes. These are bound by the size of the host mem-
ory.

A scalable design of blockchain has to take all four as-
pects into consideration.

2.2 PoW and PoS
As discussed above, PoW in predominant cryptocurren-
cies, including Bitcoin and Ethereum, requires miners to

do a compute-intensive verification to maintain the con-
sensus on each block. It yields huge electricity consump-
tion, but it sets fundamental real-world values to the cor-
responding cryptocurrencies.

In contrast, PoS selects the creator of a block in a
deterministic fashion that usually depends on the stake
(wealth) of a node. Existing PoS systems adopt different
methods to produce the randomness in the leader election
to ensure decentralization and security [22, 7, 45, 18].
Although PoW is used in this paper, our technique is
orthogonal to the actual consensus mechanism used per
zone. Please refer to Section 8 for detailed discussions
on state-of-the-art research of PoW and PoS.

2.3 UTXO and Account/Balance
There are two major types of transaction models in cryp-
tocurrencies. The former is the Unspent Transaction Out-
put (UTXO) model, where a transaction spends outputs
from previous transactions and generates new outputs
that can be spent in future transactions. In a UTXO-
based system, a user or an account may have multiple
UTXOs. When a user wants to spend money, she uses
one or more UTXOs to cover the cost and may get some
changes back as new UTXOs. This model is used by
Bitcoin and many blockchain systems [11, 32, 23]. The
latter is the account/balance model, which is similar to a
bank account. Before approving a transaction, the bank
needs to check if the account balance can cover the cost.
This model is used by Ethereum and it is thought to be
better than UTXO for supporting smart contracts [6].

Our system uses the account/balance model due to its
simplicity since a transaction with an arbitrary amount
can be performed with one sending account and one
receiving account (instead of multiple UTXOs on both
sides). Additionally, the balance can be extended to more
complex state to support programable application logic.
Another important benefit offered by the account/balance
model is allowing transactions to carry incremental up-
dates of states, as oppose to the UTXO transactions that
can only carry full states. This makes a significant sav-
ings of transaction size for applications like non-fungible
tokens (e.g., Ethereum’s ERC-721 token), in which the
state is a set of unique identifiers.

3 System Design

Before diving into details, let’s first check the high-level
architecture of our system for handling a payment that
involves two users from different zones, i.e., zones A and
B as shown in Figure 1. In that case, the withdraw oper-
ation ρ that only involves the state in zone A is handled
by a miner in zone A. If the account balance satisfies
the cost of this withdraw operation, the corresponding

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 97

Op ρ in TX φ
… …

Zone A

Op ϕ in TX φ
…

Zone B

Transaction Relaying

Block t+0 Block t+1 Block t+2 Block t+3

Block r+0 Block r+4Block r+1 Block r+2 Block r+3

Figure 1: Message passing by relaying transaction across
asynchronous zones.

block t + 1 carrying the transaction (initiative transac-
tion) will be created by the miner and only be appended
to the chain of zone A. After that, a relay transaction
carrying the deposit operation φ is composed in zone A
and forwarded to zone B. The deposit operation φ that
only involves the state in zone B can always be executed,
regardless of the balance of the target account in zone B.
Once the relay transaction is picked up by another miner
in zone B, operation φ will be executed, concluding the
complete of the payment transaction.

3.1 Partitioning and Naming

In our system, an account, or a user, is represented by its
address, i.e., a fix-sized hash value of its public key. Our
system uniformly partitions the space of user addresses
into 2k zones in a fixed and deterministic way: a zone is
identified by its sharding scale k and zone index s (s ∈
{0,1, . . . ,2k−1}).

Given a sharding scale k, the zone index of a user can
be easily derived, i.e., by calculating the first k bits of
its address. The zone index of an initiative transaction
is determined by the payer’s address, and the zone in-
dex of a relay transaction is determined by the payee’s
address. A block is specified with the 〈s,k,h〉, with h be-
ing its height of the chain. Sharding scale k defines the
number of zones and in turn determines the throughput
and the capability of the entire network. The following
discussion assumes a fixed k for simplicity.

In our system, full nodes join swarms to broadcast new
transactions and receive blocks from other full nodes, in-
cluding miners. A swarm is a group of nodes that par-
ticipate in the replication of the same data set. In Bit-
coin or Ethereum, there is only one swarm and every full
node replicates the same data set, including all blocks
and transactions. In our system, multiple swarms are es-
tablished for different purposes. A distributed hash table
(DHT) is employed for swarm addressing and peer dis-
covery. Details are described in section 7.

Our system has a global swarm joined by all full nodes
for replicating the minimum common information of all
zones. On the other hand, most communication occurs in
zone-specific swarms with full nodes belonging to spe-

cific zones only. In each swarm, the participating full
nodes are sparsely connected, and use the gossip protocol
to broadcast messages. Similar to zones, zone-specific
swarms are also identified by zone index s and sharding
scale k.

3.2 Isolated Intra-Zone Workload

A full node, or a miner, will have a persistent identi-
fier that is initialized randomly; it determines a particular
zone the node should work on. With address space par-
titioning, a blockchain is established within each zone
independently. A miner only competes on PoW with
other miners in the same zone and confirms transactions
from its own zone. Full nodes will ignore any blocks
or transactions received that do not belong to their zone,
although those are unlikely to be received.

Therefore, the computation and storage related to
transaction validation and chain formation are indepen-
dent and isolated between zones: (1) a miner is only re-
sponsible for mining transactions that happen within the
zone in which it has chosen to participate, and (2) any
full node only records the chain for balances of users in
its own zone. As the entire network grows, more zones
will be created, ensuring that the burden of computation
and storage on an individual node is always at a reason-
able level. A low barrier of joining and operating in the
network for a full node is essential to maintaining decen-
tralization and robustness of a blockchain system.

3.3 Minimized Cross-Zone Overhead

In a blockchain system, most communication is for repli-
cating unconfirmed transactions and for broadcasting
new blocks carrying confirmed ones. In our system, such
communication is performed only among nodes within
the zone. Our system maintains a distributed hash table
(DHT) on each node. After getting the zone index s of
an unconfirmed transaction or a forwarding block, our
system selects out nodes having the same zone index as
s based on the local DHT routing table, and it sends the
transaction and block to these nodes following the gossip
protocol [12] as is used in Bitcoin and Ethereum. This
isolates most communication within each zone.

For cross-zone transactions, our system sends re-
lay transactions only to destination zones instead of
the whole network. Additionally, minimized data for
chain forming excluding actual confirmed transactions
are replicated across all zones. We will discuss this in
the next section.

98 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 Efficient Cross-Zone Atomicity

We divide a block into two parts: a chaining-block
for the chain formation and the PoW verification, and
a transaction-block carrying actual confirmed transac-
tions. As shown in Figure 2, a chaining-block, e.g.,
Θa, carries block metadata, including a PoW nonce, a
pointer to the precursor block, a Merkle tree [34] root
of the list of confirmed transactions, etc. In addition, a
chaining-block provides the Merkle tree root for the list
of all relay transactions originated from initiative trans-
actions in this block, which is used for the validation of
relay transactions in other zones. A transaction-block,
e.g., Φa, that records the transaction list (same as those
in existing systems like Bitcoin and Ethereum) is only
replicated and stored by full nodes in the zone. Com-
pared to the hundreds of kilo-bytes used for transactions,
a chaining-block has a fix-sized data structure that takes
roughly 100 bytes, introducing negligible overhead for
both communication and storage.

For an initiative transaction with a withdraw operation
ρ from payer a and a deposit operation φ to payee b, it
can be immediately handled within the zone if a and b
belong to the same zone. When a and b are from differ-
ent zones, we introduce a dual-stage transaction handling
mechanism by deriving and forwarding a relay transac-
tion that carries the deposit operation to its destination
zone. Figure 2 illustrates the process of cross-zone pay-
ment with the data structures processed.

Transaction Validation and Forwarding at Zone A

1. An unconfirmed transaction 〈ρ,a,φ ,b〉 is picked up
by a miner in the payer a’s zone, when the miner
constructs a new block.

2. The initiative transaction is validated if the balance
of a is not less than the transfer amount. If the bal-
ance is insufficient, the transaction will be marked
as invalid, and be concluded and embedded in the
block.

3. Otherwise, a chaining-block Θa and a transaction-
block Φa are constructed. Φa has a list of validated
transactions including the one from a to b.

4. The miner works on a PoW puzzle specific to the
list of all confirmed transactions.

5. After the PoW puzzle is solved, immediately the
chaining-block Θa is broadcast in the global swarm
and the transaction block Φa is broadcast in a’s
zone-specific swarm.

6. Intra-zone transactions are executed and concluded.

7. The withdraw operations ρ in all cross-zone trans-
actions are then executed.

8. Each cross-zone transaction derives an outbound re-
lay transaction ψ := 〈φ ,b,γ〉, which will be sent to
the destination zone, i.e., the payee b’s zone B.

Relay Transaction Handling at Zone B

1. An inbound relay transaction ψ := 〈φ ,b,γ〉 is
picked up by a miner in payee b’s zone when con-
structing a new block.

2. The miner verifies the inbound relay transaction
against its originate block Θa. Skip this if invalid.

3. The miner constructed a new chaining-block Θb and
a new transaction-block Φb. Θb including the in-
bound relay transaction 〈φ ,b,γ〉.

4. The block Φb will be broadcast in b’s zone after the
PoW puzzle is solved.

5. The deposit operation φ is executed, concluding the
transaction 〈ρ,a,φ ,b〉.

In Figure 2, the transaction-blocks are only propagated
and stored in their own zone, i.e., Φa and Φb in zone A
and zone B, respectively. The relay transactions, e.g., ψ ,
are generated at the originate zone, i.e., zone A, and only
sent to the destination zone, i.e., zone B. The chaining-
blocks, e.g., Θa and Θb, each of which has roughly 100
bytes, are replicated to all zones.

4.1 Verification

Transaction Verification

When a miner in zone B receives a relay transaction from
zone A, it needs to verify this transaction in order to avoid
the attack from a malicious peer. As shown in Figure 2, a
forwarded transaction ψ := 〈φ ,b,γ〉 includes verification
data γ , where

γ := 〈s,k, t, p,{hq}〉, (1)

position pointer p denotes the position in the list of out-
bound relay transactions in its originate block, Merkle
tree path {hq} refers to hash values of all sibling nodes
on the path from Merkle tree root to its entry; and zone
index s, sharding scale k, and height t are used to identify
its originate block.

The Merkle tree root will be recalculated using the
Merkle tree path {hq} and the transaction 〈φ ,b〉 itself.
It is verified if the recalculated Merkle tree root matches
with that in its originate block Θa and Θa is on the chain
in zone A. Note that the relationships to siblings (left or
right) is not encoded in {hq}, which is inferred from p
instead.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 99

… …

Inbound Relay TX 0
… …

Inbound Relay TX m

Transaction 0
… …

Transaction x
… …

Transaction n

Coinbase Transaction

Transaction-Block 𝚽

Sharding Scale k

Hash of Previous Chaining-Block

Timestamp

Merkle Root (Confirmed TX)

Merkle Root (Outbound Relay TX)

PoW Target

Version

PoW Nonce

Chaining-Block 𝚯

Shard Index s

Sharding Scale k
Shard Index s
Height of Originate Block t
Position p of TX x in Outbound List

Merkle Tree Path hq to TX x
Relay Transaction x (𝟇, b)

𝝍: Forwarded Relay TX of x

… …

… …
Relay Transaction 0

Outbound Relay TX

Relay Transaction x

Relay Transaction r

… …

… …

Coinbase Transaction

Transaction 0

Transaction n'
Inbound Relay TX 0

Inbound Relay TX m'

Inbound Relay TX x

Sharding Scale k

Hash of Previous Chaining-Block

Timestamp

Merkle Root (Confirmed TX)

Merkle Root (Outbound Relay TX)

PoW Target

Version

PoW Nonce

Chaining-Block 𝚯

Shard Index s'

Forwarded Relay TX of m'

Forwarded Relay TX of 0

…

b

a

a

…

Transaction-Block 𝚽b

Zone A Zone B

Figure 2: Data structure of the chaining-blocks and transaction-blocks. Outbound relay transactions are derived from
confirmed transactions and forwarded with verification data (hq and etc.)

Block Verification

On receiving a block (pair of chaining-block and
transaction-block) broadcasted by a miner, a full node
needs to verify the block to defend malicious miners. In
our system, a full node verifies three types of transac-
tions. As shown in Figure 2, they are:

1. Confirmed initiative transactions in its own zone.
2. Inbound relay transactions previously forwarded

from other zones.
3. Outbound relay transactions forwarded to other

zones.

To save the storage space of full nodes, transactions
of the first two types are actually embedded in the
transaction-block; while outbound relay transactions are
not, since they can be derived from the list of confirmed
initiative transactions.

The confirmed transactions are verified against cur-
rent user states. Any block containing illegal transac-
tions or mismatched pairs of initiative/relay transactions
will be rejected. The inbound relay transactions are veri-
fied against their originate blocks as described in section
4.1. This process also checks if all outbound relay trans-
actions are created as expected, by double checking the
Merkle tree root of the list of all outbound relay transac-
tions. It is assumed that outbound relay transactions are
ordered and precisely consistent with the order of con-
firmed initiative transactions. Note that only the Merkle
tree root is embedded in the chaining-block, instead of
the outbound relay transactions themselves.

4.2 Eventual Atomicity
A payment transaction involving withdraw and deposit
operations, should be atomic to ensure correctness of
the global ledger. In existing blockchain systems, e.g.,
RSCoin [11] and OmniLedger [23], the variants of two-
phase commit (2PC) mechanism [36] are used to ensure
the atomicity, with the known lock/unlock overhead.

In our system, for a cross-zone transaction, we allow
the withdraw operation to execute first, interleaving with
other transactions then the corresponding deposit oper-
ation to be settled later. What is achieved is that once
the withdraw operation is confirmed, the deposit opera-
tion will be executed eventually. We call such an atom-
icity, Eventual Atomicity. We optimistically assume
withdraw operations, carried by relay transactions, will
be eventually picked as long as there are well-behaved
miners that want to earn transaction fees. What our de-
sign ensures is that relay transactions will not be discrim-
inated by sufficiently incentivizing with a fee split.

Theoretically, there could be bad-behaved miners cre-
ating empty blocks without confirming any transaction,
neither for normal transactions and relay ones. In that
case, throughput will be harmed and eventual atomicity
will not be fulfilled until a well-behaved miner eventually
gains the opportunity for block creation. In the history of
the Bitcoin and Ethereum networks, creation of empty
blocks is possible but rare [17, 33].

By default, the newly-derived outbound relay trans-
actions are forwarded to their destination zones by
the miner, who created the chaining-block and the
transaction-block in the originate zone. Once the re-
lay transaction gets replicated in the destination zone, it
will never expire before being picked up by a miner, un-
less its initiative transaction is invalidated, e.g., being or-
phaned block due to the chain fork (we will discuss this
case later). If a relay transaction is accidentally dropped,
which is extremely unlikely, it can be reconstructed by
any full node in the originate zone based on its originate
block on the chain. No additional verification or con-
sensus is required to restart the replication of the recon-
structed relay transaction.

In the existing blockchain system, a payment transac-
tion will be visible to its payee once it is packed in a
block on the chain (first confirm). It will be secured after
n− 1 successive blocks appended (n-th confirm, n = 6
in Bitcoin and 12 in Ethereum). In contrast, a cross-
zone payment transaction in our system will be visible to

100 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the payee, once its relay transaction is forwarded to the
payee’s zone, and its originate block becomes available.
With the eventual atomicity, the transaction is considered
as eventually secured, once its initiative transaction gets
n-confirmed, and the relay transaction gets a first con-
firm. Since miners of these two zones are working in-
dependently, n-confirmation of the initiative transaction
is overlapped with the forwarding and first confirmation
of the relay transaction. Thus, eventual atomicity intro-
duces no additional delay, which is also demonstrated in
our experiments in section 7.3. Theoretically, additional
latency may occur, when the relay transaction waits too
long to be picked up by a miner. This can take even
longer than n-confirmation of its initiative transaction.

4.3 Fork Resolution
In a proof-of-work consensus system, it is possible for
different miners to create two, or even more, blocks at
the height, which are forks. Eventually, after a successful
fork resolution, only one block will be accepted among
those and the rest will be discarded as orphan blocks.
The longest-chain rule [37] is proposed to resolve forks
in Bitcoin and GHOST protocol [42] is also employed in
Ethereum. We use GHOST protocol in consensus zones,
which is reliable even when the fork rate is high.

In each consensus zone, fork resolution is performed
independently in exactly the same way as previous
single-chain consensus systems. A block can be one of
the three states:

1. Available: no fork, or the block is on the winning
path.

2. Unsolved: the block is on one of the equally com-
peting paths.

3. Orphan: the block is on the losing path.

Fork resolution is a continuous procedure as more blocks
being created and appended. A previously available
block may lately become orphan or unsolved, and vice
versa.

With eventual atomicity, the consequence of fork res-
olution in one zone may affect the validity of relay trans-
actions forwarded and confirmed in another zone. Ver-
ification of relay transaction relies on the proof related
to its originate block. If the originate block is no longer
available after fork resolution, the proof will be invali-
dated and in turn invalidates all relay transactions that
originated from it.

Pre-Confirmed

An unconfirmed relay transaction will not be considered
in new block creation until its originate block is in avail-
able state. Relay transactions will stay in the uncon-

Block a Orphan
Blocks

Available
Blocks

Block b Block c

Relay Transaction x

Block d

λ blocks

…

Zone A

Zone B

… …

Outbound Relay Transaction from y

Figure 3: Relay transaction invalidated due to orphaned
initiative block after fork resolution.

firmed transaction set regardless of the validity of their
originate block and wait for originate blocks become
available.

Post-Confirmed

As shown in figure 3 Zone A, a block a previously avail-
able lately become unsolved/orphan, and unfortunately,
a relay transaction x originated from it has already been
confirmed and embedded in a block b in zone B. In that
case, block b will not be invalidated and just the relay
transaction x will be invalidated. While, the ledger state
in zone b is required to be rebuilt by executing all trans-
actions of all historical blocks since the genesis block,
skipping all invalidated relay transactions including x. In
practice, state rebuilding is accelerated by state check-
points so that only operations of recent blocks are re-
executed.

Implicate Subsequent Transactions in Invalidating

After relay transaction x is invalidated, an even worse
scenario is that a subsequent confirmed transaction be-
come invalidated because it relies on the updated state by
the relay transaction x. For example in Figure 3, the relay
transaction x deposit u tokens in block b and the balance
becomes u0 + u. Lately a transaction y is confirmed in
block c and it withdrawn v tokens (u0 < v≤ u0 +u).

If relay transaction x is invalidated and transaction y is
a cross-zone transaction, block c will be invalidated and
all subsequent blocks after that will be discarded as well.
To avoid such a case, a miner will validate candidate
transactions against a special state by delaying execution
of inbound relay transaction for λ blocks. Thus, trans-
action y will be not be confirmed until block d, which
makes such case unlikely since block a already received
at least λ confirmations.

Let the latest block be b, the normal state S is built
by executing all operations in all transactions from the
genesis block to block b. For miners, an additional state
Sλ is built by executing from the genesis block to block

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 101

b−λ and then execute all operations except inbound re-
lay transactions of blocks b− λ + 1 to b. An uncon-
firmed cross-zone transaction must be validated against
both states S and Sλ to be considered as candidate when
creating block b+1.

5 Defense Per-Zone Security

In the early stage, miners are individuals and mining
power is fragmented. The randomness of voluntary zone
assignments based on the local identifier is safe, when no
individual miner controls more than 50% mining power
in any zone. Professional mining facilities will gradually
dominate the mining power by owning great amount of
mining power or aggregating mining power from individ-
ual miners, which delivers steady, frequent and divided
mining rewards [28]. In our system with n zones, a ratio-
nal mining facility will ideally distribute its total mining
power in different zones to maximize the rewards (bias
to zones with lower mining difficulty). Eventually, this
makes the mining power of the entire network H con-
verge to be evenly distributed across zones. Thus, per-
zone mining power will be H/n. When a malicious min-
ing facility gathers all its mining power T focuses on a
single zone, the attack will success if T > H/n× 50%,
which will be unacceptably low when with a large n.

To address this issue, we introduce a Chu-ko-nu min-
ing mechanism that allows and encourages a miner to
create multiple blocks in different zones with one PoW
solution. This ensures the effective mining power in each
zone is nearly equal to the total physical mining power
in the entire network, raising the attack bar in each zone
close to 50% when most miners participate in Chu-ko-
nu mining. Also, Chu-ko-nu mining can save energy
consumed in solving PoW by making it more produc-
tive of block creation. Like PoW mechanism itself, se-
curity based on Chu-ko-nu mining is driven by incentive.

Merkle Tree Path {hj}

Hash of Previous Chaining-Block

Timestamp

PoW Target

Version

Batch Sharding Scale kb

Sharding Scale ki

Hash of Previous Chaining-Block

Timestamp

Merkle Root (Confirmed TX)

Merkle Root (Outbound Relay TX)

PoW Target

Version

PoW Nonce 𝜂i

Base Shard Index b of the Batch

Size of the Batch n

Batch-Chaining-Block Chaining-Block

A A

B

C

Shard Index si
Sharding Scale k
Shard Index s

Merkle Root (Confirmed TX)

Merkle Root (Outbound Relay TX)

Batch PoW Nonce 𝜂b

Figure 4: Comparison of a batch-chaining-block and a
chaining-block

It will be taken down if the attacker controls more than
50% physical mining power of the entire network, which
is also the case of PoW mechanism. While, the defense
is all miners that acknowledge the incentive.

5.1 Chu-ko-nu Mining
Chu-ko-nu mining allows a miner use a single PoW so-
lution to create multiple blocks at different zones simul-
taneously, but no more than one block per-zone. In such
a case, a batch-chaining-block in Figure 4 will replace
the chaining-block, as shown in Figure 2, and get repli-
cated among all zones. Miners are allowed to perform
Chu-ko-nu mining for n zones starting from zone index
b or all zones (n = 2k,b = 0) based on their capacities of
IT resources.

A miner will perform the transaction validation for all
involved n zones and collect n chaining-headers Ai, i.e.,
part A in Figure 4. Without Chu-ko-nu mining, as in
Bitcoin or Ethereum, a miner is required to find n nonce
ηi (i ∈ [0,n−1]) that each fulfills

hash(〈Ai,ηi〉)< τ, (2)

in which τ denotes the PoW target (a big integer) [37] de-
termining the mining difficulty, and the < operator takes
place by regarding the hash value as a big integer. With
Chu-ko-nu mining, a miner only needs to find a single
nonce ηb that fulfills

hash(〈h0,C,ηb〉)< τ, (3)

in which C is the configuration of the batch (part C in
Figure 4) and h0 denotes the root of Merkle tree ϒb over
the list of all chaining-headers in this batch:

〈A0,A1, . . . ,An−1〉 . (4)

Note that we assume the PoW targets are the same in all
involved zones. We will discuss the case if they are not
in the next section.

Once ηb is found, zone-specific batch-chaining-blocks
will be composed and sent to corresponding zones. As
illustrated in Figure 4, for each zone, a batch-chaining-
block carries a chaining-header (A), its Merkle tree path
{h j} (B), batch configuration (C), and the found batch
PoW nonce ηb, which are the minimum pieces of infor-
mation for recalculating equation 3 and for verifying the
PoW. Our system doesn’t explicitly record the relation-
ships to siblings (left or right) in the Merkle tree path
{h j}. Instead, relationships are inferred from bits of the
offset in the batch list (s− b). By this means, the zone
index s is coupled with the offset in the block list (Equa-
tion 4) in the batch, which guarantees that a miner is able
to create only one block for each involved zone in one
batch.

102 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In each zone, full nodes, as well as miners, treat batch-
chaining-blocks and chaining-blocks equally when ac-
cepting a new block. They follow the same approach
to detect and resolve forks as described in Section 4.3.
A chain of a zone is allowed to contain batch-chaining-
blocks and chaining-blocks at different block heights.

Chu-ko-nu mining shares similar spirit with merged
mining [4] in practices by allowing creating multiple
blocks with a single PoW solution. Merged mining is de-
signed for different motivation and scenario, which is for
protecting blockchains with small mining power. Chu-
ko-nu mining is designed for reinforcing mining power
distribution across zones with amplified effective mining
power. Chu-ko-nu mining works with multiple chains
with equal role and equal mining power, instead of a
parent chain and an auxiliary chain. Chu-ko-nu mining
also enforce one-block per-zone which leads to a differ-
ent data structure and implementation.

5.2 Independent Validation in Zones

Chu-ko-nu mining solves the PoW for chaining-headers
in batch, while the batch-chaining-block with solved
nonce are zone-specific and sent separately. Per-zone
batch-chaining-blocks will be validated and accepted in-
dependently in each zone. One block can be orphaned or
even invalidated, but this will not affect the validation or
the acceptance of others.

Independent validation also allows efficient handling
of mixed PoW targets of zones in one batch. The con-
struction of batch-chaining-blocks in this case is the
same as described in section 5.1, but it allows different
values of PoW targets in each chaining-header. While, in
probing the batch PoW nonce ηb, it is possible that some
blocks with high PoW targets (easier to fulfill) are ful-
filled but others are not. Batch-chaining-blocks for these
fulfilled zones will be composed and sent to their zones
immediately, regardless PoW targets of other zones are
not fulfilled (thus not be sent out). The fulfilled blocks in
the list of chaining-headers (Equation 4) will be removed
and replaced with their successive candidate blocks. The
probing of the batch PoW nonce will switch to a new
puzzle with updated h0 in Equation 3. Since the event of
finding a fulfilled nonce in different zones is independent
and random, such switching will not reduce the mining
efficiency.

5.3 Redistributed Mining Power

This section explains why Chu-ko-nu mining can make
an attack on a single zone as hard as the attack on the
entire network, which can set the attack bar at the same
security level of Bitcoin and Ethereum.

Mining Coordinator

 Zone 0Full Node

 Zone 1Full Node

 Zone n-1Full Node

…
 …

Block-Header A0

Block-Header A1

Block-Header An-1

…
 …

List of Per-Zone Block-headers

Cluster of PoW
Mining Units

Merkle Root of
Block-Header List

Nonce

Send to
corresponding full nodes

Pu
bl

ic
 In

te
rn

et

 Intranet of a Mining Facility

Figure 5: Internal architecture of a mining system

We use hash rate to describe the mining power, which
is proportional to the speed of producing new blocks. In
a network having 2k zones, let mp be the total physical
hash rate of miners that participate in Chu-ko-nu min-
ing and md be the total physical hash rate of miners that
don’t (as individual miners). The effective hash rate ms
distributed in each zone can be calculated as

ms =
md

2k +mp. (5)

If a malicious node can obtain > ms
2 hash rate in any

zone, it can control this zone. Therefore, the attack bar in
each zone, which can be calculated as the obtained hash
rate of a malicious node divided by the total hash rate in
the network, is

>
ms

2 · (md +mp)
= 50%− md · (2k−1)/2k

2 · (mp +md)
(6)

, which converges to 50% when the mining facility dom-
inates the total hash rate. For example, if the mining fa-
cility contributes 99% hash rate in a 256-zone network,
a successful attack requires 49.5% of total physical hash
rate in the network. The current situation (September
2018) in Bitcoin network, 100% hash rate is contributed
by mining facilities[5].

To maximize the incentive from a single PoW solu-
tion, professional mining facilities will participate in all
zones and hopefully takes rewards from all zones. Chu-
ko-nu mining actually amplifies miner’s mining power,
which is multiplied with the number of zones a miner
participates in. The amplified mining power is evenly
distributed to all involved zones. Such an effective am-
plification of mining power helps honest miners that dis-
tribute mining power to all zones but don’t apply to at-
tackers targeting on a single specific zone.

5.4 Scalable Mining System
A mining system of Bitcoin or Ethereum in a mining fa-
cility is a distributed system that consists of hundreds or
even thousands PoW mining units, e.g,. GPU and Spe-
cialized Application-Specific Integrated Circuit (ASIC)

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 103

just focusing on hash probing, plus a few PCs working
on actual transaction validation and block construction.

In our system, a mining system is desired to monitor
multiple zones. The partitioning scheme in the network
naturally provides a scalable solution for a mining facil-
ity observing a large number of zones. As illustrated in
Figure 5, besides the cluster of PoW mining units, in ad-
dition, there is a cluster of full nodes for observing all
involved zones, independently discovering new blocks,
validating transaction, and constructing candidate block-
headers Ai. Once Ai is updated in any zone i, new Ai
will be sent to Mining Coordinator in Figure 5. Merkle
tree of block-header list (Equation 4) will be recalculated
by the mining coordinator and the updated Merkle tree
root h0 (Equation 3) will be broadcast to all PoW mining
units. Such design provides an example and demonstrate
how a scalable mining system can be implemented and
operated for professional mining facility.

6 Discussions

6.1 Single Address Hotspot
It is possible that a single address is involved
in a great number of transactions, e.g., a deposit
address of a large cryptocurrency exchange. In
the workload described in Section 7, the address
0x3f5CE5FBFe3E9af3971dD833D26bA9b5C936f0bE, which is
one deposit address of Binance (a top cryptocurrency ex-
change), is the payee of more than 2% total transactions.
Since a single address is the finest unit in our partitioning
scheme, right now our system can not further partition
such workload into multiple zones.

In practice, such a "single address hotspot" issue can
be easily resolved with the co-design of applications at
the upper layer. For example, an application or a user
can allocate multiple deposit addresses in different zones
for load balancing. An institutional operator announces
a list of addresses for deposit, and the wallet applica-
tion automatically chooses a random address, or even an
intra-zone address if available, for coin transferring. As
a result, the transaction throughput of multiple zones can
be leveraged.

6.2 Incentives and Fees
We follow Bitcoin’s incentive model by rewarding the
miners with phase down coinbase in every zone, which
end up with a fixed total supply of cryptocurrency. The
transaction fee is a parameter set by whoever issue
the transaction, which is usually based on the average
amount of the fee in recent confirmed transactions. A ra-
tional miner prioritizes unconfirmed transactions based
on the transaction fee.

We introduce fee splitting for cross-zone transactions,
which incentivize both miners working on initial step and
relayed step of transaction handling so that relayed trans-
actions will be equally prioritized with transaction fees
at similar levels. For a simple payment, the transaction
fee can be equally split. For complex transaction with
programmable transaction logic, the transaction splitting
should be based on the evaluation of workloads in each
step similar to the gas calculation in Ethereum.

We don’t introduce additional fees for propagating
cross-zone transactions. Optimistically, we expect such
task will be done voluntarily by all full nodes and min-
ers throughout the network as voluntarily propagating
of intra-zone transactions works well in Bitcoin and
Ethereum networks. Block creation with cross-zone
transactions is a bit more costly than intra-zone transac-
tions. We recommend cross-zone transaction issuer set
double or even triple the amount of transaction fees.

We encourage Chu-ko-nu mining by providing equal
coinbase reward for blocks generated using Chu-ko-nu
or not. Thus, given fixed physical mining power, the
profit of Chu-ko-nu mining is proportional to the number
of zones participating. It is rational for professionally-
operated miners to work on all zones simultaneously,
which enhances the overall security of the network.

We do not extend to the quantitative analysis on the in-
centives and economics of the ecosystem, as it is beyond
the scope of this paper.

6.3 Generalization beyond Payment

So far, our discussions are based on the withdraw-deposit
paradigm that serves well payment-centric scenarios,
e.g., Bitcoin. It is also desirable to extend the model
for complex transaction logic and go beyond payment-
centric applications. To this end, a main challenge is
to correctly handle generalized relay transactions, and
guarantee the atomicity. We extend the withdraw-deposit
paradigm to a more general model with programmable
transaction logic, which is presented in the appendix.

The proposed programmable transaction logic sup-
ports programmable issuing and transferring of cryp-
tocurrencies as well as user-defined fungible and non-
fungible tokens similar to ERC20/ERC721 tokens on
Ethereum. It also supports more complicated applica-
tions like a domain registration system. Our method re-
quires that a cross-zone transaction can be verified in a
single zone and be completed by one-step irrevocable
relay transactions, which don’t support applications like
many-to-many payments. It can be extended to revoca-
ble relay transactions and multi-step relaying, we leave
those improvements to future works.

104 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Experimental Results

Our system is implemented using C++. Cryptography
is implemented based on Botan cryptography library
(v1.11) [30] and Intel IPP Cryptography library (v7.1)
[21]. We use RocksDB (v4.11) [16] to store archived
blocks and transactions. We implement Mainline DHT
[31] for P2P routing and swarm formation facilities peer
discovery for the global swarm and per-zone swarms.

We evaluate the proposed system by playing back the
complete historical ERC20 payments in Ethereum from
the beginning up to the block height 5867279, which in-
cludes 16.5 million unique addresses and 75.8 million
transactions. We deploy our system on a distributed en-
vironment that includes 1,200 virtual machines, each of
which has 8 cores and 32GB memory. These machines
are uniformly distributed in 15 Availability Zones for
testing cross-country latency in the real world. In the
test network, we restrict the end-to-end peek bandwidth
to 30Mbps and the measured average end-to-end latency
is 102.48 msec. In every zone, we set a 32KB limit for
the block size and a target of 15-second block creation
interval, which yields around 15.6 TPS for one-to-one
token transfer. The average orphan rate in every zone is
8.3o/oo, which is independent of the number of zones. On
such a testbed, we support 48,000 nodes of blockchain in
our system.

100 101 102 103
101

102

103

104

Number of Zones

T
PS

Figure 6: Linear scaling out with multiple zones.

7.1 Scalability

We first evaluate if our partitioning mechanism intro-
duced in Section 3.1 can balance the number of payments
between zones. We change the sharding scale k to gen-
erate different numbers of zones, i.e., setting k to 4, 5, 8
and getting 16, 32, 256 zones, respectively. Figure 7 il-
lustrates transactions handled in each zone are balanced,
with different sharding scale k. While, there exist sin-
gle address hotspots, which can be further optimized as
discussed in Section 6.1.

We evaluate the scalability by measuring the actual
throughput of our system with a different number of
zones. We fix the number of nodes in each zone, i.e., 24
nodes with 12 miners in average per zone, when increas-

0

0.5

1

1.5
·107

zones

N
um

be
ro

fT
ra

ns
ac

tio
ns

16-zones 32-zones 256-zones

Figure 7: Transaction distribution across zones.

ing the number of zones. Figure 6 shows that the mea-
sured TPS scales out as the number of zones increase.
The system exhibits the linear scalability, and achieves
up to 11,694.89 TPS when there are 2,048 zones. The
only exception occurs when increasing the number of
zones from one to two. Due to the overhead of relay-
ing transactions, the performance gain using two zones
over one zone is 1.88×.

7.2 Overhead

Although the throughput of our system scales out linearly
with the number of zones, relaying transactions across
zones actually introduces the overhead, amplifying the
number of transactions and total size of data to be stored
and replicated. Figure 8 shows the percentage of cross-
zone transactions grows when increasing the number of
zones. Almost all transactions will lead to a relay trans-
action when there are more than 64 zones in our exper-
iments. Such an amplification doubles the total number
of transactions at most and don’t weaken the scalability
of throughput at all. As shown in Figure 6, throughput
keep scaling out when there are more than 64 zones.

Figure 9 illustrates the amplified sizes of data repli-
cation and storage in the entire network. First, when
increasing the number of zones, almost all transactions
lead to a relay transaction, i.e., more than 64 zones in
this case. Transactions are put into blocks and persistent
storage in original zones; and relay transactions are those
of destination zones, doubling the size of transaction-
blocks. Second, compared to the transactions in a block,
which takes hundreds of kilo-bytes, the chaining-block
that has tens of bytes is much less significant. However,

100 101 102 103

0

50

100

Number of zones

%
of

C
ro

ss
-z

on
es

Figure 8: Percentage of cross-zone transactions, which
approaches to 100%. Almost every original transaction
produced a relay transaction.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 105

100 101 102 103
0

2

4

·107

Number of zones

To
ta

lD
at

a
Si

ze
(K

B
)

Transactions Relay TX Chaining Block

Figure 9: Sizes of the blockchain data in the entire net-
work.

since the chaining-block is duplicated to all zones, their
total size on storage in the entire network will be ampli-
fied with the number of zones. As shown in the figure,
their total size is pushed up to tens of kilo-bytes with
2048 zones, 6.2% of the transaction size, which is ac-
ceptable in practice.

7.3 Confirmation Latency
The average number of connections per node affects the
data propagation speed in the network, and in turn, the
confirmation latency of blockchain. Figure 10 shows
the cumulative distribution function of time elapsed and
number of nodes reached. We configure the average
number of connections per node to 16, 32, 64, 128, and
observe that the fastest propagation speed is obtained at
128. In our experiments, each full node connects to 68.5
peers in average.

As presented in Section 4.2, a transaction is first con-
firmed when its block is replicated between nodes in the
network; after n block, the transaction is secured. Bit-
coin, which configures n to 6 with a 10-minute interval of
block generation, requires 1 hour to secure a transaction.
In our system, a relay transaction must be on-chain be-
fore the original transaction reaches n-confirms, so there
is no additional confirmation latency. Figure 11 shows
the first confirmation time of relay transactions. The la-
tency is in a range of 13 to 21 seconds, when the number
of zones is larger than 30 (almost all transactions have

0 1 2 3 4 5

0

0.5

1

Time Elapsed (sec)

%
of

N
od

es
R

ea
ch

ed

Figure 10: Transaction (<1KB) propagation speed with
different average number of connections from each node
to other peers. Fastest propagation shown here is 128-
connected, slowest one is 8-connected. Ones in between
are 64/32/16-connected.

100 101 102 103

5

10

15

20

Number of zones

C
on

fir
m

in
g

Ti
m

e
(s

ec
)

Upper/Lower Bounds
Average Time

Figure 11: Average first confirming time of transactions.

relay transactions). Since we configure a 15-second in-
terval of block generation, the original transaction is se-
cured after 90 seconds (n = 6, same to Bitcoin), which is
enough to cover the confirmation latency of relay trans-
actions.

7.4 Throughput and Orphan Rate

We also evaluate the TPS and orphan rate of our system
with different block sizes and block creation interval in
Figure 12. In these experiments, we fix the number of
zones to 256. As expected, enlarging block size or less-
ening block creation interval yields almost linear TPS in
our system, since our system is neutral to actual config-
urations of Nakamoto consensus instances in each zone.
However, a larger block size or a smaller block creation
interval leads to a higher orphan rate, inducing blocks
wasted. Such behavior matches well with the existing
blockchain system. In a typical case, we configure a rea-
sonable block size and a block creation interval, e.g., 32
KB and 15 seconds, for high TPS and low orphan rate.

102 103

103

104

105

Block Sizes (KB)

T
PS

0

0.2

0.4

O
rp

ha
n

R
at

eTPS
Orphan Rate

103 103.5 104
103

104

Block Creation Intervals (msec)

T
PS

0

0.2

0.4

O
rp

ha
n

R
at

e

Figure 12: TPS and orphan rate with different block
sizes (Upper) and with different block creation interval
(Lower). (# zone = 256)

106 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8 Related Work

Many research efforts have been put on improving PoW
systems. Instead of the longest branch, GHOST proto-
col [42] chooses the block whose sub-tree contains most
blocks as the main chain to prevent the attack by selfish
mining at a fork. Bitcoin-NG [15] selects a leader in each
epoch, and allows the leader to post multiple blocks, thus
increasing the throughput. SPECTRE [41] and PHAN-
TOM [43] increase Bitcoin’s throughput by replacing
the chain-based structure to the Directed Acyclic Graph
(DAG)-based structure and merging blocks from differ-
ent branches to the ledger. SPECTRE provides the partial
order between DAG blocks, while PHANTOM can keep
the total order. Conflux [29] is another DAG-based pro-
tocol. It constructs the consistent total order of transac-
tions over DAG through introducing parent and reference
edges and combining ghost for pivot chain selection. It
allows blocks outside the pivot chain to be able to con-
tribute to the overall throughput. These proposals can en-
hance Bitcoin security by eliminating the selfish mining
and improve the throughput by merging blocks from dif-
ferent branches to the main chain. However, as discussed
in Section 1, the performance of these single chain sys-
tems is bound to the available network bandwidth of full
nodes. Thus, they cannot scale out to thousands of nodes.
Moreover, due to the requirement of replicating and pro-
cessing forked blocks in these systems, it is unclear how
full nodes address and resolve the capacity issue on the
memory and storage in a large scale.

PoS systems reach the consensus with the majority of
stake share. Ouroboros [22] is a PoS system with en-
hanced persistence and liveness. It uses a coin-flipping
protocol to produce the randomness in the leader elec-
tion. However, it cannot avoid the targeted attack [18]
with the assumption that most leaders are incorruptible
in an epoch. Tendermint [26] and Casper the Friendly
Finality Gadget [7] adopt the Byzantine Fault Tolerance
(BFT) protocol to select the committees, reach the con-
sensus, and tolerant against up to one third malicious
nodes. However, Practical BFT (PBFT) protocol [8, 40]
used in these proposals has significant communication
cost and only scales to dozens of compute nodes. Fur-
thermore, on a public blockchain that anyone can partici-
pate in, PBFT has the security issues. The permissionless
characteristics of PBFT makes the blockchain under the
risk of Sybil attack [13], where an adversary can create
an arbitrary number of pseudonyms. And, the absence
of public-verifiable and unbiased randomness makes the
elected committees under the risk of targeted attack [18],
once an adversary can predict their identities.

The recent work [1] has discussed the relation-
ship between BFT protocols and blockchain consensus,
and highlighted how to optimize BFT for blockchain.

Zyzzyva [25] uses speculation to simplify BFT state ma-
chine replication and can reduce replication overhead
significantly. SBFT [19] is a scalable, trust, and decen-
tralized infrastructure of blockchain. It can handle hun-
dreds of active replicas and support smart contracts of
Ethereum. HoneyBadgerBFT [35] proposes an atomic
broadcast protocol to optimize the communication com-
plexity of BFT, making the asynchronous BFT to be able
to support hundreds of nodes. ByzCoin [24] leverages
the collective signing and optimizes the transaction com-
mitment of the BFT-based blockchain. RandHound and
RandHerd [45] provide public-verifiable, unpredictable,
and unbiased randomness. Algorand [18] grows the
blockchain in asynchronous rounds. In a round, each
node computes a verifiable random function to determine
if it is a committee member. Once a validator sends a
message to prove its membership with its vote, Algorand
replaces participants immediately. It can avoid the Sybil
attack and targeted attack. However, these proposals are
reported to have either the security issue or the perfor-
mance issue. For example, Algorand is susceptible to
bias in the randomness of the variable random function
(VRF) invocation [20], while ByzCoin may not reach the
agreement on the committee election, as reported in the
hybrid consensus system [38].

Many distributed systems, e.g., Google Spanner [9]
and Slicer [2], use the sharding protocols to scale out;
while these solutions are centralized and cannot be used
directly in the decentralized blockchain systems. Elas-
tico [32] is a decentralized sharding protocol. In each
consensus epoch, the participants can solve a PoW puz-
zle to join a consensus committee. The committee of
each shard runs PBFT to reach the agreement on a set of
transactions and sends the agreement to a final commit-
tee. The final committee generates the final values from
the received agreements, and broadcasts to the network.
First, Elastico doesn’t ensure the transaction atomicity
across shards. Second, in order to limit the overhead of
running PBFT, it only supports a small number of com-
mittees, leading to a high failure probability [23]. Third,
although each committee can verify transactions in their
own shard, Elastico still broadcasts all blocks to all nodes
and requires them to store the whole ledger. This leads to
the capacity issue on full nodes inevitably. OmniLedger
[23] is a distributed ledger based on a sharding proto-
col and tries to resolve the problems in Elastico. Om-
niLedger uses RandHoundm [45] to ensure the leader
election bias-resistant and public-verifiable, and intro-
duces Atomix, a two-phase atomic commit protocol, to
guarantee the atomicity of cross-shard transactions. It
only requires the validators to store the reference point
of each shard, instead of the full transaction history, mak-
ing full nodes more sustainable. The Ethereum commu-
nity also introduces the beacon chain [14] to support the

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 107

sharding protocol. The beacon chain provides the dis-
tributed pseudorandomness for selecting committees of
validators on each shard. Because the pseudorandomness
randomness is susceptible to bias, the sharding-protocol
based blockchain shouldn’t assume a trusted randomness
beacon. A recent study RapidChain [47] further opti-
mizes these sharding protocols. It is resilient to Byzan-
tine faults from up to a 1/4 fraction, e.g., in OmniLedger,
to a 1/3 fraction of the participants. It also enhances the
throughput via block pipelining and ensures the robust-
ness of the setup for new participants to join the network.
Compared to these systems, our work proposes the even-
tual atomicity to ensure the atomicity of cross-zone trans-
actions without the lock/unlock overhead. Most impor-
tantly, a blockchain system that is partitioned to multiple
zones/shards exposes a severe security problem, which is
not addressed in these existing proposals. With partition-
ing, the honest majority of mining power or stake share
or randomly selected committee is dispersed into indi-
vidual zones/shards. This significantly reduces the size
of honest majority on each zone/shard, thus dramatically
lowering the attack bar on a specific zone/shard. There-
fore, we introduce the Chu-ko-nu mining to ensure the
security after partitioning, and make attacking any spe-
cific zone as difficultly as attacking the entire network.

In summary, the existing proposals targeting on the
single chain and non-sharding solution [42, 41, 43, 15,
29, 24, 18] are bound to the network bandwidth and can-
not scale out; while the sharding systems either do not
support full sharding [32], or may lower the attack bar
after sharding [23, 47]. To our best knowledge, Monox-
ide is the only scalable blockchain system implementing
full sharding of the consensus protocol as well as the re-
source usage for scalability, preserving the guarantees of
PoW for decentralization, and maintaining the same level
of security of Bitcoin and Ethereum.

9 Conclusion

We proposed a scalable decentralized consensus system
based on the blockchain mechanism. Without weaken-
ing decentralization and security, our technique offers a
linear scale-out by partitioning the workload of all key
components of a blockchain system including transaction
broadcasting, mining competition, chain storage, trans-
action execution and state representation. We preserved
the simplicity of the blockchain system and amplify its
capacity by duplicating equal and asynchronous zones,
which work independently with minimal coordination,
in parallel. Additionally, Chu-ko-nu mining and even-
tual atomicity are key contributions proposed by our sys-
tem, ensuring the efficiency and security of systems with
thousands of independent zones. In our experiment, we
demonstrate that our system delivers 1,000× throughput

and 2,000× capacity over Bitcoin and Ethereum.

10 Acknowledge

We thank Heung-Yeung Shum (Microsoft), Lidong Zhou
(Microsoft Research Asia), Xiaobin Zhang (PPTV),
Hongbo Zhang (Bloomberg), Xiao Sophia Wang (Uber),
Shuang Zhao (University of California, Irvine), Minghao
Pan (AMD) and Shumo Chu (University of Washington)
for their suggestions, challenges, and encouraging com-
ments along the way. We also thank our shepherd, Vi-
jay Chidambaram (University of Texas at Austin), and
all anonymous reviewers for their helpful feedback.

108 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] ABRAHAM, I., AND MALKHI, D. The blockchain
consensus layer and bft. Bulletin of the EATCS 123
(2017).

[2] ADYA, A., MYERS, D., HOWELL, J., ELSON, J.,
MEEK, C., KHEMANI, V., FULGER, S., GU, P.,
BHUVANAGIRI, L., HUNTER, J., PEON, R., KAI,
L., SHRAER, A., MERCHANT, A., AND LEV-ARI,
K. Slicer: Auto-sharding for datacenter applica-
tions. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2016), OSDI’16,
USENIX Association, pp. 739–753.

[3] ALIPAY. World record!! we’ve processed
256,000 payment transactions per second (tps),
2017. https://twitter.com/alipay/status/
929123909970153472.

[4] BITCOIN WIKI. Merged mining specification,
2015. https://en.bitcoin.it/wiki/Merged_
mining_specification.

[5] BTC.COM. Pool distribution, 2018. https://

btc.com/stats/pool.

[6] BUTERIN, V., AND ET AL. A next-generation
smart contract and decentralized application plat-
form, 2013. https://github.com/ethereum/

wiki/wiki/White-Paper.

[7] BUTERIN, V., AND GRIFFITH, V. Casper the
friendly finality gadget, 2017. https://arxiv.

org/pdf/1710.09437.pdf.

[8] CASTRO, M., AND LISKOV, B. Practical byzantine
fault tolerance and proactive recovery. ACM Trans.
Comput. Syst. 20, 4 (Nov. 2002), 398–461.

[9] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES,
A., FROST, C., FURMAN, J. J., GHEMAWAT, S.,
GUBAREV, A., HEISER, C., HOCHSCHILD, P.,
HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,
LLOYD, A., MELNIK, S., MWAURA, D., NAGLE,
D., QUINLAN, S., RAO, R., ROLIG, L., SAITO,
Y., SZYMANIAK, M., TAYLOR, C., WANG, R.,
AND WOODFORD, D. Spanner: Google’s globally-
distributed database. In Proceedings of the 10th
USENIX Conference on Operating Systems Design
and Implementation (Berkeley, CA, USA, 2012),
OSDI’12, USENIX Association, pp. 251–264.

[10] CRYPTOKITTIES. Cryptokitties, 2017. https://
www.cryptokitties.co.

[11] DANEZIS, G., AND MEIKLEJOHN, S. Centrally
banked cryptocurrencies. In Proceedings of the
23rd Annual Network and Distributed System Se-
curity Symposium (2016), NDSS ’16.

[12] DEMERS, A., GREENE, D., HAUSER, C., IRISH,
W., LARSON, J., SHENKER, S., STURGIS, H.,
SWINEHART, D., AND TERRY, D. Epidemic al-
gorithms for replicated database maintenance. In
Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing (New York,
NY, USA, 1987), PODC ’87, ACM, pp. 1–12.

[13] DOUCEUR, J. R. The sybil attack. In Revised Pa-
pers from the First International Workshop on Peer-
to-Peer Systems (London, UK, UK, 2002), IPTPS
’01, Springer-Verlag, pp. 251–260.

[14] ETHEREUM. Ethereum 2.0 phase 0 – the beacon
chain, 2019. https://github.com/ethereum/

eth2.0-specs/blob/master/specs/core/0_

beacon-chain.md.

[15] EYAL, I., GENCER, A. E., SIRER, E. G., AND
VAN RENESSE, R. Bitcoin-ng: A scalable
blockchain protocol. In NSDI (2016), pp. 45–59.

[16] FACEBOOK OPEN SOURCE. Rocksdb: A persistent
key-value store, 2014. https://rocksdb.org/.

[17] GAUTHIER, P. Why do some bitcoin
mining pools mine empty blocks?, 2016.
https://bitcoinmagazine.com/articles/

why-do-some-bitcoin-mining-pools-mine-

empty-blocks-1468337739/.

[18] GILAD, Y., HEMO, R., MICALI, S., VLACHOS,
G., AND ZELDOVICH, N. Algorand: Scaling
byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating
Systems Principles (New York, NY, USA, 2017),
SOSP ’17, ACM, pp. 51–68.

[19] GUETA, G. G., ABRAHAM, I., GROSSMAN,
S., MALKHI, D., PINKAS, B., REITER,
M. K., SEREDINSCHI, D.-A., TAMIR, O.,
AND TOMESCU, A. Sbft: a scalable decentral-
ized trust infrastructure for blockchains, 2018.
https://arxiv.org/abs/1804.01626.

[20] HANKE, T., MOVAHEDI, M., AND WILLIAMS,
D. Dfinity technology overview series, consensus
system, 2018. https://arxiv.org/abs/1805.

04548.

[21] INTEL. Developer Reference for Intel c©Integrated
Performance Primitives Cryptography 2018,
2018. https://software.intel.com/en-us/

ipp-crypto-reference.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 109

https://twitter.com/alipay/status/929123909970153472
https://twitter.com/alipay/status/929123909970153472
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/Merged_mining_specification
https://btc.com/stats/pool
https://btc.com/stats/pool
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://arxiv.org/pdf/1710.09437.pdf
https://arxiv.org/pdf/1710.09437.pdf
https://www.cryptokitties.co
https://www.cryptokitties.co
https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/0_beacon-chain.md
https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/0_beacon-chain.md
https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/0_beacon-chain.md
https://rocksdb.org/
https://bitcoinmagazine.com/articles/why-do-some-bitcoin-mining-pools-mine-
https://bitcoinmagazine.com/articles/why-do-some-bitcoin-mining-pools-mine-
empty-blocks-1468337739/
https://arxiv.org/abs/1804.01626
https://arxiv.org/abs/1805.04548
https://arxiv.org/abs/1805.04548
https://software.intel.com/en-us/ipp-crypto-reference
https://software.intel.com/en-us/ipp-crypto-reference

[22] KIAYIAS, A., RUSSELL, A., DAVID, B., AND
OLIYNYKOV, R. Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In An-
nual International Cryptology Conference (2017),
Springer, pp. 357–388.

[23] KOGIAS, E. K., JOVANOVIC, P., GASSER, L.,
GAILLY, N., SYTA, E., AND FORD, B. Om-
niledger: A secure, scale-out, decentralized ledger
via sharding. In Security and Privacy (SP), 2018
IEEE Symposium on (2018), Ieee.

[24] KOKORIS-KOGIAS, E., JOVANOVIC, P., GAILLY,
N., KHOFFI, I., GASSER, L., AND FORD, B.
Enhancing bitcoin security and performance with
strong consistency via collective signing. In Pro-
ceedings of the 25th USENIX Conference on Se-
curity Symposium (Berkeley, CA, USA, 2016),
SEC’16, USENIX Association, pp. 279–296.

[25] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT,
A., AND WONG, E. Zyzzyva: Speculative byzan-
tine fault tolerance. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems
Principles (New York, NY, USA, 2007), SOSP ’07,
ACM, pp. 45–58.

[26] KWON, J. Tendermint: Consensus without min-
ing, 2014. https://tendermint.com/static/

docs/tendermint.pdf.

[27] LAMPORT, L. How to make a multiprocessor
computer that correctly executes multiprocess pro-
grams. IEEE transactions on computers, 9 (1979),
690–691.

[28] LEWENBERG, Y., BACHRACH, Y., SOMPOLIN-
SKY, Y., ZOHAR, A., AND ROSENSCHEIN, J. S.
Bitcoin mining pools: A cooperative game theo-
retic analysis. In Proceedings of the 2015 Inter-
national Conference on Autonomous Agents and
Multiagent Systems (Richland, SC, 2015), AAMAS
’15, pp. 919–927.

[29] LI, C., LI, P., XU, W., LONG, F., AND YAO,
A. C.-C. Scaling nakamoto consensus to thou-
sands of transactions per second. arXiv preprint
arXiv:1805.03870 (2018).

[30] LLOYD, J. Botan: Crypto and tls for c++11, 2015.
https://botan.randombit.net/.

[31] LOEWENSTERN, A., AND NORBERG, A. Dht
protocol (bep-0005), 2008. http://www.

bittorrent.org/beps/bep_0005.html.

[32] LUU, L., NARAYANAN, V., ZHENG, C., BAWEJA,
K., GILBERT, S., AND SAXENA, P. A secure
sharding protocol for open blockchains. In Pro-
ceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (New
York, NY, USA, 2016), CCS ’16, ACM, pp. 17–30.

[33] MCFARLANE, G. Mining empty blocks is spik-
ing on ethereum — that could be a problem,
2018. https://ethereumworldnews.com/

mining-empty-blocks-ethereum-could-be-

a-problem/.

[34] MERKLE, R. Method of providing digital sig-
natures, 1979. https://patents.google.com/

patent/US4309569.

[35] MILLER, A., XIA, Y., CROMAN, K., SHI, E.,
AND SONG, D. The honey badger of bft protocols.
In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Secu-
rity (New York, NY, USA, 2016), CCS ’16, ACM,
pp. 31–42.

[36] MOHAN, C., LINDSAY, B., AND OBERMARCK,
R. Transaction management in the r* dis-
tributed database management system. ACM Trans.
Database Syst. 11, 4 (Dec. 1986), 378–396.

[37] NAKAMOTO, S. Bitcoin: A peer-to-peer elec-
tronic cash system, 2008. http://bitcoin.org/
bitcoin.pdf.

[38] PASS, R., AND SHI, E. Hybrid consensus: Ef-
ficient consensus in the permissionless model. In
LIPIcs-Leibniz International Proceedings in Infor-
matics (2017), vol. 91, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[39] RAY, J. Sharding faqs, ethereum wiki,
2019. https://github.com/ethereum/wiki/

wiki/Sharding-FAQs.

[40] SHI, R., AND WANG, Y. Cheap and available state
machine replication. In Proceedings of the 2016
USENIX Conference on Usenix Annual Technical
Conference (Berkeley, CA, USA, 2016), USENIX
ATC ’16, USENIX Association, pp. 265–279.

[41] SOMPOLINSKY, Y., LEWENBERG, Y., AND ZO-
HAR, A. Spectre: Serialization of proof-of-work
events: Confirming transactions via recursive elec-
tions, 2016. https://eprint.iacr.org/2016/
1159.pdf.

[42] SOMPOLINSKY, Y., AND ZOHAR, A. Secure high-
rate transaction processing in bitcoin. In Interna-
tional Conference on Financial Cryptography and
Data Security (2015), Springer, pp. 507–527.

110 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://botan.randombit.net/
http://www.bittorrent.org/beps/bep_0005.html
http://www.bittorrent.org/beps/bep_0005.html
https://ethereumworldnews.com/mining-empty-blocks-ethereum-could-be-
https://ethereumworldnews.com/mining-empty-blocks-ethereum-could-be-
a-problem/
https://patents.google.com/patent/US4309569
https://patents.google.com/patent/US4309569
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://eprint.iacr.org/2016/1159.pdf
https://eprint.iacr.org/2016/1159.pdf

[43] SOMPOLINSKY, Y., AND ZOHAR, A. Phantom,
ghostdag: Two scalable blockdag protocols, 2018.
https://eprint.iacr.org/2018/104.pdf.

[44] STATEOFTHEDAPPS.COM. Dapp statistics, 2019.
https://www.stateofthedapps.com/stats.

[45] SYTA, E., JOVANOVIC, P., KOGIAS, E. K.,
GAILLY, N., GASSER, L., KHOFFI, I., FISCHER,
M. J., AND FORD, B. Scalable bias-resistant dis-
tributed randomness. In Security and Privacy (SP),
2017 IEEE Symposium on (2017), Ieee, pp. 444–
460.

[46] VISA. Visa acceptance for retailers, 2018. https:
//usa.visa.com/run-your-business/

small-business-tools/retail.html.

[47] ZAMANI, M., MOVAHEDI, M., AND RAYKOVA,
M. Rapidchain: Scaling blockchain via full shard-
ing. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Secu-
rity (New York, NY, USA, 2018), CCS ’18, ACM,
pp. 931–948.

Appendix

A Programmable Transaction

In Section 3, our discussions are based on a withdraw-
deposit paradigm that serves well for payment-centric
applications such as Bitcoin. However, it is desirable to
have a transaction logic that is more complex and goes
beyond payment-centric applications. To this end, the
proposed system is required to correctly handle (gener-
alized) relay transactions and guarantee eventual atomic-
ity. We extend the withdraw-deposit paradigm to a more
general model with programmable transactions logic.

A.1 World State

We extend per-user balance to per-user state with user-
customizable data types and structures. The world state
Ω only contains per-user states:

Ω :=
{

ψµi

}
, (7)

where µi donates a user identified by its address. Each
per-user state ψ? can be simple integers (that describe ac-
count balance) or be arbitrarily complex data structures
like strings, lists, sets or maps.

A.2 Transaction
We extend the fixed logic of withdraw and deposit to pro-
grammable logic with a few restrictions as follows. A
transaction ϕ is an atomic updates over the state of users.
It modifies states of one or multiple users with a condi-
tion ρ:

ϕ :=
〈
ρ
(
ψµc

)
,
{

ψµi ← φi(ψµi ;ψµc)
}
,κ

〉
, (8)

where κ is the argument of the transaction available to
condition and operation logic, ρ denotes the condition
for validating the transaction (a binary function of state
ψµc). {φi} contains operations that modify states of users
{ψµi} if ρ is true. Note that we restrict the condition ρ

to only be related to a single user µc, so that a transac-
tion can be validated solely in the user µc’s zone. If the
condition ρ is true, all operations in {φi} are required
to be executed successfully without failure or throwing
exceptions. Each operation φi may have arbitrarily com-
plex logic but restricted access pattern. Specifically, φi
updates the state ψµi only with access to the previous
state of ψµi and readonly access to ψµc which is involved
in the condition ρ (and nothing else). Modifying ψµc is
allowed if µc ∈ {µi}, which is a frequent case.

A.3 Operation
When a transaction is validated (i.e., ρ is true), oper-
ations {φi} modifying cross-zone users’ states will be
carried by relay transactions and executed in an asyn-
chronous manner. As described in Section 4, relay trans-
actions from different originate transactions might be in-
terleaved and disordered during execution. To ensures a
consistent end result without requiring serialization, we
restrict all operations {φi} to be order-independent with
any arguments κa and κb:

∀κa,κb : φi (φi (ψi;κa) ;κb)≡ φi (φi (ψi;κb) ;κa) . (9)

A.4 Smart Asset
The pre-user state ψµi in our system includes the balance
of the native fungible token and a dictionary of states of
the smart asset defined by all 3rd-parties.

ψµi :=
〈
γ,{υ → ψ̂µi}

〉
(10)

Native fungible token is the platform currency like
Ether in Ethereum, which is consumed in the transaction
handling as gas fee. It is issued as the coinbase reward
when a miner find a new block. Smart asset are concep-
tually borrowed from smart contract in Ethereum.

The definition of a smart asset for standard tokens in-
cludes an issuing transaction ϕ̌ and a payment transac-
tion ϕ as in the equation (8). Issuing transaction ϕ̌ is

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 111

https://eprint.iacr.org/2018/104.pdf
https://www.stateofthedapps.com/stats
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html

designed for extending the coinbase logic for rewarding
miners. It defines the 3rd-party mineable token. More
types of transaction can be defined and invoked when is-
sue a transaction.

Fungible Token

The state of a fungible token is a signed big integer repre-
senting the balance ψ̂µ := βµ . An example of bitcoin-like
issuing transaction can be:

βµm ← βµm +

⌊
50/n

2bhb/210000c

⌋
, hb > 0 (11)

, in which n is the number of zones, µm denotes the miner
and hb is the asset block height, the number of block ap-
pended since the block for deploying the specific smart
asset.

Issuing transaction will also be invoked when it is de-
ployed with hb. For a pre-allocated 1 billion token, it can
be:

βµm ← b1000000000/nc, hb = 0 (12)

Usually issuing transaction contains one unconditional
operation and can be extended to multiple ones (e.g.
given additional reward to certain users).

Payment transaction from µa to µb consists of a con-
dition ρ and multiple operations:

ρ : (κv ≤ βµa)∧ (κe ≤ γµa) (13)
{φi} : βµa ← βµa −κv (14)

γµa ← γµa −κe (15)
βµb ← βµb +κv, (16)
γµm ← γµm +κe (17)

, in which κv is a positive big integer indicating the
amount of the transfer and κe is a non-negative big in-
teger denoting the transaction fee charged from the plat-
form currency.

Non-Fungible Token

The state of a non-fungible token is an set, ψ̂µ := {τi} in-
dicates the ownership of each non-fungible token. Non-
fungible tokens usually don’t need any issuing transac-
tion, which can not be mined.

Payment transaction from µa to µb consists of a con-
dition ρ and multiple operations:

ρ : (κτ ∈ ψ̂µa)∧ (κe ≤ γµa) (18)
{φi} : ψ̂µa ← ψ̂µa −{κτ} (19)

γµa ← γµa −κe (20)
ψ̂µb ← ψ̂µb ∪{κτ} (21)
γµm ← γµm +κe (22)

, in which κτ is the non-fungible token to be transferred.
A customized transaction can be defined and allow in-

vocation only by a hard-coded issuer µu (e.g., the game
developer [10]). The example issues and releases a non-
fungible token κτ to a specific user κµ .

ρ : (µa = µu)∧ (κe ≤ γµu) (23)
{φi} : γµu ← γµu −κe (24)

ψ̂µ ← ψ̂µ ∪{κτ} (25)
γµm ← γµm +κe (26)

112 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FreeFlow: Software-based Virtual RDMA Networking for Containerized Clouds

Daehyeok Kim1, Tianlong Yu1, Hongqiang Harry Liu3, Yibo Zhu2, Jitu Padhye2

Shachar Raindel2, Chuanxiong Guo4, Vyas Sekar1, Srinivasan Seshan1

1Carnegie Mellon University, 2Microsoft, 3Alibaba, 4Bytedance

Abstract

Many popular large-scale cloud applications are increas-
ingly using containerization for high resource efficiency and
lightweight isolation. In parallel, many data-intensive appli-
cations (e.g., data analytics and deep learning frameworks)
are adopting or looking to adopt RDMA for high network-
ing performance. Industry trends suggest that these two ap-
proaches are on an inevitable collision course. In this paper,
we present FreeFlow, a software-based RDMA virtualiza-
tion framework designed for containerized clouds. FreeFlow
realizes virtual RDMA networking purely with a software-
based approach using commodity RDMA NICs. Unlike ex-
isting RDMA virtualization solutions, FreeFlow fully sat-
isfies the requirements from cloud environments, such as
isolation for multi-tenancy, portability for container migra-
tions, and controllability for control and data plane policies.
FreeFlow is also transparent to applications and provides
networking performance close to bare-metal RDMA with
low CPU overhead. In our evaluations with TensorFlow and
Spark, FreeFlow provides almost the same application per-
formance as bare-metal RDMA.

1 Introduction
Developers of large-scale cloud applications constantly seek
better performance, lower management cost, and higher re-
source efficiency. This has lead to growing adoption of two
technologies, namely, Containerization and Remote Direct
Memory Access (RDMA) networking.

Containers [7, 11, 6] offer lightweight isolation and porta-
bility, which lowers the complexity (and hence cost) of de-
ploying and managing cloud applications. Thus, containers
are now the de facto way of managing and deploying large
cloud applications.

RDMA networking offers significantly higher throughput,
lower latency and lower CPU utilization than the standard
TCP/IP based networking. Thus, many data-intensive appli-
cations, e.g., deep learning and data analytics frameworks,
are adopting RDMA [24, 5, 18, 17].

Unfortunately, the two trends are fundamentally at odds
with each other in clouds. The core value of containerization
is to provide an efficient and flexible management to applica-
tions. For this purpose, containerized clouds need containers
to have three properties in networking:
• Isolation. Each container should have its dedicated net-

work namespace (including port space, routing table, in-
terfaces, etc.) to eliminate conflicts with other containers
on the same host machine.
• Portability. A container should use virtual networks to

communicate with other containers, and its virtual IP
sticks with it regardless which host machine it is placed
in or migrated to.
• Controllability. Orchestrators can easily enforce control

plane policies (e.g., admission control, routing) and data
plane policies (e.g., QoS, metering). This property is par-
ticularly required in (multi-tenant) cloud environments.

These properties are necessary for clouds to freely place and
migrate containers and control the resources each container
can use. To this end, in TCP/IP-based operations, network-
ing is fully virtualized via a software (virtual) switch [15].

However, it is hard to fully virtualize RDMA-based net-
working. RDMA achieves high networking performance by
offloading network processing to hardware NICs, bypassing
kernel software stacks. It is difficult to modify the control
plane states (e.g., routes) in hardware in shared cloud envi-
ronments, while it is also hard to control the data path since
traffic directly goes between RAM and NIC via PCIe bus.

As a result, several data-intensive applications (e.g., Ten-
sorFlow [24], CNTK [5], Spark [18], Hadoop [17]) that
have adopted both these technologies, use RDMA only when
running in dedicated bare-metal clusters; when they run in
shared clouds, they have to fundamentally eschew the per-
formance benefits afforded by RDMA. Naturally, using ded-
icated clusters to run an application is, however, not cost ef-
ficient both for providers or for customers.

Thus, our goal in this paper is simple: we want cloud-
based, containerized applications to be able to use RDMA as

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 113

Property Native SR-IOV [21] HyV [39] SoftRoCE [36]

Isolation 7 X X X
Portability 7 7 X X
Controllability 7 7 7 X
Performance X X X 7

Table 1: RDMA networking solutions that can be potentially used
for containers.
efficiently as they would in a dedicated bare-metal cluster;
while at the same time achieving the isolation, portability
and controllability requirements in containerized clouds. 1

Currently, there is no mature RDMA virtualization solu-
tions for containers.2 Table 1 summarizes some important
options that can potentially be extended to support contain-
ers, although they fail to achieve the key requirements or
have to do so at a substantial performance cost.

For instance, hardware-based I/O virtualization tech-
niques like SR-IOV [21] have fundamental portability lim-
itations [39, 28], since they require reconfiguration of hard-
ware NICs and switches to support migrations of contain-
ers. Control path virtualization solutions, such as HyV [39],
only manipulate the control plane commands for isolation
and portability, and they do not have the visibility or con-
trol of the data traffic. Because of this, they cannot flexi-
bly support data plane policies needed by cloud providers.
Software-emulated RDMA, e.g., SoftRoCE [36], can easily
achieve isolation, portability, and controllability by running
RDMA on top of the UDP networking stack and use existing
virtual IP networking solutions, but its performance will be
limited by UDP.

In this paper, we present FreeFlow, a software-based vir-
tual RDMA networking framework for containerized clouds,
which simultaneously achieves isolation, portability and
controllability and offers performance close to bare-metal
RDMA. At the heart of FreeFlow is a software virtual switch
running on each server to virtualize RDMA on commodity
RDMA NICs. FreeFlow does not require any specialized
hardware or hardware-based I/O virtualization. The software
virtual switch has the full access to both control path (e.g.,
address, routing) and data path (e.g., data traffic) of the com-
munications among containers. This design philosophy is
similar to existing software virtual switches used for TCP/IP
networking in the containerized cloud, e.g., Open vSwitch
(OvS) [15] although FreeFlow’s actual design is dramati-
cally different from OvS due to RDMA’s characteristics.

The design of FreeFlow addresses two key challenges.
First, we want FreeFlow to be completely transparent to the
application. This is challenging because RDMA requires
a NIC to manipulate memory buffers and file descriptors,
while applications inside containers do not directly inter-

1Indeed, our primary motivation to start this work is to enable a large-
scale AI application at a leading cloud provider to be migrated from a dedi-
cated cluster to clouds, and yet continue to use RDMA.

2 There are some recent proposals from industry [35, 26] but these have
limitations as we discuss in §9.

act with the NIC due to network virtualization. Our key
insight to address this challenge is that containers are es-
sentially processes, and they can easily share resources like
memory and file descriptors with FreeFlow . If FreeFlow and
a container share the same memory (§4.3) and file descrip-
tor (§4.4), any operations on the underlying physical RDMA
NIC will automatically take effect inside the container. A
further problem is that sharing resources transparently to ap-
plications is not straightforward, given that applications do
not cooperatively create resources that are shareable. We
design methods to convert resource from non-shareable to
shareable with no or minimal modifications on application
code.

Second, FreeFlow must offer throughput and latency that
is comparable to bare-metal RDMA. We identify the per-
formance bottlenecks in throughput and latency as mem-
ory copy and inter-process communication respectively. We
leverage a zero-copy design for throughput (§4.3), and a
shared memory inter-process channel with CPU spinning for
latency (§5.2). We also optimize FreeFlow for bounding
CPU overhead.

We evaluate the performance of FreeFlow with standard
microbenchmarking tools and real-world data-intensive ap-
plications, Spark and TensorFlow without any or with min-
imal modification on them. FreeFlow achieves the per-
formance comparable to bare-metal RDMA without much
CPU overhead. We also show that FreeFlow significantly
boosts the performance of real-world applications by up to
14.6 times more in throughput and about 98% lower in la-
tency over using conventional TCP/IP virtual networking.
FreeFlow has drawn interests from multiple RDMA solution
providers, and is open sourced at https://github.com/
Microsoft/Freeflow.

2 Background
This section provides a brief background on container and
RDMA networking, to motivate the need for software-based
RDMA virtualization for containers.
Containers and container networking: Containers are be-
coming the de facto choice [30, 27, 25] to package and de-
ploy data center applications. A container bundles an ap-
plication’s executables and dependencies in an independent
namespace using mechanisms such as chroot [4]; thereby of-
fering a lightweight isolation and portability solution.

Most containerized applications use microservices archi-
tecture, and are composed of multiple containers. For exam-
ple, each mapper and reducer node in Spark [2] is an indi-
vidual container; each parameter server node or worker node
in TensorFlow [22] is also an individual container. The con-
tainers exchange data via a networking solution. The design
of the networking solution affects the degree of isolation and
portability.

For instance, in the host mode networking, containers use
their host’s IP and port space, and communicate like an or-
dinary process in the host OS. This mode has poor isolation

114 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Microsoft/Freeflow
https://github.com/Microsoft/Freeflow

#Machines / #GPUs Transport layer Normalized speed

1 / 8 - 1.00×
2 / 16 TCP/IP (host) 0.45×
2 / 16 RDMA (host) 1.38×

Table 2: Speeds of a RNN job over TensorFlow on a single machine
and multiple machines with TCP and RDMA networking. Speeds
are normalized to the single machine case.

(e.g., port conflicts) and portability (e.g., must change IP ad-
dresses and ports after migrating to another host).

Thus, many applications use virtual mode networking. In
this mode, the network namespaces of containers are fully
isolated, and containers communicate via a virtual (overlay)
network composed of software virtual switches on host ma-
chines. The virtual IPs of the containers are highly portable,
given that the routes to the virtual IPs can be controlled in
the software virtual switches. Since all data traffic must go
through the virtual switches, they have access to the traffic,
which provides the full controllability to the container net-
works. Such isolation and portability give orchestrators full
flexibility in container placement and migrations, and such
controllability offers cloud providers the power to enforce
their policies on both control and data plane.

Indeed, orchestrators like Kubernetes [11] mandate the
use of virtual networking mode [12]. A number of software
solutions are available to provide virtual networking fabrics
for containers, such as Weave [23], and Docker Overlay [7].
RDMA networking: Many modern applications (e.g.,
deep learning and data analytics frameworks) have adopted
RDMA networking [18, 17, 22, 5] to get higher throughput,
and lower latency than the traditional TCP/IP stack. RDMA
offers these gains by offloading most of the networking func-
tionality to the NIC, effectively bypassing the OS kernel.

Table 2 shows measured performance improvements of
using RDMA for a deep learning application – training a Re-
current Neural Network (RNN) speech recognition model.
The application was first benchmarked on a single machine
with 8 GPUs. When the application run on two machines
with 16 GPUs, traditional TCP/IP networking becomes a
bottleneck, and the performance degrades. With RDMA,
however, the extra GPUs offer performance gains.

The reason is that this RNN training task consists of thou-
sands of steps. In each step, all GPUs must shuffle the train-
ing model parameters, and the total traffic volume ranges
from 100 MB to 10 GB. The time spent on communication is
essentially wasting GPU’s time, since GPUs are idle during
shuffling. TCP performs badly in these frequent and bursty
workloads, while RDMA can instantaneously climb to full
bandwidth at the beginning of each shuffle.
Need for software-based RDMA virtualization: We have
noted the benefits of virtual mode networking for container-
ized applications – namely, enhanced isolation, portability,
and controllability. We have also noted that RDMA can of-

C1 C2

L2 Switch

VF2VF1

C3

L2 Switch

VF3

H
o

st
1

H
o

st
2

Physical
Switch

C1 C2 C3

H
o

st
1

H
o

st
2

Physical
Switch

Dst: C1

Dst: C2
Dst: C3 Dst: Host1 Dst: Host2

N
IC

N
IC

N
IC

N
IC

Software
Switch

(a) SR-IOV based virtual network relies
on physical switch to route packets
towards virtual IPs.

(b) Software-based virtual network is
independent with the underlying physical
network.

Software
Switch

Figure 1: Comparison between hardware-based (SR-IOV) and
software-based virtual networking solutions.

fer significant performance boost to many applications that
have a microservice architecture.

The question then is, how do we use RDMA networking
with containerized applications that require virtual mode net-
working, especially in a cloud environment.

RDMA networking, as we saw earlier, relies on offload-
ing most of the networking functionality to a NIC. One pos-
sible approach to “virtualize” RDMA networking is to use
hardware-based solutions such as SR-IOV [21]. However,
this would limit the portability offered by the virtual mode
networking. As an example shown in Figure 1(a), with SR-
IOV, the NIC runs a simple layer-2 switch that merely per-
forms VLAN forwarding. Hence, all packets generated from
and destined to a virtual network have to be directly routed
in the underlying physical network. Thus, migrating con-
tainer C1 to Host2 requires reconfiguring the physical switch
to route C1’s packets to Host2 rather than Host1. Also, in
production, physical switches need to maintain a huge size
of routing table to manage routes for all containers in vir-
tual networks, which can be infeasible in a large-scale cloud
environment.

Thus, we believe that the right approach to virtualizing
RDMA network for containers is to use a software switch
– just like it is done for virtualizing traditional TCP/IP net-
working. As shown in Figure 1(b), the physical network is
only in charge of delivering packets targeting on different
hosts, and virtual networking routing is completely realized
in software switches inside each host, which is independent
with the physical network. The software switch can control
all addressing and routing, thereby providing good isolation
and portability for control plane. It can also be used to im-
plement network functions on data plane such as QoS and
metering.

3 Overview
The goal of FreeFlow is to provide an virtual interface in-
side each container, and applications can use RDMA via a
virtual network on top of the virtual interface in an unmod-
ified way. Ideally, the performance of the virtual network
should be close to bare-metal RDMA, and policies on both
control and data path are flexible to be configured purely in
software. In this section, we present the system architecture
and key challenges in the design of FreeFlow .

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 115

FreeFlow
Router

Read/Write
by NIC

Application

PhyNIC

Data Buffer
Packet

Processor

Shadow
MemoryCommands

Commands

PhyNIC

Data Buffer
Packet

Processor

Memory region
Application

Container

Read/Write
by NIC

(b) FreeFlow as a RDMA Relay

Memory region
Container

vNIC

(a) Host RDMA

Figure 2: Design overview: FreeFlow router directly accesses
NIC(s) and serves as a RDMA relay for containers. Blue and red
lines are control and data path, respectively.

IB Verbs API

Applications

MPI rsocket iSER SDP

Infiniband RoCE iWarp

Socket

Figure 3: IB Verbs is the de facto “narrow waist” of various
RDMA-based network offloading solutions.

3.1 Overall Design
In native RDMA, as shown in Figure 2(a), applications lever-
age RDMA APIs to directly send commands to the hardware
NICs for both control and data path functions. FreeFlow in-
tercepts the communication between applications and physi-
cal NICs, and performs control plane and data plane policies
inside the software FreeFlow router which runs as another
container on the host machine. In particular, for controlling
the data path, FreeFlow router only allows the physical NIC
to directly read and write from its own memory (the shadow
memory in Figure 2(b)) and take the charge of copying data
from and to the applications’ memory. Note that the mem-
ory inside container and the shadow memory in the FreeFlow
router can be the same piece of physical memory for zero-
copy (§4.3).

3.2 Verbs: the “narrow waist” for RDMA
There are multiple ways to intercept the communications be-
tween applications and physical NICs, but we must choose
an efficient one. A number of commercial technologies sup-
porting RDMA are available today, including Infiniband [9],
RoCE [8] and iWarp [19]. Applications may also use several
different high-level APIs to access RDMA features, such as
MPI and rsocket [20]. As shown in Figure 3, the de facto
“narrow waist” of these APIs is the IB Verbs API (Verbs).
Thus, we consciously choose to support Verbs in FreeFlow
and by doing so we can naturally support all higher-level
APIs.

Verbs uses a concept of “queue pairs” (QP) for data trans-
fer. For every connection, each of two endpoints has a send
queue (SQ) and a receive queue (RQ), together called QP.
The send queue holds information about memory buffers to
be sent, while the receive queue holds information about
which buffers to receive the incoming data. Each endpoint

Container1
IP: 1.1.1.1

Host1

RDMA Network

vNIC

NetAPI

Application

FreeFlow NetLib

Container2
IP: 2.2.2.2

vNIC

NetAPI

Application

FreeFlow NetLib

Container3
IP: 3.3.3.3

Host2

vNIC

NetAPI

IPC
Channel

FreeFlow
Router

F
re

e
F

lo
w

 O
rc

h
e

st
ra

to
r

Application

PhyNICPhyNIC

Shared Memory
for Container1

Shared Memory
for Container2

Policies & Stats

Shared Memory
for Container3

FreeFlow NetLib

Figure 4: FreeFlow architecture.

also has a separate completion queue (CQ) that is used by
the NIC to notify the endpoint about completion of send or
receive requests. The Verbs library and associated drivers al-
low applications to read, write and monitor the three queues.
Actual transfer of the data, including packetization and error
recovery, is handled by the NIC.

To transparently support Verbs, FreeFlow creates virtual
QPs and CQs in virtual NICs and relates the operations on
them with operations on real QPs and CQs in the physical
NICs.

3.3 FreeFlow Architecture
The architecture of FreeFlow is shown in Figure 4. The three
components of container networking stack that we modify
or introduce are shown in gray: (i) the FreeFlow network
library (FFL), (ii) the FreeFlow software router (FFR), and
(iii) the FreeFlow network orchestrator (FFO).

FFL , located inside the container, is the key to making
FreeFlow transparent to applications. From application’s
perspective, it is indistinguishable from the standard RDMA
Verbs library [16]. All applications and middleware built
atop the Verbs API can run with no (or negligible) modifi-
cation. FFL coordinates with FFR .

FFR runs a single instance on each host and works with
all containers on the same host to provide virtual networking.
In the data plane, FFR shares memory buffers with contain-
ers on the same host and isolates the shared memory buffers
for different containers. FFR sends and receives data in the
shared memory through the NIC, relying on FFL to sync
data between application’s private data buffers and the shared
memory buffers. FFR implements the data-plane resource
policies, e.g., QoS, by controlling the shared-memory chan-
nel between containers and FFR . It also works with FFO to
handle bookkeeping tasks such as IP address assignment.

FFO makes control-plane decisions for all containers in
its cluster based on user-defined configurations and real-time
monitoring of the cluster. It also maintains centralized mem-
ory maps, as we shall discuss in §4.3.

3.4 Challenges
In designing FreeFlow, we need to address two key chal-
lenges. First, FreeFlow should provide an RDMA interface

116 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

which transparently supports all types of existing RDMA
operations. There are various types of RDMA operations in-
cluding one- and two-sided operations for data transfer, poll-
and event-based mechanisms for work completion notifica-
tion, and TCP/IP and RDMA-CM for the connection estab-
lishment. We observe that it is not straightforward to support
them transparently due to the complexity of RDMA oper-
ations. Second, FreeFlow should provide near bare-metal
RDMA performance while minimizing CPU and memory
overhead. Since FFR intercepts the Verbs calls from appli-
cations via FFL , we need to carefully design the communi-
cation channel between FFR and FFL .

We will present our approach for each challenge in §4 and
§5, respectively.
4 Transparent Support for RDMA Opera-

tions
Verbs supports multiple types of operations and mechanisms.
With one-sided operations such as WRITE and READ, a
writer (reader) can write (read) data to (from) a specific
memory address in the remote side, without the latter aware
of this operation. With two-sided operations such as SEND
and RECV, the receiver must first get ready to receive before
a sender sends out the data. Also, applications can use either
poll-based or event-based mechanisms to get work comple-
tion notifications. Different applications use different oper-
ation types as their needs, and we see all of them used in
popular applications [32, 18, 17, 22].

FreeFlow completely and transparently supports such dif-
ferent types of RDMA operations. The primary challenge is
to support one-sided operations and event-based completion
notifications, in which RDMA NIC can modify memory or
file descriptors in FFR silently. FFR cannot know about the
modifications immediately unless it keeps busily polling the
status of the memory or file descriptor, so that it is hard to
convert the operations from physical NICs to virtual NICs
inside containers as soon as possible. We solve this chal-
lenge taking advantage of the fact that containers are essen-
tially processes, so that FFL and FFR can share memory and
file descriptors, and physical NIC’s modifications can auto-
matically be passed into containers. Sharing memory be-
tween FFL and FFR is also not straightforward for applica-
tion transparency, because applications inside containers do
not allocate memory in IPC shared memory space, and we
need to convert the memory to shared memory transparently.
4.1 Connection Establishment
Two RDMA communication endpoints need to first establish
a connection. They create a QP in each one’s NIC, register-
ing a buffer of memory to the QP and pairing local QP with
remote QP. After a connection is established, the application
can ask the NIC to send the content in the registered memory
to the remote end or put received data into the local buffer.

Steps 1–7 in Figure 5 show the typical process of connec-
tion establishment using Verbs. The left column shows the
sequence of Verbs calls made by the application. The two

Unmodified App

Get local information.
ibv_get_device_list(...)
ibv_open_device(...)

Create local QP/CQ
ibv_create_qp(...)/
ibv_create_cq(...)

Poll completion event
from CQ

ibv_poll_cq(...)

Pair with remote QP with
the remote GID and keys

ibv_modify_qp(...)

Send content in mem out
ibv_post_send(...)

Register a memory buffer
(mem) to local QP
ibv_reg_mr(...)

Get local QP ready for
sending

ibv_modify_qp()

Exchange metadata (GID,
QP ID, memory keys) for
connection with receiver

1

2

3

4

5

6

7

8

FFL FFR

Create QP CQ in PhyNIC
and return the ID and
meta-data of QP CQ

Create shared memory (s-
mem), register s-mem to

PhyNIC and return s-
mem s name and keys

Pair with remote QP in
remote FFR with the GID

and keys input by app

Get QP in the phyNIC
ready for sending

Send the content in
s-mem out

Poll completion event
from CQ in PhyNIC

Poll completion
event from FFR and

return to
application

Remember the
tuple (QP, mem,

s-mem, keys)

Steps

Return the
meta-data of the
container s vNIC

Obtain the routable
address, GID of the QP

ibv_query_gid(...)

Return the GID of the QP
in the PhyNIC back

This step is transparent to FreeFlow

9

E
st

a
b

li
sh

in
g

C
o

n
n

ec
ti

o
n

FreeFlow

Figure 5: The workflow of a RDMA SEND operation.

columns in the blue/shaded area shows how FreeFlow traps
the Verbs calls from the application, and to establish a con-
nection between the sender’s FFR and the receiver’s FFR .

Step 1: The application queries for the list of NICs whose
drivers support Verbs. FFL intercepts the call and returns the
context data object of the virtual NIC of the container.

Step 2: The application creates a QP and a CQ on its virtual
NIC, while FFR creates the corresponding queues (QP′ and
CQ′) on the physical NIC. The QP-IDs and other metadata
information of the queues will be forwarded to the applica-
tion by FFL after FFR finishes the creations of the queues.

Step 3: The application registers a block of memory (mem)
to the QP. FFR allocates a corresponding block memory
(s-mem) in its shared memory inter-process communication
(IPC) space with the same size as mem, registers s-mem to
QP′. FFR returns the ID (a host-wide unique name of the
IPC memory) it used to create s-mem. With this ID, FFL can
map s-mem into its own virtual memory space.

Step 4: The application queries the address (so-called GID
in RDMA) of the local QP. This address information will be
shared with the other side for pairing the local QP and remote
QP together. At the end of this step, FFR returns the actual
GID of QP′.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 117

Step 5: The application exchanges GID and QP-ID with the
remote end. Applications can exchange this information via
any channels such as TCP/IP or RDMA-CM.3

Step 6: The application pairs its local QP with the remote
container’s QP using the receiver’s GID. FFL forwards this
GID to FFR . FFR pairs QP′ with this GID.
Step 7: The application modifies the state of local QP to
Ready to Send/Receive state, while FFR modifies the state
of QP′ accordingly.

After Step 7, from the application’s point of view, it is
ready to send or receive data – it has created a QP and a CQ,
registered mem to the QP, paired with the remote QP and
established a connection with the remote QP.

From FreeFlow’s point of view, it has created QP′ and CQ′

which are associated with the QP and CQ in the application,
registered s-mem as the shadow memory of mem, and paired
with the QP′ in the remote FFR . It is also ready to get and
forward Verbs calls from the application.

FreeFlow may increase the latency for connection estab-
lishment due to the additional interactions between FFR and
FFL . However, it does not much affect the overall latency
of FreeFlow since it is a one-time cost; many RDMA appli-
cations re-use pre-established connections for communica-
tions.

4.2 Two-sided Operations
Each sender or receiver needs to go through two steps to per-
form a data transfer. The first step is to use QP to start send-
ing or receiving data, and the second step is to use CQ to get
completion notifications. Steps 8–9 in Figure 5 shows this
process.
Step 8: The application invokes the SEND call, and sup-
plies pointer to mem. FFL first copies data from mem to
s-mem, and FFR then invokes its own SEND call to send s-
mem to the remote FFR . We avoid the memory copies from
mem and s-mem by applying our zero-copying mechanism
described in §4.3. Note that the remote router would have
posted a corresponding RECV call by this time.
Step 9: The application either polls the CQ or waits for a
notification that indicates the completion of the send. FFR
also polls/waits-on CQ′ associated with QP′ and forwards it
to FFL .

For subsequent SEND operations on the same QP, the ap-
plication only needs to invoke Step 8 and 9 repeatedly. The
workflow of a RECV operation is similar, except that at Step
9, FFL will copy data from s-mem to mem after the QP′ fin-
ishes receiving data, which is the opposite of Step 8 in SEND
operation.

The presence of FFL and FFR is completely transparent
to the application. To the application, it appears that it is per-
forming normal verbs operations on its vNIC. The steps in
Figure 5 are standard way of writing Verbs programs. The

3FreeFlow also has an extension to support RDMA-CM with similar a
design to support IB Verbs, while we omit the details due to space limit.

FreeFlow behavior illustrated here is sufficient to fully sup-
port SEND and RECV operations.

4.3 One-sided Operations
In one-sided operations, a client needs not only the GID of a
server, but also the address of the remote memory buffer, and
the security key for accessing the memory. This information
is exchanged in Step 5 in Figure 5 and becomes available to
FreeFlow in Step 8 (where WRITE or READ can be called).

Compared to two-sided operations, it is more challenging
to transparently support one-sided operations. There are two
problems to support one-sided operations in FreeFlow .

First, the target memory address mem is in the virtual
memory of the remote container. However, the local FFR
does not know the corresponding s-mem on the other side.
For example, in Figure 6(a), when the sender tries to write
data in mem-1 to remote memory mem-2, it fails at stage 3)
because the target memory address mem-2 is not accessible
for FFR on the receiver side.

To solve this problem, FreeFlow builds a central key-value
store in FFO for all FFRs to learn the mapping between
mem’s pointer in application’s virtual memory space and
the corresponding s-mem’s pointer in FFR ’s virtual mem-
ory space. Updating this table adds latency to Step 3 in
Figure 5, when applications register memory to their virtual
NIC. However, data plane performance is not impacted be-
cause FFR can cache the mappings locally.

Second, even if we know the memory mapping on the re-
mote side, WRITE and READ can remotely modify or copy
data without notifying the remote side’s CPU, so that FFR
does not know when to copy to or from application’s mem-
ory. For instance, in Figure 6(b), the sender finds the correct
address of s-mem-2 and send the data to it. However, after
the data is available in s-mem-2, there is no notification for
the FFR in the receiver side to know when to copy s-mem-2
to mem-2. One way to solve this is to continuously synchro-
nize s-mem-2 and mem-2. This would consume a lot of CPU
and memory bus bandwidth.

To address this, in FreeFlow, we design a zero-copy based
mechanism to efficiently support one-side operations. The
high-level idea is to make mem and s-mem the same physi-
cal memory, so that FFR does not need to do any copy, and
the data will be naturally presented to the application. Fig-
ure 6(c) illustrates this design. By getting rid of memory
copies, we can also improve FreeFlow performance.

The key here is to make applications directly allocate and
use shared memory with FFR for data transfers. For this,
FreeFlow provides two options:
Option 1—Allocating shared buffers with new APIs: We
create two new Verbs functions, ibv malloc and ibv free,
to let applications delegate the memory creation and dele-
tion to FreeFlow. This allows FFL to directly allocate these
buffers in the shared memory region (shared with FFR), and
thus avoid the copy. The drawback of this option is the need

118 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PhyNIC-1

mem-1

s-mem-1 s-mem-2

Sender Receiver

PhyNIC-2

FFR

1) send mem-1
to mem-2

mem-2

FFL2) copy mem-1
to s-mem-1

3) copy s-mem-1
to mem-2 (failed)

(a) Write Failure due to incorrect
destination memory address

PhyNIC-1

mem-1

s-mem-1 s-mem-2

PhyNIC-2

FFR

mem-2

FFL

(b) Inefficient Write due to unnotified
memory update

1) send mem-1
to mem-2

2) copy mem-1
to s-mem-1

3) copy s-mem-1
to s-mem-2

4)copy to
s-mem-2

(5) when to
copy?

PhyNIC-1 PhyNIC-2

FFR

FFL

(c) Correct and efficient Write with
Zero-Copy design

1)send mem-1
to mem-2

2)copy mem-1'
to mem-2'

3)copy to
mem-2'

mem-1 mem-2

Sender Receiver Sender Receiver

Figure 6: Zero-copy design enables FreeFlow to address the challenges to support one-sided operations efficiently.

// From <infiniband/verbs.h>
int ibv_post_send(struct ibv_qp *qp, struct ibv_send_wr *wr,
 struct ibv_send_wr **bad_wr);
struct ibv_qp {

struct ibv_context *context;
void *qp_context;
struct ibv_pd *pd;
struct ibv_cq *send_cq;
struct ibv_cq *recv_cq;
struct ibv_srq *srq;
uint32_t handle;
uint32_t qp_num;
...

};

IB Verbs
API Functions

IB Verbs
Data Objects

NIC Driver Communicator

NIC
File Descriptor

NIC Driver

Application

IB Verbs
API Functions

IB Verbs
Data Objects

Unix Socket
File Descriptor

FFR

Application

(a) A typical function and data
structure definition in IB Verbs

(b) The structure of Verbs Library
(c) FreeFlow “hijacks” the communication

between Verbs and NIC driver

IB Verbs
Library

FastPath

NIC Driver Communicator

Figure 7: The structure of Verbs API and library. FFR intercepts the calls between Verbs library and NIC drivers.

to modify application code, despite the modification should
be only several lines on the data buffer creation.
Option 2—Re-mapping applications’ virtual memory ad-
dress to shared memory: When an application registers a
private memory piece with virtual memory address va as a
data buffer (e.g., Step 3 in Figure 5), FFL releases the phys-
ical memory piece behind va and assign a shared physical
memory piece from FFR to va. In Linux, this operation is
only valid when va is an address at the start of a memory
page. To force the application to allocate memory always at
the start of a page, FFL intercepts the calls like malloc in
C language and makes it always return page aligned mem-
ory addresses. While this option can achieve zero memory
copy without modifying application code, it forces all mem-
ory allocations in the application to be page aligned, which
can result in lower memory efficiency on the host.

In practice, we recommend the first option since it is
cleaner and efficient. However, since many RDMA appli-
cations already make their data buffer page aligned for better
performance (e.g., RDMA-Spark [18]), we can directly use
the Option-2 without intercepting malloc, so the side-effect
is limited. Note that if a developer chooses to modify an
application using the option 1 or an application originally
supports page-aligned buffers, in either case, FreeFlow will
not incur any overhead in actual memory usage.

4.4 Event-based Operations
There are two options to get notified from CQs (Completion
Queue). The first option is to let application poll the CQs
periodically to check whether there are any completed oper-
ations. The second option is event-based, which means the

application creates an event channel and add CQs into the
channel. The channel contains a file descriptor which can
trigger events when operations are completed.

In FreeFlow , since the raw file descriptor is created from
physical NIC, FFR needs to pass the file descriptor to FFL ,
otherwise the latter cannot detect any events associated with
the file descriptor. We take advantage of the fact that FFL
and FFR are essentially two processes sharing the same OS
kernel, and leverage the same methodology to pass file de-
scriptors between processes [41] to pass event channels from
FFR to FFL .

5 Communication Channel between FFL and
FFR

Since FreeFlow intercepts every Verbs calls via FFL , trans-
lates, and forwards them to physical NICs via FFR , it is
crucial to have an efficient channel between FFL and FFR
that provides high RDMA performance while minimizing
system resource consumption. In this section, we present
two designs of such communication channels, which allows
trade RDMA performance for resource consumption and
vice versa depending on the requirements of applications.

5.1 Verbs Forwarding via File Descriptor
A straightforward way to pass Verbs calls between FFL and
FFR is to use RPC: FFL passes API name and parameters
to FFR , and FFR modifies the parameters properly, executes
the API and returns the result of the API call back to FFL .
Nevertheless, this simple RPC approach does not work well
in FreeFlow because of the complexity of input data struc-
tures of the Verbs calls. As shown in Figure 7(a), a typical
function call in Verbs, e.g., ibv post send, has inputs (qp,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 119

wr) and outputs bad wr that are pointers to complex data
structures. Since FFL and FFR are in two different pro-
cesses, the pointers of FFL will be invalid in FFR .

One may advocate “deep copy” which traces down the
complex input/output data structures and transfer the data
objects under all pointers between FFL and FFR . However,
this approach has two severe drawbacks. First, data struc-
tures in Verbs are quite deep (i.e., multiple levels of pointers
and nesting) and such deep copies can hurt the performance.
Second, there are customized data structures that are defined
by user code whose deep copy methods cannot be predefined
by FreeFlow .

To address this issue, we take advantage of the structure
of the current Verbs library. As shown in Figure 7(b), the
Verbs library consists of three layers. The top layer is the
most complicated one and hard to be handled as described
above. However, when it comes down to the middle layer
that communicates with the NIC file descriptor, Verbs library
must prepare a simple enough (no pointers) data structure
that the NIC hardware can digest.

Therefore, instead of forwarding the original function
calls of Verbs, we forward the requests to be made for the
NIC file descriptor. We replace the NIC file descriptor in the
container with a Unix socket file descriptor whose the other
end is FFR , as shown in Figure 7(c). By doing this, FFR can
learn the command sent by the application and the supplied
parameters. FFR will map the operations to virtual queues in
the container to the same operations to the actual queues in
the physical NIC. It then converts the replies from the physi-
cal NIC to replies from the virtual NIC for the virtual queues,
and returns the new reply to FFL via the Unix socket. The
NIC driver communication layer in FFL will process the re-
ply normally without knowing about the operations behind
the Unix socket file descriptor.

While this Unix socket based approach consumes little
CPU, it can incur additional latency due to the inherent de-
lay from communicating via the socket. Our measurement
shows that the round trip time over Unix socket (and shared-
memory with semaphore) can easily be≥5 µs in a commod-
ity server. Because of this, the Unix socket communication
channel in Figure 7(c) can become a performance bottleneck
for latency sensitive applications that expects ultra low la-
tency (e.g., <5 µs).

For applications requiring low latency communication, we
will describe the design of Fastpath, which optimizes the
communication delay by trading CPU resources, in the next
section.

5.2 Fastpath between FFL and FFR
To accelerate the communication between FFR and FFL ,
we design a Fastpath in parallel with the Unix socket based
channel between them. As shown in Figure 8, FFL and FFR
co-own a dedicated piece of shared memory. With Fastpath,
FFR spins on a CPU core and keeps checking whether there
is a new request from FFL got written into the shared mem-

FFL

Shared
Memory

FFR

FFL

Shared
Memory

FFR

request

FFL

Shared
Memory

FFR

(1) idle (2) idle → request done
(3) request done →

response done

CPU spin response

Figure 8: Fastpath channel between FFR and FFL .

ory piece. Once a request is detected, FFR will immediately
executes it, while FFL starts to spin on a CPU core to check
whether the response is ready. After reading the response,
FFL will stop the CPU spinning on its side.

As we will see in § 8.1.2, Fastpath can significantly re-
duce the latency. However, the price is the CPU cycles spent
on spinning for reading requests and responses. To limit the
CPU overhead brought by Fastpath, we make two design de-
cisions: (1) FFR only spins on one CPU core for all Fast-
path channels with FFL on the same host; (2) Fastpath is
only used for functions which are on data path and are non-
blocking, so that the CPU spinning time on FFL to wait for a
response will be short (few microseconds). Overall, Fastpath
only consumes one CPU core per host on average to signifi-
cantly shorten the latency of message passing (§8.1.2). In ad-
dition, if FFO knows there is no latency sensitive application
on a host machine (according to running container images),
it can disable Fastpath and the CPU spinning.

6 Implementation
We implement FFL by modifying libibverbs (v1.2.1),
libmlx4 (v1.2.1) and librdmacm (v1.1.0).4 We add about
4000 lines of C code to implement FreeFlow’s logic. We
have implemented FFR from scratch in about 2000 lines of
C++ code. For FFO , we use ZooKeeper to store the user
defined information; e.g., IP assignment, access control, re-
source sharing policies, and memory mapping information
for one-sided operations. Due to space limits, we only show
three representative implementation details next.
Control & data plane policies: Since FreeFlow can con-
trol both control and data plane operations requested by con-
tainers, it can support common control and data plane poli-
cies including bandwidth enforcement, flow prioritization,
and resource usage enforcement.

As an example of control plane policy, in our prototype,
FreeFlow enforces a quota for the number of QPs each con-
tainer can create, since large number of QPs is a major reason
of the performance degradation of RDMA NICs [32]. This
control plane policy prevents a container from creating too
many QPs which can impact other containers on the same
host machine.

Also, as an example of data plane policy, FreeFlow en-
ables per-flow rate limiting with little overhead. We imple-

4libibverbs and librdmacm are libraries that allow userspace pro-
cesses to use InfiniBand/RDMA Verbs and RDMA communication manager
interfaces, respectively. libmlx4 is a userspace driver for libibverbs that
allows userspace processes to use Mellanox hardware.

120 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ment a simple token-bucket data structure in FFR . When an
application creates a new QP, we check the policies that are
stored in FFO , and associate a token-bucket with pre-set rate
limit to the QP. Upon every application’s send request, the
router checks whether the QP has enough tokens to send out
the requested message size. If so, the send request is for-
warded to the real NIC immediately. Otherwise, FFR will
notify FFL and delay it until there are enough tokens. Note
that it is only an example of implementing QoS policies.
FreeFlow provides flexible APIs for implementing sophis-
ticated QoS algorithms in FFR , while we omit the details
due to space limit.
Memory management in Fastpath: In Fastpath imple-
mentation, we use assembly codes to explicitly force the
cache lines of requests and responses written by FFL and
FFR to be flushed into main memory immediately. This is
necessary because otherwise, the CPU will keep the newly
written lines in cache for a while to wait more written lines,
slowing down the message exchanging speed on Fastpath.
Supporting parallelism: Since applications can create
multiple QPs and use multiple threads to transfer data in par-
allel, each Unix domain socket between the FFL and FFR
needs a lock. To improve performance, we create multiple
Unix domain sockets between the FFL and FFR . We avoid
“head of the line blocking” by dedicating more of these sock-
ets to data plane operations and event notifications and only
a few of sockets to creation, setups and delete operations.
On FFR , we use a dedicated thread for each incoming Unix
domain socket connection. We also create a dedicated data
structures for each container and a dedicated shared memory
region for each registered memory buffer to keep the data
path lock free.

7 Discussion
In this section, we discuss about some primary concerns and
potential extensions in the current design of FreeFlow.
CPU overhead: Similar to software-based TCP/IP vir-
tual networking solutions, FreeFlow incurs CPU overhead.
In particular, FreeFlow uses a CPU core for polling con-
trol messages between FFL and FFR to support low latency
IPC channel (§5.2). We admit that this is a cost for net-
work virtualization on top of current commodity hardwares.
One possible approach to address this is to utilize hardwares
that support offloading CPU tasks, such as FPGA, ARM co-
processor, or RDMA NICs [1]. We leave it as a future work
to eliminate the CPU overhead in Fastpath.
Security: One concern is that since FFR shares its memory
with containers, whether one container can read the commu-
nications of other containers on the same host by scanning
the IPC space. This is not a concern for FreeFlow because
FFR creates a dedicated shared memory buffer for each indi-
vidual QP. Only those shared memory buffers that belong to
a container will be mapped into the container’s virtual mem-
ory space. Another concern is the security of the memory
keys. If one can see the keys by wiretapping, subsequent

communications can be compromised. This problem is in-
herent in the way one-sided operations in raw RDMA work,
and is not made worse by FreeFlow .
Working with external legacy peers: Containers in
FreeFlow can naturally communicate with external RDMA
peers, since each FFR works independently. FFR does not
distinguish whether the remote peer is another FFR or an
external RDMA peer.
Container migration: FreeFlow supports offline migra-
tions naturally. If a container is captured, shutdown, moved
and rebooted in another host machine, its IP address is not
changed, so that its peers re-establish RDMA connections
with it as if it is just got rebooted. Nowadays, offline migra-
tions are commonly used in container clusters for resource
packing or fail-over. FreeFlow does not support live migra-
tion, since RDMA has poor mobility nowadays [39].
VM host: Our prototype (and evaluation) is based on con-
tainers running on bare-metal host machines. But FreeFlow
can be directly used on containers deployed inside VMs if
the VMs use SR-IOV to access the physical NIC.
Congestion control: RDMA NICs already have congestion
control mechanisms, and FreeFlow relies on them.
8 Evaluation
We evaluate the performance and overhead of FreeFlow. We
start from microbenchmarks (§8.1) and then the performance
of real-world applications on FreeFlow (§8.2).
8.1 Microbenchmarks
Setup: We run microbenchmarks on two testbeds.
One testbed runs InfiniBand, which is a traditional RDMA-
dedicated fabric. The servers are equipped with two In-
tel Xeon E5-2620 2.10GHz 8-core CPU, 64GB RAM, and
56Gbps Mellanox FDR CX3 NIC. The OS is Ubuntu 14.04
with the kernel version 3.13.0-129-generic.

The other testbed runs RoCE (RDMA over Converged
Ethernet). As the name indicates, RoCE only requires con-
ventional Ethernet switches (in our case, Arista 7050QX as
the ToR switch). The servers in this testbed cluster have Intel
Xeon E5-2609 2.40GHz 4-core CPU, 64GB RAM, 40Gbps
Mellanox CX3 NIC and Ubuntu 14.04 with the kernel ver-
sion 4.4.0-31-generic.

We run containers using Docker (v1.13.0) [7] and set up
a basic TCP/IP virtual network using Weave (v1.8.0) [23]
with Open vSwitch kernel module enabled. Unless other-
wise specified, we run Fastpath (§5.2) enabled FreeFlow.

We mainly compare FreeFlow with bare-metal RDMA,
which is a stand-in for the “optimal” performance. We will
show that FreeFlow enables virtual RDMA networking for
containers with minimal performance penalty. In §8.1.4, we
will also demonstrate the performance of translating TCP
socket calls into RDMA on top of FreeFlow, so that con-
ventional TCP applications can also benefit from FreeFlow.
There we also compare FreeFlow with bare-metal TCP and
Weave which supports virtual TCP/IP virtual networks for
containers.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 121

2K 8K 32K 128K 512K

Message size (B)

0

20

40

T
p

u
t

(G
b

p
s)

FreeFlow

Host-RDMA

(a) 56Gbps InfiniBand

2K 8K 32K 128K 512K

Message size (B)

0

20

40

T
p

u
t

(G
b

p
s)

FreeFlow

Host-RDMA

(b) 40Gbps RoCE

Figure 9: RDMA SEND throughput between a pair of contain-
ers on different hosts. FreeFlow enables container virtual networks
with minimal performance penalty.

8.1.1 Throughput and Latency
We focus on two basic performance metrics, throughput and
latency. We use the benchmark tools provided by Mel-
lanox perftest [13]: ib send lat and ib send bw to mea-
sure latency and throughput of two-sided operation (SEND),
ib write lat and ib write bw for one-sided operation
(WRITE). These tools can run on FreeFlow without any
modification, as explained in §4.3. In general, FreeFlow does
not differentiate the inter-host setting (sender and receiver
run on different hosts) and the intra-host setting. Here we
just show inter-host performance values.
Throughput: We measure the single thread RDMA
SEND/WRITE throughput on two testbeds, and show the
RDMA SEND results in Figure 9. Each run transmits 1GB
data with different sizes of messages ranging from 2KB to
1MB. FreeFlow RDMA WRITE results are in fact slightly
better than SEND, and omitted for brevity. We see that with
message size equal or larger than 8KB, FreeFlow gets full
throughput as bare-metal RDMA (46.9Gbps on InfiniBand
and 34.5Gbps on RoCE). In addition, when we increase the
number of concurrent container pairs (flows) to up to 512,
the aggregated throughput of all flows is still close to opti-
mal (Figure 11). We also verify that the bandwidth is fairly
distributed among different flows by calculating Jain’s fair-
ness index [31] (0.97 on average).

In general, the bandwidth-hungry applications tend to use
larger message sizes than a few KB. For example, in one of
our internal storage clusters that uses RDMA, typical mes-
sage sizes are 1MB or more. FreeFlow will have no through-
put penalty in this case (see §8.1.2 for CPU overhead).

Even when the message sizes are small, like 2KB,
FreeFlow still achieves more than half of the full through-
put. We verified that, in this case, the throughput is bounded
by the single FFR Fastpath thread (§5.2). This bottleneck
can be easily removed by assigning one more CPU core to
the FFR and balancing RDMA request loads across the two
cores. While we leave this option open, developers usually
do not expect to saturate the full bandwidth with small mes-
sages. Instead, for small messages, developers usually care
about latencies.
Latency: We measure the latency of sending a 64B, 256B,
1KB, and 4KB message, respectively. Like the throughput
benchmark, the two containers run on different hosts con-

64 256 1K 4K

Message size (B)

0

2

4

L
at

en
cy

(µ
s) FreeFlow Host-RDMA

(a) SEND on InfiniBand

64 256 1K 4K

Message size (B)

0

2

4

L
at

en
cy

(µ
s) FreeFlow Host-RDMA

(b) WRITE on InfiniBand
Figure 10: RDMA latency between a pair of containers on different
hosts. SEND is a typical two-sided operation, while WRITE is one-
sided.

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of container pairs

0

50

T
p

u
t

(G
b

p
s)

FreeFlow

Host-RDMA

Figure 11: Aggregate through-
put when scaling up the number
of container pairs.

Host RDMA Fastpath LowCPU

1.8µs 2.4µs 17.0µs

Table 3: 2-byte message la-
tency of two FreeFlow modes.

nected via the same ToR switch. For each message size, we
measure the latency 1000 times. We plot the median, 10- and
99th-percentile latency values.

Figure 10 shows the one-way latency reported by the
perftest tools. We can see that one-sided WRITE op-
eration have lower latency than two-sided SEND opera-
tion, and also smaller gap between FreeFlow and bare-
metal RDMA. However, even with the two-sided operation,
FreeFlow causes less than 1.5 µs extra delay. The extra delay
is mainly due to the IPC between the FFL and FFR . One-
sided operation will trigger IPC only one time, while two-
sided operations will trigger two times and one time mem-
ory copy. This explains the larger latency gap of two-sided
operations.

To put these latency values into perspective, one hop in
network, i.e., a hardware switch, has 0.55µs latency [3].
Thus, FreeFlow latency overhead is comparable to an extra
switch hop in the network. In comparison, host TCP stack
latency is at least 10µs (§8.1.4) and then TCP/IP virtual net-
work latency is even larger (more than 40µs in our test). This
means FreeFlow preserves the latency advantage of RDMA
while enabling virtual network for containers.

8.1.2 CPU Overhead and Trade-off
FreeFlow achieves good performance with low CPU over-
head. FreeFlow has two modes: Fastpath and non-Fastpath
(or LowCPU, in §5.1). By default, Fastpath is enabled and
provides the best performance in terms of latency. In this
mode, FFR spins on one CPU core and serves Verbs requests
as soon as possible. One CPU core is capable of serving all
the containers on one host, thanks to the fact that FFR only
handles message-level events, instead of at packet-level like
in Open vSwitch. On a commodity server with many CPU
cores, this is acceptable.

In addition, users may choose the LowCPU mode, which
uses a Unix socket as the signal mechanism instead of core

122 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FF
Fastpath

FF
LowCPU

Host
RDMA

0

0.5

1

C
P

U
co

re
s ib send bw

FFR

Figure 12: CPU usage of
ib send bw and FFR when
measuring the throughput with
1MB messages. 100% CPU
means one fully utilized CPU
core.

0 20 40

Bandwidth Cap (Gbps)

0

20

40

T
p

u
t

(G
b

p
s) FreeFlow

Ideal

Figure 13: FreeFlow can accu-
rately control the rate of traffic
flows from containers.

spinning. This hurts latency performance (increase from
2.4µs to 17.0µs), as shown in Table 3. In Figure 12,
we record the per-process CPU utilization when measur-
ing inter-host throughput. The throughput of all three cases
in the figure are the same (full bandwidth). It shows the
CPU benefit of LowCPU mode, especially on the FFR . In
LowCPU mode, FFR CPU overhead scales with the actual
load.

We recommend choosing the mode according to the work-
load requirement. Latency-sensitive or non-CPU heavy (e.g.,
GPU-heavy) applications should be run with Fastpath mode
while the rest can be run with LowCPU mode. However,
even with Fastpath, FFR consumes at most one CPU core,
and the extra overhead due to FFL is less than 30% for full
bandwidth throughput.

8.1.3 Rate Limiter and Performance Isolation
We demonstrate the performance of rate limiter mentioned
in §6. In Figure 13, we start a single flow between two con-
tainers on different hosts, on Infiniband testbed. We limit
the flow rate and set different bandwidth caps from 1Gbps
to 40Gbps. We see that the controlled bandwidth (y-axis)
is close to the bandwidth cap we set (x-axis). FreeFlow
achieves this with only 6% CPU overhead.

FreeFlow can isolate performance (i.e., throughput) for
different containers using the rate limiter. To demonstrate
this, we ran 10 concurrent flows between container pairs
and applied the different rate limits to each flows (from 1
to 10Gbps). We verified that the throughput of each flow is
accurately capped.

8.1.4 TCP Socket over RDMA
Enabling virtual RDMA can also benefit the performance of
socket-based applications. Below we show that FreeFlow
provides better performance than conventional TCP/IP vir-
tual networks with the help of rsocket, an existing socket-
to-Verbs translation layer.

We run the experiments on both InfiniBand and RoCE
clusters. By dynamically linking with rsocket during run-
time,5 application socket calls are transparently translated
into RDMA Verbs calls. We run iperf [10] for measuring

5This can be easily configured by setting an environment variable called
LD PRELOAD in Linux.

256 4K 64K 1M

Message size (B)

0

20

T
p

u
t

(G
b

p
s) FF+rsocket

Host-TCP

Weave

(a) iperf throughput on IB

256 4K 64K

Message size (B)

102

104

L
at

en
cy

(µ
s) FF+rsocket

Host-TCP

Weave

(b) NPtcp latency on IB
Figure 14: TCP throughput and latency between a pair of contain-
ers on different hosts. We compare native TCP with FreeFlow +
rsocket (socket-to-Verbs translation).

TCP throughput, and NPtcp [14] for TCP latency without
any modifications on these tools. We compare against the
same tools running on the virtual and host mode network.

As Figure 14 shows, FreeFlow always outperforms
Weave. Especially for small message latency, FreeFlow is
consistently lower than even host TCP/IP, by up to 98%. For
throughput, FreeFlow is sometimes worse than host TCP and
cannot achieve full throughput like raw RDMA, due to the
overhead of socket-to-Verbs translation. However, it is still
6.8 to 13.4 times larger than Weave with large messages.

The are two reasons for FreeFlow’s good performance.
First, the RDMA stack and FreeFlow architecture works
only in the userspace and avoids the context switching in ker-
nel TCP stack. This advantage is not unique; customized
userspace network stacks can also achieve this. The sec-
ond reason FreeFlow outperforms Weave is fundamental.
The existing TCP/IP virtual networking solutions perform
packet-by-packet address translation from virtual network to
host network. However, FreeFlow performs message-based
translation from virtual connection to physical connection.
Thus, FreeFlow always outperforms Weave, though rsocket
introduces some socket-to-Verbs translation overhead.

8.2 Real-world Applications
In this section, we show the performance of TensorFlow and
Spark, a representative machine learning and data analytics
framework, running in containers. We compare the applica-
tion performance on FreeFlow against Host-RDMA, Host-
TCP, and Weave.

Since TensorFlow requires GPUs that our RoCE cluster
does not have, we run all the experiments on our InfiniBand
cluster. Based on the microbenchmarks, we believe RoCE
clusters will have similar trends if equipped with GPU.

8.2.1 Tensorflow
We run RDMA-enabled Tensorflow (v1.3.0) on three servers
in the InfiniBand cluster. We modified a single line of the
source code of Tensorflow to replace the original memory
allocation function with our custom memory allocator (§4.3).
Each server has eight NVIDIA GTX 1080 Ti GPUs. One
of the servers is a master node and also a parameter server,
while the other two servers are workers. We run two main
types of training workloads for deep learning, namely, image
recognition based on Convolutional Neural Network (CNN),

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 123

Resnet-50 Inception-v3 Alexnet

Model

0

1000

2000

3000

T
ra

in
in

g
sp

ee
d

(I
m

a
g

es
/

se
c)

FreeFlow

Host-RDMA

Host-TCP

Weave

(a) Tensorflow image training speed

10 20 30

Time per step (sec)

0.0

0.5

1.0

C
D

F

FreeFlow

Host-RDMA

Host-TCP

Weave

(b) Tensorflow speech training speed
Figure 15: TensorFlow performance on FreeFlow.

GroupBy SortBy

Workload

0

20

Jo
b

co
m

p
le

ti
o

n
ti

m
e

(s
ec

)

FreeFlow

Host-RDMA

Host-TCP

Weave

Figure 16: Spark performance on FreeFlow.

and speech recognition based on Recurrent Neural Network
(RNN).

For image recognition, we run three specific models,
ResNet-50 [29], Inception-v3 [42] and AlexNet [33]. We use
synthetic ImageNet data as training data. Figure 15(a) shows
the median training speed per second with 10-percentile and
99-percentile values. From the results of all three differ-
ent models, we conclude, first, the network performance is
indeed a bottleneck in the distributed training. Comparing
host RDMA with host TCP, host RDMA performs 1.8 to 3.0
times better in terms of the training speed. The gap between
FreeFlow and Weave on container overlay is even wider. For
example, FreeFlow runs 14.6 times faster on AlexNet. Sec-
ond, FreeFlow performance is very close to host RDMA.
The difference is less than 4.9%, and FreeFlow is sometimes
even faster. We speculate that this is due to measurement
noise.

For speech recognition, we run one private speech RNN
model consisting of a bi-directional encoder and a fully-
connected decoder layers, with a hidden layer dimension-
ality of 1024 and a vocabulary size of 100k. The dataset is
4GB large including 18.6 millions samples. In each train-
ing step, GPUs “learn” from a small piece and communicate
with each other for synchronization. Figure 15(b) shows the
CDF of the time spent for each training step, including the
GPU time and networking time. Again, FreeFlow is very
close to host RDMA. The median training time is around 8.7
times faster than Weave.

8.2.2 Spark

We run Spark (v2.1.0) on two servers. One of the server runs
a master container that schedules jobs on slave containers.
Both of the servers run a slave container. The RDMA exten-
sion for Spark [18] is implemented by is closed source. We
download the binary from their official website and did not
make any modification.

We demonstrate the basic benchmarks shipped with the
Spark distribution – GroupBy and SortBy. Each benchmark
run on 262,144 key-value pairs with 2 KB value size. We
set the number of Spark mappers and reducers to 8 and each
of them is a single thread. Figure 16 illustrates the result.
We conclude similar observations as running TensorFlow.
The performance of network does impact the application
end-to-end performance significantly. When running with
FreeFlow, the performance is very close to running on host

RDMA, better than host TCP, and up to 1.8 times better than
running containers with Weave.
9 Related Work
RDMA virtualization for containers: There is an on-
going effort from Mellanox to extend network namespace
and cgroup in Linux kernel to accommodate RDMA for net-
working isolation [34, 35]. It uses MACVLAN to split a
physical interface to multiple virtual interfaces, inserts one
or multiple interfaces to each container, and relies on VLAN
routing to deliver traffic to the correct virtual interface. Ap-
parently, it has portability issues for cloud environments,
since moving an IP means updating VLAN routing in hard-
ware. Also, it does not offer a flexible controllability, be-
cause it allows containers to directly access physical NICs.

Another approach is using programmable hardware to
handle the RDMA virtualization for containers, such as
smart NICs [26] or FPGA [38]. FreeFlow’s advantages com-
pared with such hardware-based solutions are its lower cost
by using commodity hardware and better flexibility to cus-
tomize network features.
RDMA virtualization for VM: HyV [39] is the closest
solution to FreeFlow . It also intercepts the communication
between applications and NIC driver and provides address
translation, QP/CQ mapping, and memory mapping. The
key difference between HyV and FreeFlow is that HyV does
not control data path to provide bare-metal performance in
private clusters, while FreeFlow does for fitting in cloud en-
vironments. This creates more challenges to FreeFlow, such
as making the performance still close to bare-metal qual-
ity while maintaining transparency to applications in data
path. VMM-bypass I/O [37] has a similar design and is-
sues as HyV. VMware has been working on para-virtualizing
RDMA devices called vRDMA [40]. vRDMA is designed
for VMware’s hypervisor and VMs, so it does not inherently
work for containers.
10 Conclusion
In this paper, we presented FreeFlow, a virtual RDMA net-
working solution that provides the isolation, portability and
controllability needed in containerized clouds. FreeFlow
is transparent to applications and achieves close-to bare-
metal RDMA performance with acceptable overhead. Eval-
uations with real-world applications and microbenchmarks
show that FreeFlow can support performance comparable to
bare-metal RDMA and much better than the existing TCP/IP
virtual networking solution. We open source the prototype
of FreeFlow .

124 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

11 Acknowledgments
We would like to thank the anonymous NSDI reviewers
and our shepherd, Hakim Weatherspoon for their helpful
comments. This work was funded in part by NSF awards
1700521 and 1513764.

12 Availability
FreeFlow is open sourced at https://github.com/
Microsoft/Freeflow.

References
[1] Mellanox coredirect. http://www.mellanox.com/page/

products dyn?product family=61&mtag=connectx 2 vpi/,
2010.

[2] Apache spark. https://spark.apache.org/, 2018. Accessed on
2018-01-25.

[3] Arista 7050x & 7050x2 switch architecture. https:

//www.arista.com/assets/data/pdf/Whitepapers/
Arista 7050X Switch Architecture.pdf, 2018. Accessed
on 2018-01-25.

[4] chroot(2) - Linux man page. https://linux.die.net/man/2/
chroot, 2018. Accessed on 2018-01-25.

[5] CNTK. https://github.com/Microsoft/CNTK/wiki, 2018. Ac-
cessed on 2018-01-25.

[6] CoreOS. https://coreos.com/, 2018. Accessed on 2018-01-25.

[7] Docker. http://www.docker.com/, 2018. Accessed on 2018-01-25.

[8] Infiniband architecture specification release 1.2.1 annex a16: Roce.
https://cw.infinibandta.org/document/dl/7148, 2018. Ac-
cessed on 2018-01-25.

[9] Introduction to infiniband. https://en.wikipedia.org/wiki/
InfiniBand, 2018. Accessed on 2018-01-25.

[10] Iperf - the TCP/UDP bandwidth measurement tool. http://

iperf.fr, 2018. Accessed on 2018-01-25.

[11] Kubernetes. http://kubernetes.io/, 2018. Accessed on 2018-01-
25.

[12] Kubernetes networking. https://kubernetes.io/docs/
concepts/cluster-administration/networking/, 2018.
Accessed on 2018-01-25.

[13] Mellanox perftest package. https://community.mellanox.com/
docs/DOC-2802, 2018. Accessed on 2018-01-25.

[14] netpipe(1) - linux man page. https://linux.die.net/man/1/
netpipe, 2018. Accessed on 2018-01-25.

[15] Open vswitch. http://openvswitch.org/, 2018. Accessed on
2018-01-31.

[16] Openfabrics, libibverbs release. https://www.openfabrics.org/
downloads/libibverbs/, 2018. Accessed on 2018-01-25.

[17] Rdma-based apache hadoop. http://hibd.cse.ohio-state.edu/,
2018. Accessed on 2018-01-25.

[18] Rdma-based apache spark. http://hibd.cse.ohio-state.edu/,
2018. Accessed on 2018-01-25.

[19] Rdma-iwarp. http://www.chelsio.com/nic/rdma-iwarp/,
2018. Accessed on 2018-01-25.

[20] rsocket(7) - linux man page. https://linux.die.net/man/7/
rsocket, 2018. Accessed on 2018-01-25.

[21] Single root I/O virtualization. http://pcisig.com/
specifications/iov/single root/, 2018. Accessed on
2018-01-25.

[22] Tensorflow. https://www.tensorflow.org/, 2018. Accessed on
2018-01-25.

[23] Weave Net. https://www.weave.works/, 2018. Accessed on 2018-
01-25.

[24] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN,
J., DEVIN, M., GHEMAWAT, S., IRVING, G., ISARD, M., ET AL.
Tensorflow: A system for large-scale machine learning. In USENIX
OSDI (2016).

[25] DATADOG. 8 suprising facts about real Docker adoption. https:

//www.datadoghq.com/docker-adoption/, 2016.

[26] DEIERLING, K. Ensuring both high performance and security for
containers. In Flash Memory Summit (2017).

[27] DOCKER. Docker community passes two billion pulls.
https://blog.docker.com/2016/02/docker-hub-two-
billion-pulls/, 2016.

[28] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D.,
DABAGH, A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V.,
CAULFIELD, A., CHUNG, E., ET AL. Azure Accelerated Networking:
SmartNICs in the Public Cloud. In USENIX NSDI (2018).

[29] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning
for image recognition. In IEEE CVPR (2016).

[30] IRON.IO. Docker in production – what we’ve learned launching
over 300 million containers. https://www.iron.io/docker-in-
production-what-weve-learned/, 2014.

[31] JAIN, R., CHIU, D. M., AND HAWE, W. A quantitative measure of
fairness and discrimination for resource allocation in shared computer
systems. DEC Technical Report.

[32] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using RDMA
efficiently for key-value services. In ACM SIGCOMM Computer
Communication Review (2014), vol. 44, ACM, pp. 295–306.

[33] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Ima-
genet classification with deep convolutional neural networks. In NIPS
(2012).

[34] LISS, L. Containing RDMA and high performance computing. In
ContainerCon (2015).

[35] LISS, L. RDMA container support. In International OpenFabrics
Software Developer’s Workshop (2015).

[36] LISS, L. The Linux SoftRoce Driver. In OpenFabrics Annual Work-
shop (2017).

[37] LIU, J., HUANG, W., ABALI, B., AND PANDA, D. K. High Per-
formance VMM-Bypass I/O in Virtual Machines. In USENIX ATC
(2006).

[38] MOUZAKITIS, A., PINTO, C., NIKOLAEV, N., RIGO, A., RAHO,
D., ARONIS, B., AND MARAZAKIS, M. Lightweight and Generic
RDMA Engine Para-Virtualization for the KVM Hypervisor. In High
Performance Computing & Simulation (HPCS), 2017 International
Conference on (2017), IEEE, pp. 737–744.

[39] PFEFFERLE, J., STUEDI, P., TRIVEDI, A., METZLER, B., KOLTSI-
DAS, I., AND GROSS, T. R. A Hybrid I/O Virtualization Framework
for RDMA-capable Network Interfaces. In ACM VEE (2015).

[40] RANADIVE, A., AND DAVDA, B. Toward a paravirtual vRDMA de-
vice for VMware ESXi guests. VMware Technical Journal, Winter
2012 1, 2 (2012).

[41] STEVENS, W. R., AND RAGO, S. A. Advanced programming in the
UNIX environment. Addison-Wesley, 2013.

[42] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS, J., AND WO-
JNA, Z. Rethinking the inception architecture for computer vision. In
IEEE CVPR (2016).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 125

https://github.com/Microsoft/Freeflow
https://github.com/Microsoft/Freeflow
http://www.mellanox.com/page/products_dyn?product_family=61&mtag=connectx_2_vpi/
http://www.mellanox.com/page/products_dyn?product_family=61&mtag=connectx_2_vpi/
https://spark.apache.org/
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7050X_Switch_Architecture.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7050X_Switch_Architecture.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7050X_Switch_Architecture.pdf
https://linux.die.net/man/2/chroot
https://linux.die.net/man/2/chroot
https://github.com/Microsoft/CNTK/wiki
https://coreos.com/
http://www.docker.com/
https://cw.infinibandta.org/document/dl/7148
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/InfiniBand
http://iperf.fr
http://iperf.fr
http://kubernetes.io/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://community.mellanox.com/docs/DOC-2802
https://community.mellanox.com/docs/DOC-2802
https://linux.die.net/man/1/netpipe
https://linux.die.net/man/1/netpipe
http://openvswitch.org/
https://www.openfabrics.org/downloads/libibverbs/
https://www.openfabrics.org/downloads/libibverbs/
http://hibd.cse.ohio-state.edu/
http://hibd.cse.ohio-state.edu/
http://www.chelsio.com/nic/rdma-iwarp/
https://linux.die.net/man/7/rsocket
https://linux.die.net/man/7/rsocket
http://pcisig.com/specifications/iov/single_root/
http://pcisig.com/specifications/iov/single_root/
https://www.tensorflow.org/
https://www.weave.works/
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://blog.docker.com/2016/02/docker-hub-two-billion-pulls/
https://blog.docker.com/2016/02/docker-hub-two-billion-pulls/
https://www.iron.io/docker-in-production-what-weve-learned/
https://www.iron.io/docker-in-production-what-weve-learned/

Direct Universal Access: Making Data Center Resources Available to FPGA

Ran Shu1, Peng Cheng1, Guo Chen1,2, Zhiyuan Guo1,3, Lei Qu1, Yongqiang Xiong1, Derek Chiou4, and
Thomas Moscibroda4

Microsoft Research1, Hunan University2, Beihang University3, Microsoft Azure4

Abstract
FPGAs have been deployed at massive scale in data cen-

ters. Using currently available communication architec-
tures, however, it is difficult for FPGAs to access and utilize
the various heterogenous resources available in data centers
(DRAM, CPU, GPU,. . .). In this paper, we present Direct
Universal Access (DUA), a communication architecture that
provides uniform access for FPGA to these data center re-
sources.

Without being limited by machine boundaries, DUA pro-
vides global names and a common interface for communi-
cating across various resources, the underlying network au-
tomatically routing traffic and managing resource multiplex-
ing. Our benchmarks show that DUA provides simple and
fair-share resource access with small logic area overhead
(<10%) and negligible latency (<0.2µs). We also build two
practical multi-FPGA applications—deep crossing and regu-
lar expression matching—on top of DUA to demonstrate its
usability and efficiency.

1 Introduction
Large-scale FPGA deployments in data centers [1–9] has

changed the way of FPGA-based distributed systems are
designed. Instead of a small number of FPGAs and lim-
ited resources (e.g., only the DRAM on each FPGA board),
modern FPGA applications can use heterogeneous compu-
tation/memory resources, such as CPU, GPU, host/onboard
DRAM, SSD etc., across large-scale data centers. The scale
and diversity of resources enables the building of novel
FPGA-based applications, such as cloud-scale web search
ranking [10,11], storage systems [4,6], or deep learning plat-
forms [12].

Building large-scale and diverse FPGA applications re-
quires communication capabilities between any pair of FP-
GAs and other components in the data center. However, with
today’s technology such FPGA communication is highly im-
practical and cumbersome, posing severe challenges to de-
signers and application developers. There are three main
problems barring FPGA applications to conveniently and ef-

ficiently use data center resources (see Fig. 1(a)):
First, different resources at different locations (local/re-

mote) are connected in different ways (e.g., PCIe, network)
requiring different communication stacks. This greatly in-
creases programming complexity. For example, an FPGA
application may use a custom communication stack [2] to
access a local (same server) FPGA, a networking stack [11]
to access a remote (different server) FPGA, GPU/FPGA Di-
rect [13] to access a GPU, DMA to access system DRAM,
DDR IP to access local DRAM, etc. Each of these commu-
nication stacks has a different interface (different I/O ports,
functional timings, etc.), making it hard to understand, pro-
gram, optimize, and debug.

Second, most resources (e.g., host DRAM, SSD) in a data
center are organized in a server-centric manner. Each re-
source uses a dedicated name space that can only be accessed
from within a host (e.g., a PCIe address.) The lack of global
names for resources is inefficient for FPGAs when accessing
remote resources, since they first need to communicate with
the remote host, and the host first has to perform the access
on behalf of the requesting FPGA. If an FPGA wants to write
a remote SSD, for example, it first has to transfer the data to
a daemon process running on its local CPU, which passes the
data to the remote CPU, which then finally writes the data to
the targeted SSD. To make matters worse, developers manu-
ally write dedicated logic for each type of FPGA-to-resource
communication.

Third, although FPGAs have been deployed at data cen-
ter scale, current FPGA communication does not deal well
with resource multiplexing. Though various resources are
accessed through the same physical interface (e.g., DMA and
GPU/FPGA Direct both through PCIe), we are not aware
of any general resource multiplexing scheme. FPGA devel-
opers need to manually handle each specific case, which is
tightly coupled with the application logic. Moreover, prob-
lems become more severe when there are multiple FPGA ap-
plications using the same resource (e.g., applications on two
FPGAs accessing the same SSD).

Instead, FPGA developers would like an FPGA commu-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 127

Data center network fabric

CPU
Host

DRAM SSDGPU

NIC

...

FPGA Onboard
DRAM

FPGA board

PCIe fabric

Server

FPGA Onboard
DRAM

FPGA board

CPU
Host

DRAM SSDGPU

NIC

...

FPGA Onboard
DRAM

FPGA board

PCIe fabric

Server

FPGA Onboard
DRAM

FPGA board

...

Ethernet
Ethernet

APP APP...

DMA DDR LTL
GPU/FPGA

Direct

PCIe DDR link QSFP

FPGA
applications

Stacks

Physical
Interfaces

Communication interface for FPGA applications

...

...

... ...

(a) Current FPGA communication architecture.

FPGA communication network fabric

APP APP...

Common communication interface

FPGA
applications

Communication interface for FPGA applications

CPU
Host

DRAM SSDGPU Onboard
DRAM

FPGA FPGA
CPU Host

DRAM SSDGPU
Onboard

DRAM FPGA FPGA

Server
Server

Unified resource naming &
Routing

Resource multiplexing

...

...

...

(b) Ideal FPGA communication architecture.

Figure 1: Comparison between a current FPGA communication architecture and an ideal communication architecture that
enables FPGAs to easily access data center resources.

nication architecture as shown in Fig. 1(b). This architec-
ture has the following desirable properties: 1) a common
communication interface regardless of what the communica-
tion endpoints are and where they reside; 2) a global, unified
naming scheme that can address and access all resources re-
gardless of their location; 3) an underlying network service
that provides routing and resource multiplexing. With such
a communication architecture, FPGA applications could eas-
ily access a diverse set of resources across the data center, us-
ing the common programming interface with each resource’s
global name. Indeed, such a communication architecture is
what developers and architects expect and is used in other
distributed systems. For example, such a design has been
proven successful in IP networks.

In this paper, we propose Direct Universal Access (DUA)
to bring this desirable communication architecture to the
FPGA world. Doing so is challenging in multiple ways,
especially considering that very little, if anything, can be
changed when we seek real-world deployment in existing
data centers. It is impractical to require all manufacturers
to support a new unified communication architecture. To cir-
cumvent this challenge, DUA chooses to abstract an over-
lay network on top of the existing communication stacks
and physical interconnections, thereby providing a unified
FPGA communication method for accessing all resources.
Moreover, performance and area is often crucial in FPGA-
based applications, so DUA was designed to mimimize per-
formance and area overheads. Inspired by ideas in software
defined networking [14, 15], we architect DUA into a data
plane that is included in every FPGA, and a hybrid control
plane including both CPU and FPGA control agents. Need-
less to say, designing and implementing this novel communi-
cation architecture also brings about numerous specific tech-

nical challenges, design choices and implementation prob-
lems. We discuss these challenges alongside our solutions in
Sections 4, 5 , 6 and 7.

In summary, we make the following contributions in this
paper. We introduce DUA, a communication architecture
with unified naming and common interface to enable large-
scale FPGA applications in a cloud environment. We im-
plement and deploy DUA on a twenty FPGA testbed. Our
testbed benchmarks show that DUA introduces negligible la-
tency (<0.2µs) and small area (<10%) overhead on each
FPGA. Moreover, we demonstrate that using DUA, it is
easy to build highly-efficient production-quality FPGA ap-
plications. Specifically, we implement two real-world multi-
FPGA applications: Deep Crossing and regular expression
matching, and show the vastly superior performance of these
applications based on DUA. In addition, we also design and
implement a new communication stack that supports high-
performance communication between local FPGAs through
PCIe, which can be integrated into DUA data plane as a
highly efficient underlying stack.

2 Background
2.1 FPGA Deployments in Data Centers

The left side of Fig. 1(a) shows an overview of cur-
rent FPGA data center deployments. FPGA boards connect
to their host server motherboard through commodity com-
munication interfaces such as PCIe. Each hosting server
can contain one [11] or more FPGA boards [2]. Each
FPGA board is typically equipped with gigabytes of onboard
DRAM [2, 9, 11]. Recent deployments [11] directly con-
nect each FPGA to the data center networking fabric, en-
abling it to send and receive packets without involving its
host server. To meet the high data rate of physical inter-

128 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: FPGA programming efforts to connect different
communication stacks.

Resource Communication stack LoC
Host DRAM DMA 294

Host CPU FPGA host stack 205
Onboard DRAM DDR 517
Remote FPGA LTL 1356

faces, FPGAs use Hard IPs (HIPs) to handle physical layer
protocols for each interface. Above these HIPs, FPGAs pro-
vide communication stacks that abstract access to different
resources. Communication stacks may share the same HIP,
e.g. DMA [16] and GPU [13] stacks both need to use the
PCIe fabric. Although a server may contain multiple boards
connected through PCIe [2], there are no PCIe-based stacks
that support efficient and direct communication between FP-
GAs.

Data center FPGAs often contain a shell [10,11] that con-
tains modules that are common for all applications. For ex-
ample, shells typically include communication stacks for ac-
cessing various resources (e.g., PCIe, DMA, Ethernet MAC).
In this way, developers only need to write their FPGA appli-
cation logic and connect using these communication inter-
faces. The FPGA shell is similar to an operating system in
the software world.

FPGAs in data centers are widely used to accelerate dif-
ferent applications. Applications like deep neural networks
[17, 18] and bioinformatics [19] have high demand on com-
munications between FPGAs. FPGAs for web search rank-
ing applications [10,11] rapidly exchange data with host and
other FPGAs to generate the ranking as quick as possible.
Key-value store acceleration [20] requires FPGAs to access
remote FPGA’s on board DRAM or even remote servers host
memory. Big data analytics [21] not only require rapid co-
ordination between computation nodes, but also need to di-
rectly fetch data from database [4, 5]. The demand of high
throughput and extra low latency require FPGAs to access
heterogeneous resources directly which challenges the de-
sign of FPGA communication architecture in data centers.

2.2 Existing Problems
Current FPGA communication architecture pose multiple

severe problems:
Complex FPGA Application Interface: FPGA-based

systems are hard to develop and deploy. One of the major
reasons is that communication interfaces are hard to imple-
ment. Interfacing requires significant programming exper-
tise and effort by application developers. To make things
worse, existing stack interfaces are highly implementation
specific, with substantial incompatibilities and differences
between different vendors. This makes building the commu-
nication system of the application alone a major undertaking
(e.g., KV-Direct [20]).

To convey a concrete sense of the programming difficul-
ties involved, consider a simple FPGA application that uses

different communication interfaces to access four different
resources: host DRAM, host CPU, on board DRAM, and
remote FPGA. Table 1 shows the lines of Verilog code for
application developers to connect each stack’s interface.

Poor Resource Accessibility: Although data centers pro-
vide many computation/memory resources that potentially
could be used by FPGA applications, most of these resources
(even the homogeneous ones) are only named in server-
local name space and work with their own software device
driver/stack. There is no unified naming scheme for access-
ing remote resources. Without unified naming, most PCIe-
based resources (e.g., DRAM, SSD, GPU) can only be ac-
cessed within a server’s PCIe domain, making it difficult
for remote FPGAs to use. Even with latest technology like
RDMA that FPGAs can use to access specific remote re-
sources, the software driver/stack is still needed for remote
communication, impacting performance.

Fixed Network Routing: In current communication ar-
chitectures, FPGA applications can only access resources
through limited and fixed paths. In [2], for example, FPGAs
communicate with other local FPGAs through the dedicated
PCIe fabric and can not access remote resources through net-
working. In [11,22], FPGAs are directly connected to Ether-
net through top-of-rack (ToR) switches, i.e., a pair of FPGAs
can only communicate through Ethernet even when they are
in the same PCIe domain. Both of these examples cannot
make full use of all available bandwidth.

Also, such fixed communication architectures limit the
system’s scalability. For example, deploying large FPGA ap-
plications via a network-based communication architecture
increases the port density of ToR switches and is a challenge
to data center networking, even if most FPGAs are used
for compute-intensive tasks and need only little networking
bandwidth.

Poor Resource Multiplexing: To support accessing data
center resources as a pool, resource multiplexing is one of
the key considerations of an FPGA communication architec-
ture. Current architectures do not handle stack multiplexing
well. For example, if two applications both access local host
DRAM through DMA, they need to collaboratively write a
DMA multiplexer and demultiplexer. From our experience,
even a simple multiplexer/demultiplexer requires 354 lines
of HDL code. Moreover, currently there is no general phys-
ical interface multiplexing scheme, and it is therefore hard
for current FPGA applications to simultaneously access lo-
cal host DRAM and local SSD without modifying the un-
derlying shell, since these two resources are both connected
through the PCIe bus.

The Elastic Router proposed in [11] tries to solve the mul-
tiplexing problem in an FPGA environment. Currently, how-
ever, it only addresses the problem of multiplexing between
multiple applications which use a common networking stack,
without handling multiplexing between other stacks and be-
tween physical interfaces. Later we will see that DUA ex-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 129

tends this with a general resource multiplexing scheme.
Inefficient Communication Stack: Existing communi-

cation architectures implement resource accessing for FP-
GAs in an indirect and inefficient way. Typically, FPGA
applications use DMA to access local resources, which re-
sults in significant latency and low bandwidth. We note that
while [23] provides a direct FPGA-to-FPGA communication
mechanism through PCIe, it is inefficient. Specifically, the
receiver FPGA acts as host DMA driver and first issues an
DMA request. The sender FPGA treats the request as a nor-
mal DMA request and sends data. After sending data they
need to synchronize the queue pointers. Since a data trans-
mission crosses the PCIe fabric 3 times, it wastes bandwidth
and has higher than necessary latency.

Furthermore, an FPGA can only access remote host
DRAM by relaying data between the two sides’ CPUs, re-
ducing performance and consuming cores. We measured the
performance of doing so in our testbed (see §8). Specifi-
cally, we ran two daemon processes on the local and remote
server’s CPU that relayed data between the local FPGA and
remote DRAM through a TCP socket. Results show that for
writing 256B data to the remote DRAM, the average end-
to-end latency is ∼51.4µs. The tail latency is in the mil-
liseconds. Using remote DMA instead of TCP may improve
the performance, but in our measurement the average latency
is still ∼20µs due to the CPU involvement (e.g., initiate re-
quest, interrupt). We note that in such an application it is pos-
sible to leverage remote FPGA as a data relay for accessing
remote host DRAM, through direct communication between
FPGAs (e.g., using LTL [11]).

3 Desired Communication Architecture
To overcome the problems outlined in the previous sec-

tion, we design DUA using a familiar and concrete model:
Global names and a common communication interface for
FPGAs and resources regardless their location, where the un-
derlying network automatically routes communication traffic
according to the global name and manages the resource mul-
tiplexing with full utilization of existing stacks.

This communication architecture supports pooling data
center resources for FPGAs to access. Specifically, FPGA
applications can access any resource in data center using a
global name and a common programming interface. The
network provides a globally unified name for various kinds
of resources. When getting a message, the network either
routes the access to the targeted resource if it is available,
or notifies the application if the resource is not available,
automatically without the application being involved. Also,
there is no need for applications to implement multiplexing
between communication stacks or physical interconnections.
DUA utilizes underlying communication when appropriate.
The network automatically manages sharing and contention
according to the desired policy (e.g., fair sharing or priority
scheduling).

App

FPGA

App

App

DUA data plane

NIC

CPU

Datacenter networking fabric

FPGA Host

LTL

FPGA Connect

DMA

DDR

Intra-server networking fabric

QSFP

DUA underlay

DDRPCIe Gen3

Server

DUA control
plane

CPU CA

DUA
overlay

FPGA
CA

QCN

Figure 2: DUA architecture.

Networked systems communicate in exactly this way.
In computer networking systems, programmers use IP ad-
dresses with TCP/UDP ports as a global name to identify a
communication endpoint, and access them using a unified
BSD socket interface. The network (both networking stack
and fabric) automatically route the traffic through the paths
calculated from routing protocols. The network also deals
with resource multiplexing through techniques such as con-
gestion control and flow control.

Of course, the communication architecture must also care-
fully consider security mechanisms, such that the universal
access of FPGAs to resources within the data center does
not damage or crash other hardware/software systems. Since
FPGA-based applications often have high performance re-
quirements, performance and resource overhead of the uni-
fied communication method must be kept low.

4 DUA Overview
Overall, DUA abstracts an overlay network for FPGA on

top of existing data center network fabric. DUA provides a
new communication architecture that has the desired proper-
ties mentioned before, which makes data center resources a
shared pool for FPGA.

In detail, we provide an communication architecture with
such overlay network, including the common communica-
tion interface and the naming scheme suitable for various
applications to access different resources, and the routing,
multiplexing, and resource management scheme correspond-
ingly provided by the network.

Fig. 2 shows the system architecture of DUA. Specifically,
DUA consists of a low-cost hardware data plane residing
in every FPGA’s shell, and a hybrid control plane including
both CPU and FPGA control agents.

The DUA control plane is the brain of the overlay network.
It manages all resources, assigning addresses and calculating
the routing paths to them, and manages the multiplexing of
resources and the network. DUA supports both connection-
based and connectionless communication. The connection

130 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

UID

(serverID:deviceID)
Address /port Resource description

192.168.0.2:1 0x00000001CFFFF000 1st block of host DRAM

192.168.0.2:1 0x000000019FFFF000 2nd block of host DRAM

192.168.0.2:2 0x80000000 1st block of FPGA onboard

192.168.0.2:3 8000 1st application on FPGA

192.168.0.2:3 8001 2nd application on FPGA

Figure 3: Example resources address on server 192.168.0.2.

setup and close are processed and managed in the DUA con-
trol plane.

The DUA data plane is the actual executer of FPGA com-
munication traffic. It stays between the FPGA applica-
tions and physical interfaces. The data plane can efficiently
reuse existing communication stacks, as well as support new
stacks, providing the same communication interface for var-
ious applications to access different resources.

5 DUA Communication Interface
We first describe the unified communication interface pro-

vided by DUA for accessing various resources.

5.1 Resource Address Format
DUA provides each resource a unified address, which is

globally unique in the data center. Devising a totally new
address format is not a wise option, since it would require
both a complicated system for managing data-center-scale
address spaces and changes to the existing network fabric
to use that new address format. Instead, DUA leverages the
current naming schemes of various resources, and combines
them into a new hierarchical name.

Specifically, DUA assigns each device a unique
name (UID) that extends the IP address into the
intra-server network. A UID consists of two fields,
serverID:deviceID:resourceINST. serverID is a globally
unique ID for each server. In an Ethernet-based data center
network, we leverage the server IP address as serverID,
which a is already uniquely assigned by the network fabric.
deviceID is a unique ID for each resource within the server
(e.g. FPGA on-board DRAM, GPU, NVMe and etc.), which
is newly assigned by DUA. In our current implementation,
UID is designed to be 48 bits in total (32b serverID (length
of IPv4 address in current data centers) and 16b deviceID).

Within each device, DUA leverages the existing address-
ing scheme of each resource. For example, it can be the
memory address if the targeted resource is host/onboard
memory, or the port number if the targeted resource is a re-
mote FPGA application. Fig. 3 provides some examples of
different resources’ addresses in DUA. In §6.1 and §6.2 we
will describe how it is easy to manage addresses and do rout-
ing using such an UID format.

5.2 API
DUA supports both connection-based and connectionless

communication. Connectionless communication is less ef-
ficient than connection-based communication because it fa-

DUA
valid_out

data_in [255:0]

last_in

valid_in

ready_in ready_out

first_in

Request Response
data_out[255:0]

last_out

first_out

Figure 4: I/O interface for DUA.

cilitates management issues (e.g., access control) and net-
work resource multiplexing (e.g., multiplex underlying stack
tunnels for the messages that have common routing paths).
More details of routing and connection management will be
discussed in §6.2 and §6.3.

5.2.1 Semantic Primitives
For each FPGA communication connection, applications

generate communication primitives similar to BSD socket.
There are two types of primitives:

1. Connection setup/close primitives: These primitives
include CONNECT/LISTEN/ACCEPT and CLOSE,
which are used by applications to setup and close a con-
nection, respectively.

2. Data transmission primitives: These primitives in-
clude SEND/RECV and WRITE/READ. SEND/RECV
are for sending/receiving data to/from computation re-
sources such as other FPGA applications and CPU pro-
cesses, which works as a FIFO between the two sides.
Additionally, DUA supports message-based commu-
nication by adding a PUSH flag in each DUA mes-
sage header. WRITE/READ are one-sided primitives
for write/read data to/from memory/storage resources,
which are different from WRITE/READ in BSD sock-
ets.

5.2.2 I/O interface
We implement DUA in both Verilog and OpenCL.

OpenCL is a high-level programming language for FPGAs
(and GPUs.). DUA implemented in OpenCL can provide
socket-like interface. However, it cost much more FPGA
logic and degrade performance. Thus we only use the Ver-
ilog implementation and add a wrapper on top of it to support
OpenCL. See Appendices A and B for a sample usage of the
DUA interface.

Fig. 4 shows the physical I/O interface of DUA, which is
full-duplex. The request interface is for applications to is-
sue primitives (§5.2). The response interface is for applica-
tions to get primitive responses (completion information or
response data).

The DUA I/O interface is the same in both direction. For
each DUA message, the message header and payload use
the same data wires for transmission. Note that the data
signal has only 256 bits. Although a wider interface could

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 131

increase the amount of data transmitted per hardware cy-
cle, it would increase the switch fabric logic complexity and
thus decrease the available clock frequency of corresponding
modules. Consequently, a DUA message may be transmitted
in several cycles. The first 1 or 2 cycles (depends on the
message type) of data bus is message header, followed by
the payload. The first/last bit indicate the first and last cycle
of a message transmission. For each cycle with data to be
sent or received, the valid signal is set. Note that valid can
only be raised when the receiver side set the ready signal.

Next in §6 and §7, we introduce the design and implemen-
tation of control and data plane.

6 DUA Control Plane
The DUA control plane manages all resources, routing and

connections. Since FPGAs are not suitable for implementing
complicated control logic, we put the main control logic in
the CPU control agent (CPU CA). We also implement a con-
trol agent in the FPGA (FPGA CA) which monitors local
resources on its board and delivers control plane commands
to the data plane.

6.1 Resource Management
Logically, the entire DUA control plane maintains the in-

formation of all available resources in data center, and as-
signs each resource with a UID. Thanks to the hierarchical
address format (§5.1), each DUA control agent only needs to
handle its local resources.

Specifically, each FPGA CA monitors all available re-
sources on its FPGA board (e.g., onboard DRAM, FPGA
application). The FPGA CA does not assign addresses for
those resources. Instead, each FPGA CA uploads its local
resource information to the CPU CA in its host server, and
the CPU CA assigns the UIDs all together. The host CPU
CA gathers the resource information from all FPGA CAs, as
well as all other resources such as host memory and GPU in
this server.

It is straightforward to assign UIDs to local resources. As
mentioned, the first UID field, serverID, is the server IP.
Then CPU CA assigns a unique deviceID for each resource
within this server. The CPU CA maintains the mapping from
deviceID to different local resources, and updates the map-
ping once when are any resource changes, plug-in/plug-out
or failures. DUA does not manage the address within each
resource instead letting each device control it.

Currently, DUA does not provide a naming service. Ap-
plications directly use UID to identify resources without a
name resolution service. The design of a naming service is
future work.

6.2 Routing Management
To offer routing capabilities, the DUA control plane calcu-

lates the routing paths. The data plane the forwards the traffic
to the target resource (directly or through other FPGAs’ data
plane) fully transparent to applications.

Src Resource (UID) Dst Resource (UID) / Stack

FPGA 2 (192.168.0.2:2) / FPGA Connect

Host DRAM (192.168.0.2:3) / DMA

Onboard DRAM (192.168.0.2:4) / DDR

FPGA 1 (192.168.0.2:1) / FPGA Connect

Host DRAM (192.168.0.2:3) / DMA

Resources on other servers (*:*) / LTL

FPGA 1 (192.168.0.2:1)

FPGA 2 (192.168.0.2:2)

Figure 5: Example interconnection table on server
192.168.0.2.

Designing and implementing data center scale routing is
challenging [24]. Benefiting from the hierarchical UID for-
mat, we leverage existing data center network routing capa-
bilities. Each DUA control agent only needs to maintain in-
terconnection information and calculate routing paths within
each server.

Specifically, each CPU CA independently maintains an in-
terconnection table for all local resources, as shown in Fig. 5.
The interconnection table records the neighborhood infor-
mation between FPGAs or FPGA and other resources. The
first column records a source FPGA, and the second column
records the local/remote resources that can be directly ac-
cessed from this FPGA through which underlying communi-
cation stack.

The interconnection table’s information is updated as fol-
lows. Besides the resource information, each FPGA CA up-
loads the information about its communication stacks and
physical interfaces to the CPU CA in its own server. Based
on the uploaded information, CPU CA determines the inter-
connection between different FPGAs and updates the inter-
connection table. If an FPGA reports that it has connectivity
through the data center networking fabric, the CPU CA will
insert an entry for this FPGA, withan entry for each legal
destination to any resources on other servers (the last row of
Fig. 5).

According to the interconnection table, it is easy to cal-
culate a routing path to targeted resources. Specifically, if
an FPGA wants to communicate with some resource, DUA
first checks the serverID and deviceID field in the destination
resource UID, to see if this resource has a direct connec-
tion from this FPGA. If yes, DUA uses the stack recorded
in the interconnection table to access the resource. If not,
DUA looks up the interconnection table to find a routing path
through other FPGAs.

For example, in Fig. 5, if FPGA 1 (UID 192.168.0.2:4)
wants to communicate with a remote application on FPGA
3 located on another server (say, UID 192.168.11.5:3), the
calculated routing path is from FPGA 1 to FPGA 2 via FPGA
Connect, and then to FPGA 3 via LTL.

6.3 Connection Management
In DUA, every FPGA communication is abstracted as a

connection. A connection is uniquely identified by a <src
UID:dst UID> pair. The DUA control plane is in charge of
managing all connections.

132 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

At the connection setup phase, to ensure security, DUA
first checks the access control policy to see if the source
FPGA application is allowed to access the destination re-
source. If so, the CPU CA will check the dst UID with the
interconnection table to calculate the routing path (§6.2) and
then delivers the forwarding table to the FPGA data planes
along the routing path, so the data plane will forward the ap-
plication traffic to the right stack. Depending on the type of
routing path, CPU CA will deliver different actions to the
data plane and underlying stacks. Specifically:

1) If the destination resource is directly connected, CPU
CA simply delivers the corresponding forwarding table to
the data plane.2) If the destination resource is not directly
connected, but still within the same server, CPU CA calls
the stacks in the local FPGAs along the routing path to setup
a stack connection. For example in Fig. 5, if FPGA 2 initi-
ates a connection to access the onboard DRAM of FPGA 1,
CPU CA first sets up an FPGA Connect connection between
FPGA 2 and FPGA 1. 3) If the destination resource is on a
different server, CPU CA first calls the remote CPU CA to
collaboratively setup a connection tunnel between the two re-
mote FPGAs (e.g., LTL connection). If necessary, CPU CA
also sets up stack tunnels between each sides’ local FPGAs.

If the above procedures all succeed, the DUA connection
is established and the application is notified. Also, the active
DUA connection is maintained in the control plane. Note
that some underlying stacks do not support a large number
of concurrent connections (e.g., LTL currently only supports
64). For multiple DUA connections with common routing
paths, DUA supports connections multiplexing the same tun-
nel connection (e.g., two DUA connections share an LTL
tunnel connection) to solve this problem. Moreover, DUA
sets up multiple tunnels for each traffic class to simplify traf-
fic scheduling.

When an application closes a connection, the DUA con-
trol plane closes the stack tunnel connections along the path
(if no one is multiplexing them), and deletes the correspond-
ing forwarding tables in data plane. If any failures of the
data path (e.g., targeted resource, physical interface, com-
munication stack) is detected, the control plane immediately
disconnects all affected DUA connections, and notifies the
application.

7 DUA Data Plane

As shown in Fig. 2, the DUA data plane resides between
FPGA applications and the physical interfaces. It consists of
three components: overlay, stack, and underlay. DUA over-
lay acts as a router, transferring data between different appli-
cations and communication stacks. Below the overlay, DUA
leverages all existing (or future new) stacks to efficiently ac-
cess target resources. DUA underlay connects between the
stacks and physical interfaces, which provides efficient mul-
tiplexing on physical interfaces for different stacks.

DUA
overlay

LTL DDR
FPGA

Connect
Host DMA

Connector Connector Connector Connector

App App

Switch Fabric

Connector Connector

LTL
Translator

DDR
Translator

Host DMA
Translator

FPGA CA

App

Connector

Connect
Translator

Figure 6: DUA overlay components.

devID (2B)
Sequence (4B)

devID (2B)IP (4B) IP (4B)

Flag
(1B)

Length
(2B)

Type
(1B)

Param (12B)

Src UID (6B) Dst UID (6B)

Figure 7: DUA message header format.

7.1 DUA Overlay
To efficiently transfer data between multiple different ap-

plications and stacks, we use an “Internet-router-like” archi-
tecture to implement the DUA overlay module. Specifically,
there are three components inside the overlay, connector,
switch fabric and stack translator, as shown in Fig. 6.

7.1.1 Connector
Connectors reside between application/stack and switch

fabric, playing a role similar to line cards in Internet routers.
Specifically, connector performs the following tasks:

1) Translating data (from application or stack) from/to
I/O interface to/from DUA messages: The I/O interface de-
scribed in §5.2 is actually implemented in connectors, receiv-
ing data both from applications or stacks. A DUA message
is the data transmission unit inside the overlay (like IP pack-
ets). Its header format is shown in Fig. 7. Connector encap-
sulates data into DUA messages in cut-through mode with
the corresponding header fields filled. Also, when connecter
receives a DUA message from the switch fabric, it translates
it back to the I/O interface signals. One thing to note is that
for connection setup/close primitives passed from the I/O in-
terface, connector encapsulates a special message and passes
it to the FPGA control agent, notifying the control plane to
setup/close the connection.

2) Maintaining and looking up the forwarding table: The
forwarding table stores the mapping of destination UID to
the switch output port. After message encapsulation, the
connector needs to lookup the forwarding table to determine
the switch output port to forward the message to the desti-
nation connector through the switch fabric. The forwarding
table is computed by the control plane and delivered to DUA
connector (§6.2). To eliminate the contention between con-
nectors during forwarding table lookup, each connector only
maintains its own forwarding table and performs lookups in-
dependently. Note that only entries for active connections
and permitted connectionless message routes are delivered
to the data plane, so this table is not large. In our current im-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 133

plementation, the table can store 32 forwarding entries and
the area cost is very low (see §8.1).

3) Access control: Connector is also responsible for se-
curity checks whenever there is data coming in. Specifi-
cally, for connection-based communications, after a connec-
tion has passed the security check and has been successfully
setup by the control plane (see §6.3), the control plane adds
this connection to the routing control table in the connec-
tors along the path. For connectionless communications, the
control plane sets the routing table according to polices that
determine which path is allowed for these messages. Only
data from these legal connections or paths are transmitted by
DUA connectors.

4) Transport Control: DUA adopts an end-to-end transport
control design. Thus this feature is only enabled for connec-
tors that attach to applications. We do not reimplementing
TCP or RDMA on FPGA, instead, DUA leverages LTL [11]
as the transport protocol.
7.1.2 Switch Fabric

The switch fabric performs the same role as its counterpart
in Internet routers, switching messages from the incoming
connecter to the destination connector. Specifically, DUA
overlay adopts a crossbar switch fabric. To minimize mem-
ory overhead, we do not buffer any application or stack data
in the switch fabric. Instead, we make our switch fabric
lossless, and utilize the application data buffer or stack data
buffer to store data that is going to be transmitted. Once the
output is blocked, the switch fabric will back pressure to the
input connector, and unset the Ready signal of I/O interface.

In our current implementation, the underlying stacks
(LTL, FPGA Connect, DMA, FPGA Host and DDR) are all
reliable, as such, the lossless fabric ensures the DUA data
transmission primitives (§5.2) are also reliable. Note that in
real hardware implementations, although we do not buffer
data, in order to achieve full pipelining, we need to cache
256b data (one cycle of data from the I/O interface) at each
input port. And to remove head-of-line blocking among dif-
ferent ports, we implement a Virtual Output Queue (VOQ) as
in elastic router [11] at each input port of the switch fabric.

7.2 Communication Stacks
In our current implementation, we integrate four existing

communication stacks (LTL, DMA, FPGA-Host and DDR)
into the DUA data plane using stack translators. Note that
DUA leverages LTL as its end-to-end transport protocol.
LTL here only provides reliable communication in data cen-
ter network, its end-to-end congestion control protocol is dis-
abled. In addition, we design and implement a new stack
called FPGA Connect that provides high-performance intra-
FPGA communication through PCIe for improving the com-
munication efficiency mentioned in §2.2.
7.2.1 Stack Translators

Stack translators translate between DUA interface (§5.2)
and the actual interface of underlying stacks. After control

plane sets up the connection, it delivers the corresponding
translation tables to the stack translators along the routing
path. Translation tables record the mapping of DUA mes-
sage header and underlying stack header. Whenever receiv-
ing data from connector, the translator encapsulates the data
into stack interface according to the translation table. If con-
trol plane decides to multiplex stack tunnels, stack translator
encapsulates multiple DUA connections’ data into the same
stack connection. On the other end, when receiving data
from stacks, translator translates it back into DUA interface
and passes it to the connector for further routing.

Taking stack translator for memory stacks DDR/DMA as
example, it converts DUA operations to memory operations.
For instance, when the stack translator receives data with
Type READ from DUA connector (i.e., DMA/DDR read ini-
tiated by applications), it calls the DMA/DDR stack to issue
a read request, with the memory address set accordingly to
the address in DUA message header. Also, the DUA mes-
sage header is stored for sending the READ response back
to the application through DUA. After it gets the response,
stack translator calls DUA interface to send data back.

Similar to the forwarding table, the translation table also
only stores entries for active connections. Currently we im-
plement a table with size for 32 entries.

7.2.2 FPGA Connect Stack
FPGA Connect Stack enables direct communication be-

tween multiple applications on different FPGAs through
PCIe within a single server. Here we introduce the design
and implementation details of FPGA Connect Stack.

Challenge: There are three major challenges. 1) Dif-
ferentiating different inter-FPGA connections: One naive
solution is to use a large number of physical memory ad-
dresses to receive packets of each connection. That not
only needs a large amount of memory address space but
also introduces address management overhead. 2) Head-
of-line (HOL) blocking: PCIe is a lossless fabric and back
pressure is adopted. Due to application processing limita-
tions and PCIe bandwidth sharing, the available rates of each
connection can be different. Without an explicit flow con-
trol, the slower connection will saturate the buffer on both
sender HIPs and receiver which will delay other transmis-
sions. 3) Bufferbloat: If packets are sent to PCIe HIP in a
best-effort manner, the buffer inside HIP will quickly fill up
which causes further delays.

Design: FPGA Connect provides SEND and RECV oper-
ations to users. In order to differentiate different connections
and minimize physical memory address waste, FPGA Con-
nect adds a packet header in PCIe packet’s payload contain-
ing both sender’s and receiver’s port, and uses one identity
single-packet-size 1 physical memory address as receive ad-
dress for each board.

1The packet size mentioned in this paper is the PCIe TLP layer payload
size.

134 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

2

4

6

8

80 112 144 176 208 240

G
o

o
d

p
u

t
(G

B
/s

)

Packet Size (Bytes)

Root Complex

PCIe Switch

(a) Throughput

1.0

1.1

1.2

1.3

1.4

80 112 144 176 208 240

La
te

n
cy

 (
u

s)

Packet Size (Bytes)

Root Complex

PCIe Switch

(b) Latency

Figure 8: Performance of FPGA connect stack using differ-
ent TLP packet sizes.

We provide a simple token-based flow control to avoid
HOL blocking and bufferbloat. FPGA connect sends one
token request, which is a normal data packet with a special
bit, in each RTT to ask the receiver for the available token
if it keeps sending. Receiver responds with an ACK that in-
cludes the available token for this connection once it receives
this request. The sender uses this token to set the size of the
sending window for the next RTT. The receiver only keeps
the available connection number and assigns the available
token based on the algorithm of [25] to keep low buffer in
HIPs.

PCIe provides WRITE and READ operation primitives
for data transmission. According to our measurements,
PCIe peer-to-peer READ throughput is 20%-40% lower than
WRITE because of hardware limitations. Therefore, FPGA
Connect only uses WRITE as the data transmission primitive
for performance reason.

Implementation: In our implementation, FPGA Connect
has a 16 bits header including 8 bits destination connection
ID, 2 bits type and 6 reserved bits. Packets with Type = 0x01
are token requests, and those with Type = 0x11 are ACKs.
Other packets are normal data packets. We leverage CPU
software for connection setup, release and fail-over.

Evaluation: The typical PCIe network topology is a tree
structure. The root node is called root complex which is in
the CPU. Devices (e.g. FPGA, GPU and NVMe) are directly
connected to it. As the number of PCIe lanes provided by
root complex is limited, the number of devices connected to
root complex and the peer to-peer bandwidth among devices
is limited. Thus, some data center servers use PCIe switch to
support more devices and improve peer-to-peer performance
which provides high density of heterogeneous computation
capacity. Thus we test the performance of FPGA Connect on
two platforms. One provides connection through the PCIe
switch and the other through the root complex. For our
testbed, the maximum packet payload size is 256B. Although
the FPGA can send 256B packets, Root complex forces seg-
mentation of packets to align in 64B units (the PCIe switch
does not segment packets). We have measured the perfor-
mance of FPGA Connect with different packet sizes using
our testbed described in §8.1. Fig. 8 shows the results.
FPGA Connect achieves 6.66 GB/s peak throughput when

the packet size is 240B (the peak throughput is limited by
TLP implementation issues in our FPGA shell). Conse-
quently, in order to reduce the header overhead and achieving
higher throughput, we choose 240B as our maximum packet
size. As for latency, FPGA Connect provides latency as low
as 1.1∼1.33 us. In our testbed, PCIe switch offers better
throughput but slightly higher latency than root complex.

7.3 DUA Underlay
The DUA underlay resides between the stacks and phys-

ical interfaces, managing hard IPs and resource sharing
among stacks, protecting DUA stacks against outside at-
tacks and avoiding failed stacks sending packets outside the
FPGA. All these features are managed by policies config-
ured by the control plane. Each physical interface has a
separate underlay module. The upstream and downstream
interface are the same to provide seamless integration with
stacks. Therefore, existing stacks need no modification when
attached to DUA underlay.

The DUA underlay achieves these goals by setting up a
virtual transaction layer, which provides multiplexing and
security protection without proscribing a stack interface ab-
straction. The virtual transaction layer works by checking,
modifying, and, if necessary, dropping traffic generated by
or routed to the stacks to prevent causing a physical interface
(or even the whole network) into an error condition.

When data flows into DUA underlay from stacks, all pack-
ages are passed through a filter which validates them as well-
formed per the rules configured by the control plane. If stack
traffic violates any security rules or physical interface re-
strictions, the packet is dropped and the violation is reported
to FPGA CA. Then, when data flows from virtual transac-
tion layer to physical interfaces, the DUA underlay works as
a multiplexer, take the responsibility of managing multiple
connections for supporting multiple users. DUA underlay
scheduling the data to the physical interface using polices
like fair-sharing, weighted sharing, strict priority etc. In our
implementation, we use fair-sharing. To avoid wasting band-
width, we implement a shallow input FIFO for each stack in
the underlay. The scheduler fairly schedules data from non-
empty FIFOs only.

When receiving data from a physical interface, the DUA
underlay works as a demultiplexer. It demultiplexes the in-
coming data to the corresponding stack through virtual trans-
action layer according to the data header.

8 Evaluation
Testbed Setup: As shown in Fig. 9, we build a testbed

consisting of two Supermicro SYS-4028GR-TR2 servers, 20
FPGAs and one Arista 7060X switch. Every 5 FPGAs are in-
serted under the same PCIe switch and only one FPGA under
each PCIe switch is connected to the Arista switch. All FP-
GAs in the testbed are the same as in [11], which is an Altera
Stratix V D5, with 172.6K ALMs of programmable logic,
one 4 GB DDR3-1600 DRAM channel, two PCIe Gen 3 x8

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 135

SuperMicro - 1

PCIe Switch

CPU1 CPU2
Root

Complex

QPI

S uperMi cro - 2

FPGA 1*
Root

Complex

PCIe Switch

FPGA 5

FPGA 6

FPGA 7

FPGA 8

FPGA 9

FPGA 5

FPGA 6

FPGA 7

FPGA 8

FPGA 9

FPGA 0

FPGA 1

FPGA 2

FPGA 3

FPGA 4

FPGA 0

FPGA 1

FPGA 2

FPGA 3

FPGA 4

Arista 7060X switch

PCIe Switch

CPU1 CPU2
Root

Complex

QPI

Root
Complex

PCIe Switch

FPGA 5

FPGA 6

FPGA 7

FPGA 8

FPGA 9

FPGA 0

FPGA 1

FPGA 2

FPGA 3

FPGA 4

Figure 9: DUA experiment testbed

2 ports 1272 0.74%

4 ports 3227 1.88%

8 ports 9366 5.45%

3011 1.75%

FPGA Connect 138.4 0.08%

LTL 255.4 0.15%

DMA 115.7 0.07%

DDR 190.3 0.11%

431.7
Stacks: FPGA Connect, LTL, DMA, DDR

PHY interfaces: PCIe, DDR, QSFP

ALMs

0.25%

Switch fabric

Component

DUA

overlay

Stack translator

Connector

DUA

underlay

Figure 10: FPGA area cost of different components in DUA
data plane.

HIPs and two independent 40 Gb Ethernet QSFP+. Note that
in all the following experiments, we only enable one HIP and
one QSFP+ in each FPGA shell. In addition, because Super-
Micro does not provide two PCIe slots directly connected to
the root complex, we use a Dell R720 server to test the per-
formance under root complex (experiments in §7.2.2). Other
experiments are on the SuperMicro servers. Servers’ OS is
Windows Server 2012 R2, and each server has a 40Gbps NIC
connected to the switch.

8.1 System Micro Benchmark
We first show that DUA only consumes little FPGA area.

Then we show that the DUA switch fabric and routing table
achieve high throughput and low latency. Finally we show
that DUA incurs little latency overhead and handles the mul-
tiplexing of communication stacks and applications well.

8.1.1 FPGA Area Cost
Fig. 10 shows the FPGA resource consumption for imple-

menting DUA. Here we only list logic resource overhead (in
ALMs) since DUA does not buffer data and BRAM cost is
negligible. When connecting four stacks and no application,
the total ALMs consumed by DUA overlay (including 4-port
switch, 4 connectors and 4 stack translators) is only 9.29%.
When increasing the number of switch ports to 8 (4 ports
for applications), the overlay still only costs 19.86% logic
area in our middle-end FPGA. The underlay consumes only
0.25% logic resources when connecting 4 stacks and 3 phys-
ical interfaces. Compared to the logic resources consumed
by the existing underlying communication stacks and phys-
ical interfaces (in total >17%), such overhead incurred by

Table 2: Throughput and latency of switch fabric.
Number Latency (ns)

Throughput (GBps)
of ports min avg max

4 53 326 1086 9.6
8 56 649 1903 9.6

Table 3: Area cost and max frequency of routing table.
Number of entries ALMs (per port) Fmax (MHz)

32 1435 0.83% 490.20
64 2810 1.63% 423.91

128 5571 3.23% 378.93

DUA is moderate and acceptable. With more advanced FP-
GAs, such logic area cost will become negligible (e.g., latest
Stratix 10 5500 FPGA has 10x logic resource [26]).

8.1.2 Switch Fabric Performance
We conduct an experiment to evaluate the performance of

the switch fabric in DUA overlay. In this test, all switch ports
are attached to an application which acts as traffic generator
and result checker. All applications send messages to a single
port to construe a congested traffic scenario. Message length
is varied from 32B to 4KB. The switch fabric works at 300
MHz, thus the ideal throughput is 9.6 GBps. We measure
the latency and output throughput during a test lasting for
2 hours. Table 2 shows the result with different number of
switch ports. Throughput achieves the theoretical maximum
and Latency is low.

8.1.3 Routing Table Performance
We implement parallel matching engines for each table

entry. Each entry comparison takes 1 cycle, and the match-
ing result is calculated by a priority selector in another cycle.
Note that this implementation has a two cycles constant la-
tency. On the other hand, the routing table is well pipelined,
so in every cycle it can accept a message and look up its
output port. Thus, the message-per-second throughput is the
same as the clock frequency. Table 3 shows the area cost
and max frequency of the routing table with different number
of entries. Our implementation with typical 32 entries con-
sumes 0.83% of ALMs, that is 3.3%-6.6% for a typical 4-8
port implementation. The max frequency is high enough for
serving the shortest DUA message at a rate of over 10GBps
per port. As the number of entries increases to 64 and 128,
area cost increases linearly and the frequency dose not de-
crease much.

8.1.4 Latency Overhead
We use FPGA 1 to send data through DUA to FPGA 1*

in Fig. 9. Specifically, DUA first transmits data from FPGA
1 to FPGA 4 through FPGA Connect, and then to FPGA
4* (the 4th FPGA on Server 2) through LTL, and then to
FPGA 1* through FPGA Connect. We measure the end-
to-end communication latency including DUA and all the
traversing stacks, as well as the break-down latency for each
stack.

Fig. 11(a) shows the average latency of each part. Un-
der various packet sizes, DUA only incurs less than 0.2µs

136 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.153 0.176 0.196

1.266 1.266 1.316

2.444 2.479 2.545

0

1

2

3

4

5

64 128 256

La
te

n
cy

 (u
s)

Packet Size (B)

DUA LTL FPGA Connect

(a) Latency overhead

0

2

4

6

8

0 1 2 3 4

Th
ro

u
gh

p
u

t
(G

B
/s

)

Time (s)

App 1 App 2
App 3 Total

(b) Handling multiplexing

Figure 11: DUA only adds little latency overhead and han-
dles multiplexing well.

SPMV

SPMV

SPMV

SPMV

SPMV

SPMV

D
M
V

DMV DMV DMV

49292 × 640
640 × 64

64 × 640

640 × 128
128 × 640

OFFLOAD

Figure 12: Deep Crossing Model in our experiment

latency, which is a negligible overhead compared with the
other stacks’ latency in the end-to-end communication. Note
that DUA is fully pipelined and can achieve line rate, incur-
ring no throughput overhead.
8.1.5 Handling Multiplexing

We build three applications (App 1,2,3) on the same
FPGA all using DUA, to test whether DUA can handle multi-
plexing well. Specifically, App 1 starts from second 0, keeps
writing data to host DRAM. At second 1, App 2 also starts
to write data to host DRAM. At second 2, App 3 starts to
send data to another local FPGA through FPGA Connect. In
this scenario, all three applications multiplex the same PCIe
physical interface, App 1 and 2 multiplex the same DMA
stack, and DMA stack and FPGA Connect stack multiplex
the same physical PCIe interface. DUA adopts fair schedul-
ing policy for all DUA connections, and changes to weighted
share scheduling (share ratio 1:1:2) starting from second 3.

Fig. 11(b) shows the results. During the experiments, the
total throughput of all applications always achieves the max-
imum throughput of the PCIe physical interface (§7.2.2).
When new applications join, DUA successfully balances the
throughput between them. Specifically, App 1 and 2 each
achieve ∼3.2GBps between second 1 and 2, all three appli-
cations get ∼2.2GBps between second 2 and 3. Also, when
we change the scheduling policy to 1:1:2 weighted share at
second 3, the three applications quickly get their respective
expected throughput.
8.1.6 Deep Crossing
8.2 Applications Built With DUA

In this section, we present two applications built on DUA,
demonstrating that DUA can ease the process of building
high-performance multi-FPGA applications.

Deep crossing, a deep neural network, was proposed in
[27] for handling web-scale application and data sizes. The
model trained from the learning process is deployed in Bing

Table 4: ALMs cost (%) of different dense part
Base D1 D2 D3 D4 All

Parall = 32
26.0

11.0 9.4 11.0 9.8 67.2
Parall = 64 20.8 19.1 20.8 19.6 106.3

Table 5: Latency (µs) of the dense part in FPGA.
D1 D2 D3 D4 Comm. E2E

Single FPGA 7.27 6.58 13.30 12.96 N/A 40.12

Two FPGAs 4.17 3.48 7.22 7.09 1.419 (FC) 23.38
3.354 (LTL) 25.32

to provide web services. The critical metric for the deep
crossing model is latency since it impacts service response
time.

Fig. 12 shows the structure of the deep crossing
model in our experiments. There are three sparse matrix-
vector (SPMV) multiplications and four dense matrix-vector
(DMV) multiplications. Each input data to the whole model
is a 49,292 dimensional vector, as in [27]. The sparse part is a
memory-intensive task while the dense part is computation-
intensive, and the vector between each dense part is small.
Therefore, we offload the dense parts to FPGA to reduce la-
tency.

We implement all dense parts inside FPGA using
OpenCL. In our implementation, for each matrix multiplica-
tion, there is an adjustable parameter called parallel degree
(Parall), which determines the number of concurrent multi-
plications being done in one cycle. The larger Parall, the
fewer cycles are needed to complete this matrix multiplica-
tion; meanwhile, the larger parall, the more FPGA logic re-
sources are consumed. As shown in Tab. 4, if we implement
the whole four DMVs in a single FPGA board, we can only
offload the model with Parall = 32 because of FPGA resource
limitations.

To achieve better latency, we use DUA to build a two-
FPGA deep crossing accelerator. Specifically, we implement
all the DMVs in the model with Parall = 64, and down-
load the first two DMVs on one FPGA, and the other two
DMVs into another FPGA. The two FPGAs are physically
connected through both the intra-server PCIe network and
Ethernet, with underlying stack FPGA Connect / LTL en-
abled. We use DUA interface to connect the DMVs logic on
the two FPGA boards.

It only incurs 26 extra lines of OpenCL code to call the
DUA interface to connect the two FPGA boards. Moreover,
changing the communication method only requires changing
the routing table, without any change to OpenCL code and
thus eliminates hours of hardware recompilation time. Table
5 shows the latency results of the FPGA offloading (count-
ing only the FPGA-related latency). The results show that
the two-FPGA version built with DUA reduces the latency
by ∼42% (through FPGAConnect, FC for short in table) or
∼37% (through LTL) compared to the single-FPGA version.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 137

0

1

2

3

4

5

64 256 1024 4096 16384

Th
ro

u
gh

p
u

t
(G

B
/s

)

Input String Length (Byte)

through DUA

through CPU

Pure CPU

(a) Throughput

1.E+0

1.E+2

1.E+4

1.E+6

1.E+8

64 256 1024 4096 16384

La
te

n
cy

 (
u

s)

Input String Length (Byte)

through DUA

through CPU

Pure CPU

(b) Latency

Figure 13: Performance of multi-regular-expression match-
ing system.

8.2.1 Fast Multi-Regular-Expression Matching

A network intrusion detection system (IDS) [28–31] lies
between the network and the host, intercepting and scanning
the traffic to identify patterns of malicious behaviour. Typi-
cally, these patterns in IDS are expressed as regular expres-
sions. Each pattern is denoted as a rule, and all patterns in
the different stages together are called the rule set.

We have built a fast multi-regular-expression matching
prototype which consists of three FPGAs over DUA. The
boards are physically connected through PCIe within the
same server. Each regular expression is translated into one
independent NFA, and the NFA is translated into matching
circuit logic using methods in [32]. We use DUA with un-
derlying FPGA Connect stack to transfer data between these
three FPGAs. Connecting the DUA interface only costs less
than 30 lines of OpenCL code on each FPGA. We implement
the whole core rule set [33] of ModSecurity in our system.
The rule set contains 219 different regular expression rules in
total. We randomly divide these 219 rules into three pattern
stages with each stage containing 73 rules, and implement
each stage in a single FPGA.2 For each stage in each FPGA,
we implement 32 parallel matching engines, with each en-
gine matching one 8-bit character in one cycle. An input
string goes to the next FPGA only after it finishes the match-
ing in this stage.

For comparison, we also let these three FPGAs exchange
data through CPU, without the direct communication method
provided by DUA FPGA Connect. Also, we compare with
the baseline performance, which uses a single 2.3GHz Xeon
CPU core and the widely used PCRE [34] regular expression
engine.

We generate different length of input strings for matching,
to evaluate the throughput and latency of the whole regular
expression matching system. String lengths vary from 64 to
16K byte, with contents randomly generated. In our exper-
iment, we use a single CPU core to DMA the input string
into the matching system instead from the network. We get
the matching results back using DMA and count the perfor-
mance in the same CPU core.

2Note that the number of rules in each FPGA does not affect the match-
ing speed, since all rules are matched in parallel.

Fig. 13 shows the result. Enabled by direct communi-
cation through DUA, our regular expression matching sys-
tem (denoted as “through DUA”) achieves about three times
higher throughput and lower latency compared to FPGAs ex-
changing data through CPU (denoted as “through CPU”).
Benefitting thus from the direct communication through pure
hardware, our system almost reaches the maximum possible
throughput of input string DMA when the string length ex-
ceeds 8KB. On the contrary, when exchanging data through
CPU, the CPU needs to frequently read matching results
from former-stage FPGAs and send strings to next-stage FP-
GAs, which becomes the performance bottleneck. Also, we
can see that for such a complex rule set, pure CPU can only
achieve very low performance. Note that our throughput
is slightly lower than the maximum FPGA Connect speed
(§7.2.2) due to the following reasons: 1) software libraries
for DMA incur overhead compared with pure physical inter-
face; 2) although the data paths through PCIe are different
for DMA input/output data to CPU and exchanging data be-
tween FPGAs, they all use the same PCIe HIP to issue oper-
ations which incurs some contention.

9 Related Work and Conclusion
While prior work has aimed to provide abstractions and

simplified FPGA communications, to the best of our knowl-
edge, DUA is the first unified communication architecture
for FPGAs to access all available data center resources, re-
gardless of their location and type. Catapult shell [10, 11],
Amazon F1 [2] and its derivatives provide an abstract in-
terface between FPGA logic, software and physical inter-
faces, but it remains far from being the unified communica-
tion architecture provided by DUA. The Altera/Intel Avalon
bus [35] and the AXI bus [36] used by Xilinx provide a uni-
fied interface for FPGA applications, but they are designed
solely for on-chip buses, not the scale of data center net-
work. TMD-MPI [37] provides a general MPI-like commu-
nication model for multi-FPGA systems, but it only targets
communication between FPGAs rather than general resource
access. Also, it is implemented in software and requires
the CPU. The recent LTL [11] work targets the communica-
tion between FPGAs in data center through Ethernet. DUA
can leverage and support all these works as communication
stacks to improve connectivity.

Providing a communication architecture with unified nam-
ing and common interface has proven widely successful in
IP networks. In this paper, DUA takes a first step to bring
this communication architecture into the FPGA world. Our
experiments show that DUA has negligible impact on perfor-
mance and area, and greatly eases the programming of dis-
tributed FPGA applications that access data center resources.
Note that though this work is targeted to FPGAs, there is no
reason why it cannot be applied to other devices as well.

138 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Microsoft Goes All in for FPGAs to Build Out AI Cloud.

https://www.top500.org/news/microsoft-goes-all
-in-for-fpgas-to-build-out-cloud-based-ai/.

[2] Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/
instance-types/f1/.

[3] Intel, Facebook Accelerate Datacenters With FPGAs. https:
//www.enterprisetech.com/2016/03/23/intel-fac
ebook-accelerate-datacenters-fpgas/.

[4] Data Engine for NoSQL - IBM Power Systems Edition White Pa-
per. https://www-01.ibm.com/common/ssi/cgi-bin/s
sialias?htmlfid=POW03130USEN.

[5] Baidu Takes FPGA Approach to Accelerating SQL at Scale.
https://www.nextplatform.com/2016/08/24/baid
u-takes-fpga-approach-accelerating-big-sql/.

[6] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and
Yuanzheng Wang. Sdf: Software-defined flash for web-scale internet
storage systems. ACM SIGPLAN Notices, 49(4):471–484, 2014.

[7] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and Song
Jiang. Sda: Software-defined accelerator for large-scale dnn systems.
In Hot Chips 26 Symposium (HCS), 2014 IEEE, pages 1–23. IEEE,
2014.

[8] Alibaba, Intel introduce FPGA to the Cloud. https://luxeelec
tronicscomblog.wordpress.com/2017/03/13/alibab
a-intel-introduce-fpga-to-the-cloud/.

[9] Tencent FPGA Cloud Computing. https://www.qcloud.com
/product/fpga.

[10] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable
fabric for accelerating large-scale datacenter services. In Computer
Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium
on, pages 13–24. IEEE, 2014.

[11] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, et al. A Cloud-Scale Acceleration
Architecture. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on, pages 1–13. IEEE, 2016.

[12] Microsoft demonstrates the world’s ’first AI supercomputer,’ using
programmable hardware in the cloud. https://www.geekwire
.com/2016/microsoft-touts-first-ai-supercomp
uter-using-programmable-hardware-cloud/.

[13] Ray Bittner, Erik Ruf, and Alessandro Forin. Direct gpu/fpga commu-
nication via pci express. Cluster Computing, 17(2):339–348, 2014.

[14] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[15] Nick McKeown. Software-defined networking. INFOCOM keynote
talk, 17(2):30–32, 2009.

[16] Jian Gong, Tao Wang, Jiahua Chen, Haoyang Wu, Fan Ye, Songwu
Lu, and Jason Cong. An efficient and flexible host-fpga pcie com-
munication library. In Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on, pages 1–6. IEEE,
2014.

[17] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Al-
kalay, Michael Haselman, et al. Serving dnns in real time at datacenter
scale with project brainwave. IEEE Micro, 38(2):8–20, 2018.

[18] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Mas-
sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Logan Adams, Mahdi Ghandi, et al. A configurable cloud-scale dnn
processor for real-time ai. In Proceedings of the 45th Annual Interna-
tional Symposium on Computer Architecture, pages 1–14. IEEE Press,
2018.

[19] Michael Johannes Jaspers. Acceleration of read alignment with coher-
ent attached fpga coprocessors. 2015.

[20] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. KV-Direct:
High-Performance In-Memory Key-Value Store with Programmable
NIC. In Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 2017.

[21] Katayoun Neshatpour, Maria Malik, Mohammad Ali Ghodrat, and
Houman Homayoun. Accelerating big data analytics using fpgas.
In Field-Programmable Custom Computing Machines (FCCM), 2015
IEEE 23rd Annual International Symposium on, pages 164–164.
IEEE, 2015.

[22] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and An-
dreas Herkersdorf. Enabling fpgas in hyperscale data centers. In
Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl
Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl
Conf on Scalable Computing and Communications and Its Associated
Workshops (UIC-ATC-ScalCom), 2015 IEEE 12th Intl Conf on, pages
1078–1086. IEEE, 2015.

[23] Malte Vesper, Dirk Koch, Kizheppatt Vipin, and Suhaib A Fahmy.
JetStream: an open-source high-performance PCI express 3 stream-
ing library for FPGA-to-host and FPGA-to-FPGA communication. In
Field Programmable Logic and Applications (FPL), 2016 26th Inter-
national Conference on, pages 1–9. IEEE, 2016.

[24] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy M Bannon, Seb Boving, Gaurav Desai, Bob Felderman,
Paulie Germano, et al. Jupiter Rising: A Decade of Clos Topologies
and Centralized Control in Google’s Datacenter Network. SIGCOMM,
45(4):183–197, 2015.

[25] Jiao Zhang, Fengyuan Ren, Ran Shu, and Peng Cheng. Tfc: token
flow control in data center networks. In Proceedings of the Eleventh
European Conference on Computer Systems, page 23. ACM, 2016.

[26] Stratix 10 - Overview. https://www.altera.com/product
s/fpga/stratix-series/stratix-10/overview.htm
l.

[27] Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu,
and JC Mao. Deep crossing: Web-scale modeling without man-
ually crafted combinatorial features. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 255–262. ACM, 2016.

[28] Snort - Official Site. https://www.snort.org/.

[29] The Bro Network Security Monitor. https://www.bro.org/.

[30] ModSecurity: Open Source Web Application Firewall. https://
www.modsecurity.org/.

[31] Application Layer Packet Classifier for Linux. http://l7-filte
r.sourceforge.net/.

[32] Reetinder P S Sidhu and Viktor K Prasanna. Fast regular expression
matching using fpgas. pages 227–238, 2001.

[33] OWASP ModSecurity Core Rule Set (CRS). https://modsecur
ity.org/crs/.

[34] PCRE - Perl Compatible Regular Expressions. http://www.pcre
.org/.

[35] Avalon Interface Specifications. https://www.altera.com/c
ontent/dam/altera-www/global/en_US/pdfs/liter
ature/manual/mnl_avalon_spec.pdf.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 139

https://www.top500.org/news/microsoft-goes-all-in-for-fpgas-to-build-out-cloud-based-ai/
https://www.top500.org/news/microsoft-goes-all-in-for-fpgas-to-build-out-cloud-based-ai/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.enterprisetech.com/2016/03/23/intel-facebook-accelerate-datacenters-fpgas/
https://www.enterprisetech.com/2016/03/23/intel-facebook-accelerate-datacenters-fpgas/
https://www.enterprisetech.com/2016/03/23/intel-facebook-accelerate-datacenters-fpgas/
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=POW03130USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=POW03130USEN
https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sql/
https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sql/
https://luxeelectronicscomblog.wordpress.com/2017/03/13/alibaba-intel-introduce-fpga-to-the-cloud/
https://luxeelectronicscomblog.wordpress.com/2017/03/13/alibaba-intel-introduce-fpga-to-the-cloud/
https://luxeelectronicscomblog.wordpress.com/2017/03/13/alibaba-intel-introduce-fpga-to-the-cloud/
https://www.qcloud.com/product/fpga
https://www.qcloud.com/product/fpga
https://www.geekwire.com/2016/microsoft-touts-first-ai-supercomputer-using-programmable-hardware-cloud/
https://www.geekwire.com/2016/microsoft-touts-first-ai-supercomputer-using-programmable-hardware-cloud/
https://www.geekwire.com/2016/microsoft-touts-first-ai-supercomputer-using-programmable-hardware-cloud/
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.snort.org/
https://www.bro.org/
https://www.modsecurity.org/
https://www.modsecurity.org/
http://l7-filter.sourceforge.net/
http://l7-filter.sourceforge.net/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
http://www.pcre.org/
http://www.pcre.org/
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf

[36] AXI Reference Guide. https://www.xilinx.com/support
/documentation/ip_documentation/axi_ref_guide/
v13_4/ug761_axi_reference_guide.pdf.

[37] Manuel Saldana and Paul Chow. TMD-MPI: An MPI implementa-
tion for multiple processors across multiple FPGAs. In Field Pro-
grammable Logic and Applications, 2006. FPL’06. International Con-
ference on, pages 1–6. IEEE, 2006.

Appendices
A OpenCL sample code to use DUA API

Figure 15 shows an example Verilog code for application
using DUA interface to initiate a connection and send data.
It first generates a CONNECT primitive and then waits for
the response. If the connection is successfully established,
it records the source UID and port number, then enters the
sending data state. If the connection setup fails, it will gen-
erate another CONNECT primitive. Note that the source ad-
dress and port is not available before the connecting setup,
thus this field is reserved when issuing a CONNECT com-
mand. And the response of CONNECT command will con-
tain the corresponding fields.

B OpenCL sample code to use DUA API
Fig, 14 shows an OpenCL sample code pieces to use DUA

API. DUA Msg is a union storing DUA messages to be sent
in current clock (see Fig. 7). dua tx is a reserved channel that
automatically connects to the request interface of our DUA
I/O interface (Fig. 4). simple write () function writes 32B
data to address DST ADDR of the resource whose UID is
DST UID through DUA interface.

void simple_write () {
DUA_Msg msg;
bool is_header = true;
while (1) {
if (is_header) {

msg.header.length = 32;
msg.header.type = WRITE;
msg.header.src_uid = SRC_UID;
msg.header.dst_uid = DST_UID;
msg.header.dst_addr = DST_ADDR;
is_header = false;

}
else {

msg.raw = data;
}
write_channel_altera(dua_tx, msg.raw);

}
}

Figure 14: OpenCL sample code to use DUA API

assign rx_header = rx_data_in;

assign connect_header.type = CONNECT;
assign connect_header.dst_uid = dst_uid;
assign connect_header.dst_port = dst_port;

assign send_header.dst_UID = dst_UID;
assign send_header.src_UID = src_UID;
assign send_header.type = SEND;
assign send_header.length = 48;
assign send_header.src_port = src_port;
assign send_header.dst_port = dst_port;

always @(posedge clk) begin
tx_valid_out <= 1’b0;
tx_first_out <= 1’b0;
tx_last_out <= 1’b0;
case (state)
SETUP_CONNECTION: begin

if (tx_ready_in) begin
tx_data_out <= connect_header;
tx_valid_out <= 1’b1;
state <= WAITING_RESPONSE;

end
end
WAITING_RESPONSE: begin

if (rx_valid_in
&& rx_data.type == CONNECT) begin

if (rx_data_in.status == SUCCESS) begin
src_UID <= rx_data_in.src_UID;
state <= SENDING_HEADER;

end
else begin
state <= SETUP_CONNECTION;

end
end

end
SENDING_HEADER: begin

if (tx_ready) begin
tx_data_out <= send_header;
tx_valid_out <= 1’b1;
tx_first_out <= 1’b1;
state <= SENDING_DATA_0;

end
end
SENDING_DATA_0: begin

if (tx_ready) begin
tx_valid_out <= 1’b1;
tx_data_out <= data_0;
state <= SENDING_DATA_1;

end
end
SENDING_DATA_1: begin

if (tx_ready) begin
tx_valid_out <= 1’b1;
tx_data_out <= {128’h0, data_1}; // 128bits
tx_last_out <= 1’b1;
state <= CLOSE_CONNECTION;

end
end
CLOSE_CONNECTION: begin

// close connection logic
end
endcase

end

Figure 15: DUA API usage example

140 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf

Stardust: Divide and Conquer in the Data Center Network

Noa Zilberman
University of Cambridge

Gabi Bracha
Broadcom

Golan Schzukin
Broadcom

Abstract
Building scalable data centers, and network devices that fit
within these data centers, has become increasingly hard.
With modern switches pushing at the boundary of manufac-
turing feasibility, being able to build suitable, and scalable
network fabrics becomes of critical importance. We intro-
duce Stardust, a fabric architecture for data center scale net-
works, inspired by network-switch systems. Stardust com-
bines packet switches at the edge and disaggregated cell
switches at the network fabric, using scheduled traffic. Star-
dust is a distributed solution that attends to the scale lim-
itations of network-switch design, while also offering im-
proved performance and power savings compared with tra-
ditional solutions. With ever-increasing networking require-
ments, Stardust predicts the elimination of packet switches,
replaced by cell switches in the network, and smart network
hardware at the hosts.

1 Introduction
For the last ten years, cloud computing has relentlessly
grown in size [28]. Nowadays, data centers can host tens
of thousands [75] of servers or more. The complexity of
the data center network (DCN) has grown together with the
scaling of data centers. While scale has a direct effect on
the bisection bandwidth, it also affects latency, congestion,
manageability and reliability. To cope with these demands,
network switches have grown in capacity by more than two
orders of magnitude in less than two decades [85].

The computing community faced the end of Dennard’s
scaling [35] and the slowdown of Moore’s law [60] over a
decade ago, prompting a move to multi-core and many-core
CPU design [68]. Similar challenges are faced by the net-
working community today. In this paper, we discuss limita-
tions on network device scalability, and assert that in order
to continue to scale DCN requirements, data center network
devices need to be significantly simplified. We introduce
Stardust, a DCN architecture based on the implementation
of network-switch systems on a data center scale.

In Stardust, we divide the network into two classes of de-
vices: top-of-rack (ToR) devices maintain classic packet-
switch functionality, while any other device in the network
is a simple and efficient cell switch. We refer to the part
of the network created by these simple switches as the net-
work fabric. Devices within the network fabric do not re-
quire complex header processing and large lookup tables,
have minimal queueing and reduced network interface over-
heads. Their data path requires minimum clock frequency,
regardless of packet size. Creating a network fabric that is
made completely of a single type of a simple switch is a rad-
ical move from common approaches, whereby each network
device is a full-fledged, autonomous packet switch. To con-
quer the DCN scalability and performance requirements, we
build upon a number of insights, drawn from silicon through
the network level:
• The DCN can be compared to a large-scale network-switch
system, where complex routing decisions are taken at the
edge, and simple forwarding is applied within the fabric.
By using only basic routing mechanisms within the core of
the DCN, significant network-switch resources can be saved,
while maintaining functionality.
• The increase in port rates, utilizing an aggregation of N
serial links per port as a norm, limits the scalability of the
DCN. By using discrete, rather than aggregated links, the
scale of Fat-tree networks can improve by O(N2).
• Unnecessary packet transmissions can eventually lead to
packet loss. Credit-based egress scheduling can prevent
packet loss due to congestion, and increase fairness between
competing flows.
• Congestion can happen within underutilized networks due
to imperfect balancing of flows across available paths. By
evenly distributing traffic across all links, optimum load bal-
ancing can be achieved.
• Network-switch silicon is over-designed: it is under-
utilized for small packet sizes, and packet sizes not aligned
to the internal data path. By batching packets together, and
chopping them into cells that perfectly match internal data-
path width, maximum data path utilization can be achieved.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 141

Stardust has no sense of flows, and it does not require route
installation. The network fabric is completely distributed,
with no need for complex software-defined networks (SDN)
management, central control or scheduling. Stardust is also
protocol agnostic, reducing silicon level requirements by
33%. The resulting network provides full bisection band-
width. It is lossless, load balanced and provides significant
power and cost savings.

Switch-silicon vendors have produced, and shipped in vol-
ume, chipsets such as we exploit in Stardust (e.g., [20, 61]);
we do not claim these designs as a contribution. Similarly,
switch vendors have produced single-system switches that
internally use such chipsets to produce the illusion of a single
many-port packet switch (e.g., [14, 43, 26]). Our contribu-
tion, in this paper, is to architect and implement our approach
on a data center scale, using such commodity chipsets.

To summarize, we make the following contributions:
•We explore performance and scalability limitations in cur-
rent DCN network devices (§2), motivating the need for sim-
pler network devices.
•We introduce Stardust, an architecture offering a better ap-
proach to realizing DCN (§3,§4), and discuss its advantages
on a data center scale (§5).
•We evaluate Stardust (§6): experimental measurements on
O(1K)s of port environments, event simulations of O(10K)s
port systems and an analysis of large scale O(100K)s port
networks, illustrating the advantages of Stardust.
•We propose a future vision of DCNs (§8), where ToR func-
tionality is reduced to fit within network interface cards, with
ToR switches turned into cell switches.

2 Motivating Observations
The design of scalable network devices has hit a wall. If
a decade ago the main question was “how can we imple-
ment this new feature?”, now the question is “is this feature
worth implementing given the design constraints?”. We dis-
cuss three types of limitations to network device scalability:
resources, I/O, and performance. Our observations are or-
thogonal, providing trajectories to improving scalability.

2.1 The Resource Wall
Every network device is limited in its die size and its power
consumption. Chip architects need to balance the design to
avoid exceeding these resources limitations; die size is not
just a function of cost, but also of manufacturing and operat-
ing feasibility, and reliability.

Specializations and simplifications enabled DCNs to
evolve considerably from being an Internet-in-miniature us-
ing complex router and switch architectures. The data cen-
ter’s unique administrative environment allows Stardust to
present a dispersed switch design, eliminating the need to
support in each network hop a full suite of protocols, traffic-
control, or full interface flexibility.

Previous large switches have been custom-made machine-

room-wide HPC interconnects, or multi-chassis systems in-
terconnecting interface line-cards and control processors.
Such platforms, (e.g., [27, 43]) implement advanced packet
operations on the line-cards, interconnected using a simple
fabric consisting of minimal packet queuing or processing.
In DCN, the ToR switches take the role of the line-cards,
while the “interconnect fabric” is the spine and leaf switches
interconnecting all ToR devices. This model of the DCN
equally applies to Stardust.

Fig. 1 illustrates the difference between the two ap-
proaches: In both cases, the first switch (the ToR) pro-
vides packet processing, queueing, and full network inter-
faces. However, in the typical data center network approach,
traversing a Fat-tree will include going through all functions
(ingress and egress processing, queueing, scheduling,...) in
each and every hop. In contrast, with Stardust, scaled up
from the single system approach, these functions will be used
only at edge devices. By eliminating stages, logic and mem-
ory, consuming considerable silicon area [19], significant re-
sources can be saved. While the I/O remains the same, the
network interface is considerably smaller; there is no need
to support multiple standards (e.g., 100GE, 400GE), and
a single MAC functionality is sufficient. Stardust benefits
include reducing both network-wide latency and network-
management complexity as it practically presents as a single
(large) switch. Shallow buffering is not entirely eliminated
(see §6).

On the order of microseconds [16, 69] rather than millisec-
onds, the reduced fabric latency of a Stardust DCN behaves
as a single hop (albeit across a larger backplane fabric). This
allows applications to continue operating unchanged
Observation: Significant resources can be saved by simpli-
fying the network fabric and adopting a scaled-up single-
system approach.

2.2 The I/O Wall
The maximum number of network interfaces on network
devices has grown by an order of magnitude over the last
decade, climbing from 24 ports [31] to 260 ports [64]. De-
vice packages are big, 55mm× 55mm [79] or more, bigger
than high-end CPUs [44]. Such big packages raise concerns
about manufacturing feasibility, cost and reliability. It is un-
likely the I/O number will continue to scale at the same rate.

The second part of the I/O problem is that a network port
is not necessarily a single physical link. A Link Bundle (l) is
the number of serial links connecting two hops. For exam-
ple, connecting two switches using a port of 100GE CAUI4,
four lanes at 25Gbps each, is a link bundle of four. Link
bundling is a common practice in high-speed interfaces, used
to increase the bandwidth of a logical port through the mul-
tiplexing of information from multiple physical links. This
practice overcomes the signaling and physical limitations of
the media (e.g., copper), and also applies to integrated pho-
tonics devices for network switches [17].

142 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Egress P
ro

cessin
g

I/O

N
etw

o
rk I/F

Sw
itch

in
g

N
etw

o
rk I/F

I/O

I/O

N
etw

o
rk I/F

Sw
itch

in
g

N
etw

o
rk I/F

I/O

I/O

N
etw

o
rk I/F

Sw
itch

in
g

N
etw

o
rk I/F

I/O

I/O

N
etw

o
rk I/F

Sw
itch

in
g

N
etw

o
rk I/F

I/O

I/O

N
etw

o
rk I/F

Sw
itch

in
g

N
etw

o
rk I/F

I/O

I/O

N
etw

o
rk I/F

Sw
itch

in
g

N
etw

o
rk I/F

I/O

I/O

N
etw

o
rk I/F

Egress P
ro

cessin
g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

I/O

N
etw

o
rk I/F

Egress P
ro

cessin
g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Edge
Aggregate

(Tier 1)
Spine

(Tier 2)
Edge

Aggregate
(Tier 1)

Edge
Aggregate

(Tier 1)
Spine

(Tier 2)
Edge

Aggregate
(Tier 1)

Stardust

Typical
 DCN

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

I/O

N
etw

o
rk I/F

In
gress P

ro
cessin

g

Q
u

eu
ein

g

Sw
itch

in
g

N
etw

o
rk I/F

I/O

Figure 1: Traversing through a Fat-tree network, in a typical data center network (top) and in Stardust (bottom). In a network
with n tiers, a typical DCN requires n× (Ingress processing+Queueing+Scheduling+Egress Processing). Stardust requires
just 1× (Ingress processing+Queueing+Scheduling+Egress Processing).

103
104
105
106
107
108
109

1010
1011

1 2 3 4

N
um

be
r

of
 e

nd
-h

os
ts

Number of tiers

FT, 400Gx32 Port (L=8)
FT, 200Gx64 Port (L=4)

FT, 100Gx128 Port (L=2)
Stardust, 50Gx256 Port (L=1)

(a) The scalability in number of end
hosts vs number of network tiers.

0.0⋅100

1.0⋅104

2.0⋅104

3.0⋅104

4.0⋅104

2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106

N
um

be
r

of
 n

et
w

or
k

de
vi

ce
s

Number of end-hosts

FT, 400Gx32 Port (L=8)
FT, 200Gx64 Port (L=4)

FT, 100Gx128 Port (L=2)
Stardust, 50Gx256 Port (L=1)

(b) The number of devices required to
build a given size network.

0.0⋅100

1.0⋅106

2.0⋅106

3.0⋅106

4.0⋅106

5.0⋅106

2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106

N
um

be
r

of
 li

nk
s

Number of end-hosts

FT, 400Gx32 Port (L=8)
FT, 200Gx64 Port (L=4)

FT, 100Gx128 Port (L=2)
Stardust, 50Gx256 Port (L=1)

(c) The number of serial links required
to build a given size network.

Figure 2: The scalability of a DCN using 12.8Tbps switch, for different link bundle values.
For the rest of this paper, we refer to each switch port as a

link bundle, and a switch radix indicates the number of ports
(link-bundles) in a switch. We use a Fat-tree topology to
demonstrate the effect of switch radix and link bundling on
DCNs scalability, and provide in Appendix A the mathemat-
ical justification. As each end host connects to a single ToR,
link bundling from the host has no effect on scalability.

Assume a network that consists of edge network devices
(e.g., ToR) and a network fabric connecting all edge de-
vices. The number of layers within the network fabric is
the number of Tiers. A network built from only ToR and
aggregation devices is a 1-Tier network, whereas the com-
mon Fat-tree Edge-Leaf-Spine structure is a 2-Tier network.
A network can be extended to include more edge devices
by introducing additional tiers. Fig. 2(a) demonstrates the
size of the DCN required to connect a given number of end
hosts, as a function of the link-bundle. In this figure, we
assume a network device of 12.8Tbps, using different link
bundling configurations, ranging from 256×50Gbps (l = 1)
to 32×400Gbps (l = 8), and assuming 40 servers connected
to each edge device using 100Gbps (l = 2) links. A link
bundle of one enables a 1-Tier network of over ten thou-
sand servers, whereas a 1-Tier network with a link bundle
of eight is limited to an eighth of this number of hosts. For
a 2-Tier network, a link bundle of eight allows connecting
only 20K hosts, compared with ×64 the number of hosts us-
ing a link bundle of one. The link bundle affects not just the
overall scalability of the network, but also the number of net-
work devices and links required to build a given size network
(Fig. 2). §5.1 and Appendix A expand on link bundling.

Observation: For a given switch bandwidth, a link bundle of
one will allow the optimum number of switches in a DCN.

2.3 The Performance Wall
Network-silicon devices support throughput in the order of
12.8Tbps [21]. This is equivalent to 32× 400Gbps ports or
19.05Gpps (19.05 billion packets per second) for 64B pack-
ets, and 5.8Gpps for 256B packets. The clock frequency of
switch silicon is in the order of 1GHz, meaning that even if
a new packet can be processed every clock cycle, between 6
(for 256B) and 20 (for 64B) packets need to be processed in
parallel. Even for 1500B packets, more than a single packet
needs to be processed every clock cycle. To address this
problem, network silicon today either does not support full
line rate for all packet sizes, or implements multiple data-
plane cores within each device, connected through an on-
chip switching module or a shared memory [39, 62]. See
Appendix B for a detailed analysis.
Observation: To support full line rate for all packet sizes,
network devices need to process multiple packets each and
every clock cycle.

In Fig. 3 we explore the scaling requirements for a
switch’s pipeline. We assume two 12.8Tbps devices: one
device implements standard packet switching, and the other
device (Stardust) optimally packs data into the pipeline, in
units that are equal to its data path’s width. The internal data
path frequency is 1GHz, and the data path is 256B wide1.
Fig. 3 shows the number of parallel buses, or processing

1Data path width is upper-bounded by timing and resources limitations,
and lower-bounded by performance requirements.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 143

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500

R
eq

ui
re

d
Pa

ra
lle

lis
m

Packet Size [B]

Standard Switch
Stardust Fabric Element

Figure 3: The required parallel processing in a standard
switch and in a Stardust Fabric Element. We assume
12.8Tbps switch, 256B wide bus, 1GHz data path frequency.

cores, required to support the device’s 12.8Tbps. For small
packets, a design optimally packing data (Stardust) outper-
forms a packet-based design by a factor of ×4. Packing data
provides 41% improvement for 513B packets, and 18% for
1025B packets. Increasing the data path width eases the re-
quirements for large packets, but not for small ones.

Packets smaller than the internal data path width (which
can be over 50% of the traffic, assuming a 256B wide
bus [74]), benefit from data packing even more, as the on-
wire inter packet gap (IPG) and preamble are applied only
once per packed unit, rather than once per packet, increasing
the overall packet rate. From a silicon design standpoint, ex-
pecting standard switches within the DCN fabric to process
all packets at wire rate requires a huge amount of over design
for the task performed, with substantial penalties.
Observation: Packing data to optimally fit data path width
achieves higher throughput, for all packet sizes, at lower
clock frequencies. This simplifies switch design and enables
better scalability over time.

3 Architecture
Stardust is a new architectural paradigm for DCNs, address-
ing the resource, I/O and performance limitations discussed
in §2. Stardust scales up the switch-system to the DCN.

In order to support a scalable network, we define two types
of devices: the Fabric Adapter device, and the Fabric Ele-
ment device. The Fabric Adapter device, such as StrataDNX
Jericho [22], plays a similar role to a ToR device. The Fabric
Element device, such as StrataDNX Ramon [23], is used as
the building block of the network fabric. The Fabric Adapter
and Fabric Element used in the architecture differ from the
commonly used packet switches in at least one important as-
pect: the Fabric Element is not a packet switch but a sim-
ple cell switch, and the Fabric Adapter takes every incoming
packet and chops it into data units, which we refer to as cells.
Cells are still “packet” units, but with payload and header
sizes optimized to fit the Fabric Element pipeline.

3.1 Constructing a Stardust Based Network
The Stardust architecture is Clos based [30]. Fabric Adapters
are used as the first and last stage devices, whereas the mid-
dle stages are composed of Fabric Elements. For the rest of

this paper we limit the discussion to Fat-tree topologies [51],
a special case of a folded Clos topology.

The building of a network starts by connecting host ma-
chines, (e.g., servers) to a Fabric Adapter device that acts as
a ToR switch. Fabric Elements are used in the aggregation
and spine layers. The number of uplink connections from
the Fabric Adapter to the aggregation layer of the network
fabric depends on the desired uplink bandwidth and over-
subscription ratio. In Stardust every physical link is an inde-
pendent entity and is not bundled.

The network fabric is made only of Fabric Elements. Each
Fabric Element has k full duplex links. In the aggregation
layer, half of the links are connected to the Fabric Adapter
and half of the links are connected to a spine layer. In the
spine layer, all the Fabric Element’s k links are connected to
the aggregation layer.

We define the fabric speed up, fs, as the ratio between
links’ capacity to the network fabric and links’ capacity
to the hosts. 1/fs is the link utilization. A network fab-
ric may be under-subscribed with utilization < 1 or fully
utilized, from any device to any device, though some re-
dundancy is typically applied. Long-term over-subscription
from the hosts to the Fabric Adapter is handled as in any ToR,
i.e., packets will be dropped in the Fabric Adapter. Short-
term over-subscription is absorbed by the Fabric Adapter’s
buffers. Similarly, over-subscription is allowed between tiers
in the network fabric.

3.2 Dynamic Cell Forwarding
Packets arriving from the host to a Fabric Adapter are parsed,
and the destination is identified. Every destination is mapped
to a destination Fabric Adapter and port. Each Fabric
Adapter holds a reachability table indicating which links
can be used to reach the destination. The Fabric Adapter
collects multiple packets and chops them into bounded-size
(e.g., 256B) cells. The cells hold a small header including the
destination and a sequence number that allows reassembling
cells into packets.

A pivotal idea in Stardust is dynamic cell forwarding: each
cell is sent over a different link, while the Fabric Adapter ar-
bitrates over all the links in the reachability table marked as
leading to the destination. At each Fabric Element stage,
the same process is repeated by load balancing among all
available paths converging on the destination Fabric Adapter.
This dynamic cell forwarding is a radical departure from tra-
ditional static routing architectures, where a flow (or flowlet)
is bound to a specific path according to it headers, leading to
complex issues of provisioning, congestion avoidance, fail-
ure recovery, routing table configuration and more. Load
balancing on the links is nearly perfect and enables an opti-
mal use of fabric resources. The fabric behaves as a uniform
transport media, agnostic to incoming traffic patterns, or to
flow granularities. Dynamic forwarding may introduce out-
of-order fabric traversal. However, the load-balancing cre-

144 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ates a limit on the extent of out-of-order mismatching, and
reordering is managed at the destination Fabric Adapter (§4).

3.3 Buffering And Scheduling
Stardust is based on the combination of packet buffering at
the edge and a distributed scheduled fabric. The architecture
uses virtual output queues (VOQs) to queue packets arriving
to the Fabric Adapter. Each destination port (and priority)
has an assigned VOQ. The Fabric Adapter uses a buffering
memory, in the order of megabytes to gigabytes per Fabric
Adapter, storing the queued packets. Empty VOQs do not
consume buffering resources.

Distributed traffic scheduling is used in Fabric Adapter’s
Egress. Non-empty VOQs request from the destination port
permission to send traffic, and the port scheduler at the des-
tination Fabric Adapter is responsible for generating credits
without exceeding the port’s capacity, as it has a view of all
of the VOQs toward its ports. Stardust supports multicast
and broadcast, but this support is beyond this paper’s scope.

A credit entitles a VOQ to release an amount of data, (e.g.,
4KB) to the fabric. The VOQ dequeues packets up to the
credit size. The amount of surplus data is stored for later
accounting. The next VOQ is selected by the order of credit
arrival and a priority. The ingress packet buffer and sufficient
egress memory enable absorbing long bursts of data at the
ingress and momentary bursts of data at the egress.

3.4 Packet Packing
Using cells can be quite wasteful: sending packets that are
just one byte bigger than a cell size can lead to 50% waste of
throughput. Packet packing avoids such waste, effectively in-
creasing the packet processing rate, but operating on packed
packets rather than on individual ones (Appendix B). When
a VOQ receives a credit to send packets, it chops the pack-
ets in the queue into cells while treating the entire burst of
data as a unit. As a consequence, a cell may include mul-
tiple packets or multiple packet fragments (Fig. 4). Packet
packing is feasible only within the same VOQ.

4 Device Architecture
4.1 Fabric Adapter
The Fabric Adapter (Jericho) is the edge unit interconnecting
hosts with the network fabric. The Fabric Adapter resembles
a ToR switch, providing (programmable) header-processing,
scheduling and switching functionality. The size of its tables
resembles a ToR. However, it has additional functionalities:
• Chopping incoming packets from the hosts into cells, and
sending them to the network fabric
• Reassembling cells arriving from the fabric into packets
• Providing scheduling services by sending credits

Fig. 5 depicts an architecture of a Fabric Adapter de-
vice. On the Fabric Adapter ingress, packets arrive from the
host through multiple interfaces, (e.g., 40GE, 100GE). The
packet header is parsed and packets are stored in VOQs, ac-

cording to the destination Fabric Adapter and port. The num-
ber of VOQs is determined by the total number of downlink
ports on Fabric Adapters and the number of traffic classes
(rather than the number of routable IP addresses).

Non-empty VOQs send special control messages to an
egress scheduler at the destination Fabric Adapter. The
egress scheduler is consequently aware of all VOQs toward
its ports. It sends to the ingress Fabric Adapter a “credit”,
(e.g., 4KB). The total rate of credits matches the egress
port’s rate. The egress scheduler implements various QoS
policies, typically a combination of round-robin, strict prior-
ity and weighted among VOQs of different Traffic Classes,
allowing a flexible allocation of fabric and egress port ca-
pacities. While Jericho uses a proprietary scheduler, simi-
lar schedulers have been described before, e.g. in [56, 24].
To keep the egress buffer full, compensating for propagation
and processing delays, the credit rate is set slightly above the
egress port bandwidth (e.g., 2%) and slightly below the fab-
ric speed-up, to avoid congestion (§ 6.2). When the egress
buffer is close to full, the scheduler stops sending credits to
the VOQs and resumes as packets are drained.

Packets are dequeued from the ingress VOQ when a credit
arrives. The VOQ dequeues a number of packets, matching
the credit size. Packets are allocated to cells of a limited size
(e.g. up to 256B), distributed across multiple links toward
multiple Fabric Elements. The cell size matches the width
of the Fabric Element pipeline, and therefore fabric perfor-
mance is minimally affected by packet size distribution (§6).

At the network’s egress, cells arrive from Fabric Elements
over multiple links and are reassembled into packets. Cells
and packets can arrive out of order, and many hardware-
based solutions exist (e.g., [33, 15, 32]). However, as credits
are spread evenly over time, the number of concurrent inter-
leaved packets at the egress reassembly is bound by Fabric
Element queue size and does not scale with network size, or
the number of VOQs. If a packet reassembly timer expires,
e.g., due to a link error, the packet is discarded.

The minimum credit size is set by the Fabric Adapter’s
output bandwidth and the credit generation rate of its sched-
uler. For example, for a 10Tbps Fabric Adapter, using 1GHz
clock frequency and generating a credit every two clocks, the
minimum credit size will be 10T bps/(1GHz/2) = 2000B.
The maximum credit size dictates the amount of memory re-
quired at the devices. Consider a flow control to a port: the
egress memory will need to absorb the data in flight from
source Fabric Adapters, which is a function of credit size
and latency across the network (from last credit generated to
last bit of data arriving). To minimize the amount of Fabric
Adapter’s egress memory, credit size should be at the same
scale of the minimum credit size, as we validate (§6.2).

4.2 Fabric Element
The network fabric is composed only of Fabric Elements
(Ramon). Fabric Elements connect to either Fabric Adapters

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 145

CELL CELL CELL CELL CELL CELL

CREDIT SIZE

PKT
1

PKT
2

PKT
3

PKT
4

PKT
N

Figure 4: The relations between packets,
cells and credits.

To
/F

ro
m

 F
ab

ri
c

To
/F

ro
m

 S
er

ve
rs

Ingress
Buffer
(VOQs)

Ingress
Processors

Packet Processor
Databases

External Packet
Buffer (Optional)

Egress
Buffer
(Ports)

Eg
re

ss
 P

P
Eg

re
ss

 P
P

Ingress

CellsPackets
Egress

P
ac

ke
t

R
ea

ss
em

b
ly

Fr
ag

m
en

ta
ti

on
 &

Sp

ra
yi

ng

Eg
re

ss
Sc

h
ed

u
le

r

Figure 5: An architecture of a Fabric
Adapter device

256 x 50GE Rx

256 x 50GE Tx

Local
Route
Table

Local Switch

Incoming cells (256B)

Fabric element buffer

Figure 6: An architecture of a Fabric El-
ement device.

or other Fabric Elements. A Fabric Element handles only
fixed size cells, and does not parse packets, while providing
bare minimum buffering and scheduling. A possible imple-
mentation of a Fabric Element device is shown in Fig. 6.

The Fabric Element is a radical simplification of DCN
switches. It eliminates the logic and large tables associated
with protocols. There is also no need for complex software
configuring routing tables, handling bandwidth provisioning
or protection recovery. Additional logic handling congestion
avoidance and queue management is redundant as well.

In Stardust, a cell is transmitted on a single link in its en-
tirety (rather than over a link bundle) with a bounded cell
size and a small header that indicates the destination Fab-
ric Adapter. Packing packets into cells guarantees that only
a very small fraction of the cells are smaller than the max-
imum cell size (e.g., 256B). Thus, the Fabric Element data
path can be throughput optimized, regardless of packet size,
only bounded by technology and resource constraints.

Every Fabric Element holds a simple forwarding table that
relates every destination Fabric Adapter to an outgoing Fab-
ric Element link. If a Fabric Adapter is accessible through
multiple links, the Fabric Element load-balances the traffic
among them. As the destination is a Fabric Adapter and
not an end-host, the size of the table can be two orders of
magnitude smaller than a typical routing table. Beyond this,
the Fabric Element is essentially two k× k crossbars (e.g.,
256×256), one for data cells and one for control messages.

The forwarding table is automatically maintained by
hardware exchanging special reachability control messages,
where each device, Fabric Adapter and Fabric Element, ad-
vertises itself to all directly connected network-fabric de-
vices. The reachability messages are sent periodically. If
no reachability messages are received on a link periodically,
it is considered failed. Topology changes are incorporated
in the forwarding tables of the entire fabric in order of hun-
dreds of microseconds (see §5.9). This automatic setup in
hardware of forwarding tables, and the relative low latency
of the process, sets it apart from past proposals of extending
the internal structure of a packet switch to DCN scale.

As cells from different sources may compete on an output
link, shallow buffering is required within the device (§4.2.1).
If the link’s queue is a above a configured threshold, then

Fabric-Congestion-Indication (FCI) bits are piggybacked on
all cells. The FCI reaches the destination Fabric Adapter and
throttles the credit rate. The shallow queuing within the Fab-
ric Element guarantees low latency and jitter within cells’
travel time of the network fabric. The shallow buffering
within the fabric guarantees shallow buffering at the egress
of the Fabric Adapter, and easier packet reassembly.
4.2.1 Fabric Element Queuing Analysis
The probability distribution of queue size per link is a vi-
tal characteristic of Stardust. First, it determines latency and
jitter characteristics for traffic through the network fabric.
Second, it determines the amount of memory the egress Fab-
ric Adapter requires for absorbing in-flight data and packet
reassembly. Third, the queue size statistics determine the
maximal practical link utilization. Last, it affects the die size
of the Fabric Element.

A discrete queuing model represents the Fabric Element
queue behavior, as a function of link utilization. The time
unit is “fabric cell time”, which is the time it takes to transmit
a cell on a serial link. Consider a link’s queue at the last stage
of a network fabric: on average, a cell will be added to a
link with probability 1/fs. However, the cells arrival process
is bursty, as multiple Fabric Adapters may be sending cells
simultaneously.

Cell arrival is bound by a Poisson arrival process with pa-
rameter 1/fs. The discharge process is a constant one cell
every “fabric cell time”. With M/D/1 queuing model, the
probability of queue build-up on a link of size N can be ap-
proximated by o(fs−2N) (as corroborated in §6.2). The Pois-
son arrival model is a worst-case scenario, as it assumes an
infinite number of Fabric Adapters, and ignores the distribu-
tion effect of credits. As a limited number of Fabric Adapters
generates traffic, both the burstiness of the arrival process
and queue size’s tail probabilities decrease.

5 Stardust on a data center scale
5.1 Scaling, Tiers Reduction and Longevity
The Fabric Element utilizes a lean functionality, allowing
it to pack more interfaces into the same area and enables
higher radix devices. As Stardust eliminates the need for link
bundling logic, then when, e.g., 400GE is used (link-bundle

146 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of 8), the nth tier of a Stardust based network can support
×8n more ToR devices than a typical DCN, while still being
non-blocking.

Since the traffic from a source to a destination Fabric
Adapter is load balanced over all upstream links, the network
fabric behaves like a single large pipe whose bandwidth is
the bisection bandwidth (for example, 12.8Tbps pipe for 256
links of 50Gbps). Consequently, the fabric is agnostic to port
rate or flow rate.

Stardust supports a gradual growth of a DCN. A data cen-
ter operator will typically start with a small instance of a
network fabric, then expand it over time. When designing
a Stardust fabric, it is not necessary to populate the entire
fabric from the start. The auto-construction of reachability
tables, combined with dynamic forwarding, enables starting
with a partially populated fabric, and adding Fabric Elements
over time within a live network.

Stardust scales from switch-systems to data centers with
10K’s to 100K’s of nodes as the Fabric Elements, queueing
and reassembly processes depend on device radix and are
independent of network scale. Scheduling scales with the
amount of on-chip memory. The number of VOQs in Jeri-
cho [22], as well as in other high-end switches [13, 29], is
in the order of 100K, and increasing the number of VOQs is
feasible (see §C).

5.2 Push Fabric vs. Pull Fabric
The following example shows the fundamental difference
between a network fabric based on a “standard” Ethernet
switch and a Stardust scheduled fabric. Consider a network
fabric as in Fig. 7. On a single device there are two 100GE
ports, A and B. From one input device 100Gbps are injected
toward A (marked red), and additional 100Gbps are injected
toward B (marked green). Additional 100Gbps are injected
towards A from a second device (marked red).

In a fabric based on standard Ethernet switches, both of
A’s 100Gbps flows are pushed into the fabric. Even with
multi-path routing and load balancing, local congestion oc-
curs in the middle stage switch and both A’s and B’s traf-
fic is dropped. At the egress device only 66% of B traffic
passes, despite not being congested. The problem is exac-
erbated if we consider Traffic Classes, where the throughput
of the standard Ethernet switch based fabric may be half of
Stardust (Appendix F).

Ethernet switch fabric drops are due to local optimization
of the ToRs. The network fabric, made of autonomous Eth-
ernet switches, makes local decisions using local congestion,
oblivious to the-end-to-end traffic. Thus, congested ports can
block non-congested ports. While on a longer time scale
packet losses may be reduced by congestion control mech-
anisms (e.g. ECN marking), this is not the case for short
bursts.

In Stardust, the egress port scheduler of B sends 100Gbps
worth of credit toward B’s flows, and the egress port sched-

,----------------------------------,

f Traffic is not i
Ethernet Switch Fabric

l�---��-�:���--�� , ____) 100 •
...... ', to B T...

...
...

,,

. .
.
.. .

.

...
... ,, ...

...
... ,, ...

...
...

,, ...
...

...
,, ...

... ,, ...
...

...
...
,,......

---------------------------------------,

100

.... toA

,
\ I
I : Oversubscribed :

I I

� Drop "A" and "B" :
5

50
I I

I I

\ I

'------------------------- �-----;

... __

......

......

......
--- --...---

100+

--------------------------------------�0 ,
\ ' 1

I
I : Only 1/ 3 of "A" traffic

I
I 66

[may be buffered l +.33
\ I
------------------------------;----

......

......

......

...
...

---------------------------------,, ',

...

I 1_ .

! 1/ 3 of "B" traffic -----::
--
-

I -- .

! unnecessarily f-
• I

! dropped J
\ I
'�--------------------------------�

100

100

100

50

100
50

+

x
<

Packet

drop

Stardust Cell Fabric

100 100 100

toB . toA

50

+50

100

+100

2

50

50

+50

100 100

• • •

• • •

25

50

+50

Figure 7: Packet drops in Ethernet switch fabric vs. Stardust.

uler of A sends 50Gbps worth of credits toward each of A’s
sources. These flows, distributed through the fabric, reach
the egress, and transmit 100Gbps at B and 100Gbps at A.
The surplus 100Gbps of A’s traffic is stored at the ingress
buffer, and from there it may be sent (if over subscription is
momentary) or dropped (if persistent).

5.3 Optimal Load Balancing
Network fabric architectures based on typical Ethernet
switches use flow hashing to load balance traffic across a net-
work. This has been shown to be highly inefficient, allowing
only 40%-80% utilization of the bisection bandwidth [5].

Recent research [41] started investigating packet level
load balancing, giving rise to more uniform distribution,
lower queues, higher utilization [8], lower latency and jitter,
and therefore a much shallower buffer. However, even with
packet level load balancing, there is ×144 disparity between
the smallest 64B packet and the largest 9KB packet, leading
to substantial variance in queue length, and hence latency.

Stardust load balances fixed size cells, effectively achiev-
ing a perfect fluid model. At each Fabric Adapter, each
packet is segmented to fixed size cells that are distributed
in a round robin manner across all links leading to the des-
tination port. Thus, the same amount of data is sent down
each link. There are only two aspects that cause insignificant
variations in link loads. First, cells at the credit-worth tails
may be shorter. Their relative amount is negligible as mul-
tiple packets from the same VOQ are accumulated up to a
threshold (e.g., 4KB), before fragmentation. Second, recur-
rent synchronization between packet transmit times and the
load balancing mechanism bias load on some links for some
destinations. However, the round robin arbiter traverses the
Fabric Element links in a random permutation order, that is
replaced every few rounds. Thus, the probability of a persis-
tent synchronization is negligible.

5.4 Effective Buffer and Incast Absorption
Stardust provides a large and distributed packet buffer, en-
abling it to absorb incast. These packet buffers may be man-
aged by smart queue management (SQM). When a desti-
nation port is oversubscribed, the data accumulates only at

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 147

source Fabric Adapters and the packet buffers available for
storing data bursts are large. Even if the packet buffers are
not sufficient, the source Fabric Adapter can avoid packet
loss by sending flow control messages back to the host, as in
a standard ToR.

Let us compare a “standard” unscheduled network fab-
ric and a Stardust network, and assume a configuration of
128 ToR switches/ Fabric Adapters with 50Gbps×128 ports,
64 switches/ Fabric Elements with 50Gbps×128 ports, and
32MB packet buffer per device. Consider an incast event of
1MB from each ToR toward a single 50Gbps port (total of
128MB). In the Ethernet switch fabric, all traffic will reach
the egress ToR, and whatever is not transmitted at 50Gbps,
will fill the ToR’s packet buffer or be dropped. This happens
regardless of the load balancing granularity (flow, flowlet,
packet). Activating PFC flow control at the destination may
propagate and block the entire fabric. In Stardust, the in-
cast traffic from all Fabric Adapters will be admitted to the
fabric at an aggregate rate of 50Gbps. The rest (99%) accu-
mulates in the ingress Fabric Adapters, occupying 0.99MB
of each packet buffer. No packet is lost. The available
packet buffer memory per destination is effectively ×128
larger, distributed across all Fabric Adapters. The destina-
tion’s egress scheduler distributes bandwidth (credits) to in-
cast sources evenly, guaranteeing an even draining rate of
the VOQs, and an optimal flow completion time of the incast
event.

5.5 Lossless Transmission
The Fabric Element is lossless. As shown in §6, when under-
subscribed, the probability of a queue reaching it maximal
level is very low. The FCI reduces this probability further, as
credit rate is reduced when a queue starts building. This con-
trol loop is activated with a very low probability, and affects
only traffic heading to the congested destinations. When
the network fabric is intentionally over-subscribed, the FCI
mechanism is activated only when the fabric is actually over-
subscribed with traffic. Queue overflow is further reduced
using a shared queue-memory pool, permitting dynamic bal-
ancing between congested and non-congested links. As a last
resort, the Fabric Element pipe can be paused to avoid drop-
ping a cell. The probability of this event is infinitesimal, thus
the net effect on the entire fabric throughput is negligible.

5.6 Latency and Jitter
The packet latency and jitter through the network fabric are
governed by the queue size probability distribution within
the Fabric Element. The latency is at the scale of 0.5-4 mi-
croseconds per hop. In a multi-tier network fabric, the la-
tency is governed by fiber length as much as it is by the Fab-
ric Element latency, as every 100m of fiber translates to a
half microsecond propagation delay.

First packet latency depends on VOQ configuration. Re-
ceiving a credit will take about a microsecond, but a low

latency VOQ starts transmitting immediately. We assume
a limited aggregate bandwidth of all low latency VOQs,
bounded by Egress Fabric Adapter and Fabric Element mem-
ory resources, else packets may be dropped (as in a ToR).

5.7 Traffic Pattern Agnosticism
A valuable property of Stardust fabric is its agnosticism to
the traffic pattern at the edges (ToR/Fabric Adapter). The
single parameter that affects the fabric performance and la-
tency is the fabric speed-up fs2. If we consider the worst-case
scenario for latency and drop probability, it is for many (e.g.,
1000) sources sending traffic to a single output port. This is
bound by the M/D/1 queuing model. Other scenarios would
have a shorter-tailed queue size (hence latency) distribution.
If the total bandwidth toward a port exceeds its bandwidth,
as in incast, it does not matter; the egress distributes cred-
its at the egress port’s rate and no more, and excess traffic
remains queued in the source Fabric Adapters, while the fab-
ric experiences the same cell loads, and hence, will have the
same or better queue size distributions than that of the M/D/1
queuing model.

5.8 Dynamic Routing
Routing within Stardust’s fabric requires no routing protocol
or SDN controller inputs, and is dynamic per cell. When a
cell needs to be sent to a destination, there are multiple paths
that can be taken. Cells are load balanced on all available
paths, even if they are part of the same flow or packet. Con-
sequently, a large set of paths is taken between every pair of
source and destination Fabric Adapters. There is no set of
fabric routes per destination that is saved in a memory: for
each destination Fabric Adapter there is only the set of links
outgoing from the current device that can be used. This for-
warding database has a negligible size of Number-of-Fabric-
Adapters entries of size Number-of-Links.

Each device periodically transmits its Fabric Adapter
reachability table to its upstream neighbors, leading to an au-
tomatic update of routing tables. Any topology change due
to link failure is transmitted from its source to the routing
tables of all upstream devices, and affects their forwarding
decision.

5.9 Improved Resilience, Self-Healing Fabric
The use of non-bundled links improves the resilience of the
network. While for a 400GE port, a link failure means that
8×50Gbps links go down, in the Stardust, a link failure af-
fects only this single link. Therefore, the improvement in
resilience equals the link bundling between stages.

The reachability messages exchange, used for building the
destination’s reachability table, is also used to establish a
link’s status and health, making the network self-healing and
increasing its resilience. When a link is down, the reacha-

2And even then, as long as the fabric is < 90% utilized the dependence
of latency distribution on fabric speed-up is very weak

148 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bility tables in all devices are automatically updated, and the
load balancing is adjusted to exclude dependencies on this
link. The load balancing, starting at the first stage’s Fabric
Adapter, eliminates hot spots of congestions. Recovery time
is determined by the rate allocated for reachability messages,
i.e., interval between successive reachability cells. The re-
covery time is around hundreds of microseconds with neg-
ligible reachability cell overhead (Appendix E). While the
values are configurable, assume for example, a Fabric Ele-
ment reporting the reachability of 128 Fabric Adapters on a
link every 1ns× 10,000 clocks. It takes the Fabric Element
seven messages to report the status of a network connecting
32K hosts (40 hosts per Fabric Adapter). It takes 3 hops in
a Fat-tree to reach the ingress Fabric Adapter from the last
Fabric Element, amounting to 1ns×10000×7×3 = 210us.
Updating the status based on multiple (e.g, three) consecu-
tive updates will amount to roughly 630us. The mechanism
precedes BFD [47] and, as implemented in a dedicated hard-
ware, has a lower overhead.

5.10 Handling Failures
Load balancing cannot compensate for a link’s failure; if the
link is connected to a destination Fabric Adapter, the band-
width capacity toward the destination is reduced. Resilience
can be improved by adding redundant links. With traffic au-
tomatically spread across all links, and as there is no manage-
ment overhead for adding links, contrary to typical networks,
only the physical cost applies.

Stardust provides multiple mechanisms to handle failures,
from the link level to end-to-end detection and isolation. For
example, packets with Ethernet CRC errors are dropped at
the Fabric Adapters. On the link level, traditional mecha-
nisms are applied to protect against errors (e.g., Forward er-
ror correction). If the error rate on a link crosses a threshold,
the link marks itself as faulty on reachability cells, and is
excluded from cell forwarding. A link is declared valid only
after the number of good reachability cells received crosses a
threshold. The probability of an error on a link is unaffected
by the use of cells, as the number of bits on the wire is ap-
proximately maintained. As Stardust minimizes the number
of hops in a network, by saving tiers, the probability of an
error on a packet is reduced.

When a device fails, it stops sending reachability mes-
sages. Consequently, links leading to the device are re-
moved from the reachability tables, and the traffic bypasses
the faulty device. In a multi-tier network fabric, this infor-
mation is also propagated upstream to the Fabric Adapters. If
the load per link increases due to a device’s removal, the FCI
mechanism readjusts the credit rate toward affected devices.

Unlikely scenarios, such as a faulty Fabric Adapter send-
ing unlimited credits, will not collapse the network. Instead,
it will degrade the network to the performance of a standard
“Push” Ethernet network. While switch-systems are mature
solutions, where failure mechanisms have been thoroughly

 20

 25

 30

 35

 40

 250 500 750 1000 1250 1500

Ba
nd

w
id

th
 [

G
bp

s]

Packet Size [B]

Reference Switch
Switch - Cells

NDP Switch
Stardust - Packed Cells

 0

 20

 40

 60

 80

 100

DB Web Hadoop

Th
ro

ug
hp

ut
 [

%
]

Switch Cell Stardust

Figure 8: Throughput of switches running at 150MHz and
using (a) single packet size, (b) traces from [74].

debugged over the years, DCNs face additional reliability
challenges, which we intend to study in future work.

6 Evaluation
We take a three stage approach to the evaluation. First,
running experiment-driven measurements on stand-alone de-
vices and in an existing single-tier Stardust system. Second,
we conduct a precise simulation of a two-tier network. Last,
in §7 we analyze a large scale network, attending to aspects
of cost, power and scalability. The simulation and analysis
are based on the results of our measurements.

6.1 Experiment-Driven Measurements
6.1.1 Packet Packing
Measuring the effect of packet packing on throughput is not
possible on existing silicon devices. Instead, we use a pro-
grammable platform, NetFPGA SUME [84] to demonstrate
this effect. We compare four different architectures, all origi-
nating from the same source code: NetFPGA 4×10GE Ref-
erence Switch (Release 1.7.1), NDP switch [41, 40], Star-
dust, and Stardust-based using non-packed cells. The NDP
design originated from the NetFPGA Reference Switch, and
treats non-NDP packets similar to it. The Stardust design
is similar to the Reference Switch, but instead of switching
packets it switches packed cells. The Stardust-based non-
packed cells design is identical in implementation to the Star-
dust design, yet we inject non-packed cells. The credit size
is 2KB, and each cell is 64B, as the NetFPGA data path is
32B wide with 2 clock cycles per table lookup. We com-
pare the designs’ throughput at a data path clock frequency
of 150MHz (The NetFPGA platform is limited at lower fre-
quencies [63]). The traffic, generated using OSNT [12], is a
stream of TCP/NDP packets of various sizes. As a reminder,
our goal is to explore device-level performance and scalabil-
ity, rather than protocol-level properties.

As Fig. 8(a) shows, Stardust achieves full line rate for all
packet sizes, up to 15%, 30% and 49% better than the Refer-
ence Switch, NDP, and non-packed cells, respectively. The
Reference Switch achieves full line rate for all packet sizes
only at a clock frequency of 180MHz, while NDP fails to
reach full line rate for some packet sizes (65B, 97B, 129B)
even at 200MHz 3. Using real world traces [74], Stardust

3NDP’s TCP performance is identical to the Reference Switch, and only
NDP packets experience performance loss. NDP’s authors confirmed this
performance loss is expected in their design.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 149

maintains its performance edge, as shown in Fig. 8(b). NDP
is omitted as it performs worse than the standard switch.

These results indicate the power of packet packing:
achieving higher throughput, for all packet sizes, at lower
clock frequencies, simplifying network silicon design and
enabling better scalability over time.
6.1.2 Throughput and Latency
A number of relevant experimental results from a wider
evaluation of Fabric Adapters and Fabric Elements within
a single-tier Arista 7500E system are reported here. An ex-
tended set of results appears in [53]. The test platform con-
tained 1152×10GE/288×40GE ports, connecting 24 Fab-
ric Adapters with a single tier of 12 Fabric Elements, and us-
ing Ixia XG12 as a traffic source. The Fabric Adapter devices
used, older generation Arad, do not support packet packing.

In a configuration of 960 ports, the platform achieves full
line rate on all ports, for all packet sizes. In a configuration
of 1152 ports, full line rate is achieved for packets of 384B
or more (as packing was not supported), and no packet loss
occurred within the network fabric. In the same 1152 port
configuration, under full load, the minimum latency is al-
most independent of packet size (between 2.8µs and 3.5µs),
and for the average (3.3µs to 9.1µs) and maximum (5.6µs to
13.5µs) it increases with packet size, as the Fabric Adapter
used store-and-forward architecture. The maximal latency
for small packets decreases with packet size until reaching
the cell size. The average latency variance is in the order of
nanoseconds (1ns-11ns).

6.2 Simulation of a 2-Tier Network
To understand the queuing intricacies of Stardust in a two
tier network, we use a proprietary packet-level C++ simu-
lator, constructing a network of Fabric Elements and Fab-
ric Adapters, generating traffic and emulating scheduler and
control traffic exchange. We use this experiment to discuss
aspects of load balancing, queue size distribution and mem-
ory requirements.

The network is evaluated using 128K simultaneously ac-
tive flows. The number of Fabric Adapters is 256, each of
them connected using t = 32 links to the network fabric.
There are 128 Fabric Elements in the first fabric tier, each
with 64 links connected to the Fabric Adapters and 64 links
connected to the second tier. In the second tier, there are
64 Fabric Elements, each connected using all 128 links to
Fabric Elements in the first tier. The length of each link is
100m. We simulate two flows from each Fabric Adapter
to every other Fabric Adapter, creating 128K simultaneous
flows. The number of connected hosts does not affect the
simulation, but assuming the number of uplinks is no more
than the number of downlinks, it is in the range of 8K to 64K
hosts. The setup size is limited by simulator run times.

Fig. 9(left) presents the latency distribution of network
fabric traversal for different fabric utilizations. The latency
distribution is tight, and even at 95% utilization, the latency

0

0.1

0.2

0.3

0.4

0.5

 0 2 4 6 8 10 12 14

Pr
ob

ab
ili

ty

Latency [us]

0.66
0.8

0.92
0.95
1.2

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

 0 10 20 30 40 50 60 70 80

Pr
ob

ab
ili

ty

Queue Size [256B Cells]

0.66
0.8

0.92
0.95
1.2

Figure 9: Probability Distribution of latency (left) and link
queue size (right) under different loads.

is bound by 13 microseconds. Fig. 9(right) presents queue
size distribution in the last stage of the network fabric, for
different fabric utilizations. The fabric utilization refers to
raw data utilization, after deducting physical protocol over-
heads, cell headers and control cell overheads. A distribution
of an oversubscribed fabric (120%) is included, using FCI to
control credit rate. In all runs no cells were lost with the
network fabric. With utilization<1, queue size probability is
an exponential function of fabric utilization, conforming to
the theoretical M/D/1 model. In the oversubscribed case, the
FCI reduced the effective fabric utilization to 0.9. 4

We extrapolate the simulation’s results to recent network
devices, equipped with 256×50Gbps links. For a cell size of
256B and a speed up of 1.05 the respective memory will be
128× 256B× 256, i.e. only 8MB. Given the 50Gbps links,
this stands for at most 5µs latency within the Fabric Element.

6.3 Comparisons to Existing Works
We compare Stardust with Multipath TCP [72], DCTCP [7]
and DCQCN [82]. We use htsim [72] for our evaluation, and
reproduce the experimental environment of [40, 41], imple-
menting a Stardust network, and running TCP. The simulated
environment uses a 432-node Fat-tree (see Appendix G).

We run a permutation experiment, where each node in a
Fat-tree continuously sends traffic to one node and receives
from another, fully loading the data center. Stardust uses
512B packets, 4KB credit size, and 3% credit speed up.
Other solutions use 9000B packets. Fig. 10(a) shows the
throughput achieved by each node in the network, in an in-
creasing order. Stardust achieves 9.44Gbps on 96% of the
flows, and a mean utilization of 94%, compared with 49%,
47% and 90% for DCTCP, DCQCN and MPTCP, respec-
tively.

We use the Web workload from [74] to exchange traffic
between a pair of nodes and measure the flow completion
time (FCT). The same 432-node setup is used, and all other
nodes source four long-running connections to a random des-
tination, thus testing the effect of queuing within the network
on short flows. Fig. 10(b) shows that Stardust significantly
outperforms all other schemes, as the fabric is scheduled.
Even flows of 1MB have a FCT of less than a millisecond.

Next, we test an incast traffic pattern. A frontend server

4Representing a single trade-off point between latency and throughput.
Higher utilization can be gained using less aggressive FCI reaction.

150 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

Th
ro

ug
hp

ut
 (

G
bp

s)

Flow rank

MPTCP
DCTCP
DCQCN

Stardust

(a) Throughput

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100

CD
F

(%
)

Flow completion time (ms)

DCTCP
DCQCN
MPTCP

Stardust

(b) FCT

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400In
ca

st
 c

om
pl

et
io

n
tim

e
(m

s)

Number of backend servers involved in incast

MPTCP
DCTCP

Stardust

(c) Incast

B/A
Header Processing 13%
Network Interface 30%
Other logic 60%
I/O 87.5%
Relative area/Tbps 66.6%
Relative power/Tbps 64.8%

(d) Relative Area

Figure 10: Performance comparison, 432-node FatTree (a) Per-flow throughput (b) FCT in an over-subscribed network (c) In-
cast performance vs number of senders (d) Relative device area of a Fabric Element device (B) and a standard switch (A)
fans out work to many backend servers and then receives
their replies, creating an incast scenario. We use a con-
stant response size (450K) and vary the number of back-
end servers, measuring the FCT. Fig. 10(c) shows the first
and last FCT, a measure both of performance and “fairness”.
Stardust’s last FCT is the same as DCTCP and better than
MPTCP, but its fairness is considerably better. Furthermore,
no packets are dropped within the Stardust fabric.

7 Cost Analysis
The absolute cost of a Stardust based system is difficult to
calculate, as it depends on multiple factors, such as manu-
facturing costs and platform implementation. Thus, we take
a comparative approach and analyze the complexity of Star-
dust and closely related Fat-tree networks, showing that Star-
dust is more cost efficient.
Silicon cost Our silicon cost comparison is based on two
Broadcom devices, manufactured using the same process.
Device A is a standard Ethernet switch (ToR), whereas de-
vice B is a Fabric Element [23]. The table in Fig. 10(d)
compares the area of these two devices, normalized to their
bandwidth, accounting for a difference in the number of I/O
(which is favorable for the ToR), detailed further in Ap-
pendix C. The relative area/Tbps of a Fabric Element is only
66.6% of that of a ToR. The overall area of a Fabric Adapter
is very similar to device A, and is referred as identical hence-
forth. The area is a good indicator of silicon cost, dominating
yield, packaging costs and others factors.
Switch-Platform Cost A Fabric Adapter based switch-
platform will cost the same as a standard ToR, while a Fab-
ric Element box will be less expensive. A switch platform
is composed of many components, yet the high-end switch
silicon dominates the cost. In a Fabric Element platform, the
board complexity is reduced and a lower-cost CPU can be
used, as only basic control is needed5. The reduced complex-
ity also means that more than a single Fabric Element can be
used within a single platform, with two being the common
case for emerging OCP designs. While in switch-systems
the cost ratio between Fabric Adapter and Fabric Element
modules of the same generation is high 6, we use the conser-

5From discussions with leading cloud providers, some will prefer the
cost-driven CPU option, whereas others will prefer the same type of CPUs
across all platforms, for better manageability

6Comparison of modules from same manufacturer and platform, based

0

20

40

60

80

100

103 104 105 106

R
el

at
iv

e
Co

st
 [

%
]

Number of end-hosts

FT, 100Gx64 Port (L=4)
FT, 50Gx128 Port (L=2)
FT, 25Gx256 Port (L=1)

(a) Cost

0

20

40

60

80

100

103 104 105 106

R
el

at
iv

e
po

w
er

 [
%

]

Number of end-hosts

FT, 400Gx32 Port (L=8)
FT, 200Gx64 Port (L=4)

FT, 100Gx128 Port (L=2)
FT, 50Gx256 Port (L=1)

(b) Power
Figure 11: The (a) cost and (b) power of building a Stardust
DCN relative to Fat-tree.

vative silicon-area ratio as a cost indicator.
Transceivers and Fibers Stardust always opts for the min-
imal number of transceivers in a DCN. If a network can
be constructed with a similar number of tiers using, e.g.,
400G and 100G transceivers, then Stardust supports build-
ing the network using the least expensive option. The de-
vices are oblivious to whether bundling was used in the
transceiver. Furthermore, breakout cables can be used to
connect transceivers of different bundling, easing a gradual
growth of a network. As every additional tier doubles the
number of links required (×4 transceivers, Table 2), a Star-
dust based solution becomes more attractive based on cost.
System Cost The cost of a large scale DCN can be cut in
half using Stardust. We analyze the relative cost of building
a DCN based on current generation data center components,
detailed in Appendix D. We assume 25G as the link speed
and its link bundles (50G, 100G). ToR and Fabric Adapter
platforms are of an equal cost. We use the relative sili-
con area (0.67) as a relative cost indicator for Fabric Ele-
ment platforms (See switch-platform cost). Each ToR/Fabric
Adapter is assumed to connect conservatively to 40 servers
using direct-attach cables, with no over-subscription from
the ToR/Fabric Adapter to the network fabric. 100m fibers
are used in the last tier (except for a 1-tier network), and 10m
fibers within any other tier. The number of devices and links
is calculated as detailed in Appendix A. Fig. 11(a) shows the
overall cost of building the network. Stardust is always the
most cost effective solution.
Power Power consumption significantly varies between
switch vendors, e.g., from 150W to 310W [57]. Fig. 11(b)
examines the relative power consumption of Stardust, com-
pared with Fat-tree networks with different link bundlings.
The calculation is as in Appendix A, using the power ra-
tio indicated in Fig. 10(d). Power per link and equal cross-

on e.g., https://h22174.www2.hpe.com/SimplifiedConfig/Welcome

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 151

https://h22174.www2.hpe.com/SimplifiedConfig/Welcome

section bandwidth are considered. The biggest power saving
is in networks of up to ten thousands nodes: up to 25% of
the entire network’s power, and 78% saving within the net-
work fabric, a result of both the reduction in the number of
devices, and power saving per device.

The number of network tiers and devices required to build
a network (Fig. 2b), and the power consumption of each de-
vice, affect the physical space required. The amount of phys-
ical space also impacts performance: smaller networks re-
quire shorter fibers, reducing the latency, and in turn improv-
ing throughput. In Stardust, Fabric Element based chassis
can still be used within the network, further reducing space
requirements.

8 The Case for Future Data Centers
Using current Fabric Adapter and Fabric Element devices,
Stardust naturally fits within regional data centers, and can
similarly be used to build efficient clusters of 10K end-hosts
(see §6). However, while Stardust reduces the complexity
within the network’s fabric, the Fabric Adapter maintains the
complexity and resource consumption of current ToRs (§6).
The challenge becomes the scalability of ToR devices.

We make the case for future Stardust-based data centers,
made entirely of Fabric Element devices within the network
and of Fabric Adapter-like network interface cards (NICs)
at the edges. Here, the concept of a simple network-core is
further extended, and the complex network-edge diminished.

The divide-and-conquer approach adapts the end-host’s
NIC to Stardust through a reduction of the Fabric Adapter:
combining VM-facing functionality with the handling of
cells and scheduling, but at a smaller scale. The number
of VOQs will match host-scale requirements [34, 77]. The
host’s memory will be used for further buffering [54, 55, 58].
The NIC’s MAC will become lighter: a fabric interface. A
programmable header processor, as in the Fabric Adapter,
will also support acceleration in the NIC. Connecting a NIC
to a Fabric Element is the same as to a ToR, while the reach-
ability table required is smaller than in a Fabric Adapter,
by a factor of Num-of-Fabric-Adapter-Uplinks/Num-of-NIC-
ports, or can be entirely eliminated if the NIC connects to a
single Fabric Element.

This is a natural evolution, supporting trends advocating
smarter edge devices [52, 85, 34] and moving scheduling
close to the host [71, 78]. We estimate the power consump-
tion of such a NIC to be on-par with current smart NICs [34].
As Jericho [22] already supports a PCIe interface and a di-
rect memory access (DMA) engine to send and receive host
traffic, this vision is realizable.

9 Related Work
Switch systems today scale to thousands of ports and to mul-
tiple chassis [27, 43, 14, 65]. Their chipsets vary from com-
modity devices [20] to custom-made solutions [66, 61]. The

closed nature of the system, has allowed building upon con-
cepts that have failed in wide area networks (WAN), and in
particular in cell based solutions such as ATM [46, 50, 11],
while optimizing for system-scale needs (e.g., [48, 24, 10]).
While DCNs differ from supercomputing in many ways,
supercomputing research also explored aspects of credit-
based scheduling and cell-switched cores on a medium scale
(e.g., [49, 3, 1]). Stardust is deeply rooted in switch systems,
which inspired supercomputing networks.

Stardust is not a circuit switch. Circuit switching (e.g.,
recent [70, 36, 58]) allows a single path at a time be-
tween source-destination pairs and has strong (and some-
times high-latency) scheduling requirements, whereas Star-
dust allows any-to-any communication at all times and ap-
plies distributed end-to-end scheduling.

This paper focused on Clos [30], and Fat-tree topologies
[51, 4, 75]. Our link bundling observation is also applica-
ble to other topologies (e.g., [2, 38, 18]).Unlike other solu-
tions, Stardust makes no assumptions about traffic patterns or
network utilization, and its routing is trivial [18, 80, 76]. It
also remains a single network [59], providing better manage-
ability and resilience. Aspects of network reconfigurability
combining different topologies (e.g., [58, 81]) are beyond
the scope of this contribution.

Congestion control and load balancing research has tried
to optimize performance, from protocol and flow level (e.g.,
[5, 8, 73, 9, 41]), through flowlets (e.g., [45, 6]) and flow-
cells [42] to packets (e.g., [25, 37]). Stardust uses evenly
distributed dynamic forwarding, combined with end-to-end
scheduling. Stardust is refined by combining ingress buffer-
ing with congestion avoidance mechanisms (e.g., ECN), pro-
viding a lossless solution for short-term congestion.

10 Conclusion
We presented Stardust, a scalable fabric architecture for data
center networks, separating the simple network-fabric from
the complex network-edge. Stardust applies system-switch
architecture on a data center scale, while attending to the
scalability limitations of network devices: resources, I/O
and performance. The resulting network fabric devices are
a radical change from commodity Ethernet switches, elimi-
nating significant overheads in DCNs. Our demonstrated di-
vide and conquer approach is practical, power-efficient, cost-
effective, scalable, and, critically, a deployable approach.

11 Acknowledgement
We would like to thank the many people who contributed to
this work, particularly to the team at Broadcom Yakum. We
would like to thank Andrew W Moore and Jeff Mogul for
their useful advice. We thank the anonymous reviewers and
our Shepherd, Xin Jin, who helped us improve the quality of
this paper. This work was partly funded by the Leverhulme
Trust (ECF-2016-289) and the Isaac Newton Trust.

152 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] ABTS, D. Cray xt4 and seastar 3-d torus interconnect. In Encyclope-

dia of Parallel Computing. Springer, 2011, pp. 470–477.

[2] AHN, J. H., BINKERT, N., DAVIS, A., MCLAREN, M., AND
SCHREIBER, R. S. Hyperx: topology, routing, and packaging of effi-
cient large-scale networks. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (2009),
ACM, p. 41.

[3] AJIMA, Y., INOUE, T., HIRAMOTO, S., TAKAGI, Y., AND SHIMIZU,
T. The tofu interconnect. IEEE Micro 32, 1 (Jan 2012), 21–31.

[4] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable, com-
modity data center network architecture. In ACM SIGCOMM Com-
puter Communication Review (2008), vol. 38, ACM, pp. 63–74.

[5] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B., HUANG,
N., AND VAHDAT, A. Hedera: Dynamic flow scheduling for data
center networks. In NSDI (2010), vol. 10, pp. 19–19.

[6] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., MATUS, F.,
PAN, R., YADAV, N., VARGHESE, G., ET AL. Conga: Distributed
congestion-aware load balancing for datacenters. In ACM SIG-
COMM Computer Communication Review (2014), vol. 44, ACM,
pp. 503–514.

[7] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PA-
TEL, P., PRABHAKAR, B., SENGUPTA, S., , AND SRIDHARAN, M.
Data center TCP (DCTCP). In Proc. ACM SIGCOMM (Aug. 2010).

[8] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PA-
TEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M.
Data center TCP (DCTCP). In ACM SIGCOMM computer communi-
cation review (2010), vol. 40, ACM, pp. 63–74.

[9] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,
N., PRABHAKAR, B., AND SHENKER, S. pfabric: Minimal near-
optimal datacenter transport. In ACM SIGCOMM Computer Commu-
nication Review (2013), vol. 43, ACM, pp. 435–446.

[10] ALVERSON, R., ROWETH, D., AND KAPLAN, L. The gemini system
interconnect. In IEEE 18th Annual Symposium on High Performance
Interconnects (HOTI) (2010), IEEE, pp. 83–87.

[11] ANSI. T1. 105-1991, digital hierarchy optical interface rates and
formats specifications (SONET)”. American national standard for
telecommunication (1991).

[12] ANTICHI, G., SHAHBAZ, M., GENG, Y., ZILBERMAN, N., COV-
INGTON, A., BRUYERE, M., MCKEOWN, N., FEAMSTER, N., FEL-
DERMAN, B., BLOTT, M., ET AL. OSNT: Open source network
tester. IEEE Network 28, 5 (2014), 6–12.

[13] ARISTA. 7500R Series Data Center Switch Router, Datasheet. https:
//www.arista.com/assets/data/pdf/Datasheets/7500RDataSheet.pdf.

[14] ARISTA. Arista 7500 Switch Architecture (“A day in the life of a
packet”), 2016. https://www.arista.com/assets/data/pdf/Whitepapers/
Arista 7500E Switch Architecture.pdf.

[15] ARMITAGE, G. J., AND ADAMS, K. M. Packet reassembly during
cell loss. IEEE Network 7, 5 (1993), 26–34.

[16] BARROSO, L., MARTY, M., PATTERSON, D., AND RANGANATHAN,
P. Attack of the killer microseconds. Communications of the ACM 60,
4 (2017), 48–54.

[17] BARWICZ, T., TAIRA, Y., LICHOULAS, T. W., BOYER, N., MAR-
TIN, Y., NUMATA, H., NAH, J.-W., TAKENOBU, S., JANTA-
POLCZYNSKI, A., KIMBRELL, E. L., ET AL. A novel approach
to photonic packaging leveraging existing high-throughput microelec-
tronic facilities. IEEE Journal of Selected Topics in Quantum Elec-
tronics 22, 6 (2016), 455–466.

[18] BESTA, M., AND HOEFLER, T. Slim fly: A cost effective low-
diameter network topology. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC14)
(2014), IEEE, pp. 348–359.

[19] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKE-
OWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. Forward-
ing metamorphosis: Fast programmable match-action processing in
hardware for sdn. In Proceedings of the ACM SIGCOMM Conference
(New York, NY, USA, 2013), SIGCOMM ’13, ACM, pp. 99–110.

[20] BROADCOM. StrataDNX Switch Solutions. https://www.broadcom.
com/products/ethernet-connectivity/switching/stratadnx.

[21] BROADCOM. BCM56980 series, 12.8 Tbps StrataXGS Tomahawk
3 Ethernet switch series, dec 2017. https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm56980-series.

[22] BROADCOM. BCM88690, StrataDNX 10 Tb/s Scalable Switching De-
vice, Product Brief, 2018. https://docs.broadcom.com/docs/88690-
PB100 [Online, accessed January 2019].

[23] BROADCOM. BCM88790, Scalable Fabric Element 9.6 Tbps Self-
Routing Switching Element, Product Brief, 2018. https://docs.
broadcom.com/docs/88790-PB00 [Online, accessed January 2019].

[24] CHRYSOS, N., AND KATEVENIS, M. Scheduling in non-blocking
buffered three-stage switching fabrics. In INFOCOM (2006), vol. 6,
pp. 1–13.

[25] CHRYSOS, N., NEESER, F., CLAUBERG, R., CRISAN, D., VALK,
K. M., BASSO, C., MINKENBERG, C., AND GUSAT, M. Unbiased
quantized congestion notification for scalable server fabrics. IEEE
Micro 36, 6 (2016), 50–58.

[26] CISCO. Cisco Nexus 9000 Series Switches. https://www.cisco.com/c/
en/us/products/switches/nexus-9000-series-switches/index.html.

[27] CISCO. Cisco CRS Carrier Routing System Multishelf System
Description, jul 2014. http://www.cisco.com/c/en/us/td/docs/iosxr/
crs/hardware-install/crs-1/multishelf/system-description/b-crs-
multishelf-sys-desc.html.

[28] CISCO. Cisco Global Cloud Index: Forecast and Methodology, 2015–
2020, nov 2016.

[29] CISCO. Cisco Nexus 9500 R-Series Line Cards and Fabric Mod-
ules White Paper, 2018. https://www.cisco.com/c/en/us/products/
collateral/switches/nexus-9000-series-switches/white-paper-c11-
738392.pdf.

[30] CLOS, C. A study of non-blocking switching networks. Bell Labs
Technical Journal 32, 2 (1953), 406–424.

[31] CUMMINGS, U., DALY, D., COLLINS, R., AGARWAL, V., PETRINI,
F., PERRONE, M., AND PASETTO, D. Fulcrum’s focalpoint fm4000:
A scalable, low-latency 10GigE switch for high-performance data
centers. In IEEE Symposium on High Performance Interconnect
(HOTI) (2009), IEEE, pp. 42–51.

[32] DHARMAPURIKAR, S., AND PAXSON, V. Robust tcp stream re-
assembly in the presence of adversaries. In USENIX Security (2005).

[33] ESCOBAR, J., AND PARTRIDGE, C. A proposed segmentation and
reassembly (sar) protocol for use with asynchronous transfer mode
(atm). High Performance Network Research Report (1990).

[34] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D.,
DABAGH, A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V.,
CAULFIELD, A., CHUNG, E., ET AL. Azure accelerated network-
ing: Smartnics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18) (2018).

[35] FRANK, D. J., DENNARD, R. H., NOWAK, E., SOLOMON, P. M.,
TAUR, Y., AND WONG, H.-S. P. Device scaling limits of Si MOS-
FETs and their application dependencies”. Proceedings of the IEEE
89 (2001), 259–288.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 153

https://www.arista.com/assets/data/pdf/Datasheets/7500RDataSheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7500RDataSheet.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7500E_Switch_Architecture.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7500E_Switch_Architecture.pdf
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://docs.broadcom.com/docs/88690-PB100
https://docs.broadcom.com/docs/88690-PB100
https://docs.broadcom.com/docs/88790-PB00
https://docs.broadcom.com/docs/88790-PB00
https://www.cisco.com/c/en/us/products/switches/nexus-9000-series-switches/index.html
https://www.cisco.com/c/en/us/products/switches/nexus-9000-series-switches/index.html
http://www.cisco.com/c/en/us/td/docs/iosxr/crs/hardware-install/crs-1/multishelf/system-description/b-crs-multishelf-sys-desc.html
http://www.cisco.com/c/en/us/td/docs/iosxr/crs/hardware-install/crs-1/multishelf/system-description/b-crs-multishelf-sys-desc.html
http://www.cisco.com/c/en/us/td/docs/iosxr/crs/hardware-install/crs-1/multishelf/system-description/b-crs-multishelf-sys-desc.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738392.pdf
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738392.pdf
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738392.pdf

[36] GHOBADI, M., MAHAJAN, R., PHANISHAYEE, A., DEVANUR, N.,
KULKARNI, J., RANADE, G., BLANCHE, P.-A., RASTEGARFAR,
H., GLICK, M., AND KILPER, D. Projector: Agile reconfigurable
data center interconnect. In Proceedings of the ACM SIGCOMM Con-
ference (2016), ACM, pp. 216–229.

[37] GHORBANI, S., YANG, Z., GODFREY, P., GANJALI, Y., AND
FIROOZSHAHIAN, A. Drill: Micro load balancing for low-latency
data center networks. In Proceedings of the ACM SIGCOMM Confer-
ence (2017), ACM, pp. 225–238.

[38] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S., KIM,
C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SENGUPTA, S. Vl2:
a scalable and flexible data center network. Communications of the
ACM 54, 3 (2011), 95–104.

[39] GUREVICH, V. Barefoot networks, programmable data plane at ter-
abit speeds. In DXDD (2016), Open-NFP.

[40] HANDLEY, M., RAICIU, C., AGACHE, A., VOINESCU, A., MOORE,
A. W., ANTICHI, G., AND WÓJCIK, M. NDP Switch NetFPGA,
2017. Repository, https://github.com/nets-cs-pub-ro/NDP [accessed
December 2017].

[41] HANDLEY, M., RAICIU, C., AGACHE, A., VOINESCU, A., MOORE,
A. W., ANTICHI, G., AND WÓJCIK, M. Re-architecting datacenter
networks and stacks for low latency and high performance. In Pro-
ceedings of the ACM SIGCOMM Conference (2017), ACM, pp. 29–
42.

[42] HE, K., ROZNER, E., AGARWAL, K., FELTER, W., CARTER, J.,
AND AKELLA, A. Presto: Edge-based load balancing for fast data-
center networks. In SIGCOMM ’15 (2015), ACM, pp. 465–478.

[43] HUAWEI. CloudEngine 12800 Series Data Center Switches.
http://e.huawei.com/us/products/enterprise-networking/switches/
data-center-switches/ce12800.

[44] INTEL. Intel Xeon Processor E7 v4 Family, 2017. https://ark.intel.
com/products/series/93797/Intel-Xeon-Processor-E7-v4-Family [ac-
cessed January 2018].

[45] KANDULA, S., KATABI, D., SINHA, S., AND BERGER, A. Dynamic
load balancing without packet reordering. ACM SIGCOMM Computer
Communication Review 37, 2 (2007), 51–62.

[46] KATEVENIS, M., SIDIROPOULOS, S., AND COURCOUBETIS, C.
Weighted round-robin cell multiplexing in a general-purpose atm
switch chip. IEEE Journal on selected Areas in Communications 9, 8
(1991), 1265–1279.

[47] KATZ, D., AND WARD, D. Bidirectional forwarding detection
(BFD), 2010. RFC 5880.

[48] KESLASSY, I., CHUANG, S.-T., YU, K., MILLER, D., HOROWITZ,
M., SOLGAARD, O., AND MCKEOWN, N. Scaling internet routers
using optics. In Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communica-
tions (2003), ACM, pp. 189–200.

[49] KUMAR, S., SABHARWAL, Y., GARG, R., AND HEIDELBERGER,
P. Optimization of all-to-all communication on the blue gene/l super-
computer. In 2008 37th International Conference on Parallel Process-
ing (Sept 2008), pp. 320–329.

[50] LE BOUDEC, J.-Y. The asynchronous transfer mode: a tutorial. Com-
puter Networks and ISDN systems 24, 4 (1992), 279–309.

[51] LEISERSON, C. E. Fat-trees: universal networks for hardware-
efficient supercomputing. IEEE transactions on Computers 100, 10
(1985), 892–901.

[52] LI, H. Introducing ”Yosemite”: the first open source modular chassis
for high-powered microservers. https://code.facebook.com/posts/
1616052405274961/introducing-yosemite-the-first-open-source-
modular-chassis-for-\high-powered-microservers-/, 2015. [Online;
accessed January 2017].

[53] LIPPIS REPORT. Arista 7500E Software-Defined Cloud Network
Switch Performance Test, 2014. https://www.arista.com/assets/data/
pdf/7500E-Lippis-Report.pdf[Online, access January 2019].

[54] LIU, H., LU, F., FORENCICH, A., KAPOOR, R., TEWARI, M.,
VOELKER, G. M., PAPEN, G., SNOEREN, A. C., AND PORTER,
G. Circuit switching under the radar with reactor. In NSDI (2014),
vol. 14, pp. 1–15.

[55] MANIHATTY BOJAN, N., ZILBERMAN, N., ANTICHI, G., AND
MOORE, A. W. Extreme data-rate scheduling for the data center. In
Proceedings of the ACM SIGCOMM Conference (2015), pp. 351–352.

[56] MCKEOWN, N., IZZARD, M., MEKKITTIKUL, A., ELLERSICK, W.,
AND HOROWITZ, M. Tiny tera: a packet switch core. IEEE Micro
17, 1 (1997), 26–33.

[57] MELLANOX. Mellanox Spectrum Ethernet Switch. http:
//www.mellanox.com/page/products dyn?product family=218&
mtag=spectrum ic.

[58] MELLETTE, W. M., MCGUINNESS, R., ROY, A., FORENCICH, A.,
PAPEN, G., SNOEREN, A. C., AND PORTER, G. Rotornet: A scal-
able, low-complexity, optical datacenter network. In Proceedings of
the ACM SIGCOMM Conference (2017), ACM, pp. 267–280.

[59] MELLETTE, W. M., SNOEREN, A. C., AND PORTER, G. P-fattree:
A multi-channel datacenter network topology. In HOTNETS (2016),
ACM, pp. 78–84.

[60] MOORE, G. E. Cramming more components onto integrated circuits.
Electronics 38 (April 1965), 114–117.

[61] MORGAN, T. P. Homegrown 25G Chips Help Cisco Hold The Switch
Line, 2016. https://www.nextplatform.com/2016/03/01/homegrown-
25g-chips-help-cisco-hold-the-switch-line/.

[62] MORGAN, T. P. Flattening Networks And Budgets With 400G Ether-
net, jan 2018. https://www.nextplatform.com/2018/01/20/flattening-
networks-budgets-400g-ethernet/ [accessed January 2018].

[63] NETFPGA. NetFPGA-SUME-live, issue 36: 10G port - Attach-
ment unit - Rx side - inefficiency, 2017. https://github.com/NetFPGA/
NetFPGA-SUME-live/issues/36.

[64] NETWORKS, B. Barefoot Tofino, World’s fastest P4-programmable
Ethernet switch ASICs, 2016. https://barefootnetworks.com/products/
brief-tofino/.

[65] NETWORKS, J. QFabric System, Scalable Fabric Switching
System. https://www.juniper.net/uk/en/products-services/switching/
qfabric-system/.

[66] NETWORKS, J. Juniper Networks Unveils Industry’s Most Powerful
Core Routing Platform, 2015. http://investor.juniper.net/investor-
relations/press-releases/press-release-details/2015/Juniper-
Networks-Unveils-Industrys-Most-Powerful-Core-Routing\-
Platform/default.aspx.

[67] OHRING, S. R., IBEL, M., DAS, S. K., AND KUMAR, M. J. On
generalized fat trees. In Proc. Ninth International Parallel Processing
Symposium (1995), IEEE, pp. 37–44.

[68] PATTERSON, D. A., AND HENNESSY, J. L. Computer organization
and design: the hardware/software interface. Newnes, 2013.

[69] POPESCU, D. A., AND MOORE, A. W. Ptpmesh: Data center
network latency measurements using ptp. In Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MAS-
COTS), 2017 IEEE 25th International Symposium on (2017), IEEE,
pp. 73–79.

[70] PORTER, G., STRONG, R., FARRINGTON, N., FORENCICH, A.,
CHEN-SUN, P., ROSING, T., FAINMAN, Y., PAPEN, G., AND VAH-
DAT, A. Integrating microsecond circuit switching into the data cen-
ter, vol. 43. ACM, 2013.

[71] RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR, V., KABBANI, A.,
PORTER, G., AND VAHDAT, A. Senic: Scalable nic for end-host rate
limiting. In NSDI (2014), vol. 14, pp. 475–488.

154 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/nets-cs-pub-ro/NDP
http://e.huawei.com/us/products/enterprise-networking/switches/data-center-switches/ce12800
http://e.huawei.com/us/products/enterprise-networking/switches/data-center-switches/ce12800
https://ark.intel.com/products/series/93797/Intel-Xeon-Processor-E7-v4-Family
https://ark.intel.com/products/series/93797/Intel-Xeon-Processor-E7-v4-Family
https://code.facebook.com/posts/1616052405274961/introducing-yosemite-the-first-open-source-modular-chassis-for-\high-powered-microservers-/
https://code.facebook.com/posts/1616052405274961/introducing-yosemite-the-first-open-source-modular-chassis-for-\high-powered-microservers-/
https://code.facebook.com/posts/1616052405274961/introducing-yosemite-the-first-open-source-modular-chassis-for-\high-powered-microservers-/
https://www.arista.com/assets/data/pdf/7500E-Lippis-Report.pdf
https://www.arista.com/assets/data/pdf/7500E-Lippis-Report.pdf
http://www.mellanox.com/page/products_dyn?product_family=218&mtag=spectrum_ic
http://www.mellanox.com/page/products_dyn?product_family=218&mtag=spectrum_ic
http://www.mellanox.com/page/products_dyn?product_family=218&mtag=spectrum_ic
https://www.nextplatform.com/2016/03/01/homegrown-25g-chips-help-cisco-hold-the-switch-line/
https://www.nextplatform.com/2016/03/01/homegrown-25g-chips-help-cisco-hold-the-switch-line/
https://www.nextplatform.com/2018/01/20/flattening-networks-budgets-400g-ethernet/
https://www.nextplatform.com/2018/01/20/flattening-networks-budgets-400g-ethernet/
https://github.com/NetFPGA/NetFPGA-SUME-live/issues/36
https://github.com/NetFPGA/NetFPGA-SUME-live/issues/36
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://www.juniper.net/uk/en/products-services/switching/qfabric-system/
https://www.juniper.net/uk/en/products-services/switching/qfabric-system/
http://investor.juniper.net/investor-relations/press-releases/press-release-details/2015/Juniper-Networks-Unveils-Industrys-Most-Powerful-Core-Routing\-Platform/default.aspx
http://investor.juniper.net/investor-relations/press-releases/press-release-details/2015/Juniper-Networks-Unveils-Industrys-Most-Powerful-Core-Routing\-Platform/default.aspx
http://investor.juniper.net/investor-relations/press-releases/press-release-details/2015/Juniper-Networks-Unveils-Industrys-Most-Powerful-Core-Routing\-Platform/default.aspx
http://investor.juniper.net/investor-relations/press-releases/press-release-details/2015/Juniper-Networks-Unveils-Industrys-Most-Powerful-Core-Routing\-Platform/default.aspx

[72] RAICIU, C., BARRE, S., PLUNTKE, C., GREENHALGH, A., WIS-
CHIK, D., AND HANDLEY, M. Improving datacenter performance
and robustness with Multipath TCP. In Proc. ACM SIGCOMM (Aug.
2011).

[73] RAICIU, C., BARRE, S., PLUNTKE, C., GREENHALGH, A., WIS-
CHIK, D., AND HANDLEY, M. Improving datacenter performance
and robustness with multipath tcp. In ACM SIGCOMM Computer
Communication Review (2011), vol. 41, ACM, pp. 266–277.

[74] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN, A. C.
Inside the social network’s (datacenter) network. In ACM SIGCOMM
Computer Communication Review (2015), vol. 45, ACM, pp. 123–
137.

[75] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD,
A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., ET AL. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. ACM SIGCOMM
Computer Communication Review 45 (2015), 183–197.

[76] SINGLA, A., HONG, C.-Y., POPA, L., AND GODFREY, P. B. Jel-
lyfish: Networking data centers, randomly. In NSDI (2012), vol. 12,
pp. 17–17.

[77] SOLARFLARE. Ultra Scale, Scaling from two to two thousand contain-
ers on a single server, 2018. https://www.solarflare.com/ultra-scale.

[78] STEPHENS, B., SINGHVI, A., AKELLA, A., AND SWIFT, M. Ti-
tan: Fair packet scheduling for commodity multiqueue nics. In 2017
USENIX Annual Technical Conference (ATC’17) (2017), pp. 431–444.

[79] TECHNOLOGIES, M. Mellanox Spectrum-2 Ethernet Switch, 2017.
http://www.mellanox.com/related-docs/prod silicon/PB Spectrum-
2.pdf.

[80] VALADARSKY, A., DINITZ, M., AND SCHAPIRA, M. Xpander: Un-
veiling the secrets of high-performance datacenters. In Proceedings
of the 14th ACM Workshop on Hot Topics in Networks (2015), ACM,
p. 16.

[81] XIA, Y., SUN, X. S., DZINAMARIRA, S., WU, D., HUANG, X. S.,
AND NG, T. A tale of two topologies: Exploring convertible data
center network architectures with flat-tree. In Proceedings of the ACM
SIGCOMM Conference (2017), ACM, pp. 295–308.

[82] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C., LIPSHTEYN,
M., LIRON, Y., PADHYE, J., RAINDEL, S., YAHIA, M. H., AND
ZHANG, M. Congestion control for large-scale rdma deployments. In
SIGCOMM (2015), pp. 523–536.

[83] ZILBERMAN, N. An evaluation of NDP performance . Tech. Rep.
UCAM-CL-TR-933, University of Cambridge, Computer Laboratory,
Feb. 2019.

[84] ZILBERMAN, N., AUDZEVICH, Y., COVINGTON, G., AND MOORE,
A. W. NetFPGA SUME: Toward 100 Gbps as Research Commodity.
IEEE Micro 34, 5 (September 2014), 32–41.

[85] ZILBERMAN, N., MOORE, A. W., AND CROWCROFT, J. A. From
photons to big-data applications: terminating terabits. Phil. Trans. R.
Soc. A 374, 2062 (2016), 20140445.

A The Math Behind Network Size
In this section, we provide the mathematical justification for
the number of elements used in a Fat-tree based network.
The number of devices required to build a Fat-tree network
is long known [51, 67], and we build upon it to demonstrate
the dependency on link bundling. For the clarity of the dis-
cussion, Table 1 lists the parameters used to describe the net-
work topology, and Table 2 provides the number of different
elements within a multi-tier, Fat-tree based, DCN and the
parameters used to describe the network topology. Note that
Table 2 shows the number of network elements, and not the
number of connected end hosts, and that unless noted other-
wise, downlinks from a ToR to end hosts are not counted.

In a 1-Tier network, the number of switches equals, at
most, the number of uplink ports from a ToR (t). The num-
ber of ToRs equals, at most, the number of downlinks from
a switch, which is in this case the number of ports on the
switch (k). The number of link bundles in this network will
equal the number of uplink ports from a ToR times the num-
ber of ToRs, which equals the number of downlinks from
a switch times the number of switches (t × k). As this is
a 1-Tier network, there is only one layer of links within it,
therefore the number of links per ToR will be the same as
the number of uplinks (t× l).

In a 2-Tier network, the number of downlink ports from a
switch in a second tier will still be k, but a switch in the first
layer will have k/2 downlink ports and k/2 uplink ports. The
number of uplink ports from a ToR is the same. This leads
to a network of k2/2 ToRs (at most). The number of link
bundles in the first tier will equal the number of ToRs times
the number of uplink ports per ToR (t× k2/2). With a naive
construction, assuming a fully provisioned network, this will
equal the number of link bundles between the switches in the
first and the second tier, bringing the overall number of link
bundles in the network to t × k2. The number of links per
ToR (excluding ToRs’ downlinks) equals the number of link
bundles in the network, multiplied by the number of links per
link bundle and divided by the number of ToRs (2× t × l).
The same logic is used to continue and build networks of 3,
4 and n tiers.

So far we have limited the discussion to the network de-
vices within the DCN. Next, we consider the number of end
hosts connected to this network. The number of end hosts
will always be O(kn/2n−1) in a fully provisioned n tier net-
work. The exact number of end-hosts will depend on the
number of downlink ports from the ToR switch. This num-
ber is not necessarily t: the link bundle from a host to the ToR
can be different than the link bundle from the ToR to the first
switch. Furthermore, a ToR can be over-subscribed, in which
case the number of uplink and downlink ports will be differ-
ent. Given d downlink ports from a ToR, the number of end
hosts connecting to an n tier network will be d× kn/2n−1.

While over-subscription is most common at the ToR level,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 155

https://www.solarflare.com/ultra-scale
http://www.mellanox.com/related-docs/prod_silicon/PB_Spectrum-2.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_Spectrum-2.pdf

Parameter Description
k switch radix
t number of ToR uplink ports
l number of links in a link-bundle

Table 1: The parameters used to describe a Fat-tree based
network.

it is also possible within the network. This does not change
the math of a 1-Tier network, but in a two (or n) tier net-
work, each switch will use u uplink ports, and k−u downlink
ports, and the math will be adjusted accordingly: the maxi-
mum number of ToRs will be k× (k−u), and the number of
switches will be t× (k+u).

B Parallel Processing of Packets
§2.3 discussed the number of processing cores required in a
device. In this appendix we explain this calculation. Here
we focus not on bandwidth, but rather on packet processing
rate.

Let us assume a packet of size S bytes, running through an
Ethernet switch of bandwidth B bits/sec. As this is Ethernet,
there are preamble, start of frame delimiter (SFD) and inter
frame gap between packets on the wire, G. The packet rate
R required from a device is therefore:

R = B/(8× (S+G)) (1)

Note that Equation 3 makes no assumption on the architec-
ture and design of the switch.

Most packet switches today are pipelined (e.g. [19]) as
a way to increase performance. The length of the pipeline
does not affect the rate at which packets are being processed,
rather the latency through the pipeline. Let us assume that
each stage through the pipeline takes c clock cycles, and that
the clock frequency of the device is f . This means that the
number of packets r processed in the pipeline every second
is:

r = f/c (2)

Under optimal conditions, c = 1, as in a pipelined de-
sign the minimum time required per stage is one clock cycle.
Note that an operation within a stage may take less than one
clock cycle, but a stage will always be clocked (and sampled)
in order to avoid metastability and close timing. This leads
to r = f .

We define the amount of parallelism required in a switch
P as:

P = R/r (3)

P defines the ratio between the number of arriving packets
that needs to be processed every second, and the rate at which
the pipeline can process packets. Where P > 1 it means that

more packets need to be processed every second by the de-
vice than a single pipeline can process.

For example, let us assume packet size S = 64B, switch
bandwidth of B= 12.8T bps, gap G= 12B+8B= 20B, clock
frequency of f = 1GHz and c = 1 clock cycle per packet.
The parallelism required is 19.047:

R = B/(8× (S+G)) = 19.047E +9
r = f/c = 1E +9/1 = 1E +9

P = R/r = 19.047
(4)

In a similar manner, a packet size of 256B will require
P = 6.06.

The way to handle P > 1 may vary between chip architec-
tures. One common solution is to use more than one pipeline
within a switch [39, 62]. Another solution is to process more
than one packet within the pipeline every clock (in a man-
ner not unlike CPU’s pipelines) - however such a solution is
much more complex. Packet packing effectively increases
the packet processing rate, but it operates on packed packets
rather than on individual ones.

Recent devices have used four pipelines as a way to in-
crease parallelism [39, 62], while processing one packet ev-
ery clock (c = 1). This means that such devices likely sup-
port full line rate only above a certain packet size 7.

C Silicon Area
§7 briefly introduced the silicon area comparison of Stardust
devices and a standard ToR switch. In this section we extend
this discussion, based on the Table in Fig. 10(d).

Device A is a standard Ethernet switch (ToR), whereas de-
vice B is a Fabric Element [23]. A significant difference be-
tween devices A and B is in the area consumed by header
processing. Device A supports advanced (programmable)
header processing, whereas device B supports only simple
cell header parsing. There is also a notable difference in
the resources required for lookup tables: Device B only re-
quires a reachability table, whereas device A requires stan-
dard forwarding tables, such as for IPv4 lookup. Assum-
ing a network with N end hosts, and only 40 servers per
rack, device A will require an exact match IPv4 table size
N× (32+ log2 k), where k is the device’s radix, whereas De-
vice B will only need to point to Fabric Adapters, thus its
table size will be (N/40)× log2k. Using hashing will re-
duce the required memory size, but this simplified explana-
tion gives a notion of the difference between the two devices.

In terms of I/O, both devices use the same libraries and
therefore have a relatively close I/O area ratio8. However, the
network interface modules beyond the I/O, e.g. the MAC, are
significantly different. Device A requires a full-blown MAC

7This is an estimation based on current manufacturing processes, as f
and c of switches are not published by vendors.

8The difference is for practical implementation reasons.

156 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Tiers Max ToRs Max of Switches Switches per ToR # of Link Bundles Links per ToR
1 k t t/k t× k t× l
2 k2/2 3/2× t× k 3× t/k t× k2 2× t× l
3 k3/4 5/4× t× k2 5× t/k 3/4× t× k3 3× t× l
4 k4/8 7/8× t× k3 7× t/k 7/8× t× k4 7× t× l
n kn/2n−1 (2×n−1)/2n−1× t× kn−1 (2×n−1)× t/k (1−1/2n−1)× t× kn (2n−1−1)× t× l

Table 2: The number of different elements within a multi-tier, Fat-tree based network. The maximum size of a network of n
tiers using a switch with port radix k is O((k/2)n).

supporting different Ethernet standards, whereas Device B
requires a simpler module to extract the cells. The gain in
area per port is 70%.

For the remaining functionality of the device, the savings
using a Fabric Element amounts to 40%. While in a stan-
dard switch, the amount of packet buffering is a compromise
between silicon area and packet drop under different traffic
scenarios, in the Fabric Element, cell buffering is agnostic to
traffic scenarios.

In a Fabric Adapter [22], functionality supporting Stardust
(e.g., cell generation, load balancing, and credit generation)
takes about 8% of the device’s area. This area is largely com-
pensated by the saving on network fabric facing interfaces,
a gain of 70% per port. The number of VOQs supported is
directly mapped to memory resources, where 128K VOQs
consume roughly 4MB, an order of magnitude less than con-
sumed by a header processing module [19]. The overall area
of the Fabric Adapter is very similar to device A.

The area of a device can vary based on a number of factors.
For example, an Ethernet switch can trade-off buffer space
for packet processing functionality or lookup table sizes, and
a Fabric Element may trade-off cell buffering for area. A
Fabric Element based on the design choices in [19] will re-
quire just 45% of the area of an RMT switch9. Table 10
does represent, however, existing devices and not a theoreti-
cal case.

D Cost Estimation
Cost estimation is conducted using list prices collected from
online resellers on September 12, 2018. The prices are listed
in Table 3. The websites are authorized resellers of the listed
components. Prices are used to calculate cost ratio, rather
than as indicative costs. Our calculations do not take into ac-
count other real-world considerations that affect cost, such as
the pricing for high quantities or a buyer’s bargaining power.

E Resilience
Recovering from a link failure follows a local detection of
a link failure, and the propagation of this information to
all other devices. Local detection of a failure is done on a
nanosecond scale, as a result of a loss of signal or high bit
error rate (BER). The time it takes to propagate the infor-
mation using reachability messages is configurable. This ap-

9 [19] has insufficient data to compare to the Fabric Adapter.

Item Price [USD] Source
Edgecore AS7816-64X $16200 Colfax
64-Port 100GbE
Edgecore Wedge 100BF-65X $16200 Colfax
65-Port 100GbE
Passive Copper Cable $84 Colfax
100GbE, 2 meters
100G QSFP28 Optical Module $435 Colfax
Short Range
50G QSFP28 Optical Module $280 Estimated
Short Range
25G SFP28 Optical Module $125 Colfax
Short Range
Fiber, 10m $8 FS
Fiber, 100m $62 FS

Table 3: Indicative component costs - List prices.

pendix formulates this time, and Table 4 lists the parameters
used below.

Let f be the core frequency of a device, and c the config-
urable number of clock cycles between messages, per link.
The time t ′ between every pair of messages will be:

t ′ =
c
f

This means a message is generated every c/ f seconds.
Assume that each reachability message is of B bytes and
includes a bitmap of b bits indicating the reachability of b
Fabric Adapter devices. Assume that each Fabric Adapter
connects to h hosts. The number of messages M required
to propagate the reachability table of a DCN connecting N
hosts will be:

M =

⌈
N

h×b

⌉
If a network has n tiers, then at the worst case, the link

that failed was between a Fabric Adapter and a Fabric Ele-
ment, which means that the information needs to propagate
through the entire network (2×n hops), minus one hop (the
failed link). The time it would take to propagate the updated
reachability table through the entire network would be:

t = t ′×M× (2×n−1) =

c
f
×
⌈

N
h×b

⌉
× (2×n−1)

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 157

Parameter Description Example Value
f Core frequency 1GHZ
c Number of cycles between messages 10,000
t’ Time between reachability messages 10µs
b Reachability bitmap size 128
B Reachability message size 24B
h Number of hosts per Fabric Adapter 40
N Number of hosts connected to the DCN 32,000
n Number of tiers 2
M Number of messages propagating a full reachability table 7
th Reachability status change threshold 3
pdi Propagation delay through link i 50ns, 500ns
s link speed 50Gbps

Table 4: The parameters used to describe the propagation of reachability updates.

To avoid momentary effects and account for a potential loss
of a reachability message during the updates, one would usu-
ally opt for multiple updates of a link’s value (th) before up-
dating its state, which means the time it takes to react to a
link failure would be t× th.

A slightly more accurate calculation will also take into ac-
count the propagation delay on each link (pdi):

t× th =
2×n−1

∑
i=1

(
(t ′+ pdi)×M× th

)
=

2×n−1

∑
i=1

(
c
f
+ pdi

)
×
⌈

N
h×b

⌉
× th

The value of c is determined such that the effect of reacha-
bility messages on the available bandwidth will be minimal.
Assume that the link speed is s. The relative bandwidth con-
sumed by reachability messages would be:

B×8
t ′× s

=
B×8× f

c× s

Using the example values indicated in Table 4, the over-
head of reachability updates is 0.04% of the bandwidth, and
the time it takes to recover from a failed link, which is the
time it takes to propagate an update to the farthest Fabric
Adapter, is 652µs. Note that the difference from the illustra-
tive example in §5.9 is the propagation delay on the links.

F Push Fabric vs Pull Fabric
§5.2 made the case for Pull Fabric vs Push Fabric, with no
traffic classes. Here we illustrate the case of traffic classes
on an Ethernet based network fabric, compared with Star-
dust. The scenario is depicted in Fig. 12. On a single device
there are two 100GE ports, A and B. From one input de-
vice, 100Gbps of a high traffic class are injected toward A
(marked red), and additional 100Gbps of a low traffic class
are injected toward B (marked green). Additional 100Gbps
of a high traffic class are injected towards A from a second

Ethernet Switch Fabric

-
,,

\ f Oversubscribed 5
I

! Drop A and B. . 50
I I

l, ___ AJ!._6_j§ __ Qf.QR p ed ____)
---_ --- ----

.... ._ ----_

--....

100+

--------------------------------------50 ,
\

I
I

! 100 of A are !
I

I! dropped l
I I
\ I �----------------------

--
..,.----� --- --.... --- --.... ----_---_ ---

--------------------------------�
I \

' '-

! Al I of B traffic -----::
I

--- . .. ---
! unnecessarily
I

I

! dropped J
\ I
,._ ________________________________ ; 0 100

(High)

50

100
to A

100
+50

·· acket

drop

Stardust Cell Fabric

(Low) (High)
100 100
to B to A

50
+50

100

+100

50

• • •

• • •

(High)
100
to A

25

50
+50

Figure 12: Packet drops in Ethernet switch fabric vs. Star-
dust scheduled fabric with traffic classes

device (marked red). As a result, B’s traffic will be pushed to
the fabric, where all of it will be dropped at the packet switch.
The throughput of the destination ToR will be 100Gbps, all
toward port A.

In Stardust, credits are sent separately from port A and
from port B to each ingress Fabric Adapter. Each input de-
vice receives credits sufficient for just 50Gbps toward port
A, and the first device received credits sufficient to send
100Gbps toward port B. As cells are distributed across all
links, the traffic toward A and B is evenly divided between
the links, meaning that no link is over-subscribed and no traf-
fic is dropped within the network. The eventual throughput
from Stardust is twice the throughput using the standard Eth-
ernet switch.

G Performance Simulations
The simulator of choice for performance comparison is ht-
sim [72]. Htsim is used as it provides, under an open-
source license, implementations of several data center proto-
cols (TCP, MPTCP, DCTCP, DCQCN and NDP), along with
scripts allowing the experiments of [41] to be reproduced.
The simulator used in §6.2 is unsuitable for this purpose, as
it is an architecture-specific, low-level simulator, that would
take days to run experiments that are conducted in htsim
within minutes.

158 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The setup used in §6.3 reproduces the setup used in [41],
using a 432-node Fat-tree. All links in the system are of
10Gbps, and the same number of tiers is used across proto-
cols and the experiments. Although the htsim simulator is
fast, it still takes many hours to simulate a permutation ma-
trix of Stardust in a 432 node Fat-tree.

Our simulations reproduce as-is the experiments from [41]
using DCTCP with ECN, DCQCN and MPTCP . We imple-
ment a model of Stardust into this environment. We use an
unmodified TCP (New Reno) on top of Stardust, which is the
least favorable scenario. While the Fabric Adapter supports
sending congestion notifications to the host, the presented
results do not take advantage of such features, presenting
‘raw’ Stardust performance. DCTCP and MPTCP use 100
packet output queues, and DCQCN uses 100 buffers per port,
shared between interfaces. Stardust uses similar buffering re-
sources, providing an apple-to-apple comparison.

The Stardust configuration used in the experiment uses
512B cell size, 4KB credit size and 3% credit speed up. The
use of 512B cell size and 4KB credit size is intended to re-
duce simulation time. A simulation using 256B cells and
2KB credits takes 12 hours per permutation on a Xeon E5-
2660 v4 server. Both settings are realistic, though a smaller
credit size will improve fairness in the given setup. The
scheduler at the egress Fabric Adapter uses a simple round
robin between all flows, intended to show fairness. Other
scheduling schemes are also supported by the Fabric Adapter
(§4).

The performance simulations use different workloads.

The throughput simulation (Fig. 10(a)) uses continuous
flows and 9000B packets, which favors existing data cen-
ter protocols. The FCT simulation uses the Facebook Web
workload [74] flow size distribution, which was imple-
mented by [41]. Background traffic is similar to the through-
put simulation. The Incast experiment, sending traffic from
an increasing number of sources to a single destination, uses
450KB flow size and 9000B packets. In all the simulations,
the packets are chopped into cells by Stardust.

The simulation results presented in this paper do not
capture all the minutiae of the Stardust design, for exam-
ple, avoiding synchronization issues when distributing cells
across links. Consequently, the actual performance of Star-
dust, e.g., as measured in §6.1, is better than simulated in
§6.3. Most of the aforementioned features are not imple-
mented due to the level of abstraction provided by the sim-
ulator. Htsim treats the network as a collection of pipes and
queues, and is oblivious to hardware limitations, such as de-
scribed in §2.

DCQCN is not included in the incast experiment depicted
in Fig. 10(b) as it is missing from the reproducibility pack-
age of [40], and due to insufficient resources to accurately
re-implement it. We opt to omit NDP from our performance
comparison as we find that it is very sensitive to the experi-
mental setup and configuration. For example, a very realistic
scenario of using 1500B packets rather than 9000B reduces
its mean utilization by 14%. In a different case, changing the
simulation’s seed resulted in performance collapse. We refer
the reader to [83] for a detailed analysis.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 159

Blink: Fast Connectivity Recovery Entirely in the Data Plane

Thomas Holterbach∗, Edgar Costa Molero∗, Maria Apostolaki∗

Alberto Dainotti†, Stefano Vissicchio‡, Laurent Vanbever∗

∗ETH Zurich, †CAIDA / UC San Diego, ‡University College London

Abstract
We present Blink, a data-driven system that leverages TCP-
induced signals to detect failures directly in the data plane.
The key intuition behind Blink is that a TCP flow exhibits a
predictable behavior upon disruption: retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior creates
a strong and characteristic failure signal. Blink efficiently
analyzes TCP flows to: (i) select which ones to track; (ii)
reliably and quickly detect major traffic disruptions; and (iii)
recover connectivity—all this, completely in the data plane.

We present an implementation of Blink in P4 together with
an extensive evaluation on real and synthetic traffic traces.
Our results indicate that Blink: (i) achieves sub-second rerout-
ing for large fractions of Internet traffic; and (ii) prevents
unnecessary traffic shifts even in the presence of noise. We
further show the feasibility of Blink by running it on an actual
Tofino switch.

1 Introduction
Thanks to widely deployed fast-convergence frameworks
such as IPFFR [35], Loop-Free Alternate [7] or MPLS Fast
Reroute [29], sub-second and ISP-wide convergence upon link
or node failure is now the norm [6, 15]. At a high-level, these
fast-convergence frameworks share two common ingredients:
(i) fast detection by leveraging hardware-generated signals
(e.g., Loss-of-Light or unanswered hardware keepalive [23]);
and (ii) quick activation by promptly activating pre-computed
backup state upon failure instead of recomputing the paths
on-the-fly.

Problem: Convergence upon remote failures is still slow.
These frameworks help ISPs to retrieve connectivity upon
internal (or peering) failures but are of no use when it comes
to restoring connectivity upon remote failures. Unfortunately,
remote failures are both frequent and slow to repair, with aver-
age convergence times above 30 s [19, 24, 28]. These failures
indeed trigger a control-plane-driven convergence through
the propagation of BGP updates on a per-router and per-prefix

Figure 1: It can take minutes to receive the first BGP update
following data-plane failures during which traffic is lost.

basis. To reduce convergence time, SWIFT [19] predicts the
entire extent of a remote failure from a few received BGP
updates, leveraging the fact that such updates are correlated
(e.g., they share the same AS-PATH). The fundamental prob-
lem with SWIFT though, is that it can take O(minutes) for
the first BGP update to propagate after the corresponding
data-plane failure.

We illustrate this problem through a case study, by mea-
suring the time the first BGP updates took to propagate after
the Time Warner Cable (TWC) networks were affected by an
outage on August 27 2014 [1]. We consider as outage time t0,
the time at which traffic originated by TWC ASes observed
at a large darknet [10] suddenly dropped to zero. We then col-
lect, for each of the routers peering with RouteViews [27] and
RIPE RIS [2], the timestamp t1 of the first BGP withdrawal
they received from the same TWC ASes. Figure 1 depicts
the CDFs of (t1 − t0) over all the BGP peers (100+ routers,
in most cases) that received withdrawals for 7 TWC ASes:
more than half of the peers took more than a minute to receive
the first update (continuous lines). In addition, the CDFs of
the time difference between the outage and the last prefix
withdrawal for each AS, show that BGP convergence can be
as slow as several minutes (dashed lines).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 161

In short, a fundamental question is still open: Is it possible
to build a fast-reroute framework for ISPs that can converge
in O(seconds) for both local and remote failures?

Blink: fast, data-driven convergence upon remote failures.
We answer this question affirmatively by developing Blink,
a data-driven fast-reroute framework built on top of pro-
grammable data planes. Blink key insight is to reroute based
on data-plane signals rather than control-plane ones. Quickly
after a failure, data-plane traffic indeed exhibits a predictable
behavior: all the TCP endpoints start retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior cre-
ates a strong and characteristic failure signal. With Blink, we
show that this signal can be efficiently tracked at line rate and
enables sub-second convergence after most remote failures.

Key challenges. Tracking failure signals in the data plane is
challenging for at least three reasons. First, monitoring all
flows is impossible because of memory constraints. At the
same time, randomly sampling flows often results in tracking
useless flows, e.g., ones that seldom transmit. We address this
problem by developing a flow selector which automatically
evicts inactive flows and replaces them with active ones.

Second, packet loss routinely happens in the Internet,
e.g., due to temporary congestion. Rerouting upon any re-
transmission would result in huge, and counterproductive
traffic shifts. We address this challenge by: (i) focusing on
timeout-induced retransmissions, which are infrequent (as we
confirmed analyzing real traces); and (ii) leveraging the fact
that failures affect many flows simultaneously.

Third, data-plane signals provide no information about the
root cause of the problem.Worse, uncoordinated rerouting
decisions can lead to forwarding issues such as blackholes,
forwarding loops, and oscillations. In Blink, we solve these
problems by also making the backup selection data-driven,
i.e., by tracking if flows resume after rerouting them.

We fully implemented Blink in P416. Our evaluation, which
includes experiments on a real Barefoot Tofino switch, shows
that Blink retrieves connectivity within 1 s for the vast major-
ity of the considered failure cases.

Main contributions. Our main contributions are:

• A new approach for quickly recovering connectivity upon
remote failures based on data-plane signals (§2).

• The Blink pipeline, which enables programmable data
planes to track failure signals at line rate and to automati-
cally retrieve connectivity (§3 and §4).

• An implementation1 of Blink in Python and P416 (§5).

• An evaluation of Blink using synthetic and real packet
traces, emulations, and hardware experiments (§6).

• A discussion on how to deploy Blink, along with how to
protect it from malicious and crafted traffic (§7).
1Our source code is available at: https://blink.ethz.ch

2 Key Principles and Challenges
In this section, we first show that TCP traffic exhibits a char-
acteristic pattern upon failures (§2.1). We then discuss the
key challenges and requirements to detect such a pattern, and
recover connectivity by rerouting the affected prefixes, while
operating entirely in the data plane, at line rate (§2.2).

2.1 Data-plane signals upon failures
Consider an Internet path (A,B,C,D) carrying tens of thou-
sands of TCP flows, destined to thousand prefixes, in which
the link (B,C) suddenly fails. We are interested in monitoring
the data-plane “failure signal” perceived at A, with the goal
of enabling A to detect it and to also recover connectivity by
rerouting traffic through a different path (if any). Observe that
A is not adjacent to the failure, i.e., the failure is remote.

As the link (B,C) fails, the TCP endpoints stop receiving
acknowledgements (ACKs), and each of them will timeout
after its retransmission timeout (RTO) expires, which will
cause it to reset its congestion window to one segment and
start retransmitting the first unacknowledged segment. Since
the RTO is computed according to the RTT observed, each
TCP endpoint will retransmit at a different time. Specifically,
each TCP endpoint adjusts its RTO using the following re-
lation: RTO = sRTT + 4*RTTVAR (see [31]), where sRTT
corresponds to the smoothed RTT, and RTTVAR corresponds
to the RTT variation. After each retransmission, each TCP
endpoint further doubles its RTO (exponential backoff).

We illustrate the behavior of a TCP flow experiencing a
failure in Figure 2. We assume that the TCP endpoint has an
estimated RTO of 200 ms and that its congestion window can
hold 4 packets. We denote by t the time at which the TCP
endpoint transmits the first packet following the failure. The
TCP endpoint experiences consecutive RTO expirations and
retransmits the packet with sequence number 1000 at time
t + 200ms, t + 600ms, t + 1400ms, etc. We experimentally
verified that this behavior is similar across all TCP flavors
implemented in the latest Linux kernel.

When multiple flows experience the same failure, the signal
obtained by counting the overall retransmissions consists of
“retransmission waves”. Since this behavior is systematic, pro-
nounced, and quick, we leverage it in Blink to perform failure
detection in the data plane. This suggests Blink does not de-
pend on specific TCP implementation details and would keep
working effectively with future congestion control algorithms
as long as they exhibit a similar behavior upon failures.

Note however the shape of these retransmission waves,
i.e., their amplitude and width, depends on the distribution
of the estimated RTTs. As an illustration, Figure 3 shows the
retransmission count for a trace that we generated with the
ns-3 simulator [3] after simulating a link failure (according
to the methodology in §6.1). In the left diagram, we used the
distribution of the average RTTs of the TCP flows from an
actual traffic trace (#8 in Table 3 in §E). In the right diagram,
we increased the RTTs of this distribution by 1.5 to obtain

162 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://blink.ethz.ch

cwnd:4

S:4100

S:1000

t

t + 200ms cwnd:1

cwnd:1

S:1000

S:3100

S:2100

S:1000

A:1000
failure

exponential
backoff

SRTT + 4∗RTT_VAR congestion window

t + 600ms

RTO: 200ms

…

…
…

…

t + 1400ms cwnd:1
S:1000

Figure 2: After the failure, a TCP flow keeps retransmitting
the last unacknowledged segment according to an exponential
backoff. The exact timing of the retransmissions depends on
the estimated RTO before the failure (here 200ms).

a larger standard deviation. We can clearly see the waves of
retransmissions appearing within a second after each failure.
RTT distributions with small variance make the flows more
synchronized they will be when retransmitting. This translates
into narrow peaks of retransmissions with a high amplitude.
Conversely, if the flows have very different RTTs (i.e., the
variance is high), the peaks will have a smaller amplitude and
will spread over a longer time. We elaborate on the challenges
deriving from these observations hereafter.

2.2 Key challenges and requirements when
fast rerouting using data-plane signals

We now highlight four key challenges and requirements that
must be addressed to: (i) efficiently capture the failure signal
we just described; and (ii) recover connectivity. We describe
in §3 how does Blink address them entirely in the data plane.

Dealing with noisy signal. To discover its fair share of band-
width, a TCP endpoint keeps increasing its transmission rate
until a packet loss is detected, triggering a retransmission.
TCP retransmissions therefore occur naturally, even with-
out network failures. Likewise, minor temporary congestion
events can also lead to bursts of packet drops, which will
trigger subsequent bursts of retransmissions, again, without
necessarily implying a failure.

Requirement 1: A data-plane-driven fast-reroute system
should only react to major disruptive events while being
immune to noise and ordinary protocol behavior.

Dealing with fading signals. As shown in Figure 3, the am-
plitude of the signal (i.e., the count of TCP retransmissions)

(a) Failure Signal (RTT 1×) (b) Failure Signal (RTT 1.5×)

Figure 3: The signal generated by TCP flows experiencing
a connectivity problem is characteristic and composed of
subsequent waves of retransmissions (in different colors). The
waves have decreasing amplitude and increasing width.

quickly fades with the backoff round as the compounded sig-
nal spreads over longer and longer periods.

Requirement 2: A data-plane-driven fast-reroute system
should catch the failure signal within the first retransmission
rounds.

Mitigating the effect of sampling. As tracking retransmis-
sions in real-time requires state, monitoring all flows is not
possible. As such, a fast-reroute system will necessarily have
to track and detect failures using a subset of the flows. Yet, not
all flows are equally useful when it comes to failure reaction:
intuitively, highly active flows will retransmit almost imme-
diately, while long-lived flows might not retransmit at all (if
no packet was sent recently). From a fast-reroute viewpoint,
tracking non-active flows is useless.

Requirement 3: A data-plane-driven fast-reroute system
should select the flows it tracks according to their activity.

Ensuring forwarding correctness without control plane.
While data-plane signals are faster to propagate than control-
plane ones, they carry no information about the cause of
the failure and how to avoid it. As such, simply rerouting
to a backup next-hop upon detecting a problem might not
work, as it might also be affected by the failure. Worse, the
problem can even be at the destination itself, in which case
no alternative next-hop will actually work. Given this lack of
precise information, a data-plane-driven fast-reroute system
has no other choice but trying and observing.

Requirement 4: A data-plane-driven fast-reroute system
should select its backup next-hops in a data-driven manner,
verifying that traffic resumes.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 163

3 Overview
In this section, we provide a high-level description of Blink.
We first focus on its data-plane implementation (§3.1) and
how it: (i) selects flows to track; (ii) detects failures; and (iii)
reroutes traffic. We then describe how Blink can be deployed
at the network level (§3.2).

3.1 Blink, at the node level
Figure 4 describes the overall workflow of a Blink data-plane
pipeline. The pipeline is essentially composed of three consec-
utive stages: (i) a selection stage which efficiently identifies
active flows to monitor; (ii) a detection stage which analyzes
RTO-induced retransmissions across the monitored flows and
looks for any significant increase; and (iii) a rerouting stage
which is in charge of retrieving connectivity by probing al-
ternative next-hops upon failure. We now briefly describe the
key ingredients behind each stage and provide details in §4.

Selecting flows to track. For efficiency and scalability, a
Blink node cannot track all possible 700k+ IP prefixes or
even all the flows destined to some prefixes. An initial de-
sign choice thus concerns which prefixes to track, and which
specific flows to track for the selected prefixes.

Any approach based on data-plane signals is able to effec-
tively monitor only the prefixes carrying a certain amount of
packets. Blink is no exception, and therefore focuses on the
most popular destination prefixes. While this might seem a
limitation, it is actually a feature: the Internet traffic is typ-
ically skewed [32], and a very limited fraction of prefixes
carries most of the traffic, while the rest of the prefixes see
little to none. Blink can thus reroute the vast majority of the
traffic by tracking a limited number of prefixes. We designed
Blink to accommodate at least 10 k prefixes in current pro-
grammable switches (§5).

Regarding which flows to track for a prefix, Blink adopts a
simple but effective strategy. For each monitored prefix, the
Flow Selector tracks a very small subset (64, by default) of
active flows—i.e., flows that send at least one packet within
a moving time window (2 s by default). Tracked flows are
replaced as soon as they become inactive, or after a given
timeout (8.5 min by default) even if they remain active. We
did not reuse heavy hitter detection algorithms such as [36],
since they are designed to offer higher accuracy than we need
(heaviest flows instead of just active ones) at the expense of
additional complexity and resources.

Detecting failures. A central idea of our approach is to infer
remote failures, affecting a destination prefix, from the loss
of connectivity for a statistically significant number of previ-
ously active flows towards that destination. While possible
in principle, Blink does not look at the flows progression to
detect a failure, as only a subset of the flows may be affected,
e.g., because of load-balancing. This enables Blink to detect
partial failures (see §D).

The detection stage looks for evidence of connectivity dis-

Selection Detection Rerouting

forwarding paths

§4.2 §4.3 §4.4

path1

path2

traffic to prefix p

Keep active flows Track RTO-induced
retransmissions Data-driven backup selection

Inference
threshold

>x

policies
primary

secondary
TCP flows

Figure 4: Blink data-plane workflow and key ingredients.

ruption across the flows identified by the Flow Selector. It
stores key information on the last seen packet for each flow
and determines if a new packet traversing the data-plane
pipeline is a duplicate of the last seen one – an hallmark of
RTO-induced TCP retransmissions (see Figure 2). Based on
this check, for each destination prefix, it monitors the number
of flows with at least one recent retransmission over a slid-
ing time window of limited size (800 ms, by default). When
the majority of the monitored flows experience at least one
retransmission in the same time window, Blink infers a failure.

Rerouting quickly. When Blink detects a failure, the Rerout-
ing Module quickly reroutes traffic by modifying the next-hop
to which packets are forwarded, at line rate. In Blink’s cur-
rent implementation, the decisions of both when to reroute
and to which backup next-hop to reroute are configurable by
the operator based on their policies, as we believe that oper-
ators want to be in charge of this critical, network-specific
operation.

When rerouting, the Rerouting Module sends few flows
to each backup path to check which one is able to restore
connectivity. It then uses the best and working one for all the
traffic. The next-hops are configured at runtime by the opera-
tor to re-align the data-plane forwarding to the control-plane
(e.g., BGP) routes when the control plane has converged.

3.2 Blink, at the network level
The “textbook” deployment of Blink consists in deploying it
on all the border routers of the ISP to track all the transit traffic.
In this deployment, border routers either reroute traffic locally
(if possible) or direct it to another border router (e.g., through
an MPLS tunnel). Of course, nothing prevents the deployment
of Blink inside the ISP as well. In fact, Blink also works for
intra-ISP failures, e.g., local to the Blink node or on the path
from the Blink switch and an ISP egress point.

Blink is partially deployable. Deploying Blink on a sin-
gle node already enables to speed up connectivity recovery
for all traffic traversing that particular node. Also, Blink re-
quires no coordination with other devices: each Blink node
autonomously extracts data-plane signals from the travers-
ing packets, infers major connectivity disruptions, and fast
reroutes accordingly. To avoid forwarding issues, Blink veri-

164 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

fies the recovery of connectivity for the rerouted packets by
monitoring the data plane (see §4.4.2).

When rerouting, Blink also notifies the control plane, and
possibly the ISP operator. This enables coordination with the
control plane (e.g., future SDN controllers), such as imposing
the next-hop upon control-plane convergence, or discarding
routes that are not working in the data plane.

4 Data-plane design
In this section, we describe the data-plane pipeline that runs
on a Blink node, its internal algorithms, design choices and
parameter values (that we further discuss in §A). Figure 5
depicts the four main components of the Blink data-plane
pipeline: the Prefix Filter (§4.1), the Flow Selector (§4.2), the
Failure Inference (§4.3), and the Rerouting Module (§4.4).

4.1 Monitoring the most important prefixes
To limit the resources used by Blink, the operator should ac-
tivate Blink only for a set of important prefixes. A sensible
approach would be to activate it for the most popular desti-
nation prefixes, as they carry most traffic, although nothing
prevents the operator to select other prefixes – as long as there
is enough TCP traffic destined to each of them (§6.1.1). To ac-
tivate Blink for a prefix, the control plane adds an entry in the
metadata table at runtime which matches the traffic destined
to this prefix using a longest prefix match. Traffic destined to
a prefix for which Blink is not active goes directly to the last
stage of the data-plane pipeline and is forwarded normally
(i.e., find the next-hop and replace the layer 2 header).

The metadata table attaches to the matched packets a dis-
tinct ID according to their destination prefix. As memory
(e.g., register arrays) is often shared between the prefixes, this
ID is used as an index to the memory. Observe that Blink
could combine prefixes with common attributes (e.g., origin
AS or AS path) and which are likely to fail at the same time by
mapping them to the same ID. This would increase the inten-
sity of the signal, and would allow Blink to cover more traffic.
Additionally, packets that do not carry useful information,
i.e., non-TCP traffic, and certain signaling-only packets such
as SYN and ACK packets with no payload are not considered
by Blink and are directly sent to the final stage.

4.2 Selecting active flows to monitor
Packets destined to a monitored prefix go to the Flow Selector,
which will select a limited number of active flows (64 per
prefix), and keep information about each of them.

Limiting the number of selected flows. Each flow for a
given prefix is mapped to one of the 64 cells of a per-prefix
flow array using a 6-bit hash of the 4-tuple 2. While we expect
many flows to collide in the same cell, only one occupies a
cell. This is enforced by storing the flow_key, namely a 32-bit
hash of the 4-tuple in each cell of the flow array.

2The 4-tuple includes source and destination IP and the port numbers.

Flows colliding in the same cell are possible candidates
to substitute the flow currently occupying that cell when it
becomes inactive. It can happen that two flows mapped to the
same cell have the same flow_key, in which case both would
end up occupying the same cell, causing Blink to mix packets
from two distinct flows and thus preventing it to correctly
detect retransmissions for either flows. However, since we
use a total of 38 bits (6 bits to identify the cell and 32 bits for
the flow_key) to identify each flow, such collisions will rarely
happen. The probability of collision can be computed from a
generalization of the birthday problem: given n flows, what is
the probability that none of them returns the same 38 bit hash

value? This probability is equal to 238!
(238−n)! ∗

1
238n ≈ e−

n(n−1)
2∗238 .

With n = 10,000 flows for a given prefix, the probability to
have a collision is only 0.02%.

Replacing inactive flows. The challenge behind selecting
active flows is that flows have different packet rates, which
also change over time, e.g., an active flow at time t may not be
active anymore at time t +1s. A naive first-seen, first-selected
strategy would clearly not work, because the selected flows
might send packets at such a low rate that they would not
provide any timely information upon a connectivity disruption
– simply because there is no packet to retransmit3.

The Flow Selector monitors the activity of each selected
flow by tracking the timestamp of the last packet seen in the
register last_pkt_ts. As soon as the difference between the
current timestamp and last_pkt_ts is greater than an eviction
timeout, the flow is evicted and immediately replaced by an-
other flow colliding in the same cell. A TCP FIN packet also
causes immediate eviction. Intuitively, flow eviction makes
the Flow Selector work very well for prefixes which have
many high-rate flows at any moment in time, or a decent frac-
tion of long-living ones – which we expect to be often the case
for traffic towards popular destinations. Our evaluation on real
traffic patterns (see §6) confirms that this simple strategy is
sufficient to quickly infer major connectivity disruptions.

Calibrating the eviction timeout. A remaining question
for this component of the pipeline is how to dimension the
eviction timeout. On one hand, we would like to evict flows
as soon as their current packet rate is not amongst the highest
for that prefix. On the other hand though, Blink needs to keep
track of the flows long enough to see the first few packet
retransmissions induced by a RTO expiration upon connectiv-
ity interruptions. Indeed, an eviction timeout of few hundred
milliseconds is likely to be too low in many cases, since a
flow takes at least 200ms to issue the first pair of duplicate
packets4 (see §2). By default, the eviction timeout is set to
2 s , which ensures to detect up to two pairs of consecutive
duplicates for typical TCP implementations.

3Our experimental evaluation in §6 confirms this intuition
4200ms only happens if there is no new packet between the first unac-

knowledged packet and the first retransmission. Also, remember that Blink
considers only consecutive duplicates as packet retransmissions.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 165

input packets

IDdst IP prefix
p0 0

… …

p1 1
metadata
table

+
Stage #1:
attach metadata

0
last pkt ts
last ret ts

32bits
9bits

19bits

=99 bits/cell

flow key
nxt expect

per-prefix
flow array

Stage #3: find next-hop
and replace L2 header

output packets#
Stage #2: select flows
and run failure inference

per-prefix sliding window

0ms 800ms

80ms 720ms

160ms

32bits
63

last upd ts
curr bin ind

output port
next-hop MAC

sum

1 2 3

4

5

6

7

blackhole
fw_loops

1bit
2bits

4bits
9bits
6bits

#1 #2 #3

8

status 1bit

Flow Selector §4.2

Failure Inference §4.3

Rerouting
Module §4.4
per-prefix
next-hops list

Prefix
Filtering §4.1

Populated at runtime
by the control plane

Set by the control plane at
runtime (e.g., based on BGP)

last ret bin 4bits

Figure 5: Blink data-plane pipeline and its data structures. The blue arrows indicate all the steps a packet goes through.

4.3 Detecting failures
We now describe how Blink detects RTO-induced retransmis-
sions on the set of selected flows, and uses this information
to accurately infer failures.

Detecting RTO-induced retransmissions. A partial or
full retransmission of payload of the TCP packet can be de-
tected by comparing, the sum of its sequence number and pay-
load length to the corresponding sum of the previous packet
of the same flow. For example, in Figure 2 when the packet
S:1000 (packet with sequence number 1000) arrives Blink
will store 2100 (sum of sequence number and payload). If
the next arriving packet triggers storing 2100 as well, a re-
transmission is detected. Observe that we store the expected
sequence number per flow instead of the current to account
for cases where a packet is only partially acked.

Our design targets consecutive retransmissions for two
reasons. First, RTO-induced retransmissions are consecutive
(see Figure 2), whereas congestion-induced retransmissions
(i.e., noise) are likely to be interleaved by non-retransmissions,
and hence will (correctly) not be detected. Second, this detec-
tion mechanism requires a fixed number of memory per flow,
regardless the flow’s packet rate.

Counting the number of flows experiencing retransmis-
sions over time. Figure 3 shows that the TCP signal upon
a failure is short and fading over time. To quickly and accu-
rately detect the compounded signal across multiple flows,
we use a per-prefix sliding window. To implement a sliding
window of size k seconds in P4, we divide it in 10 consecutive
bins of 6-bit each, each storing the number of selected flows
experiencing retransmissions during k/10 seconds. As a re-
sult, instead of sliding for every packet received, the sliding
window moves every k/10 seconds period. More bins can
improve the precision but would require more memory. This
design enables us to implement the sliding window in P4
using only three information per prefix: (i) current_index, the

index of the bin focusing on the current period of time, (ii)
sum, the sum of all the 10 bins, and (iii) last_ts_sliding, the
timestamp in millisecond precision5 of the last time the win-
dow slid. The additional 19-bit and 4-bit per-flow information
last_ret_ts and last_ret_bin are also required to ensure that
a flow is counted maximum one time during a time window.
We provide more details about the implementation in §B.

Calibrating the sliding window. The duration of the slid-
ing window affects the failure detection mechanism. A long
time window (e.g., spanning several seconds) has more chance
to include unrelated retransmissions (e.g., caused by conges-
tions), whereas a short time window (e.g., 100ms) may miss
a large portion of the retransmissions induced by the same
failure because of the different RTO timers. We set the dura-
tion of the sliding window to 800ms, with 10 bins of 80ms.
First, because the minimum RTO is 200ms, a 800ms sliding
window ensures to include all the retransmissions induced by
the failure within the first second after the failure. Second,
because under realistic conditions (in terms of RTT [5,18,34]
and RTT variation [5]), flows would often send their first two
retransmissions within the first second after the failure.

Inferring failures. A naive strategy consisting in inferring
a failure when all the selected flows experience retransmis-
sions would result in a high number of false negatives due
to the fact that some flows may not send traffic during the
failure, or simply because some flows have a very high RTT
(e.g., >1s). On the other hand, inferring a failure when only
few flows experience retransmissions may result in many false
positives because of the noise. As a result, by default Blink in-
fers a failure for a prefix if the majority of the monitored flows
(i.e., 32) destined to that prefix experience retransmissions.

5We explain in §B how Blink can obtain millisecond precision

166 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.4 Rerouting at line rate
As soon as Blink detects a failure for a prefix, it immediately
reroutes the traffic destined to it, at line rate. We first show in
§4.4.1 how Blink maintains the per-prefix next-hops list used
for (re)routing traffic. Then, we show in §4.4.2 how Blink
avoids forwarding issues when it reroutes traffic.

4.4.1 Maintaining the per-prefix next-hops list

To reroute at line rate, Blink relies on pre-computed per-prefix
backup next-hops. The control plane computes the next-hops
consistently with BGP routes and specific policies defined
by the operator. For each prefix, Blink maintains a list of
next-hops, which are sorted according to their preference
(see Figure 2). Each next-hop has a status bit. To reroute
at line rate, Blink deactivates the primary next-hop by setting
its status bit to 1 (i.e., not working). Per-prefix next-hops
are stored in register arrays and are updated at runtime by
the controller, e.g., whenever a new BGP route is learned or
withdrawn. If a next-hop is not directly connected to the Blink
node, Blink can translate it into a forwarding next-hop using
IGP (or MPLS) information, as a normal router would do.

Falling back to the primary next-hop after rerouting.
After an outage, BGP eventually converges and Blink updates
the primary next-hop and use it for routing traffic. However,
Blink cannot know when BGP has fully converged. Our cur-
rent implementation waits for a fixed time (e.g., few minutes,
so that BGP is likely to have converged) after rerouting before
falling back to the new primary next-hop. We acknowledge
that this approach might not be optimal (e.g., it potentially
sacrifices path optimality), but it guarantees packet delivery
by using policy-compatible routes and avoids possible disrup-
tions caused by BGP path exploration [28]. Investigating a
better interaction with the control plane is left for future work.

4.4.2 Avoiding forwarding issues

Since Blink runs entirely in the data plane, it likely reroutes
traffic before receiving any control-plane information possibly
triggered by the disruption. In addition, even when carefully
selecting backup next-hops (e.g., by taking the most disjoint
AS path with respect to the primary path), we fundamentally
cannot have a-priori information about where the root cause of
a future disruption is, or where the backup next-hop sends the
rerouted traffic after the disruption. As a result, Blink funda-
mentally cannot prevent forwarding issues such as blackholes
(i.e., when the next-hop is not able to deliver traffic to the
destination) or forwarding loops to happen. The good news,
though, is that Blink includes mechanisms to quickly react to
forwarding issues that may inevitably occur upon rerouting.

Probing the backup next-hops to detect anomalies.
When rerouting, Blink reacts to forwarding anomalies by prob-
ing each backup next-hop with a fraction of the selected flows
in order to assess whether they are working or not. For exam-
ple, with 2 backup next-hops, one half of the selected flows is

rerouted to each of them. The non-selected flows destined to
this prefix are rerouted to the preferred and working backup
next-hop. Blink does this in the data plane using the per-prefix
next-hops list.

When a backup next-hop is assessed as not working, Blink
updates its status bit. After a fixed period of time since rerout-
ing (1s, by default), Blink stops probing the backup paths and
uses the preferred and working one for all the traffic, includ-
ing the selected flows. If all the backup next-hops are assessed
as not working, Blink reroutes to the primary next-hop and
falls back to waiting for the control plane to converge.

Avoiding blackholes. Blink detects blackholes by looking
at the proportion of restarted flows. After rerouting, Blink tags
a flow as restarted by switching its blackhole bit to 1 as soon
as it sees a packet for this flow which is not a retransmission.
When the probing period is over, Blink assesses a backup next-
hop as not working if less than half of the flows routed to that
next-hop have restarted. The duration of the probing period
(1s) is motivated by our goal of restoring connectivity at a
second-level time scale, while also providing retransmissions
with a reasonable time for reaching the destination through
the backup next-hop and triggering the restart of the flows. For
example, if Blink reroutes 778 ms after a failure (the median
case, see §6.1.1) and assuming a reasonable RTT (e.g., the
median case in [5, 18, 34]), it is likely that the rerouted flows
will send a retransmission and receive the acknowledgment
(if the next-hop is working) within the following 1 s period.

Breaking forwarding loops. Blink detects forwarding
loops by counting the number of duplicate packets for each
flow. The key intuition is that forwarding loops have a quite
strong signature: the same packets are seen over and over
again by the same devices. This signature is very similar to
the TCP signature upon a failure, where TCP traffic sources
start resending duplicate copies of the same packets for every
affected flows, at increasingly spaced epochs. As a result, the
algorithm used by Blink to detect retransmissions also detects
looping packets. To differentiate between normal retransmis-
sions and looping packets, Blink relies on the delay between
each duplicate packet. TCP can send for a flow up to 2 retrans-
missions in 1 s because of the exponential backoff (see §2.1),
whereas a packet trapped in a forwarding loop can be seen
many more times by the Blink node. Hence, Blink counts the
number of duplicate packets it detects for each flow after the
rerouting using the information fw_loops stored in each cell
of the flow array, and tags a backup next-hop as not working
by switching its status bit as soon as it detects more than 3
duplicate packets for a flow rerouted to this backup next-hop.

Observe that this mechanism reacts very quickly to the
most dangerous loops, i.e., the ones that recirculate packets
very fast and hence are most likely to overload network links
and devices. Longer and slower loops are mitigated in at most
1 s, as Blink assumes the respective next-hop cannot deliver
packets to the destination (i.e., there is a blackhole).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 167

5 Implementation
We have fully implemented the data-plane pipeline of Blink
as described in §4 in ≈900 lines of P416 [37] code and in
Python. We have also developed a P4Tofino implementation of
Blink that runs on a Barefoot Tofino switch [8]. Our P4Tofino
implementation currently only supports two next-hops, one
primary and one backup. Unlike our P416 implementation, our
P4Tofino implementation uses the resubmission primitive6 in
two cases: whenever the Flow Selector evicts a flow, or if two
retransmissions from same flow are reported within 800ms,
i.e., the duration of the sliding window. Note that these two
cases only occur for the set of selected flows (i.e., only 64
flows per prefix, see §4.2).

Our implementations of Blink only require one entry in the
metadata table, as well 6418 bits of memory (i.e., registers)
for each prefix monitored. This number is fixed, i.e., only this
amount of memory is required regardless of the amount of
traffic. This is an important feature for a system such as Blink,
which is intended to run on hardware with strong limitations.
On current programmable switches, we expect Blink to sup-
port at least 10k prefixes. We explain in §C how we precisely
derive the resources required by Blink.

6 Evaluation
We evaluate Blink’s accuracy, speed, and effectiveness in se-
lecting a working next-hop based on simulations and synthetic
data (§ 6.1, § 6.2). We then evaluate Blink using real traces
and actual hardware (§ 6.3).

6.1 Blink’s failure detection algorithm
Packet traces of real Internet traffic are hard to gather, and for
the few traces publicly available [9, 12], there is no ground
truth about possible remote failures on which Blink should
reroute. Still, it makes little sense to evaluate Blink on traffic
with non-realistic characteristics, or without knowing if Blink
is correctly or incorrectly rerouting packets. We therefore
adopt the following evaluation methodology.

Methodology. We consider 15 publicly available traces [9,12]
(listed in §E), accounting for a total of 15.8 hrs of traffic and
1.5 TB of data. For each prefix, we extract the distributions of
flow size, duration, average packet size, and RTT.7 We then
run simulations with ns-3 [3] on a dumbbell topology similar
to [38], where traffic sources generate flows exhibiting the
same distribution of parameters than the one extracted from
the real traces.

In some of our simulations, we introduce a failure after 10
seconds on the single link connecting the sources with the
destinations, thus affecting all flows. We refer the reader to §D
for an evaluation on partial failures. In other experiments, we

6A resubmitted packet goes twice in the ingress to take more actions
while being forwarded by the switch.

7To measure the RTT of the flows, we use the time difference between
the SYN and ACK packets sent by the initiator of a connection as described
in [22, 34].

introduce random packet drops and no failure at all. We collect
traffic traces for all simulations, feed them to our Python-
based implementation of Blink one by one, and check if and
when our system would fast reroute traffic.

Baselines. Since we are not aware of any previous work on
real-time failures detection on the basis of TCP-generated
signals, we compare Blink against two baseline strategies.
The first strategy, All flows, consists in monitoring up to 10k
flows for each prefix, and rerouting if any 32 of them sees
retransmissions within the same time window. This strategy
provides an upper bound on Blink’s ability to reroute upon
actual failures while ignoring memory constraints. The second
strategy, ∞ Timeout, is a variant of Blink where flows are only
evicted when they terminate (with a FIN packet), and never
because of the eviction timeout. This strategy assesses the
effectiveness of Blink’s flow eviction policy.

6.1.1 Blink often detects actual failures, quickly

We first evaluate Blink’s ability to detect connectivity disrup-
tions. For each real trace in our dataset, we randomly consider
30 prefixes which see a large number of flows (> 1000 flows
in the trace), and we generate 5 synthetic traces per prefix,
each with a different number of flows starting every second
(from 100 to 500 flows generated per second) and each con-
taining a failure at a preconfigured moment in time.

We then compute the True Positive Rate (TPR) of Blink
on these traces. For each synthetic trace, we check whether
Blink detects the failure (True Positive or TP) or not (False
Negative or FN). The TPR is computed over all the tested
synthetic traces, and is equal to T P/(T P+FN).

Figure 6a shows the TPR of Blink and our baseline strate-
gies as a function of the real trace used to generate the syn-
thetic ones. As expected, the All flows strategy exhibits the
best TPR among the three considered strategies at the cost
of impractical memory usage. We see that Blink has a TPR
which is very close to (i.e., less than 10% lower than) the All
flows strategy—while tracking only 64 flows. Overall, Blink
correctly reroutes more than 80% of the times for 13 traces
out of 15, with a minimum at 65% and a peak at 94%. At the
other extreme, the TPR of the ∞ Timeout strategy is much
lower than Blink, below 50% for most traces, highlighting the
importance of Blink’s flow eviction policy.

As the RTT of the flows affects the failure signal used by
Blink to detect failures (see §2.1), we also look at the TPR as
a function of the RTT. On the synthetic traces with a median
RTT below 50 ms (resp. above 300 ms), Blink has a TPR of
90.6% (resp. 76.0%). This shows that Blink is useful even
when flows have a high RTT.

As a follow-up, we then analyzed how much Blink’s TPR
varies with the number of flows active upon the failure (an
important factor for Blink’s performance). Figure 6b shows
that Blink’s TPR unsurprisingly increases if there are more
flows active during the failure. With very few active flows,
Blink cannot perform well, since the data-plane signal is too

168 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Different traffic patterns (b) Different number of flows

Figure 6: Blink has high TPR when relatively few flows
(e.g., more than 350) are active upon the failure.

weak. However, Blink’s TPR is already around 74% when
about 350 flows are active, and reaches high values (more
than 90%) with about 750 active flows. Again, Blink is much
closer to the All flows strategy than to the ∞ Timeout one,
although the All flows strategy reaches higher levels of TPR
for lower number of active flows. These results suggest that
Blink is likely to have a high TPR in a real deployment since
we expect to see �750 active flows for popular destinations.

Not only does Blink detect failures in most cases, but it also
recovers connectivity quickly upon failure detection. Figure 7
shows the time needed for Blink to restore connectivity for
each of the real traces used to generate the synthetic ones,
restricting on the cases where Blink detects the failure. Each
box shows the inter-quartile range of Blink’s reaction time.
The line in each box depicts the median value; the whiskers
show the 5th and 95th percentile. Blink retrieves connectivity
in less than 778 ms for 50% of the traces, and within 1 s for
69% of the traces. The All flows strategy restores connectivity
within 365 ms in the median case, whereas the ∞ Timeout
strategy needs 1.07 s (median). Naturally, Blink is faster when
the RTT of the flows is low. On the synthetic traces with a
median RTT below 50 ms, Blink reroutes within 625 ms in
the median case. Yet, when the median RTT is above 300 ms,
Blink is still fast and reroutes within 1.2 s in the median case.

6.1.2 Blink distinguishes failures from noise

One may wonder if Blink’s ability to detect failures may not be
due to it overestimating disruptions. By design, Blink cannot
detect a failure without TCP retransmissions. Hence, the ques-
tion is if Blink tends to overreact to relatively few, unrelated
retransmissions, e.g., induced by random packet loss.

To verify this, we generate synthetic traces with no failure
but with an increasing level of random packet loss (from
1% to 9%) for all traffic. The trace synthesis follows our
methodology of mimicking characteristics of real traffic for
one prefix. For each real trace and loss percentage, we repeat
the trace generation for 10 randomly extracted prefixes which
see a large number of flows. For this experiment, we generate
traces from 1-minute simulations where many (i.e., 500) new
flows start every second to ensure that Blink’s Flow Selector
is filled with flows, all potentially sending retransmissions.

Figure 7: Blink is fast, for all traffic patterns.

For all these synthetic traces, we check whether Blink de-
tects a failure (FP) or not (TN) and compute the False Positive
Rate (FPR) as FP/(FP+T N). Contrary to what happens for
the TPR in §6.1.1, we expect All flows to be a worst case sce-
nario as it sees all the retransmissions across all flows. On the
other hand, ∞ Timeout should perform better than Blink be-
cause inactive flows (which are not evicted) do not contribute
to the number of observed retransmissions.

Table 1 shows the FPR as a function of packet loss. Below
4% packet loss, Blink never detects failures. Between 4% and
7%, Blink incorrectly detected a failure for one synthetic trace
out of the 150 generated. This indicates that Blink would work
well under realistic traffic (we confirm this in §6.3.1), where
the packet loss is often below these values. As a reference,
the All flows strategy has an extremely high FPR, around 60%
(resp. 85%) for traces with 1% (resp. 2%) packet loss. The ∞

Timeout strategy has only one false positive when the packet
loss is between 5% and 10%, which, rather than a feature, is
an artifact of tracking non-active flows.

Summary. Our results show that Blink strikes a good balance
between detection of actual failures and robustness to noise
(i.e., TCP retransmissions not originated from a prefix-wide
connectivity disruption). Blink’s tradeoff is much better than
the naive strategies: not evicting flows would significantly
lower Blink’s ability to correctly reroute upon failures, while
monitoring all crossing flows comes with high sensitivity to
noise (in addition to a likely impractical memory cost). Blink
also recovers connectivity quickly (often within 1 s in our
experiments) when it detects a disruption.

6.2 Blink’s rerouting algorithm
We now focus on the Blink’s Rerouting Module. Our design
ensures that rerouting is done entirely in the data plane, at line
rate —we confirm this by experimenting with a Tofino switch,
as described in §6.3. In this section, we therefore evaluate
whether Blink is effective in rerouting to a working next-hop.

Methodology. We emulate the network shown in Figure 8 in a
virtual machine attached to 12 cores (2.2 GHz). The P4 switch
has three possible next-hops to reach the destination, R1 being

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 169

packet loss % 1 2 3 4 5 6 7 8 9

False Positive Rate (%)
Blink 0 0 0 0.67 0.67 0.67 0.67 1.3 2.0
All flows 59 85 93 94 95 96 97 97 98
∞ timeout 0 0 0 0 0.67 0.67 0.67 0.67 0.67

Table 1: Blink avoids incorrectly inferring failures when
packet loss is below 4%.

the primary next-hop, R2 the most preferred backup next-hop
and R3 the less preferred backup one. R1 and R3 use R5 as
next-hop to reach the destination. R2 uses a different next-hop
to reach the destination depending on the experiment, thus
we do not depict it in the figure.

We emulate the P4 switch by running our P416 implemen-
tation of Blink in the P4 behavioral model software switch [4].
The P4 switch running Blink is linked to a Mininet network
emulating the other switches. The source and the destination
are Mininet hosts running TCP cubic.

We start 1000 TCP flows from the source towards the des-
tination. To show the effectiveness of the Flow Selector, 900
flows have a low packet rate (chosen uniformly at random
between 0.2 and 1 packet/s) while only 100 have a high packet
rate (chosen uniformly at random between 2.5 and 20 pack-
et/s). We use tc to control the per-flow RTT (chosen uni-
formly at random between 10 ms and 300 ms), and to drop 1%
of the packets on the link between R5 and the destination in
order to add a moderate level of noise. We first start the 900
flows with a low packet rate, so that the Flow Selector first
selects them. Right after, we start the 100 remaining flows.
Finally, after 20 s to 30 s, we fail the link between R1 and R5.

Blink quickly detects and breaks loops. We configure R2
to use the P4 switch as next-hop to reach the destination so
that it creates a forwarding loop (by sending traffic back to the
source) when Blink reroutes traffic to R2. Figure 9a shows the
traffic captured at R1, R2 and R3 (top) and at the destination
(bottom). Prior the failure, the traffic goes through R1, the
primary next-hop. Upon the failure, Blink probes if any of
the available next-hops can recover connectivity: it sends half
of the flows in the Flow Selector to R2 and the other half to
R3. All the remaining flows go to R2 (preferred over R3).
Blink detects the forwarding loop induced by R2 very quickly
(only 8 packets were captured on R2) and immediately deac-
tivates this next-hop to reroute all the traffic to R3, restoring
connectivity within a total of 800 ms.

Blink quickly detects and routes around blackholes. In a
separate experiment, we configure R2 to use R5 as next-hop,
and we fail the link between R2 and R5 in addition to the one
between R1 and R5. Figure 9b shows the traffic captured at
R1, R2 and R3 (top) and at the destination (bottom). Upon the
failure, Blink reroutes to R3 half of the selected flows, and to
R2 the other half of the selected flows plus all the non-selected

Figure 8: The network used to evaluate Blink’s rerouting.
Arrows indicate forwarding next-hops (R2 uses different next-
hops depending on the experiment).

ones (since R2 is preferred over R3). However, because the
link between R2 and R5 is down, the packets sent to R2 are
just dropped by R2. After 1 s, Blink detects the blackhole and
reroutes all the traffic to R3, restoring connectivity. The total
downtime induced by the failure is 1.7 s.

6.3 Blink in the real world
So far, we have evaluated Blink with simulations and emu-
lations. We now report on experiments that we run on real
traffic traces and on a Barefoot Tofino switch.

6.3.1 Running Blink on real traces

In §6.1, we use simulated (but realistic) traffic traces to gain
some confidence on Blink’s accuracy in detecting connectivity
disruptions. An objection might be that our synthetic traces
are not fully realistic. We therefore run Blink on the original
real traces listed in §E and tracked when it detects a failure8.
Observe that unlike in §6.1, here we do not simulate failures.
Since we do not have ground truth about actual failures in
real traces, we manually checked each case for which Blink
detected a failure so as to confirm the connectivity disruption.

Over the 15.8 hrs of real traces, Blink detected 6 failures.
In these 6 cases, the retransmitting flows represent 42%, 57%,
71%, 82%, 82% and 85% of all the flows active at that time
and destined to the affected prefix. These numbers confirms
that Blink is not sensitive to normal congestion events, and
only reroutes in cases where a large fraction of flows experi-
ence retransmissions at the same time.

6.3.2 Deploying Blink on Barefoot Tofino switches

We finally evaluate our P4Tofino implementation of Blink on a
Barefoot Tofino Wedge 100BF-32X. To do so, we generate
TCP traffic between two servers connected via our Tofino
switch running Blink. The server receiving the traffic has a
primary and a backup physical link with the Tofino switch.
We generate 1000 flows, 900 of which have a low packet rate
and 100 a high one (similarly to §6.2). To show the influence
of the RTTs on Blink when running on Tofino, we run two
experiments, one with sub-1ms RTT, and another one in which
we use tc to simulate for each flow an RTT chosen uniformly
at random between 10 ms and 300 ms. After 30 s, we simulate

8We omitted failures detected for 73 prefixes (out of 2.28M) which con-
stantly showed high-level of retransmissions (>20% of the flows retransmit-
ting >50% of the time). Blink could detect such outliers at runtime.

170 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Blink quickly breaks loops (b) Blink reacts to blackholes

Figure 9: Traffic measurements quantifying Blink’s speed in
reacting to forwarding anomalies upon rerouting.

a failure on the primary path, and measure the time Blink takes
to retrieve connectivity via the backup link.

Blink-Tofino managed to restore connectivity in <1s.
Blink retrieves connectivity in only 460ms with sub-1ms RTT,
and in about 1.1 s when the RTT of the flows is between 10 ms
and 300 ms. We obtain comparable results (470 ms of down-
time with sub-1 ms RTT) when running the same experiments
with 3,000 flows among which 300 has a high packet rate.

7 Deployment considerations
We now discuss three possible operational concerns when
deploying Blink in a real ISP network: security, adaptability
and interaction with deployments of Blink in other ISPs.

Security. As potentially any Internet user can generate data-
plane traffic, security could be a concern for running Blink
in operational networks. The main threat is that malicious
users could manipulate Blink to reroute traffic by sending
fake retransmissions for flows towards a victim destination.

Blink’s design itself significantly mitigates security risks.
For any given destination, Blink reroutes traffic if most of
the 64 monitored flows retransmit nearly at the same time.
The monitored flows are selected among all active flows for
the given destination, and flows sending more packets are
intuitively privileged by the Flow Selector substitution policy.
Hence, a brute-force attack would have to generate an amount
of traffic comparable to the legitimate traffic destined to the
attacked prefix in order to have a reasonable success chance.
The fact that Blink focuses on popular destinations, typically
attracting large traffic volumes and many flows, implies that
the attacker would have to generate lots of traffic to trick Blink–
a condition under which the attack would be quite visible,
could be monitored and potentially mitigated at runtime.

A Blink-savvy attacker could instead produce few flows
with a high and constant packet rate, and which never termi-
nate, so that when one of them is selected by the Flow Selector,
it remains selected forever. Blink will eventually monitor 32
of them, making the attacker ready to operate. However, Blink
is built to evict a flow, even if active, after a fixed time (8.5 min
by default, see §C). This implies that the attacker only has

Figure 10: A Tofino switch running Blink retrieves connec-
tivity within 460 ms if the RTT of the affected flows is below
1 ms (top figure); or within 1.1 s if the per-flow RTT ranges
between 10 ms and 300 ms (bottom figure).

a short time window during which she can perform the at-
tack. Evicting active flows more frequently (e.g., every few
seconds instead of 8.5 min) would better prevent such attacks,
but would affect the failure detection mechanism of Blink
because some retransmissions can be missed.

While the above mechanisms do not make Blink bullet-
proof, we believe that they make our system’s attack surface
reasonably small. We plan to perform a deeper analysis of
Blink’s security concerns in future work.

Adaptability. Clearly, a challenge in a real deployment of
Blink is how to set its parameters correctly (see §A). This
is hard because operators have different requirements, and
traffic can exhibit varying characteristics. In §6, we show that
it is definitely possible to set the parameter values so that
Blink works well in real situations. Yet, in a real deployment,
we envision that Blink could first be run in “learning mode”,
where it sends notifications to the controller instead of rerout-
ing traffic. The controller then evaluates the accuracy of the
system, for instance using control-plane data, and turns Blink
on if the accuracy is good, or tune some parameters otherwise.

Internet scale deployment. So far, we have described Blink’s
deployment in a single network (see §3). Of course, all ISPs
have the same incentives to deploy Blink (i.e., for fast con-
nectivity recovery), so we envision that multiple, possibly
all, ISPs might deploy Blink. Multi-AS deployment of Blink
makes rerouting trickier. For example, if an Internet path tra-
verses multiple Blink switches, it is not clear which ones will
reroute, and whether the resulting backup path will be opti-
mal. Blink switches can also interfere with each other. For
example, if a Blink switch reroutes traffic to a backup path, a
downstream Blink switch in the original path may lose part
of the data-plane signal, preventing it to detect the failure.
Finally, Blink’s rerouting can also increase the likelihood of
creating inter-domain loops, since Blink selects backup next-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 171

hops based on BGP information, which might not be truthful
if the downstream switches also run Blink.

While a full characterization of Blink’s behavior in an
Internet-scale deployment is outside the scope of this pa-
per, Blink’s design already guarantees some basic correctness
properties. Blink already monitors for possible forwarding
loops, and quickly breaks them by using additional backup
next-hops (see §4.4.2). After having explored all possible
backup next-hops, Blink also falls back to the primary next-
hop indicated by the control-plane, even if not working: this
would prevent oscillations where two or more Blink switches
keep changing their respective next-hops in the attempt to
restore connectivity. Finally, Blink switches do use BGP next-
hops after BGP convergence.

Path optimality is much harder to guarantee within a sys-
tem like Blink, where network nodes independently reroute
traffic, without any coordination. However, we believe that
path optimality can be transiently sacrificed 9 in the interest
of restoring Internet connectivity as quickly as possible.

8 Related Work
We now discuss related work beyond fast reroute frameworks
for local failures (such as [14, 29, 35]), which we already
discussed in the introductory section.

Recent research explores how to quickly localize remote
inter-domain failures and reroute upon them, assuming no
data-plane programmability. Prominently, ARROW [30] uses
tunnels between endpoints and ISPs in combination with spe-
cial control-plane packets. Gummadi et al. [17] infer failures
from the data plane, and attempt to recover connectivity by
routing indirectly through a small set of intermediaries. Sev-
eral other approaches (e.g., [13, 19, 21]) infer connectivity
problems from BGP messages. Some of them also diagnose
these problems and fast-reroute upon their detection. By infer-
ring failures from data-plane packets, Blink is fundamentally
faster than control-plane based solutions (by minutes, e.g., in
Figure 1). Also, unlike [17,30], Blink is deployable on a single
node, and does not require interaction with other devices.

Data-Driven Connectivity [25] (DDC) ensures connectiv-
ity within a network via data-plane mechanisms. Chiesa et
al. [11] consider generalizations of the DDC approach, and
study the relationship between the resilience achieved through
data-plane primitives and network connectivity. The work
from Sedar et al. [33] shows how to program a hardware
switch so that it automatically reroutes the traffic to a working
path upon failure of directly connected links. In contrast to the
above line of work, Blink fast recovers upon failures occur-
ring in other networks, and uses data-plane programmability
to detect connectivity disruptions rather than to dynamically
configure post-failure paths.

Data-plane traffic has also been widely used in the past for

9Even with an Internet-wide deployment of Blink, path optimality will be
restored when the control plane converges to post-failure paths, or operators
will manually solve connectivity disruptions after Blink’s notifications.

ex-post measurement analyses. For example, WIND [20] in-
fers network performance problems, including outages, from
traffic traces by leveraging (among others) structural charac-
teristics of TCP flows. In Blink, we perform online packet
analysis, at line rate, but only to infer major connectivity dis-
ruptions – with simple yet effective algorithms that fit the
limited resources of real switches.

Few approaches monitor traffic using a programmable data
plane. DAPPER is an in-network solution using TCP-based
signals to identify the cause of misbehaving flows (whether
the problem is in the network or not) [16]. Blink does not
aim at identifying the cause of a particular flow failing but
rather that many flows (for the same prefix) fail at the same
time. In addition, unlike Blink, DAPPER requires symmetric
routing for its analysis, which is often not the case in ISP
environments. Sivaraman et al. [36] propose a heavy-hitter
detection mechanism running entirely in the data plane. As
Blink, it stores flows in an array and relies on flow eviction
to keep track of the heaviest ones. Unlike [36], Blink looks
for active flows instead of the heaviest ones, on a per-prefix
basis.

Recent work from Molero et al. [26] shows that key control-
plane tasks such as failure detection, notifications and new
path computations can be offloaded to the data plane. Such
systems could directly benefit from Blink, e.g., by leveraging
it to detect remote failures and trigger network-wide conver-
gence accordingly.

9 Conclusions
Blink is the first data-driven fast-reroute framework targeting
remote connectivity failures. By operating entirely in the
data plane, at line rate, Blink restores connectivity in O(s).
We evaluate Blink with realistic traces, taking into account
different traffic conditions as well as noise due to significant
packet loss. Our results show that Blink enables sub-second
connectivity retrieval in the majority of the scenarios, while
preventing unnecessary traffic shifts in the presence of noise.
By deploying Blink on a Barefoot Tofino switch, we also
confirm that it can run in commercial programmable devices.

10 Acknowledgments
We are grateful to the NSDI anonymous reviewers and our
shepherd, Harsha Madhyastha, for their insightful comments.
We also thank the members of the Networked Systems Group
at ETH Zurich for their valuable feedback. This work was
supported by a Swiss National Science Foundation Grant
(Data-Driven Internet Routing, #200021-175525). This re-
search was also supported by the U.S. Department of Home-
land Security (DHS) Science and Technology Directorate,
Cyber Security Division (DHS S&T/CSD) via contract num-
ber 70RSAT18CB0000015.

172 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] CNN - Time Warner Cable comes back from nationwide Internet

outage, 2014. https://money.cnn.com/2014/08/27/media/
time-warner-cable-outage/index.html.

[2] RIPE RIS Raw Data, 2016. https://www.ripe.net/
data-tools/stats/ris/.

[3] Network Simulator 3., 2018. https://www.nsnam.org/.

[4] P4 behavioral model., 2018. https://github.com/p4lang/
behavioral-model.

[5] Jay Aikat, Jasleen Kaur, F. Donelson Smith, and Kevin Jeffay. Variabil-
ity in tcp round-trip times. In ACM IMC’03, New York, NY, USA.

[6] Alia K. Atlas and Gagan Choudhury and David Ward. IP Fast Reroute
Overview and Things we are struggling to solve. https://bgp.nu/
~dward/IPFRR/IPFRR_overview_NANOG.pdf.

[7] A. Atlas and A. Zinin. Basic Specification for IP Fast Reroute: Loop-
Free Alternates. RFC 5286, September 2008.

[8] Barefoot. Barefoot Tofino, World’s fastest P4-programmable Ether-
net switch ASICs. https://barefootnetworks.com/products/
brief-tofino/.

[9] CAIDA. The CAIDA UCSD Anonymized 2013/2014/2015/2016/2018
Internet Traces. http://www.caida.org/data/passive/
passive_2013_dataset.xml.

[10] CAIDA. The UCSD Network Telescope. https://www.caida.
org/projects/network_telescope/.

[11] Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrovic, Andrei Gurtov,
Aleksander Madry, Michael Schapira, and Scott Shenker. On the re-
siliency of static forwarding tables. IEEE/ACM Transactions on Net-
working, 2017.

[12] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data reposi-
tory at the wide project. In USENIX ATEC’00.

[13] Anja Feldmann, Olaf Maennel, Z Morley Mao, Arthur Berger, and
Bruce Maggs. Locating Internet routing instabilities. ACM SIGCOMM
CCR, 2004.

[14] Clarence Filsfils. BGP Convergence in much less than a second, 2007.
Presentation NANOG 23.

[15] Pierre Francois, Clarence Filsfils, John Evans, and Olivier Bonaventure.
Achieving sub-second IGP convergence in large IP networks. ACM
SIGCOMM CCR, 2005.

[16] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper:
Data plane performance diagnosis of tcp. In ACM SOSR’17, 2017.

[17] Krishna P. Gummadi, Harsha V. Madhyastha, Steven D. Gribble,
Henry M. Levy, and David Wetherall. Improving the reliability of
internet paths with one-hop source routing. In USENIX OSDI’04.

[18] Toke Høiland-Jørgensen, Bengt Ahlgren, Per Hurtig, and Anna Brun-
strom. Measuring latency variation in the internet. In ACM CoNEXT

’16.

[19] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent
Vanbever. SWIFT: Predictive Fast Reroute. In ACM SIGCOMM’17.

[20] Polly Huang, Anja Feldmann, and Walter Willinger. A non-instrusive,
wavelet-based approach to detecting network performance problems.
In ACM SIGCOMM Workshop on Internet Measurement, 2001.

[21] Umar Javed, Italo Cunha, David Choffnes, Ethan Katz-Bassett, Thomas
Anderson, and Arvind Krishnamurthy. PoiRoot: Investigating the Root
Cause of Interdomain Path Changes. In ACM SIGCOMM, 2013.

[22] Hao Jiang and Constantinos Dovrolis. Passive estimation of tcp round-
trip times. ACM SIGCOMM CCR, 2002.

[23] D. Katz and D. Ward. Bidirectional Forwarding Detection. RFC 5880,
2010.

[24] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. De-
layed internet routing convergence. ACM SIGCOMM CCR, 2000.

[25] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael
Schapira, and Scott Shenker. Ensuring Connectivity via Data Plane
Mechanisms. In USENIX NSDI’13.

[26] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever.
Hardware-accelerated network control planes. In ACM HotNets ’18.

[27] University of Oregon. Route Views Project, 2016. www.routeviews.
org/.

[28] Ricardo Oliveira, Beichuan Zhang, Dan Pei, Rafit Izhak-Ratzin, and
Lixia Zhang. Quantifying path exploration in the internet. In Proceed-
ings of the 6th ACM SIGCOMM Conference on Internet Measurement,
IMC ’06, pages 269–282. ACM, 2006.

[29] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-TE
for LSP Tunnels. RFC 4090, May 2005.

[30] Simon Peter, Umar Javed, Qiao Zhang, Doug Woos, Thomas Anderson,
and Arvind Krishnamurthy. One tunnel is (often) enough. ACM
SIGCOMM CCR, 2014.

[31] Matt Sargent, Jerry Chu, Dr. Vern Paxson, and Mark Allman. Comput-
ing TCP’s Retransmission Timer. RFC 6298, June 2011.

[32] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin
Huang. Leveraging zipf’s law for traffic offloading. ACM SIGCOMM
CCR, 2012.

[33] Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi,
and Stefan Schmid. Supporting emerging applications with low-latency
failover in p4. In Proceedings of the 2018 Workshop on Networking
for Emerging Applications and Technologies, NEAT ’18. ACM, 2018.

[34] S. Shakkottai, N. Brownlee, A. Broido, and k. claffy. The RTT distri-
bution of TCP flows on the Internet and its impact on TCP based flow
control. Technical report, Cooperative Association for Internet Data
Analysis (CAIDA), Mar 2004.

[35] M. Shand and S. Bryant. IP Fast Reroute Framework. RFC 5714,
January 2010.

[36] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich,
S. Muthukrishnan, and Jennifer Rexford. Heavy-hitter detection en-
tirely in the data plane. In ACM SOSR’17.

[37] The P4 Language Consortium. P4 16 Language Specification. https:
//p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html.

[38] Kashi Venkatesh Vishwanath and Amin Vahdat. Realistic and respon-
sive network traffic generation. ACM SIGCOMM CCR, 2006.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 173

https://money.cnn.com/2014/08/27/media/time-warner-cable-outage/index.html
https://money.cnn.com/2014/08/27/media/time-warner-cable-outage/index.html
https://www.ripe.net/data-tools/stats/ris/
https://www.ripe.net/data-tools/stats/ris/
https://www.nsnam.org/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://bgp.nu/~dward/IPFRR/IPFRR_overview_NANOG.pdf
https://bgp.nu/~dward/IPFRR/IPFRR_overview_NANOG.pdf
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.caida.org/data/passive/passive_2013_dataset.xml
https://www.caida.org/projects/network_telescope/
https://www.caida.org/projects/network_telescope/
www.routeviews.org/
www.routeviews.org/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

Appendix
A Blink parameters
In this section, we list in Table 2 the main parameters used by
Blink, and show how each of them can affect the performance
of the system. We denote as TPR the True Positive Rate over
all the synthetic traces generated from the 15 real traces listed
in Table 3 and used in §6.1.1. The TPR with Blink’s default
values over all the synthetic traces is 83.9%. FPR denotes the
False Positive Rate and is computed similarly as in §6.1.2.

B Implementation of a sliding window in P416

In this appendix section, we show how we implemented a
sliding window in the P416 language.

Blink uses one sliding window per prefix to count the num-
ber of flows experiencing retransmissions over time among
the selected flows (§4.3). Besides the 10 bins, Blink needs
three other meta-information: (i) current_index, the index of
the bin focusing on the current period of time, (ii) sum, the
sum of all the 10 bins and (iii) last_ts_sliding, the timestamp in
millisecond precision of the last time the window slid. When
Blink detects a retransmission, it increments by one both the
value associated with the bin at the index current_index and
the sum. Upon reception of a packet at timestamp t, and
assuming the window covers a period of k millisecond, if
t − last_ts_sliding > k/10, the window slides by one doing
the following operations. To find the index of the bin that
has expired, Blink computes (current_index+ 1) mod 1010.
Then, it subtracts to sum the value stored in the expired
bin, and then resets it. Then, Blink makes current_index
point to the expired bin and finally updates last_ts_sliding
to last_ts_sliding + k. As a result, the counter sum always
returns the number of flows experiencing retransmissions dur-
ing the last 9/10k to k seconds.

It can happen that a flow sends several retransmissions
within a time window. To avoid summing several retransmis-
sions from same flow within the same time window, Blink
uses two additional per-flow metadata called last_ret_ts and
last_ret_bin. The former stores the timestamp of the last re-
transmission reported for the corresponding flow. The later
stores the bin index corresponding to this timestamp. Con-
sider that a retransmission for a flow is reported at time t, then
if t − last_ret_ts < k, Blink decrements by one the value in
the bin at the index last_ret_bin, and increments by one the
value associated to the current bin. The sum remains the same,
and last_ret_ts is set to the current timestamp and last_ret_bin
is set to the current bin index.

C Hardware Resource Usage
Blink is intended to run on programmable switches with lim-
ited resources. As a result, we designed Blink to scale based

10As the modulo operator is not available in P416, we implement this with
if-else conditions.

(a) Accuracy (b) Speed

Figure 11: Blink is accurate and fast even for partial failures
affecting 70% or more of the flows.

on the number prefixes it monitors, and not on the actual
amount of traffic destined to those prefixes. In this section, we
derive the resources required by Blink to work for one prefix,
and show that it can easily scale to thousands of prefixes.

First, for every prefix, Blink needs one entry in the meta-
data table. Then, for each selected flows, the Flow Selector
needs 99 bits (see Figure 5). As Blink monitors 64 flows
per prefix, a total of 64∗99 = 6336 bits are required for one
prefix. To save memory, Blink does not store the timestamps
(e.g., last_pkt_ts and last_ret_ts) in 48 bits (the original size
of the metadata), but instead approximates them using only
9 bits for seconds and 19 bits for milliseconds. To obtain the
second (resp. millisecond) approximation of the current times-
tamp, Blink shifts the original 48-bit timestamp to the right.
To fill in 9 (resp. 19) bits, Blink also resets the timestamps
every 512 s (≈ 8.5min) by subtracting to the original 48-bit
timestamp a reference_timestamp. The reference_timestamp
is simply a copy of the original 48-bit timestamp (stored in a
register shared by all the prefixes) that is updated only every
512 s. Note that the Flow Selector evicts a flow if the current
timestamp is lower than the timestamp of the last packet seen
for that flow, which happens whenever the timestamps are
reset (i.e., every ≈ 8.5min). This is actually good for security,
as we explain in §7.

The sliding window requires 10 bins of 6 bits each, as
well as 4+ 9+ 6 = 19 bits to store additional information
(see Figure 5), making a total of 79 bits. For the rerouting,
Blink only requires 1 status bit per next-hop. With three next-
hops, 3 extra bits are required. In total, for one prefix, Blink
requires 6336+79+3 = 6418 bits. As current programmable
switches have few megabytes of memory, we expect Blink to
support up to 10k prefixes, possibly even more.

D Evaluating Blink on partial failures
In this section, we evaluate the performance of Blink upon
partial failures, and compare it to our two baselines, the All
flows and ∞ Timeout strategies. We consider partial failures
to be those affecting only a portion of the traffic (e.g., due to
load-balancing).

For this evaluation, we randomly picked 10 prefixes from

174 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Component Name Default value Tradeoff

Flow Selector
§4.2

Eviction
timeout

2s

With a short eviction time (e.g., 0.5s) flows can be evicted
while they are retransmitting, reducing the TPR to 66.3%.
With a longer eviction time (e.g., 3s) inactive flows take more time
to be substituted by active ones, reducing the TPR to 77.7%

Number of cells
per prefix

64

Monitoring a small fraction of flows may result in a FPR increase.
For example, with only 16 cells, the FPR is 2% for only a 3% of packet
loss. However, the bigger the number of cells the smaller the amount of
prefixes we can monitor due to memory constrains. With 64 cells (=64
flows monitored per prefix) Blink can support at least 10k prefixes.

Failure Inference
§4.3

Sliding window
duration

800ms

A long time window (e.g., 1.6s) is more likely to report all the
retransmitting flows, increasing the TPR to 89.8%, but also reports
more unrelated retransmissions, increasing the FPR (0.67% for 3%
of packet loss). A shorter time window (e.g., 400ms) limits
the FPR (0% for 9% of packet loss) but decreases the TPR to 49.4%.

Sliding window
number of bins

10
More bins increases the precision, at the price of using slightly
more of memory. 10 bins give a precision > 90%.

Inference
threshold

50%
A lower threshold, such as 25% (i.e., 16 flows retransmitting when
using 64 cells) gives a better TPR (94.8%), but increases the FPR
to 7.3% for 4% of packet loss.

Rerouting Module
§4.4

Backup next-hop
probing time

1s
A longer probing period better prevents wrongly assessing a next-hop
as not working, at the price of waiting more time to reroute.

Table 2: Parameters used by Blink, with their default values, and how they can affect the performance of the system.

each real trace listed in Table 3, and generated 1 synthetic
trace for each of them, following the guidelines described
in §6.1. For each trace, we simulated partial failures with 9
different intensities (from 10% to 90% of the flows being
affected). For these synthetic traces, 1223 flows (resp. 264)
were active upon the failures in the median case (resp. 10th
percentile).

Blink works in the majority of the cases for failures affect-
ing 70% or more of the flows. Figure 11a shows the TPR of
Blink as a function of the percentage of flows affected by the
failure. Unsurprisingly, because Blink needs to detect at least
32 flows experiencing retransmissions to detect the failure,
the TPR is close to 0% if the failure affects less than 50% of
the flows. For failures affecting 70% of the flows (resp. 90%),
Blink works for 53% (resp. 77%) of the failures. The All flows
strategy performs well even for small failures affecting 20%
of traffic, whereas the ∞ Timeout performs badly even for

failures affecting 90% of the traffic.

Blink restores connectivity within one second in the me-
dian case for failures affecting at least 70% of the flows.
Figure 11b shows the time needed for Blink to restore con-
nectivity upon a partial failure. Logically, as we decrease
the amount of affected flows, the detection speed of Blink
increases. Yet, Blink is able to restore connectivity within 1 s
for the majority of the cases if a failure affects 70% of the
flows or more.

E Real traces used in the evaluation
In order to evaluate Blink with different traffic patterns (see
§6), we use 15 real traces from different years, captured on
different links and provided by different organizations, namely
CAIDA [9] and MAWI [12]. Table 3 lists them and some of
their characteristics.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 175

Trace ID Name Date Duration Bit Rate Trace Size RTT median

1 caida-equinix-chicago.dirA 29-05-2013 3719 s 1631 Mbps 67 GB 200.22 ms

2 caida-equinix-chicago.dirB 29-05-2013 3719 s 2119 Mbps 73 GB 155.65 ms

3 caida-equinix-sanjose.dirA 21-03-2013 3719 s 2920 Mbps 122 GB 104.94 ms

4 caida-equinix-sanjose.dirB 21-03-2013 3719 s 1618 Mbps 82 GB 191.11 ms

5 caida-equinix-chicago.dirA 19-06-2014 3719 s 1629 Mbps 60 GB 209.72 ms

6 caida-equinix-chicago.dirB 19-06-2014 3719 s 6271 Mbps 163 GB 160.91 ms

7 caida-equinix-sanjose.dirA 19-06-2014 3719 s 3722 Mbps 144 GB 169.71 ms

8 caida-equinix-chicago.dirA 17-12-2015 3776 s 2540 Mbps 111 GB 240.18 ms

9 caida-equinix-chicago.dirB 17-12-2015 3776 s 3151 Mbps 99 GB 68.30 ms

10 caida-equinix-chicago.dirA 21-01-2016 3819 s 2250 Mbps 126 GB 224.09 ms

11 caida-equinix-chicago.dirB 21-01-2016 3819 s 4959 Mbps 143 GB 69.57 ms

12 caida-equinix-nyc.dirA 15-03-2018 3719 s 3027 Mbps 94 GB 306.76 ms

13 caida-equinix-nyc.dirA 19-04-2018 3719 s 3893 Mbps 125 GB 283.82 ms

14 mawi-samplepoint-F 12-04-2017 7199 s 878Mbps 74 GB 124.14 ms

15 mawi-samplepoint-F 07-05-2018 900 s 1098 Mbps 10 GB 156.20 ms

Total 15.8 h 1.5 TB

Table 3: List of 15 real traces that we use to evaluate Blink. Altogether, they cover a total of 15.8 hrs of traffic.

176 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Hydra: a federated resource manager for data-center scale analytics

Carlo Curino Subru Krishnan Konstantinos Karanasos Sriram Rao∗

Giovanni M. Fumarola Botong Huang Kishore Chaliparambil Arun Suresh

Young Chen Solom Heddaya Roni Burd Sarvesh Sakalanaga Chris Douglas

Bill Ramsey Raghu Ramakrishnan

Microsoft

Abstract

Microsoft’s internal data lake processes exabytes of data over

millions of cores daily on behalf of thousands of tenants.

Scheduling this workload requires 10× to 100× more de-

cisions per second than existing, general-purpose resource

management frameworks are known to handle. In 2013, we

were faced with a growing demand for workload diversity

and richer sharing policies that our legacy system could not

meet. In this paper, we present Hydra, the resource manage-

ment infrastructure we built to meet these requirements.

Hydra leverages a federated architecture, in which a

cluster is comprised of multiple, loosely coordinating sub-

clusters. This allows us to scale by delegating placement of

tasks on machines to each sub-cluster, while centrally coor-

dinating only to ensure that tenants receive the right share

of resources. To adapt to changing workload and cluster

conditions promptly, Hydra’s design features a control plane

that can push scheduling policies across tens of thousands of

nodes within seconds. This feature combined with the feder-

ated design allows for great agility in developing, evaluating,

and rolling out new system behaviors.

We built Hydra by leveraging, extending, and contributing

our code to Apache Hadoop YARN. Hydra is currently the

primary big-data resource manager at Microsoft. Over the

last few years, Hydra has scheduled nearly one trillion tasks

that manipulated close to a Zettabyte of production data.

1 Introduction

As organizations amass and analyze unprecedented amounts

of data, dedicated data silos are being abandoned in favor

of more cost-effective, shared data environments, such as

private or public clouds. Sharing a unified infrastructure

across all analytics frameworks and across tenants avoids the

resource fragmentation associated with operating multiple

smaller clusters [37] and lowers data access barriers. This

∗The work was done while the author was at Microsoft; currently em-

ployed by Facebook.

is the vision of the data lake: empower every data scientist

to leverage all available hardware resources to process any

dataset using any framework seamlessly [26]. To realize this

vision, cloud vendors and large enterprises are building and

operating data-center scale clusters [7, 15, 37].

At Microsoft, we operate one of the biggest data lakes,

whose underlying compute capacity comprises hundreds of

thousands of machines [7, 26]. Until recently, our clusters

were dedicated to a single application framework, namely

Scope [44], and were managed by our custom distributed

scheduler, Apollo [7]. This architecture scaled to clus-

ters1 of more than 50k nodes, supported many thousands

of scheduling decisions per second, and achieved state-

of-the-art resource utilization. New requirements to share

the same physical infrastructure across diverse application

frameworks (both internal and popular open-source ones)

clashed with the core assumption of our legacy architecture

that all jobs had homogeneous scheduling patterns. Fur-

ther, teams wanted more control over how idle capacity was

shared, and system operators needed more flexibility while

maintaining the fleet. This motivated us to build Hydra,

a resource management framework that today powers the

Microsoft-wide data lake. Hydra is the scheduling counter-

part of the storage layer presented in [26].

Hydra matches the scalability and utilization of our legacy

system, while supporting diverse workloads, stricter shar-

ing policies, and testing of scheduling policies at scale (§2).

This is achieved by means of a new federated architecture,

in which a collection of loosely coupled sub-clusters coordi-

nates to provide the illusion of a single massive cluster (§3).

This design allows us to scale the two underlying problems

of placement and share-determination separately. Placement

of tasks on physical nodes can be scaled by running it in-

dependently at each sub-cluster, with only local visibility.

On the other hand, share-determination (i.e., choosing how

many resources each tenant should get) requires global vis-

1By cluster we refer to a logical collection of servers that is used for

quota management and security purposes. A cluster can span data centers,

but each job has to fit into a cluster’s boundaries.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 177

ibility to respect sharing policies without pinning tenants to

sub-clusters. We scale share-determination by operating on

an aggregate view of the cluster state.

At the heart of Hydra lie scheduling policies that deter-

mine the behavior of the system’s core components. Given

our diverse workloads and rapidly changing cluster condi-

tions, we designed Hydra’s control plane to allow us to dy-

namically “push” policies. Cluster operators and automated

systems can change Hydra’s scheduling behaviors of a 50k

node cluster within seconds, without redeploying our plat-

form. This agility allowed us to experiment with policies and

to cope with outages swiftly. We discuss several policies, and

show experimentally some of their trade-offs, in §4.

This federated architecture, combined with flexible poli-

cies, also means that we can tune each sub-cluster differ-

ently, e.g., to optimize interactive query latencies, scale to

many nodes, operate on virtualized resources, or A/B test

new scheduling behaviors. Hydra makes this transparent

to users and applications, which perceive the resources as

a continuum, and allows operators to mix or segregate ten-

ants and behaviors in a dynamic, lightweight fashion. The

architecture also enables several additional scenarios by al-

lowing individual jobs to span sub-clusters: owned by differ-

ent organizations, equipped with specialized hardware (e.g.,

GPUs or FPGAs), or located in separate data centers or re-

gions [8]. In addition to the flexibility offered to users who

submit jobs, these capabilities are invaluable for operators of

the data lake, enabling them to manage complex workloads

during system upgrades, capacity changes, or outages.

Figure 1: Hydra deployment in our production fleet (hun-

dreds of thousands of nodes) over time.

An additional contribution of this paper is an open-source

implementation of our production-hardened system (§5), as

well as a summary of lessons learned during a large-scale

migration from our legacy system. The migration consisted

of a carefully choreographed in-place migration process of

a massive production environment (§2), while the entirety of

Microsoft depended on it. This journey was not without chal-

lenges, as we describe in §6. Fig. 1 shows the deployment of

Hydra across our fleet over time. Since we started deploy-

ing it, Hydra has scheduled and managed nearly one trillion

tasks that processed close to a Zettabyte of data. We report

on our production deployments in §7, explicitly comparing

its performance with our legacy system [7].

Apart from the new material presented in this paper, Hy-

dra draws from several existing research efforts [7, 9, 11,

17, 19, 18, 27, 36]. In §8, we put Hydra in context with its

related work, mostly focusing on production-ready resource

managers [7, 15, 20, 36, 37].

2 Background and Requirements

At Microsoft we operate a massive data infrastructure, pow-

ering both our public cloud and our internal offerings. Next,

we discuss the peculiarities of our internal clusters and work-

load environments (§2.1), as well as how they affect our re-

quirements for resource management (§2.2) and our design

choices in building Hydra (§2.3).

2.1 Background on our Environment

Cluster environment. Tab. 1 summarizes various dimen-

sions of our big-data fleet.

Dimension Description Size

Daily Data I/O Total bytes processed daily >1EB

Fleet Size Number of servers in the fleet >250k

Cluster Size Number of servers per cluster >50k

Deployments Platform deployments monthly 1-10

Table 1: Microsoft cluster environments.

Our target cluster environments are very large in scale and

heterogeneous, including several generations of machines

and specialized hardware (e.g., GPU/FPGA). Our system

must also be compatible with multiple hardware manage-

ment and deployment platforms [16, 5]. Thus, we make

minimal assumptions on the underlying infrastructure and

develop a control-plane to push configurations and policies.

We observe up to 5% machine unavailability in our clus-

ters due to various events, such as hardware failures, OS

upgrades, and security patches. Our resource management

substrate should remain highly available despite high hard-

ware/software churn.

Sharing across tenants. As shown in Tab. 2, our clusters

are shared across thousands of users. Users have access to

hierarchical queues, which are logical constructs to define

storage and compute quotas. The queue hierarchy loosely

follows organizational and project boundaries.

Dimension Description Size

Users Number of users >10k

Queues Number of (hierarchical) queues >5k

Hierarchy depth Levels in the queue hierarchy 5-12

Priority levels Number of priority levels (avg/max) 10/1000

Table 2: Tenant details in Microsoft clusters.

In our setting, tenants pay for guaranteed compute capac-

ity (quota) as a means to achieve predictable execution [17].

Tenants typically provision their production quotas for their

178 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Number of machines dedicated to batch jobs in clusters C1–C4 (leftmost figure). Empirical CDF (ECDF) of various

job metrics—each point is the average over a month for recurring runs of a periodic job, grouped by cluster (remaining figures).

peak demand, which would result in significantly underuti-

lized resources. To increase cluster utilization, it is desirable

to allow tenants to borrow unused capacity. Our customers

demand for this to be done “fairly”, proportionally to a ten-

ant’s guaranteed quota [12].

Workload. The bulk of our workload today is batch ana-

lytical computations, with streaming and interactive applica-

tions growing at a fast pace. The leftmost figure in Fig. 2

shows that 65–90% of machines in four of our clusters are

dedicated to batch jobs. Each of these clusters has more

than 50K machines; this is not the entirety of our fleet, but

it is representative. Note that in our legacy infrastructure,

the machines used for non-batch jobs had to be statically de-

termined, which led to resource under-utilization, hot-spots,

and long container placement latencies. Tab. 3 reports the

key dimensions of our workloads. The overall scale of indi-

vidual large jobs and the number of jobs that run on common

datasets drove us to build large shared clusters. Beside large

cluster sizes, the scheduling rate is the most challenging di-

mension of our scalability.

Dimension Description Size

Frameworks Number of application frameworks >5

Jobs Number of daily jobs >500k

Tasks Number of daily tasks Billions

Scheduling rate Scheduling decisions per second >40k

Data processed Bytes processed by individual jobs KBs-PBs

Table 3: Microsoft workload characteristics.

We quantify more metrics of our batch workload in Fig. 2.

The empirical CDFs in the figures capture properties of the

four of the aforementioned large clusters. Each point in the

CDFs represents a recurring analytical job, and its average

behavior over one month. We group jobs by cluster and plot

one line for each cluster. Jobs have very diverse behaviors:

from KBs to PBs of input sizes, from seconds to days of

runtime, from one to millions of tasks.

Legacy system. Prior to Hydra, our cluster resources were

managed by our legacy system, Apollo [7]. Apollo’s dis-

tributed scheduling architecture allowed us to scale to our

target cluster sizes and scheduling rates, while achieving

good resource utilization. However, it only supported a sin-

gle application framework and offered limited control over

sharing policies, which are among our core requirements, as

described below. An overview of Apollo is provided in §A.2.

2.2 Requirements

We summarize our requirements as follows:

R1 Workload size and diversity: Our workloads range

from very small and fast jobs to very large ones (e.g.,

millions of tasks spanning tens of thousands of servers),

and from batch to streaming and interactive jobs. They

include both open-source and Microsoft’s proprietary

frameworks. Many jobs access popular datasets. The

resource management framework must support this

wide workload spectrum and large-scale data sharing.

R2 Utilization: High utilization is paramount to achieve

good Return On Investment (ROI) for our hardware.

R3 Seamless migration: backward compatibility with

our existing applications and transparent, in place

replacement—to preserve existing investments in user

codebase, tooling, and hardware infrastructure.

R4 Sharing policies: Customers are demanding better

control over sharing policies (e.g., fairness, priorities,

time-based SLOs).

R5 Operational flexibility: Diverse and fast-evolving

workloads and deployment environments require

operators to change core system behaviors quickly

(e.g., within minutes).2

R6 Testing and innovation: The architecture must support

partial and dynamic rolling upgrades, to support exper-

imentation and adoption of internal or open-source in-

novations, while serving mission critical workloads.

2.3 Design Philosophy

From the above we derive the following design choices.

2Redeployments at a scale of tens of thousands of nodes may take days,

so it is not a viable option.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 179

Large shared clusters. Requirements R1/R2 push us to

share large clusters to avoid fragmentation and to support

our largest jobs. Scaling the resource manager becomes key.

General-purpose resource management. R1/R3/R4 force

us to invest in a general-purpose resource management layer,

arbitrating access from multiple frameworks, including the

legacy one, as first class citizens. R3 is at odds with

the frameworks-specific nature of our previous distributed

scheduling solution [7].

Agile infrastructure behavior. R5/R6 rule out custom,

highly scalable, centralized approaches, as integrating

open-source innovations and adapting to different conditions

would become more delicate and require higher engineering

costs. This pushed us towards a federated solution building

upon the community innovation at each sub-cluster.

Aligning with open-source. We chose to implement Hydra

by re-architecting and extending Apache Hadoop YARN [36,

19]. This allows us to leverage YARN’s wide adoption in

companies such as Yahoo!, LinkedIn, Twitter, Uber, Alibaba,

Ebay, and its compatibility with popular frameworks such as

Spark, Hive, Tez, Flink, Cascading, HBase, TensorFlow.

3 Overview of Hydra

We now describe the user model (§3.1) and federated archi-

tecture of Hydra (§3.2), and then present the life-cycle of a

job in our system (§3.3).

3.1 Model of User Interaction

The overall cluster capacity is logically organized into

queues of a given guaranteed capacity, i.e., a configured

amount of physical cluster resources that is dedicated to each

queue.3 Each user has access to one or more queues and can

submit jobs to them. Queues support job priorities, optional

gang semantics (i.e., minimum required parallelism for a

job to launch), as well as many other quota mechanisms,

which we omit for brevity. An important value proposition

of Hydra is to provide users with the illusion of a single

large cluster; the details of how this is realized must not be

exposed.

Jobs are collections of tasks (i.e., processes). Each task

runs within a container, which is a bundle of physical re-

sources (e.g., <RAM,CPU,IOs,...>) on a single worker

node. Containers can be isolated by means of virtual ma-

chines, OS containers, or simple process boundaries. Jobs

may dynamically negotiate access to different amounts of re-

sources, which are taken from the guaranteed capacity of the

queue they are submitted to. This negotiation is done by a

special container: the job’s Application Master (AM).

3Servers are not partitioned among queues but shared dynamically.

Figure 3: Architecture of Hydra.

3.2 System Architecture

In order to meet our goals of: supporting diverse workloads

compatible with Apache Hadoop, enforcing stricter sharing

invariants, and allowing flexible scheduling policies, we ar-

rived at a federated architecture, depicted in Fig. 3. Hydra

splits the cluster into a set of sub-clusters that coordinate

with each other to present to the user the illusion of a single

cluster. Below, we discuss the various system components

used to implement this architecture.

Federated architecture. Hydra divides the servers of a

cluster into logical sub-clusters, shown in light-gray boxes

in Fig. 3. Each sub-cluster operates as an independent

Apache Hadoop YARN [36, 19] deployment (see §A.1 for

an overview of YARN’s architecture). In each sub-cluster, a

centralized, highly available Resource Manager (RM) gov-

erns the life-cycle of jobs and tasks, which execute in-

side containers on the worker nodes. The RM receives

resource availability information from the worker nodes

through heartbeats, and determines container placement.

Each worker runs an instance of NodeManager (NM) which

is in charge of the life-cycle of the tasks running on that node.

The NM is the node-local enforcer for the RM decisions.

Note that each sub-cluster is comprised of a few thousand

machines. We discuss in §6 how we set our sub-cluster size,

based on YARN’s scalability limitations in the number of

worker nodes and scheduling decisions per second (SDPS).

Sub-cluster coordination. Each Hydra cluster includes a

Global Policy Generator (GPG), a component that over-

sees the entire federation. The GPG periodically obtains

an aggregate view of each sub-cluster’s state through RM–

GPG heartbeats, and dynamically determines the scheduling

policy that should be used by each sub-cluster. Then, the

RMs act as the sub-cluster-local enforcers of the schedul-

ing policies dictated by the GPG. The GPG is never in the

critical path of individual container scheduling decisions,

but rather influence the behavior of other components—this

avoids it becoming a scalability and availability bottleneck.

180 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The StateStore is a highly available, centralized store4 that

contains the authoritative copy of all system configurations

and policies, and allows us to change the system behavior

dynamically. Each component in the system periodically re-

ports liveness to the StateStore through heartbeats, and gets

informed of new policies. The StateStore Proxy is a caching

layer that improves the read-scalability.

Single-cluster illusion. In order to provide users with the

illusion of a single large cluster, we need to hide the pres-

ence of multiple sub-clusters when (i) a job is submitted, and

(ii) an AM requests new resources (containers). To this end,

we introduce layers of indirection through two components,

namely the Router and the AM–RM Proxy. Each Router pro-

vides the users with a single entry point to the overall plat-

form. Routers mediate all interactions between users and

the RMs, dynamically determining the sub-cluster that a job

should be launched in. This will be the “home” sub-cluster,

where the job’s AM will be running. The AM–RM Proxy

is a service that runs at every worker node and translates

AM container requests to asks to one or more RMs. This

allows individual jobs to span sub-clusters. Similar to what

the Router does for external users, the AM–RM Proxy hides

the plurality of RMs and shields the applications from the

system’s internal complexity.

Along with providing a single-cluster illusion, the Router

and AM–RM Proxy components allow us to: (i) mask avail-

ability issues of RMs (an RM failing is masked by rerouting

resource demands to other RMs), (ii) protect RMs from an

excessive number of requests (e.g., coming from malicious

AMs) that could lead to denial-of-service issues, (iii) bal-

ance load among sub-clusters, and (iv) flexibly handle main-

tenance and flighting operations.

Policy-driven design. All scheduling decisions in Hydra are

policy-driven and depend on the policies that the GPG in-

stalls in the various system components. The choice of poli-

cies can significantly change the system’s behavior. In par-

ticular, Routers determine where a job is started (thus affect-

ing job queuing time), AM–RM Proxy shapes the load that

each sub-cluster receives, and RMs determine how requests

from multiple queues are fulfilled. Finally, GPG determines

the share determination, i.e., deciding how many resources

each tenant will get.

Importantly, the GPG is not on the critical path of con-

tainer allocation decisions, but asynchronously updates the

RMs’ scheduling policy. The RMs operate independently,

in accordance with the most recently received policy. Even

if the GPG is not reachable, the RM can continue perform-

ing allocations, which ensures that the cluster remains highly

available and highly utilized. We provide more details about

our policies in §4.

4We provide multiple implementations, including SQL Server, HBase,

and ZooKeeper, depending on the deployment setting.

3.3 Life of a Job

We illustrate the federated architecture of Hydra through the

life-cycle of a job (the corresponding steps are also marked

in Fig. 3).

(1) Job j is submitted to queue q via the Router (1a), which

determines through a policy the sub-cluster that should

be the job’s home, e.g., sub-cluster 1 in Fig. 3 (1b).

(2) The Router records its decision in the StateStore (2a)

and forwards the job submission request to the RM of

the chosen sub-cluster (2b).

(3) The RM performs admission control and determines

when and where to starts the job’s AM (3a). The AM is

launched on a node, e.g., NM25 (3b).

(4) The AM begins requesting containers on nodes (e.g.,

NM60) via the AM–RM Proxy (4a), which consults a

policy to determine the RMs to forward the request and

how to split/merge/modify the requests if needed (4b).

(5) The AM–RM Proxy impersonates the job and contacts

all the RMs required to fulfill the demand, e.g., RM2.

Each job spans as many sub-clusters as needed.

(6) Each RM summarizes its state (usage and demands) and

forwards it to the GPG every few seconds through a sep-

arate heartbeat channel (6a). The GPG follows policies

to determine share-determination in aggregate, and pro-

vides guidance back to the RMs on how to grant access

to resources for different tenants (6b).

(7) The RM uses the most recent policy suggestion from

GPG to allocate tasks on behalf of the AM, e.g., Task1

on NM60 (7a).5 The task is launched, and can begin

its computation and to communicate directly with the

AM (7b).

4 Scheduling Policies

We now describe the policies governing Hydra. Our main

goal is to scale placement (§4.1) and share-determination

(§4.2) to large numbers of nodes and scheduling decisions

per second.

4.1 Placement

Placement of containers on machines affects locality (e.g.,

between computations and their input data or their hardware

preferences like GPU or FPGA), load balancing, and fault

tolerance of jobs in Hydra. We scale placement by paral-

lelizing decision-making—each sub-cluster performs place-

ment decisions independently. The following policies, asso-

ciated with different system components (see §3), determine

the routing of requests and allocation of containers.

Router policies assign jobs’ Application Masters (AMs) to

sub-clusters. Since AMs consume limited resources and typ-

5Note that 7a could happen before 6a-6b, if the previous round of allo-

cation policies from GPG allow the RM to allocate more for queue q.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 181

Figure 4: Placement quality over a period of one month:

>97% of requests on average are placed on the preferred

node or rack.

ically have no locality requirements, Router policies focus on

fault tolerance by spreading AMs across sub-clusters. To this

end, the Router retrieves the current sub-cluster state (e.g.,

active RM’s URL, current utilization, outstanding demand)

from the StateStore (cached for performance). The Router

itself is fully stateless and thus is horizontally scalable. We

achieve fault tolerance by deploying multiple Router in-

stances behind a load balancer. Internally the Router adopts

an interceptor design pattern, which allows us to dynamically

change and configure its policies.

AM–RM Proxy policies affect the placement of all non-AM

containers. We experimented with various policies in our

production environments, trying to strike a balance between

locality.6 load balancing, and fault tolerance. The policy

we settled for tries to optimize for locality preferences by

forwarding requests to the RM that owns the node speci-

fied in the request. Our policy extends the notion of delay-

scheduling [42] to operate across sub-clusters, falling back

to less loaded RMs after a configurable time-out.7 Requests

that do not specify locality preferences are spread across sub-

clusters to improve load balancing. This is done by leverag-

ing YARN’s existing notion of headroom [2], that is, an RM

estimated amount of resources that a specific user/applica-

tion should expect to obtain based on the current state of the

sharing invariants. In case of an RM failure, the AM–RM

Proxy will automatically discover (via the StateStore) the

new master RM and send all outstanding requests to it. If an

RM becomes unavailable for a longer duration (due to over-

load conditions or network partitions), the AM–RM Proxy

re-distributes pending requests among other RMs inversely

proportionally to their load, thus increasing our resiliency

to failures. The AM–RM Proxy is stateful and utilizes the

existing NM mechanisms for failure recovery [3], in a way

transparent to both the AM and RM.

RMs employ complex algorithms [36] that handle locality

within a sub-cluster via delay-scheduling [42]. The RM first

6Batch applications typically express soft preferences to be co-located

with their input data—matching these preferences at least at the sub-cluster

level is important, as it minimizes cross-datacenter data transfers, given that

sub-clusters do not cross datacenter boundaries while clusters often do.
7We are experimenting with variants of this relaxation mechanism based

on load, configured weights, or simple randomization.

tries to place a task at the requested node, then it falls back to

the respective rack, and then to any cluster node. Hydra also

supports the notion of node labels [19] (tags used to logi-

cally group machines) and the more sophisticated placement

constraints described in Medea [11, 24]. While our software

stack supports all these, the more advanced constraints are

not yet employed by most of our production users.

NM policies govern the local use of resources among con-

tainers of different types. We leverage the notion of guar-

anteed and opportunistic containers from [18, 7] to ensure

high cluster utilization. Opportunistic containers are queued

locally to the NM (similar to [18, 27]) and run when there

are unused resources, thus hiding feedback latencies that

would lead to underutilized machines when running short-

lived tasks or jobs that request part of their containers in

gangs (both very common in our workloads; see §2).

4.1.1 Quality of Placement

Adapting Scope applications [44] to run on Hydra, we reuse

Apollo’s logic to request the node on which a task should

run. We then quantify the quality of placement in Hydra by

measuring the fraction of container requests that got placed

exactly on the node the AM requested, or on the correspond-

ing rack. Fig. 4 shows the achieved placement quality over

one month across our fleet. Hydra achieves on average 92%

node-local allocations and 97% rack-local allocations. These

results demonstrate that we are able to meet the practical

needs of our clusters’ users and are comparable to what we

observed when operating non-federated YARN clusters.

4.2 Share-Determination

Share-determination requires a global point of view, but we

observe that an aggregated view of the cluster state and work-

load demands is sufficient, given that placement decisions

are performed locally at each sub-cluster. The GPG receives

a summarized view (i.e., a snapshot of the current utilization

and outstanding demand) of each sub-cluster on heartbeats

(6a of Fig. 3), and performs share-determination decisions,

which are then pushed down to each sub-cluster to affect al-

locations. We discuss alternative policies below.

Gang admission control (GAC) is a policy that performs

admission control of jobs based on gang scheduling se-

mantics. In particular, the GPG maintains a queue hierar-

chy with statically defined quotas, which are pushed to the

Routers. When a job with a declared parallelism of k con-

tainers gets submitted to a queue, it waits until k containers

become available from the queue’s quota. GAC is the share-

determination policy currently used in production, both for

its simplicity and because it matches the behavior of the

legacy system [7] that our customers are used to. Moreover,

GAC has been hardened in production in our legacy system

for several years.

182 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

As we introduce more application frameworks in our clus-

ters,8 we can leverage Hydra’s flexible control plane to per-

form share-determination dynamically at the container re-

quest level, rather than once at job submission time. Global

instantaneous fairness (GIF) is one such promising policy

that we are currently experimenting with in our test clusters.

GIF copes with scale by aggregating the cluster state and

workload demands at the granularity of queues. It logically

reassigns the entire cluster resources according to work-

preserving fair-sharing [12, 6], while taking into account the

sub-cluster that the resource demand is coming from, i.e., al-

locating to each sub-cluster at most the resources demanded

there. The output of GIF is the instantaneous resource capac-

ity that a queue can receive at each sub-cluster. For example,

consider a cluster with two equally sized sub-clusters SA, SB

and a queue q1 that is assigned 20% of the overall cluster’s

capacity. By default, q1 will get the static 20% of resources

at each sub-cluster. Instead, assuming q1 has higher demand

on SA, GIF can allow q1 to get, say, 30% of resources in SA

and 10% in SB. This results in the same overall capacity for

q1, but can improve resource utilization.

To validate the feasibility and significance of such flexi-

ble policies, we compare GIF with the following approaches:

(i) an idealized single centralized YARN scheduler that over-

looks the entire cluster accounting for node locality (Centr.);

(ii) one scheduler for every sub-cluster, where each queue is

replicated in each sub-cluster, with a quota uniformly pro-

portional to the sub-cluster size (Uniform Distr.); (iii) simi-

lar to (ii) but with queue quotas dynamically mapped to sub-

clusters based on the workload demand for resources on each

sub-cluster (Load-Based Distr.). We use a few hundreds of

different cluster setups, each with a few tens of sub-clusters

and with queue hierarchies of varying sizes and complexi-

ties, created by a generator that we built (and plan to open-

source) for this purpose. These comparisons are based on

simulations, given that (i) cannot support our cluster and

workload sizes.

Fig. 5 shows our results in terms of utilization and fair-

ness. To measure fairness we compute the mean absolute

error between each candidate solution and a reference ideal

implementation consisting of a centralized scheduler, similar

to (i), that is also allowed to arbitrarily relax node locality—

this represents an oracle for fairness as other constraints are

relaxed. Mean absolute error is measured as a percentage er-

ror from the centralized solution. As an intuition to read this

graph, a value of 0.1% corresponds to just a few hundred

unfairly allocated containers across our 50k-node clusters.

GIF performs better (much higher utilization and compara-

ble fairness error) than the sub-cluster-local approaches (ii)

and (iii), and closely tracks the behaviors of the (impractical)

8Note that GAC can already support such jobs, but relies heavily on op-

portunistic execution (as in [18]) to achieve high cluster utilization, making

it harder to maintain fairness across users.

Figure 5: Comparing policies for share-determination with

respect to utilization (left) and fairness (right).The boxes in-

dicate the 25th and 75th percentile; the green line within

each box is the median; the small triangle is the average;

the whiskers represent the 5th and 95th percentiles.

centralized solutions. GIF’s runtime is also acceptable, with

<300ms runtime when simulating our largest clusters.

5 Implementation and Open-Sourcing

In this section, we provide details on the implementation and

open-sourcing of Hydra. Given Microsoft’s commitment to

supporting open-source workloads and our team’s expertise

on Apache Hadoop, YARN [36] was a natural choice as a

base to build Hydra, as we also discuss in §8. Over the past

few years, Microsoft has contributed over 200k lines of code

to Apache Hadoop related to Hydra.

To enable Hydra’s federated architecture, we extended

YARN with the various components described in §3, includ-

ing the GPG, Router, AM–RM Proxy, and StateStore. Each

component runs as a separate microservice in YARN. More

implementation details are available at [41, 13].

Apart from the main federated architecture described in

this paper, we also leverage several other efforts that have

been contributed to YARN by Microsoft over the past years.

In fact, the federated architecture constitutes the last piece

of the puzzle in operating YARN at our scale. Tab. 4 sum-

marizes the main Microsoft contributions to YARN that are

exploited by Hydra. For example, opportunistic execution is

key to achieve high resource utilization, given the scale of

our scheduling decisions and the way our workloads were

tuned to run on our legacy system.

Additionally, while deploying Hydra in production, we

had to perform several other improvements to YARN. Here

we briefly mention a few representative ones. First, to sup-

port our workload’s large-scale parallelism and requirements

for large numerous resource files, we enhanced the open-

source version of resource localization at each worker node.

In particular, we added finer control of simultaneous re-

source downloads (accounting for available bandwidth I/O,

and guaranteed vs. opportunistic containers), and leveraged

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 183

Feature JIRAs Hadoop version Publications

Federated architecture [41] 2.9 this paper

Scheduling policies [13] ongoing this paper

Opportunistic execution [22, 39] 2.9 [18, 27]

Reservation planning [29, 28] 2.9 [9, 17]

Placement constraints [24] 3.1 [11]

Container preemption [25] 2.1 [36]

Table 4: Key Microsoft contributions to YARN, which are

relevant to Hydra. For each feature, we provide the main

JIRA numbers (where the open-source effort can be tracked),

the version of Apache Hadoop that first included it, and re-

lated publications.

Figure 6: Capacity roll-out over time as a fraction of our

overall fleet.

an existing peer-to-peer file segmentation, distribution and

caching service. Further, we made improvements related to

the scheduling latency at each sub-cluster, by adding time-

based relaxation of locality. This was crucial to support our

scheduling decisions rate and meet locality preferences of re-

quests. Finally, we enhanced the default logging and metrics

collection in YARN.

6 Deployment and Lessons Learned

In this section, we discuss our experience in deploying Hy-

dra in our production clusters and migrating a live service

to it (§6.1), as well as an approach to evolutionary design of

Hydra’s architecture (§6.2).

6.1 Deployment Over Time

Given the size of our fleet and the mission-critical nature of

our workloads, the migration of our service to Hydra was

by itself a highly complex project. Hydra had to be deployed

“in-place”, with almost no spare resources and with stringent

SLOs for at least part of our workload.

In-place progressive migration. Our migration proceeded

one tenant at a time, by migrating their workload to Hydra.

At the same time, we were reassigning machines from the

legacy system to Hydra. We grouped tenants into 4 tiers,

from the smaller (in workload size and resource demands)

and least mission-critical of tier-4 to the larger and SLO-

sensitive tenants of tier-1. Migration proceeded from tier-

4 upwards to tier-1. This progression can be observed in

Fig. 6, where a rather linear machine migration is paired with

a non-linear tenant migration. Tenant migration was fast at

first (small tier-4 and tier-3 customers), and slowed down as

more of the customers from tier-2 and tier-1 were onboarded

and large capacity is assigned with numerically few tenants.

Throughout the deployment, we paused migration for op-

erational and general engineering cadence. The rollout was

not without surprises, as every set of tenants exercised our

system in different and challenging ways. We constantly

measured job performance and reliability, using predictable,

recurring jobs as canaries. Whenever regression was de-

tected by our team or by customers, we temporarily rolled

back part of our workload to the legacy system, investigated,

addressed the issues, and resumed migration. In the process,

we made many performance and reliability improvements to

YARN, many of which have been committed back to the

Apache Hadoop project (see also §5). One large incident

was around November 2017, when thousands of nodes were

rolled back, as seen in Fig. 6.

Mismatched load/hardware. A surprising challenge con-

sisted in migrating the right number of machines for each

portion of the workload we switched over. At first, we

naively started by migrating the nominally purchased capac-

ity for each tenant. We quickly learned how heavily most

tenants relied on scavenged capacity to support important ap-

plication scenarios. In hindsight, stronger workload models

could have predicted some of these problems. We subse-

quently built tooling to prevent similar regressions.

Locality during migration. Jobs cannot span the legacy

system and Hydra. By migrating machines between the two

systems, we limited the chances of co-location with data

(which is kept in place and is accessible through a distributed

file system akin to HDFS [26]). Our hypothesis, confirmed

during migration, was that locality matters less with mod-

ern networks. Nonetheless, to ameliorate possible negative

effects, we migrated machines by striping across racks, i.e.,

first a few machines in each rack were migrated to Hydra and

then more machines were added. This strategy fundamen-

tally worked, with a few hiccups in the early phases when

the number of Hydra machines was so limited that many

racks had zero or just one machine (leading to frequent cross

network-spine reads, which impacted job performance).9

Sub-cluster size. Given Hydra’s ability to support jobs that

span sub-clusters, we have the freedom to pick the number

and size of each sub-cluster. We proceeded by trial and er-

ror, picking the largest sub-cluster size for which the sub-

cluster’s RM could comfortably handle our workload. In our

9We did not observe this issue at the opposite end of the spectrum (when

the migration was close to completion), as the queues being moved were

very large, thus avoiding some of these border effects.

184 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

deployments, the deciding factor for this limit is the schedul-

ing rate and not the number of nodes. In its current imple-

mentation, the RM cannot support more than 1k schedul-

ing decisions per second (SDPS), while recent, extensive ef-

forts to improve RM’s scalability have raised this bar to 5k

SDPS under ideal conditions [40]. This is still about an or-

der magnitude lower than our target SDPS, and has not yet

been tested in production at scale. Hydra’s ability to tweak

each sub-cluster’s size allowed us to experiment with differ-

ent sizes while impacting only part of our capacity (e.g., set-

ting one sub-cluster to be larger/smaller than others). In our

current deployments, we operate clusters with 15–20 sub-

clusters, each with 2k–3k nodes. We are also working to-

wards merging some of these clusters, creating even larger

and cross-DC Hydra deployments. So far, we have not en-

countered any obvious upper bound to Hydra’s scalability.

6.2 Evolutionary Design

Through careful analysis and design, we were reasonably

successful at designing the “static” aspects of the system,

such as core architectural choices and basic mechanisms.

Conversely, predicting all system “dynamics” and the effects

of multiple interacting algorithmic policies was exceedingly

hard. Moreover, we knew that the workload and the hard-

ware environment Hydra had to target in its lifetime were

certainly going to change over time.

Therefore, we invested in faithful simulation infrastruc-

ture [30], which proved invaluable (similar to what was re-

ported by the Borg team [37]), and focused on designing

mechanisms that allowed us to test and deploy policies very

quickly. In particular, Hydra can propagate new policy be-

haviors across many thousands of nodes within seconds (by-

passing the slower mechanisms provided by the underlying

deployment infrastructure [16]). This agility allowed us to

experiment with policies and respond to outages quickly.

This flexibility enabled us to leverage Hydra to support sub-

cluster level A/B testing and specialized tuning for alterna-

tive environments. Hydra is, in fact, now being considered

for smaller/specialized clusters, where federation is not used

to achieve scale, but rather operational flexibility. The abil-

ity to test policies on parts of our clusters and quickly revert

them, made it possible to experiment with advanced policies,

as the ones discussed in §4. This enables faster innovation,

which we believe is a generally under-appreciated aspect of

real-world systems. Similar considerations were discussed

by the TensorFlow team [4].

7 Production Validation

In this section we provide data from our production environ-

ments running Hydra, comparing (whenever possible) with

our legacy system [7]. As already discussed (see §1, §2), our

Figure 7: Scheduling decisions per second for 5 large clus-

ters (average behavior over 6-hour windows).

Figure 8: Allocation latency over a period of one month for

one of our busiest clusters.

key challenge in building Hydra was to match the scalabil-

ity and utilization of the mature, highly tuned, application-

specific legacy system it replaces [7], which has the ad-

vantage of relying on a fully distributed scheduler. We

show numerically that this has been achieved. At the same

time, Hydra provides the benefits of a centralized scheduler,

namely the ability to support arbitrary application frame-

works, stricter scheduling invariants, and better operational

controls, as discussed qualitatively and anecdotally in §6.

7.1 Scheduling Rates and Latency

Fig. 7 shows the number of scheduling decisions per second

for four of our largest clusters, each comprised of 15-20 sub-

clusters. We observe that while the cluster sizes are compa-

rable, the workloads differ substantially. By way of exam-

ple, cluster C2 requires around 10k scheduling decisions per

second (SDPS), while cluster C4 requires sustained rates of

30k to 40k SDPS. Note that each task might require mul-

tiple scheduling decisions, because tasks are often promot-

ed/demoted between guaranteed and opportunistic execution

throughout their lifetime [18]. Each request for an alloca-

tion, promotion, demotion, or termination corresponds to a

scheduling decision.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 185

Figure 9: CPU utilization across our fleet over a period of

8 months, during which we were deploying Hydra in an in-

creasing number of machines.

Fig. 8 reports the median and the 99th percentile of allo-

cation latency across all allocations performed by Hydra in

a 30-day period in one of our busiest clusters. The median

allocation latency is 2-3 seconds. The 99th percentile is typi-

cally no more than 10 seconds with a few exceptions. This is

measured at the client side and focuses on the most expensive

type of allocations (guaranteed containers per [18] terminol-

ogy). In comparison, Apollo had no centralized task schedul-

ing delays, but it could incur high queuing delays when tasks

were dispatched to each node. Hydra’s centralized approach

is allowing us to experiment with centrally coordinated local-

ity relaxation, which is reducing scheduling latencies further

in our test clusters. Recall that, as we showed in §4.1 (Fig. 4),

Hydra also delivers high quality placement decisions, man-

aging to allocate 70-99% of the tasks on their preferred node

(and 75-99.8% within rack).

7.2 Utilization

Fig. 9 shows the CPU utilization (i.e., actual busy CPU cy-

cles) across a large fraction of our fleet. During a period of

eight months, most of these machines were migrated to Hy-

dra (see Fig. 6). The plot shows that there was no resource

utilization regression. In fact, we observe a slight increase

in average CPU utilization of about 1-2% (although this may

be due to increased workload pressure). Importantly, we ob-

serve that the load distribution is more even across our fleet,

as seen in Fig. 9 where the gap between high and low per-

centiles narrows as Hydra is rolled out. This indicates that

Hydra’s placement decisions lead to better load balancing.

To more clearly highlight where the CPU utilization im-

provements come from, we zoom into one of our largest clus-

ters. Fig. 10 shows for each machine in the cluster the num-

ber of tasks run on each node and their average input size.

Different shades of black represent different server config-

urations with varying number of cores, memory, disks, and

network sub-systems—the darker the color the more power-

ful the machine, thus we expect lighter colors to receive less

Figure 10: Scatter plot of task input data vs. count of tasks

running daily on each server (one month average for legacy

and Hydra). Each dot represents one server, and darker color

indicates more powerful hardware configuration.

load. Comparing Hydra (on the right-hand side of the fig-

ure) to our legacy system (on the left-hand side), it is evident

that Hydra distributes tasks (roughly the same total number)

more evenly across servers. This explains the tighter distri-

bution of CPU utilizations we observed in Fig. 9.

7.3 Task Runtime and Efficiency

We now study the task runtime before and after we deployed

Hydra across our fleet. The empirical CDFs of Fig. 11 cap-

ture the behavior of 135B tasks in terms of input data, run-

time, and processing efficiency (calculated by dividing the

runtime by the input size). Each figure includes two CDFs:

the “Hydra (25% deployed)”, which corresponds to an early

phase in our deployment (with most tasks running the legacy

system and around 25% of nodes migrated to Hydra); the

“Hydra (60% deployed)”, which corresponds to a one month

window when over 60% of the nodes were migrated. From

the CDFs we notice that users have increased the input size

of our smallest tasks, which lead to an increase in task run-

time. This is not due to Hydra deployment, but rather to

exogenous causes (e.g., coinciding changes in the tuning of

the application frameworks, growth in job input). When it

come to task throughput, Hydra is comparable to the legacy

system, which was our primary goal. In particular, the over-

all throughput increased in the lower end (less efficient tasks

improved by a large amount), while slightly decreased for

very efficient tasks. This is consistent with the better cluster

load balancing we observed, as fewer tasks are run in under-

or over-loaded machines.

7.4 Job Runtime

We conclude with the most crucial end-to-end metrics that

our customers care about: job runtime. For a precise com-

parison, we focus on periodic jobs, i.e., recurring jobs that

run the same computation on new data every week, day, or

186 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 11: Task behavior before and after migration.

hour. Fig. 12 reports runtimes of periodic jobs and resource

utilization (in task-hours) before and after migration to Hy-

dra. To control for substantial job changes, we focus on pe-

riodic jobs whose input size changed by no more than 2X

(increase or decrease). The figure presents results for 18k pe-

riodic job templates, corresponding to 1.25M job instances,

which consist of 10B tasks and 110M task-hours (tasks are

multi-threaded, each assigned 2 cores, but potentially using

more). The graph is plotted as an empirical CDF of the ra-

tio of job runtime (
a f ter

be f ore
) and total task-hours. We observe

that, while the size of jobs grew substantially (the median

increased by 18%) during this period of time (more tasks

and longer runtimes), the job runtime has not substantially

changed (with median runtime decreasing by 4%). By in-

specting many example jobs, we conclude that the “tails” of

this CDF are mostly due to increase/decrease of the overall

job input data. While the journey to a fully deployed Hy-

dra was not without challenges, our customers are broadly

satisfied with job performance at this point.

7.5 Discussion

The production data presented in this section show that Hy-

dra matches the utilization and scalability of our legacy sys-

tem, and delivers consistent (or slightly improved) job run-

times and improved load distribution across machines. At

the same time, Hydra supports multiple application frame-

works, and advances our ability to quickly experiment and

innovate in the space of scheduling policies.

Figure 12: Empirical CDF for 18k recurring job templates

(1.25M job instances). We plot the ratio (Hydra/legacy) for

the job runtimes and total task-hours. All values are averages

over one month.

8 Related Work

We focus our related work comparison on production-ready,

scalable, big-data resource management frameworks, as

these were the only relevant contenders given our goals.

Among open-source systems, we will discuss Apache

Hadoop YARN [36, 19], Apache Mesos [15], and Ku-

bernetes [20], and among proprietary ones we consider

Borg [37] (not accessible to us) and Apollo [7]. None

of these systems, in their current form, could handle all

our requirements (scale of machines and scheduling rates,

arbitrary application frameworks, global sharing invariants).

Apollo, [7] our legacy system (see also §A.2), scaled by

carefully choreographing a homogeneous collection of batch

jobs [44]. Our requirement to support a wide variety of

proprietary and open-source ecosystems forced us to evolve

beyond Apollo’s fully distributed scheduling. We retained

Apollo’s distributed job-level placement algorithms, run in

the job AM, but Hydra’s resource management infrastruc-

ture has the final say on if and where a job can run. Con-

trolling this decision in Hydra allows us to share our clusters

between arbitrary application frameworks and improve load

balancing. In our previous work [18, 27], we added support

for opportunistic containers to YARN, a notion inspired by

Apollo, which we leverage in Hydra to ensure high cluster

utilization—a must at our scale.

YARN. By building upon YARN [36], Hydra inherits its

capabilities and strengths [19]. First and foremost, Hy-

dra is wire-compatible with unmodified YARN applications,

thanks to Hydra’s Routers and AM–RM Proxy that hide the

federated nature of our infrastructure. This allows us to co-

locate Microsoft’s native frameworks [44] with open-source

applications, such as Spark [43], TensorFlow [4], Hive [33],

REEF [38], and Heron [14].

The choice to federate multiple YARN sub-clusters in-

stead of scaling up a single RM was driven by the scale in

machine number and scheduling rate (§6.1) and our opera-

tional requirements (e.g., rolling upgrades, A/B testing, de-

ploying new policies). On the non-technical front, we also

considered long-term cost of ownership. Modifying YARN

to scale up would either impede future innovations by the

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 187

Hadoop community (forcing every new feature only if it

did not affect scalability to tens of thousands of nodes) or

lead to isolation of Microsoft from the community—leading

to high porting/stabilization of every new feature, defeat-

ing the purpose of an open-source system. By federating

smaller sub-clusters, we rely on some of the stabilization

work done by vendors (Hortonworks, Cloudera) and other

big companies (Yahoo!, Twitter, Uber, LinkedIn). Examples

of innovations relevant to Hydra include our work in oppor-

tunistic containers [18, 27], time-based SLOs [9, 17], place-

ment constraints [11], advanced preemption [25], as well as

community-driven efforts, such as node labels [21] and sup-

port for GPUs [19]. Finally, the naive alternative of running

an independent RM per sub-cluster would lead to unaccept-

able resource fragmentation—this was studied by the authors

of [37] and consistent with our experiments (§4.2).

Mesos [15] is best understood as a highly scalable clus-

ter manager, focusing on deploying long running services.

At Microsoft, we support three similar frameworks, AutoPi-

lot [16], Azure Service Fabric [5], and Kubernetes [20]. Hy-

dra can be deployed using any of these cluster managers, but

focuses on supporting high-rate batch workloads, as well as

interactive and streaming applications. The rate of schedul-

ing decisions per second that Hydra can achieve is substan-

tially higher than what Mesos targets. Additionally, Hydra

supports resource sharing across application frameworks.

Kubernetes [20] is a more recent effort that occupies a sim-

ilar space as Mesos. At the time of this writing, the Kuber-

netes scheduler is very simple and provides little support for

short-lived containers and batch applications. Kubernetes’

current scalability (5k nodes at the time of this writing) is

also short of our target. Nonetheless, Kubernetes has an ele-

gantly modular architecture and very substantial momentum

in open-source, so any of the limitations we discuss here are

likely to be addressed sooner or later.

Borg [37] is Google’s proprietary resource manager. Un-

surprisingly, this system comes closest to matching our re-

quirements (though it is not open-source, so our understand-

ing is limited to what is discussed in [37]). Borg’s notion

of cells is akin to a sub-cluster from a deployment/mainte-

nance perspective, but Borg jobs cannot span cells, and so the

typical configuration has one large production cell and some

smaller test cells with the median cell size being 10k nodes.

Borg cells do not span data centers, contrary to what we do

in some of our Hydra deployments. The reported schedul-

ing rate for Borg is 10k decisions per min (or 166 decisions

per second). Our production deployment routinely reaches

40k decisions per second in our busiest clusters. While a

centralized approach is likely to eventually top out, we be-

lieve the current scheduling rate for Borg is due to natural

co-evolution of the application framework and the schedul-

ing infrastructure, rather than an intrinsic limitation. The

Borg microservice architecture elegantly decouples admis-

sion control (quotas) from (sharded) state management and

scheduling. This design is close in spirit to Hydra. However,

Hydra’s ambition to support dynamic enforcement of strict

scheduling invariants is not compatible with checking quo-

tas only during admission control (which is, to the best of

our understanding, the only mechanism supported by Borg).

Finally, Hydra inherits YARN’s ability to support soft/hard

data locality preferences on a per-container basis, which is

not supported in Borg.

HPC systems. Prior to the current generation of large-scale

resource managers, much effort has been devoted to schedul-

ing in the context of High Performance Clusters (HPC).

Prominent systems included Condor [32], Torque [31],

Moab [10], and Maui [1]. As discussed in [36], these

systems’ original focus on MPI applications leads to a

limited support for elastic scheduling and data-locality—

instrumental for batch big data applications. Furthermore,

their limited compatibility with the current open-source big

data ecosystems made them incompatible with some of our

fundamental requirements.

Influences. In building Hydra, we were influenced by a

body of research that extends well beyond the production

systems discussed above. These include dominant resource

fairness [12, 6], delay scheduling [42], distributed schedul-

ing [23], constraint- and utility-based scheduling [34, 35],

and the container reuse/executor model of [38, 43].

9 Conclusion

This paper summarizes our journey in building Hydra, a

general-purpose resource management framework, capable

of supporting a broad set of open-source and Microsoft’s

proprietary application frameworks. Hydra scales to clusters

of 50k+ nodes, performing tens of thousands of scheduling

decisions per second. Our design pivots around the follow-

ing core ideas: (i) a federation-based architecture, (ii) de-

coupling of share-determination from placement of tasks to

machines, and (iii) a flexible control-plane that can modify

the system’s scheduling behavior within seconds.

Hydra is the main resource manager at Microsoft, and it

is deployed across hundreds of thousands of servers. It has

so far scheduled a trillion tasks that processed close to a

Zettabyte of data. The utilization and scalability that Hy-

dra matches our state-of-the-art, distributed scheduler, while

allowing us to support arbitrary open-source and internal an-

alytics frameworks. We contributed Hydra’s implementation

to Apache Hadoop (∼200k lines of code), and are committed

to continuously open-source future advancements.

Acknowledgments. We would like to thank our shepherd,

John Wilkes, and the anonymous reviewers for their insight-

ful feedback. We also thank the Microsoft BigData team for

their help in improving and deploying Hydra in production.

Finally, we thank the Apache Hadoop community for the dis-

cussions and code-reviewing during Hydra’s open-sourcing.

188 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Maui Scheduler Open Cluster Software. http://mauischeduler.

sourceforge.net/, 2005.

[2] Hadoop: Writing yarn applications. https://hadoop.apache.

org/docs/stable/hadoop-yarn/hadoop-yarn-site/

WritingYarnApplications.html, 2012.

[3] Work-preserving NodeManager restart. https://issues.apache.

org/jira/browse/YARN-1336, 2014.

[4] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN,

J., DEVIN, M., GHEMAWAT, S., IRVING, G., ISARD, M., KUD-

LUR, M., LEVENBERG, J., MONGA, R., MOORE, S., MURRAY,

D. G., STEINER, B., TUCKER, P. A., VASUDEVAN, V., WARDEN,

P., WICKE, M., YU, Y., AND ZHENG, X. TensorFlow: A System for

Large-Scale Machine Learning. In OSDI (2016).

[5] BAI, H. Programming Microsoft Azure Service Fabric. Microsoft

Press, 2018.

[6] BHATTACHARYA, ARKA, C., DAVID CULLER, F., ERIC FRIED-

MAN, G., ALI, S., SCOTT, A. S., AND STOICA, I. Hierarchical

Scheduling for Diverse Datacenter Workloads. In SOCC (2013).

[7] BOUTIN, E., EKANAYAKE, J., LIN, W., SHI, B., ZHOU, J., QIAN,

Z., WU, M., AND ZHOU, L. Apollo: Scalable and Coordinated

Scheduling for Cloud-Scale Computing. In OSDI (2014).

[8] CANO, I., WEIMER, M., MAHAJAN, D., CURINO, C., FUMAROLA,

G. M., AND KRISHNAMURTHY, A. Towards geo-distributed machine

learning. IEEE Data Eng. Bull. (2017).

[9] CURINO, C., DIFALLAH, D. E., DOUGLAS, C., KRISHNAN, S.,

RAMAKRISHNAN, R., AND RAO, S. Reservation-based Scheduling:

If You’re Late Don’t Blame Us! In SOCC (2014).

[10] EMENEKER, W., JACKSON, D., BUTIKOFER, J., AND STANZIONE,

D. Dynamic virtual clustering with Xen and Moab. In ISPA (2006).

[11] GAREFALAKIS, P., KARANASOS, K., PIETZUCH, P. R., SURESH,

A., AND RAO, S. Medea: scheduling of long running applications in

shared production clusters. In EuroSys (2018).

[12] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,

SHENKER, S., AND STOICA, I. Dominant Resource Fairness: Fair

Allocation of Multiple Resource Types. In NSDI (2011).

[13] Federation v2: Global optimizations. https://issues.apache.

org/jira/browse/YARN-7402, 2018.

[14] Heron. http://apache.github.io/incubator-heron, 2018.

[15] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,

JOSEPH, A. D., KATZ, R., SHENKER, S., AND STOICA, I. Mesos:

A Platform for Fine-Grained Resource Sharing in the Data Center. In

NSDI (2011).

[16] ISARD, M. Autopilot: automatic data center management. ACM

SIGOPS Operating Systems Review (2007).

[17] JYOTHI, S. A., CURINO, C., MENACHE, I., NARAYANAMURTHY,

S. M., TUMANOV, A., YANIV, J., MAVLYUTOV, R., GOIRI, I., KR-

ISHNAN, S., KULKARNI, J., AND RAO, S. Morpheus: Towards Au-

tomated SLOs for Enterprise Clusters. In OSDI (2016).

[18] KARANASOS, K., RAO, S., CURINO, C., DOUGLAS, C., CHALI-

PARAMBIL, K., FUMAROLA, G. M., HEDDAYA, S., RAMAKRISH-

NAN, R., AND SAKALANAGA, S. Mercury: Hybrid Centralized and

Distributed Scheduling in Large Shared Clusters. In USENIX ATC

(2015).

[19] KARANASOS, K., SURESH, A., AND DOUGLAS, C. Advancements

in YARN Resource Manager. Encyclopedia of Big Data Technologies

(February 2018).

[20] Kubernetes. http://kubernetes.io, 2018.

[21] Node labels: Allow for (admin) labels on nodes and resource-requests.

https://issues.apache.org/jira/browse/YARN-796, 2014.

[22] Scheduling of opportunistic containers through YARN RM. https:

//issues.apache.org/jira/browse/YARN-5220, 2017.

[23] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I.

Sparrow: Distributed, low latency scheduling. In SOSP (2013).

[24] Rich placement constraints in YARN. https://issues.apache.

org/jira/browse/YARN-6592, 2018.

[25] Preemption: Scheduler feedback to AM to release containers. https:

//issues.apache.org/jira/browse/YARN-45, 2013.

[26] RAMAKRISHNAN, R., SRIDHARAN, B., DOUCEUR, J. R., KAS-

TURI, P., KRISHNAMACHARI-SAMPATH, B., KRISHNAMOORTHY,

K., LI, P., MANU, M., MICHAYLOV, S., RAMOS, R., SHARMAN,

N., XU, Z., BARAKAT, Y., DOUGLAS, C., DRAVES, R., NAIDU,

S. S., SHASTRY, S., SIKARIA, A., SUN, S., AND VENKATESAN, R.

Azure Data Lake Store: A Hyperscale Distributed File Service for Big

Data Analytics. In SIGMOD (2017).

[27] RASLEY, J., KARANASOS, K., KANDULA, S., FONSECA, R., VO-

JNOVIC, M., AND RAO, S. Efficient Queue Management for Cluster

Scheduling. In EuroSys (2016).

[28] Support for recurring reservations in the YARN ReservationSystem.

https://issues.apache.org/jira/browse/YARN-5326, 2018.

[29] Yarn admission control/planner: enhancing the resource allocation

model with time. https://issues.apache.org/jira/browse/

YARN-1051, 2018.

[30] Scheduler Load Simulator for Apache Hadoop YARN. https://

issues.apache.org/jira/browse/YARN-5065, 2017.

[31] STAPLES, G. TORQUE resource manager. In IEEE SC (2006).

[32] TANNENBAUM, T., WRIGHT, D., MILLER, K., AND LIVNY, M.

Condor: A Distributed Job Scheduler. In Beowulf Cluster Comput-

ing with Linux (2001).

[33] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P.,

ZHANG, N., ANTHONY, S., LIU, H., AND MURTHY, R. Hive - A

Petabyte Scale Data Warehouse Using Hadoop. In ICDE (2010).

[34] TUMANOV, A., CIPAR, J., GANGER, G. R., AND KOZUCH, M. A.

Alsched: Algebraic Scheduling of Mixed Workloads in Heteroge-

neous Clouds. In SOCC (2012).

[35] TUMANOV, A., ZHU, T., PARK, J. W., KOZUCH, M. A., HARCHOL-

BALTER, M., AND GANGER, G. R. TetriSched: global rescheduling

with adaptive plan-ahead in dynamic heterogeneous clusters. In Eu-

roSys (2016).

[36] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGARWAL,

S., KONAR, M., EVANS, R., GRAVES, T., LOWE, J., SHAH, H.,

SETH, S., ET AL. Apache Hadoop YARN: Yet Another Resource

Negotiator. In SOCC (2013).

[37] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER, D.,

TUNE, E., AND WILKES, J. Large-scale cluster management at

Google with Borg. In EuroSys (2015).

[38] WEIMER, M., CHEN, Y., CHUN, B.-G., CONDIE, T., CURINO,

C., DOUGLAS, C., LEE, Y., MAJESTRO, T., MALKHI, D., MATU-

SEVYCH, S., MYERS, B., NARAYANAMURTHY, S., RAMAKRISH-

NAN, R., RAO, S., SEARS, R., SEZGIN, B., AND WANG, J. REEF:

Retainable evaluator execution framework. In SIGMOD (2015).

[39] Extend YARN to support distributed scheduling. https://issues.

apache.org/jira/browse/YARN-2877, 2017.

[40] Move YARN scheduler towards global scheduler. https://issues.

apache.org/jira/browse/YARN-5139, 2018.

[41] Enable YARN RM scale out via federation using multiple RM’s.

https://issues.apache.org/jira/browse/YARN-2915, 2017.

[42] ZAHARIA, M., BORTHAKUR, D., SEN SARMA, J., ELMELEEGY,

K., SHENKER, S., AND STOICA, I. Delay Scheduling: A Simple

Technique for Achieving Locality and Fairness in Cluster Scheduling.

In EuroSys (2010).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 189

Job
Manager

...3

4

H
e
a
rtb
e
a
ts

Resource
Manager

1

2

Job
Manager

Job
Manager

Node Manager

Run TasksQueued Tasks

Node Manager

Run TasksQueued Tasks

Application
Master

Figure 13: (Non-federated) YARN architecture.

[43] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J., SHENKER,

S., AND STOICA, I. Spark: Cluster Computing with Working Sets. In

HotCloud (2010).

[44] ZHOU, J., BRUNO, N., WU, M.-C., LARSON, P.-Å., CHAIKEN,

R., AND SHAKIB, D. SCOPE: parallel databases meet MapReduce.

VLDB J. 21, 5 (2012), 611–636.

A Overview of YARN and Apollo

As discussed in Sections 2.3 and 3, we built Hydra by ex-

tending and re-architecting Apache Hadoop YARN [36] to

substitute our legacy system Apollo from which we also

drew ideas [7]. For convenience to the reader, below we pro-

vide a brief overview of YARN and Apollo, given their close

ties to Hydra.10

A.1 YARN

YARN follows a centralized architecture (depicted in

Fig. 13), in which a single logical component, the Resource

Manager (RM), allocates resources to jobs submitted to the

cluster. The resource requests handled by the RM are inten-

tionally generic, while specific scheduling logic required by

each application is encapsulated in the Application Master

that any framework can implement. This allows YARN to

support a wide range of applications using the same RM

component. Below we describe its main components.

Node Manager (NM). The NM is a daemon running at each

of the cluster’s worker nodes. NMs are responsible for moni-

toring resource availability at the host node, reporting faults,

and managing containers’ life-cycle (e.g., start, monitoring,

pause, queuing, and killing of containers).

Resource Manager (RM). The RM runs on a dedicated ma-

chine, arbitrating resources among various competing appli-

cations. Multiple RMs can be used for high availability, with

one of them being the master. The NMs periodically inform

the RM of their status through a heartbeat mechanism for

scalability. The RM also maintains the resource requests of

all applications. Given its global view of the cluster, and

10Excerpts of the text below are borrowed from previous works [19, 27,

7].

...

Resource
Monitor

1

... 2

Process Node

Run TasksQueued Tasks

Process Node

Run TasksQueued Tasks

Job
Manager

Job
Manager

Job
Manager

Figure 14: Apollo architecture.

based on application demand, resource availability, schedul-

ing priorities, and sharing policies (e.g., fairness), the sched-

uler of the RM performs the matchmaking between applica-

tion requests and machines, and hands leases on containers

to applications. A container is a logical resource bundle (e.g.,

2GB RAM, 1 CPU) bound to a specific node.

YARN includes two widely adopted scheduler implemen-

tations, namely the Fair and Capacity Schedulers. The for-

mer imposes fairness between applications, while the latter

dedicates a share of the cluster resources to groups of users.

When jobs are submitted to the RM, they go through an ad-

mission control phase, during which security credentials are

validated and various operational and administrative checks

are performed.

Application Master (AM). The AM is the job orchestrator

(one AM is instantiated per submitted job), managing all its

life-cycle aspects, including dynamically increasing and de-

creasing resource consumption, managing the execution flow

(e.g., running reducers against the output of mappers), and

handling faults. The AM can run arbitrary user code, writ-

ten in any programming language. By delegating all these

functions to AMs, YARN’s architecture achieves significant

scalability, programming model flexibility, and improved up-

grading/testing.

An AM will typically need to harness resources from mul-

tiple nodes to complete a job. To obtain containers, the AM

issues resource requests to the RM via heartbeats. When the

scheduler assigns a resource to the AM, the RM generates a

lease for that resource. The AM is then notified and presents

the container lease to the NM for launching the container at

that node. The NM checks the authenticity of the lease and

then initiates the container execution.

A.2 Apollo

Apollo is our legacy system that was used before Hydra

to manage the resources of our big-data clusters. Unlike

YARN, Apollo adopts a distributed scheduling architecture,

in which the scheduling of each job is performed indepen-

dently. As discussed in §2 and §6, this architecture enables

190 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Apollo to meet the scalability demands of our production

workload, but does not allow for arbitrary applications to

share the cluster nor for tight control over sharing policies.

Apollo’s main components are depicted in Fig. 14 and are

summarized below.

Process Node (PN). A PN process running on each worker

node is responsible for managing the local resources on that

node and performing local scheduling, similar to YARN’s

NM described above.

Resource Monitor (RMon). The RMon periodically aggre-

gates load information from PNs across the cluster, creating

a global view of the cluster status. While treated as a sin-

gle logical entity, the RMon is implemented physically in a

master-slave configuration for scalability and high availabil-

ity purposes. In contrast to YARN’s RM, Apollo’s RMon

is not at the critical path of scheduling decisions and might

contain stale information about the PN load.

Job Manager (JM). A Job Manager (JM), also called a

scheduler, is instantiated for each job to manage the job’s

life-cycle. The JM relies on the global cluster load infor-

mation provided by the RMon in order to perform informed

scheduling decisions.

To better predict resource utilization in the near future and

to optimize scheduling quality, each PN maintains a local

queue of tasks assigned to the node and advertises its future

resource availability to the RMon in the form of a wait-time

matrix. Apollo thereby adopts an estimation-based approach

to making task scheduling decisions. Each scheduler con-

sults the cluster status from the RMon, together with the in-

dividual characteristics of tasks to be scheduled, such as the

data locality. However, cluster dynamics pose many chal-

lenges in practice. RMon’s information might be stale, es-

timates might be suboptimal, and the cluster environment

might be unpredictable. Apollo therefore incorporates cor-

rection mechanisms for robustness and dynamically adjusts

scheduling decisions at runtime. Finally, it employs oppor-

tunistic scheduling to increase resource utilization while pro-

viding guaranteed resources to jobs that need it.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 191

Shuffling, Fast and Slow: Scalable Analytics on Serverless Infrastructure

Qifan Pu (UC Berkeley), Shivaram Venkataraman (UW Madison), Ion Stoica (UC Berkeley)

Abstract
Serverless computing is poised to fulfill the long-held
promise of transparent elasticity and millisecond-level pric-
ing. To achieve this goal, service providers impose a fine-
grained computational model where every function has a
maximum duration, a fixed amount of memory and no persis-
tent local storage. We observe that the fine-grained elasticity
of serverless is key to achieve high utilization for general
computations such as analytics workloads, but that resource
limits make it challenging to implement such applications as
they need to move large amounts of data between functions
that don’t overlap in time. In this paper, we present Locus,
a serverless analytics system that judiciously combines (1)
cheap but slow storage with (2) fast but expensive storage,
to achieve good performance while remaining cost-efficient.
Locus applies a performance model to guide users in select-
ing the type and the amount of storage to achieve the desired
cost-performance trade-off. We evaluate Locus on a number
of analytics applications including TPC-DS, CloudSort, Big
Data Benchmark and show that Locus can navigate the cost-
performance trade-off, leading to 4⇥-500⇥ performance im-
provements over slow storage-only baseline and reducing re-
source usage by up to 59% while achieving comparable per-
formance with running Apache Spark on a cluster of virtual
machines, and within 2⇥ slower compared to Redshift.

1 Introduction

The past decade has seen the widespread adoption of cloud
computing infrastructure where users launch virtual ma-
chines on demand to deploy services on a provisioned clus-
ter. As cloud computing continues to evolve towards more
elasticity, there is a shift to using serverless computing,
where storage and compute is separated for both resource
provisioning and billing. This trend was started by ser-
vices like Google BigQuery [9], and AWS Glue [22] that
provide cluster-free data warehouse analytics, followed by
services like Amazon Athena[5] that allow users to per-
form interactive queries against a remote object storage with-
out provisioning a compute cluster. While the aforemen-
tioned services mostly focus on providing SQL-like analyt-
ics, to meet the growing demand, all major cloud providers
now offer “general” serverless computing platforms, such as
AWS Lambda, Google Cloud Functions, Azure Functions
and IBM OpenWhisk. In these platforms short-lived user-
defined functions are scheduled and executed in the cloud.
Compared to virtual machines, this model provides more
fine-grained elasticity with sub-second start-up times, so that

workload requirements can be dynamically matched with
continuous scaling.

Fine-grained elasticity in serverless platforms is natu-
rally useful for on-demand applications like creating image
thumbnails [18] or processing streaming events [26]. How-
ever, we observe such elasticity also plays an important role
for data analytics workloads. Consider for example an ad-
hoc data analysis job exemplified by say TPC-DS query
95 [34] (See section 5 for more details). This query con-
sists of eight stages and the amount of input data at each
stage varies from 0.8MB to 66GB. With a cluster of virtual
machines users would need to size the cluster to handle the
largest stage leaving resources idle during other stages. Us-
ing a serverless platform can improve resource utilization as
resources can be immediately released after use.

However, directly using a serverless platform for data an-
alytics workloads could lead to extremely inefficient execu-
tion. For example we find that running the CloudSort bench-
mark [40] with 100TB of data on AWS Lambda, can be up
to 500⇥ slower (Section 2.3) when compared to running on
a cluster of VMs. By breaking down the overheads we find
that the main reason for the slowdown comes from slow data
shuffle between asynchronous function invocations. As the
ephemeral, stateless compute units lack any local storage,
and as direct transfers between functions is not always feasi-
ble1, intermediate data between stages needs to be persisted
on shared storage systems like Amazon S3. The character-
istics of the storage medium can have a significant impact
on performance and cost. For example, a shuffle from 1000
map tasks to 1000 reduce tasks leads to 1M data blocks being
created on the storage system. Therefore, throughput limits
of object stores like Amazon S3 can lead to significant slow
downs (Section 2.3).

Our key observation is that in addition to using elas-
tic compute and object storage systems we can also pro-
vision fast memory-based resources in the cloud, such as
in-memory Redis or Memcached clusters. While naively
putting all data in fast storage is cost prohibitive, we can ap-
propriately combine fast, but expensive storage with slower
but cheaper storage, similar to the memory and disk hierar-
chy on a local machine, to achieve the best of both worlds:
approach the performance of a pure in-memory execution at
a significantly lower cost. However, achieving such a sweet
spot is not trivial as it depends on a variety of configuration
parameters, including storage type and size, degree of task
parallelism, and the memory size of each serverless func-

1Cloud providers typically provide no guarantees on concurrent execu-
tion of workers.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 193

tion. This is further exacerbated by the various performance
limits imposed in a serverless environment (Section 2.4).

In this paper we propose Locus, a serverless analytics sys-
tem that combines multiple storage types to achieve better
performance and resource efficiency. In Locus, we build a
performance model to aid users in selecting the appropriate
storage mechanism, as well as the amount of fast storage
and parallelism to use for map-reduce like jobs in server-
less environments. Our model captures the performance and
cost metrics of various cloud storage systems and we show
how we can combine different storage systems to construct
hybrid shuffle methods. Using simple micro-benchmarks,
we model the performance variations of storage systems as
other variables like serverless function memory and paral-
lelism change.

We evaluate Locus on a number of analytics applications
including TPC-DS, Daytona CloudSort and the Big Data
Benchmark. We show that using fine-grained elasticity, Lo-
cus can reduce cluster time in terms of total core·seconds
by up to 59% while being close to or beating Spark’s query
completion time by up to 2⇥. We also show that with a small
amount of fast storage, for example, with fast storage just
large enough to hold 5% of total shuffle data, Locus matches
Apache Spark in running time on CloudSort benchmark and
is within 13% of the cost of the winning entry in 2016. While
we find Locus to be 2⇥ slower when compared to Ama-
zon Redshift, Locus is still a preferable choice to Redshift
since it requires no provisioning time (vs. minutes to setup a
Redshift cluster) or knowing an optimal cluster size before-
hand. Finally, we also show that our model is able to accu-
rately predict shuffle performance and cost with an average
error of 15.9% and 14.8%, respectively, which allows Locus
to choose the most appropriate shuffle implementation and
other configuration variables.

In summary, the main contributions of this paper are:

• We study the problem of executing general purpose data
analytics on serverless platforms to exploit fine-grained
elasticity and identify the need for efficient shuffles.

• We show how using a small amount of memory-based
fast storage can lead to significant benefits in perfor-
mance while remaining cost effective.

• To aid users in selecting the appropriate storage mech-
anism, We propose Locus, a performance model that
captures the performance and cost metrics of shuffle op-
erations.

• Using extensive evaluation on TPC-DS, CloudSort and
Big Data Benchmark we show that our performance
model is accurate and can lead to 4⇥-500⇥ perfor-
mance improvements over baseline and up to 59% cost
reduction compared to traditional VM deployments,
and within 2⇥ slower compared to Redshift.

2 Background

We first present a brief overview of serverless computing and
compare it with the traditional VM-based instances. Next we
discuss how analytics queries are implemented on serverless
infrastructure and present some of the challenges in execut-
ing large scale shuffles.

2.1 Serverless Computing: What fits?
Recently, cloud providers and open source projects [25, 32]
have proposed services that execute functions in the cloud
or providing Functions-as-a-Service. As of now, these func-
tions are subject to stringent resource limits. For example,
AWS Lambda currently imposes a 5 minute limit on function
duration and 3GB memory limit. Functions are also assumed
to be stateless and are only allocated 512MB of ephemeral
storage. Similar limits are applied by other providers such
as Google Cloud Functions and Azure Functions. Regard-
less of such limitations, these offerings are popular among
users for two main reasons: ease of deployment and flexi-
ble resource allocation. When deploying a cluster of virtual
machines, users need to choose the instance type, number
of instances, and make sure these instances are shutdown
when the computation finishes. In contrast, serverless of-
ferings have a much simpler deployment model where the
functions are automatically triggered based on events, e.g.,
arrival of new data.

Furthermore, due to their lightweight nature, containers
used for serverless deployment can often be launched within
seconds and thus are easier to scale up or scale down when
compared to VMs. The benefits of elasticity are especially
pronounced for workloads where the number of cores re-
quired varies across time. While this naturally happens for
event-driven workloads for example where say users upload
a photo to a service that needs to be compressed and stored,
we find that elasticity is also important for data analytics
workloads. In particular, user-facing ad-hoc queries or ex-
ploratory analytics workloads are often unpredictable yet
have more stringent responsiveness requirements, making it
more difficult to provision a traditional cluster compared to
recurring production workloads.

We present two common scenarios that highlight the im-
portance of elasticitiy. First, consider a stage of tasks being
run as a part of an analytics workload. As most frameworks
use a BSP model [15, 44] the stage completes only when
the last task completes. As the same VMs are used across
stages, the cores where tasks have finished are idle while the
slowest tasks or stragglers complete [3]. In comparison, with
a serverless model, the cores are immediately relinquished
when a task completes. This shows the importance of elastic-
ity within a stage. Second, elasticity is also important across
stages: if we consider say consider TPC-DS query 95 (details
in 5), the query consists of 8 stages with input data per stage

194 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

2000

4000

6000

8000

0 500 1000 1500 2000

co
nc

ur
re

nt
 re

qu
es

ts

time (seconds)

Window
Running

Figure 1: S3 rate limiting in action. We use a TCP-like
additive-increase/multiplicative-decrease (AIMD) algorithm to
probe the number of concurrent requests S3 can support for
reading 10KB objects. We see that S3 not only enforces a rate
ceiling, but also continues to fail requests after the rate is re-
duced for a period of time. The specific rate ceiling can change
over time due to S3’s automatic data-partition scaling.

varying from 0.8Mb to 66Gb. With such a large variance in
data size, being able to adjust the number of cores used at
every stage leads to better utilization compared to traditional
VM model.

2.2 Analytics on serverless: Challenges
To execute analytics queries on a serverless infrastructure we
assume the following system model. A driver process, run-
ning on user’s machine, “compiles” the query into a multi-
stage DAG, and then submits each task to the cloud service
provider. A task is executed as one function invocation by
the serverless infrastructure. Tasks in consecutive stages ex-
change data via a variety of communication primitives, such
as shuffle and broadcast [11]. Each task typically consists of
three phases: read, compute, and write [33]. We next discuss
why the communication between stages i.e., the shuffle stage
presents the biggest challenge.
Input, Output: Similar to existing frameworks, each task
running as a function on a serverless infrastructure reads the
input from a shared storage system, such as S3. However,
unlike existing frameworks, functions are not co-located
with the storage, hence there is no data locality in this model.
Fortunately, as prior work has shown, the bandwidth avail-
able between functions and the shared storage system is com-
parable to the disk bandwidths [1], and thus we typically do
not see any significant performance degradation in this step.
Compute: With serverless computing platforms, each func-
tion invocation is put on a new container with a virtualized
compute core. Regardless of the hardware heterogeneity,
recent works have shown that the almost linear scaling of
serverless compute is ideal for supporting embarrassingly
parallel workloads [16, 18].
Shuffle: The most commonly used communication pattern
to transfer data across stages is the shuffle operation. The
map stage partitions data according to the number of reduc-
ers and each reducer reads the corresponding data partitions
from the all the mappers. Given M mappers and R reduc-

ers we will have M ⇤ R intermediate data partitions. Un-
fortunately, the time and resource limitations imposed by
the serverless infrastructures make the implementation of the
shuffle operation highly challenging.

A direct approach to implementing shuffles would be to
open connections between serverless workers [18] and trans-
fer data directly between them. However, there are two lim-
itations that prevent this approach. First cloud providers do
not provide any guarantees on when functions are executed
and hence the sender and receiver workers might not be ex-
ecuting at the same time. Second, even if the sender and
receiver overlap, given the execution time limit, there might
not be enough time to transfer all the necessary data.

A natural approach to transferring data between ephemeral
workers is to store intermediate data in a persistent storage
system. We illustrate challenges for this approach with a
distributed sorting example.

2.3 Scaling Shuffle: CloudSort Example
The main challenge in executing shuffles in a serverless
environment is handling the large number of intermediate
files being generated. As discussed before, functions have
stringent resource limitations and this effectively limits the
amount of data a function can process in one task. For ex-
ample to sort 100TB, we will need to create a large number
of map partitions, as well as a large number of reduce par-
titions, such that the inputs to the tasks can be less than the
memory footprint of a function. Assuming 1GB partitions,
we have 105 partitions on both the map side and the reduce
side. For implementing a hash-based shuffle one intermedi-
ate file is created for each (mapper, reducer) pair. In this case
we will have a total of 1010, or 10 billion intermediate files!
Even with traditional cluster-based deployment, shuffling 10
billion files is quite challenging, as it requires careful opti-
mization to achieve high network utilization [31]. Unfortu-
nately, none of the storage systems offered by existing cloud
providers meets the performance requirements, while also
being cost-effective. We next survey two widely available
storage systems classes and discuss their characteristics.

2.4 Cloud Storage Systems Comparison
To support the diverse set of cloud applications, cloud
providers offer a number of storage systems each with dif-
ferent characteristics in terms of latency, throughput, stor-
age capacity and elasticity. Just as within a single machine,
where we have a storage hierarchy of cache, memory and
disk, each with different performance and cost points, we
observe that a similar hierarchy can be applied to cloud stor-
age systems. We next categorize two major storage system
classes.
Slow Storage: All the popular cloud providers offer sup-
port for scalable and elastic blob storage. Examples of such

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 195

systems include Amazon S3, Google Cloud Storage, Azure
Blob Store. However, these storage systems are not designed
to support high throughput on reading and writing small files.
In fact, all major public cloud providers impose a global
transaction limit on shared object stores [37, 7, 20]. This
should come as no surprise, as starting with the Google File
System [21], the majority of large scale storage systems have
been optimized for reading and writing large chunks of data,
rather than for high-throughput fine-grained operations.

We investigated the maximum throughput that one can
achieve on Amazon S3 and found that though the through-
put can be improved as the number of buckets increases,
the cloud provider throttles requests when the aggregate
throughput reaches a few thousands of requests/sec (see Fig-
ure 1). Assuming a throughput of 10K operations per second,
this means that reading and writing all the files generated
by our CloudSort example could take around 2M seconds,
or 500⇥ slower than the current record [42]. Not only is
the performance very low, but the cost is prohibitive as well.
While the cost per write request is as low as $0.005 per 1,000
requests for all three aforementioned cloud providers, shuf-
fling 1010 files would cost $5,000 alone for write requests.
Thus, supporting large shuffles requires a more efficient and
economic solution for storing intermediate data.
Fast Storage: One approach to overcome the performance
limitations of the slow storage systems is to use much faster
storage, if available. Examples of faster storage are in-
memory storage systems backed by Memcached or Redis.
Such storage systems support much higher request rates
(more than 100,000 requests/sec per shard), and efficiently
handle objects as small as a few tens of bytes. On the flip
side, these systems are typically much more expensive than
large-scale blob storage systems. For example to store 1GB
of data for an hour, it costs 0.00319 cents in AWS S3 while it
costs 2.344 cents if we use a managed Redis service such as
AWS ElastiCache, which makes it 733⇥ more expensive!2

Given the cost-performance trade-off between slow (e.g.,
S3) and fast (e.g., ElastiCache) storage, in the following
sections we show that by judiciously combining these two
types of storage systems, we can achieve a cost-performance
sweet spot in a serverless deployment that is comparable, and
sometimes superior to cluster-based deployments.

3 Design

In this section we outline a performance model that can be
used to guide the design of an efficient and cost-effective
shuffle operations. We start with outlining our system model,

2We note that ElastiCache is not “serverless”, and there is no server-
less cache service yet as of writing this paper and users need to provision
cache instances. However, we envision that similar to existing storage and
compute, fast storage as a resource (possibly backed by memory) will also
become elastic in the future. There are already several proposals to provide
disaggregated memory across datacenters [19] to support this.

0

20

40

60

80

100

0.5G 1G 1.5G 2G 3G

w
rit
e
BW

/w
or
ke
r(
M
B/
se
c)

1 10 300 1000 3000

(a) write

0

20

40

60

80

100

0.5G 1G 1.5G 2G 3G

re
ad

BW
/w

or
ke
r(
M
B/
se
c)

1 10 300 1000 3000

(b) read

Figure 2: S3 bandwidth per worker with varying concur-
rency (1 to 3000) and Lambda worker size (0.5G to 3G).

Table 1: Measured throughput (requests/sec) limit for a single
S3 bucket and a single Redis shard.

object size 10KB 100KB 1M 10M 100M
S3 5986 4400 3210 1729 1105

Redis 116181 11923 1201 120 12

and then discuss how different variables like worker memory
size, degree of parallelism, and the type of storage system af-
fect the performance characteristics of the shuffle operation.

3.1 System Model
We first develop a high level system model that can be used
to compare different approaches to shuffle and abstract away
details specific to cloud providers. We denote the function-
as-a-service module as compute cores or workers for tasks.
Each function invocation, or a worker, is denoted to run with
a single core and w bytes of memory (or the worker memory
size). The degree of the parallelism represents the number
of function invocations or workers that execute in parallel,
which we denote by p. The total amount of data being shuf-
fled is S bytes. Thus, the number of workers required in the
map and reduce phase is at least S

w leading to a total of (S
w)

2

requests for a full shuffle.
We next denote the bandwidth available to access a storage

service by an individual worker as b bytes/sec. We assume
that the bandwidth provided by the elastic storage services
scale as we add more workers (we discuss how to handle
cases where this is not true below). Finally, we assume each
storage service limits the aggregate number of requests/sec:
we denote by qs and q f for the slow and the fast storage
systems, respectively.

To measure the cost of each approach we denote the cost
of a worker function as cl $/sec/byte, the cost of fast storage
as c f $/sec/byte. The cost of slow storage has two parts, one
for storage as cs $/sec/byte, and one for access, denoted as ca
$/op. We assume that both the inputs and the outputs of the
shuffle are stored on the slow storage. In most cases in prac-
tice, cs is negligible during execution of a job. We find the

196 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Cloud storage cost from major providers (Feb 2019).

Service $/Mo/GB $/million writes

Slow
AWS S3 0.023 5

GCS 0.026 5
Azure Blob 0.023 6.25

Fast
ElastiCache 7.9 -

Memorystore 16.5 -
Azure Cache 11.6 -

above cost characteristics apply to all major cloud platforms
(AWS, Google Cloud and Azure), as shown in Table 2.

Among the above, we assume the shuffle size (S) is given
as an input to the model, while the worker memory size (w),
the degree of parallelism (p), and the amount of fast storage
(r) are the model knobs we vary. To determine the character-
istics of the storage systems (e.g., b, qs, q f), we use offline
benchmarking. We first discuss how these storage perfor-
mance characteristics vary as a function of our variables.

3.2 Storage Characteristics
The main storage characteristics that affect performance are
unsurprisingly the read and write throughput (in terms of
requests/sec, or often referred as IOPS) and bandwidth (in
terms of bytes/sec). However, we find that these values are
not stable as we change the degree of parallelism and worker
memory size. In Figure 2 we measure how a function’s band-
width (b) to a large-scale store (i.e., Amazon S3, the slow
storage service in our case) varies as we change the degree
of parallelism (p) and the worker memory size (w). From
the figure we can see that as we increase the parallelism both
read and write bandwidths could vary by 2-3⇥. Further we
see that as we increase the worker memory size the band-
width available increases but that the increase is sub-linear.
For example with 60 workers each having 0.5G of memory,
the write bandwidth is around 18 MB/s per worker or 1080
MB/s in aggregate. If we instead use 10 workers each hav-
ing 3GB of memory, the write bandwidth is only around 40
MB/s per worker leading to 400 MB/s in aggregate.

Using a large number of small workers is not always ideal
as it could lead to an increase in the number of small I/O re-
quests. Table 1 shows the throughput we get as we vary the
object size. As expected, we see that using smaller object
sizes means that we get a lower aggregate bandwidth (mul-
tiplying object size by transaction throughput). Thus, jointly
managing worker memory size and parallelism poses a chal-
lenging trade-off.

For fast storage systems we typically find that through-
put is not a bottleneck for object sizes > 10 KB and that we
saturate the storage bandwidth. Hence, as shown in Table 1
the operation throughput decreases linearly as the object size
increases. While we can estimate the bandwidth available
for fast storage systems using an approach similar to the
one used for slow storage systems, the current deployment

Table 3: Comparison of time taken by different shuffle meth-
ods. S refers to the shuffle data size, w to the worker memory
size, p the number of workers, qs the throughput to slow stor-
age, q f throughput to fast storage b network bandwidth from
each worker.

storage type shuffle time
slow 2⇥max(S2

w2⇥qs
, S

b⇥p)

fast 2⇥max(S2

w2⇥q f
, S

be f f
), where

be f f = min(b f ,b⇥ p)
hybrid S

r Trnd +Tmrg, where
Trnd = 2⇥max(Tf b,Tsb,Tsq)
Tmrg = 2⇥max((Sw

r)2Tsq,
S
r Tsb)

Tf b =
r

be f f
, Tsb =

r
b⇥p

Tsq =
r2

w2⇥qs

method where we are allocating servers for running Mem-
cached / Redis allows us to ensure they are not a bottleneck.

3.3 Shuffle Cost Models
We next outline performance models for three shuffle sce-
narios: using (1) slow storage only, (2) fast storage only, and
(3) a combination of fast and slow storage.
Slow storage based shuffle. The first model we develop is
using slow storage only to perform the shuffle operation. As
we discussed in the previous section there are two limits that
the slow storage systems impose: an operation throughput
limit (qs) and a bandwidth limit (b). Given that we need to
perform (S

w)
2 requests with an overall operation throughput

of qs, we can derive Tq, the time it takes to complete these
requests is Tq =

S2

w2⇥qs
, assuming qs is the bottleneck. Sim-

ilarly, given the per-worker bandwidth limit to storage, b,
the time to complete all requests assuming b is bottleneck is
Tb =

S
b⇥p . Considering both potential bottlenecks, the time it

takes to write/read all the data to/from intermediate storage is
thus max(Tq,Tb). Note that this time already includes read-
ing data from input storage or writing data to output storage,
since they can be pipelined with reading/writing to interme-
diate storage. Finally, the shuffle needs to first write data to
storage and then read it back. Hence the total shuffle time is
Tshu f = 2⇥max(Tq,Tb).

Table 4 shows our estimated running time and cost as we
vary the worker memory and data size.
Fast storage based-shuffle. Here we develop a simple
performance model for fast storage that incorporates the
throughput and bandwidth limits. In practice we need
to make one modification to factor in today’s deployment
model for fast storage systems. Since services like Elasti-
Cache are deployed by choosing a fixed number of instances,
each having some fixed amount of memory, the aggregate
bandwidth of the fast storage system could be a significant
bottleneck, if we are not careful. For example, if we had

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 197

Figure 3: Illustration for hybrid shuffle.
Table 4: Projected sort time and cost with varying worker
memory size. Smaller worker memory results in higher par-
allelism, but also a larger numbers files to shuffle.

worker mem(GB) 0.25 0.5 1 1.25 1.5
20GB time(s) 36 45 50 63 72
20GB cost($) 0.02 0.03 0.03 0.04 0.05

200GB time(s) 305 92 50 63 75
200GB cost($) 0.24 0.30 0.33 0.42 0.51

1TB time(s) 6368 1859 558 382 281
1TB cost($) 1.22 1.58 1.70 2.12 2.54

just one ElastiCache instance with 10Gbps NIC and 50G
of memory, the aggregate bandwidth is trivially limited to
10Gbps. In order to model this aspect, we extend our for-
mulation to include b f , which is the server-side bandwidth
limit for fast storage. We calculate the effective bandwidth
as be f f = min(b⇥ p,b f).

Using the above effective bandwidth we can derive the
time taken due to throughput and bandwidth limits as Tq =

S2

w2⇥q f
and Tb = S

be f f
, respectively. Similar to the previ-

ous scenario, the total shuffle time is then Tshu f = 2 ⇥
max(Tq,Tb).

One interesting scenario in this case is that as long as the
fast storage bandwidth is a bottleneck (i.e. b f < b⇥ p), using
more fast memory improves not only the performance, but
also reduces the cost! Assume the amount of fast storage is
r. This translates to a cost of p ⇤ cl ⇤ Tshu f + r ⇤ c f ⇤ Tshu f ,
with slow storage request cost excluded. Now, assume we
double the memory capacity to 2⇥r, which will also result in
doubling the bandwidth, i.e., 2⇥b f . Assuming that operation
throughput is not the bottleneck, the shuffle operations takes
now S

2b f
=

Tshu f
2 , while the cost becomes p⇤cl ⇤

Tshu f
2 +2⇤r⇤

c f ⇤
Tshu f

2 . This does not include reduction in request cost for
slow storage. Thus, while the cost for fast storage (second
term) remains constant, the cost for compute cores drops by
a factor of 2. In other words, the overall running time has
improved by a factor of 2 while the cost has decreased.

However, as the amount of shuffle data grows, the cost
of storing all the intermediate data in fast storage becomes
prohibitive. We next look at the design of a hybrid shuffle
method that can scale to much larger data sizes.

3.4 Hybrid Shuffle
We propose a hybrid shuffle method that combines the inex-
pensive slow storage with the high throughput of fast storage

to reach a better cost-performance trade-off. We find that
even with a small fast storage, e.g., less than 1

20 th of total
shuffle data, our hybrid shuffle can outperform slow storage
based shuffle by orders of magnitude.

To do that, we introduce a multi-round shuffle that uses
fast storage for intermediate data within a round, and uses
slow storage to merge intermediate data across rounds. In
each round we range-partition the data into a number of
buckets in fast storage and then combine the partitioned
ranges using the slow storage. We reuse the same range par-
titioner across rounds. In this way, we can use a merge stage
at the end to combine results across all rounds, as illustrated
in Figure 3. For example, a 100 TB sort can be broken down
to 100 rounds of 1TB sort, or 10 rounds of 10TB sort.

Correspondingly the cost model for the hybrid shuffle can
be broken down into two parts: the cost per round and the
cost for the merge. The size of each round is fixed at r, the
amount of space available on fast storage. In each round we
perform two stages of computation, partition and combine.
In the partition stage, we read input data from the slow stor-
age and write to the fast storage, while in the combine stage
we read from the fast storage and write to the slow storage.
The time taken by one stage is then the maximum between
the corresponding durations of the stage when the bottleneck
is driven either by (1) the fast storage bandwidth Tf b =

r
be f f

,
(2) the slow storage bandwidth Tsb = r/(b ⇤ p), or (3) the
slow storage operation throughput Tsq = r2

w2⇥qs
3. Thus, the

time per-round is Trnd = 2⇤max(Tf b,Tsb,Tsq).
The overall shuffle consists of S

r such rounds and a fi-
nal merge phase where we read data from the slow storage,
merge it, and write it back to the slow storage. The time of
the merge phase can be similarly broken down into through-
put limit Tmq = (Sw

r)2 ⇤Tsq and bandwidth limit Tmb =
S
r ⇤Tsb,

where Tsb and Tsq follows from the definitions from previ-
ous paragraph. Thus, Tmrg = 2⇤max(Tmq,Tmb), and the total
shuffle time is S

r ⇤Trnd +Tmrg.
How to pick the right fast storage size? Selecting the
appropriate fast storage/memory size is crucial to obtaining
good performance with the hybrid shuffle. Our performance
model aims to determine the optimal memory size by using
two limits to guide the search. First, provisioning fast storage
does not help when slow storage bandwidth becomes bottle-
neck, which provides an upper bound on fast storage size.
Second, since the final stage needs to read outputs from all
prior rounds to perform the merge, the operation throughput
of the slow storage provides an upper bound on the number
of rounds, thus a lower bound of the fast storage size.
Pipelining across stages An additional optimization we per-
form to speed up round execution and reduce cost is to
pipeline across partition stage and combine stage. As shown
in Figure 3, for each round, we launch partition tasks to read

3We ignore the fast storage throughput, as we rarely find it to be bottle-
neck. We could easily include it in our model, if needed.

198 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) 500MB workers (b) 3GB workers
Figure 4: Lambda to S3 bandwidth distribution exhibits
high variance. A major source of stragglers.
input data, partition them and write out intermediate files to
the fast storage. Next, we launch combine tasks that read
files from the fast storage. After each round, the fast storage
can be cleared to be used for next round.

With pipelining, we can have partition tasks and combine
tasks running in parallel. While the partition tasks are writ-
ing to fast storage via append(), the merge tasks read out
files periodically and perform atomic delete-after-read op-
erations to free space. Most modern key-value stores, e.g.,
Redis, support operations such as append and atomic delete-
after-read. Pipelining gives two benefits: (1) it overlaps the
execution of the two phases thus speeding up the in-round
sort, and (2) it allows a larger round size without needing
to store the entire round in memory. Pipelining does have a
drawback. Since we now remove synchronization boundary
between rounds, and use append() instead of setting a new
key for each intermediate data, we cannot apply speculative
execution to mitigate stragglers, nor can we obtain task-level
fault tolerance. Therefore, pipelining is more suitable for
smaller shuffles.

3.5 Modeling Stragglers
The prior sections provided several basic models to estimate
the time taken by a shuffle operation in a serverless environ-
ment. However, these basic models assume all tasks have
uniform performance, thus failing to account for the pres-
ence of stragglers.

The main source of stragglers for the shuffle tasks we con-
sider in this paper are network stragglers, that are caused by
slow I/O to object store. Network stragglers are inherent
given the aggressive storage sharing implied by the server-
less architecture. While some containers (workers) might get
better bandwidth than running reserved instances, some con-
tainers get between 4-8⇥ lower bandwidth, as shown in Fig-
ure 4. To model the straggler mitigation scheme described
above we initialize our model with the network bandwidth
CDFs as shown in Figure 4. To determine running time of
each stage we then use an execution simulator [33] and sam-
ple network bandwidths for each container from the CDFs.

20GB

100GB

1TB

10TB
100TB

0.01

1

100

10000

1 100 10000 1000000

pr
ed

ict
ed

co
st
($
)

predicted shuffle time (seconds)

slow	storage
fast	storage
hybrid	 (>1TB)

Figure 5: Predicted time and cost for different sort implemen-
tations and sizes.
Furthermore, our modeling is done for each worker memory
size, since bandwidth CDFs vary across worker sizes.

There are many previous works on straggler mitiga-
tion [45, 4, 36, 2]. We use a simple online method where
we always launch speculative copies after x% of tasks finish
in the last wave. Having short-lived tasks in the serverless
model is more advantageous here. The natural elasticity of
serverless infrastructure makes it possible to be aggressive in
launching speculative copies.

3.6 Performance Model Case Study
We next apply our performance model described above to the
CloudSort benchmark and study the cost-performance trade-
off for the three approaches described above. Our predic-
tions for data sizes ranging from 20GB to 100TB are shown
in Figure 5 (we use experimental results of a real prototype
to validate these predictions in Section 5). When the data
shuffle size is small (e.g., 20GB or smaller), both the slow
and fast storage only solutions take roughly the same time,
with the slow storage being slightly cheaper. As the data size
increases to around 100GB, using fast storage is around 2⇥
faster for the same cost. This speed up from fast storage is
more pronounced as data size grows. For very large shuffles
(� 10 TB), hybrid shuffle can provide significant cost sav-
ings. For example, at 100TB, the hybrid shuffle is around 6x
cheaper than the fast storage only shuffle, but only 2x slower.

Note that since the hybrid shuffle performs a merge phase
in addition to writing all the data to the fast storage, it is al-
ways slower than the fast storage only shuffle. In summary,
this example shows how our performance model can be used
to understand the cost-performance trade-off from using dif-
ferent shuffle implementations. We implement this perfor-
mance modeling framework in Locus to perform automatic
shuffle optimization. We next describe the implementation
of Locus and discuss some extensions to our model.

4 Implementation

We implement Locus by extending PyWren [16], a Python-
based data analytics engine developed for serverless envi-
ronments. PyWren allows users to implement custom func-
tions that perform data shuffles with other cloud services,
but it lacks an actual shuffle operator. We augment PyWren

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 199

with support for shuffle operations and implement the per-
formance modeling framework described before to automat-
ically configure the shuffle variables. For our implementa-
tion we use AWS Lambda as our compute engine and use
S3 as the slow, elastic storage system. For fast storage we
provision Redis nodes on Amazon ElastiCache.

To execute SQL queries on Locus, we devise physical
query plan from Apache Spark and then use Pandas to imple-
ment structured data operations. One downside with Pandas
is that we cannot do “fine-grained pipelining” between data
operations inside a task. Whereas in Apache Spark or Red-
shift, a task can process records as they are read in or writ-
ten out. Note this fine-grained pipelining is different from
pipelining across stages, which we discuss in Section 3.4.

4.1 Model extensions

We next discuss a number of extensions to augment the per-
formance model described in the previous section

Non-uniform data access: The shuffle scenario we con-
sidered in the previous section was the most general all-to-
all shuffle scenario where every mapper contributes data to
every reducer. However, a number of big data workloads
have more skewed data access patterns. For example, ma-
chine learning workloads typically perform AllReduce or
broadcast operations that are implemented using a tree-
based communication topology. When a binary tree is used
to do AllReduce, each mapper only produces data for one re-
ducer and correspondingly each reducer only reads two parti-
tions. Similarly while executing a broadcast join, the smaller
table will be accessed by every reducer while the larger ta-
ble is hash partitioned. Thus, in these scenarios storing the
more frequently accessed partition on fast storage will im-
prove performance. To handle these scenarios we introduce
an access counter for each shuffle partition and correspond-
ingly update the performance model. We only support this
currently for cases like AllReduce and broadcast join where
the access pattern is known beforehand.

Storage benchmark updates: Finally one of the key factors
that make our performance models accurate is the storage
benchmarks that measure throughput (operations per sec)
and network bandwidth (bytes per second) of each storage
system. We envision that we will execute these benchmarks
the first time a user installs Locus and that the benchmark
values are reused across a number of queries. However, since
the benchmarks are capturing the behavior of cloud storage
systems, the performance characteristics could change over
time. Such limits change will require Locus to rerun the pro-
filing. We plan to investigate techniques where we can pro-
file query execution to infer whether our benchmarks are still
accurate over extended periods of time.

5 Evaluation

We evaluate Locus with a number of analytics workloads,
and compare Locus with Apache Spark running on a cluster
of VMs and AWS Redshift/Redshift Spectrum4. Our evalu-
ation shows that:

• Locus’s serverless model can reduce cluster time by up
to 59%, and at the same time being close to or beating
Spark’s query completion time by up to 2⇥. Even with
a small amount of fast storage, Locus can greatly im-
prove performance. For example, with just 5% memory,
we match Spark in running time on CloudSort bench-
mark and are within 13% of the cost of the winning
entry in 2016.

• When comparing with actual experiment results, our
model in Section 3 is able to predict shuffle perfor-
mance and cost accurately, with an average error of
15.9% for performance and 14.8% for cost. This allows
Locus to choose the best cost-effective shuffle imple-
mentation and configuration.

• When running data intensive queries on the same num-
ber of cores, Locus is within 1.61 ⇥ slower compared
to Spark, and within 2 ⇥ slower compared to Redshift,
regardless of the baselines’ more expensive unit-time
pricing. Compared to shuffling only through slow stor-
age, Locus can be up to 4⇥-500⇥ faster.

The section is organized as follows, we first show uti-
lization and end-to-end performance with Locus on TPC-
DS [34] queries (5.1) and Daytona CloudSort benchmark
(5.2). We then discuss how fast storage shifts resource bal-
ance to affect the cost-performance trade-off in Section 5.3.
Using the sort benchmark, we also check whether our shuf-
fle formulation in Section 3 can accurately predict cost and
performance(5.4). Finally we evaluate Locus’s performance
on joins with Big Data Benchmark [8](5.5).
Setup: We run our experiments on AWS Lambda and use
Amazon S3 for slow storage. For fast storage, we use a clus-
ter of r4.2xlarge instances (61GB memory, up to 10Gbps
network) and run Redis. For our comparisons against Spark,
we use the latest version of Apache Spark (2.3.1). For com-
parison against Redshift, we use the latest version as of 2018
September and ds2.8xlarge instances. To calculate cost
for VM-based experiments we pro-rate the hourly cost to a
second granularity.5 For Redshift, the cost is two parts using
AWS pricing model, calculated by the uptime cost of cluster
VMs, plus $5 per TB data scanned.

4When reading data of S3, AWS Redshift automatically uses a shared,
serverless pool of resource called the Spectrum layer for S3 I/O, ETL and
partial aggregation.

5This is presenting a lower cost than the minute-granularity used for
billing by cloud providers like Amazon, Google.

200 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

50000

100000

150000

200000

250000

Q1 Q16 Q94 Q95

cl
us
te
rt
im
e
(c
or
e·
se
c) Locus

Spark
Redshift

+1%

-58%

-59% -4%

(a) Cluster time

159

0

100

200

300

400

500

Q1 Q16 Q94 Q95

av
er

ag
e

qu
er

y
tim

e
(s

)

Locus-S3
Locus-reserved
Locus
Spark
Redshift

(b) Query latency

0
0.5

1
1.5

2
2.5

3
3.5

Q1 Q16 Q94 Q95

co
st

 ($
)

Locus
Spark
Redshift

(c) Cost

Figure 6: TPC-DS results for Locus, Apache Spark and Redshift under different configurations. Locus-S3 runs the
benchmark with only S3 and doesn’t complete for many queries; Locus-reserved runs Locus on a cluster of VMs.

5.1 TPC-DS Queries

The TPC-DS benchmark has a set of standard decision sup-
port queries based on those used by retail product suppli-
ers. The queries vary in terms of compute and network I/O
loads. We evaluate Locus on TPC-DS with scale factor of
1000, which has a total input size of 1TB data for various ta-
bles. Among all queries, we pick four of them that represent
different performance characteristics and have a varying in-
put data size from 33GB to 312GB. Our baselines are Spark
SQL deployed on a EC2 cluster with c3.8xlarge instances
and Redshift with ds2.8xlarge instances, both with 512
cores. For Locus, we obtain workers dynamically across dif-
ferent stages of a query, but make sure that we never use
more core·secs of Spark execution.

Figure 6(b) shows the query completion time for running
TPC-DS queries on Apache Spark, Redshift and Locus un-
der different configurations and Figure 6(a) shows the the
total core·secs spent on running those queries. We see that
Locus can save cluster time up to 59%, while being close
to Spark’s query completion time to also beating it by 2⇥.
Locus loses to Spark on Q1 by 20s. As a result, even for
now AWS Lambda’s unit time cost per core is 1.92⇥ more
expensive than the EC2 c3.8xlarge instances, Locus en-
joys a lower cost for Q1 and Q4 as we only allocate as many
Lambdas as needed. Compared to Redshift, Locus is 1.56⇥
to 1.99⇥ slower. There are several causes that might con-
tribute to the cost-performance gap: 1) Redshift has a more
efficient execution workflow than that of Locus, which is
implemented in Python and has no fine-grained pipelining;
2) ds2.8xlarge are special instances that have 25Gbps ag-
gregate network bandwidths; 3) When processing S3 data,
AWS Redshift pools extra resource, referred as the serverless
Spectrum layer, to process S3 I/O, ETL and partial aggrega-
tion. To validate these hypotheses, we perform two what-if
analyses. We first take Locus’s TPC-DS execution trace and
replay them to numerically simulate an pipelined execution
by overlapping I/O and compute within a task. We find that
with pipelining, query latencies can be reduced by 23% to
37%, being much closer to the Redshift numbers. Similarly,
using our cost-performance model, we also find that if Lo-

cus’s Redis nodes have 25Gbps links, the cost can be further
reduced by 19%, due to a smaller number of nodes needed.
Performance will not improve due to 25Gbps links, as net-
work bottleneck on Lambda-side remains. Understanding re-
maining performance gap would require further breakdown,
i.e., porting Locus to a lower-level programming language.

Even with the performance gap, an user may still prefer
Locus over a data warehousing service like Redshift since
the latter requires on-demand provisioning of a cluster. Cur-
rently with Amazon Redshift, provisioning a cluster takes
minutes to finish, which is longer than these TPC-DS query
latencies. Picking an optimal cluster size for a query is also
difficult without knowledge of underlying data.

We also see in Figure 6(b) that Locus provides better per-
formance than running on a cluster of 512-core VMs (Locus-
reserved). This demonstrates the power of elasticity in exe-
cuting analytics queries. Finally, using the fast storage based
shuffle in Locus also results in successful execution of 3
queries that could not be executed with slow storage based
shuffle, as the case for Locus-S3 or PyWren.

To understand where time is spent, we breakdown exe-
cution time into different stages and resources for Q94, as
shown in Figure 7. We see that performing compute and
network I/O takes up most of the query time. One way to
improve overall performance given this breakdown is to do
“fine-grained pipelining” of compute and network inside a
task. Though nothing fundamental, it is unfortunately diffi-
cult to implement with the constraints of Pandas API at the
time of writing. Compute time can also be improved if Locus
is prototyped using a lower-level language such as C++.

Finally, for shuffle intensive stages such as stage 3 of Q94,
we see that linearly scaling up fast storage does linearly im-
prove shuffle performance (Figure 8).

5.2 CloudSort Benchmark
We run the Daytona CloudSort benchmark to compare Locus
against both Spark and Redshift on reserved VMs.

The winner entry of CloudSort benchmark which ranks
the cost for sorting 100TB data on public cloud is currently
held by Apache Spark [42]. The record for sorting 100TB

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 201

49
27

19
5

1
1

0 20 40 60

1
2
3
4
5
6

time (s)

st
ag

e
in

de
x

start setup
read compute
write total

Figure 7: Time breakdown for Q94. Each stage has a different
profile and, compute and network time dominate.

0

20

40

60

80

start setup network compute

av
er

ag
e

tim
e

(s
) 2

4

8

10

Figure 8: Runtime for stage 3 of Q94 when varying the number
of Redis nodes (2, 4, 8, 10).

was achieved in 2983.33s using a cluster of 395 VMs, each
with 4 vCPU cores and 8GB memory. The cost of run-
ning this was reported as $144.22. To obtain Spark num-
bers for 1TB and 10TB sort sizes, we varied the number of
i2.8xlarge instances until the sort times matched those ob-
tained by Locus. This allows a fair comparison on the cost.
As discussed in Section 3, Locus automatically picks the best
shuffle implementation for each input size.

Table 5 shows the result cost and performance compar-
ing Locus against Spark. We see that regardless of the fact
Locus’s sort runs on memory-constrained compute infras-
tructure and communicates through remote storage, we are
within 13% of the cost for 100TB record, and achieve the
same performance. Locus is even cheaper for 10TB (by
15%) but is 73% more expensive for 1TB. This is due to
using fast storage based-shuffle which yields a more costly
trade-off point. We discuss more trade-offs in Section 5.3.

Table 6 shows the result of sorting 1TB of random string
input. Since Redshift does not support querying against ran-
dom binary data, we instead generate random string records
as the sort input as an approximation to the Daytona Cloud-
Sort benchmark. For fair comparison, we also run other sys-
tems with the same string dataset. We see that Locus is an or-
der of magnitude faster than Spark and Redshift and is com-
parable to Spark when input is stored on local disk.

We also run the same Locus code on EC2 VMs, in order
to see the cost vs. performance difference of only chang-
ing hardware infrastructure while using the same program-
ming language (Python in Locus). Figure 9 shows the results
for running 100GB sort. We run Locus on AWS Lambda
with various worker memory sizes. Similar to previous sec-
tion, we then run Locus on a cluster and vary the number

Table 5: CloudSort results vs. Apache Spark

Sort size 1TB 10TB 100TB
Spark nodes 21 60 395[31]

Spark time (s) 40 394 2983
Locus time (s) 39 379 2945
Spark cost ($) 1.5 34 144
Locus cost ($) 2.6 29 163

Table 6: 1TB string sort w/ various configurations
time cost($)

Redshift-S3 6m8s 20.2
Spark RDD-S3 4m27s 15.7

Spark-HDFS ($) 35s 2.1
Locus ($) 39s 2.6

27 24 22 20 17

0.5
1

1.5
2

3

0.1

0.2

0.3

0.4

75 100 125 150

co
st
($
)

shuffle time (seconds)

Locus-serverless
Locus-reserved

Figure 9: Running 100GB sort with Locus on a serverless in-
frastructure vs. running the same code on reserved VMs. La-
bels for serverless series represents the configured memory size
of each Lambda worker. Labels for reserved series represents
the number of c1.xlarge instances deployed.

0.01

1

100

10000

10 1000 100000 10000000

co
st
($
)

sort time (seconds)

S3-only
Redis-only
Hybrid
S3-only	(predict)
Redis-only	(predict)
Hybrid	(predict)

Figure 10: Comparing the cost and performance predicted by
Locus against actual measurements. The lines indicate pre-
dicted values and the dots indicate measurements.

of c1.xlarge instances to match the performance and com-
pare the cost. We see that both cost and performance im-
proves for Locus-serverless when we pick a smaller mem-
ory size. The performance improvement is due to increase
in parallelism that results in more aggregate network band-
width. The cost reduction comes from both shorter run-time
and lower cost for small memory sizes. For Locus-reserved,
performance improves with more instances while the cost re-
mains relatively constant, as the reduction in run-time com-
pensates for the increased allocation.

We see that even though AWS Lambda is considered to
be more expensive in terms of $ per CPU cycle, it can be
cheaper in terms of $ per Gbps compared to reserved in-
stances. Thus, serverless environments can reach a better

202 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.5G
1G1.5G

2.5G
3G

1.5G
2G2.5G

3G
2.5G
3G

0

0.01

0.02

0.03

0.04

0 20 40 60 80

co
st
($
)

sort time (seconds)

40
20
10

Figure 11: 10GB slow storage-only sort, with varying paral-
lelism (lines) and worker memory size (dots).

cost performance point for network-intensive workloads.

5.3 How much fast storage is needed?
One key insight in formulating the shuffle performance in
Locus is that adding more resources does not necessarily in-
crease total cost, e.g., increasing parallelism can result in a
better configuration. Another key insight is that using fast
storage or memory, sometimes even a small amount, can sig-
nificantly shift resource balance and improve performance.

We highlight the first effect with an example of increasing
parallelism and hence over allocating worker memory com-
pared to the data size being processed. Consider the case
where we do a slow storage-only sort for 10GB. Here, we
can further increase parallelism by using smaller data parti-
tions than the worker memory size. We find that by say using
a parallelism of 40 with 2.5G worker memory size can result
in 3.21⇥ performance improvement and lower cost over us-
ing parallelism of 10 with 2.5G worker memory (Figure 11).

However, such performance increase does require that we
add resources in a balanced manner as one could also end up
incurring more cost while not improving performance. For
example, with a 100GB sort (Figure 12), increasing paral-
lelism from 200 to 400 with 2.5G worker memory size (Fig-
ure 12) makes performance 2.5⇥ worse, as now the bottle-
neck shifts to object store throughput and each worker will
run slower due to a even smaller share. Compared to the
10GB sort, this also shows that the same action that helps in
one configuration can be harmful in another configuration.

Another way of balancing resources here is to increase
parallelism while adding fast storage. We see this in Fig-
ure 12, where increasing parallelism to 400 becomes benefi-
cial with fast storage as the storage system can now absorb
the increased number of requests. These results provide an
example of the kinds of decisions automated by the perfor-
mance modeling framework in Locus.

The second insight is particularly highlighted for running
100TB hybrid sort. For 100TB sort, we vary the fast storage
used from 2% to 5%, and choose parallelism for each setting
based on the hybrid shuffle algorithm. As shown in Table 7,
we see that even with 2% of memory, the 100TB sort be-
comes attainable in 2 hours. Increasing memory from 2%
to 5%, there is an almost linear reduction in terms of end-

0.5G1G
1.5G

2.5G

3G

0.5G1G
1.5G

2.5G
3G

1.5G2.5G

3G 2.5G
3G

0.100

0.200

0.300

0.400

0.500

0 50 100 150 200

co
st
($
)

sort time (seconds)

400 200 100 400	w/	fast

Figure 12: 100GB slow storage-only sort with varying paral-
lelism (different lines) and worker memory size (dots on same
line). We include one configuration with fast-storage sort.

Table 7: 100TB Sort with different cache size.

cache 5% 3.3% 2.5% 2%
time (s) 2945 4132 5684 6850

total cost ($) 163 171 186 179

0 2000 4000 6000 8000 10000 12000

20

30

40

50

time (seconds)

nu
m

be
r o

f r
ou

nd
s

s3-read-input
redis-write
redis-read
s3-write-block
s3-read-block
s3-write-final

Figure 13: Runtime breakdown for 100TB sort.

to-end sort time when we use larger cache size.This matches
the projection in our design discussion. Further broken down
in Figure 13, we see that the increase of cost per time unit is
compensated by reduction in end-to-end run time.

5.4 Model Accuracy
To automatically choose a cost-effective shuffle implemen-
tation, Locus relies on a predictive performance model that
can output accurate run-time and cost for any sort size and
configuration. To validate our model, we ran an exhaustive
experiment with varying sort sizes for all three shuffle im-
plementations and compared the results with the predicted
values as shown in Figure 10.

We find that Locus’s model predicts performance and cost
trends pretty well, with an average error of 16.9% for run-
time and 14.8% for cost. Among different sort implementa-
tions, predicting Redis-only is most accurate with an accu-
racy of 9.6%, then Hybrid-sort of 18.2%, and S3-only sort of
21.5%. This might due to the relatively lesser variance we
see in network bandwidth to our dedicated Redis cluster as
opposed to S3 which is a globally shared resource. We also
notice that our prediction on average under-estimates run-
time by 11%. This can be attributed to the fact that we don’t
model a number of other overheads such as variance in CPU
time, scheduling delay etc. Overall, similar to database query
optimizers, we believe that this accuracy is good enough to
make coarse grained decisions about shuffle methods to use.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 203

0

500

1000

1500

2000

2500

Query 3A Query 3B Query 3C

av
er

ag
e

qu
er

y
tim

e
(s

) Locus-S3
Locus
Spark
Redshift

Figure 14: Big Data Benchmark
5.5 Big Data Benchmark
The Big Data Benchmark contains a query suite derived from
production databases. We consider Query 3, which is a join
query template that reads in 123GB of input and then per-
forms joins of various sizes. We evaluate Locus to see how
it performs as join size changes. We configure Locus to use
160 workers, Spark to use 5 c3.xlarge, and Redshift to use
5ds2.8xlarge, all totalling 160 cores. Figure 14 shows that
even without the benefit of elasticity, Locus performance is
within 1.75⇥ to Apache Spark and 2.02⇥ to Redshift across
all join sizes. The gap is similar to what we observe in Sec-
tion 5.1. We also see that using a default slow-storage only
configuration can be up to 4⇥ slower.

6 Related Work

Shuffle Optimizations: As a critical component in almost
all data analytics system, shuffle has always been a venue
for performance optimization. This is exemplified by Google
providing a separate service just for shuffle [23]. While most
of its technical details are unknown, the Google Cloud Shuf-
fle service shares the same idea as Locus in that it uses elas-
tic compute resources to perform shuffle externally. Modern
analytics systems like Hadoop [39] or Spark [43] often pro-
vide multiple communication primitives and sort implemen-
tations. Unfortunately, they do not perform well in a server-
less setting, as shown previously. There are many conven-
tional wisdom on how to optimize cache performance [24],
we explore a similar problem in the cloud context. Our hy-
brid sort extends on the classic idea of mergesort (see sur-
vey [17]) and cache-sensitive external sort [30, 38] to do joint
optimization on the cache size and sort algorithm. There are
also orthogonal works that focus on the network layer. For
example, CoFlow [12] and Varys [13] proposed coordinated
flow scheduling algorithms to achieve better last flow com-
pletion time. For join operations in databases, Locus relies
on existing query compilers to generate shuffle plans. Com-
piling the optimal join algorithm for a query is an extensively
studied area in databases [14], and we plan to integrate our
shuffle characteristics with database optimizers in the future.
Serverless Frameworks: The accelerated shift to server-
less has brought innovations to SQL processing [9, 5, 22,

35], general computing platforms (OpenLambda [25], AWS
Lambda, Google Cloud Functions, Azure Functions, etc.),
as well as emerging general computation frameworks [6, 18]
in the last two years. These frameworks are architected
in different ways: AWS-Lambda [6] provides a schema to
compose MapReduce queries with existing AWS services;
ExCamera [18] implemented a state machine in serverless
tasks to achieve fine-grained control; Prior work [16] has
also looked at exploiting the usability aspects to provide a
seamless interface for scaling unmodified Python code.
Database Cost Modeling: There has been extensive study
in the database literature on building cost-models for sys-
tems with multi-tier storage hierarchy [28, 27] and on tar-
geting systems that are bottlenecked on memory access [10].
Our cost modeling shares a similar framework but examines
costs in a cloud setting. The idea of dynamically allocat-
ing virtual storage resource, especially fast cache for per-
formance improvement can also be found in database liter-
ature [41]. Finally, our work builds on existing techniques
that estimate workload statistics such as partition size, cardi-
nality, and data skew [29].

7 Conclusion

With the shift to serverless computing, there have been a
number of proposals to develop general computing frame-
works on serverless infrastructure. However, due to re-
source limits and performance variations that are inherent to
the serverless model, it is challenging to efficiently execute
complex workloads that involve communication across func-
tions. In this paper, we show that using a mixture of slow but
cheap storage with fast but expensive storage is necessary
to achieve a good cost-performance trade-off. We presents
Locus, an analytics system that uses performance modeling
for shuffle operations executed on serverless architectures.
Our evaluation shows that the model used in Locus is accu-
rate and that it can achieve comparable performance to run-
ning Apache Spark on a provisioned cluster, and within 2 ⇥
slower compared to Redshift. We believe the performance
gap can be improved in the future, and meanwhile Locus can
be preferred as it requires no provisioning of clusters.

Acknowledgement

We want to thank the anonymous reviewers and our shepherd
Jana Giceva for their insightful comments. We also thank
Alexey Tumanov, Ben Zhang, Kaifei Chen, Peter Gao, Ionel
Gog, and members of PyWren Team and RISELab for read-
ing earlier drafts of the paper. This research is supported by
NSF CISE Expeditions Award CCF-1730628, and gifts from
Alibaba, Amazon Web Services, Ant Financial, Arm, Capital
One, Ericsson, Facebook, Google, Huawei, Intel, Microsoft,
Scotiabank, Splunk and VMware.

204 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] ANANTHANARAYANAN, G., GHODSI, A., SHENKER,
S., AND STOICA, I. Disk-locality in datacenter com-
puting considered irrelevant. In HotOS (2011).

[2] ANANTHANARAYANAN, G., HUNG, M. C.-C., REN,
X., STOICA, I., WIERMAN, A., AND YU, M. Grass:
Trimming stragglers in approximation analytics. In
NSDI (2014).

[3] ANANTHANARAYANAN, G., KANDULA, S., GREEN-
BERG, A., STOICA, I., LU, Y., SAHA, B., AND HAR-
RIS, E. Reining in the Outliers in Map-Reduce Clusters
using Mantri. In Proc. OSDI (2010).

[4] ANANTHANARAYANAN, G., KANDULA, S., GREEN-
BERG, A., STOICA, I., LU, Y., SAHA, B., AND HAR-
RIS, E. Reining in the outliers in map-reduce clusters
using mantri. In OSDI (2010).

[5] Amazon Athena. http://aws.amazon.com/

athena/.

[6] Serverless Reference Architecture: MapRe-
duce. https://github.com/awslabs/

lambda-refarch-mapreduce.

[7] Azure Blob Storage Request Limits. https://cloud.
google.com/storage/docs/request-rate.

[8] Big Data Benchmark. https://amplab.cs.

berkeley.edu/benchmark/.

[9] Google BigQuery. https://cloud.google.com/

bigquery/.

[10] BONCZ, P. A., MANEGOLD, S., AND KERSTEN,
M. L. Database architecture optimized for the new bot-
tleneck: Memory access. In Proceedings of the 25th
International Conference on Very Large Data Bases
(1999).

[11] CHOWDHURY, M., AND STOICA, I. Coflow: A Net-
working Abstraction for Cluster Applications. In Proc.
HotNets (2012), pp. 31–36.

[12] CHOWDHURY, M., AND STOICA, I. Coflow: A net-
working abstraction for cluster applications. In HotNets
(2012).

[13] CHOWDHURY, M., ZHONG, Y., AND STOICA, I. Ef-
ficient coflow scheduling with varys. In SIGCOMM
(2014).

[14] CHU, S., BALAZINSKA, M., AND SUCIU, D. From
theory to practice: Efficient join query evaluation in a
parallel database system. In SIGMOD (2015).

[15] DEAN, J., AND GHEMAWAT, S. MapReduce: Simpli-
fied Data Processing on Large Clusters. Proc. OSDI
(2004).

[16] ERIC JONAS, QIFAN PU, SHIVARAM VENKATARA-
MAN, ION STOICA, BENJAMIN RECHT. Occupy the
Cloud: Distributed Computing for the 99%. In SoCC
(2017).

[17] ESTIVILL-CASTRO, V., AND WOOD, D. A survey
of adaptive sorting algorithms. ACM Comput. Surv.
(1992).

[18] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BAL-
ASUBRAMANIAM, K. V., ZENG, W., BHALERAO, R.,
SIVARAMAN, A., PORTER, G., AND WINSTEIN, K.
Encoding, Fast and Slow: Low-Latency Video Process-
ing Using Thousands of Tiny Threads. In NSDI (2017).

[19] GAO, P. X., NARAYAN, A., KARANDIKAR, S., CAR-
REIRA, J., HAN, S., AGARWAL, R., RATNASAMY, S.,
AND SHENKER, S. Network requirements for resource
disaggregation. In OSDI (2016).

[20] Google Cloud Storage Request Limits. https:

//docs.microsoft.com/en-us/azure/storage/

common/storage-scalability-targets.

[21] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S. The
Google File System. In Proc. SOSP (2003), pp. 29–43.

[22] Amazon Glue. https://aws.amazon.com/glue/.

[23] Google Cloud Dataflow Shuffle. https://cloud.

google.com/dataflow/.

[24] GRAY, J., AND GRAEFE, G. The five-minute rule ten
years later, and other computer storage rules of thumb.
SIGMOD Rec. (1997).

[25] HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Serverless computa-
tion with OpenLambda. In HotCloud (2016).

[26] Using AWS Lambda with Kinesis. http:

//docs.aws.amazon.com/lambda/latest/dg/

with-kinesis.html.

[27] LISTGARTEN, S., AND NEIMAT, M.-A. Modelling
costs for a mm-dbms. In RTDB (1996).

[28] MANEGOLD, S., BONCZ, P., AND KERSTEN, M. L.
Generic database cost models for hierarchical memory
systems. In VLDB (2002).

[29] MANNINO, M. V., CHU, P., AND SAGER, T. Statisti-
cal profile estimation in database systems. ACM Com-
put. Surv. (1988).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 205

[30] NYBERG, C., BARCLAY, T., CVETANOVIC, Z.,
GRAY, J., AND LOMET, D. Alphasort: A cache-
sensitive parallel external sort. The VLDB Journal
(1995).

[31] O’MALLEY, O. TeraByte Sort on Apache Hadoop.
http://sortbenchmark.org/YahooHadoop.pdf.

[32] OpenWhisk. https://developer.ibm.com/

openwhisk/.

[33] OUSTERHOUT, K., RASTI, R., RATNASAMY, S.,
SHENKER, S., AND CHUN, B.-G. Making sense of
performance in data analytics frameworks. In NSDI
(2015), pp. 293–307.

[34] POESS, M., SMITH, B., KOLLAR, L., AND LARSON,
P. Tpc-ds, taking decision support benchmarking to the
next level. In SIGMOD (2002).

[35] Amazon Redshift Spectrum. https://aws.amazon.

com/redshift/spectrum/.

[36] REN, X., ANANTHANARAYANAN, G., WIERMAN,
A., AND YU, M. Hopper: Decentralized speculation-
aware cluster scheduling at scale. SIGCOMM (2015).

[37] S3 Request Limits. https://docs.

aws.amazon.com/AmazonS3/latest/dev/

request-rate-perf-considerations.html.

[38] SALZBERG, B., TSUKERMAN, A., GRAY, J., STUE-
WART, M., UREN, S., AND VAUGHAN, B. Fastsort: A
distributed single-input single-output external sort. In
SIGMOD (1990).

[39] SHVACHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The Hadoop Distributed File Sys-
tem. In Mass storage systems and technologies (MSST)
(2010).

[40] Sort Benchmark. http://sortbenchmark.org.

[41] SOUNDARARAJAN, G., LUPEI, D., GHANBARI, S.,
POPESCU, A. D., CHEN, J., AND AMZA, C. Dynamic
resource allocation for database servers running on vir-
tual storage. In FAST (2009).

[42] WANG, Q., GU, R., HUANG, Y., XIN, R., WU,
W., SONG, J., AND XIA, J. NADSort. http://

sortbenchmark.org/NADSort2016.pdf.

[43] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE,
A., MA, J., MCCAULEY, M., FRANKLIN, M.,
SHENKER, S., AND STOICA, I. Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. In Proc. NSDI (2011).

[44] ZAHARIA, M., DAS, T., LI, H., SHENKER, S., AND
STOICA, I. Discretized streams: an efficient and fault-
tolerant model for stream processing on large clusters.
In Proceedings of the 4th USENIX conference on Hot
Topics in Cloud Ccomputing (2012), USENIX Associ-
ation.

[45] ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D.,
KATZ, R., AND STOICA, I. Improving mapreduce
performance in heterogeneous environments. In OSDI
(2008).

206 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dShark: A General, Easy to Program and Scalable Framework for
Analyzing In-network Packet Traces

Da Yu†, Yibo Zhu§, Behnaz Arzani§, Rodrigo Fonseca†, Tianrong Zhang§, Karl Deng§, Lihua Yuan§

†Brown University §Microsoft

Abstract
Distributed, in-network packet capture is still the last resort
for diagnosing network problems. Despite recent advances
in collecting packet traces scalably, effectively utilizing per-
vasive packet captures still poses important challenges. Arbi-
trary combinations of middleboxes which transform packet
headers make it challenging to even identify the same packet
across multiple hops; packet drops in the collection system
create ambiguities that must be handled; the large volume
of captures, and their distributed nature, make it hard to do
even simple processing; and the one-off and urgent nature
of problems tends to generate ad-hoc solutions that are not
reusable and do not scale. In this paper we propose dShark to
address these challenges. dShark allows intuitive groupings
of packets across multiple traces that are robust to header
transformations and capture noise, offering simple streaming
data abstractions for network operators. Using dShark on
production packet captures from a major cloud provider, we
show that dShark makes it easy to write concise and reusable
queries against distributed packet traces that solve many com-
mon problems in diagnosing complex networks. Our evalu-
ation shows that dShark can analyze production traces with
more than 10 Mpps throughput on a commodity server, and
has near-linear speedup when scaling out on multiple servers.

1 Introduction
Network reliability is critical for modern distributed systems
and applications. For example, an ISP outage can cause
millions of users to disconnect from the Internet [45], and a
small downtime in the cloud network can lead to millions of
lost revenue. Despite the advances in network verification and
testing schemes [18, 26, 27, 34, 44], unfortunately, network
failures are still common and are unlikely to be eliminated
given the scale and complexity of today’s networks.

As such, diagnosis is an integral part of a network opera-
tor’s job to ensure high service availability. Once a fault that
cannot be automatically mitigated happens, operators must
quickly analyze the root cause so that they can correct the
fault. Many tools have been developed to ease this process.

We can group existing solutions into host-based [40,56,57],
and in-network tools [44, 68]. While able to diagnose sev-
eral problems, host-based systems are fundamentally limited
in visibility, especially in cases where the problem causes
packets not to arrive at the edge. On the other hand, most
in-network systems are based on aggregates [32], or on strong
assumptions about the topology [56]. Switch hardware im-

provements have also been proposed [21,28,42,56]. However,
it is unlikely the commodity switches will quickly adopt these
features and replace all the existing switches soon.

Because of these limitations, in today’s production net-
works, operators have in-network packet captures as the last
resort [50,68]. They provide a capture of a packet at each hop,
allowing for gathering a full view of packets’ paths through
the network. Analyzing such “distributed” traces allows one
to understand how a packet, a flow, or even a group of flows
were affected as they traversed each switch along their path.
More importantly, most, if not all, commodity switches sup-
port various packet mirroring functionalities.

In this paper, we focus on making the analysis of in-
network packet captures practical. Despite the diagnosing
potential, this presents many unsolved challenges. As a major
cloud provider, although our developers have implemented a
basic analysis pipeline similar to [68], which generates some
statistics, it falls short as our networks and fault scenarios
get more complicated. Multi-hop captures, middleboxes, the
(sometimes) daunting volume of captures, and the inevitable
loss in the capture pipeline itself make it hard for operators to
identify the root problem.

The packets usually go through a combination of header
transformations (VXLAN, VLAN, GRE, and others) applied
repeatedly and in different orders, making it hard to even
parse and count packets correctly. In addition, the packet
captures, which are usually generated via switch mirroring
and collector capturing, are noisy in practice. This is because
the mirrored packets are normally put in the lowest priority
to avoid competing with actual traffic and do not have any
retransmission mechanisms. It is pretty common for the mir-
rored packet drop rate to be close to the real traffic drop rate
being diagnosed. This calls for some customized logic that
can filter out false drops due to noise.

These challenges often force our operators to abandon the
statistics generated by the basic pipeline and develop ad-hoc
programs to handle specific faults. This is done in haste, with
little consideration for correctness guarantees, performance,
or reusability, and increasing the mean time to resolution.

To address these challenges, we design dShark, a scalable
packet analyzer that allows for the analysis of in-network
packet traces in near real-time and at scale. dShark provides
a streaming abstraction with flexible and robust grouping of
packets: all instances of a single packet at one or multiple
hops, and all packets of an aggregate (e.g., flow) at one or
multiple hops. dShark is robust to, and hides the details
of, compositions of packet transformations (encapsulation,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 207

tunneling, or NAT), and noise in the capture pipeline. dShark
offers flexible and programmable parsing of packets to define
packets and aggregates. Finally, a query (e.g., is the last hop
of a packet the same as expected?) can be made against these
groups of packets in a completely parallel manner.

The design of dShark is inspired by an observation that a
general programming model can describe all the typical types
of analysis performed by our operators or summarized in prior
work [56]. Programming dShark has two parts: a declarative
part, in JSON, that specifies how packets are parsed, summa-
rized, and grouped, and an imperative part in C++ to process
groups of packets. dShark programs are concise, expressive,
and in languages operators are familiar with. While the execu-
tion model is essentially a windowed streaming map-reduce
computation, the specification of programs is at a higher level,
with the ‘map’ phase being highly specialized to this context:
dShark’s parsing is designed to make it easy to handle mul-
tiple levels of header transformations, and the grouping is
flexible to enable many different types of queries. As shown
in §4, a typical analysis can be described in only tens of lines
of code. dShark compiles this code, links it to dShark’s scal-
able and high-performance engine and handles the execution.
With dShark, the time it takes for operators to start a specific
analysis can be shortened from hours to minutes.

dShark’s programming model also enables us to heavily
optimize the engine performance and ensures that the opti-
mization benefits all analyses. Not using a standard runtime,
such as Spark, allows dShark to integrate closely with the
trace collection infrastructure, pushing filters and parsers very
close to the trace source. We evaluate dShark on packet
captures of production traffic, and show that on a set of com-
modity servers, with four cores per server, dShark can execute
typical analyses in real time, even if all servers are capturing
1500B packets at 40Gbps line rate. When digesting faster
capturing or offline trace files, the throughput can be further
scaled up nearly linearly with more computing resources.

We summarize our contributions as follows: 1) dShark is
the first general and scalable software framework for analyz-
ing distributed packet captures. Operators can quickly express
their intended analysis logic without worrying about the de-
tails of implementation and scaling. 2) We show that dShark
can handle header transformations, different aggregations,
and capture noise through a concise, yet expressive declar-
ative interface for parsing, filtering, and grouping packets.
3) We show how dShark can express 18 diverse monitoring
tasks, both novel and from previous work. We implement
and demonstrate dShark at scale with real traces, achieving
real-time analysis throughput.

2 Motivation

dShark provides a scalable analyzer of distributed packet
traces. In this section, we describe why such a system is
needed to aid operators of today’s networks.

2.1 Analysis of In-network Packet Traces
Prior work has shown the value of in-network packet traces
for diagnosis [50, 68]. In-network packet captures are widely
supported, even in production environments which contain
heterogeneous and legacy switches. These traces can be
described as the most detailed “logs” of a packet’s journey
through the network as they contain per-packet/per-switch
information of what happened.

It is true that such traces can be heavyweight in practice.
For this reason, researchers and practitioners have continu-
ously searched for replacements to packet captures diagnosis,
like flow records [13, 14], or tools that allow switches to
“digest” traces earlier [21, 42, 56]. However, the former nec-
essarily lose precision, for being aggregates, while the latter
requires special hardware support which in many networks is
not yet available. Alternatively, a number of tools [5, 20, 53]
have tackled diagnosis of specific problems, such as packet
drops. However, these also fail at diagnosing the more general
cases that occur in practice (§3), which means that the need
for traces has yet to be eliminated.

Consequently, many production networks continue to em-
ploy in-network packet capturing systems [59, 68] and enable
them on-demand for diagnosis. In theory, the operators, using
packet traces, can reconstruct what happened in the network.
However, we found that this is not simple in practice. Next,
we illustrate this using a real example.

2.2 A Motivating Example
In 2017, a customer on our cloud platform reported an un-
expected TCP performance degradation on transfers to/from
another cloud provider. The customer is in the business of
providing real-time video surveillance and analytics service,
which relies on stable network throughput. However, every
few hours, the measured throughput would drop from a few
Gbps to a few Kbps, which would last for several minutes,
and recover by itself. The interval of the throughput drops
was non-deterministic. The customer did a basic diagnosis
on their end hosts (VMs) and identified that the throughput
drops were caused by packet drops.

This example is representative – it is very common for
network traffic to go through multiple different components
beyond a single data center, and for packets to be transformed
multiple times on the way. Often times our operators do not
control both ends of the connections.

In this specific case (Figure 1), the customer traffic leaves
the other cloud provider, X’s network, goes through the ISP
and reaches one of our switches that peers with the ISP (À).
To provide a private network with the customer, the traffic is
first tagged with a customer-specific 802.1Q label (Á). Then,
it is forwarded in our backbone/WAN in a VXLAN tunnel
(Â). Once the traffic arrives at the destination datacenter
border (Ã), it goes through a load balancer (SLB), which
uses IP-in-IP encapsulation (Ä,Å), and is redirected to a
VPN gateway, which uses GRE encapsulation (Æ, Ç), before

208 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

X

GW ISP

ISP-Y
Switch

Cloud
Edge

Cloud
WAN

Y(us)

Server

Datacenter

④

③

⑥

⑦

③
④

③②①
Gateway

SLB

Server

T2

T1 T0

Outside our networks

Ingress flow
Egress flow

switch/router mirror w/ERSPAN

③②①

VLAN VXLAN

GRE

IP-in-IP ⑤

⑧

Outside flow
switch/router mirror w/GRE

Figure 1: The example scenario. We collect per-hop traces in our network (Y and ISP-Y-switch) and do not have the traces outside our
network except the ingress and egress of ISP-Y-switch. The packet format of each numbered network segment is listed in Table 1.

Number
Header Format

Headers Added after Mirroring Mirrored Headers

À ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP
Á ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP
Â ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP
Ã ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP
Ä ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
Å ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
Æ ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP
Ç ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

Table 1: The packet formats in the example scenario. Different switch models may add different headers before sending out the mirrored
packets, which further complicates the captured packet formats.

reaching the destination server. Table 1 lists the corresponding
captured packet formats. Note that beyond the differences
in the encapsulation formats, different switches add different
headers when mirroring packets (e.g., ERSPAN vs GRE).
On the return path, the traffic from the VMs on our servers
is encapsulated with VXLAN, forwarded to the datacenter
border, and routed back to X.

When our network operators are called up for help, they
must answer two questions in a timely manner: 1) are the
packets dropped in our network? If not, can they provide any
pieces of evidence? 2) if yes, where do they drop? While
packet drops seem to be an issue with many proposed solu-
tions, the operators still find the diagnosis surprisingly hard
in practice.

Problem 1: many existing tools fail because of their spe-
cific assumptions and limitations. As explained in §2.1,
existing tools usually require 1) full access to the network
including end hosts [5, 20]; 2) specific topology, like the
Clos [53], or 3) special hardware features [21, 32, 42, 56]. In
addition, operators often need evidence for “the problem is
not because of” a certain part of the network (in this example,
our network but not ISP or the other cloud network), for prun-
ing the potential root causes. However, most of those tools
are not designed to solve this challenge.

Since all these tools offer little help in this scenario, net-
work operators have no choice but to enable in-network cap-
turing and analyze the packet traces. Fortunately, we already
deployed Everflow [68], and are able to capture per-hop traces
of a portion of flows.

Problem 2: the basic trace analysis tools fall short for the
complicated problems in practice. Even if network opera-
tors have complete per-hop traces, recovering what happened
in the network is still a challenge. Records for the same pack-
ets spread across multiple distributed captures, and none of
the well-known trace analyzers such as Wireshark [2] has the
ability to join traces from multiple vantage points. Grouping
them, even for the instances of a single packet across multiple
hops, is surprisingly difficult, because each packet may be
modified or encapsulated by middleboxes multiple times, in
arbitrary combinations.

Packet capturing noise further complicates analysis. Mir-
rored packets can get dropped on their way to collectors or
dropped by the collectors. If one just counts the packet oc-
currence on each hop, the real packet drops may be buried in
mirrored packet drops and remain unidentified. Again, it is
unclear how to address this with existing packet analyzers.

Because of these reasons, network operators resort to de-
veloping ad-hoc tools to handle specific cases, while still
suffering from the capturing noise.

Problem 3: the ad-hoc solutions are inefficient and usu-
ally cannot be reused. It is clear that the above ad-hoc tools
have limitations. First, because they are designed for specific
cases, the header parsing and analysis logic will likely be
specific. Second, since the design and implementation have
to be swift (cloud customers are anxiously waiting for miti-
gation!), reusability, performance, and scalability will likely
not be priorities. In this example, the tool developed was
single threaded and thus had low throughput. Consequently,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 209

operators would capture several minutes worth of traffic and
have to spend multiples of that to analyze it.

After observing these problems in a debugging session in
production environment, we believe that a general, easy-to-
program, scalable and high-performance in-network packet
trace analyzer can bring significant benefits to network opera-
tors. It can help them understand, analyze and diagnose their
network more efficiently.

3 Design Goals
Motivated by many real-life examples like the one in §2.2,
we derive three design goals that we must address in order to
facilitate in-network trace analysis.

3.1 Broadly Applicable for Trace Analysis
In-network packet traces are often used by operators to iden-
tify where network properties and invariants have been vi-
olated. To do so, operators typically search for abnormal
behavior in the large volume of traces. For different diagnosis
tasks, the logic is different.

Unfortunately, operators today rely on manual processing
or ad-hoc scripts for most of the tasks. Operators must first
parse the packet headers, e.g., using Wireshark. After parsing,
operators usually look for a few key fields, e.g., 5-tuples,
depending on the specific diagnosis tasks. Then they apply
filters and aggregations on the key fields for deeper analysis.
For example, if they want to check all the hops of a certain
packet, they may filter based on the 5-tuple plus the IP id field.
To check more instances and identify a consistent behavior,
operators may apply similar filters many times with slightly
different values, looking for abnormal behavior in each case.
It is also hard to join instances of the same packet captured in
different points of the network.

Except for the initial parsing, all the remaining steps vary
from case to case. We find that there are four types of aggre-
gations used by the operators. Depending on the scenario,
operators may want to analyze 1) each single packet on a spe-
cific hop; 2) analyze the multi-hop trajectory of each single
packet; 3) verify some packet distributions on a single switch
or middlebox; or 4) analyze complicated tasks by correlating
multiple packets on multiple hops. Table 2 lists diagnosis ap-
plications that are commonly used and supported by existing
tools. We classify them into above four categories.

dShark must be broadly applicable for all these tasks – not
only these four aggregation modes, but also support different
analysis logic after grouping, e.g., verifying routing properties
or localizing packet drops.

3.2 Robust in the Wild
dShark must be robust to practical artifacts in the wild, espe-
cially header transformations and packet capturing noise.
Packet header transformations. As shown in §2.2, these
are very common in networks, due to the deployment of
various middleboxes [49]. They become one of the main

obstacles for existing tools [43, 56, 69] to perform all of the
diagnosis logic (listed in Table 2) in one shot. As we can see
from the table, some applications need to be robust to header
transformations. Therefore, dShark must correctly group the
packets as if there is no header transformation. While pars-
ing the packet is not hard (indeed, tools like Wireshark can
already do that), it is unclear how operators may specify the
grouping logic across different header formats. In particular,
today’s filtering languages are often ambiguous. For example,
the “ip.src == X” statement in Wireshark display filter may
match different IP layers in a VXLAN-in-IP-in-IP packet and
leads to incorrect grouping results. dShark addresses this by
explicitly indexing multiple occurrences of the same header
type (e.g., IP-in-IP), and by adding support to address the
innermost ([-1]), outermost ([0]), and all ([:]) occurrences of
a header type.
Packet capturing noise. We find that it is challenging to
localize packet drops when there is significant packet captur-
ing noise. We define noise here as drops of mirrored packets
in the network or in the collection pipeline. Naı̈vely, one
may just look at all copies of a packet captured on all hops,
check whether the packet appears on each hop as expected.
However, 1% or even higher loss in the packet captures is
quite common in reality, as explained in §2.2 as well as in
[61]. With the naı̈ve approach, every hop in the network will
have 1% false positive drop rate in the trace. This makes
localizing any real drop rate that is comparable or less than
1% challenging because of the high false positive rate.

Therefore, for dShark, we must design a programming
interface that is flexible for handling arbitrary header trans-
formations, yet can be made robust to packet capturing noise.

3.3 Fast and Scalable
The volume of in-network trace is usually very large. dShark
must be fast and scalable to analyze the trace. Below we list
two performance goals for dShark.
Support real-time analysis when collocating on collectors.
Recent efforts such as [68] and [50] have demonstrated that
packets can be mirrored from the switches and forwarded
to trace collectors. These collectors are usually commodity
servers, connected via 10Gbps or 40Gbps links. Assuming
each mirrored packet is 1500 bytes large, this means up to
3.33M packets per second (PPS). With high-performance net-
work stacks [1,52,61], one CPU core is sufficient to capture at
this rate. Ideally, dShark should co-locate with the collecting
process, reuse the remaining CPU cores and be able to keep
up with packet captures in real-time. Thus, we set this as the
first performance goal – with a common CPU on a commodity
server, dShark must be able to analyze at least 3.33 Mpps.
Be scalable. There are multiple scenarios that require higher
performance from dShark: 1) there are smaller packets even
though 1500 bytes is the most typical packet size in our pro-
duction network. Given 40Gbps capturing rate, this means
higher PPS; 2) there can be multiple trace collectors [68] and

210 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Group
pattern Application Analysis logic In-nw

ck. only
Header
transf.

Query
LOC

One
packet
on one

hop

Loop-free detection [21]
Detect forwarding loop

Group: same packet(ipv4[0].ipid, tcp[0].seq) on one hop
Query: does the same packet appear multiple times on the same hop No No 8

Overloop-free detection [69]
Detect forwarding loop involving tunnels

Group: same packet(ipv4[0].ipid, tcp[0].seq) on tunnel endpoints
Query: does the same packet appear multiple times on the same endpoint Yes Yes 8

One
packet on
multiple

hops

Route detour checker
Check packet’s route in failure case

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: is valid detour in the recovered path(ipv4[:].ttl) No Yes* 49

Route error
Detect wrong packet forwarding

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: get last correct hop in the recovered path(ipv4[:].ttl) No* Yes* 49

Netsight [21]
Log packet’s in-network lifecycle

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: recover path(ipv4[:].ttl) No* Yes* 47

Hop counter [21]
Count packet’s hop

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: count record No* Yes* 6

Multiple
packets

on
one
hop

Traffic isolation checker [21]
Check whether hosts are allowed to talk

Group: all packets at dst ToR(SWITCH=dst ToR)
Query: have prohibited host(ipv4[0].src) No No 11

Middlebox(SLB, GW, etc) profiler
Check correctness/performance of middleboxes

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post middlebox
Query: is middlebox correct(related fields) Yes Yes 18†

Packet drops on middleboxes
Check packet drops in middleboxes

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post middlebox
Query: exist ingress and egress trace Yes Yes 8

Protocol bugs checker(BGP, RDMA, etc) [69]
Identify wrong implementation of protocols

Group: all BGP packets at target switch(SWITCH=tar SW)
Query: correctness(related fields) of BGP(FLTR: tcp[-1].src|dst=179) Yes Yes* 23‡

Incorrect packet modification [21]
Check packets’ header modification

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post the modifier
Query: is modification correct (related fields) Yes Yes* 4�

Waypoint routing checker [21, 43]
Make sure packets (not) pass a waypoint

Group: all packets at waypoint switch(SWITCH=waypoint)
Query: contain flow(ipv4[-1].src+dst, tcp[-1].src+dst) should (not) pass Yes No 11

DDoS diagnosis [43]
Localize DDoS attack based on statistics

Group: all packets at victim’s ToR(SWITCH=vic ToR)
Query: statistics of flow(ipv4[-1].src+dst, tcp[-1].src+dst) No Yes* 18

Multiple
packets

on
multiple

hops

Congested link diagestion [43]
Find flows using congested links

Group: all packets(ipv4[-1].ipid, tcp[-1].seq) pass congested link
Query: list of flows(ipv4[-1].src+dst, tcp[-1].src+dst) No* Yes* 14

Silent black hole localizer [43, 69]
Localize switches that drop all packets

Group: packets with duplicate TCP(ipv4[-1].ipid, tcp[-1].seq)
Query: get dropped hop in the recovered path(ipv4[:].ttl) No* Yes* 52

Silent packet drop localizer [69]
Localize random packet drops

Group: packets with duplicate TCP(ipv4[-1].ipid, tcp[-1].seq)
Query: get dropped hop in the recovered path(ipv4[:].ttl) No* Yes* 52

ECMP profiler [69]
Profile flow distribution on ECMP paths

Group: all packets at ECMP ingress switches(SWITCH in ECMP)
Query: statistics of flow(ipv4[-1].src+dst, tcp[-1].src+dst) No* No 18

Traffic matrix [43]
Traffic volume between given switch pairs

Group: all packets at given two switches(SWITCH in tar SW)
Query: total volume of overlapped flow(ipv4[-1].src+dst, tcp[-1].src+dst) No* Yes* 21

Table 2: We implemented 18 typical diagnosis applications in dShark. “No*” in column “in-network checking only” means this application can also be done
with end-host checking with some assumptions. “Yes*” in column “header transformation” needs to be robust to header transformation in our network, but, in
other environments, it might not. “ipv4[:].ttl” in the analysis logic means dShark concatenates all ivp4’s TTLs in the header. It preserves order information even
with header transformation. Sorting it makes path recovery possible. †We profiled SLB. ‡We focused on BGP route filter. �We focused on packet encapsulation.

3) for offline analysis, we hope that dShark can run faster than
the packet timestamps. Therefore, dShark must horizontally
scale up within one server, or scale out across multiple servers.
Ideally, dShark should have near-linear speed up with more
computing resources.

4 dShark Design

dShark is designed to allow for the analysis of distributed
packet traces in near real time. Our goal in its design has been
to allow for scalability, ease of use, generality, and robustness.
In this section, we outline dShark’s design and how it allows
us to achieve these goals. At a high level, dShark provides a
domain-specific language for expressing distributed network
monitoring tasks, which runs atop a map-reduce-like infras-
tructure that is tightly coupled, for efficiency, with a packet
capture infrastructure. The DSL primitives are designed to

enable flexible filtering and grouping of packets across the
network, while being robust to header transformations and
capture noise that we observe in practice.

4.1 A Concrete Example
To diagnose a problem with dShark, an operator has to write
two related pieces: a declarative set of trace specifications
indicating relevant fields for grouping and summarizing pack-
ets; and an imperative callback function to process groups of
packet summaries.

Here we show a basic example – detecting forwarding
loops in the network with dShark. This means dShark must
check whether or not any packets appear more than once
at any switch. First, network operators can write the trace
specifications as follows, in JSON:
1 {
2 Summary: {

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 211

3 Key: [SWITCH, ipId, seqNum],
4 Additional: []
5 },
6 Name: {
7 ipId: ipv4[0].id,
8 seqNum: tcp[0].seq
9 },

10 Filter: [
11 [eth, ipv4, ipv4, tcp]: { // IP-in-IP
12 ipv4[0].srcIp: 10.0.0.1
13 }
14]
15 }

The first part, “Summary”, specifies that the query will
use three fields, SWITCH, ipId and seqNum. dShark builds
a packet summary for each packet, using the variables spec-
ified in “Summary”. dShark groups packets that have the
same “key” fields, and shuffles them such that each group is
processed by the same processor.

SWITCH, one of the only two predefined variables in
dShark,1 is the switch where the packet is captured. Trans-
parent to operators, dShark extracts this information from the
additional header/metadata (as shown in Table 1) added by
packet capturing pipelines [59, 68].

Any other variable must be specified in the “Name” part,
so that dShark knows how to extract the values. Note the
explicit index “[0]” – this is the key for making dShark robust
to header transformations. We will elaborate this in §4.3.

In addition, operators can constrain certain fields to a given
value/range. In this example, we specify that if the packet
is an IP-in-IP packet, we will ignore it unless its outermost
source IP address is 10.0.0.1.

In our network, we assume that ipId and seqNum can iden-
tify a unique TCP packet without specifying any of the 5-tuple
fields.2 Operators can choose to specify additional fields.
However, we recommend using only necessary fields for bet-
ter system efficiency and being more robust to middleboxes.
For example, by avoiding using 5-tuple fields, the query is
robust to any NAT that does not alter ipId.

The other piece is a query function, in C++:
1 map<string, int> query(const vector<Group>& groups) {
2 map<string, int> r = {{"loop", 0}, {"normal", 0}};
3 for (const Group& group : groups) {
4 group.size() > 1 ?
5 (r["loop"]++) : (r["normal"]++);
6 }
7 return r;
8 }

The query function is written as a callback function, taking
an array of groups and returning an arbitrary type: in this
case, a map of string keys to integer values. This is flexible
for operators – they can define custom counters like in this ex-
ample, get probability distribution by counting in predefined
bins, or pick out abnormal packets by adding entries into the
dictionary. In the end, dShark will merge these key-value
pairs from all query processor instances by unionizing all

1The other predefined variable is TIME, the timestamp of packet capture.
2In our network and common implementation, IP ID is chosen indepen-

dently from TCP sequence number. This may not always be true [58].

traces

parser1

parser m

…

grouper 1

grouper 2

grouper n

processor 1

processor 2

processor 3

processor i+1

processor i

…

…
result

aggregator

output

Compile & link

dShark program

Figure 2: dShark architecture.
keys and summing the values of the same keys. Operators
will get a human-readable output of the final key-value pairs.

In this example, the query logic is simple. Since each
packet group contains all copies of a packet captured/mirrored
by the same switch, if there exist two packet summaries in one
group, a loop exists in the network. The query can optionally
refer to any field defined in the summary format. We also
implemented 18 typical queries from the literature and based
on our experience in production networks. As shown in
Table 2, even the most complicated one is only 52 lines long.
For similar diagnosis tasks, operators can directly reuse or
extend these query functions.

4.2 Architecture
The architecture of dShark is inspired by both how opera-
tors manually process the traces as explained in 3.1, and
distributed computing engines like MapReduce [15]. Under
that light, dShark can be seen as a streaming data flow system
specialized for processing distributed network traces. We
provide a general and easy-to-use programming model so
that operators only need to focus on analysis logic without
worrying about implementation or scaling.

dShark’s runtime consists of three main steps: parse, group
and query (Figure 2). Three system components handle each
of the three steps above, respectively. Namely,
• Parser: dShark consumes network packet traces and

extracts user-defined key header fields based on different
user-defined header formats. Parsers send these key
fields as packet summaries to groupers. The dShark
parsers include recursive parsers for common network
protocols, and custom ones can be easily defined.
• Grouper: dShark groups packet summaries that have

the same values in user-defined fields. Groupers receive
summaries from all parsers and create batches per group
based on time windows. The resulting packet groups are
then passed to the query processors.
• Query processor: dShark executes the query provided

by users and outputs the result for final aggregation.
dShark pipeline works with two cascading MapReduce-

like stages: 1) first, packet traces are (mapped to be) parsed
in parallel and shuffled (or reduced) into groups; 2) query
processors run analysis logic for each group (map) and finally
aggregate the results (reduce). In particular, the parser must

212 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

handle header transformations as described in §3.2, and the
grouper must support all possible packet groupings (§3.1).
All three components are optimized for high performance and
can run in a highly parallel manner.
Input and output to the dShark pipeline. dShark ingests
packet traces and outputs aggregated analysis results to op-
erators. dShark assumes that there is a system in place to
collect traces from the network, similar to [68]. It can work
with live traces when collocating with trace collectors, or run
anywhere with pre-recorded traces. When trace files are used,
a simple coordinator (§5.4) monitors the progress and feeds
the traces to the parser in chunks based on packet timestamps.
The final aggregator generates human-readable outputs as the
query processors work. It creates a union of the key-value
pairs and sums up values output by the processors (§5).
Programming with dShark. Operators describe their analy-
sis logic with the programming interface provided by dShark,
as explained below (§4.3). dShark compiles operators’ pro-
grams into a dynamic-linked library. All parsers, groupers
and query processors load it when they start, though they
link to different symbols in the library. dShark chooses this
architecture over script-based implementation (e.g., Python
or Perl) for better CPU efficiency.

4.3 dShark Programming Model
As shown in the above example, the dShark programming
interface consists of two parts: 1) declarative packet trace
specifications in JSON, and 2) imperative query functions
(in C++). We design the specifications to be declarative to
make common operations like select, filter and group fields
in the packet headers straightforward to the operators. On
the other hand, we make the query functions imperative to
offer enough degrees of freedom for the operators to define
different diagnosis logic. This approach is similar to the
traditional approach in databases of embedding imperative
user-defined functions in declarative SQL queries. Below we
elaborate on our design rationale and on details not shown in
the example above.
“Summary” in specifications. A packet summary is a byte
array containing only a few key fields of a packet. We intro-
duce packet summary for two main goals: 1) to let dShark
compress the packets right after parsing while retaining the
necessary information for query functions. This greatly bene-
fits dShark’s efficiency by reducing the shuffling overhead and
memory usage; 2) to let groupers know which fields should be
used for grouping. Thus, the description of a packet summary
format consists of two lists. The first contains the fields that
will be used for grouping and the second of header fields that
are not used as grouping keys but are required by the query
functions. The variables in both lists must be defined in the
“Name” section, specifying where they are in the headers.
“Name” in specifications. Different from existing lan-
guages like Wireshark filter or BPF, dShark requires an ex-
plicit index when referencing a header, e.g., “ipv4[0]” instead

of simply “ipv4”. This means the first IPv4 header in the
packet. This is for avoiding ambiguity, since in practice a
packet can have multiple layers of the same header type due
to tunneling. We also adopt the Python syntax, i.e., “ipv4[-1]”
to mean the last (or innermost) IPv4 header, “ipv4[-2]” to
mean the last but one IPv4 header, etc.

With such header indexes, the specifications are both robust
to header transformations and explicit enough. Since the
headers are essentially a stack (LIFO), using negative indexes
would allow operators to focus on the end-to-end path of
a packet or a specific tunnel regardless of any additional
header transformation. Since network switches operate based
on outer headers, using 0 or positive indexes (especially 0)
allows operators to analyze switch behaviors, like routing.
“Filter” in specifications. Filters allow operators to prune
the traces. This can largely improves the system efficiency if
used properly. We design dShark language to support adding
constraints for different types of packets. This is inspired by
our observation in real life cases that operators often want
to diagnose packets that are towards/from a specific middle-
box. For instance, when diagnosing a specific IP-in-IP tunnel
endpoint, e.g., 10.0.0.1, we only care IP-in-IP packets whose
source IP is 10.0.0.1 (packets after encapsulation), and com-
mon IP packets whose destination IP is 10.0.0.1 (packets
before encapsulation). For convenience, dShark supports “*”
as a wildcard to match any headers.
Query functions. An operator can write the query functions
as a callback function that defines the analysis logic to be
performed against a batch of groups. To be generally applica-
ble for various analysis tasks, we choose to prefer language
flexibility over high-level descriptive languages. Therefore,
we allow operators to program any logic using the native C++
language, having as input an array of packet groups, and as
output an arbitrary type. The query function is invoked at the
end of time windows, with the guarantee that all packets with
the same key will be processed by the same processor (the
same semantics of a shuffle in MapReduce).

In the query functions, each Group is a vector containing a
number of summaries. Within each summary, operators can
directly refer the values of fields in the packet summary, e.g.,
summary.ipId is ipId specified in JSON. In addition, since
it is in C++, operators can easily query our internal service
REST APIs and get control plane metadata to help analysis,
e.g., getting the topology of a certain network. Of course,
this should only be done per a large batch of batches to avoid
a performance hit. This is a reason why we design query
functions to take a batch of groups as input.

4.4 Support For Various Groupings
To show that our programming model is general and easy to
use, we demonstrate how operators can easily specify the four
different aggregation types, which we extend to grouping in
dShark, listed in §3.1.
Single-packet single-hop grouping. This is the most basic

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 213

switch A

Real drop
probability: a

collectors

X

X

Noise drop
probability: b

packet

External
network

α

β

Figure 3: Packet capturing noise may interfere with the drop local-
ization analysis.

Case Probability w/o E2E info w/ E2E info

No drop (1−a)(1−b) Correct Correct
Real drop a(1−b) Correct Correct
Noise drop (1−a)b Incorrect Correct

Real + Noise drop ab Incorrect Incorrect

Table 3: The correctness of localizing packet drops. The two types
of drops are independent because the paths are disjoint after A.

grouping, which is used in the example (§4.1). In packet
summary format, operators simply specify the “key” as a set
of fields that can uniquely identify a packet, and from which
switch (SWITCH) the packet is collected.
Multi-packet single-hop grouping. This grouping is help-
ful for diagnosing middlebox behaviors. For example, in our
data center, most software-based middleboxes are running on
a server under a ToR switch. All packets which go into and
out of the middleboxes must pass through that ToR. In this
case, operators can specify the “key” as SWITCH and some
middlebox/flow identifying fields (instead of identifying each
packet in the single-packet grouping) like 5-tuple. We give
more details in §6.1.
Single-packet multi-hop grouping. This can show the
full path of each packet in the network. This is particularly
useful for misrouting analysis, e.g., does the traffic with a
private destination IP range that is supposed to stay within
data centers leak to WAN? For this, operators can just set
packet identifying fields as the key, without SWITCH, and
use the [-1] indexing for the innermost IP/TCP header fields.
dShark will group all hops of each packet so that the query
function checks whether each packet violates routing policies.
The query function may have access to extra information,
such as the topology, to properly verify path invariants.
Multi-packet multi-hop grouping. As explained in §3.2,
loss of capture packets may impact the results of localizing
packet drops, by introducing false positives. In such scenarios
dShark should be used with multi-packet multi-hop group-
ings, which uses the 5-tuple and the sequence numbers as the
grouping keys, without ipId. This has the effect of grouping
together transport-level retransmissions. We next explain the
rationale for this requirement.

4.5 Addressing Packet Capture Noise
To localize where packets are dropped, in theory, one could
just group all hops of each packet, and then check where in
the network the packet disappears from the packet captures on
the way to its destination. In practice, however, we find that
the noise caused by data loss in the captures themselves, e.g.,

drops on the collectors and/or drops in the network on the
way to the collector, will impact the validity of such analysis.

We elaborate this problem using the example in Figure 3
and Table 3. For ease of explanation we will refer the to paths
of the mirrored packets from each switch to the collector as
β type paths and the normal path of the packet as α type
paths. Assume switch A is at the border of our network and
the ground truth is that drop happens after A. As operators,
we want to identify whether the drop happens within our
network. Unfortunately, due to the noise drop, we will find A
is dropping packets with probability b in the trace. If the real
drop probability a is less than b, we will misblame A. This
problem, however, can be avoided if we correlate individual
packets across different hops in the network as opposed to
relying on simple packet counts.

Specifically, we propose two mechanisms to help dShark
avoid miss-detecting where the packet was dropped:
Verifying using the next hop(s). If the β type path dropping
packets is that from a switch in the middle of the α path,
assuming that the probability that the same packet’s mirror
is dropped on two β paths is small, one can find the packet
traces from the next hop(s) to verify whether A is really the
point of packet drop or not. However, this mechanism would
fail in the “last hop” case, where there is no next hop in the
trace. The “last hop” case is either 1) the specific switch is
indeed the last on the α path, however, the packets may be
dropped by the receiver host, or 2) the specific switch is the
last hop before the packet goes to external networks that do
not capture packet traces. Figure 3 is such a case.
Leveraging information in end-to-end transport. To ad-
dress the “last hop” issue, we leverage the information pro-
vided by end-to-end transport protocols. For example, for
TCP flows, we can verify a packet was dropped by counting
the number of retransmissions seen for each TCP sequence
number. In dShark, we can just group all packets with the
same TCP sequence number across all hops together. If there
is indeed a drop after A, the original packet and retransmitted
TCP packets (captured at all hops in the internal network)
will show up in the group as packets with different IP IDs,
which eliminates the possibility that the duplicate sequence
number is due to a routing loop. Otherwise, it is a noise drop
on the β path.

This process could have false positives as the packet could
be dropped both on the β and α path. This occurs with
probability of only a×b – in the “last hop” cases like Figure 3,
the drops on β and α path are likely to be independent since
the two paths are disjoint after A. In practice, the capture
noise b is� 100%. Thus any a can be detected robustly.

Above, we focused on describing the process for TCP
traffic as TCP is the most prominent protocol used in data
center networks [6]. However, the same approach can be
applied to any other reliable protocols as well. For example,
QUIC [31] also adds its own sequence number in the packet
header. For general UDP traffic, dShark’s language also

214 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

allows the operators to specify similar identifiers (if exist)
based on byte offset from the start of the payload.

5 dShark Components and Implementation
We implemented dShark, including parsers, groupers and
query processors, in >4K lines of C++ code. We have de-
signed each instance of them to run in a single thread, and
can easily scale out by adding more instances.

5.1 Parser
Parsers recursively identify the header stack and, if the header
stack matches any in the Filter section, check the constraints
on header fields. If there is no constraint found or all con-
straints are met, the fields in the Summary and Name sections
are extracted and serialized in the form of a byte array. To
reduce I/O overhead, the packet summaries are sent to the
groupers in batches.
Shuffling between multiple parsers and groupers: When
working with multiple groupers, to ensure grouping correct-
ness, all parsers will have to send packet summaries that
belong to the same groups to the same grouper. Therefore,
parsers and groupers shuffle packet summaries using a consis-
tent hashing of the “key” fields. This may result in increased
network usage when the parsers and groupers are deployed
across different machines. Fortunately, the amount of band-
width required is typically very small – as shown in Table 2,
common summaries are only around 10B, more than 100×
smaller than an original 1500B packet.

For analyzing live captures, we closely integrate parsers
with trace collectors. The raw packets are handed over to
parsers via memory pointers without additional copying.

5.2 Grouper
dShark then groups summaries that have the same keys. Since
the grouper does not know in advance whether or not it is safe
to close its current group (groupings might be very long-lived
or even perpetual), we adopt a tumbling window approach.
Sizing the window presents trade-offs. For query correct-
ness, we would like to have all the relevant summaries in the
same window. However, too large of a window increases the
memory requirements.

dShark uses a 3-second window – once three seconds (in
packet timestamps) passed since the creation of a group, this
group can be wrapped up. This is because, in our network,
packets that may be grouped are typically captured within
three seconds.3 In practice, to be robust to the noise in packet
capture timestamps, we use the number of packets arriving
thereafter as the window size. Within three seconds, a parser
with 40Gbps connection receives no more than 240M packets
even if all packets are as small as 64B. Assuming that the
number of groupers is the same as or more than parsers,
we can use a window of 240M (or slightly more) packet

3The time for finishing TCP retransmission plus the propagation delay
should still fall in three seconds.

summaries. This only requires several GB of memory given
that most packet summaries are around 10B large (Table 2).

5.3 Query Processor
The summary groups are then sent to the query processors in
large batches.
Collocating groupers and query processors: To minimize
the communication overhead between groupers and query
processors, in our implementation processors and groupers
are threads in the same process, and the summary groups are
passed via memory pointers.

This is feasible because the programming model of dShark
guarantees that each summary group can be processed in-
dependently, i.e., the query functions can be executed com-
pletely in parallel. In our implementation, query processors
are child threads spawned by groupers whenever groupers
have a large enough batch of summary groups. This mitigates
thread spawning overhead, compared with processing one
group at one time. The analysis results of this batch of packet
groups are in the form of a key-value dictionary and are sent
to the result aggregator via a TCP socket. Finally, the query
process thread terminates itself.

5.4 Supporting Components in Practice
Below, we elaborate some implementation details that are
important for running dShark in practice.
dShark compiler. Before initiating its runtime, dShark
compiles the user program. dShark generates C++ meta code
from the JSON specification. Specifically, a definition of
struct Summary will be generated based on the fields in the
summary format, so that the query function has access to
the value of a field by referring to Summary.variable name.
The template of a callback function that extracts fields will
be populated using the Name section. The function will
be called after the parsers identify the header stack and the
pointers to the beginning of each header. The Filter section is
compiled similarly. Finally, this piece of C++ code and the
query function code will compile together by a standard C++
compiler and generate a dynamic link library. dShark pushes
this library to all parsers, groupers and query processors.
Result aggregator. A result aggregator gathers the output
from the query processors. It receives the key-value dictionar-
ies sent by query processors and combines them by unionizing
the keys and summing the values of the same keys. It then
generates human-readable output for operators.
Coordinate parsers. dShark parsers consume partitioned
network packet traces in parallel. In practice, this brings a
synchronization problem when they process offline traces. If
a fast parser processes packets of a few seconds ahead of a
slower parser (in terms of when the packets are captured),
the packets from the slower parser may fall out of grouper
moving window (§5.2), leading to incorrect grouping.

To address this, we implemented a coordinator to simulate
live capturing. The coordinator periodically tells all parsers

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 215

until which timestamp they should continue processing pack-
ets. The parsers will report their progress once they reach the
target timestamp and wait for the next instruction. Once all
parsers report completion, the coordinator sends out the next
target timestamp. This guarantees that the progress of differ-
ent parsers will never differ too much. To avoid stragglers,
the coordinator may drop parsers that are consistently slower.
Over-provision the number of instances. Although it may
be hard to accurately estimate the minimum number of in-
stances needed (see §6) due to the different CPU overhead
of various packet headers and queries, we use conservative
estimation and over-provision instances. It only wastes negli-
gible CPU cycles because we implement all components to
spend CPU cycles only on demand.

6 dShark Evaluation
We used dShark for analyzing the in-network traces collected
from our production networks4. In this section, we first
present a few examples where we use dShark to check some
typical network properties and invariants. Then, we evaluate
the performance of dShark.

6.1 Case Study
We implement 18 typical analysis tasks using dShark (Ta-
ble 2). We explain three of them in detail below.
Loop detection. To show the correctness of dShark, we per-
form a controlled experiment using loop detection analysis as
an example. We first collected in-network packet traces (more
than 10M packets) from one of our networks and verified that
there is no looping packet in the trace. Then, we developed
a script to inject looping packets by repeating some of the
original packets with different TTLs. The script can inject
with different probabilities.

We use the same code as in §4.1. Figure 4 illustrates the
number of looping packets that are injected and the number
of packets caught by dShark. dShark has zero false negative
or false positive in this controlled experiment.
Profiling load balancers. In our data center, layer-4 soft-
ware load balancers (SLB) are widely deployed under ToR
switches. They receive packets with a virtual IP (VIP) as the
destination and forward them to different servers (called DIP)
using IP-in-IP encapsulation, based on flow-level hashing.
Traffic distribution analysis of SLBs is handy for network
operators to check whether the traffic is indeed balanced.

To demonstrate that dShark can easily provide this, we
randomly picked a ToR switch that has an SLB under it. We
deployed a rule on that switch that mirrors all packets that
go towards a specific VIP and come out. In one hour, our
collectors captured more than 30M packets in total.5

Our query function generates both flow counters and packet

4All the traces we use in evaluation are from clusters running internal
services. We do not analyze our cloud customers traffic without permission.

5An SLB is responsible for multiple VIPs. The traffic volume can vary a
lot across different VIPs.

10% 15% 20%
Loop injection rate

0

50000

100000

150000

200000

Pa
ck

et
 N

um
be

r

98440

147996

198033
inject
detect

Figure 4: Injected loops are all
detected.

DIP1 DIP2 DIP3 DIP4 DIP5 DIP60
5
10
15
20
25
30

Pe
rc
en
ta
ge

pkt
flow

Figure 5: Traffic to an SLB VIP
has been distributed to destina-
tion IPs.

counters of each DIP. Figure 5 shows the result – among the
total six DIPs, DIP5 receives the least packets whereas DIP6
gets the most. Flow-level counters show a similar distribution.
After discussing with operators, we conclude that for this VIP,
load imbalance does exist due to imbalanced hashing, while
it is still in an acceptable range.
Packet drop localizer. Noise can affect the packet drop
localizer. Here we briefly evaluate the effectiveness of using
transport-level retransmission information to reduce false
positives (§4.5). We implemented the packet drop localizer as
shown in Table 2, and used the noise mitigation mechanism
described in §4.5. In a production data center, we deployed
a mirroring rule on all switches to mirror all packets that
originate from or go towards all servers, and fed the captured
packets to dShark. We first compare our approach, which
takes into account gaps in the sequence of switches, and uses
retransmissions as evidence of actual drops, with a naı̈ve
approach, that just looks at the whether the last captured
hop is the expected hop. Since the naı̈ve approach does not
work for drops at the last switch (including ToR and the data
center boundary Tier-2 spine switches), for this comparison
we only considered packets whose last recorded switch were
leaf (Tier-1) switches. The naı̈ve approach reports 5,599
suspected drops while dShark detects 7. The reason for the
difference is drops of mirrored packets, which we estimated
in our log to be approximately 2.2%. The drops detected by
dShark are real, because they generated retransmissions with
the same TCP sequence number.

Looking at all packets (and not only the ones whose traces
terminate at the Tier-1 switches), we replayed the trace while
randomly dropping capture packets with increasing probabili-
ties. dShark reported 5,802, 5,801, 5,801 and 5,784 packet
drops under 0%, 1%, 2% and 5% probabilities respectively.
There is still a possibility that we miss the retransmitted
packet, but, from the result, it is very low (0.3%).

6.2 dShark Component Performance
Next, we evaluate the performance of dShark components
individually. For stress tests, we feed offline traces to dShark
as fast as possible. To represent commodity servers, we use
eight VMs from our public cloud platform, each has a Xeon
16-core 2.4GHz vCPU, 56GB memory and 10Gbps virtual
network. Each experiment is repeated for at least five times
and we report the average. We verify the speed difference
between the fastest run and slowest run is within 5%.
Parser. The overhead of the parser varies based on the layers

216 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of headers in the packets: the more layers, the longer it takes
to identify the whole header stack. The number of fields being
extracted and filter constraints do not matter as much.

To get the throughput of a parser, we designed a controlled
evaluation. Based on the packet formats in Table 1, we gen-
erated random packet traces and fed them to parsers. Each
trace has 80M packets of a given number of header layers.
Common TCP packets have the fewest header layers (three
– Ethernet, IPv4, and TCP). The most complicated one has
eight headers, i.e., Ä in Table 1.

Figure 6 shows that in the best case (parsing a common
TCP packet), the parser can reach nearly 3.5 Mpps. The
throughput decreases when the packets have more header
layers. However, even in the most complicated case, a single-
thread parser still achieves 2.6 Mpps throughput.
Grouper. For groupers, we find that the average number
of summaries in each group is the most impacting factor to
grouper performance. To show this, we test different traces in
which each group will have one, two, four, or eight packets,
respectively. Each trace has 80M packets.

Figure 7 shows that the grouper throughput increases when
each group has more packets. This is because the grouper
uses a hash table to store the groups in the moving window
(§5.2). The more packets in each group, the less group entry
inserts and hash collisions. In the worst case (each packet is
a group by itself), the throughput of one grouper thread can
still reach more than 1.2 Mpps.
Query processor. The query processor performs the query
function written by network operators against each summary
group. Of course, the query overhead can vary significantly
depending on the operators’ needs. We evaluate four typical
queries that represent two main types of analysis: 1) loop
detection and SLB profiler only check the size of each group
(§4.1); 2) the misrouting analysis and drop localization must
examine every packet in a group.

Figure 8 shows that the query throughput of the first type
can reach 17 or 23 Mpps. The second type is significantly
slower – the processor runs at 1.5 Mpps per thread.

6.3 End-to-End Performance
We evaluate the end-to-end performance of dShark by using
a real trace with more than 640M packets collected from
production networks. Unless otherwise specified, we run the
loop detection example shown in §4.1.

Our first target is the throughput requirement in §3: 3.33
Mpps per server. Based on the component throughput, we
start two parser instances and three grouper instances on one
VM. Groupers spawn query processor threads on demand.
Figure 9 shows dShark achieves 3.5 Mpps throughput. This is
around three times a grouper performance (Figure 7), which
means groupers run in parallel nicely. The CPU overhead is
merely four CPU cores. Among them, three cores are used
by groupers and query processors, while the remaining core
is used by parsers. The total memory usage is around 15 GB.

On the same setup, the drop localizer query gets 3.6 Mpps
with similar CPU overhead. This is because, though the query
function for drop localizer is heavier, its grouping has more
packets per group, leading to lighter overhead (Figure 7).

We further push the limit of dShark on a single 16-core
server. We start 6 parsers and 9 groupers, and achieve 10.6
Mpps throughput with 12 out of 16 CPU cores fully occupied.
This means that even if the captured traffic is comprised of
70% 64B small packets and 30% 1500B packets, dShark can
still keep up with 40Gbps live capturing.

Finally, dShark must scale out across different servers.
Compared to running on a single server, the additional over-
head is that the shuffling phase between parsers and groupers
will involve networking I/O. We find that this overhead has
little impact on the performance – Figure 9 shows that when
running two parsers and three groupers on each server, dShark
achieves 13.2 Mpps on four servers and 26.4 Mpps on eight
servers. This is close to the numbers of perfectly linear
speedup 14 Mpps and 28 Mpps, respectively. On a network
with full bisection bandwidth, where traffic is limited by the
host access links, this is explained because we add parsers
and groupers in the same proportion, and the hashing in the
shuffle achieves an even distribution of traffic among them.

7 Discussion and Limitations
Complicated mappings in multi-hop packet traces. In
multi-hop analysis, dShark assumes that at any switch or
middlebox, there exist 1:1 mappings between input and output
packets, if the packet is not dropped. This is true in most
parts of our networks. However, some layer 7 middleboxes
may violate this assumption. Also, IP fragmentation can
also make troubles – some fragments may not carry the TCP
header and break analysis that relies on TCP sequence number.
Fortunately, IP fragmentation is not common in our networks
because most servers use standard 1500B MTU while our
switches are configured with larger MTU.

We would like to point out that it is not a unique problem of
dShark. Most, if not all, state-of-art packet-based diagnosis
tools are impacted by the same problem. Addressing this
challenge is an interesting future direction.
Alternative implementation choices. We recognize that
there are existing distributed frameworks [12,15,64] designed
for big data processing and may be used for analyzing packet
traces. However, we decided to implement a clean-slate de-
sign that is specifically optimized for packet trace analysis.
Examples include the zero-copy data passing via pointers be-
tween parsers and trace collectors, and between groupers and
query processors. Also, existing frameworks are in general
heavyweight since they have unnecessary functionalities for
us. That said, others may implement dShark language and
programming model with less lines of code using existing
frameworks, if performance is not the top priority.
Offloading to programmable hardware. Programmable
hardware like P4 switches and smart NICs may offload dShark

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 217

3 4 6 8
Number of header layers

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
(k

pp
s)

3484 3401
3021

2695

Figure 6: Single parser performance with
different packet headers.

1 2 4 8
Avg summary per group

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
(k

pp
s)

1267

1982

2744 2813

Figure 7: Single grouper performance with
different average group sizes.

Loo
p d

ete
cto

r

SLB pr
ofi

ler

Hop
 co

un
ter

Drop
 lo

cal
ize

r

Query functions

0
5000

10000
15000
20000
25000

Th
ro

ug
hp

ut
(k

pp
s) 23323

17034

1588 1549

Figure 8: Single query processor perfor-
mance with different query functions.

1(2
p3

g)

2(4
p6

g)

1o
r3(

6p
9g

)

4(8
p1

2g
)

8(1
6p

24
g)

Number of servers

4
8

12
16
20
24
28

Th
ro

ug
hp

ut
(M

pp
s)

ideal(linear)
dShark

Figure 9: dShark performance scales near linearly.

from CPU for better performance. However, dShark already
delivers sufficient throughput for analyzing 40Gbps online
packet captures per server (§6) in a practical setting. Mean-
while, dShark, as a pure software solution, is more flexible,
has lower hardware cost, and provides operators a program-
ming interface they are familiar with. Thus, we believe that
dShark satisfies the current demand of our operators. That
said, in an environment that is fully deployed with highly
programmable switches,6 it is promising to explore hardware-
based trace analysis like Marple [42].

8 Related Work
dShark, to the best of our knowledge, is the first framework
that allows for the analysis of distributed packet traces in the
face of noise, complex packet transformations, and large net-
work traces. Perhaps the closest to dShark are PathDump [56]
and SwitchPointer [57]. They diagnose problems by adding
metadata to packets at each switch and analyzing them at the
destination. However, this requires switch hardware modifi-
cation that is not widely available in today’s networks. Also,
in-band data shares fate with the packets, making it hard to di-
agnose problems where packets do not reach the destination.

Other related work that has been devoted to detection and
diagnosis of network failures includes:
Switch hardware design for telemetry [21, 28, 32, 36, 42].
While effective, these work require infrastructure changes that
are challenging or even not possible due to various practical
reasons. Therefore, until these capabilities are mainstream,
the need to for distributed packet traces remains. Our sum-
maries may resemble NetSight’s postcards [21], but postcards
are fixed, while our summaries are flexible, can handle trans-
formations, and are tailored to the queries they serve.
Algorithms based on inference [3, 8, 19, 20, 22, 38, 40, 53,
54,68]. A number of works use anomaly detection to find the

6Unfortunately, this can take some time before happening. In some
environments, it may never happen.

source of failures within networks. Some attempt to cover
the full topology using periodic probes [20]. However, such
probing results in loss of information that often complicates
detecting certain types of problems which could be easily
detected using packet traces from the network itself. Other
such approaches, e.g., [38,40,53,54], either rely on the packet
arriving endpoints and thus cannot localize packet drops, or
assume specific topology. Work such as EverFlow [68] is
complementary to dShark. Specifically, dShark’s goal is to an-
alyze distributed packet captures fed by Everflow. Finally, [7]
can only identify the general type of a problem (network,
client, server) rather than the responsible device.
Work on detecting packet drops. [11, 16, 17, 23–25, 29, 33,
37, 39, 41, 46, 60, 63, 65–67] While these work are often ef-
fective at identifying the cause of packet drops, they cannot
identify other types of problems that often arise in practice
e.g., load imbalance. Moreover, as they lack full visibility
into the network (and the application) they often are unable
to identify the cause of problems for specific applications [6].
Failure resilience and prevention [4,9,10,18,27,30,34,35,
47,48,51,55,62] target resilience or prevention to failures via
new network architectures, protocols, and network verifica-
tion. dShark is complementary to these works. While they
help avoid problematic areas in the network, dShark identifies
where these problems occur and their speedy resolution.

9 Conclusion
We present dShark, a general and scalable framework for
analyzing in-network packet traces collected from distributed
devices. dShark provides a programming model for operators
to specify trace analysis logic. With this programming model,
dShark can easily address complicated artifacts in real world
traces, including header transformations and packet capturing
noise. Our experience in implementing 18 typical diagnosis
tasks shows that dShark is general and easy to use. dShark
can analyze line rate packet captures and scale out to multiple
servers with near-linear speedup.

Acknowledgments
We thank our shepherd, Anja Feldmann, and the anonymous
reviewers for their insightful comments. Da Yu was partly
funded by NSF grant CNS-1320397.

References
[1] Data plane development kit (DPDK). http://dpdk.org/, 2018.

Accessed on 2018-01-25.

218 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[2] Wireshark. http://www.wireshark.org/, 2018. Accessed on
2018-01-25.

[3] ADAIR, K. L., LEVIS, A. P., AND HRUSKA, S. I. Expert network
development environment for automating machine fault diagnosis. In
SPIE Applications and Science of Artificial Neural Networks (1996),
pp. 506–515.

[4] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., MATUS, F.,
PAN, R., YADAV, N., VARGHESE, G., ET AL. CONGA: Distributed
congestion-aware load balancing for datacenters. ACM SIGCOMM
Computer Communication Review 44, 4 (2014), 503–514.

[5] ARZANI, B., CIRACI, S., CHAMON, L., ZHU, Y., LIU, H., PADHYE,
J., OUTHRED, G., AND LOO, B. T. Closing the network diagnostics
gap with vigil. In Proceedings of the SIGCOMM Posters and Demos
(New York, NY, USA, 2017), SIGCOMM Posters and Demos ’17,
ACM, pp. 40–42.

[6] ARZANI, B., CIRACI, S., CHAMON, L., ZHU, Y., LIU, H., PADHYE,
J., OUTHRED, G., AND LOO, B. T. 007: Democratically finding the
cause of packet drops. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18) (Renton, WA, 2018),
USENIX Association.

[7] ARZANI, B., CIRACI, S., LOO, B. T., SCHUSTER, A., AND
OUTHRED, G. Taking the blame game out of data centers opera-
tions with netpoirot. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), ACM, pp. 440–453.

[8] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S., MALTZ,
D. A., AND ZHANG, M. Towards highly reliable enterprise network
services via inference of multi-level dependencies. ACM SIGCOMM
Computer Communication Review 37, 4 (2007), 13–24.

[9] BODÍK, P., MENACHE, I., CHOWDHURY, M., MANI, P., MALTZ,
D. A., AND STOICA, I. Surviving failures in bandwidth-constrained
datacenters. In ACM SIGCOMM (2012), pp. 431–442.

[10] CHEN, G., LU, Y., MENG, Y., LI, B., TAN, K., PEI, D., CHENG,
P., LUO, L. L., XIONG, Y., WANG, X., ET AL. Fast and cautious:
Leveraging multi-path diversity for transport loss recovery in data
centers. In USENIX ATC (2016).

[11] CHEN, Y., BINDEL, D., SONG, H., AND KATZ, R. H. An algebraic
approach to practical and scalable overlay network monitoring. ACM
SIGCOMM Computer Communication Review 34, 4 (2004), 55–66.

[12] CHOTHIA, Z., LIAGOURIS, J., DIMITROVA, D., AND ROSCOE, T.
Online reconstruction of structural information from datacenter logs. In
Proceedings of the Twelfth European Conference on Computer Systems
(New York, NY, USA, 2017), EuroSys ’17, ACM, pp. 344–358.

[13] CLAISE, B., TRAMMELL, B., AND AITKEN, P. RFC7011: Specifi-
cation of the IP Flow Information Export (IPFIX) Protocol for the
Exchange of Flow Information. https://tools.ietf.org/
html/rfc7011, Sept. 2013.

[14] CLAISE, B., E. RFC3954: Cisco Systems NetFlow Services Export
Version 9. https://tools.ietf.org/html/rfc3954, Oct.
2004.

[15] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data process-
ing on large clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113.

[16] DUFFIELD, N. Network tomography of binary network performance
characteristics. IEEE Transactions on Information Theory 52, 12
(2006), 5373–5388.

[17] DUFFIELD, N. G., ARYA, V., BELLINO, R., FRIEDMAN, T.,
HOROWITZ, J., TOWSLEY, D., AND TURLETTI, T. Network to-
mography from aggregate loss reports. Performance Evaluation 62, 1
(2005), 147–163.

[18] FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-SULLIVAN, M.,
GOVINDAN, R., MAHAJAN, R., AND MILLSTEIN, T. A general
approach to network configuration analysis. In NSDI, 12th USENIX
Symposium on Networked Systems Design and Implementation (2015),
USENIX.

[19] GHASEMI, M., BENSON, T., AND REXFORD, J. RINC: Real-time
Inference-based Network diagnosis in the Cloud. Tech. rep., Prince-
ton University, 2015. https://www.cs.princeton.edu/
research/techreps/TR-975-14.

[20] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ,
D., LIU, Z., WANG, V., PANG, B., CHEN, H., ET AL. Pingmesh: A
large-scale system for data center network latency measurement and
analysis. In ACM SIGCOMM (2015), pp. 139–152.

[21] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES, D., AND
MCKEOWN, N. I know what your packet did last hop: Using packet
histories to troubleshoot networks. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14) (Seattle,
WA, 2014), USENIX Association, pp. 71–85.

[22] HELLER, B., SCOTT, C., MCKEOWN, N., SHENKER, S., WUNDSAM,
A., ZENG, H., WHITLOCK, S., JEYAKUMAR, V., HANDIGOL, N.,
MCCAULEY, J., ET AL. Leveraging SDN layering to systematically
troubleshoot networks. In ACM SIGCOMM HotSDN (2013), pp. 37–
42.

[23] HERODOTOU, H., DING, B., BALAKRISHNAN, S., OUTHRED, G.,
AND FITTER, P. Scalable near real-time failure localization of data
center networks. In ACM KDD (2014), pp. 1689–1698.

[24] HUANG, Y., FEAMSTER, N., AND TEIXEIRA, R. Practical issues
with using network tomography for fault diagnosis. ACM SIGCOMM
Computer Communication Review 38, 5 (2008), 53–58.

[25] KANDULA, S., KATABI, D., AND VASSEUR, J.-P. Shrink: A tool for
failure diagnosis in IP networks. In ACM SIGCOMM MineNet (2005),
pp. 173–178.

[26] KAZEMIAN, P., CHAN, M., ZENG, H., VARGHESE, G., MCKEOWN,
N., AND WHYTE, S. Real time network policy checking using header
space analysis. In NSDI (2013), pp. 99–111.

[27] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header space
analysis: Static checking for networks. In NSDI (2012), vol. 12,
pp. 113–126.

[28] KIM, C., PARAG BHIDE, E. D., HOLBROOK, H., GHANWANI, A.,
DALY, D., HIRA, M., AND DAVIE, B. In-band Network Teleme-
try (INT). https://p4.org/assets/INT-current-spec.
pdf, June 2016.

[29] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN,
A. C. IP fault localization via risk modeling. In USENIX NSDI (2005),
pp. 57–70.

[30] KUŹNIAR, M., PEREŠÍNI, P., VASIĆ, N., CANINI, M., AND KOSTIĆ,
D. Automatic failure recovery for software-defined networks. In ACM
SIGCOMM HotSDN (2013), pp. 159–160.

[31] LANGLEY, A., RIDDOCH, A., WILK, A., VICENTE, A., KRASIC, C.,
ZHANG, D., YANG, F., KOURANOV, F., SWETT, I., IYENGAR, J.,
BAILEY, J., DORFMAN, J., ROSKIND, J., KULIK, J., WESTIN, P.,
TENNETI, R., SHADE, R., HAMILTON, R., VASILIEV, V., CHANG,
W.-T., AND SHI, Z. The quic transport protocol: Design and internet-
scale deployment. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (New York, NY, USA, 2017),
SIGCOMM ’17, ACM, pp. 183–196.

[32] LI, Y., MIAO, R., KIM, C., AND YU, M. FlowRadar: A better
NetFlow for data centers. In USENIX NSDI (2016), pp. 311–324.

[33] LIU, C., HE, T., SWAMI, A., TOWSLEY, D., SALONIDIS, T., AND LE-
UNG, K. K. Measurement design framework for network tomography
using fisher information. ITA AFM (2013).

[34] LIU, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRAGADA, S.,
LOPES, N. P., RYBALCHENKO, A., LU, G., AND YUAN, L. Crystal-
net: Faithfully emulating large production networks. In Proceedings of
the 26th Symposium on Operating Systems Principles (2017), ACM,
pp. 599–613.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 219

[35] LIU, J., PANDA, A., SINGLA, A., GODFREY, B., SCHAPIRA, M.,
AND SHENKER, S. Ensuring connectivity via data plane mechanisms.
In USENIX NSDI (2013), pp. 113–126.

[36] LIÚ, Y., MIAO, R., KIM, C., AND YUÚ, M. LossRadar: Fast detection
of lost packets in data center networks. In ACM CoNEXT (2016),
pp. 481–495.

[37] MA, L., HE, T., SWAMI, A., TOWSLEY, D., LEUNG, K. K., AND
LOWE, J. Node failure localization via network tomography. In ACM
SIGCOMM IMC (2014), pp. 195–208.

[38] MAHAJAN, R., SPRING, N., WETHERALL, D., AND ANDERSON, T.
User-level internet path diagnosis. ACM SIGOPS Operating Systems
Review 37, 5 (2003), 106–119.

[39] MATHIS, M., HEFFNER, J., O’NEIL, P., AND SIEMSEN, P. Pathdiag:
Automated TCP diagnosis. In PAM (2008), pp. 152–161.

[40] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Trumpet:
Timely and precise triggers in data centers. In Proceedings of the 2016
ACM SIGCOMM Conference (New York, NY, USA, 2016), SIGCOMM
’16, ACM, pp. 129–143.

[41] MYSORE, R. N., MAHAJAN, R., VAHDAT, A., AND VARGHESE,
G. Gestalt: Fast, unified fault localization for networked systems. In
USENIX ATC (2014), pp. 255–267.

[42] NARAYANA, S., SIVARAMAN, A., NATHAN, V., GOYAL, P., ARUN,
V., ALIZADEH, M., JEYAKUMAR, V., AND KIM, C. Language-
directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (2017), ACM, pp. 85–98.

[43] NARAYANA, S., TAHMASBI, M., REXFORD, J., AND WALKER, D.
Compiling path queries. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16) (Santa Clara, CA,
2016), USENIX Association, pp. 207–222.

[44] NELSON, T., YU, D., LI, Y., FONSECA, R., AND KRISHNAMURTHI,
S. Simon: Scriptable interactive monitoring for sdns. In Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research (New York, NY, USA, 2015), SOSR ’15, ACM, pp. 19:1–
19:7.

[45] NEWMAN, L. H. How a tiny error shut off the internet for parts of the
us. Wired (Nov 2017). Accessed Jan 1st, 2018.

[46] OGINO, N., KITAHARA, T., ARAKAWA, S., HASEGAWA, G., AND
MURATA, M. Decentralized boolean network tomography based on
network partitioning. In IEEE/IFIP NOMS (2016), pp. 162–170.

[47] PAASCH, C., AND BONAVENTURE, O. Multipath TCP. Communica-
tions of the ACM 57, 4 (2014), 51–57.

[48] PORTS, D. R. K., LI, J., LIU, V., SHARMA, N. K., AND KRISH-
NAMURTHY, A. Designing distributed systems using approximate
synchrony in data center networks. In USENIX NSDI (2015), pp. 43–
57.

[49] RAICIU, C., PAASCH, C., BARRE, S., FORD, A., HONDA, M.,
DUCHENE, F., BONAVENTURE, O., AND HANDLEY, M. How hard
can it be? designing and implementing a deployable multipath TCP.
In 9th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 12) (San Jose, CA, 2012), USENIX Association,
pp. 399–412.

[50] RASLEY, J., STEPHENS, B., DIXON, C., ROZNER, E., FELTER, W.,
AGARWAL, K., CARTER, J., AND FONSECA, R. Planck: Millisecond-
scale monitoring and control for commodity networks. In Proceedings
of the 2014 ACM Conference on SIGCOMM (New York, NY, USA,
2014), SIGCOMM ’14, ACM, pp. 407–418.

[51] REITBLATT, M., CANINI, M., GUHA, A., AND FOSTER, N. Fattire:
Declarative fault tolerance for software-defined networks. In ACM
SIGCOMM HotSDN (2013), pp. 109–114.

[52] RIZZO, L. Netmap: a novel framework for fast packet i/o. In USENIX
ATC (2012).

[53] ROY, A., BAGGA, J., ZENG, H., AND SNEOREN, A. Passive realtime
datacenter fault detection. ACM NSDI (2017).

[54] ROY, A., BAGGA, J., ZENG, H., AND SNEOREN, A. Passive realtime
datacenter fault detection. In ACM NSDI (2017).

[55] SCHIFF, L., SCHMID, S., AND CANINI, M. Ground control to major
faults: Towards a fault tolerant and adaptive SDN control network. In
IEEE/IFIP DSN (2016), pp. 90–96.

[56] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying datacenter
network debugging with pathdump. In OSDI (2016), pp. 233–248.

[57] TAMMANA, P., AGARWAL, R., AND LEE, M. Distributed network
monitoring and debugging with switchpointer. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18)
(Renton, WA, 2018), USENIX Association, pp. 453–456.

[58] TOUCH, J. RFC6864: Updated Specification of the IPv4 ID Field.
https://tools.ietf.org/html/rfc6864, Feb. 2013.

[59] WANG, M., LI, B. L., AND LI, Z. sFlow: Towards resource-efficient
and agile service federation in service overlay networks. In IEEE
ICDCS (2004), pp. 628–635.

[60] WIDANAPATHIRANA, C., LI, J., SEKERCIOGLU, Y. A., IVANOVICH,
M., AND FITZPATRICK, P. Intelligent automated diagnosis of client
device bottlenecks in private clouds. In IEEE UCC (2011), pp. 261–
266.

[61] WU, W., AND DEMAR, P. Wirecap: A novel packet capture engine
for commodity nics in high-speed networks. In Proceedings of the
2014 Conference on Internet Measurement Conference (New York, NY,
USA, 2014), IMC ’14, ACM, pp. 395–406.

[62] WUNDSAM, A., MEHMOOD, A., FELDMANN, A., AND MAENNEL,
O. Network troubleshooting with mirror VNets. In IEEE GLOBECOM
(2010), pp. 283–287.

[63] YU, M., GREENBERG, A. G., MALTZ, D. A., REXFORD, J., YUAN,
L., KANDULA, S., AND KIM, C. Profiling network performance for
multi-tier data center applications. In USENIX NSDI (2011).

[64] ZAHARIA, M., XIN, R. S., WENDELL, P., DAS, T., ARMBRUST, M.,
DAVE, A., MENG, X., ROSEN, J., VENKATARAMAN, S., FRANKLIN,
M. J., GHODSI, A., GONZALEZ, J., SHENKER, S., AND STOICA,
I. Apache spark: A unified engine for big data processing. Commun.
ACM 59, 11 (Oct. 2016), 56–65.

[65] ZHANG, Y., BRESLAU, L., PAXSON, V., AND SHENKER, S. On the
characteristics and origins of internet flow rates. ACM SIGCOMM
Computer Communication Review 32, 4 (2002), 309–322.

[66] ZHANG, Y., ROUGHAN, M., WILLINGER, W., AND QIU, L. Spatio-
temporal compressive sensing and internet traffic matrices. ACM SIG-
COMM Computer Communication Review 39, 4 (2009), 267–278.

[67] ZHAO, Y., CHEN, Y., AND BINDEL, D. Towards unbiased end-to-
end network diagnosis. ACM SIGCOMM Computer Communication
Review 36, 4 (2006), 219–230.

[68] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MAHAJAN,
R., MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B. Y., ET AL. Packet-
level telemetry in large datacenter networks. In ACM SIGCOMM
(2015), pp. 479–491.

[69] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MAHAJAN,
R., MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B. Y., AND ZHENG,
H. Packet-level telemetry in large datacenter networks. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication (New York, NY, USA, 2015), SIGCOMM ’15, ACM,
pp. 479–491.

220 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Minimal Rewiring: Efficient Live Expansion for Clos Data Center Networks

Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jeffrey C. Mogul, Amin Vahdat
Google, Inc.

Abstract
Clos topologies have been widely adopted for large-scale
data center networks (DCNs), but it has been difficult to
support incremental expansions for Clos DCNs. Some prior
work has claimed that the structure of Clos topologies hin-
ders incremental expansion.

We demonstrate that it is indeed possible to design ex-
pandable Clos DCNs, and to expand them while they are
carrying live traffic, without incurring packet loss. We use
a layer of patch panels between blocks of switches in a Clos
DCN, which makes physical rewiring feasible, and we de-
scribe how to use integer linear programming (ILP) to min-
imize the number of patch-panel connections that must be
changed, which makes expansions faster and cheaper. We
also describe a block-aggregation technique that makes our
ILP approach scalable. We tested our “minimal-rewiring”
solver on two kinds of fine-grained expansions using 2250
synthetic DCN topologies, and found that the solver can han-
dle 99% of these cases while changing under 25% of the con-
nections. Compared to prior approaches, this solver (on av-
erage) reduces the average number of “stages” per expansion
from 4 to 1.29, and reduces the number of wires changed by
an order of magnitude or more – a significant improvement
to our operational costs, and to our exposure (during expan-
sions) to capacity-reducing faults.

1 Introduction
Large-scale Cloud and Internet-application providers are
building many data centers, which can contain tens of thou-
sands of machines, consuming tens of MW. These need
large-scale high-speed data-center networks. Historically,
these networks were built all at once, at the time of clus-
ter commissioning. However, these data centers are filled
with servers and storage gradually, often taking 1-2 years to
reach capacity. This mismatch leaves substantial capacity
idle, waiting for workloads to arrive. Idle capacity not only
costs money, but also lengthens the technology-refresh cy-
cle, which can decrease usable compute capacity – the latest
servers are hobbled if they must use old network technol-

ogy that lacks modern congestion-control schemes, speed in-
creases, and latency improvements. Hence, we usually start
by building a moderate-scale network, and then continually
expand the network just ahead of server arrival – while the
network is carrying live traffic. Live incremental expansion
can save millions of dollars in network costs while (more im-
portantly) providing the best possible support for compute
and storage infrastructure. However, a naive approach can
itself create large, unnecessary costs.

Clos topologies are the de-facto standard DCN architec-
ture because they support large-scale DCNs from commod-
ity switches [27, 5, 10, 13]. At Google, our Jupiter DCNs are
Clos topologies. Different variants of Clos DCN structures,
such as Fat Tree [1], VL2 [13], F10 [23], Aspen Tree [30],
Rotation Striping [33], etc. have been proposed. However,
none of these topologies supports fine-grained incremental
expansion. First, some Clos topologies (e.g., Fat Tree) can
only be built at certain sizes, which fundamentally prevents
incremental expansion. Second, even though some of the
Clos topologies (e.g., Rotation Striping) can be constructed
at arbitrary sizes, incremental expansion can be expensive,
because it requires changing a large fraction of the wiring
(see §5.3). In fact, [28] has claimed that the structure of Clos
topologies hinders fine-grained incremental expansion; this
was an explicit motivation for less-structured topologies that
can also exploit commodity switches, such as Jellyfish [28]
and Random Folded Clos [4]. In this paper, we show that
fine-grained incremental expansion of Clos DCNs is, in fact,
feasible, with a novel topology-design methodology.

We want to expand a network live: without taking it out of
service, which would strand compute and storage capacity
because those machines would not be usable during expan-
sion, and which would also require us to stop or migrate the
applications using that network – a disruptive and expensive
process. Live expansion requires maintaining sufficient net-
work throughput during the entire course of a live expansion;
to avoid congestion, we must therefore do each expansion in
multiple automated stages, each of which only disconnects
and adds a limited subset of the network elements. We would

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 221

also like to complete each stage as quickly as possible, since
rewiring does reduce our spare capacity, and thus exposes us
to an increased risk of simultaneous failures.

Over the course of a multi-stage expansion, we may need
to rewire many links. If we were to directly connect links be-
tween switches, the resulting manual labor for moving long
wires would be slow, expensive, and error-prone. Instead,
we introduce a patch-panel layer in our Clos DCNs (see
Fig. 1). These DCNs are three-tier Clos topologies, with
tier-1 top-of-rack (ToR) switches connected to tier-2 server
blocks, each of which connects to a set of tier-3 spine blocks.
By connecting all the server blocks and all the spine blocks
through a group of patch-panels, a DCN topology can thus
be created and modified by simply moving fiber jumpers on
the back side of the patch panels. Each series of rewiring
steps can hence be done in proximity to a single patch panel,
although an entire stage may require touching several panels.

Our scale has grown to the point where a simple version
of this patch-panel-based expansion technique is too slow
to support the rate at which we must execute expansions.
Therefore, we needed to minimize the number of rewirings
per expansion, while maintaining bandwidth guarantees.

The primary contribution of this paper is a minimal-
rewiring solver for Clos DCN topology design. In the lit-
erature, most Clos DCN topologies are designed purely to
optimize cost and/or performance at a single chosen size
[1, 13, 33, 23, 30]. In contrast, our solver explicitly consid-
ers the pre-existing topology when designing a larger one.
Our solver uses Integer Linear Programming (ILP) to di-
rectly minimize the total number of rewirings. By enforcing
a number of balance-related constraints, the resulting topol-
ogy is also guaranteed to have high capacity and high failure
resiliency. With minimal rewiring, a DCN expansion can be
done in fewer stages, while still maintaining high residual
bandwidth during expansions.

Because we build each DCN incrementally over a period
of years, we need to incorporate new technologies incremen-
tally via expansions, such as higher-radix switches or faster
links. Our ILP-based formulation incorporates various het-
erogeneities, including different physical structures, switch
radices, port speeds, etc., inside a single DCN.

ILP is NP-hard in general, and does not scale well for
large-scale DCNs. It may take hundreds of thousands of
integer decision variables to formulate a large-scale DCN.
Even the most advanced commercial solver, Gurobi [17],
might run for days without computing a solution. We tested a
simple version of our ILP-based solver on 4500 synthesized
DCN configurations, and found that the solver failed to solve
68% of the configurations within a 3-hour limit. (Longer
timeouts yield little improvement.)

To make our solver scale, we developed a block-
aggregation technique to reduce the number of decision vari-
ables in the ILP formulation. Block aggregation exploits var-
ious homogeneities in a DCN, and aggregates decision vari-

ables whenever possible. We have a proof that the aggregated
decision variables can be decomposed in a later step [32] .
Our block-aggregation technique can use different aggrega-
tion strategies. With the fastest strategy, all 4500 synthesized
DCN configurations can be solved within 10 seconds.

We measure the quality of our solutions in terms of a
rewiring ratio, the fraction of wires between server blocks
and spine blocks in the pre-existing topology that must be
disconnected during an expansion. When we use block ag-
gregation, we face a tradeoff: aggregation improves run-
time scalability, but sacrifices rewiring optimality. However,
we cannot predict the aggregation strategy that will produce
the best (lowest) rewiring ratio subject to a chosen dead-
line. Therefore, our parallel solver runs multiple minimal-
rewiring solvers with different aggregation strategies at the
same time, and picks the solution with the lowest rewiring
ratio. This allows us to solve about 99% of the synthe-
sized DCN configurations with a rewiring ratio under 0.25;
the median ratio is under 0.05. In turn, these low rewiring
ratios allow us to significantly accelerate the entire expan-
sion pipeline. For example, under a constraint that preserves
70% of the pre-expansion bandwidth during expansion, our
minimal-rewiring solver reduces the average number of ex-
pansion stages required from 4 to 1.29.

2 Prior Work on Expansions
Prior work has described DCN designs that support incre-
mental expansion, and techniques for conducting expan-
sions. Our work focuses on Clos topologies, the de-facto
standard for large-scale DCNs; most prior work on expan-
sions has used non-Clos designs.

DCell [15] and BCube [14] are built using iterative struc-
tures. As a result, they can only supports expansions at a very
coarse granularity, which could lead to substantial stranded
DCN capacity after expansion. Similar iteratively-designed
DCN structures are also proposed in [16, 21, 22].

JellyFish [28], Space Shuffle [31], Scafida [18], and Ex-
pander [29, 9] were designed to support fine-grained incre-
mental expansion using random-graph-based DCN topolo-
gies. However, these topologies have not been widely
adopted for industrial-scale data centers, possibly due to the
increased complexity of cabling and routing and congestion
control when deploying large-scale DCNs.

Random Folded Clos [4] is a variant of Clos that sup-
ports fine-grained incremental expansion. It maintains a lay-
ered structure, but builds inter-layer links based on random
graphs. However, Random Folded Clos is only designed for
homogeneous DCNs, where all blocks are of the same size
and the same port speed. Further, Random Folded Clos is
not non-blocking, with reduced capacity when compared to
Fat Trees. In contrast, our minimal-rewiring solver can be
applied to heterogeneous DCNs, and its topology solution
preserves the non-blocking property of Clos topologies.

Similar to our minimal-rewiring DCN topology solver,

222 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MB1 MB2 MB3 MB4 MB1 MB2 MB3 MB4 MB1 MB2 MB3 MB4

Server Block 1 (256 X 1 G Uplinks) Server Block 2 (128 X 10G Uplinks) Server Block N (512 X 1G Uplinks)

Spine Block 1 Spine Block 2 Spine Block M

ToR ToR ToR ToR ToR ToR ToR ToR ToR ToR ToR ToR ToR ToR ToR

PatchPanel PatchPanel PatchPanel PatchPanel

Front

Back

Connect to

Server Blocks

Connect to

Spine Blocks
Yellow line on

patch panel

schematic

corresponds to

the yellow

jumper shown

in inset.

Figure 1: Clos topology with a patch-panel layer, colored to indicate an example 4-stage expansion

optimization-based approaches were also adopted in
LEGUP [8] and REWIRE [7]. However, neither paper
looked at the topology-design problem in the presence of a
patch-panel layer, and could have daunting cabling complex-
ity. Further, LEGUP uses a branch-and-bound algorithm [3],
and REWIRE uses simulated annealing [24] to search for the
optimal topology. Both algorithms scale poorly, as their con-
vergence time grows exponentially with the problem size.

Condor [25] allowed designers to express goals for DCN
topologies via a constraint-based language, and used a con-
straint solver to generate topologies. Condor addressed the
challenge of multi-phase expansions, but their approach was
unable to solve expansions for many arbitrary configurations
of Clos networks due to computational complexity.

3 Overview of Clos-Based DCN Topology
The Clos topology was initially designed for telephone net-
works [6]. Years later, it was proposed for DCNs [1]
and subsequently became the de-facto standard for large-
scale DCNs, at Google [27], Facebook [10], Cisco [5], Mi-
crosoft [13], etc.. There are many advantages to Clos net-
works. First, Clos networks are non-blocking, and thus have
high throughput. Second, Clos networks can be built using
identical and inexpensive commodity switches, and thus are
cost-effective. Third, Clos networks have many of redundant
paths for each source-destination pair, and thus are highly
failure-resilient.

Clos-based data centers exhibit a layered architecture (see
Fig. 1). The lower layer contains a number of server
blocks1.The upper layer contains a number of spine blocks,
used to forward traffic between server blocks. A DCN topol-
ogy interconnects each server block to each spine block. Be-
cause we want to support technology evolution within a sin-
gle network, each of the server blocks could have a different
number of spine-facing uplinks, a different uplink rate, etc2.

Connecting server blocks and spine blocks by direct
wires3 is highly inefficient. First,a large-scale data center
typically has tens of thousands of DCN links. Second, the

1“Server blocks” are also called “pods” [11], or “edge aggregation
blocks” [27].

2Fig. 1 shows three server blocks with different uplink configurations.
3We use the term “wires” to loosely refer to either fiber or copper links.

server blocks and the spine blocks of a data center may be
deployed at different locations on a data center floor, due to
space constraints, so some direct links would have to run a
long way across the data center. Third, moving, adding, or
removing a long link during an expansion requires signifi-
cant human labor, creates a risk of error, and because the
new links might have dramatically different lengths requires
a large inventory of cables of various lengths.

To overcome these difficulties, we introduce a patch
panel [19, 26] layer between server blocks and spine blocks
(Fig. 1). Patch panels are much cheaper than other DCN
components (e.g., switches, optical transceivers, long-reach
fibers). All the interconnecting ports of the server and spine
blocks can be connected to the front side of the patch pan-
els via fiber bundles, and all the connecting links can be es-
tablished or changed using fiber jumpers on the back side4.
These patch panels are co-located. As a result, a DCN topol-
ogy can be wired and modified without walking around the
data center floor or requiring the addition or removal of ex-
isting fiber. Also, as discussed in [27], deploying fibers in
bundles greatly reduces cost and complexity; using patch
panels means we can deploy bundles once, without having
to change them during an expansion. This patch-panel layer
makes it much easier for us to support rapid expansions with-
out excessive capacity reduction.

Patch panels allow us to divide a DCN topology into two
layers, physical and logical. As shown in Fig. 1, each server
and spine block is connected to the patch-panel layer; we
call this the physical topology. When a new block is first
deployed, we deploy its corresponding physical topology.
Changing physical links is not easy, as it involves moving
fiber bundles across different patch panels. Hence, in this pa-
per, readers can view physical links as fixed once deployed.

Logical topology defines how server blocks connect to
spine blocks, abstracting out the patch-panel layer. All DCN
topologies discussed in literatures refer to the logical topol-
ogy. Many DCN performance metrics have been defined in
terms of logical topologies, including network bandwidth,

4The inset photo in Fig. 1 depicts how we use these jumpers. The yellow
line on the right-most patch panel corresponds to the yellow jumper in the
inset, which connects one server-block link to one spine-block link.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 223

failure resiliency, incremental expandability, etc. However,
except for Condor [25], no prior work has studied the logical-
topology design problem in presence of patch panels. As dis-
cussed in §5.2.1, in addition to optimizing the performance
metrics listed above, we also need to enforce additional phys-
ical constraints, so that the resulting logical topology is com-
patible with the underlying physical topology.

3.1 Considerations for Clos expansions
During an expansion, the existing physical topology remains
unchanged, and we only add new bundles of physical links
for the newly added/upgraded server/spine blocks. Note that
adding new physical links does not impact any ongoing traf-
fic. In contrast, some of the links in the existing logical topol-
ogy, which could be carrying significant traffic, will have to
change, so we must ensure there is no traffic loss caused by
changes to the logical topology.

As shown in Fig. 2 (a), we could add a large amount of ca-
pacity to a data center during each expansion, which would
allow us to do expansions infrequently. However, this ex-
pansion strategy would lead to much more stranded network
capacity – capacity installed but not usable – as the traffic
demand could be far less than the capacity provided. By do-
ing fine-grained expansions, we reduce the mean amount of
stranded capacity (see Fig. 2 (b)).

Stranded

Capacity

Timet1

D
C

N
 T

ra
ff

ic
 D

e
m

a
n

d

DCN Capacity

(a) Coarse-Grained Expansion.

Stranded

Capacity

Timet1

D
C

N
 T

ra
ff

ic
 D

e
m

a
n

d

DCN Capacity

t2 t3

(b) Fine-Grained Expansion.

Figure 2: DCN stranded capacity.

4 Patch-Panel Based Expansion Pipeline
We support two types of expansions, at the granularity of a
server block (Fig. 3). The first type adds a new server block,
to allow more servers to be added to an existing data center.
The second type increases the uplink count (“radix”) of an
existing server block. Typically, the uplinks of a server block
are not initially fully populated with optical transceivers, be-
cause transceivers are expensive and a new server block has
a low bandwidth requirement (as not all of its servers are
connected). As a block’s bandwidth requirement increases,
we need to populate more uplinks. Note that as we ex-
pand the server-block layer, additional spine blocks will also
be needed, so expansions generally involve adding server
blocks and spine blocks at the same time.

Fig. 4 depicts our pipeline for updating a logical topology
during a live expansion. It guarantees that:
• No traffic loss due to routing packets into “black holes.”

Server Block 1 Server Block 2

Patch Panel 1 Patch Panel 2

Server Block 3

Spine Block 1 Spine Block 2 Spine Block 3

(a) Add a third server block

Server Block 1 Server Block 2

Patch Panel 1 Patch Panel 2

Spine Block 1 Spine Block 2 Spine Block 3

(b) Radix upgrade of a server block

Figure 3: Data center expansion types.

Old

Topology

Drain DCN

Links of Color 1

Rewire DCN

Links of Color 1

Undrain DCN

Links of Color 1

Cable

Audit

Drain DCN

Links of Color 2

Rewire DCN

Links of Color 2

Undrain DCN

Links of Color 2

Cable

Audit

Drain DCN

Links of Color C

Rewire DCN

Links of Color C

Undrain DCN

Links of Color C

Cable

Audit

New

Topology

Figure 4: DCN expansion pipeline.

• All wiring changes are made correctly.
• No congestion due to the temporary capacity reduction.

To avoid black holes when changing a set of logical links,
we must redirect traffic on these links to other paths. We
instruct our SDN-based control plane to “drain” these links.
After we verify that there is no longer traffic on the target
drained links, we can proceed to rewire the links.

Rewiring links via patch-panel changes is the most labor-
intensive and error-prone step. Typically, thousands of links
need to be rewired during one expansion, creating the possi-
bility of multiple physical mistakes during the rewiring pro-
cess. To check for errors, we perform a cable audit. In cable
audit, we use the Link Layer Discovery Protocol to construct
a post-wiring topology, and then cross-validate this against
the target logical topology. We also run a bit-error-rate test
(BERT) for all the new links, to detect links with issues. This
audit results in automated tickets to repair faulty links, fol-
lowed by a repeat of the audit.

During DCN expansion, we must drain some fraction of
the logical links. While Clos networks are resilient to some
missing links, draining too many links simultaneously could
result in dropping the network’s available capacity below
traffic demand. We therefore set a residual-capacity thresh-
old, based on measured demand plus some headroom. We
then divide an expansion into stages such that, during each
stage, the residual capacity remains above this threshold. In
our original approach, we partitioned the set of patch pan-
els into C groups (as illustrated by different colors in Fig.
1), and only rewired links in one group of patch panels per
stage. Then, at each stage, we would still have approximately
1−1/C of the pre-expansion capacity available.

Note that the expansion pipeline migrates the network, in
stages, from an existing (old) topology to some new logi-
cal topology that connects the new blocks to the existing
ones, subject to a set of constraints on the logical connec-
tivity (§5.2.1 formalizes those constraints). However, there
are many ways to construct a logical topology that meets
our constraints, and our original, simple solution to these

224 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

constraints typically required a lot of rewiring for an expan-
sion. This, in turn, forced us to divide expansions into C
stages, to ensure that we preserved at least 1− 1/C of the
pre-expansion capacity.

As a result, these expansions took a long time, especially if
the pre-expansion network was highly utilized. In our expe-
rience, each stage takes considerable time, including drain-
ing, rewiring, cable auditing, BERTing, and undraining. If
we were to expand a network with a requirement to preserve
90% residual capacity, at least 10 stages would be needed5.

The root cause of the length of our original expansion
pipeline is that it does not attempt to optimize the differ-
ence (in terms of wiring changes) between pre-expansion
and post-expansion topologies. If we were able to minimize
this difference, we could finish an expansion in fewer stages.
This is related to the “incremental expansibility” property
of a DCN topology. This property is easy to achieve for
random-graph topologies such as Jellyfish [28]. However,
for Clos networks, none of the existing topology solutions
exhibits this property. This motivated us to look for a better
approach, which we describe in the rest of this paper.

5 Minimal Rewiring for DCN Expansion
In this section, we describe a new “minimal rewiring”
topology-design methodology for Clos networks, which not
only achieves high network capacity and failure resiliency,
but also minimizes rewiring for expansions. Our approach
relies on Integer Linear Programming (ILP) to compute a
logical topology. Our results compare well to existing Clos
topology solutions [27, 5, 13, 33].

While we initially considered an ILP formulation at the
granularity of switch and patch-panel ports, the resulting
scale made solving infeasible. Instead, we use multiple
phases, first solving a block-level ILP formulation (§5.2) and
then performing a straightforward mapping onto a port-level
solution (§5.4).

5.1 Definitions and notations
To rigorously formulate the minimal-rewiring topology-
design problem, we introduce the following definitions and
mathematical notations.

Server Block: We use a server block as a unit of deploying
network-switching capacity. On the order of 1000 servers
can be connected to a server block via ToR switches. To
avoid a single point of failure, we further divide a server
block into independent middle blocks, typically four 6 (see
Fig. 1); each middle block is controlled by a different rout-
ing controller. The uplinks of each ToR switch are evenly
spread among the middle blocks in its server block. Even
if one middle block is down, servers in the server block are

5In fact, since failed links and inexact load balance can cause topology
imperfections, more than 10 stages would be required to ensure 90% resid-
ual capacity.

6Our results hold for any number of middle blocks.

Table 1: Notations used in this paper

En, Sm, Ok Server block n, spine block m, patch panel k
Et

n Middle block t in server block n
Gk(Et

n) Physical link-count for Et
n via patch panel k

Gk(Sm) Physical link-count for Sm via patch panel k
bk(Et

n,Sm) Reference logical-topology link-count between
Et

n and Sm via patch panel Ok
dk(Et

n,Sm) Desired logical-topology link-count between Et
n

and Sm via patch panel Ok
pn,m Mean number of links between a server block

and a spine block
qt

n,m Mean number of links between a middle block
and a spine block

ng Server block group index; or a set containing all
the server block indices in the ng-th group

mg Spine block group index; or a set containing all
the spine block indices in the mg-th group

kg Patch panel group index; or a set containing all
the patch panel indices in the kg-th group

Eng , Smg , Okg Server block group ng, spine block group mg,
patch panel group kg

Et
ng

All the t-th middle blocks in Eng

bkg(E
t
ng
,Smg) Reference logical-topology link-count between

Et
ng

and Smg via patch panel group Okg

dkg(E
t
ng
,Smg) Desired logical-topology link-count between

Et
ng

and Smg via patch panel group Okg

x+ max{0,x}
still accessible via its other middle blocks. We assume that
a DCN has N server blocks, each of which is represented by
En,n= 1,2, ...,N. We denote the middle blocks within server
block En by Et

n, t = 1,2,3,4.
Spine Block: Spine blocks forward traffic among different
server blocks. We use Sm,m = 1,2, ...,M to represent a spine
block, where M is the total number of spine blocks.
Physical Topology: Assume there are K patch panels, each
of which is represented by Ok,k = 1,2, ...,K. We use Gk(Et

n)
to represent the total number of physical links between the
middle block Et

n and the patch panel Ok. Then, the phys-
ical topology of server block En can be characterized by
{Gk(Et

n),k = 1, ...,K, t = 1,2,3,4}7.
Similarly, we use Gk(Sm) to represent the total number

of physical links between spine block Sm and patch panel
Ok. Then, the physical topology of spine block Sm can be
characterized by {Gk(Sm),k = 1, ...,K}.

Note that our networks are heterogeneous: different server
blocks and spine blocks could have different physical topolo-
gies (see Table 2 for details).
Reference Topology: Our goal is to minimize rewiring
with respect to the old logical topology, called the reference
topology. We let bk(Et

n,Sm) be the total number of reference-
topology links between middle block Et

n and spine block Sm

7Here we use the term “topology” somewhat loosely to describe the
cardinality of the connectivity between a block and a set of patch panels,
rather than to describe either the detailed inter-block topology, or the inter-
nal topology within a block composed of multiple commodity switches.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 225

that connect via patch panel Ok. Since the new server and
spine blocks do not exist in the reference topology, for these
blocks we simply set bk(Et

n,Sm) = 0.
Logical Topology: Our objective is to compute a new
logical topology for the given physical topology. We use
dk(Et

n,Sm) to represent the total number of logical links be-
tween middle block Et

n and spine block Sm that connect
via patch panel Ok. As we will show shortly, as long as
{dk(Et

n,Sm)}k,m,n,t satisfies a set of physical topology con-
straints, a polynomial-time algorithm can be used to map
{dk(Et

n,Sm)}k,m,n,t to point-to-point configurations in the
patch panels. Hence, the objective of the block-level ILP
formulation is to compute {dk(Et

n,Sm)}k,m,n,t .

5.2 ILP Formulation of Minimal Rewiring
Our ILP formulation consists of a set of constraints (§5.2.1)
and an objective (§5.2.2).

5.2.1 Constraints for Logical Topology

Recall that our objective is to compute {dk(Et
n,Sm)}k,m,n,t .

We must impose a set of constraints on the solution, not only
to ensure the compatibility of the logical topology with the
underlying physical topology, but also to guarantee both high
throughput and high failure resiliency.
Physical Topology Constraints: Recall that dk(Et

n,Sm) is
the total number of logical links between middle block Et

n
and spine block Sm connected via patch panel Ok. Clearly,
it must be no larger than the total number of physical links
Gk(Et

n) between Ok and Et
n, and the total number of physical

links Gk(Sm) between Ok and Sm, i.e.,

0≤ dk(Et
n,Sm)≤min{Gk(Et

n),Gk(Sm)}. (1)

To ensure high uplink bandwidth for all the server blocks,
we require that each “populated” server block port8 must
connect to a spine block port. This is guaranteed by

M

∑
m=1

dk(Et
n,Sm) = Gk(Et

n). (2)

Note that constraint (2) requires that the total number of
spine block ports must be no smaller than the total number
of server block ports on each patch panel. Hence, it is pos-
sible that a physically-connected spine block port might not
connect to any server block port, which can be expressed as:

N

∑
n=1

4

∑
t=1

dk(Et
n,Sm)≤ Gk(Sm). (3)

Capacity Constraints: In order to achieve high DCN ca-
pacity, which depends on load balance, we require the up-
links of each server block to be evenly distributed among all
spine blocks. Specifically,

bpn,mc ≤
K

∑
k=1

4

∑
t=1

dk(Et
n,Sm)≤ dpn,me, (4)

8Recall that, for cost reasons, we do not initially populate all the ports.

where pn,m is the mean number of links between a server
block and a spine block. pn,m = |En||Sm|/(|S1|+ · · ·+ |SM|)9,
where |En| (or |Sm|) is the total number of ports in En (or Sm),
bpn,mc is the largest integer that is no larger than pn,m, and
dpn,me is the smallest integer that is no smaller than pn,m.

Constraint (4) ensures high DCN capacity. In the ideal
case where all pn,m’s are integers, constraint (4) ensures
that traffic between any two server blocks En1 and En2
can burst at full rate (min{|En1 |, |En2 |}). Specifically, En1
and En2 can communicate at rate min{pn1,m, pn2,m} through
the m-th spine block, and thus the total rate would be
∑

M
m=1 min{pn1,m, pn2,m}= min{|En1 |, |En2 |}.
In the general case where some pn,m’s are not integers,

there must be some imbalance in the logical topology. Con-
straint (4) minimizes this imbalance.
Failure-Resiliency Constraints: While commodity
switches are highly reliable, an entire middle block can
fail as a unit due to software bugs in its routing controller.
We also bring down an entire middle block occasionally to
upgrade the switch stack softwares. In order for our DCN to
be failure-resilient, we need to make sure that throughput re-
mains as high as possible even under middle-block failures.
This can be achieved by requiring the middle block links to
be evenly distributed among the spine blocks. Specifically,

bqt
n,mc ≤

K

∑
k=1

dk(Et
n,Sm)≤ dqt

n,me, (5)

where qt
n,m is the mean number of links between a middle

block and a spine block10. qt
n,m = |Et

n||Sm|/(|S1|+ · · ·+
|SM|) = pn,m/4 (assuming 4 middle blocks per server block).

Constraint (5) minimizes the capacity impact under mid-
dle block failures. In the ideal case where qt

n,m’s are all in-
tegers, the throughput impact is exactly 25%. In the general
case where some qt

n,m’s are not integers, there must be some
imbalance in the traffic between the middle blocks and the
spine blocks. Constraint (5) minimizes this imbalance. Note
that Constraint (5) cannot subsume (4), because all the deci-
sion variables are integers.

5.2.2 Minimal-Rewiring ILP Objective

In our ILP-based formulation, it is easy to add a minimal-
rewiring objective function. Specifically, our block-level
minimal-rewiring solver can be formulated as:

min
K

∑
k=1

N

∑
n=1

4

∑
t=1

M

∑
m=1

(bk(Et
n,Sm)−dk(Et

n,Sm))
+,

subject to (1)− (5), (6)
where x+ = max{0,x}. This objective function computes
the total number of links to be rewired for changing the old
(reference) topology to the new topology.

9We have assumed, when deriving pn,m, that the number of spine block
ports is no less than the number of server block ports. In fact, our formu-
lation and the subsequent optimization techniques also apply to the cases
where there are fewer spine block ports.

10Our formulas for p and q require trivial extensions to support heteroge-
neous link speeds; we omit these for reasons of space.

226 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.3 Benefits of Minimal Rewiring
We demonstrate the benefit of minimal rewiring using a
simple example, comparing our minimal-rewiring approach
against the rotation striping approach described in [33].
Rotation striping can be used to design Clos topologies
for homogeneous DCNs of arbitrary size,whereas minimal-
rewiring works with various block sizes.

Consider a DCN configuration with N server blocks and M
spine blocks. Assume that each server block has X ports, and
that there is only one patch panel11. Then, rotation striping
can be expressed as Algorithm 1.

Input: DCN configuration parameters N, M, X
Output: A DCN topology

1 Label all the server block ports with different indices from
1,2, ...,NX . Note that the set of ports
{(n−1)X +1,(n−1)X +2, ...,nX} corresponds to the
n-th server block.

2 Connect port e ∈ {1,2, ...,NX} to the de/Me-th port of the
((e−1)%M+1)-th spine block.

Algorithm 1: Rotation striping algorithm from [33]

We can quantify the rewiring ratio for a solution as the
fraction of wires between server blocks and spine blocks in
the pre-existing topology that must be disconnected during
an expansion procedure.

Consider an expansion in which we add 1 server block and
1 spine block. It is easy to check that with rotation striping,
only the first M server-block ports connect to their original
peers, and thus the rewiring ratio would be (NX−M)/NX .

On the other hand, using minimal-rewiring12, we can
show that only XN/(M+1) links need to be rewired, which
corresponds to a rewiring ratio of 1/(M + 1). This means
that even if our expansion is executed in just a single stage,
the capacity reduction is just 1/(M+1).

To the best of our knowledge, with the exception of Con-
dor [25], none of the prior literature has incorporated patch-
panel layer constraints, and Condor’s constraint-satisfaction
approach was unable to find solutions in most cases. In prac-
tice, we usually need more than one patch panels in order
to connect all the server blocks to all the spine blocks, since
the number of ports on each patch panel is limited. If one
ignores the patch-panel layer, then the resulting DCN topol-
ogy will be very likely not compatible with the underlying
physical topology.

Consider rotation striping in an example with two patch
panels (see Fig. 5). Each server block has six links, with
three links connecting to the first patch panel and the other
three connecting to the second one. There are four spine
blocks, with two of them connecting to the first patch panel

11Rotation striping does not consider the patch-panel layer, which is
equivalent to setting the number of patch panels to be 1.

12Rotation striping can only guarantee the constraints (1)-(4). Hence, for
this example, we also only impose those constraints on our minimal rewiring
solver.

and the other two connecting to the second one. If we ap-
ply rotation striping here, there should be four logical links
between the first server block and the first two spine blocks.
Note that these four links can only be created through the
first patch panel, because the first two spine blocks only con-
nect to the first patch panel. However, this is impossible, as
there are only three physical links between the first server
block and the first patch panel.

Patch Panel 1 Patch Panel 2

Spine Block 1 Spine Block 2 Spine Block 3 Spine Block 4

Server Block 1 Server Block 2 Server Block 3

40Gx4 40Gx4 40Gx4 40Gx4

40Gx3 40Gx340Gx3 40Gx340Gx3 40Gx3

Figure 5: A counterexample for which rotation striping fails.

Our approach incorporates the patch-panel layer via three
physical constraints (1)-(3). These three constraints ensure
that any solution {d∗k (Et

n,Sm)}k,m,n,t of (6) can be mapped to
port-to-port configurations in the patch panels as we describe
below. (Note that (6) may yield multiple solutions.)

5.4 Creating port-to-port mappings
Our ILP formulation tells us the block-level link count be-
tween each middle block Et

n and each spine block Sm in each
patch panel Ok, as in (6), but not how individual ports must
be connected. We thus developed a straightforward algo-
rithm to compute these port-to-port mappings.

The algorithm’s input consists of the block-level link
counts bk(Et

n,Sm) and d∗k (E
t
n,Sm) for the pre-expansion and

post-expansion topologies, respectively. We use two passes,
both of which iterate over all pairs of middle blocks and
spine blocks:

Pass 1: disconnect links as necessary: For each
patch panel Ok, note that an expansion changes the link
count between middle block Et

n and spine block Sm from
bk(Et

n,Sm) to d∗k (E
t
n,Sm). Therefore, if bk(Et

n,Sm) ≤
d∗k (E

t
n,Sm), we simply preserve all pre-existing links; if

bk(Et
n,Sm) > d∗k (E

t
n,Sm), we can disconnect any (bk(Et

n,Sm)
−d∗k (E

t
n,Sm)) of the pre-existing links. This pass disconnects

∑
N
n=1 ∑

4
t=1 ∑

M
m=1(bk(Et

n,Sm)−d∗k (E
t
n,Sm))

+ links.
Pass 2: connect new links: After the first pass,

min{bk(Et
n,Sm),d∗k (E

t
n,Sm)} links remain between Et

n and
Sm. For any block pair Et

n and Sm with less than d∗k (E
t
n,Sm)

links, we can arbitrarily pick d∗k (E
t
n,Sm)− bk(Et

n,Sm) non-
connected ports from Et

n and Sm respectively, and intercon-
nect them. Feasibility is guaranteed by the physical topology
constraints (1)-(3).

5.5 Challenge: Solver Scalability
We use integer linear programming to formulate our
minimal-rewiring solver, because our topology-design prob-
lem is NP-Complete. Specifically, the decision variables
dk(Et

n,Sm) contain three dimensions (middle-block dimen-
sion Et

n, spine-block dimension Sm, and patch-panel di-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 227

mension k), and the constraints (2)(3)(5) are essentially
for the 2-marginal sums ∑k dk(Et

n,Sm), ∑Et
n

dk(Et
n,Sm) and

∑Sm dk(Et
n,Sm). In the literature, this is called the Three-

Dimensional Contingency Table (3DCT) problem, and has
been proven to be NP-Complete [20]. Having failed to find
a polynomial-time algorithm for our problem, we decided to
use ILP, as there are many readily-available commercial ILP
solvers, e.g., Gurobi [17], Google Optimization Tools [12].

However, our problem size is so large that none of the
existing commercial solvers scales well. For example, one
DCN configuration we evaluate (see §9.7.1) contains 77
server blocks of three kinds, 68 spine blocks of two kinds,
and 256 patch panels. Without any optimization, this leads
to about 400000 decision variables, and the ILP solver ran
for a day without generating a solution. As shown in §9.3,
for the 4500 trials we ran without optimization, we could
only solve 32% within a 3-hour deadline. (Longer timeouts
yield little improvement.)

6 Block Aggregation
To improve the scalability of our minimal-rewiring solver,
we developed a block aggregation technique. Block aggre-
gation significantly reduces the total number of decision vari-
ables in (6), and thus greatly improves solver scalability.

6.1 ILP Formulation with Block Aggregation
The idea behind block aggregation is to group patch pan-
els, server blocks, spine blocks, and then aggregate decision
variables within each group.

Patch-Panel Group: Two patch panels k1,k2 belong to
the same group if and only if they have the same number of
physical links to each middle block and each spine block,
i.e., Gk1(E

t
n) = Gk2(E

t
n),Gk1(Sm) = Gk2(Sm) for any n, t,m.

Server-Block Group: Two server blocks n1,n2 belong to
the same group if and only if they have the same physical
topology, i.e., Gk(Et

n1
) = Gk(Et

n2
) for any k, t.

Spine-Block Group: Two spine blocks m1,m2 belong to
the same group if and only if they have the same physical
topology, i.e., Gk(Sm1) = Gk(Sm2) for any k.

Assume that these definitions yield Kg patch-panel groups,
Ng server-block groups, and Mg spine-block groups. Then,
we can define an aggregated decision variable dkg(E

t
ng ,Smg)

for the kg-th patch-panel group, the ng-th server block group,
and the mg-th spine block group as follows:

dkg(E
t
ng ,Smg) = ∑

k∈kg

∑
n∈ng

∑
m∈mg

dk(Et
n,Sm). (7)

Here, we have abused the notation, and used kg,ng, and mg
to represent both the indices and the actual groups.

With the aggregated decision variables dkg(E
t
ng ,Smg), the

original constraints (1)-(5) also need to be aggregated:

0≤ dkg(E
t
ng ,Smg)≤ |kg||ng||mg|min{Gk(Et

n),Gk(Sm)}, (8)
Mg

∑
mg=1

dkg(E
t
ng ,Smg) = |kg||ng|Gk(Et

n), (9)

Ng

∑
ng=1

4

∑
t=1

dkg(E
t
ng ,Smg)≤ |kg||mg|Gk(Sm), (10)

|ng||mg|bpn,mc ≤
Kg

∑
kg=1

4

∑
t=1

dkg(E
t
ng ,Smg)≤ |ng||mg|dpn,me,

(11)

|ng||mg|bqt
n,mc ≤

Kg

∑
kg=1

dkg(E
t
ng ,Smg)≤ |ng||mg|dqt

n,me. (12)

In the aggregated constraints, k,n,m are arbitrary patch
panel, server block, and spine block indices, drawn from the
kg-th patch-panel group, the ng-th server-block group, and
the Mg-th spine-block group, respectively. In fact, the values
Gk(Et

n), Gk(Sm), pn,m,qt
n,m are all the same, as long as k,n,m

are chosen in the same group, respectively. Here, we also
view kg,ng, and mg as groups, and have used |kg|, |ng|, |mg|
to represent the sizes of these groups.

With block aggregation, we can thus rewrite the optimiza-
tion problem (6) as follows:

min
Kg

∑
kg=1

Ng

∑
ng=1

4

∑
t=1

Mg

∑
mg=1

(bkg(E
t
ng ,Smg)−dkg(E

t
ng ,Smg))

+,

subject to (8)− (12), (13)

where bkg(E
t
ng ,Smg) = ∑k∈kg ∑n∈ng ∑m∈mg bk(Et

n,Sm).
Compared to (6), the total number of decision variables in

(13) is significantly reduced, from Θ(NKM) to Θ(NgKgMg).
Thus, the complexity of solving (13) is significantly lower
than that of (6).

6.2 Variable Deaggregation
After obtaining a solution d∗kg

(Et
ng ,Smg) for (13), we still

need to decompose the solution to d∗k (E
t
n,Sm). Specifically,

we need to solve the following problem.

min
K

∑
k=1

N

∑
n=1

4

∑
t=1

M

∑
m=1

(bk(Et
n,Sm)−dk(Et

n,Sm))
+,

subject to ∑
k∈kg

∑
n∈ng

∑
m∈mg

dk(Et
n,Sm) = d∗kg

(Et
ng ,Smg)

and (1)− (5). (14)

If there were no constraints (1)-(5) in (14), we could eas-
ily compute a solution d∗k (E

t
n,Sm) in polynomial time us-

ing an algorithm similar to the one in §5.4. Because of
these constraints, solving (14) becomes much more chal-
lenging. In fact, it is not trivial to prove that (14) always
has a solution. In the literature, (14) is closely related to the
Integer-Decomposition property [2]. In general, the Integer-
Decomposition property does not always hold (an example is
provided in [32]). Fortunately, thanks to our problem struc-
ture, we are able to rigorously prove that (14) indeed has
a solution. Specifically, we build an integer decomposition
theory specifically for our problem, and prove that a decom-
position satisfying (1)-(5) can be found iteratively in polyno-
mial time. The details are available in [32].

228 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Given that (14) has solutions, the next question is to find
one that minimizes the objective function. The simplest ap-
proach is to directly solve it using integer programming.
However, this will destroy the complexity-reduction of block
aggregation, as (14) is of exactly the same size as (6).

Our approach is to decompose (14) into Kg + Ng + Mg
smaller ILP problems. Specifically, we can decompose
patch-panel groups, spine-block groups, and server-block
groups by solving three ILPs in separate steps. In each
step, different block groups can be completely decoupled,
and thus the three ILPs can be further decomposed into Kg,
Ng, and Mg ILPs, respectively. These smaller ILP problems
are much easier to solve compared to (14). However, as
shown in §9.3, computing these smaller ILP problems se-
quentially can still be slow. To further improve scalability,
we map these smaller problems to polynomial-complexity
min-cost-flow problems. This min-cost-flow-based decom-
position can guarantee a solution that satisfies all constraints,
but not rewiring optimality. For details, please refer to [32] .

6.3 Impact on Scalability & Optimality
Theoretically, and as confirmed in §9.4, the total number of
rewires would be higher with block aggregation. We are
essentially breaking one optimization problem (6) into two
problems (13) and (14). Solving (13) and (14) will generate a
solution satisfying all constraints in (6), but which might not
be optimal wrt. the minimal-rewiring objective (6). When-
ever the solver without block aggregation succeeds, it always
achieve the smallest (best) rewiring ratio. However, scalabil-
ity without block aggregation is poor. For a total of 4500
synthesized DCN expansion configurations, only 32% can
be solved within a 3-hour limit. (Longer timeouts yield little
improvement.)

Breaking (6) into smaller ILPs does not completely
solve the solver scalability issue. We may still en-
counter some intractable ILPs while solving (14) (see
§9.3). Our polynomial-time min-cost-flow based variable-
deaggregation algorithm solves the scalability issue. How-
ever, it may also introduce some sub-optimality in the
rewiring ratio (see §9.4 for the detailed comparison). Thus,
we face a tradeoff between solver scalability and rewiring
optimality, which we address in the next section.

7 Parallel Solving Architecture
While block aggregation makes it feasible to solve most
DCN expansion configurations, it creates a tradeoff be-
tween solver scalability and rewiring optimality, depending
on how one chooses a strategy for block aggregation. Block-
aggregation strategies define choices for each of several ag-
gregation layers (patch-panel, server-block, or spine-block),
and for the decomposition technology (ILP or a min-cost-
flow approximate algorithm) applied at each layer.

How can we choose the best strategy among all the op-
tions, given that the tradeoff between optimality and solver

run-time is unknown when we start a solver? We observe
that since we care more about finding a solution within an
elapsed time limit, and less about the total computational re-
sources we use, our best approach is to run, in parallel, a
solver instance for each of the options, and then choose the
best result, based on a scoring function, among the solvers
that complete within a set deadline. We can define scores
based simply on rewiring ratio, or on residual bandwidth
during expansion, or some combination. Fig. 6 shows the
parallel-solver architecture.

Solver 1

DCN

Configuration

Topology

Solution

Parallel

Solver

Solver 2

Solver 3

Solver N

Run Solvers Deadline

S

F

S

F

Solution

Selector

S: Succeed F: Fail

Figure 6: Software architecture of the parallel solver.

8 Changes to the Expansion Pipeline
The introduction of minimal rewiring requires several
changes to the DCN expansion pipeline shown in Fig. 4.

Without minimal rewiring, it is fairly easy for an experi-
enced network engineer to determine the number of stages
required for an expansion; because almost all logical links
need to be rewired, we must use C stages to maintain a resid-
ual capacity of 1− 1/C. With minimal rewiring, however,
one cannot know the number of rewired links before running
the solver; based on results in §9.4, the fraction could range
from 0 to 30%.

Therefore, we add an automated expansion planner step
to the front of the pipeline in Fig. 4. The planner first uses the
minimal-rewiring solver to generate a post-expansion topol-
ogy, then iteratively finds the lowest C, starting at C = 1,
which preserves the desired residual capacity threshold dur-
ing the expansion (recall from §4 that this threshold is a func-
tion of forecasted demand, existing failures, and some head-
room). For each C, the planner divides the patch panels into
C groups, tentatively generates the C intermediate topologies
that would result from draining the affected links within a
group, and evaluates those topologies against the threshold.
If capacity cannot be preserved for all intermediate topolo-
gies, the planner increments C and tries again. Once a suit-
able C is found, the rest of the pipeline is safe to execute.

Without minimal rewiring, we simply drain all links for
the patch panels covered by a stage. Minimal rewiring al-
lows us to preserve more capacity because we only have to
drain a subset of the links, rather than an entire patch panel.
However, an operator can accidentally rewire the wrong link,
or dislodge one inadvertently, a problem that does not occur
when we drain entire panels. Therefore, we built a link-status
monitor that alerts the operator if an active (undrained) link is
disconnected. Since Clos networks by design tolerate some

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 229

link failures, this allows the operator enough time to repair
the problem without affecting users.

9 Experimental Results
We have been successfully using this minimal-rewiring ap-
proach for our own DCNs since early 201713. In order to
demonstrate its benefits over a wide range of scales, we eval-
uated our approach using a set of synthetic DCN topologies
(including some similar to our real DCNs), and show the ef-
fect of block aggregation on solver run-time and rewiring
ratio. We also show that our approach preserves most of the
capacity of the original network during expansions, based on
several workloads and under some failure scenarios.

9.1 Synthesizing DCN Configurations
To evaluate our approach over a wide range of initial topolo-
gies, we synthesized thousands of configurations that were
consistent with our past deployment experience. In par-
ticular, since we must support heterogeneity among server
blocks and spine blocks, we synthesized configurations using
three types of server blocks and two types of spine block, in
various combinations. Every configuration includes exactly
one border block, analogous to a server block but used for
external connectivity.

Our synthesized DCN configurations always have 256
patch panels, located in 4 sets, each with 64 patch panels.
We use patch panels with 128 server-block-facing ports and
128 spine-block-facing ports, so the entire patch-panel layer
supports up to 64 512-port server blocks.

Table 2 lists the physical-topology parameters for the dif-
ferent block types. For example, a Type-1 server block has
512 up links, evenly distributed among all 256 patch pan-
els. Type-2 & Type-3 server blocks are “light” versions of
the Type-1 server block, with fewer uplinks; they can be up-
graded to Type-1 server blocks. Note that a Type-3 server
block only connects to 128 patch panels. We divide the
256 patch panels into two partitions, and connect the Type-
3 server blocks to the two partitions by rotation. We also
connect the Type-1 & Type-2 spine blocks by rotation.

Table 2: Server Block and Spine Block Types.

Block Type Uplinks Connected Patch Panels
Type-1 Server Block 512 64 Per Set×4 Sets
Type-2 Server Block 256 64 Per Set×4 Sets
Type-3 Server Block 256 32 Per Set×4 Sets

Border Block 1024 64 Per Set×4 Sets
Type-1 Spine Block 128 64 Per Set×1 Set
Type-2 Spine Block 512 64 Per Set×1 Set

We generate a total of 2250 initial configurations (pre-
expansion “reference topologies” as defined in §5.1) from
all possible combinations of {3,6, ...,30} Type-1 server
blocks, {2,4, ...,20} Type-2 server blocks, {3,6, ...,30}

13Even though we have a formal proof that deaggregation always works,
it does not guarantee optimality; our experience shows that our approach
does work in practice.

Type-3 server blocks, and {8,16} Type-1 spine blocks, with
the remainder of the necessary spine-block ports as Type-
2 spine blocks (the total number of server-block and spine-
block ports must match). We omit any configuration that
would require more patch-panel ports than we have avail-
able.

These pre-expansion topologies can be generated using
our minimal rewiring solver, by simply ignoring the objec-
tive function. We run all the configurations in parallel, and
allocate 4 CPUs and 16G RAM for each configuration. With
block aggregation enabled, all 2250 topologies can be com-
puted within 10 seconds.

9.2 Expansion Benchmarks
As shown in Fig. 3, we support two types of DCN expan-
sions. We construct two benchmarks for each of our 2250
reference topologies:

Benchmark Suite 1: We upgrade two Type-2 server
blocks in the reference topology to Type-1 server blocks.

Benchmark Suite 2: We expand the reference topology
by one Type-3 server block.

We end up with 2250× 2 = 4500 total target topologies.
For each of these, we ran the minimal-rewiring solver with
three aggregation strategies:

1. No aggregation.
2. Block aggregation, decomposing the spine-block and

server-block layers using ILP, while decomposing the
patch-panel layer using MIN COST FLOW (See technical
report [32] for details) .

3. Block aggregation, decomposing all three layers using
MIN COST FLOW.

9.3 Solver scalability

[1,10] [11,20] [21,30] [31,40] [41,50] [51,60] [61,70] [71,80]

Total Number of Sever Blocks

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 R

a
te

No Aggregation (Deadline = 3h)

With Aggregation: Decomposite Patch Panel Using Min-Cost Flow (Deadline = 3h)

With Aggregation: Decomposite Using Min-Cost Flow (Deadline = 10s)

Figure 7: Minimal-rewiring solver success rate.

Fig. 7 plots success rate for our minimal-rewiring solver
with different aggregation strategies, grouped by the to-
tal number of server blocks; the bars show the fraction of
topologies solved for each group. With the third aggrega-
tion strategy, we can solve all test cases within 10 seconds;
this strategy only needs to solve one ILP for the aggregated
problem, while using polynomial algorithms for all decom-
positions. The first strategy scales poorly, and can only solve
32% of the test cases even if we increase the deadline to 3
hours; even for small DCNs (11–20 server blocks), it some-
times times out. The second strategy can solve 67% of the
test cases, but we start seeing timeouts for DCNs with 31–

230 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

40 server blocks. For all strategies, setting timeouts above 3
hours yields little improvement.

The differences between the second and third strategies
shows that variable deaggregation using ILP could take sig-
nificant run time. (If we also use ILP to deaggregate the
patch-panel layer with the second strategy, only 3% of the
test cases can be solved.) However, deaggregation via ILP
is still useful, because as we discuss next, it can generate
more-optimal rewiring solutions.

9.4 Rewiring Ratio

[1,10] [11,20] [21,30] [31,40] [41,50] [51,60] [61,70] [71,80]

Total Number of Sever Blocks

0

0.1

0.2

0.3

0.4

R
e

w
ir
in

g
 R

a
ti
o No Aggregation

With Aggregation: Decomposite Patch Panel Using Min-Cost Flow

With Aggregation: Decomposite Using Min-Cost Flow

Figure 8: Mean rewiring ratio vs. aggregation strategy.

For the same set of test cases, Fig. 8 plots the rewiring
ratios, again grouped by the number of server blocks; here,
the bars show the mean value for each group. The third ag-
gregation strategy, while it has the best run time, also leads
to the highest (worst) rewiring ratio, often close to 20%; this
motivates our use of ILP for decomposition whenever we can
tolerate the run time.

9.5 Effectiveness of the parallel solver
§7 described how we use a parallel solver to strike a bal-
ance between scalability and rewiring optimality. For each
of our benchmarks, we ran, in parallel, solvers with the three
different aggregation strategies, with a 3-hour timeout. Be-
cause the third strategy works quickly for all instances, this
parallel approach always succeeds. It also achieves the best
rewiring ratio available within a 3-hour budget. Fig. 9 plots
the CDF of the parallel solvers rewiring ratio. For about 82%
of the DCN configurations in the first benchmark suite, and
about 93% in the second suite, we get solutions with ratios
under 20%. (The first suite tends to yield a higher ratio, be-
cause the total number of newly added server-block physical
links in the first suite is twice that in the second suite.)

Note that the rewiring ratio for our prior approach was
always 1.0 – we always replaced all patch-panel jumpers.
Fig. 9 shows that minimal rewiring saves us a lot of cost and
time; the median rewiring ratio is about 22× better for the
first suite and about 38× better for the second suite.

0 0.05 0.1 0.15 0.2 0.25 0.3

Restriping Ratio

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Parallel Solver: Benchmark Suite 1

Parallel Solver: Benchmark Suite 2

Figure 9: CDFs of rewiring ratios for the parallel solver.

9.6 Topology Capacity Analysis
In addition to solver scalability and rewiring optimality, we
also must preserve sufficient capacity of the intermediate
topologies during expansion. This requires us to quantify
“capacity.” While our DCNs experience a variety of traffic
patterns, we specifically evaluate the maximum achievable
capacity under one-to-all and one-to-one traffic, which we
rigorously define as:

One-to-all capacity: T1-all. Assume that a source server
block En is sending traffic to all other server blocks, with its
demand proportional to the ingress bandwidth of the destina-
tion blocks. We increase the traffic until some DCN links are
fully utilized. Let T n

1-all be the ratio between the egress traf-
fic under these assumptions and the best-case egress DCN
bandwidth of the server block En. T n

1-all characterizes the
one-to-all DCN capacity for server block En. We can then
define T1-all = minN

n=1 T n
1-all as the one-to-all capacity of the

entire DCN.
One-to-one capacity: T1-1. Assume that a server block

En1 is sending traffic to another server block En2 . We in-
crease the traffic until some DCN links are fully utilized.
Let T n1,n2

1-1 be the ratio between the traffic sent and the mini-
mum, over the two server blocks En1 and En2 , of their ingress
capacity. T n1,n2

1-1 characterizes the one-to-one DCN capac-
ity for the server blocks En1 and En2 . We can then define
T1-1 = minn1 6=n2 T n1,n2

1-1 as the one-to-one capacity of the en-
tire DCN.

We evaluate T1-all and T1-1 under two different scenarios:
Steady-state no-failures capacity: Recall that we im-

posed constraint (4) when computing a topology, which en-
sures high capacity in the non-expansion steady state, with-
out any failures. Ideally, if the pn,m’s in (4) were all inte-
gers, we would have T1-all = 1 and T1-1 = 1. (Neither T1-all or
T1-1 can be larger than 1). Fig. 10 plots CDFs of T1-all and
T1-1 based on the 4500 post-expansion topologies (bench-
mark suite 1 + benchmark suite 2). Note that both T1-all and
T1-1 are fairly close to 1.

Steady-state capacity under middle block failure: Re-
call that we imposed constraint (5), to ensure the highest pos-
sible capacity if one middle block fails. Ideally, for our typi-
cal case of 4 middle blocks, if the qt

n,m’s in (5) were all inte-
gers, we would have T1-all = 0.75 and T1-1 = 0.75, no matter
which middle block fails. (Given one failure, neither T1-all
or T1-1 can be larger than 0.75. Fig. 10 also plots the CDFs
of T1-all and T1-1 under middle block failures. Note that both
T1-all and T1-1 are fairly close to 0.75.

9.6.1 Residual Capacity during Expansion

During an expansion, we must disconnect some links, which
reduces DCN capacity. We are interested in the residual ca-
pacity of the DCN in this state which clearly depends on the
rewiring ratio. Fig. 11 shows scatter plots of T1-all and T1-1
for each (rewiring ratio, residual capacity) pair, based on the
two benchmark suites. This figure assumes we do all expan-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 231

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DCN Capacity

0

0.2

0.4

0.6

0.8

1
P

ro
b

a
b

ili
ty

One-to-All Capacity (Mean = 0.997)

One-to-One Capacity (Mean = 0.971)

One-to-All Capacity Under

Middle Block Down (Mean = 0.741)
One-to-One Capacity Under

Middle Block Down (Mean = 0.707)

Figure 10: CDFs of One-to-All and One-to-One capacity.

sion in a single stage, even if the residual capacity is lower
than we can accept in reality.

The residual capacity decreases approximately linearly
with the rewiring ratio. Note that the residual capacity de-
creases faster than the rewiring ratio increase, because, the
rewired DCN links might not be evenly distributed among
different server blocks. As a result, some server blocks could
suffer more capacity reduction than others.

(a) T1-all. (b) T1-1.

Figure 11: Rewiring ratio vs. residual capacity assuming a 1-stage
expansion.

9.7 Number of expansion stages

In practice, we might not be able to do an expansion in just
one stage while preserving sufficient residual capacity. §8
described an expansion planner that determines the number
of stages required. We evaluated the number of stages saved
by using minimal rewiring.

Prior to minimal rewiring, we typically did 4-stage expan-
sions. If the topologies were perfect, with 4 stages we could
preserve a residual one-to-all capacity of 0.75, but in practice
we cannot achieve perfect balance; we have found it feasible
and sufficient to preserve a residual capacity of 0.7.

Table 3 shows how many stages are needed to preserve
a residual one-to-all capacity of 0.7, with minimal rewiring,
for each of the 4500 benchmarks, based on solver strategy.
With strategies 1 and 2, many test cases require four stages,
because the solvers time out before finding 1- or 2-stage ex-
pansions. With strategy 3, almost all cases require at most
2 stages. The parallel solver finds 1- or 2-stage expansions
for all test cases (because the few cases for which strategy
3 requires four stages are handled better by the other strate-
gies), and usually does better than strategy 3 (because if the
other strategies succeed within the deadline, they yield better
rewiring ratios.) Overall, the parallel solver needs an average
of 1.29 stages, vs. 4 stages for our prior approach.

Table 3: Number of expansion stages required.

Number of expansion stages: 1 2 4
Aggregation Strategy (1) 1598 34 2868
Aggregation Strategy (2) 2668 416 1416
Aggregation Strategy (3) 1582 2914 4

Parallel Solver 3176 1324 0
Cells show # of test cases that need given # of stages.

9.7.1 Concrete example

A concrete (arbitrary, but realistic) example demonstrates the
benefits of minimal rewiring. Assume a pre-expansion DCN
with 30 Type-1, 20 Type-2, 27 Type-3 server blocks, 1 bor-
der block, and 16 Type-1, 52 Type-2 spine blocks, which
we expand by one Type-3 server block. Without minimal
rewiring, we must rewire all the 28056 logical links, in four
stages. With minimal rewiring, we need to rewire only 6063
of 28056 links (ratio = 0.216), in two stages. Due to the scale
of this example, only the third aggregation strategy succeeds.
Table. 4 shows how this maintains mid-expansion capacity
(in italics) higher than our prior approach (in bold), and com-
pletes in two stages rather than four.

Table 4: Example: minimal rewiring vs. prior approach.

Stage during expansion timeline
Pre 1 2 3 4 Post

Prior approach 0.94 0.70 0.70 0.70 0.70 0.94
Min. Rewiring 0.94 0.78 0.78 0.94 0.94 0.94

Cells show one-to-all capacity T1-all during expansion.

10 Conclusion
We have demonstrated that it is, in fact, feasible to do fine-
grained expansions of heterogeneous Clos DCNs, at large
scale, while preserving substantial residual capacity during
an expansion, and with a significant reduction in the amount
of rewiring (compared to prior approaches). We described
how we use a patch-panel layer to reduce the physical com-
plexity of DCN expansions. We then described an ILP for-
mulation that allows us to minimize the amount of rewiring,
a block-aggregation approach that allows scaling to large
networks, and a parallel solver approach that yields the best
tradeoff between elapsed time and rewiring ratio. Our overall
approach flexibly handles heterogenous switch blocks, and
enforces “balance constraints that guarantee both high capac-
ity and high failure resiliency. We evaluated our approach on
a wide range of DCN configurations, and found on average
that it allows us to do expansions in 1.29 stages, vs. 4 stages
as previously required.

11 Acknowledgements
We thank Google colleagues for their insights and feed-
back, including Bob Felderman, David Wetherall, Ke-
qiang He, Yadi Ma, Jad Hachem, Jayaram Mudigonda, and
Parthasarathy Ranganathan. We also thank our shepherd
Ankit Singla, and the NSDI reviewers.

232 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A.

A Scalable, Commodity Data Center Network Archi-
tecture. In ACM SIGCOMM (August 2008).

[2] BAUM, S., AND TROTTER, L. E. Integer rounding
and polyhedral decomposition for totally unimodular
systems. Optimization and Operations Research 157
(October 1978), 15–23.

[3] BOYD, S., GHOSH, A., AND MAGNANI, A. Branch
and bound methods. Notes for EE392o, Stanford Uni-
versity (November 2003).

[4] CAMARERO, C., MARTINEZ, C., AND BEIVIDE, R.
Random Folded Clos Topologies for Datacenter Net-
works. In IEEE International Symposium on High Per-
formance Computer Architecture (February 2017).

[5] CISCO. Cisco data center spine-and-leaf architecture:
Design overview. Cisco White Paper (2016).

[6] CLOS, C. A study of non-blocking switching networks.
Bell System Technical Journal 32 (March 1953), 406–
424.

[7] CURTIS, A. R., CARPENTER, T., ELSHEIKH, M.,
LOPEZ-ORTIZ, A., AND KESHAV, S. REWIRE: An
Optimization-based Framework for Data Center Net-
work Design. In INFOCOM (March 2012).

[8] CURTIS, A. R., KESHAV, S., AND LOPEZ-ORTIZ, A.
LEGUP: Using Heterogeneity to Reduce the Cost of
Data Center Network Upgrades. In ACM CoNEXT
(November 2010).

[9] DINITZ, M., SCHAPIRA, M., AND VALADARSKY, A.
Explicit Expanding Expanders. Algorithmica 78 (Au-
gust 2017), 1225–1245.

[10] FARRINGTON, N., AND ANDREYEV, A. Facebook’s
data center network architecture. IEEE Optical Inter-
connects Conference (May 2013).

[11] FARRINGTON, N., PORTER, G., RADHAKRISHNAN,
S., BAZZAZ, H. H., SUBRAMANYA, V., FAINMAN,
Y., PAPEN, G., AND VAHDAT, A. Helios: A Hy-
brid Electrical/Optical Switch Architecture for Modu-
lar Data Centers. In SIGCOMM (August 2010).

[12] GOOGLE INC. Google Optimization Tools.
https://developers.google.com/optimization/.

[13] GREENBERG, A., HAMILTON, J. R., JAIN, N., KAN-
DULA, S., KIM, C., LAHIRI, P., MALTZ, D. A., PA-
TEL, P., AND SENGUPTA, S. VL2: a scalable and flex-
ible data center network. In SIGCOMM (August 2009).

[14] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI,
Y., TIAN, C., ZHANG, Y., AND LU, S. BCube: A
High Performance, Server-centric Network Architec-
ture for Modular Data Centers. In SIGCOMM (August
2009).

[15] GUO, C., WU, H., TAN, K., SHI, L., ZHANG, Y.,
AND LU, S. DCell: A Scalable and Fault-Tolerant Net-
work Structure for Data Centers. In SIGCOMM (Au-
gust 2008).

[16] GUO, D., CHEN, T., LI, D., LI, M., LIU, Y.,
AND CHEN, G. Expandable and cost-effective net-
work structures for data centers using dual-port servers.
IEEE Transactions on Computers 62 (July 2013),
1303–1317.

[17] GUROBI. www.gurobi.com.

[18] GYARMATI, L., GULYAS, A., SONKOLY, B., TRINH,
T. A., AND BICZOK, G. Free-scaling your data center.
Computer Networks 57 (June 2013), 1758–1773.

[19] HIGBIE, C. Point-to-Point Data Center Cable Will
Cost You in the Long Run. Network World (Feb. 2012).
https://www.networkworld.com/article/2186410/tech-
primers/point-to-point-data-center-cable-will-cost-
you-in-the-long-run.html.

[20] IRVING, R. W., AND JERRUM, M. R. Three-
dimensional statistical data security problems. SIAM
Journal on Computing 23 (February 1994), 170–184.

[21] LI, D., GUO, C., WU, H., TAN, K., ZHANG, Y., AND
LU, S. FiConn: Using Backup Port for Server Inter-
connection in Data Centers. In IEEE INFOCOM (April
2009).

[22] LI, Z., GUO, Z., AND YANG, Y. Bccc: An expandable
network for data centers. IEEE/ACM Transactions on
Networking 24 (December 2016), 3740–3755.

[23] LIU, V., HALPERIN, D., KRISHNAMURTHY, A., AND
ANDERSON, T. F10: A Fault-Tolerant Engineered Net-
work. In NSDI (April 2013).

[24] RAJASEKARAN, S. On the convergence time of simu-
lated annealing. Research Report MS-CIS-90-89, Uni-
versity of Pennsylvania, Department of Computer and
Information Science (November 1990).

[25] SCHLINKER, B., MYSORE, R. N., SMITH, S.,
MOGUL, J. C., VAHDAT, A., YU, M., KATZ-
BASSETT, E., AND RUBIN, M. Condor: Better
Topologies Through Declarative Design. In SIG-
COMM (August 2015).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 233

[26] SIEMON. Data Center Cabling Considera-
tions: Point-to-Point vs. Structured Cabling.
http://www.siemon.com/us/white papers/09-06-18-
data-center-point-to-point-vs-structured-cabling.asp.

[27] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G.,
ARMISTEAD, A., BANNON, R., BOVING, S., DESAI,
G., FELDERMAN, B., GERMANO, P., KANAGALA,
A., PROVOST, J., SIMMONS, J., TANDA, E., WAN-
DERER, J., HLZLE, U., STUART, S., AND VAHDAT,
A. Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter. In SIG-
COMM (September 2015).

[28] SINGLA, A., HONG, C.-Y., POPA, L., AND GOD-
FREY, P. B. Jellyfish: Networking Data Centers, Ran-
domly. In NSDI (April 2012).

[29] VALADARSKY, A., SHAHAF, G., DINITZ, M.,
AND SCHAPIRA, M. Xpander: Towards Optimal-
Performance Datacenters. In CoNEXT (December
2016).

[30] WALRAED-SULLIVAN, M., VAHDAT, A., AND
MARZULLO, K. Aspen Trees: Balancing Data Cen-
ter Fault Tolerance, Scalability and Cost. In CoNEXT
(December 2013).

[31] YU, Y., AND QIAN, C. Space shuffle: A scalable, flex-
ible, and high-bandwidth data center network. IEEE
Transactions on Parallel and Distributed Systems 27
(February 2016), 3351–3365.

[32] ZHAO, S., WANG, R., ZHOU, J., ONG, J.,
MOGUL, J. C., AND VAHDAT, A. Minimal
Rewiring: Efficient Live Expansion for Clos Data
Center Networks: Extended Version. Online:
https://ai.google/research/pubs/pub47492.

[33] ZHOU, J., TEWARI, M., ZHU, M., KABBANI, A.,
POUTIEVSKI, L., SINGH, A., AND VAHDAT, A.
WCMP: Weighted Cost Multipathing for Improved
Fairness in Data Centers. In EuroSys (April 2014).

234 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Understanding Lifecycle Management Complexity of Datacenter Topologies
Mingyang Zhang

USC
Radhika Niranjan Mysore

VMWare
Sucha Supittayapornpong

USC
Ramesh Govindan

USC

Abstract
Most recent datacenter topology designs have focused on

performance properties such as latency and throughput. In
this paper, we explore a new dimension, life cycle manage-
ment complexity, which attempts to understand the complex-
ity of deploying a topology and expanding it. By analyzing
current practice in lifecycle management, we devise complex-
ity metrics for lifecycle management, and show that existing
topology classes have low lifecycle management complexity
by some measures, but not by others. Motivated by this, we
design a new class of topologies, FatClique, that, while being
performance-equivalent to existing topologies, is compara-
ble to, or better than them by all our lifecycle management
complexity metrics.

1 Introduction
Over the past decade, there has been a long line of work on
designing datacenter topologies [2, 35, 31, 32, 3, 4, 20, 1].
While most have focused on performance properties such as
latency and throughput, and on resilience to link and switch
failures, datacenter lifecycle management [30, 38] has largely
been overlooked. Lifecycle management is the process of
building a network, physically deploying it on a data-center
floor, and expanding it over several years so that it is available
for use by a constantly increasing set of services.

With datacenters living on for years, sometimes up to a
decade [31, 12], their lifecycle costs can be high. A data
center design that is hard to deploy can stall the rollout of
services for months; this can be expensive considering the rate
at which network demands have historically increased [31,
23]. A design that is hard to expand can leave the network
functioning with degraded capacity impacting the large array
of services that depend on it.

It is therefore desirable to commit to a data-center network
design only after getting a sense of its lifecycle management
cost and complexity over time. Unfortunately, the costs of
the large array of components needed for deployment such as
switches, transceivers, cables, racks, patch panels1, and cable
trays, are proprietary and change over time, and so are hard
to quantify. An alternative approach is to develop complexity
measures (as opposed to dollar costs) for lifecycle manage-
ment, but as far as we know, no prior work has addressed this.
In part, this is due to the fact that intuitions about lifecycle
management are developed over time and with operations ex-
perience, and these lessons are not made available universally.

1A patch panel or a wiring aggregator is a device that simplifies cable
re-wiring.

Unfortunately, in our experience, this lack of a clear under-
standing of lifecycle management complexity often results
in costly mistakes in the design of datacenters that are dis-
covered during deployment and therefore cannot be rectified.
Our paper is a first step towards useful characterizations of
lifecycle management complexity.
Contributions. To this end, our paper makes three contribu-
tions. First, we design several complexity metrics (§3 and §4)
that can be indicative of lifecycle management costs (i.e., cap-
ital expenditure, time and manpower required). These metrics
include the number of: switches, patch panels, bundle-types,
expansion steps, and links to be re-wired at a patch panel rack
during an expansion step.

We design these metrics by identifying structural elements
of network deployments that make their deployment and ex-
pansion challenging. For instance, the number of switches
in the topology determines how complex the network is in
terms of packaging – laying out switches into homogeneous
racks in a space efficient manner. Wiring complexity can
be assessed by the number of cable bundles and the patch
panels a design requires. As these increase, the complexity of
manufacturing and packaging all the different cable bundles
efficiently into cable trays, and then routing them from one
patch panel to the next can be expected to increase. Finally,
because expansion is carried out in steps [38], where the net-
work operates at degraded capacity at each step, the number
of expansion steps is a measure of the reduced availability
in the network induced by lifecycle management. Wiring
patterns also determine the number of links that need to be
rewired at a patch panel during each step of expansion, a
measure of step complexity [38].

Our second contribution is to use these metrics to compare
the lifecycle management costs of two main classes of data-
center topologies recently explored in the research literature
(§2), Clos [2] and expander graphs [32, 35]. We find that
neither class dominates the other: Clos has relatively lower
wiring complexity; its symmetric design leads to more uni-
form bundling (and fewer cable bundle types); but expander
graphs at certain scales can have simpler packaging require-
ments due to their edge expansion property [32]; they end
up using much fewer switches than Clos to achieve the same
network capacity. Expander graphs also demonstrate better
expansion properties because they have fat edges (§4) which
permit more links to be rewired in each step.

Finally we design and synthesize a novel and practical class
of topologies called FatClique (§5), that has lower overall
lifecycle management complexity compared to Clos and ex-
pander graphs. We do this by combining favorable design

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 235

elements from these two topology classes. By design, Fat-
Clique incorporates 3 levels of hierarchy and uses a clique
as a building block while ensuring edge expansion. At every
level of its hierarchy, FatClique is designed to have fat edges,
for easier expansion, while utilizing much fewer patch panels
and therefore inter-rack cabling.

Evaluations of these topology classes at three different
scales, the largest of which is 16× the size of Jupiter, shows
that FatClique is the best at most scales by all our complexity
metrics. It uses 50% fewer switches and 33% fewer patch
panels than Clos at large scale, and has a 23% lower cabling
cost (an estimate we are able to derive from published cable
prices). Finally, FatClique can permit fast expansion while
degrading network capacity by small amounts (2.5-10%): at
these levels, Clos can take 5 × longer to expand the topology.

2 Background
Data center topology families. Data centers are often de-
signed for high throughput, low latency and resilience. Exist-
ing data center designs can be broadly classified into the fol-
lowing families: (a) Clos-like tree topologies, e.g., Google’s
Jupiter [31], Facebook’s fbfabric [3], Microsoft’s VL2 [13],
F10 [22]; (b) Expander graph based topologies, e.g., Jelly-
fish [32], Xpander [35]; (c) ‘Direct’ topologies built from
multi-port servers, e.g., BCube [14], DCell [15]. (d) Low
diameter, strongly-connected topologies that rely on high-
radix switches, e.g., Slimfly [4], Dragonfly [20]; (e) Re-
configurable optical topologies like Rotornet and Project-
ToR [24, 9, 11, 16, 39].

Of these, Clos and Expander based topologies have been
shown to scale using widely deployed merchant silicon. The
ecosystem around the hardware used by these two classes,
e.g., cabling, cable trays used, rack sizes, is mature and well-
understood, allowing us to quantify some of the operational
complexity of these topologies.

Direct multi-port server topologies and some reconfig-
urable optical topologies [24, 11, 16, 39] rely on newer hard-
ware technologies that are not mainstream yet. It is hard to
quantify the operational costs of these classes without making
significant assumptions about such hardware. Low diameter
topologies like Slimfly [4] and Dragonfly [20], can be built
with hardware that is available today, but they require strongly
connected groups of switches. Their incremental expansion
comes at high cost and complexity; high-radix switches either
need to be deployed well in advance, or every switch in the
topology needs to be upgraded during expansion, to preserve
low diameter.

To avoid estimating operational complexity of topologies
that rely on new hardware, or on topologies that unacceptably
constrain expansion, we focus on the Clos and Expander
families.
Clos. A logical Clos topology with N servers can be
constructed using switches with radix k connected in n =
log k

2
(N

2) layers based on a canonical recursive algorithm

in [36]2. Fattree [2] and Jupiter [31] are special cases of Clos
topology with 3 and 5 layers respectively. Clos construction
naturally allows switches to be packaged together to form a
chassis [31]. Since there are no known generic Clos pack-
aging algorithm that can help design such a chassis, for a
Clos of any scale, we designed one to help our study of its
operational complexity. We present this algorithm in §A.1.
Expander graphs. Jellyfish and Xpander benefit from the
high edge expansion property of expander graph to use a near
optimal number of switches, while achieving the same bisec-
tion bandwidth as Clos based topologies [35]. Xpander splits
N servers among switches by attaching s servers to each
switch. With a k port switch, the remaining ports p= k− s
are connected to other switches that are organized in p blocks
called metanodes. Metanodes are a group of switches, con-
taining l =N/(s · (p+1)) switches, which increase as topol-
ogy scale N increases. There are no connections between the
switches of a metanode. Jellyfish is a degree bounded random
graph (see [32] for more details).
Takeaway. A topology with high edge expansion [35] can
achieve a target capacity with fewer switches, leading to lower
overall cost.

3 Deployment Complexity
Deployment is the process of realizing a physical topology
in a data center space (e.g., a building), from a given logical
topology. Deployment complexity can be reduced by careful
packaging, placement and bundling strategies [31, 20, 1].

3.1 Packaging, Placement, and Bundling
Packaging of a topology involves careful arrangement of
switches into racks, while placement involves arranging these
racks into rows on the data center floor. The spatial arrange-
ment of the topology determines the type of cables needed
between switches. For instance, if two connected switches
are within the same rack, they can use short-range cheaper
copper cables, while connections between racks require more
expensive optical cables. Optical cable costs are determined
by two factors: the cost of transceivers and the length of ca-
bles (§3.2). Placement of switches on the datacenter floor
can also determine costs: connecting two switches placed at
two ends of the data center building might require long range
cables and high-end transceivers.
Chassis, racks, and blocks. Packaging connected switches
into a single chassis using a backplane completely removes
the need for physical connecting cables. At scale, the cost and
complexity savings from using a chassis-backplane can be
significant. One or more chassis that are interconnected can
be packed into racks such that: (a) racks are as homogeneous
as possible, i.e., a topology makes use of only a few types of
racks to simplify manufacturing and (b) racks are packed as

2This equation for n can be used to build a Clos with 1:1 oversubscription.
For a Clos with an over-subscription x:y we would need n = log k

2
(y·N/x

2)
layers.

236 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

densely as possible to reduce space wastage. Some topolo-
gies define larger units of co-placement and packaging called
blocks, which consist of groups of racks. Examples of blocks
include pods in Fattree. External cabling from racks within a
block are routed to wiring aggregators (i.e., patch panels [25])
to be routed to other blocks. For blocks to result in lower
deployment complexity, three properties must be met: (a) the
ports on the patch panel that it connects to are not wasted,
when the topology is built out to full scale, (b) wiring out of
the block should be as uniform as possible, and (c) racks in a
block must be placed close to each other to reduce the length
and complexity of wiring.
Bundling and cable trays. When multiple fibers from the
same set of physically adjoint (or neighboring) racks are des-
tined to another set of neighboring racks, these fibers can
be bundled together. A fiber bundle is a fixed number of
identical-length fibers between two clusters of switches or
racks. Manufacturing bundles is simpler than manufacturing
individual fibers, and handling such bundles significantly sim-
plifies operation complexity. Cable bundling reduces capex
and opex by around 40% in Jupiter [31].

Patch panels facilitate bundling since the patch panel rep-
resents a convenient aggregation point to create and route
bundles from the set of fibers destined to the same patch
panel (or the same set of physically proximate patch panels).
Figure 1 shows a Clos topology instance (left) and its physi-
cal realization using patch panels (right). Each aggregation
block in the Clos network connects with one link to each
spine block. The figure on the right shows how these links
are routed physically. Bundles with two fibers each from
two aggregations are routed to two (lower) patch panels. At
each patch panel, these fibers are rebundled, by grouping
fibers that go to the same spine in new bundles, and routed
to two other (upper) patch panels that connect to spines. The
bundles from the upper patch panels are then routed to the
spines. Figure 1 assumes that patch panels are used as fol-
lows: bundles are connected to both the front and back ports
on patch panels. For example, bundles from the aggregation
layer connect to front ports on patch panels and bundles from
spines connect to the back ports of patch panels. This enables
bundle aggregation and rebundling and simplifies topology
expansion.3

Bundles and fibers are routed through the datacenter on ca-
ble trays. The cables that aggregate at a patch panel rack must
be routed overhead by using over-row and cross-row trays
[26]. Trays have capacity constraints [34], which can con-
strain rack placement, block sizes, and patch panel placement.
Today, trays can support at most a few thousand fibers [34].

3[38]’s usage of patch panels is slightly different. All bundles are con-
nected to front ports of patch panels and links are established using jumper
cables between the back ports of patch panels. For patch panels of a given
port count, both approaches require the same number of patch panels. Our
approach enables bundling closer to the aggregation and spine layers; [38]
does not describe how bundling is accomplished in their design.

Logical Clos Physical Clos
Aggr

Spine

Aggr

Spine

Switch Patch Panel

Figure 1: Fiber Re-bundling for Clos at Patch Panels
With current rack and cable tray sizes, a single rack of patch
panels can be accommodated by four overhead cable trays,
arranged in four directions. In order to avoid aggregating too
many links into a single location, it is desirable to space such
patch panels apart to accommodate more cable trays. This
consideration in turn constrains block sizes; if cables from
blocks must be all routed locally, it is desirable that a block
only connect to a single rack of patch panel.

3.2 Deployment Complexity Metrics
Based on the previous discussion, we identify several metrics
that quantify the complexity of the two aspects of datacen-
ter topology deployment: packaging and placement. In the
next subsection, we use these metrics to identify differences
between Clos and Expander graph topology classes.
Number of Switches. The total number of switches in the
topology determines the capital expenditure for the topology,
but it also determines the packaging complexity (switches
need to be packed to chassis and racks) and the placement
complexity (racks need to be placed on the datacenter floor).
Number of Patch panels. By acting as bundle waypoints,
the number of patch panels captures one measure of wiring
complexity. The more the number of patch panels, the shorter
the cable lengths from switches to the nearest patch panel,
but the fewer the bundling opportunities, and vice versa. The
number of patch panels needed is a function of topological
structure. For instance, in a Clos topology, if an aggregation
layer fits into one rack or a neighboring set of racks, a patch
panel is not needed between the ToR and the aggregation layer.
However, for larger Clos topologies where an aggregation
block can span multiple racks, ToR to aggregation links may
need to be rebundled through a patch panel. We discuss this
in detail in §6.2.
Number of Bundle Types. The number of patch panels alone
does not capture wiring complexity. The other measure is the
number of distinct bundle types. A bundle type is represented
by a tuple of (a) the capacity of the number of fibers in the
bundle, and (b) the length of the bundle. If a topology requires
only a small number of bundle types, its bundling is more
homogeneous; manufacturing and procuring such bundles
is significantly simpler, and deploying the topology is also
simplified since fewer bundling errors are likely with fewer
types.

These complexity measures are complete. The number
of cable trays, the design of the chassis, and the number of
racks can be derived from the number of switches (and the
number of servers and the datacenter floor dimensions, which

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 237

Topology 4-layer Clos (Medium) Jellyfish
#servers 131,072 131,072
#switches 28,672 16,384
#bundle types 74 1577
#patch panels 5546 7988

Table 1: Deployment Complexity Comparison
are inputs to the topology design). The number of cables and
transceivers can be derived from the number of patch panels.

In some cases, a metric is related to another metric, but
not completely subsumed by it. For example, the number
of switches determines rack packaging, which only partially
determines the number of transceivers per switch. The other
determinant of this quantity is the connectivity in the logical
topology (which switch is connected to which other switch).
Similarly, the number of patch panels can influence the num-
ber of bundle types, but these are also determined by logical
connectivity.

3.3 Comparing Topology Classes
To understand how the two main classes of topologies com-
pare by these metrics, we apply these to a Clos topology and
to a Jellyfish topology that support the same number of servers
(131,072) and the same bisection bandwidth. This topology
corresponds to twice the size of Jupiter. In §6, we perform a
more thorough comparison at larger and smaller scales, and
we describe the methodology by which these numbers were
generated.

Table 1 shows that the two topology classes are qualita-
tively different by these metrics. Consistent with the finding
in [32], Jellyfish only needs a little over half the switches
compared to Clos to achieve comparable capacity due to its
high edge expansion property. But, by other measures, Clos
performs better. It exposes far fewer ports outside the rack
(a little over half that of Jellyfish); we say Clos has better
port-hiding. A pod in this Clos contains 16 aggregation and
16 edge switches4. The aggregation switches can be can be
packed into a single rack, so bundles from edge switches
to aggregation switches do not need to be rebundled though
patch panels, and we only need two layers of patch panels
between aggregation and spine layer. However, in Jellyfish,
almost all links are inter-rack links, so it requires more patch
panels.

Moreover, for Clos, since each pod has the same number
of links to each spine, all bundles in Clos have the same ca-
pacity (number of fibers). However, the length of bundles
can be different, depending on the relative placement of the
patch panels between aggregation and spine layers, so Clos
has 74 bundle types. However, since Jellyfish is a purely ran-
dom graph without structure, to enable bundling, we group a
fixed amount of neighbor racks as blocks to enable bundling.
Since connectivity is random, the number of links between
blocks are not uniform, Jellyfish needs almost 20× the num-
ber of bundle types. In §6, we show that Xpander also has

4we follow the definition of pod in [2].

qualitatively similar behavior in large scale.
Takeaway. Relative to a structured hierarchical class of
topologies like Clos, the expander graph topology has inher-
ently higher deployment complexity in terms of the number
of bundle types and cannot support port-hiding well.

4 Topology Expansion
The second important component of topology lifecycle man-
agement is expansion. Datacenters are rarely deployed to
maximal capacity in one shot; rather, they are gradually ex-
panded as network capacity demands increase.

4.1 The Practice of Expansion
In-place Expansion. At a high-level, expanding a topology
involves two conceptual phases: (a) procuring new switches,
servers, and cables and laying them on the datacenter floor,
and (b) re-wiring (or adding) links between switches in the ex-
isting topology and the new switches. Phase (b), the re-wiring
phase, can potentially disrupt traffic; as links are re-wired, net-
work capacity can drop, leading to traffic loss. To avoid traffic
loss, providers can either take the existing topology offline
(migrate services away, for example, to another datacenter),
or can carefully schedule link re-wiring while carrying live
traffic, but schedule the re-wiring to maintain a desired tar-
get capacity. The first choice can impact service availability
significantly.

So, today, datacenters are expanded while carrying live
traffic [30, 12, 31, 38]. To do this, expansion is carried out
in steps, where at each step, the capacity of the topology is
guaranteed to be at least a percentage p of the capacity of
the existing topology. This fraction is sometimes called the
expansion SLO. Today, many providers operate at expansion
SLOs of 75% [38]; higher SLOs of 85-90% can impact avail-
ability budgets less while allowing providers to carry more
traffic during expansion.
The unit of expansion. Since expansion involves procure-
ment, topologies are usually expanded in discrete units called
blocks to simplify the procurement and layout logistics. In a
structured topology, there are natural candidates for blocks.
For example, in a Clos, a pod can be block, while in an
Xpander, the metanode can be a block. During expansion,
a block is first fully assembled and placed, and links be-
tween switches within a block are connected (as an aside, an
Xpander metanode has no such links). During the re-wiring
phase, only links between existing blocks and new blocks are
re-wired. (This phase does not re-wire links between switches
within an existing block). Aside from simplifying logistics,
expanding at the granularity of a block preserves structure in
structured topologies.

4.2 An Expansion Step
What happens during a step. Figure 2 shows an example
of Clos expansion. The upper left figure shows a partially-
deployed logical Clos, in which each spine and aggregation

238 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Original Partially Deployed Clos
Aggr

Spine

Switch Patch Panel

Aggr

Spine

Target Fully Deployed Clos (Logical)
Aggr

New Spine

New Spine

Expansion at Patch Panels (or Optical Circuit Switches)
Original Links or
New-added Links

Rewired
LInks

Expansion for Clos Topology

Reserved
Ports

SLO: 87.5%.
Step 1: 1,3; Step2: 2,4

1 2 43

Figure 2: Clos Expansion with Patch Panels
block are connected by two links. The upper right is the target
fully-deployed Clos, where each spine and aggregation block
are connected by a single link. During expansion, we need to
redistribute half of existing links (dashed) to the newly added
spines without violating wiring and capacity constraints.

Suppose we want to maintain 87.5% of the capacity of the
topology (i.e., the expansion SLO is 0.875), this expansion
will require 4 steps in total, where each patch panel is involved
in 2 of these steps. In Figure 2, we only show the rewiring
process on the second existing patch panels. To maintain
87.5% capacity at each pod, only one link is allowed to be
drained. In the first step, the red link from the first existing
aggregation block and the green link from the second existing
aggregation block are rewired to the first new spine block.
In the second step, the orange links from the first existing
aggregation block and the purple link from the second existing
aggregation block are rewired to the first new spine block. A
similar process happens in the first patch panel.

In practice, each step of expansion involves four sub-steps.
In the first sub-step, the existing links that are to be re-wired
are drained. Draining a link involves programming switches
at each end of the link to disable the corresponding ports, and
may also require reprogramming other switches or ports to
route traffic around the disabled link. Second, one or more
human operators physically rewire the links at a patch panel
(explained in more detail below). Third, the newly wired links
are tested for bit errors by sending test traffic through them.
Finally, the new links are undrained.

By far the most time consuming part of each step is the
second sub-step, which requires human involvement. This
sub-step is also the most important from an availability per-
spective; the longer this sub-step takes, the longer the datacen-
ter operates at reduced capacity, which can impact availability
targets [12].

The role of patch panels in re-wiring. The lower figure in
Figure 2 depicts the physical realization of the (logical) re-
wiring shown in the upper figure. (For simplicity, the figure
only shows the re-wiring of links on one patch panel to a new
pod). Fibers and bundles originate and terminate at patch
panels, so re-wiring requires reconnecting input and output

a b c d

A B C D A B C D

e f

E F

Target Wiring: c-E, d-F, e-B, f-D
a b e f

A B C D

c d

E F
Original wiring Phase 1: Route Fibers

{e,f,E,F} to the patch panel
Phase 2: Rewire

Patch
Panel

Front

Back

a b c d

Figure 3: Basic Rewiring Operations at a patch panel

Thin Edge25%
loss Fat Edge

0%
loss

Drain 25% Links

Servers
Figure 4: Thin and Fat Edge Comparison

ports at each patch panel. One important constraint in this
process is that re-wiring cannot remove fibers that are already
part of an existing bundle.

Patch panels help localize rewiring and reuse existing cable
bundling during expansions. Figure 3 shows, in more detail
the rewiring process at a single patch panel. The leftmost
figure shows the original wiring with connections (a, A),
(b, B), (c, C), (d, D). To enable expansion, a topology is
always deployed such that some ports at the patch panel are
reserved for expansion steps. In the figure, we use these
reserved ports to connect new fibers e, f , E and F (Phase
1). To get to a target wiring in the expanded network with
connections (a, A), (b, B), (e, C), (f , D), (c, E), (d, F), the
following steps are taken: (1) Traffic is drained from (c, C),
(d, D), (2) Connections (c, C), (d, D) are rewired, with c
being connected to E, d being connected to F and so on, and
(3) The new links are undrained, allowing traffic to use new
capacity.

4.3 Expansion Complexity Metrics
We identify two metrics that quantify expansion complexity
and use these metrics to identify differences between Clos
and Jellyfish in the next subsection.
Number of Expansion Steps. As mentioned each expansion
step requires a series of substeps which cannot be parallelized.
Therefore the number of expansion steps determines the total
time for expansion.
Average number of rewired links in a patch panel rack
per step. With patch panels, manual rewiring dominates
the time taken within each expansion step. Within steps,
it is possible to parallelize rewiring across racks of patch
panels. With such parallelization, the time taken to rewire a
single patch panel rack will dominate the time taken for each
expansion step.

4.4 Comparing Topology Classes
Table 2 shows the value of these measures for a medium-sized
Clos and a comparable Jellyfish topology, when the expansion

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 239

Topology 4-layer Clos (Medium) Jellyfish
Average # links rewired
per patch panel rack 832 470
Expansion steps 6 3
North-to-south capacity ratio 1 3

Table 2: Expansion Comparison (SLO = 90%)
SLO is 90%. (§6 has more extensive comparisons for these
metrics, and also describes the methodology more carefully).
In this setting, the number of links rewired per patch panel
can be a factor of two less than Clos. Moreover, Jellyfish
requires 3 steps, while Clos twice the number of steps.

To understand why Jellyfish requires fewer steps, we define
a metric called the north-to-south capacity ratio for a block.
This is the ratio of the aggregate capacity of all “northbound”
links exiting a block to the aggregate capacity of all “south-
bound” links to/from the servers within the block. Figure 4
illustrates this ratio: a thin edge (left), has an equal number
of southbound and northbound links while a fat edge (right),
has more northbound links than southbound links. A Clos
topology has a thin edge, i.e., this ratio is 1, since the block is
a pod. Now, consider an expansion SLO of 75%. This means
that the southbound aggregate capacity must be at least 75%.
That implies that, for Clos, at most 25% of the links can be re-
wired in a single step. However, Jellyfish has a much higher
ratio of 3, i.e., it has a fat edge. This means that many more
links can be rewired in a single step in Jellyfish than in Clos.
This property of Jellyfish is required for reducing the number
of expansion steps.
Takeaway. Clos topologies re-wire more links in each patch
panel during an expansion step and require many steps be-
cause they have a low north-south capacity ratio.

5 Towards Lower Lifecycle Complexity
Our discussions in §3 and §4, together with preliminary re-
sults presented in those sections (§6 has more extensive re-
sults) suggest the following qualitative comparison between
Clos and the expander graph families with respect to lifecycle
management costs (Table 3):
• Clos uses fewer bundle types and patch panels.
• Jellyfish has significantly lower switch counts, uses fewer

expansion steps, and touches fewer links per patch panel
during an expansion step.

In all of these comparisons, we compare topologies with the
same number of servers and the same bisection bandwidth.

The question we ask in this paper is: Is there a family of
topologies which are comparable to, or dominate, both Clos
and expander graphs by all our lifecycle management met-
rics? In this section, we present the design of the FatClique
class of topologies and validate in §6 that FatClique answers
this question affirmatively.

5.1 FatClique Construction
FatClique (Figure 5) combines the hierarchical structure in
Clos with the edge expansion in expander graphs to achieve
lower lifecycle management complexity. FatClique has three

4-layer Clos (Medium) Jellyfish
switches X
bundle types X
patch panels X
re-wired links per patch panel X
expansion steps X

Table 3: Qualitative comparison of lifecycle management com-
plexity

Auxiliary Variable Description
ps = Sc − 1 # ports per switch to

connect other switches inside a sub-block
pb = k − s − ps − pc # ports per switch to connect other blocks
Rc = Sc · (pc + pb) radix of a sub-block
Rb = Sb · Sc · pb radix of a block
Nb = N/(Sb · Sc · s) #blocks
Lcc = Sc · pc/(Sb − 1) #links between two sub-blocks inside a block
Lbb = Rb/(Nb − 1) #links between two blocks

Table 4: FatClique Variables
levels of hierarchy: individual sub-block (top left), intercon-
nected into a block (top right), which are in turn intercon-
nected to form FatClique (bottom). The interconnection used
at every level in the hierarchy is a clique, similar to Dragon-
fly [20]. Additionally, each level in the hierarchy is designed
to have a fat edge (a north-south capacity ratio greater than
1). The cliques enable high edge expansion, while hierarchy
enables lower wiring complexity than random-graph based
expanders [32, 35].

FatClique is a class of topologies. To obtain an instance of
this class, a topology designer specifies two input parameters:
N , the number of servers, and k the chip radix. A synthesis
algorithm takes these as inputs, and attempts to instantiate
four design variables that completely determine the FatClique
instance Table 4. These four design variables are:
• s, the number of ports in a switch that connect to servers
• pc, the number of ports in each switch that connect to other

sub-blocks inside a block
• Sc, the number of switches in a sub-block
• Sb, the number of sub-blocks in a block
The synthesis algorithm searches for the best combination
of values for design variables, guided by six constraints, C1
through C6, described below. The algorithm also defines
auxiliary variables for convenience; these can be derived
from the design variables (Table 4). We define these variables
in the narrative below.

Sub-block connectivity. In FatClique, the sub-block forms
the lowest level of the hierarchy, and contains switches and
servers. All sub-blocks have the same structure. Servers
are distributed uniformly among all switches of the topology,
such that each sub-block has the same number of servers at-
tached. However, because this number of servers may not be
an exact multiple of the number of switches, we distribute
the remainder across the switches, so that some switches may
be connected to one more server than others. The alternative
would have been to truncate or round up the number of servers
per sub-block to be divisible by the number of switches in

240 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

switch

server

Sub-block (Clique of Switches) Block (Clique of Sub-blocks)

Local
Bundles

The Whole Network (Clique of Blocks)

Global Bundles

Figure 5: FatClique Topology

sub-block

Block

switch

server

Figure 6: FatClique Block
the sub-block, which could lead to overprovisioning or under-
provisioning. Within a sub-block, every switch has a link to
every other switch within its sub-block, to form a clique (or
complete graph). To ensure a fat edge at the sub-block level,
each switch must connect to more switches than servers, cap-
tured by the constraint C1 : s < r−s, where r is the switch
radix and s is the number of ports on a switch connected to
servers.

Block-level connectivity. The next level in the hierarchy is
the block. Each sub-block is connected to other sub-blocks
within a block using a clique (Figure 5, top-left). In this clique,
each sub-block may have multiple links to another sub-block;
these inter-sub-block links are evenly distributed among all
switches in the sub-block such that every pair of switches
from different sub-block has at most one link. Ensuring a
fat edge at this level requires that a sub-block has more inter-
sub-block and inter-block links egressing from the sub-block
than the number of servers it connects to. Because sub-blocks
contain switches which are homogeneous5, this constraint is
ensured if the sum of (a) the number ports on each switch
connected to other sub-block (pc) and (b) those connected
to other blocks (pb, an auxiliary variable in Table 4, see also
Figure 6) exceeds the number of servers connected to the
switch (captured by C2 : pc +pb > s).

Inter-block connectivity. The top of the hierarchy is the
overall network, in which each block is connected to every

5They are nearly homogeneous, since a switch may differ from another
by one in the number of servers connected

other block, resulting in a clique. The inter-block links are
evenly distributed among all sub-blocks, and, within a sub-
block, evenly among all switches. To ensure a fat edge at this
level, the number of inter-block links at each switch should be
larger than the number of servers it connects to, captured by
C3 : pb > s. Note that C3 subsumes (is a stronger constraint
than) C2. Moreover, the constraint that blocks are connected
in a clique imposes a constraint on the block radix (Rb, a
derived variable). The block radix is the total number of links
in a block destined to other blocks. Rb should be large enough
to reach all other blocks (captured by C4 :Rb ≥Nb−1) such
that the whole topology is a clique.

Incorporating rack space constraints. Beyond connectiv-
ity constraints, we need to consider packaging constraints in
sub-block design. Ideally, we need to ensure that a sub-block
fits completely into one or more racks with no wasted rack
space. For example, if we use 58RU racks, and each switch
is to be connected to 8 1RU servers, we can accommodate
6 switches per sub-block, leaving 58− (6× 8 + 6) = 4U in
the rack for power supply and other equipment. In contrast,
choosing 8 switches per sub-block would be a bad choice be-
cause it would need 8×8+8 = 72U rack space, overflowing
into a second rack that would have 44RU un-utilized. We
model this packaging fragmentation as a soft constraint: our
synthesis algorithm generates multiple candidate assignments
to the design variables that satisfy our constraints, and of
these, we pick the alternative that has the lowest wasted rack
space.

Ensuring edge expansion. At each level of the hierarchy,
edge expansion is ensured by using a clique. This is necessary
for high edge expansion, but not sufficient, since it does
not guarantee that every switch connects to as many other
switches across the network as possible. One way to ensure
this diversity is to make sure that each pair of switches is
connected by at most one link. The constraints discussed
so far do not ensure this. For instance, consider Figure 6,
in which Lcc (another auxiliary variable in Table 4) is the
number of links from one sub-block to another. If this number
is greater than the number of switches Sc in the sub-block,
then, some pair of switches might have more than one link
to each other. Thus, C5 : Lcc ≤ Sc is a condition to ensure
that each pair of switches must be connected by a single link.
Our topology synthesis algorithm generates assignments to
design variables, and a topology generator then assigns links
to ensure this property (§5.2).

Incorporating patch panel constraints. The size of the
block is also limited by the number of ports in a single patch
panel rack (denoted by PP −Rackports). It is desirable to
ensure that the inter-block links egressing each block connect
to at most 1

2 the ports in a patch panel rack, so that the rest of
the patch panel ports are available for external connections
into the block (captured by C6 :Rb ≤ 1

2 ·PP −Rackports).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 241

Topology Scalability
3-layer Clos (Fattree) 2 · (k/2)3

4-layer Clos 2 · (k/2)4

5-layer Clos (Jupiter) 2 · (k/2)5

FatClique O(k5)

Table 5: Scalability of Topologies

1

2 3

5

5

5

1

2

3
2

2 5

6

4

2

1

2

3

5

4

6

Original Fatclique Target Fatclique (Logical)

Expansion at a Patch Panel

Block

Patch Panel

Original Links
or New-added

Links

Rewired
LInks

Reserved
Ports

Existing
Bundles

2

2

3 41 2
a

b

c

d
Used
Ports

Figure 7: FatClique Expansion example
5.2 FatClique Synthesis Algorithm
Generating candidate assignments. The FatClique synthesis
algorithm attempts to assign values to the design variables,
subject to constraints C1 to C6. The algorithm enumerates
all possible combinations of value assignments for these vari-
ables, and filters out each assignment that fails to satisfy all
the constraints. For each remaining assignment, it generates
the topology specified by the design variable, and determines
if the topology satisfies a required capacity Cap∗, which is an
input to the algorithm. Each assignment that fails the capacity
test is also filtered out, leaving a candidate set of assignments.
These steps are described in §A.6.

FatClique placement. For each assignment in this candi-
date set, the synthesis algorithm generates a topology place-
ment. Because FatClique’s design is regular, its topology
placement algorithm is conceptually simple. A sub-block
may span one or more racks, and these racks are placed adja-
cent to each other. All sub-blocks within a block are arranged
in a rectangular fashion on the datacenter floor. For example,
if a block has 25 racks, it is arranged in a 5×5 pattern of racks.
Blocks are then arranged in a similar grid-like fashion.

Selecting best candidate. For each placement, the synthe-
sizer computes the cabling cost of the resulting placement
(using [7]), and picks the candidate with the lowest cost. This
step is not shown in Algorithm 3. This approach implicitly
filters out candidates whose sub-block cannot be efficiently
packed into racks (§5.1).

5.3 FatClique Expansion
Re-wiring during expansion. Consider a small FatClique
topology, shown top left in Figure 7, that has 3 blocks and
Lbb = 5, i.e., five inter-block links. To expand it to a clique
with six blocks, we would need to rewire the topology to
have L′bb = 2 (top right in Figure 7). This means we need
to redistribute more than half (6 out of 10) of existing links

(red) at each block to new blocks without violating wiring
and capacity constraints.

The expansion process with patch panels is shown in the
bottom of Figure 7. Similar to the procedure for Clos de-
scribed in §4.1, all new blocks (shown in orange) are first
deployed and interconnected and links from the new blocks
are routed to reserved ports on patch panels associated with
existing blocks (shown in blue), before re-wiring begins.

For FatClique, rewiring one existing link requires releasing
one patch panel port so that a new link can be added. Since
links are already parts of existing bundles and routed through
cable trays, we can not rewire them directly, e.g., by rerouting
it from one patch panel to another. For example, link 1 (lower
half of Figure 7) is originally connected blocks 1 and 3 by
connecting ports a and b on the patch panel. Suppose we want
to remove that link, and add two links, one from block 1 to
block 5 (labeled 3), and another from block 3 to block 5 (la-
beled 4). The part of the original link (labeled 1) between the
two patch panels is already bundled, so we cannot physically
reroute it from block 3 to block 5. Instead, we effect re-wiring
by releasing port a, connecting link 3 to port a, connecting
link 1 to port c. Logically, this is equivalent to connecting
ports a and d and b and c on the patch panel shown in lower
half of Figure 7. This preserves bundling, while permitting
expansion.

If the original topology has Nb blocks, by comparing the
old and target topology, the total number of rewired links is
computed by Nb(Nb− 1)(Lbb−L′bb)/2. For this example,
the total number of links to be rewired is 9.
Iterative Expansion Plan Generation. By design, Fat-
Clique has fat edges, which allows draining more and more
links at each step of the expansion, as network capacity in-
creases. At each step, we drain links across all blocks uni-
formly, so that each block loses the same aggregate capacity.
However the relationship between overall network capacity,
and the number of links drained at every block in FatClique
is unclear, because traffic needs to be sent over non-shortest
paths to fully utilize the fabric.

Therefore, we use an iterative approach to expansion plan-
ning, where, at each step, we search for the maximal ratio of
links to be drained that still preserves expansion SLO. (§A.4
discusses the algorithm in more detail). Our evaluation §6
shows that the number of expansion steps computed by this
algorithm is much smaller than that for expanding symmetric
Clos.

5.4 Discussion
Achieving low complexity. By construction, FatClique
achieves low lifecycle management complexity (Table 3),
while ensuring full-bisection bandwidth. It ensures high edge
expansion, resulting in fewer switches. By packaging clique
connections into a sub-block, it exports fewer external ports,
an idea we call port hiding. By employing hierarchy and a
regular (non-random) structure, it permits bundling and re-

242 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

quires fewer patch panels. By ensuring fat edges at each level
of the hierarchy, it enables fewer re-wired links per patch
panel, and fewer expansion steps. We quantify these in §6.

Scalability. Since Xpander and Jellyfish do not incorporate
hierarchy, they can be scaled to arbitrarily large sizes. How-
ever, because Clos and FatClique are hierarchical, they can
only scale to a fixed size for a given chip radix. Table 5 shows
the maximum scale of each topology as a function of switch
radix k. FatClique scales to the same order of magnitude as a
5-layer Clos. As shown in §6, both of them can scale to 64
times bisection bandwidth of Jupiter.

FatClique and Dragonfly. FatClique is inspired by
Dragonfly [20] and they are both hierarchical topologies
that use cliques as building blocks, but differ in several
respects. First, for a given switch radix, FatClique can scale
to larger topologies than Dragonfly because it incorporates
one additional layer of hierarchy. Second, the Dragonfly
class of topologies is defined by many more degrees of
freedom than FatClique, so instantiating an instance of
Dragonfly can require an expensive search [33]. In contrast,
FatClique’s constraints enable more efficient search for
candidate topologies. Finally, since Dragonfly does not
explicitly incorporate constraints for expansion, a given
instance of Dragonfly may not end up with fat edges.

Routing and Load Balancing on FatClique. Unlike for
Clos, ECMP-based forwarding cannot be used achieve high
utilization in more recently proposed topologies [20, 35, 32,
19]. FatClique belongs to this latter class, for which a combi-
nation of ECMP and Valiant Load Balancing [37] has been
shown to achieve performance comparable to Clos [19].

6 Evaluating Lifecycle Complexity
In this section, we compare three classes of topologies, Clos,
expander graphs and FatClique by our complexity metrics.

6.1 Methodology
Topology scales. Because the lifecycle complexity of topol-
ogy classes can be a function of topology scale, we evaluate
complexity across three different topology sizes based on the
number of servers they support: small, medium, and large.
Small topologies support as many servers as a 3-layer clos
topology. Medium topologies support as many servers as
4-layer Clos. Large topologies support as many servers as
5-layer Clos topologies6. All our experiments in this section
are based on comparing topologies at the same scale.

At each scale, we generate one topology for each of Clos,
Xpander, Jellyfish, and FatClique. The characteristics of
these topologies are listed in Table 6. All these topologies use
32-port switching chips, the most common switch radix avail-
able today for all port capacities [5]. To compare topologies

6To achieve low wiring complexity, a full 5-layer Clos topology would
require patch panel racks with four times as many ports as available today, so
we restrict ourselves to the largest Clos that can be constructed with today’s
patch panel capacities

fairly, we need to equalize them first. Specifically, at a given
scale, each topology has approximately the same bisection
bandwidth, computed (following prior work [32, 35]) using
METIS [18]. All topologies at the same scale support roughly
the same number of servers; small, medium and large scale
topologies achieve, respectively, 1

4 , 4, and 16 times capacity
of Jupiter. (In A.8, we also compare these topologies using
two other metrics).

Table 6 also shows the scale of individual building blocks of
these topologies in terms of number of switches. For Clos, we
use the algorithm in §A.1 to design building blocks (chassis)
and then use them to compose Clos. One interesting aspect
of this table is that, at the 3 scales we consider, a FatClique’s
sub-block and block designs are identical, suggesting lower
manufacturing and assembly complexity. We plan to explore
this dimension in future work.

For each topology we compute the metrics listed in Table 3:
the number of switches, the number of bundle types, the
number of patch panels, the average number of re-wired links
at a patch panel during each expansion step, and the number
of expansion steps. To compute these, we need component
parameters, and placement and expansion algorithms for each
topology class.
Component Parameters. In keeping with [4, 40], we use
optical links for all inter-rack links. We use 96 port 1RU
patch panels [10] in our analysis. A 58RU [28] rack with
patch panels can aggregate 2 ∗ 96 ∗ 58 = 11,136 fibers. We
call this rack a patch-panel rack. Most datacenter settings,
such as rack dimensions, aisle dimensions, cable routing and
distance between cable trays follow practices in [26]. We list
all parameters used in our paper in §A.7.
Placement Algorithms. For Clos, following Facebook’s fb-
fabric [3], spine blocks are placed at the center of the data-
center, which might take multiple rows of racks, and pods are
placed at two sides of spine blocks. Each pod is organized
into a rectangular area with aggregation blocks placed in the
middle to reduce the cable length from ToR to aggregation.
FatClique’s placement algorithm is discussed in §5.2. For
Xpander, we use the placement algorithm proposed in [19].
We follow the practice that all switches in a metanode are
placed closed to each other. However, instead of placing a
metanode into a row of racks, we place a metanode into a
rectangular area of racks, which reduces cable lengths when
metanodes are large. For Jellyfish, we design a random search
algorithm to aggressively reduce the cable length (§A.2).
Expansion Algorithms. For Clos, as shown in [38], it is
fairly complex to compute the optimal number of rewired
links for asymmetric Clos during expansion. However, when
the original and target topologies are both symmetric, this
number is easy to compute. For this case, we design an opti-
mal algorithm (§A.5) which rewires the maximum number of
links at each step and therefore uses the smallest number of
steps to finish expansion. For FatClique, we use the algorithm
discussed in §5.3. For Xpander and Jellyfish, we design an

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 243

Topology Clos FatClique Xpander Jellyfish
Scale e a sp pod cap svr sub-block block cap svr metanode cap svr cap svr
Small 1 16 1 32 327T 8.2k 6 150 337T 8.1k 41 351T 8.2k 350T 8.2k

Medium 1 16 48 32 5.24P 131k 6 150 5.40P 132k 655 5.56P 131k 5.56P 131k
Large 1 512 48 768 20.96P 524k 6 150 21.36P 523k 2620 22.27P 524k 22.27P 524k

Table 6: Capacities of topologies built with 32 port 40G switches. Small, medium and large scale topologies achieve 1
4 , 4, 16 times capacity

of Jupiter. The table also shows sizes of individual building blocks of these topologies in terms of number of switches. Abbreviations:
e:edge, a:aggregation, sp:spine, cap:capacity, svr:server.

expansion algorithm based on the intuition from [35, 32] that,
to expand a topology by n ports requires breaking n

2 exist-
ing links. Finally, we have found that for all topologies, the
number of expansion steps at a given SLO is scale invariant:
it does not depend on the size of the original topology as
long as the expansion ratio (target-topology-size-to-original-
topology-size ratio) is fixed (§A.3).
Presenting results. In order to bring out the relative merits
of topologies, and trends of how cost and complexity increase
with scale, we present values for metrics we measure for all
topologies and scales in the same graph. In most cases, we
present the absolute values of these metrics; in some cases
though, because our three topologies span a large size range,
for some metrics the results across topologies are so far apart
that we are unable to do so without loss of information. In
these cases, we normalize our results by the most expensive,
or complex topology.

6.2 Patch Panel Placement
The placement of patch panels is determined both by the
structure of the topology and its scale.
Between edge and aggregation layers in Clos. For small
and medium scale Clos, no patch panels are needed between
edge and aggregation layers. Each pod at these scales contains
16 aggregation switches, which can be packed into a single
rack (we call this an aggregation-rack). Given that a pod
at this scale is small, all links from the edge can connect to
this rack. Since all links connect to one physical location,
bundles form naturally. In this case, each bundle from edge
racks contains 3×16 fibers7. Therefore, no patch panels are
needed between edge and aggregation layers.

However, a large Clos needs one layer of patch panels be-
tween edge and aggregation layers since a pod at this scale
is large. An aggregation block consists of 16 middle blocks8,
each with 32 switches. The aggregation block by itself oc-
cupies a single rack. Based on the logical connectivity, links
from any edge need to connect to all middle blocks. With-
out using patch panels, each bundle could at most contain
3×16/16 = 3 fibers. In our design, we use patch panels to
aggregate local bundles from edges first and then rebundle
them on patch panels to form new high capacity bundles from
patch panels to aggregation racks. Based on the patch panel

7In our setting, each rack with 58RU can accommodate at most 3 switches
and 48 associated servers. The total number of links out of this rack is 3∗16.

8We follow the terminology in [31]. A middle block is a sub-block in an
aggregation block.

rack capacity constraint, two patch panel racks are enough to
form high capacity bundles from edge to aggregation layers.
Specifically, in our design 128 edge switches and 8 aggrega-
tion racks connect to a single patch panel. In this design, each
edge-side bundle contains 48 fibers and each aggregation-side
bundle contains 128 fibers.
Between aggregation and spine layers. The topology be-
tween aggregation and spine layer in Clos is much larger
than that inside a pod. For this reason, to form high capacity
bundles, two layers of patch panels are needed. As shown in
Figure 1, one layer of patch panels is placed near spine blocks
at the center of the data center floor. Each patch panel rack
aggregates local bundles from four spine racks in medium and
large scale topologies. Similarly, another layer of patch pan-
els are placed near aggregation rack, permitting long bundles
between those patch panels.
In expanders and FatClique. For Jellyfish, Xpander and
FatClique, patch panels are deployed at the server block side
and long bundles form between those patch panels. In Fat-
Clique, each block requires one patch panel rack (§5.3). In
a large Xpander, since a metanode is too big (Table 6), it
is not possible to use one patch panel rack to aggregate all
links from a metanode. Therefore, we divide a metanode into
homogeneous sections, called sub-metanodes, such that links
from a sub-metanode can be aggregated at one patch panel
rack. For Jellyfish, we partition the topology into groups,
each of which contains the same number of switches as in a
block in FatClique, so each group needs one patch panel rack.

6.3 Deployment Complexity
In this section, we evaluate our different topologies by our
three measures of deployment complexity (§3.2).

C J X F0.0
0.2
0.4
0.6
0.8
1.0
1.2

1e3

(a) Small
C J X F0.0

0.5
1.0
1.5
2.0
2.5
3.0 1e4

(b) Medium
C J X F0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4

1e5

(c) Large
Figure 8: Number of switches. C is Clos, J is Jellyfish, X is
Xpander and F is FatClique.

Number of Switches. Figure 8 shows how the different
topologies compare in terms of number of switches used at
various topology scales. Figure 8(a) shows the total number of

244 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

switches for the small topologies, Figure 8(b) for the medium,
and Figure 8(c) for the large. The y-axes increase in scale
by about an order of magnitude from left to right. FatClique
has 20% fewer switches than Clos for a small topology, and
50% fewer for the large. The results for Jellyfish and Xpander
are similar, consistent with findings in [35, 32]. This bene-
fit comes from the edge expansion property of the non-Clos
topologies we consider. This implies that Clos topologies, at
large scale, may require nearly twice the capital expenditures
for switches, racks, and space as the other topologies.

C J X F0

1

2

3

4

5
1e2

(a) Small
C J X F0

1
2
3
4
5
6
7
8
1e3

(b) Medium
C J X F0.0

0.5
1.0
1.5
2.0
2.5
3.0

1e4

(c) Large
Figure 9: Number of patch panels. C is Clos, J is Jellyfish, X is
Xpander and F is FatClique.

Number of Patch panels. Figure 9 shows the number of
patch panels at different scales. As before, across these
graphs, the y-axis scale increases approximately by one order
of magnitude from left to right. At small and medium scales,
Clos relies on patch panels mainly for connections between
aggregation and spine blocks. Of all topologies at these scales,
Clos uses the fewest number of patch panels: FatClique uses
about 11% more patch panels, and Jellyfish and Xpander use
almost 44-50% more. Xpander and Jellyfish rely on patch pan-
els for all northbound links, and therefore in general, as scale
increases, the number of patch panels in these networks grows
(as seen by the increase in the y-axis scale from left to right).

At large scale, however, Clos needs many more patch pan-
els, comparable to Xpander and Jellyfish. At this scale, Clos
aggregation blocks span multiple racks, and patch panels are
also needed for connections between ToRs and aggregation
blocks. Here, FatClique’s careful packaging strategy becomes
more evident, as it needs nearly 25% fewer patch panels than
Clos. The majority of patch panels used in FatClique at all
scales comes from inter-block links (which increase with
scale).

For this metric, Clos and FatClique are comparable at small
and medium scales, but FatClique dominates at large scale.

Scale # Bundle Types
Clos FatClique Xpander Jellyfish

Small 8 11 11 28
Medium 74 61 976 1577

Large 322 212 3034 3678

Table 7: Bundle Types (Switch Radix = 32)

Number of Bundle Types. Table 7 shows the number of
bundle types used by different topologies at different scales.
A bundle type (§3.1) is characterized by (a) the number of

C J X F0
1
2
3
4
5
1e6

(a) Small
C J X F0.0

0.2
0.4
0.6
0.8
1.0
1.2

1e8

(b) Medium
C J X F0

1
2
3
4
5
6
7
8
9 1e8

(c) Large
Figure 10: Cabling cost. C is Clos, J is Jellyfish, X is Xpander
and F is FatClique.

fibers in the bundle, and (b) the length of the bundle. The
number of bundle types is a measure of wiring complexity. In
this table, if bundles differ by more than 1m in length, they
are designated as separate bundle types.

Table 7 shows that Clos and FatClique use the fewest num-
ber of bundle types; this is due to the hierarchical structure of
the topology, where links between different elements in the
hierarchy can be bundled. As the topology size increases, the
number of bundle types also increases in these topologies, by
a factor of about 40 for Clos to 20 for FatClique when going
from small to large topologies.

On the other hand, Xpander and Jellyfish use an order of
magnitude more bundle types compared to Clos and FatClique
at medium and large scales, but use a comparable number
for small scale topologies. Even at the small scale, Jellyfish
uses many more bundle types because it uses a random con-
nectivity pattern. At small scales Xpander metanodes use
a single patch panel rack and bundles from all metanodes
are uniform. With larger scales, Xpander metanodes become
too big to connect to a single patch panel rack. We have to
divide a metanode into several homogeneous sub-metanodes
such that all links from sub-metanodes connect to a patch
panel rack. However, because of the randomness in connec-
tivity, this subdivision cannot ensure uniformity of bundles
egressing sub-metanode patch panel racks, so we find that
Xpander has a large number of bundle types in medium and
large topologies.

Thus, by this metric, Clos and FatClique have the lowest
complexity across all three scales, while Xpander and Jelly-
fish have an order of magnitude more complexity. Moreover,
across all metrics FatClique has lowest deployment complex-
ity, especially at large scales.

Case Study: Quantifying cabling costs. While not all as-
pects of lifecycle management complexity can be translated
to actual dollar costs, it is possible to estimate one aspect,
namely the cost of cables. Cabling cost includes the cost of
transceivers and cables, and is reported to be the dominant
component of overall datacenter network cost [31, 20]. We
can estimate costs because our placement algorithms gener-
ate cable or bundle lengths, the topology packaging deter-
mines the number of transceivers, and estimates of cable and
transceiver costs as a function of cable length are publicly
available [7].

Figure 10 quantifies the cabling cost of all topologies,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 245

0.75 0.80 0.85 0.90 0.95
SLO

0

5

10

15

20

Ex
pa

ns
io

n
St

ep
s

Expansion Ratio = 2
Fatclique
Clos
Xpander
Jellyfish

Figure 11: Expansion steps
across different scales. Clos has higher cabling costs at small
and medium scales compared to expander graphs, although
the relative difference decreases at medium scale. At large
scales, the reverse is true. Clos is around 12% cheaper than
Xpander in terms of cabling cost since Xpander does not sup-
port port-hiding at all and uses more long inter-rack cables.
Thus, given that cabling cost is the dominant component of
overall cost, it is unclear whether the tradeoff Xpander and
Jellyfish makes in terms of number of switches and cabling
design pays off in terms of capital expenditure, especially at
large scale.

We find that FatClique has the lowest cabling cost of the
topologies we study with a cabling cost 23-36% less than
Clos. This result came as a surprise to us, because intu-
itively topologies that require all-to-all clique like connections
might use longer length cables (and therefore more expensive
transceivers). However on deeper examination, we found that
Clos uses a larger number of cables (especially inter-rack
cables) compared to other topologies since it has a relatively
higher number of switches (Figure 8) to achieve the same bi-
section bandwidth. Thus, more switches leads to more racks
and datacenter floor area, which stretches the cable length.
All those factors together explain why Clos cabling costs are
higher than FatClique’s.

Thus, from an equipment capital expenditure perspective,
at large scale a FatClique can be at least 23% cheaper than a
Clos, because it has at least 23% fewer switches, 33% fewer
patch panel racks, and 23% lower cabling costs than Clos.

6.4 Expansion Complexity
In this section, we evaluate topologies by our two measures of
expansion complexity (§4.3): number of expansion steps re-
quired, and number of rewired-links per patch panel rack per
step. Since the number of steps is scale-invariant (§6.1), we
only present the results from expanding medium size topolo-
gies for both metrics9. When evaluating Clos, we study the
expansion of symmetric Clos topologies; generic Clos expan-
sion is studied in [38]. As discussed in §6.1, for symmetric
Clos, we have developed an algorithm with optimal number
of rewiring steps.
Number of expansion steps. Figure 11 shows the number
of steps (y-axis) required to expand topologies to twice their
existing size (expansion ratio = 2) at different expansion
SLOs (x-axis). We find that at 75% SLO, all topologies
require the same number of expansion steps. But the number

9We have verified that the relative trend in the number of re-wired links
per patch panel holds for small and large topologies

0.75 0.8 0.85 0.9 0.95 0.9750
150
300
450
600
750
900

1050
1200
1350

Av
er

ag
e

#r
ew

ire
d

lin
ks

 a
t a

 si

ng
le

 p
at

ch
 p

an
el

 ra
ck

Expansion Ratio = 2
Fatclique
Clos

Xpander
Jellyfish

SLO
Figure 12: Average Number of Rewired Links at a Single Patch
Panel across Steps

of steps required to expand Clos with tighter SLOs steeply
increases. This is because the number of links that can be
rewired per aggregation block in Clos per step, is limited (due
to north-to-south capacity ratio §4.3) by the SLO. The tighter
the SLO, fewer the number of links rewired per aggregation
block per step, and larger the number of steps required to
complete expansion. FatClique, Xpander and Jellyfish require
fewer and comparable number of expansion steps due to their
fat edge property, allowing many more links to be rewired per
block per step. Their curves largely overlap (with FatClique
taking one more step as SLO increases beyond 95%) .
Number of rewired links per patch panel rack per step.
This metric is an indication of the time it takes to finish an
expansion step because, today, rewiring each patch panel
requires a human operator [38]. A datacenter operator can
reduce re-wiring time by employing staff to rewire each patch
panel rack in parallel, in which case, the number of links per
patch panel rack per step is a good indicator of the complexity
of an expansion step. Figure 12 shows the average of the
maximum rewired links per patch panel rack, per step (y-axis),
when expanding to twice the topology size size at different
SLOs (y-axis). Even though the north-to-south capacity ratio
restricts the number of links that can be rewired in Clos per
step, the number of rewired links per patch panel rack per
step in Clos remains consistently higher than other topologies,
until we hit 97.5% SLO. The reason is that the links that need
to be rewired in Clos are usually concentrated in few patch
panel racks by design. As such, it is harder to parallelize
rewiring in Clos, than it is in the other topologies. FatClique
has the lowest rewiring step complexity across all topologies.

6.5 FatClique Result Summary
We find that FatClique is the best at most scales by all our
complexity metrics. (The one exception is that at small and
medium scales, Clos has slightly fewer patch panels). It uses
50% fewer switches and 33% fewer patch panels than Clos
at large scale, and has a 23% lower cabling cost (an estimate
we are able to derive from published cable prices). Finally,
FatClique can permit fast expansion while degrading network
capacity by small amounts (2.5-10%): at these levels, Clos
can take 5 × longer to expand the topology, and each step of
Clos expansion can take longer than FatClique because the

246 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

number of links to be rewired at each step per patch panel can
be 30-50% higher.

7 Related Work
Topology Design. Previous topology designs have focused
on cost effective, high capacity and low diameter datacenter
topologies like [6, 35, 32, 4, 20]. Although they achieve good
performance and cost properties, the lifecycle management
complexity of these topologies have not been investigated
either in the original papers or in subsequent work that has
compared topologies [26, 27]. In contrast to these, we explore
topology designs that have low lifecycle complexity. Recent
work has explored datacenter topologies based on free space
optics [24, 11, 9, 16, 39] but because we lack operational
experience with them at scale, it is harder to design and
evaluate lifecycle complexity metrics for them.
Topology Expansion. Prior work has discussed several as-
pects of topology expansion [30, 32, 35, 8, 38]. Condor [30]
permits synthesis of Clos-based datacenter topologies with
declarative constraints some of which can be used to spec-
ify expansion properties. A more recent paper [38] attempts
to develop a target topology for expansion, given an exist-
ing Clos topology, that would require the least number of
link rewiring. REWIRE [8] finds target expansion topologies
with highest capacity and smallest latency without preserving
topological structure. Jellyfish [32] and Xpander [35] study
expansion properties of their topology, but do not consider
practical details in re-wiring. Unlike these, our work is ex-
amines lifecycle management as a whole, across different
topology classes, and develops new performance-equivalent
topologies with better lifecycle management properties.

8 Conclusions and Future Work
In this paper, we have attempted to characterize the com-
plexity of lifecycle management of datacenter topologies, an
unexplored but critically important area of research. Lifecycle
management consists of network deployment and expansion,
and we devise metrics that capture the complexity of each.
We use these to compare topology classes explored in the
research literature: Clos and expander graphs. We find that
each class has low complexity by some metrics, but high by
others. However, our evaluation suggests topological fea-
tures important for low lifecycle complexity: hierarchy, edge
expansion and fat edges. We design a family of topologies
called FatClique that incorporates these features, and this
class has low complexity by all our metrics at large scale.

As the management complexity of networks increases, the
importance of designing for manageability will increase in the
coming years. Our paper is only a first step in this direction;
several future directions remain.
Topology oversubscription. In our comparisons, we have
only considered topologies with an over-subscription ratio of
1:1. Jupiter [31] permits over-subscription at the edge of the
network, but there is anecdotal evidence that providers also

over-subscribe at higher levels in Clos topologies. To explore
the manageability of over-subscribed topologies it will be
necessary to design over-subscription techniques in FatClique,
Xpander and Jellyfish in a way in which all topologies can be
compared on a equal footing.
Topology heterogeneity. In practice, topologies have a long
lifetime over which they accrue heterogeneity: new blocks
with higher radix switches, patch panels with different port
counts etc. These complicate lifecycle management. To eval-
uate these, we need to develop data-driven models for how
heterogeneity accrues in topologies over time and adapt our
metrics for lifecycle complexity to accommodate heterogene-
ity.
Other management problems. Our paper focuses on topol-
ogy lifecycle management, and explicitly does not consider
other network management problems like fault isolation or
control plane complexity. Designs for manageability must
take these into account.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 247

References
[1] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.

Schreiber. Hyperx: Topology, routing, and packaging
of efficient large-scale networks. In Proc. SC9, 2009.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In Proc.
ACM SIGCOMM, 2008.

[3] A. Andreyev. Introducing data center fabric,
the next-generation Facebook data center net-
work. https://code.fb.com/production-engineering/
introducing-data-center-fabric-the-next-generation-
facebook-data-center-network/.

[4] M. Besta and T. Hoefler. Slim fly: A cost effective
low-diameter network topology. In Proc. SC14, 2014.

[5] Broadcom Inc. Broadcom Tomahawk Swiching
chips. https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56960-series.

[6] C. Clos. A study of non-blocking switching networks.
The Bell System Technical Journal, 32(2):406–424,
March 1953.

[7] Colfax International. Colfax direct. http://
www.colfaxdirect.com.

[8] Andrew R. Curtis, Tommy Carpenter, Mustafa Elsheikh,
Alejandro López-Ortiz, and Srinivasan Keshav. Rewire:
An optimization-based framework for unstructured data
center network design. In Proc. IEEE INFOCOMM,
2012.

[9] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Baz-
zaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vah-
dat. Helios: A hybrid electrical/optical switch architec-
ture for modular data centers. In Proc. ACM SIGCOMM,
2010.

[10] FS.COM. 96 Fibers 12x MTP/MPO-8 to LC/UPC Sin-
gle Mode 1U 40GB QSFP+ Breakout Patch Panel Flat.
https://www.fs.com/products/43552.html.

[11] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur,
J. Kulkarni, G. Ranade, P.-A. Blanche, H. Rastegarfar,
M. Glick, and D. Kilper. Projector: Agile reconfigurable
data center interconnect. In Proc. ACM SIGCOMM,
2016.

[12] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and
A. Vahdat. Evolve or die: High-availability design prin-
ciples drawn from googles network infrastructure. In
Proc. ACM SIGCOMM, 2016.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. Vl2: a scalable and flexible data center network.
In Proc. ACM SIGCOMM, 2009.

[14] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In Proc. ACM SIGCOMM, 2008.

[15] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
DCell: A Scalable and Fault-tolerant Network Structure
for Data Centers. In Proc. ACM SIGCOMM, 2008.

[16] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R.
Das, J. P. Longtin, H. Shah, and A. Tanwer. Firefly:
A reconfigurable wireless data center fabric using free-
space optics. In Proc. ACM SIGCOMM, 2014.

[17] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Ex-
pander graphs and their applications. Bull. Amer. Math.
Soc., 43(04):439–562, August 2006.

[18] G. Karypis and V. Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J.
Sci. Comput., 1998.

[19] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and
A. Singla. Beyond fat-trees without antennae, mirrors,
and disco-balls. In Proc. ACM SIGCOMM, 2017.

[20] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-
driven, highly-scalable dragonfly topology. In 2008
International Symposium on Computer Architecture,
2008.

[21] D. H. Lawrie. Access and alignment of data in an array
processor. IEEE Trans. Computers, C-24(12):1145–
1155, Dec 1975.

[22] V. Liu, D. Halperin, A. Krishnamurthy, and T. Ander-
son. F10: A fault-tolerant engineered network. In Proc.
USENIX NSDI, 2013.

[23] S. Mandal. Lessons learned from b4, google’s
sdn wan. https://www.usenix.org/sites/default/files/
conference/protected-files/atc15_slides_mandal.pdf.

[24] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich,
G. Papen, A. C. Snoeren, and G. Porter. Rotornet: A
scalable, low-complexity, optical datacenter network. In
Proc. ACM SIGCOMM, 2017.

[25] J. Mitchell. What are Patch Panels & When to Use
Them? https://www.lonestarracks.com/news/2016/10/
28/patch-panels/.

248 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series
http://www.colfaxdirect.com
http://www.colfaxdirect.com
https://www.fs.com/products/43552.html
https://www.usenix.org/sites/default/files/conference/protected-files/atc15_slides_mandal.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/atc15_slides_mandal.pdf
https://www.lonestarracks.com/news/2016/10/28/patch-panels/
https://www.lonestarracks.com/news/2016/10/28/patch-panels/

[26] J. Mudigonda, P. Yalagandula, and J. C. Mogul. Taming
the flying cable monster: A topology design and opti-
mization framework for data-center networks. In Proc.
USENIX ATC, 2011.

[27] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishna-
murthy, and I. Stoica. A cost comparison of datacenter
network architectures. In Proceedings of the 6th Inter-
national COnference, Co-NEXT ’10, 2010.

[28] RackSolutions. Open Frame Server Racks.
https://www.racksolutions.com/server-racks-cabinets-
enclosures.html.

[29] Rackspace US, INC. The Rackspace Cloud.
www.rackspacecloud.com.

[30] B. Schlinker, R. N. Mysore, S. Smith, J. C. Mogul,
A. Vahdat, M. Yu, E. Katz-Bassett, and M. Rubin. Con-
dor: Better topologies through declarative design. In
Proc. USENIX NSDI, 2015.

[31] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armis-
tead, R. Bannon, S. Boving, G. Desai, B. Felderman,
P. Germano, A. Kanagala, J. Provost, J. Simmons,
E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vah-
dat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In
Proc. ACM SIGCOMM, 2015.

[32] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jel-
lyfish: Networking data centers randomly. In Proc.
USENIX NSDI, 2012.

[33] M. Y. Teh, J. J. Wilke, K. Bergman, and S. Rumley.
Design space exploration of the dragonfly topology. In
ISC Workshops, 2017.

[34] The Siemon Company. Trunk Cable Planning & Installa-
tion Guide. https://www.siemon.com/us/white_papers/
07-09-24-trunk-cable-planning-installation.asp.

[35] A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira.
Xpander: Towards optimal-performance datacenters. In
Proc. ACM CoNEXT, 2016.

[36] M. R. Zargham. Computer Architecture: Single and
Parallel Systems. Prentice Hall, 1996.

[37] R. Zhang-Shen and N. McKeown. Designing a pre-
dictable internet backbone with valiant load-balancing.
In Proc. IEEE IWQoS, 2005.

[38] S. Zhao, R. Wang, J. Zhou, J. Ong, J. Mogul, and A. Vah-
dat. Minimal rewiring: Efficient live expansion for clos
data center networks. In Proc. USENIX NSDI, 2019.

[39] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat,
B. Y. Zhao, and H. Zheng. Mirror mirror on the ceiling:
Flexible wireless links for data centers. In Proc. ACM
SIGCOMM, 2012.

[40] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Kr-
ishnamurthy, and T. Anderson. Understanding and mit-
igating packet corruption in data center networks. In
Proc. ACM SIGCOMM, 2017.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 249

https://www.racksolutions.com/server-racks-cabinets-enclosures.html
https://www.racksolutions.com/server-racks-cabinets-enclosures.html
www.rackspacecloud.com
https://www.siemon.com/us/white_papers/07-09-24-trunk-cable-planning-installation.asp
https://www.siemon.com/us/white_papers/07-09-24-trunk-cable-planning-installation.asp

A Appendix
A.1 Clos Generation Algorithm
For Clos topologies, the canonical recursive algorithm in [36]
can only generate non-modular topologies as shown in Fig-
ure 13. In practice, as shown in Jupiter [31], the topology is
composed of heterogenous building blocks (chassis), which
are packed into a single rack and therefore enforce port hiding
(the idea that as few ports from a rack are exposed outside
the rack). Although Jupiter is modular and supports port
hiding, it is single instance of a Clos-like topology with a
specific set of parameters. We seek an algorithm that can take
any valid set of Clos parameters and produce chassis-based
topologies automatically. Besides, it would be desirable for
this algorithm to generate all possible feasible topologies sat-
isfying the parameters, so we can select the one that is most
compactly packed.

Our logical Clos generation algorithm achieves these goals.
Specifically, the algorithm uses the following steps:

1. Compute the total number of layers of homogeneous
switching chips needed. Namely, given N servers and
radix k switches, we use n= log k

2
(N

2) to compute the
number of layers of chips n needed.

2. Determine the total number of layers of chips for edge,
aggregation and core layers, which are represented by e,
a and s respectively, such that e+a+s= n.

3. Identify blocks for edge, aggregation and core layer.
Clos networks rely on every edge being able to reach
every spine through exactly one path, by fanning out via
as many different aggregation blocks as possible (and
vice versa). We find that the resulting interconnection
is a derivative of the classical perfect shuffle Omega
network ([21], e.g., aggregation blocks in Figure 14 and
Figure 15). Therefore, we use Omega networks to build
both the edge and aggregation blocks, and to define the
connections between edge-aggregation and aggregation-
spines. The spine block on the other hand needs to be
rearrangeably-nonblocking, so it can relay flows from
any edge to any other edge with full capacity. Therefore
it is built as a smaller Clos topology [6] (e.g., spine
blocks in Figure 14).

4. Compose the whole network using edge, aggregation
and core blocks. The process to compose the whole
topology is to link all these blocks and uses the same
procedure as Jupiter[31].

We have verified that topologies generated by our construc-
tion algorithm, such as the ones in Figure 14 and Figure 15,
are isomorphic to a topology generated using the canonical
algorithm in Figure 13. By changing different combinations
of e, a and s, we can obtain multiple candidate topologies, as
shown in Figure 14 and Figure 15.

A.2 Jellyfish Placement Algorithm
For Jellyfish, we use a heuristic random search algorithm to
place switches and servers. The algorithm works as follows.
At each stage of the algorithm, a node can be in one of two
states: placed, or un-placed. A placed node is one which
has been positioned in a rack. Each step of the algorithm
randomly selects an un-placed node. If the selected node
has logical neighbor nodes that have already been placed,
we place this node at the centroid of the area formed by its
placed logical neighbors. If no placed neighbor exists, the
algorithm randomly selects a rack to place the node. We have
also tried other heuristics like neighbor-first, which tries to
place a switch’s logical neighbors as close as possible around
it. However, this performs worse than our algorithm.

A.3 Scale-invariance of Expansion

Scale-invariance of Expandability for Symmetric Clos.
For a symmetric Clos network, the number of expansion steps
is scale-invariant and independent of the degree to which the
original topology is partially deployed. Consider a simplified
Clos where the original topology has g aggregation blocks.
Each aggregation block has p ports for spine-aggregation
links, each of which has the unit capacity. Assume the worst-
case traffic in which all sources are located in the left half of
aggregation blocks and all destinations are in the right half.
This network contains g ·p/2 crossing links between left and
right halves. If, during expansion, the network is expected to
support a demand of d units capacity per aggregation block,
the total demand traversing the cut between the left and right
halves in one direction is d ·g/2. Then, the maximum num-
ber of links that can be redistributed in an expansion step
is k = g · p/2− d · g/2 = g(p− d)/2, which is linear in the
number of aggregation blocks (network size). This linearity
between k and g implies scale-invariant expandability, e.g.,
when an aggregation block is doubled to 2g, the maximum
number of redistributed links per expansion step becomes 2k.
Scale-invariance of Expandability for Jellyfish, Xpander,
and FatClique. A random graph consists of s nodes, which is
a first-order approximation for Jellyfish’s switch, Xpander’s
metanode and FatClique’s block. Each node has p inter-
node ports, so there are s · p/2 inter-node links. We can
treat the network as a bipartite graph. We assume the worst-
case traffic matrix, where all traffic is sent through one part
of the bipartite graph to the other. Suppose an expansion
SLO requires each source-destination node pair to support
d unit demand. Then the total demands from all sources are
d · s/2. The probability of a link being a cross link is 1/2,
and the expected number of cross links is s ·p/4. These cross
links are expected to be the bottleneck between the source-
destinations pairs. Therefore, in the first expansion step, we
can redistribute at most k = s ·p/4−d ·s/2 = s(p/4−d/2)
links, and the maximum number of redistributed links is linear
in the number of nodes (network size), e.g., if the number of

250 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

N=32 Clos N=16 ClosN=8 Clos

N=64 Clos

Figure 13: Recursive Construction

...

Spine:
2 layer Clos

...

Aggregation:
2 layer Omega
(blocking)

Edge:
1 switch

16

16

N=64 Clospod pod

Figure 14: Block-Based Construction 1

...

...

Spine:
1 switch

Aggregation:
3 layer Omega
(blocking)

Edge:
1 switch

32

8

N=64 Clos
pod pod

Figure 15: Block-Based Construction 2

nodes is doubled to 2s, we can redistribute 2k links in the
first step. It is easy to see that, after each expansion step, the
number of links added to the bottleneck is also linear with the
number of nodes, so the expandability is scale-invariant.

A.4 FatClique Expansion Algorithm
Algorithm 1 shows the expansion algorithm for FatClique.
The input to the algorithm includes original and target topolo-
gies T o and Tn, the link break ratio during an expansion step
α, multipliers β < 1 and γ > 1, which are used to adjust α
based on network capacity. α specifies the fraction of existing
links that must be broken for re-wiring. The output of the
algorithm is the expansion plan Plan.

Our expansion algorithm is an iterative trial-and-error ap-
proach (Line 4). Each iteration tries to find the right amount
of links to break while satisfying the aggregate capacity con-
straint (Line 11) and the edge capacity constraint (Line 6),
which guarantees that the north-to-south capacity ratio is al-
ways not smaller than 1 during any expansion step. If all
constraints are satisfied, we accept this plan and tentatively
increase the link break ratio α (Line 16, by multiplying by γ)
due to capacity increase. Otherwise, the link break ratio α
(Line 12) is decreased (by multiplying by β conservatively.)

input : T o, Tn, SLO
output: Plan

1 Initialize α ∈ (0,∞),β ∈ (0,1),γ ∈ (1,∞)
2 Find the total set of links to break, L, based on T o and Tn

3 Compute original capacity c0
4 while |L|> 0 do
5 Select a subset of links Lb, from L uniformly across all

blocks, where |Lb|= α|L|.
6 if Lb does not satisfy edge capacity constraint then
7 α= α ·β
8 end
9 Delete Lb from T o

10 c = ComputeCapacity(T o)
11 if c < c0 ·SLO then
12 α= α ·β
13 add Lb back to T o

14 else
15 T o = AddNewLinks(Lb, T o, Tn)
16 α= α ·γ
17 Plan.add(Lb)
18 end
19 end

Algorithm 1: FatClique Expansion Plan Generation

A.5 Expansion for Clos
Since the motivation of this work is to compare topologies,
we only focus on developping optimal expansion solutions
for symmetrical Clos. More general algorithms for Clos’
expansion can be found in [38]. Also, similar to [38], we
assume the worst case traffic matrices for Clos, i.e., servers
under a pod will send traffic using full capacity to servers in
other pods.
Target Topology Generation. As mentioned in §4.1, a pod
is the unit of expansion in Clos. When we add new pods and
associated spines to a Clos topology for expansion, the wiring
pattern inside a pod remains unchanged. To make the target
topology non-blocking and to ease expansion (i.e., number
of to-be-redistributed links on each pod is the same), links
from a pod should be distributed across all spines as evenly
as possible.
Expansion plan generation. Once a target Clos topology is
generated, the next step is to redistribute links to convert the
original topology into the target topology. By comparing the
original and target topology, it is easy to figure out which new
links should be routed to which patch panels to satisfy the
wiring constraint. In this section, we mainly focus on how to
drain links such that the capacity constraint is satisfied and
the number of expansion steps is minimized.

Insight 1: Maximum rewired links at each pod is bounded.
At each expansion step, when links are drained, network ca-
pacity drops. At the same time, as expansion proceeds, new
devices are added incrementally, the overall network capacity
increases gradually during the whole expansion process. In
general, during expansion, the incrementally added capac-
ity should be leveraged to speed up the expansion process.
Due to the thin edges in Clos, no matter what the overall
network capacity is, the maximum number links to be drained
at each pod is bounded by the number of links on each pod
multiplied by (1−SLO). Figure 16 shows an example. The
leftmost figure is a folded Clos, where each pod has 16 links
(4 trunks). If the SLO is 75%, the maximum number of links
to be drained at a single step is 16× (1−0.75) = 4. For our
expansion plan generation algorithm, we try to achieve this
bound at each pod at every single step.

Insight 2: Drain links at spines uniformly across edges
(pods). Given the number of links allowed to be drained
at each pod, we need to carefully select which links are
to be drained. Figure 16 shows two draining plans. Drain
plan 1 will drain links from two spines uniformly across all
pods. The residual capacity is 48, satisfying the requirement

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 251

Original Topology:
Original Capacity = 64
Target SLO = 75%

Drain Plan 1: Drain links
from two spines uniformly
across pods.
SLO=48/64 = 75%

Drain Plan 2: Drain links
from all spines randomly
across all pods.
SLO=40/64 = 62.5%

421Trunk Capacity

Spine

Pod

Pod

Drained Devices 3

Figure 16: Original topology is a Folded Clos with capacity=64.
The required SLO during expansion is 75%, which means capac-
ity should be no smaller than 48. There are 16 links on each pod.
Due to the SLO constraint, for all plans, 4 links are allowed to be
drained at each pod.

Before

After

1
2 3

4
0.5

1.0
0.75

1.0
0.75
0.5

1-s1

3-s1

3-s2
2-s2

4-s1

Original

1-s1 2-s2 4-s2

Redistribution Plan 1New Added

C
ap

ac
ity

s1 s2

Redistribution Plan 2

Spine

Pod
Spine

Pod

Figure 17: Clos Draining Link Redistribution Scheduling.
SLO=75%. By uniformly, we mean the number of drained
links between the spine and all pods are the same. Drain plan
2 also drains 4 links from each pods but not uniformly (for
example, more links are drained at the third spine compared
to the fourth spine), which violates the SLO requirement since
the residual capacity is only 40, smaller than the 48 in Drain
plan 1.

Insight 3: Create physical loops by selecting the right
target spines. Ideally, drained links with the same index on a
pod on the same original spine should be redistributed to the
same spine because the traffic sent from the pod to the target
spine has a return path to the pod. Otherwise, the traffic will
be dropped. Figure 17 illustrates this insight. The right side of
the figure shows the performance of two redistribution plans.
The y axis shows the normalized capacity of the network at
each expansion step. In the first plan, link 1 is first moved to
spine s1 (1-s1),followed by link 3 to the same spine s1 (3-s1)
which results in 75% capacity loss, since the two pods are
connected by three paths instead of four. Once links 1 and 3
are undrained, s1 connects the two pods by a fourth path, and
the normalized capacity is restored to 1. This redistribution
step now provides leeway for supporting 25% capacity loss
in the next step. In this next step, links 2 and 4 are rewired
to connect to s2. During the rewiring, capacity again drops
to 75%, with three paths between the pods. On undraining
links 2 and 4, the capacity is once again restored to 1. In
contrast, redistribution plan 2 violates SLO because it does
not focus on restoring capacity by establishing paths via the
new spine, as suggested by the insight (links 1 and 3 are
moved to different spines).

Inspired by these insights, we designed Algorithm 2, which
can achieve all our insights simultaneously when both original
and target topologies are symmetric. The algorithm is optimal
since at every expansion step, it achieves the upper bound of
the links that could be drained. Therefore, our algorithm uses
smallest steps to expand Clos.

The input to the algorithm is the original and new symmet-
ric topology T o and Tn. We use T o

sp and Tn
sp to represent

the number of links between spine s and pod p in the old and
new topology respectively. Initially, T o

s′p = 0, where s′ is a
new spine. The output of the algorithm is the draining plan,
Subplani, for expansion step i. The final expansion plan
Plan= {Subplani} and the number of Subplan, |Plan|, is
the total expansion step.

The algorithm starts by indexing old spines, new spines and
links on each pod from left to right respectively (Line 1-2),
which are critical for the correctness of the algorithm since the
algorithm relies on these indexes to break ties when selecting
spines and links to redistribute. Then, based on our Insight 1,
Line 3 computes the upper bound on the number of links to be
redistributed on each pod, np. We show experimentally that
our algorithm can always achieve this upper bound in each
individual step as long as T o and Tn are symmetric. Next,
the algorithm iterates over all indexed old spines (Line 4) and
tries to drain np links uniformly across all pods (Line 5) such
that Insight 2 is satisfied. Line 6 compares the number of
remaining to-be-redistributed links δsp and np and is useful
only at the last expansion step. For each pod, the algorithm
needs to find spines to redistribute links to (Line 7-14) while
satisfying the constraint in Insight 3, i.e., drained links with
the same index on a pod on the same original spine are redis-
tributed to the same spine. Due to indexing and symmetric
structure of Clos, our algorithm can always satisfy Insight
3. Specifically, when selecting spines, the spine satisfying
δs′p = Tn

s′p−T
o
s′p > 0 with the smallest index will be consid-

ered first (Line 8-Line 10). When selecting links from pod to
redistribute, we always select the first na links to redistribute
(Line 14).

Theorem 1 Algorithm 2 produces the optimal expansion
plan for Clos topology.

The proof is simple. Since at every expansion step, our al-
gorithm achieves the upper bound of the links that could
be drained, our algorithm uses smallest steps to finish the
expansion.

A.6 FatClique Topology Synthesis Algorithm
The topology synthesis algorithm for FatClique is shown in
Algorithm 3. Essentially, the algorithm is a search algorithm,
and leverages the constraints C1 to C6 in §5.1 to prune the
search space. It works as follows. The outermost loop (Line 2)
enumerates the number of racks used for a sub-block. Based
on the rack space constraints, sub-block size Sc is determined
Line 4. Next, the algorithm iterates over the number of sub-
blocks in a block Sb Line 5, whose size is constrained by
MaxBlockSize. Inside this loop, we leverage constraints
C1 to C6 and derivations in §5.1 to find the feasible set of
pc, which is represented by Pc (Line 6). Then we construct
FatClique based all design variables Line 8 and compute its
capacity Line 9. If the capacity matches the target capacity,

252 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

input : T o, Tn, SLO
output: Subplan

1 Index original and new spines from left to right starting from 1
respectively

2 Index links at each pod from left to right starting from 1
3 ∀ pod p, np = num_links_per_pod · (1-SLO)

// Insight 1
4 foreach Original Spine s do
5 foreach pod p do // Insight 2
6 δsp = T o

sp−Tn
sp, np = min(np, δsp)

// Insight 2
7 while np > 0 do
8 foreach New Spine s′ do // Insight 3
9 δs′p = Tn

s′p−T
o
s′p

10 if δs′p > 0 then break
11

12 end
13 na =min(δs′p,np)
14 Find the first na to-be-distributed links, Lsp

15 np = np−na, update(T o)
16 Subplan.add(Lsp)
17 end
18 end
19 end

Algorithm 2: Single Step Clos Expansion Plan Genera-
tion

we add this topology into candidate set (Line 15). If the
capacity is larger than required, the algorithm will increase
s by 1 which will decrease the number of switches used n=
N/s (N is fixed) and therefore reduce the network capacity
in next search step (Line 13). If the capacity is smaller than
required, the algorithm will decrease s by 1 (Line 11) to
increase the number of switches and capacity in next search
step.

A.7 Parameter Setting
The cable price with transceivers used in our evaluation is
listed in Table 9. We found that a simple linear model does
not fit the data. The data is better approximated by a piece-
wise linear function: cables shorter than 100 meters are fit
using one linear model and cables beyond 100 meters are
fit using another linear model. The latter has a larger slope
because beyond 100 meters, more advanced and expensive
transceivers are necessary. In our experiment, since we only
know the discrete price for cables and associated transceivers,
we do the following: if the length of the cable is X, we use
the exact price; if the length if larger than X, we use the first
cable price larger than X.

input : N ,r,Cap∗,s0
output: candidate

1 candidate= []
2 for i= 1; i <MaxRackPerSubblock; i++ do
3 s= s0
4 Sc = i ·RackCapacity/(1+s)
5 for Sb = 1;Sb <=MaxBlockSize;Sb ++ do
6 Pc = CheckConstraints(Sc, Sb)
7 foreach pc in Pc do
8 T = ConstructTopology(Sc, Sb, s, pc)
9 Cap = ComputeCapacity(T)

10 if Cap < Cap∗ then
11 s= s−1
12 else if Cap > Cap∗ then
13 s= s+1
14 else
15 candidate.append(T)
16 end
17 end
18 end
19 end
Algorithm 3: FatClique Topology Synthesis Algorithm

Rack width 24 inches
Rack depth 28.875 inches
Rack height 108 inches
Tray-to-rack distance 24 inches
Dist. Betw. cross-trays 48 inches
Aisle Width 48 inches
Rack units per rack 58 RU [29]
#Ports per patch panel 48 [10]
Patch panel space 1 RU
Cable tray size 24 inches x 4 inches [34]

Table 8: Datacenter settings mostly [26]
Length 3 5 10 15 20 30
Price 303 310 318 334 350 399

Length 50 100 200 300 400
Price 489 753 1429 2095 2700

Table 9: 40G QSFP Mellanox cable length in meter (Length) and
price with transceivers (Price) [7]

A.8 Other Metrics
In our evaluations, we have tried to topologies with qualita-
tively similar properties 6. In this section, we quantify other
properties of these topologies.
Edge Expansion and Spectral Gap. Since computing edge
expansion is computationally hard, we follow the method
in [35] using spectral gap [17] to approximate edge expan-
sion. A larger spectral gap implies larger edge expansion. To
fairly compare topologies, we equalize their bisection band-
width first. As shown before, to achieve the same bisection

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 253

1k 2k 3k 4k0

5

10

15

Sp
ec

tra
l G

ap

Jellyfish
Xpander

FatClique

Topology Scales (#nodes)

Figure 18: Spectral Gap

100
200
300
400
500

Small-scale
Clos
Jellyfish

Xpander
FatClique

4 50
5

10
15

Nu
m

be
r o

f P
at

hs

Path Length

Figure 19: Path Diversity for Small-scale
Topologies

1000
3000
5000
7000
9000

Medium-scale
Clos
Jellyfish
Xpander
FatClique

6 70
100
200
300
400

Nu
m

be
r o

f P
at

hs

Path Length

Figure 20: Path Diversity for Medium-
scale Topologies

bandwidth, Clos uses many more switches. Also, Clos is
not a d-regular graph and do not know of a way to compute
the spectral graph for Clos-like topologies. Therefore, we
compare the spectral gap only for d-regular graphs, Jellyfish,
Xpander and FatClique at different scales (1k-4k nodes). The
spectral gap is defined as follows [17]. Let G with node
degree d and A(G) denote the d-regular topology and its ad-
jacent matrix. The matrix A(G) has n real eigenvalues which
we denote by λ1 ≥ λ2 ≥ ·· · ≥ λn. Spectral gap SG= d−λ2.
In our experiments, chip radix is 32 and each node in those
topologies connects to 8 servers, d= 24. The result is shown
in Figure 18. First, we observe that spectral gap stays roughly
the same under different scales. Also, the spectral gap of Fat-
Clique is slightly lower than that of other topologies, which
implies that FatClique has slightly smaller edge expansion
compared to Jellyfish and Xpander. This is to be expected,
since FatClique adds some hierarchical structure to cliques.
Path Diversity. We compute the path diversity for different
topologies. For Clos, we only calculate the number of shortest
paths between two ToR switches from different pods. For
other topologies, we compute the number of paths which are
no longer than the shortest paths in the same-scale Clos. For
example, for small-scale Clos, the shortest path length is 5.
We will only calculate paths whose length is no larger than 5
in other topologies. This is a rough metric for path diversity.
The results are shown in Figure 19 and Figure 20. We found
that Jellyfish, Xpander and FatClique have the same level of
path diversity, which is higher than that of Clos. Also, those
topologies have shorter paths than Clos.

254 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Shoal: A Network Architecture for Disaggregated Racks

Vishal Shrivastav
Cornell University

Asaf Valadarsky
Hebrew University

of Jerusalem

Hitesh Ballani
Microsoft Research

Paolo Costa
Microsoft Research

Ki Suh Lee
Waltz Networks

Han Wang
Barefoot Networks

Rachit Agarwal
Cornell University

Hakim Weatherspoon
Cornell University

Abstract
Disaggregated racks comprise dense pools of compute,
memory and storage blades, all interconnected through an in-
ternal network. However, their density poses a unique chal-
lenge for the rack’s network: it needs to connect an order
of magnitude more resource nodes than today’s racks with-
out exceeding the rack’s fixed power budget and without
compromising on performance. We present Shoal, a power-
efficient yet performant intra-rack network fabric built using
fast circuit switches. Such switches consume less power as
they have no buffers and no packet inspection mechanism,
yet can be reconfigured in nanoseconds. Rack nodes transmit
according to a static schedule such that there is no in-network
contention without requiring a centralized controller. Shoal’s
congestion control leverages the physical fabric to achieve
fairness and both bounded worst-case network throughput
and queuing. We use an FPGA-based prototype, testbed ex-
periments, and simulations to illustrate Shoal’s mechanisms
are practical, and can simultaneously achieve high density
and high performance: 71% lower power and comparable or
higher performance than today’s network designs.

1 Introduction
Traditional datacenter use a server-centric architecture in
which a number of racks, each comprising tens of servers
connected via a top-of-the-rack (ToR) switch, are inter-
connected by the datacenter network. However, the end
of Dennard’s scaling [18] and the slowdown of Moore’s
Law [14] are challenging the long-term sustainability of
this architecture [19]. Consequently, a new paradigm has
emerged: rack-scale architecture, where a server is replaced
by a rack as the unit of computation, with each rack host-
ing a number of System-on-Chip (SoC) [15, 35, 65] mi-
croservers, each comprising multi-core CPUs integrated with
some local memory, combined with separate pools of non-
volatile memory, storage and custom compute (e.g., Google
TPUs [82], GPGPUs [74, 78] and FPGAs [43]) blades,
all interconnected through an internal network. This en-
ables resource disaggregation as compute units are decou-
pled from memory and storage units. The benefits disag-
gregation are well understood in the computer architecture

community [5, 41]: it enables fine-grained resource pool-
ing and provisioning, lower power consumption and higher
density than traditional server-centric architectures, thus en-
abling each rack to host hundreds of resource “nodes” (com-
pute/memory/storage blades). Several examples of rack-
scale architecture have been proposed both in industry (In-
tel [72], Facebook [65, 74], Microsoft [43], SeaMicro [79],
HPE [28], Google [82]) and academia [5, 6, 15, 27, 35, 41].

Increasing rack density, however, poses new challenges
for the rack’s network. Traditional ToR switches can sup-
port only around a hundred ports at high speed. Therefore,
interconnecting several hundreds or even a thousand nodes
requires either a high-port count chassis switch or a num-
ber of low-port count switches arranged in a hierarchical
topology, e.g., a folded Clos [1]. Such a design, when cou-
pled with state-of-the-art protocols [2,4,20,25], can provide
high throughput and low latency that could potentially meet
the requirements of disaggregated workloads [19]. Unfor-
tunately, such packet-switched designs are significantly less
power and cost efficient as compared to today’s intra-rack
networks (§2). Power is a particular concern as the rack’s to-
tal power has a hard limit due to cooling [35,60], so network
inefficiency ultimately limits the density of other resources.

The limitations of packet-switched networks have already
prompted network designs that leverage circuit switches in
datacenters [11,23,24,38,42,53]. Such switches can be opti-
cal or electrical, and the fact that they operate at the physical
layer with no buffers, no arbitration and no packet inspection
mechanisms means they can be cheaper and more power ef-
ficient than an equivalent packet switch (§5). Adopting these
designs for intra-rack connectivity would thus alleviate the
power concern. However, achieving low latency would still
be challenging as traditional circuit switches have reconfig-
uration delays of the order of few microseconds to even mil-
liseconds. Such a solution, thus, would either compromise
on performance or still have to rely on a separate packet-
switched network to handle latency-sensitive traffic. In sum-
mary, adapting existing network solutions to high-density
racks would either compromise on power (packet-switched)
or on performance (purely circuit-switched).

In this paper, we show that it is possible to design a rack-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 255

scale network that operates comfortably within the rack’s
power budget while achieving performance comparable to
packet-switched networks. Our work is motivated by fast
circuit switches that can be reconfigured in a few to tens
of nanoseconds while still being power-efficient. These
are available commercially [76] as well as research proto-
types [10, 16, 17, 30, 35, 36, 48, 52]. Unfortunately, it is not
sufficient to simply take existing circuit-switch-based archi-
tectures and upgrade their switches as these architectures
were designed under the assumption of slow reconfiguration
times. In particular, these solutions rely either on a central-
ized controller to reconfigure the switches [11,23,24,35,42,
53], which would be infeasible at a nanosecond scale, or
on a scheduler-less design with a large congestion control
loop [38], which prevents taking advantage of fast reconfig-
uration speeds.

We present Shoal, a power-efficient yet performant net-
work fabric for disaggregated racks built using fast circuit
switches. Shoal reconfigures the fabric using a static sched-
ule that connects each pair of rack node at an equal rate. This
avoids the need for a centralized scheduler that can operate
at a sub-microsecond granularity. To accommodate dynamic
traffic patterns atop a static schedule, traffic from each node
is uniformly distributed across all rack nodes which then for-
ward it to the destination; a form of detour routing. Such
coordination-free scheduling, first proposed by Chang et
al. [9] as an extension of Valiant’s method [50], obviates the
complexity and latency associated with centralized sched-
ulers while guaranteeing the worst-case network throughput
across any traffic pattern [9]. Such scheduling, however,
requires that all nodes are connected through what looks
like a single non-blocking switch. To achieve this, Shoal’s
fabric uses many low port-count circuit switches connected
in a Clos topology. When reconfigured synchronously, the
switches operate like a single circuit switch. Further, we de-
compose the static, equal-rate schedule for the fabric into
static schedules for the constituent switches.

Overall, this paper makes the following contributions:
• We present a network architecture for disaggregated racks

that couples fast circuit switches with the servers’ network
stack to achieve low and predictable latency at low cost
and power.

• We designed a fabric that uses low port-count circuit
switches to offer the abstraction of a rack-wide circuit
switch. We also scaled the coordination-free scheduling
technique to operate across the fabric.

• We devised an efficient congestion control mechanism to
run atop Shoal’s fabric. This is particularly challenging to
achieve due to high multi-pathing—traffic between a pair
of nodes is routed through all rack nodes. Shoal lever-
ages the observation that the static schedule creates a peri-
odic connection between any pair of rack nodes to imple-
ment an efficient backpressure-based congestion control,

amenable to hardware implementation.

• We implemented Shoal’s NIC and circuit switch on an
FPGA; our prototype achieves small reconfiguration delay
(6.4 ns) for the circuit switches and is a faithful implemen-
tation of our entire design including the scheduling and the
congestion control mechanisms.

• We incorporated the NIC and the switch prototype into
an end-to-end small-scale rack testbed that comprises six
FPGA-based circuit switches in a leaf-spine topology con-
necting eight FPGA-based NICs at end hosts.

Experiments on this small-scale testbed shows that Shoal
offers high bandwidth and low latency; yet our analysis in-
dicates that its power can be 71% lower than an equiva-
lent packet-switched network. Using a cross-validated sim-
ulator, we show that Shoal’s properties hold at scale too.
Across datacenter-like workloads, Shoal achieves compara-
ble or higher performance than a packet-switched network
using state-of-the-art protocols [2,25,54], with improved tail
latency (up to 2× lower as compared to NDP [25]). Fur-
ther, through simulations based on real traces [19], we also
demonstrate that Shoal can cater to the demands of emerging
disaggregated workloads.

2 Motivation
We first consider how conventional datacenter networks
could be adapted for disaggregated racks and the shortcom-
ings of such an approach.
Strawman 1. Chassis switches with hundreds of ports, of-
ten used at higher levels of a datacenter’s network hierarchy,
could connect all rack nodes but at significant cost, power,
and space. For example, the Cisco Nexus 7700 switch can
support 768 ports at 10 Gbps (only 192 at 100 Gbps). Yet,
it consumes 4 KW power and occupies 26 RU [61], which
is 26% and 54% of the rack’s power and space budget re-
spectively. A rack’s total power has a hard limit of around
15 KW due to constraints on power supply density, rack
cooling and heat dissipation [35, 60, 66]. We also consid-
ered a custom solution involving commodity switches ar-
ranged in a Clos topology, which would still consume around
8.72 KW to connect 512 nodes (§ 5). The key reason for this
is that packet switching necessitates buffers and arbitration
inside each switch and serialization-deserialization at each
switch port, which are major contributors (up to 70%) to the
switch’s chip area and package complexity [34, 62], and in
turn, its power.
Strawman 2. Motivated by the observation that enabling
high-density racks requires a step change in the power-
efficiency of the network, practitioners have attempted to
integrate several very low-port (typically four or six ports)
packet switches in the system-on-chip (SoC) of the mi-
croserver. Thus, instead of building a ToR-based network,
the microservers can be connected to each other using direct-
connect topologies prevalent in HPC and super-computing

256 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

systems, e.g., a 3D torus [41, 68, 79]. This design signifi-
cantly reduces the overall network power consumption as the
additional logic per SoC is small. However, a key drawback
of direct-connect networks is that they have a static topology
which cannot be reconfigured based on current traffic pat-
tern. Hence their performance is workload dependent—for
dynamically changing workloads such as datacenter work-
loads, it results in routing traffic across several rack nodes,
which hurts network throughput and latency (§7.3) and com-
plicates routing and congestion control [15].
Circuit switching. These strawmans lead to the question
whether packet-switched networks are well-suited to support
high-density racks. On the upside, packet-switched networks
offer excellent performance and allow the network core to be
loosely coupled with the servers’ network stack. In datacen-
ters and WANs, this has been a good trade-off—the increased
power of switches is not a key concern yet loose coupling has
allowed the core network technologies to evolve independent
of the servers’ network stack. This also allows the network
to be asynchronous, which helps scaling. These benefits,
however, do not hold up inside a rack. The physical size
of a rack means that achieving rack-wide synchronization is
feasible. Further, many density and cost benefits of disag-
gregated racks come from the co-design of servers and the
network, so independent evolution is not critical.

Instead, we argue that a circuit-switched network offers a
different set of trade-offs that are more suited to disaggre-
gated racks. Compared to a packet switch, circuit switches
can draw less power and be cheaper due to their simplicity,
and these gains could grow with future optical switches (§5).
Thus, they can better accommodate higher density. On the
flip side, circuit switching does necessitate a tight coupling
where all nodes are synchronized and traffic is explicitly
scheduled. Further, past solutions with slow circuit switches
have had to rely on a separate packet-switched network to
support low latency workloads which increases complexity
and hurts network manageability. Using fast circuit switches
helps on the performance front yet makes the scheduling
harder. We show that these challenges can be solved at the
scale of a rack and it is feasible to build a rack network that
satisfies its power constraints while achieving performance
on par with a packet-switched network.

3 Design
Shoal is a network architecture for disaggregated racks. It
comprises a network stack at the rack nodes which is tightly
coupled with a circuit-switched physical fabric.

3.1 Design overview
Shoal’s architecture is shown in Fig. 1. Each rack node
is equipped with a network interface connecting it to the
Shoal fabric. The fabric comprises a hierarchical collec-
tion of smaller circuit switches, electrical or optical, that
are reconfigured synchronously. Hence, the fabric operates

Sh
o

al Fab
ric

Rack node

N/W
Interface

SoC

Shoal Network Stack

1 2 N-1

Network Flow

Rack

R
at

e

lim
it

e
rs

P
er

-n
od

e
FI

FO
s

Figure 1: Shoal architecture.

like a single, giant circuit switch (§3.2). The use of a cir-
cuit switched fabric means that we need to schedule it. One
possible approach is to schedule it on-demand, i.e., connect
nodes depending on the rack’s traffic matrix. However, such
on-demand scheduling requires complicated scheduling al-
gorithms and demand estimation, and would make it hard to
meet low-latency constraints.

Instead, Shoal uses coordination-free scheduling [9].
Specifically, each circuit switch forwards fixed-sized packets
or “cells” between its ports based on a predefined “sched-
ule”. These per-switch schedules, when taken together, yield
a schedule for the fabric which dictates when different node
pairs are connected to each other. The schedule for individ-
ual switches is chosen such that the fabric’s schedule pro-
vides equal rate connectivity between each pair of nodes. To
accommodate any traffic pattern atop the equal rate connec-
tivity offered by the fabric, each node spreads its traffic uni-
formly across all other rack nodes, which then forward it to
the destination (§3.3.1).

The second mechanism implemented in Shoal’s network
stack is a congestion control technique that ensures that
network flows converge to their max-min fair rates, while
bounding the maximum queuing at all rack nodes. Our
main insight here is that the periodic connection of rack
nodes by the fabric enables backpressure-based congestion
control amenable to hardware implementation. One of the
main challenges in implementing backpressure-based mech-
anisms over multi-hop networks is instability for dynamic
traffic [26]. In Shoal, we restrict the backpressure mecha-
nism to a single hop, avoiding the instability issue altogether.

3.2 Shoal fabric
Shoal uses a predefined, static schedule to reconfigure the
fabric such that the rack nodes are connected at an equal rate.
Fig. 3 shows an example schedule with N = 8 nodes. Thus,
in a rack with N nodes, each pair of nodes is directly con-
nected by the fabric once every N−1 time slots, where a slot
refers to the cell transmission time.

However, constructing a monolithic switch, electrical or
optical, with hundreds of high-bandwidth ports and fast re-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 257

1 2 3 4 5 6 7 8

S
w

it
ch

 1

a b

c d

Figure 2: Circuit switches in a two-
stage Clos topology.

Time slot
1 2 3 4 5 6 7

N
od

e

1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1
· · · · · · · ·
· · · · · · · ·
8 1 2 3 4 5 6 7

Figure 3: Fabric schedule for a rack
with 8 nodes.

Time slot
1 2 3 4 5 6 7

Po
rt

a d c d c d c d
b c d c d c d c
c b a b a b a b
d a b a b a b a

Figure 4: Switch 1’s schedule
(see Fig. 2 for topology).

configuration is intractable due to fabrication constraints.
Instead, Shoal’s fabric comprises low port-count circuit
switches connected in a non-blocking Clos topology. Ar-
ranging k-port circuit switches in a two-stage Clos topology
allows the fabric to connect k2

2 nodes. For e.g., using 64-
port electrical circuit switches allows us to connect a rack
with 2,048 nodes. Fig. 2 shows six 4-port circuit switches
arranged in such a topology to implement an 8-port fabric.
Packets between any two nodes are always routed through
both stages of the topology, even if the nodes are connected
to the same switch (like nodes 1 and 2 in the figure). Since
the topology is non-blocking, this does not impact network
throughput. It ensures, however, that the distance between
any two nodes is the same which, in turn, aids rack-wide
time synchronization (§3.4).

We decompose the schedule of the overall fabric into the
schedule for each constituent circuit switch. Consider the
example fabric shown in Fig. 2. Fig. 3 shows the schedule
for this fabric while Fig. 4 shows the schedule for switch
1. Each switch’s schedule is contention-free, i.e., at a given
instant, any port is connected to only one port. This allows
the switch to do away with any buffers and any mechanisms
for packet inspection or packet arbitration.

3.3 Shoal network stack
Shoal’s mechanisms operate at the data link layer (layer-2)
of the network stack. At each node, Shoal spreads its layer-2
traffic uniformly across the rack to ensure guaranteed net-
work throughput and implements a congestion control tech-
nique that ensures fair bandwidth sharing and low latency.

3.3.1 Forwarding plane

Rack nodes send and receive fixed-sized cells. Packets re-
ceived from higher layers are thus fragmented into cells at
the source node and reassembled at the destination. Each cell
has a header (Fig. 5) that contains the corresponding packet’s
destination and other control information.

Cells sourced by a node, irrespective of their destination,
are sent to the next node the source is connected to. This uni-
formly spreads traffic across all rack nodes. Each node has
a set of FIFO queues, one for every node in the rack. Cells
arriving at an intermediate node are put into the queue corre-
sponding to their final destination. This ensures traffic is de-
toured through at most one intermediate node. These queues
are served according to the node’s transmission schedule.

We highlight two key aspects of this simple design. First,

uniformly distributing traffic is perfectly suited to the equal
rate connectivity provided by the Shoal fabric. This guar-
antees the worst-case throughput across any traffic pat-
tern [9]—Shoal’s network throughput can be at most 2×
worse than that achieved by a hypothetical, rack-wide ideal
packet switch. To compensate for this throughput reduction
due to detouring, we double the aggregate bisection band-
width of the fabric for Shoal. This is a good trade-off as cir-
cuit switches are expected to be cheaper and hence, adding
fabric bandwidth is inexpensive; in §5, the cost of the result-
ing network is still estimated to be lower than the cost of a
traditional packet-switched network.

Second, when the fabric’s schedule connects node i to node
j, the former always transmits a cell; the cell at the head
of the queue i→ j is transmitted, otherwise an empty cell
is sent. This ensures that each node periodically receives a
cell from every other node, which enables implementing an
efficient backpressure-based congestion control (§3.3.2) and
simple failure detection (§3.5).

3.3.2 Congestion control

Each node sending traffic computes the appropriate rate for
its traffic to avoid congesting the network. We begin with a
discussion of the network topology resulting from periodic
reconfiguration of the Shoal fabric and its implications for
congestion control, followed by the details of our design.

High Multi-pathing. The periodic reconfiguration of
Shoal’s fabric means that the entire network can be seen
as an all-to-all mesh with virtual links between each pair of
nodes. For e.g., consider a rack with 8 nodes whose sched-
ule is shown in Fig. 3. Since each node is connected to every
node 1/7th of the time, the network provides the illusion of a
complete mesh with virtual links whose capacity is 1/7th of
each node’s total network bandwidth.

Shoal’s use of detouring means that each node’s traffic
is routed through all the rack nodes on their way to their
destination, resulting in very high multi-pathing. In con-
trast, the TCP suite of protocols, including protocols tailored
for datacenters [2, 51] and recent protocols for RDMA net-
works [39,54] only use a single path. Even multi-path exten-
sions like MPTCP [44] target scenarios with tens of paths,
which is an order of magnitude less than the number of paths
used by traffic in our fabric.

Design insights. Shoal’s congestion control design is based
on three key insights. First, we leverage the fact that the fab-

258 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ric in an N-node rack directly connects each pair of nodes
once every N− 1 time slots. We refer to this interval as an
epoch. This means that, when the queues at an intermediate
node grow, it can send a timely backpressure signal to the
sender. As we detail below, the periodic nature of this sig-
nal coupled with careful design of how a sender reacts to it
allows us to bound the queue size across rack nodes.

Second, achieving per-flow fairness with backpressure
mechanisms is challenging [54], especially in multi-path sce-
narios. In Shoal, a flow refers to all layer-2 packets being
exchanged between a pair of nodes. For network traffic, this
includes all transport connections between the nodes. For
storage traffic, this includes all IO between them. Each flow
comprises N− 1 subflows, one corresponding to each inter-
mediate node. Shoal achieves max-min fairness across flows
by leveraging the fact that each flow comprises an equal
number of subflows that are routed uniformly across a sym-
metric network topology, so we can achieve per-flow fairness
by ensuring per-subflow fairness. We thus treat each subflow
independently and aim to determine their fair sending rates.
The mechanism can also be extended to accomodate other
flow-level sharing policies.

Finally, each subflow traverses two virtual links, either of
which can be the bottleneck. For e.g., a subflow i→ j→ k
can either be bottlenecked at the virtual link between nodes
i and j, or between nodes j and k. Shoal maintains a queue,
Qi j, at node i to store cells destined to node j. We use the
length of the queue Qi j as an indication of the load on the
virtual link between nodes i and j. Note that the node sourc-
ing the traffic, node i, can observe the size of the local queue
Qi j. It, however, also needs to obtain information about the
size of the remote queue Q jk that resides at node j.
Congestion control mechanism. We use a subflow from
source i to destination k through intermediate node j, i→
j→ k, as a running example to explain Shoal’s congestion
control. When node i sends a cell to node j, it records the
subflow that the cell belongs to. Similarly, when node j re-
ceives the cell, it records the index k of the queue that the cell
is added to. The next time node j is connected to node i, it
embeds the current length of queue Q jk into the cell header:

rate limit feedback ji = len(Q jk) (1)

Each pair of nodes in the rack exchange a cell every epoch,
even if there is no actual traffic to be sent. Thus, when
node i sends a cell to node j, it gets feedback regarding
the relevant queue at j within the next epoch. Let us as-
sume that node i receives this feedback at time T . At time
t (≥ T), it knows the instantaneous length of its local queue
to node j, Qi j(t), and a sample of the length of the remote
queue between nodes j and k, Q jk(T). The max-min fair
sending rate for a subflow is governed by the most bottle-
necked link on its path, i.e., the link with the maximum queu-
ing. As a result, the next cell for this subflow should only
be sent after both the queues have had time to drain, i.e.,

at least, max(len(Qi j(T)), len(Q jk(T))) epochs have passed
since the feedback was received. To achieve this, node i re-
leases a cell for this subflow into its local queue for j only
when the current length of the queue, after accounting for the
time since the last feedback, exceeds the size of the remote
queue Q jk, i.e., a cell is released into Qi j at time t when,

len(Qi j(t))+(t−T)≥ len(Q jk(T)) (2)

Thus, when a new cell is released into the queue at its source,
the previous cell in that queue is guaranteed to have been
sent to the remote queue while the previous cell in the remote
queue is guaranteed to have been sent to the destination. This
ensures the invariant that at any given time a subflow has at
most one cell each in both the queue at its source and the
queue at its intermediate node. As a consequence, at any
given time, the size of each queue Qi j is bounded by:

len(Qi j)≤ outcast degree(i)+ incast degree(j) (3)

Thus, this mechanism ensures that, for each virtual link,
Shoal performs fair queuing at cell granularity across all the
subflows sharing that link. This, in turn, results in a tighter
distribution of flow completion times.

Note that while Shoal’s basic design assumes a single traf-
fic class for the flows, it can be easily extended to support
multiple traffic classes as explained in Appendix C.

3.3.3 Improving network latency

While Eq. 3 bounds the queue size, it also highlights one of
the challenges of detouring: network latency experienced by
a cell, while bounded, is impacted by cross-traffic — traffic
from remote nodes at the cell’s source node and traffic from
local node at the cell’s intermediate node. To reduce this
impact of detouring, we introduce following optimizations:
Reducing cell latency at the intermediate node. In addi-
tion to queue Q jk, node j also maintains a ready queue R jk.
Instead of adding cells to Q jk from local flows that satisfy
Eq. 2, Shoal adds the corresponding flow ids into the ready
queue R jk. Thus,

len(R jk)≤ outcast degree(j) ≤ N−1 (4)

Shoal then scans the local flow ids in R jk, and adds the corre-
sponding cells into the queue Q jk such that at any given time
there is at most one local cell in Q jk. Thus Eq. 3 changes to:

len(Q jk)≤ 1+ incast degree(k) ≤ N (5)

However, to ensure that the rate limit feedback accounts for
the local subflows, Eq. 1 needs to be updated accordingly:

rate limit feedback ji = len(Q jk)+ len(R jk)−1 (6)

The rack network is thus still shared in a max-min fashion,
while simultaneously reducing the impact of local traffic on
the latency of remote cells — the latency experienced by a
remote cell at any intermediate node is determined only by
the incast degree of cell’s destination.
Reducing cell latency at the source node. While Eq. 5 re-
duces the impact of detouring at the intermediate node, at

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 259

the source node i, the latency for a local cell in Qi j is gov-
erned by incast degree of intermediate node j. To reduce
the impact of cross traffic (i.e., non-local traffic), Shoal se-
lectively adds cells from a new flow to queue Qi j only if
len(Qi j) ≤ 2age, where age is measured in epochs since the
flow started. Thus, for the first few epochs, cells will be re-
leased to queues over virtual links with low contention, and
afterwards will quickly converge to uniform load-balancing
using all virtual links after a max of log(N) epochs. This
achieves uniform load-balancing for long flows, and hence
preserves Shoal’s throughput bounds, while reducing com-
pletion time for short flows.

The impact of these optimizations is evaluated in Fig. 14.

3.3.4 Bounded queuing

Eq. 5 guarantees that at any given time, the size of each
queue Qi j at node i is bounded by the instantaneous num-
ber of flows destined to destination j plus one, with at most
one cell per flow. This queue bound can be used to deter-
mine the maximum buffering needed at each node’s network
interface to accomodate even the worst-case traffic pattern
of all-to-one incast. In a rack with 512 nodes and 64 B cells,
this requires a total buffering per node of 17 MB. Impor-
tantly, since Shoal accesses a queue only once every epoch
for transmission, and assuming the access latency of off-chip
memory is less than an epoch, Shoal only needs to buffer one
cell from each queue Qi j on the on-chip memory, resulting
in N− 1 total cells. Using the example above, this leads to
on-chip cell buffer size of just 32 KB per node.

3.4 Shoal slots and guard band
Shoal operates in a time-slotted fashion. Slots are separated
by a “guard band” during which the switches are reconfig-
ured. The guard band also accounts for any errors in rack
synchronization.
Circuit switch reconfiguration. Shoal uses fast reconfig-
urable circuit switches. For example, our prototype imple-
ments an FPGA-based circuit switch that can be reconfig-
ured in 6.4 ns (§4.1). Electrical circuit switches with fast
reconfiguration are also commercially available [76] while
fast optical circuit switches with nanosecond-reconfiguration
time have also been demonstrated [12, 16, 17, 30, 36, 48, 52].
Time synchronization. Shoal’s slotted operation requires
that all rack nodes and switches are time synchronized, i.e.,
they agree on when a slot begins and ends. Synchronizing
large networks is hard, primarily because of high propaga-
tion delay and the variability in it. In contrast, fine-grained
rack-wide synchronization is tractable due to their size—a
typical rack is only a few meters high which means that, even
when using optical transmission with a propagation delay of
5 ns/m, the maximum propagation latency across a rack is
about 10-15 ns. Furthermore, the rack can be constructed
with tight tolerances to aid synchronization. For example,
if all links are the same length with a tolerance of ± 2 cm,

the propagation delay would vary by a maximum of 0.2 ns.
Small physical distance also mitigates the impact of temper-
ature variations that could lead to variable propagation delay.

Shoal leverages the WhiteRabbit synchronization tech-
nique [32, 37, 40, 45] to achieve synchronization with bit-
level precision. WhiteRabbit has been shown to achieve sub-
50 picoseconds of synchronization precision [45]. The main
idea is to couple frequency synchronization with a time syn-
chronization protocol (§6.1).

Frequency synchronization is achieved by distributing a
global clock to all the nodes and switches in the rack. This
global clock is generally derived from one of the rack nodes,
designated as the clock master. The clock can be dis-
tributed explicitly, or implicitly through Synchronized Eth-
ernet (SyncE) [75] whereby nodes derive a clock from the
data they receive and use this clock for their transmissions.

In Shoal, time synchronization protocol like PTP [70] or
DTP [33] need to run only between the end nodes (and not
the switches). At bootstrap, each switch’s circuits are config-
ured according to their respective schedule’s configuration at
time slot 1 (e.g. Fig. 4) and they do not change. End nodes
then start running the time synchronization protocol. Once
all the nodes are synchronized to a desired level of precision,
they send a bootstrap signal to the switches, followed by ac-
tual data according to the fabric schedule (Fig. 3). Switches
on receiving the bootstrap signal start reconfiguring their cir-
cuits according to their respective schedules (Fig. 4).
Slot size configuration. Overall, the guard band size is
the sum of the reconfiguration delay, variability in propaga-
tion and the precision of synchronization. Given the guard
band size, the slot size can be configured to balance the
trade-off between latency and throughput: a smaller slot re-
duces epoch size resulting in smaller latency, yet it imposes
higher guard band overhead resulting in smaller duty cycle
and hence lower throughput.
Epoch size and multiple channels. In Shoal, two nodes
exchange cells at the interval of an epoch. Therefore, each
queue drains at the rate of one cell per epoch, meaning a
smaller epoch size results in smaller queuing delay. We can
reduce the epoch size by taking advantage of the fact that net-
work links comprise multiple channels. For e.g., 100 Gbps
links actually comprise four 25 Gbps channels, which can be
switched independently. Thus, in Shoal, each channel is used
to send cells to a quarter of the rack nodes in parallel. Given a
fixed slot size (as determined based on guard band size), this
shrinks the epoch size by a quarter (epoch = N−1 slots

num of channels).
Finally, the actual cell size is determined by the slot size and
channel speed, for e.g. a slot size of 20.5 ns (without guard
band) will correspond to 64 B cells over a 25 Gbps channel.

3.5 Practical concerns
We now discuss a few practical concerns of the design.
Clock and data recovery (CDR). A key challenge for any
network relying on fast circuit switches is that each node

260 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

source id destination id

rate limit feedback

start-of-packet end-of-packet

last-cell-dropped CRC checksum

sequence number

10 bits 10 bits

22 bits 11 bits

1 bit 1 bit

1 bit 8 bits

Figure 5: Header fields in the 8 B cell header carried by each
cell. Header field sizes assume a max of 1024 rack nodes.

needs to be able to receive traffic from different senders at
each time slot. This requires that, at each time slot, the in-
coming bits are sampled appropriately so as to achieve error-
free reception. The sampling is done by the Clock and Data
Recovery (CDR) circuitry at the receiver and typically takes
a few hundred microseconds [46]. However, we note that this
is only a problem when using layer 0 circuit switches that
operate at the raw physical layer, e.g., when using an optical
circuit switch. Such a switch imposes no latency overhead
but requires very fast CDR at the receiver in order to achieve
a reasonable guard band. Recent work has shown that sub-
nanosecond CDR is achievable in datacenter settings [13].

Electrical circuit switch can also operate at layer 1 [76].
When a circuit is established between ports i→ j, the switch
retimes data received on port i before sending it to port j.
With such switches, each link in the network is a point-to-
point link and thus, fast CDR is not needed. Each switch,
however, does need to be equipped with a small buffer to ac-
count for any differences in the clocks associated with ports
i and j. For Shoal, only a few bits worth of buffering is re-
quired since the entire rack is frequency synchronized and
the buffer is only needed to absorb any clock jitter.
Cell reordering and reassembly. The sequence number

field in each cell’s header is used to assemble cells in-order
at the destination. Note that Shoal’s congestion control is
robust to reordering, as it operates at the granularity of indi-
vidual subflows with a congestion window of size 1. Once
the cells have been reordered, the start-of-packet and
end-of-packet fields in the cell header are used to figure
out the packet boundary, and the cells within each packet
boundary are then assembled together to re-construct the
original packet.
Failures. To detect failures, Shoal relies on the fact that
a node sends a cell to every other node in the rack, even if
there is no traffic to send, once every epoch. A path refers to
the set of links and switches through which a node j sends a
cell to some other node i once every epoch.

When a node i does not receive a cell from a node j in it’s
corresponding slot, either due to path failures or node failure,
it conservatively infers that node j has failed, and i) stops
sending any further cells to j, ii) notifies other nodes that it
can no longer communicate with j, so other nodes stop for-
warding cells destined to j via i, iii) forwards the last cell (if
it happens to be i’s local cell) it sent to j via some other node,
and iv) discards all the outstanding cells it was supposed to

1 node 1 node-leaf 1 leaf 1 leaf-spine 1 spine
link switch link switch

≈ 1/N ≈ 1/N ≈ 1/
√

2N ≈ 2/N ≈ 2
√

2/
√

N

Table 1: Fraction of failed slots against different failed com-
ponents, for a two-stage clos topology. N = no of rack nodes.

forward to j. Shoal relies on a higher layer end-to-end trans-
port protocol to recover from the loss of those outstanding
cells. Finally, in case of an actual node failure, Shoal again
relies on the transport protocol to recover all the cells that
were queued to be forwarded at the failed node. If the failed
node was the primary clock reference for synchronization,
another node needs to take over and remaining nodes seam-
lessly switch to it as the new reference. ITU standard for
SyncE [75] already supports this.

Note that the failure detection mechanism is symmetric —
when node i infers that node j has failed, it immediately
stops sending cells to j, causing j to infer that i has failed,
and hence immediately stop sending cells to i. This ensures
the consistency of Shoal’s closed-loop congestion control
mechanism (§3.3.2), even in the face of failures.

One of the consequences of Shoal’s design is if a node can
no longer “directly” communicate with some other node, ei-
ther because the other node or the path to it has failed, it
hurts node’s throughput as the corresponding slot is marked
as failed and hence goes unused (Table 1). We evaluate net-
work performance against fraction of failed nodes in §7.3.
Scalability. Shoal’s scalability is mainly limited by two
factors: i) On-chip resource consumption on the NIC, in
particular on-chip memory, and ii) epoch size, which con-
tributes to network latency. The on-chip memory consump-
tion for Shoal scales as Θ(N2log(N)) bits (§4). Even for a
very dense rack comprising ∼1000 nodes, this results in a
memory consumption only of the order of a megabyte. On
the other hand, epoch size increases linearly with the num-
ber of nodes (§3.4). The impact of increasing epoch size on
network latency is evaluated in §7.3.

4 Implementation
In this section, we discuss our FPGA-based implementation
of Shoal’s switch and NIC. We used Bluespec System Ver-
ilog [57] (∼1,000 LOCs). Our design runs at a clock speed
of 156.25 MHz, thus each clock cycle is 6.4 ns.

4.1 Switch design
Our circuit switch operates at layer 1, i.e., data traversing the
switch is routed through the PHY block at the ingress and
egress ports (Fig. 6). The mapping between the ingress and
egress ports varies at every time slot according to the static
schedule. This mapping is implemented using p different p:1
multiplexers, where p is the number of ports in the switch.
The control signals to these multiplexers are driven by p reg-
isters, one per multiplexer. In each time slot, all the p reg-
isters are configured in parallel according to the schedule.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 261

ingress ports egress ports

Altera 10G PHY25 cycles 20 cycles

1 cycle

static
schedule

Shoal
SWITCH ingress portegress port

Altera 10G MAC + PHY40 cycles 50 cycles

N-1
last cell sent

CELL cache

N-1

Reorder buffers

DRAM

Get intermediate
node to send to
in curr timeslot

1 cycle

Extract cell from
CELL cache

corresponding to
intermediate node

1 cycle

Piggyback
rate limit
feedback

& start sending
1 cycle

static
schedule

N-1

N-1
N-1

rate limit values
per local flow per
intermediate node

N-1

local flow
ready queue

every
cycle

S

Cell

FIFO
Cell

Synchronization
FIFO

Initiate storing the
received cell either

In the Reorder buffer
OR

In the CELL queue
1 cycle

Update based on
rate limit feedback

On-chip
Memory

Remote
Cell

Local
Cell

Shoal
NIC

Synchronization
FIFOs

4 cycles

4 cycles

CLOCK DOMAIN 2CLOCK DOMAIN 1

1
cycle

72

N-1
last cell recvd

N-1

Scheduler

&

Packet from host

N-1

CELL queue

chop
to cellsflo

w
 id

Packet to host

reassemble

Figure 6: Switch and NIC implementation with the latency
of each block. Clock cycle is 6.4 ns. N = num of rack nodes.

Hence, the switch reconfiguration delay is simply the time
it takes to update the registers, which can be done in one
clock cycle. Our switch is driven by the clock that drives the
interface to PHY. The interface to 10G Ethernet PHY (XG-
MII) runs at 156.25 MHz, resulting in reconfiguration delay
of 6.4 ns for our switch. However, for higher link speeds the
clock frequency can be higher, for e.g., at 50 Gbps, the inter-
face to PHY (LGMII) runs at 390.625 MHz [55], yielding a
reconfiguration delay of 2.5 ns.

The transmit and receive paths of the switch are located in
two separate clock domains: the transmit path is driven by
the clock distributed throughout the rack, while the receive
path is driven by the clock recovered from the incoming bits.
To move data safely across clock domains, we use synchro-
nization FIFOs. The total port-to-port latency of our switch
is 50 cycles (320 ns): PHY block (45 cycles) + switching (1
cycle) + synchronization FIFO (4 cycles).

4.2 NIC design
Fig. 6. shows the routing and congestion control pipelines

implemented in Shoal’s NIC. Each NIC maintains a cell
cache on the on-chip memory, of size N − 1 cells, which
stores the next cell to forward per intermediate node. Re-
maining cells sit in the DRAM. The backpressure-based
mechanism underpinning Shoal’s congestion control (§3.3.2)
is implemented using two vectors of size N − 1 each, that
record the last cell sent (received) to (from) each interme-
diate node, and a (N − 1)× (N − 1) matrix that stores the

rate limit feedback received from each intermediate node for
each active local flow. The scheduler uses these data struc-
tures to schedule local cells into a ready queue in accordance
with the logic described in § 3.3.2 and § 3.3.3.

NIC latency is dominated by the PHY and MAC IP blocks,
with the routing and congestion control logic only adding 4
and 5 cycles on the transmit and receive paths, resp. Thus,
Shoal’s additional mechanisms impose low overhead.

Appendix B details the resource consumption for Shoal’s
FPGA-based implementation.

5 Power and cost implications
We now compare the power and cost of a Shoal network
to that of a packet-switched network (PSN). Along with the
performance evaluation in §7, we demonstrate that for 71%
lower power and an estimated cost reduction of up to 40%,
Shoal’s circuit-switched fabric can reduce tail latency by up
to 2× as compared to state-of-the-art congestion control pro-
tocols such as NDP [25] atop a PSN.

We analyze a 512-node rack. For a PSN, we consider
today’s packet switches [58, 81], which support 64 ports
at 50 Gbps and consume a maximum of 350 W [47, 49].
Nodes have 50 Gbps NICs with copper cables (i.e., no opto-
electronic transceivers) and connecting them using a non-
blocking Folded Clos topology requires 24 such switches.
For Shoal, extrapolating from today’s circuit switches [76],
we estimate that a 64×50 Gbps circuit switch would con-
sume 38.5 W. To compensate for the throughput overhead
of detouring packets, each node is equipped with 100 Gbps
links. So the Shoal network has 48 circuit switches. The
small physical size of the actual circuit switch ASIC means
that the space required for the extra switches is manageable.
Based on current SoC trends [59, 73, 79], we expect the NIC
to be integrated with the CPU on a single SoC and to benefit
from the same 10× reduction in power consumption. Given
a typical power consumption of 12.4 W for today’s 100 Gbps
NICs [77], this would lead to an estimated power consump-
tion of 1.37 W for the Shoal’s NIC (including 11% overhead
as computed in Appendix B) and of 0.62 W for PSN’s. Thus,
the total power of the Shoal network is 2.55 KW, 71% lower
than PSN (resp. 8.72 KW). Lower power density is crit-
ical because a rack’s total power has a hard limit around
15 KW [35, 60, 66].

Quantifying the cost of the Shoal network is harder as it
requires determining the at-volume cost of circuit switches.
Circuit switches can be electrical or optical; today, electri-
cal circuit switches are commercially used in scenarios like
HDTV [76] and are capable of fast switching while fast op-
tical switches only exist as research prototypes [16, 17, 30,
36, 48, 52]. Thus, instead of focussing on absolute costs, we
ask: how cheap would circuit switches need to be, relative
to equivalent packet switches, for Shoal to offer cost benefits
over PSN? We assume Shoal NICs cost between 2 and 3×
PSN NICs to account for the 2× bandwidth and extra func-

262 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tionality they provide. Fig. 11 shows how the relative cost of
the Shoal network varies as a function of the relative cost of
circuit switches to packet switches. A Shoal network would
cost the same as a PSN as long as circuit switches are 33.3–
41.6% the cost of packet switches while providing power
and performance gains. If the cost circuit switches was 9.6–
18.3% of the cost of packet switches, then Shoal would offer
a 40% cost reduction. While absolute costs are hard to com-
pare as they also depend on several non-technical factors, the
analysis below and our estimations based on hardware costs
indicate that at-volume circuit switches could cost as low as
15% of equivalent packet switches.

The lack of buffering, arbitration and packet inspection in
circuit switches means that they are fundamentally simpler
than packet switches which should mean lower cost. For
electrical switches, designers often use the switch package
area as a first-order approximation of switch cost—the ac-
tual chip area dictates yield during fabrication and therefore
fabrication cost while the total package area dictates the as-
sembly and packaging cost. In today’s packet switches 50%
of the total area is attributed to memory, 20% to packet pro-
cessing logic while 30% is due to serial I/O (SerDes) [62].
Electrical circuit switches, by contrast, have no memory and
packet processing, so the first two components have negli-
gible contribution. While the amount of I/O bandwidth in a
circuit switch remains the same, the actual SerDes is much
smaller because they are only retiming the signals, instead
of serializing and deserializing data from a high-rate serial
channel to lower-rate parallel channels. Even assuming the
SerDes are only halved in size, the total packaged area for
circuit switching could be as low as 15% that of a packet
switch. Overall, this analysis indicates that, with volume
manufacturing, the relative cost of electrical circuit switches
can be low enough for Shoal to simultaneously reduce both
power and cost as compared to PSN.

Looking ahead, optical circuit switches hold even more
promise: as bandwidth increases beyond 100Gbps per chan-
nel, copper transmission becomes noise limited even at
intra-rack distances and optical transmission becomes nec-
essary [64]. Optical circuit switches further reduce cost
and power because they obviate the need for expensive
transceivers for opto-electronic conversions. However, a few
technical challenges need to be solved for optical switches
to be used in Shoal [7]. For example, while several tech-
nologies being studied in the optics community can achieve
nanosecond switching, practical demonstrations have been
limited to 64-128 ports [12]. Another longstanding challenge
is to achieve fast CDR at layer 0 although recent work has
shown the feasibility of such CDR within 625ps [13].

6 Prototype

In this section, we evaluate our FPGA-based implementation
of Shoal through a 8-node prototype, shown in Fig. 7.

Figure 7: Shoal’s FPGA-
based prototype.

Figure 8: Shoal prototype’s
physical topology.

Figure 9: [Prototype] Avg
destination throughput for
full permutation matrix.

Figure 10: [Prototype]
Flow completion time for
7:1 synchronized incast.

6.1 Prototype setup

Our prototype comprises eight Terasaic DE5-Net
boards [63], each with an Altera Stratix V FPGA [80]
and four 10 Gbps SFP+ transceiver modules. Two FPGAs
are used to implement eight NICs, one per port. The
remaining six FPGAs implement six 4-port circuit switches.
The switches are connected in a leaf-spine topology and the
NICs are connected to the leaf switches as shown in Fig. 8.
We connect all eight FPGAs to a Dell T720 server. We use
the PCIe clock as the global clock and distribute it to the
Phase-locked loop (PLL) circuit running on each FPGA.
Thus all the local clocks derived from the respective PLL
circuits on each FPGA are frequency synchronized. For
time synchronization we use DTP [33].

Guard band. Our prototype achieves synchronization pre-
cision of less than a clock cycle. Further, the switch recon-
figuration delay is one clock cycle (§4.1), and all wires are of
same length. Hence a guard band of one clock cycle (6.4 ns)
is sufficient.

Slot size. To keep the guard band overhead to around 10%,
we select a slot size of 12 clock cycles (76.8 ns). This in-
cludes 1 cycle of guard band overhead and 24 B (3 cycles)
of Altera MAC overhead. Thus the usable slot size equals
8 cycles (51.2 ns), which translates to 64 B cells at 10 Gbps
link speed. The epoch size equals 0.53 us.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 263

6.2 Prototype experiments
We used the prototype to verify that our implementation
achieves throughput and latency in accordance with the de-
sign. We also use it to cross-validate our simulator which, in
turn, is used for a large-scale evaluation regarding the viabil-
ity and benefits of a real world deployment of Shoal.

Throughput. We consider a permutation matrix with N = 8
flows: each node starts a single long-running flow to another
random node such that each node has exactly one incoming
and outgoing flow. For throughput, this is the worst-case traf-
fic matrix. In Fig. 9, we show performance in terms of desti-
nation throughput, measured as the amount of “useful” cells
(i.e., excluding the cells to forward and the empty ones) re-
ceived by each destination. For full permutation matrix, the
throughput for Shoal is expected to converge to∼50% of the
ideal throughput. Interestingly, however, the throughput is
significantly lower for smaller slot sizes, and it converges to-
wards 50% only for larger slot sizes. This is an artifact of the
small scale of our prototype, which causes the node-to-node
cell propagation latency (1.57 us: 40 ns of wire propagation
latency + 3×320 ns of switching latency (dominated mostly
by Altera 10G PHY latency) for three switches along the path
+ 576 ns of Altera 10G MAC and PHY latency at the two
end nodes (Fig. 6)) to be higher than the epoch size (0.53 us
for 64 B cells). The problem is that Shoal’s congestion con-
trol mechanism prevents a node from sending its next cell
to an intermediate node until it has received feedback from
it. Therefore, if the cell propagation latency spans multiple
epochs, the overall throughput suffers as senders cannot fully
utilize their outgoing bandwidth. As the slot size increases,
the ratio between the cell propagation latency and the epoch
size decreases, and this explains why in our prototype the
throughput improves with larger slots. In practice, however,
even for modest-sized racks, this issue will not occur as the
cell propagation latency will be much smaller than the epoch
size, and can be easily accomodated in the schedule as ex-
plained in Appendix A.

Latency. We consider all-to-one incast, where seven nodes
each send 448 B of data (seven 64 B cells) to the same des-
tination at the same time. Fig. 10 shows the distribution of
flow completion time (FCT) of all seven flows. The queue at
each node corresponding to the destination node grows upto
a maximum of 7 (Eq. 5). This results in maximum FCT of
6.9 us : 3.76 us of queuing delay plus 2×1.57 us of prop-
agation latency. Also note that the difference between the
fastest and slowest flow is fairly small (6.05 us vs. 6.9 us),
highlighting Shoal’s fair queuing.

Overall, across all experiments, the prototype and simula-
tion results were in agreement.

7 Simulation
We complement the prototype experiments in §6 with simu-
lations to investigate the scalability of Shoal.

7.1 Simulation setup
We use the packet-level simulator that was cross-validated
against our prototype (§6). We simulate a 512-node rack,
where each node is equipped with an interface bandwidth of
100 Gbps, connected using a full bisection bandwidth Clos
topology comprising circuit switches.
Guard band. We assume a guard band of 2.75 ns, based on
a 2.5 ns switch reconfiguration delay (§4.1) and 0.25 ns to ac-
count for any variability in propagation and synchronization
imprecision (§3.4).
Slot size. To keep the guard band overhead to around 10%
(resulting in max throughput of 90 Gbps), we select the slot
size of 23.25 ns. This results in 20.5 ns of usable slot size.
As explained in §3.4, we use the fact that existing 100 Gbps
links comprise 4×25 Gbps channels, resulting in 4 parallel
uplinks and an epoch size of 2.9 us. Finally, usable slot size
of 20.5 ns translates to 64 B cells at 25 Gbps channel speed.

7.2 Microbenchmarks
We start with a set of microbenchmarks to verify that the
behavior observed in our testbed holds at large scale too.
Throughput. In Fig. 12, we plot the average destination
throughput, as defined in §6.2, for the permutation traffic
matrix: each communicating node sends and receives one
flow. We vary the number of communicating pairs from 1
to 512. As there is no contention at any of the source and
destination nodes, the ideal destination throughput equals
the maximum interface bandwidth. However, for Shoal,
as the number of communicating pairs increases, so does
the amount of detouring traffic, resulting in the expected
throughput trend: it starts from the peak value for a single
flow and then monotonically decreases until it halves when
all pairs are communicating (full permutation traffic matrix).
Fairness. To verify Shoal’s fairness, we ran several work-
loads comprising a variable number of flows from 50 to
1,024 with randomly selected sources and destinations. We
compared the throughput achieved by each flow against its
ideal throughput computed using the max-min water-filling
algorithm [8]. Across all workloads, 99% of the flows
achieve a throughput within 10% of the ideal one. This
shows that, despite the simplicity of its mechanisms, Shoal
closely approximates max-min fairness.
Latency under Incast. We evaluate Shoal under incast, the
most challenging traffic pattern for low latency. A set of
nodes send a small flow of size 130 KB each, to the same
destination at the same time. In Fig. 13, we plot the flow
completion time (FCT) of the slowest flow as well as the
mean completion time, against increasing number of sending
nodes. As expected, at each intermediate node, the queue
corresponding to the destination node grows linearly with
increasing number of sending nodes, but bounded by the in-
cast degree of the destination (Eq. 5). Hence the FCT for
the slowest flow increases linearly and is also the optimal

264 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0.5

 1

 1.5

 2

 0.01 0.1 1

S
h
o
a
l
/

P
S
N

 c
o
s
t

Circuit switch / Packet switch cost

NIC=2x
NIC=3x

Figure 11: Relative cost of
Shoal network vs. packet
switch network (PSN).

Figure 12: Average desti-
nation throughput vs. size
of permutation matrix.

Figure 13: Flow comple-
tion times against synchro-
nized short flow incast.

Figure 14: Reduced impact
of detouring on latency via
optimizations in §3.3.3.

maximum FCT under such incast. The mean completion
time coincides with the slowest flow’s FCT, thus highlighting
Shoal’s fair queuing.

Reducing the impact of detouring on network latency. To
show that the optimizations described in §3.3.3 indeed im-
prove the network latency, we choose two nodes, Node-511
(source) and Node-0 (destination), to exchange short flows
(20 KB) at regular intervals, and generate random back-
ground traffic amongst the remianing nodes. We plot the
distribution of flow completion time (FCT) of short flows ex-
changed between nodes 511 and 0 in Fig. 14. The optimiza-
tions in §3.3.3 enable Shoal to achieve much smaller and
predictable FCT for target short flows—at the source, Shoal
selectively adds cells to local queues where there is low con-
tention, and at the intermediate node the queue length is
bounded to two regardless of the cross-traffic, as the incast
degree of Node-0 is one (Eq. 5). However, without the op-
timizations, the cross-traffic due to detouring significantly
increases the FCT of target short flows.

7.3 Datacenter workloads
We now investigate the performance of Shoal in dynamic set-
tings, using more realistic workloads.

Workload. We generate a synthetic workload, modeled af-
ter published datacenter traces [2, 22]. Flow sizes are heavy
tailed, drawn from a Pareto distribution with shape parame-
ter 1.05 and mean 100 KB [3, 4]. Flows arrive according to
a Poisson process and each simulation ends when one mil-
lion flows have completed. Flow sources and destinations
are chosen with uniform probability across all nodes (we will
study the impact of skewed workloads in §7.4).

Network load. We define network load L = F
R·N·τ where F

is the mean flow size, R is the per-node bandwidth, N is the
number of nodes, and τ is the mean inter-arrival flow time,
e.g., L = 1 means that, on average, there are N active flows.

Evaluation metric. We evaluate Shoal based on the flow
completion time (FCT) for short flows (≤100 KB) and av-
erage goodput (i.e., throughput after accounting for the 8 B
cell header overhead (§3.5)) for long flows (≥1 MB).

Baseline 1: Direct-connect network. We start with compar-
ing Shoal against a rack-scale network using a direct-connect

topology. We arranged the 512 nodes into a 3D torus, which
is the topology used in the AMD SeaMicro 15000-OP [79].
As with the Shoal network, we assume an aggregate node
bandwidth of 100 Gbps. We use R2C2 [15] for congestion
control. For all values of load, Shoal consistently outper-
forms the rack-scale setup up to a factor of 14.9 for tail FCT
for short flows (resp. a factor of 4.8 for avg goodput for long
flows). This is due to the multi-hop nature of direct-connect
topologies; it significantly increases the end-to-end latency
as queuing can occur at any hop. Further, node bandwidth
is also used to forward traffic originating several hops away,
which reduces the overall throughput. This does not occur
in Shoal as packets only traverse one hop and the congestion
control guarantees bounded queues.

Baseline 2: Packet-switched network. Now we compare
Shoal against a 512-node packet-switched network (PSN),
that connects the nodes using Clos topology with full-
bisection bandwidth. The interface bandwidth of each node
is 50 Gbps. Thus Shoal is provisioned with 2× bandwidth, to
compensate for the throughput overhead of detouring pack-
ets. Note that despite the extra bandwidth, Shoal’s power is
still estimated to be lower than that of PSN with a compa-
rable or lower cost (§5). As baselines, we use DCTCP [2],
NDP [25] and DCQCN [54] as the three state-of-the-art con-
gestion control algorithms atop a packet-switched network.
The baselines are based on the simulator used in [25]. We
assume 1500 B packets for all of them. DCTCP and DC-
QCN use standard ECMP routing, with the congestion win-
dow size of 35 packets and queue size of 100 packets. NDP
uses packet spraying for routing with initial window size of
35 packets and queue size of 12 packets.

As shown in Fig. 15a, at low to moderate load, Shoal ex-
hibits an average FCT comparable to DCQCN and DCTCP
and slightly higher than NDP. This increase is a consequence
of the use of detouring due to the static schedule (3.3.1).
However, Shoal outperforms DCTCP and DCQCN in terms
of tail FCT for short flows by a factor of 3× at low load
and 2× at high load (resp. outperforms NDP by a factor of
1.5× and 2×). The reason for this is three-fold: i) 2× band-
width per node in Shoal reduces the serialization delay, ii)
selectively adding cells from new flows to local queues with
low contention reduces queuing delay at the source, and iii)

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 265

Shoal’s congestion control ensures small and bounded queu-
ing at intermediate nodes, thus reducing the queuing delay
at intermediate nodes. Shoal also outperforms all three base-
lines in terms of long flow goodput (Fig. 15b) by a factor of
1.7×, even at high load. This is primarily due to the fact that
each Shoal node is equipped with more bandwidth.
Queuing and reordering. To validate our claim that Shoal
operates with very small queues, we plot the maximum queu-
ing observed across all nodes in Fig. 16. Even at high load,
the maximum queue size is 11 cells (704 B) and the maxi-
mum aggregate queue per node is 336 cells (21 KB). Maxi-
mum cell reordering within a flow across all nodes and across
all values of load is 200 KB (Fig. 16).
Node failures. We now focus our attention to the impact of
node failures. We ran the same workload as in the previous
experiments (L = 1) but at the beginning of each experiment
we fail an increasing fraction of nodes (up to 50%). As ex-
pected, the goodput decreases linearly (2× worse for 50%
failure rate, Fig. 17) because the slots corresponding to the
failed nodes are wasted. We can alleviate this with a more
sophisticated mechanism that, on detecting long-term fail-
ures, updates the schedule of both rack nodes and switches
to discount the failed nodes. FCT also increases with in-
creasing failed nodes, as the number of paths along which
cells from a flow can be sent is reduced, resulting in higher
subflow collision and increased queuing. However, Fig. 17
shows that even for high failure rate the increase in com-
pletion time is rather marginal, e.g., 1.5× for a 40% failure
rate (resp. 1.2× for 20% failure rate), thus making Shoal
amenable even for sealed rack-scale deployments in which
replacing failed nodes is not possible.
Impact of epoch size on network latency. Next, we study
the impact of epoch size on the FCT. Larger epoch size
results in higher latency (§3.4). In the first experiment,
we reduced the number of channels from 4×25 Gbps to
2×50 Gbps, thus doubling the epoch size. This increased tail
FCT by 1.26× at low load (resp. 1.15× at high load). In the
second experiment, we kept the number of channels constant
at 4, and increased the number of nodes to 1,024, again dou-
bling the epoch size. In this case, tail FCT at low load grew
by 1.28× (resp. 1.2× at high load). This, in turn, shows that
Shoal’s performance scales reasonably well with number of
nodes, making it suitable even for very dense racks.

7.4 Disaggregated workloads
Finally, we evaluate the performance of Shoal on disaggre-
gated workloads, based on recently published traces [19].
These traces comprise a variety of real-world applications,
including batch processing, graph processing, interactive
queries, and relational queries. To generate the workloads,
we mapped each rack node to one of the server resources
(CPU, memory, and storage) and created flows between them
following the distributions observed in these traces. This
yielded a much more skewed workload than the one in §7.3

(a) Flow completion time. (b) Average flow goodput.
Figure 15: Flow completion time (short flows≤100 KB) and
avg flow goodput (long flows ≥1 MB) vs. traffic load.

Figure 16: Max queue size
and max cell reordering vs.
traffic load.

Figure 17: Short flow
99.9p FCT and long flow
avg goodput vs. failure.

(a) Flow completion time. (b) Average flow goodput.
Figure 18: Flow completion time (short flows≤100 KB) and
avg flow goodput (long flows ≥1 MB) for different applica-
tions with disaggregated workload.

with more than 84% of the flows being generated among a
third of the nodes.

Fig. 18 shows the results for all the six applications, assum-
ing a mean inter-arrival time of 12.65 ns. Shoal significantly
outperforms the baselines in terms of both the tail FCT for
short flows (factor of 2× or more) and avg goodput for long
flows (factor of 2.5×). As explained in §7.3, this is due to
higher bandwidth provisioning in Shoal in combination with
its highly effective scheduling and congestion control mech-
anisms (resulting in maximum queue size of just 10 cells
across all applications).

These results show the versatility of Shoal and its ability to
carry different types of traffic, including disaggregated work-
loads, with high throughput and low latency.

266 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8 Discussion
The focus of this paper is on the design of a network for
disaggregated racks. Here we discuss a few open questions.
Integrating a Shoal rack with rest of the datacenter. A
key question is how to seamlessly integrate a rack-scale net-
work, such as Shoal, with the rest of the datacenter, which
might consist of both disaggregated and traditional racks.
Existing rack-scale designs [35] typically use a few rack
nodes as gateways that are then directly connected to the dat-
acenter network. Such a design could be adapted for Shoal
as well—the gateway nodes would act as a bridge between
Shoal’s network stack and datacenter-wide network stack,
such as TCP/IP over Ethernet. There are, however, several
key challenges that still remain to be addressed such as the
interplay between different congestion controls and how to
design the interface between IP packets and Shoal cells (e.g.,
packet reassembly/fragmentation and encapsulation).
Running applications on top of Shoal. Shoal is a link layer
architecture with support for congestion control. Running
applications on top of Shoal, however, requires a transport
layer providing application multiplexing, reliability, and flow
control. One option would be to re-use an existing transport
layer such as TCP, although the impact of the interaction
of its congestion-control mechanism with Shoal’s remains
an open question. Another approach would be to design a
Shoal-specific transport layer. This would be significantly
simpler as congestion control is already handled by Shoal.
We leave the exploration of these options for future work.

9 Related work
Disaggregated architectures promise significant cost, power,
and performance gains [56, 67, 71]. However, unlocking
these benefits requires solving numerous challenges.
Topology and technology. Several topologies have been in-
vestigated for disaggregated racks. Direct-connect topolo-
gies whereby each node is connected to a small subset of
other rack nodes through point-to-point links are common in
super computers and have been adopted in some commer-
cial disaggregated racks. For example, both AMD SeaMi-
cro [79] and HP Moonshot [69] use the 3D Torus topol-
ogy and custom routing. Motivated by the fact that the
best direct-connect topology is workload-dependent, recon-
figurable networks have emerged as an attractive alternative.
At rack scale, XFabric [35] combines circuit switches with
SoC-based packet switches to reconfigure the rack’s topol-
ogy on the fly, while for datacenter networks, electrical [10],
optical [11,21,24,42,53] and wireless technologies [23] that
operate like a circuit switch have been proposed. These so-
lutions typically rely on a centralized controller to schedule
traffic. This imposes significant communication and compu-
tation overhead and requires accurate demand estimation.
Congestion control through tight network-host coupling.
Shoal’s congestion control tightly couples the network fab-

ric with host network stack. For packet-switched networks,
there is already a trend towards tighter coupling between the
network and servers for low latency congestion control in
datacenters; for example, using ECN as a feedback signal
in DCTCP [2]. Congestion control mechanisms specialized
for RDMA over converged Ethernet, such as DCQCN [54]
and TIMELY [39], also rely on a closer coupling with the
network. Shoal is an extreme design point in this direc-
tion as the coupling of its congestion mechanism to its fab-
ric achieves bounded queuing and fairness despite very high
multi-pathing. For direct-connect topologies, R2C2 [15] is
a recently proposed congestion control that relies on broad-
casting of flow events across the rack. It achieves computa-
tion tractability at the expense of network utilization.
Load-balanced switch. In 2002, load-balanced switches [9,
29] were proposed as a way to obviate arbitration in mono-
lithic switches. Shoal’s fabric operates like a load-balanced
switch. However, instead of using an explicit intermediate
stage (i.e., special nodes for detouring) as in the original
proposal, Shoal detours cells through other rack nodes. Fur-
thermore, while the original technique focused on monolithic
switches, we scale it to a hierarchy of switches.

The load-balancing approach is also at the core of Ro-
torNet [38], an optical network for datacenters that does
not require a centralized controller. By leveraging multi-
ple rack uplinks, RotorNet reduces epoch duration and pro-
poses a novel indirection technique that lowers the through-
put impact of load balancing. However, it uses optical cir-
cuit switches with a relatively high reconfiguration delay
(20 µs) and hence, requires a separate packet-switched net-
work for low-latency traffic. It also does not ensure bounded
queuing. In contrast, Shoal works atop circuit switches
with nanosecond-reconfiguration, and proposes novel con-
gestion control and scheduling mechanisms that achieve high
throughput, low latency, fairness and bounded queuing for all
flows atop a purely circuit-switched fabric.

10 Summary
We presented Shoal, a network architecture for disaggre-
gated racks that couples a circuit-switched fabric with the
nodes’ network stack. The fabric operates like a rack-
wide switch with a static schedule. Rack nodes achieve
coordination-free scheduling by detouring their traffic uni-
formly, and implement backpressure-based congestion con-
trol which achieves fairness and bounded queuing. Our
FPGA-based prototype achieves good performance and il-
lustrates that Shoal’s mechanisms are amenable to hardware
implementation. Our results show that Shoal can achieve
high throughput and low latency across diverse workloads
while operating comfortably within the rack’s power budget.
This demonstrates that disaggregated architectures can be
deployed using today’s technologies and not need be gated
on the viability of future advancements in low-power tech-
nologies for packet-switches.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 267

Acknowledgments
We thank the anonymous reviewers, George Porter, Michael
Schapira, and our shepherd, Alex Snoeren, for their use-
ful comments and suggestions. This research was par-
tially supported by DARPA CSSG (D11AP00266), NSF
(1053757, 1440744, 1422544, 1413972, and 1704742),
European Unions Horizon 2020 research and innovation
programme under the SSICLOPS project (agreement No.
644866), Google Faculty Research Award, Microsoft Re-
search PhD scholarship, and gifts from Cisco, Altera and
Bluespec.

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Com-

modity Data Center Network Architecture. In SIGCOMM,
2008.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less Is More: Trading a Little Bandwidth for
Ultra-Low Latency in the Data Center. In NSDI, 2012.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal Near-
optimal Datacenter Transport. In SIGCOMM, 2013.

[5] K. Asanovic. FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers. In FAST, 2014. Keynote.

[6] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass,
D. Harper, S. Legtchenko, A. Ogus, E. Peterson, and A. Row-
stron. Pelican: A Building Block for Exascale Cold Data
Storage. In OSDI, 2014.

[7] H. Ballani, P. Costa, I. Haller, K. Jozwik, K. Shi, B. Thom-
sen, and H. Williams. Bridging the Last Mile for Optical
Switching in Data Centers. In Optical Fiber Communication
Conference (OFC), 2018.

[8] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall,
1987.

[9] C.-S. Chang, D.-S. Lee, and Y.-S. Jou. Load Balanced
Birkhoff-von Neumann Switches, Part I: One-stage Buffer-
ing. Comput. Commun., 25(6), Apr. 2002.

[10] A. Chatzieleftheriou, S. Legtchenko, H. Williams, and
A. Rowstron. Larry: Practical Network Reconfigurability in
the Data Center. In NSDI, 2018.

[11] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu,
Y. Zhang, X. Wen, and Y. Chen. OSA: An Optical Switching
Architecture for Data Center Networks with Unprecedented
Flexibility. In NSDI, 2012.

[12] Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White.
Demonstration of the feasibility of large-port-count opti-
cal switching using a hybrid Mach-Zehnder interferometer-
semiconductor optical amplifier switch module in a recircu-
lating loop. Optics Letters, 39(18), 2014.

[13] K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Ger-
ard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts,
H. Williams, G. Zervas, P. Costa, and Z. Liu. Sub-
Nanosecond Clock and Data Recovery in an Optically-
Switched Data Centre Network. In European Conference on
Optical Communication (ECOC), Post-deadline paper, 2018.

[14] R. Colwell. The chip design game at the end of Moore’s law.
In HotChips, 2013.

[15] P. Costa, H. Ballani, K. Razavi, and I. Kash. R2C2: A Net-
work Stack for Rack-scale Computers. In SIGCOMM, 2015.

[16] M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H.
White. Scalable, Low-Power-Penalty Nanosecond Reconfig-
urable Hybrid Optical Switches for Data Centre Networks. In
Proceedings of the Conference on Lasers and Electro-Optics
(CLEO), 2017.

[17] V. Eramo and M. Listanti. Power Consumption in Buffer-
less Optical Packet Switches in SOA Technology. IEEE/OSA
Journal of Optical Communications and Networking, 1(3),
2009.

[18] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger. Dark Silicon and the End of Multicore Scal-
ing. In ISCA, 2011.

[19] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker. Network require-
ments for resource disaggregation. In 12th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI 16), Nov. 2016.

[20] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy,
and S. Shenker. phost: Distributed near-optimal datacenter
transport over commodity network fabric. In ACM Confer-
ence on Emerging Networking Experiments and Technologies
(CoNEXT), page 1. ACM, 2015.

[21] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur,
J. Kulkarni, G. Ranade, P.-A. Blanche, H. Rastegarfar,
M. Glick, and D. Kilper. ProjecToR: Agile Reconfigurable
Data Center Interconnect. In SIGCOMM, 2016.

[22] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In SIGCOMM,
2009.

[23] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wether-
all. Augmenting Data Center Networks with Multi-gigabit
Wireless Links. In SIGCOMM, 2011.

[24] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P.
Longtin, H. Shah, and A. Tanwer. Firefly: A reconfigurable
wireless data center fabric using free-space optics. In SIG-
COMM, 2014.

[25] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. Moore,
G. Antichi, and M. Wojcik. Re-architecting datacenter net-
works and stacks for low latency and high performance. In
SIGCOMM, 2017.

[26] B. Ji, C. Joo, and N. B. Shroff. Exploring the inefficiency and
instability of Back-Pressure algorithms. In INFOCOM, 2013.

[27] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas,
D. Theodoropoulos, I. Koutsopoulos, K. Hasharoni, D. Raho,
C. Pinto, F. Espina, S. Lopez-Buedo, Q. Chen, M. Ne-
mirovsky, D. Roca, H. Klos, and T. Berends. Rack-scale dis-
aggregated cloud data centers: The dReDBox project vision.
In DATE, 2016.

[28] K. Keeton. The Machine: An Architecture for Memory-
centric Computing. http://www.mcs.anl.gov/events/
workshops/ross/2015/slides/ross2015-keeton.pdf.

[29] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard, and N. McKeown. Scaling Internet Routers Us-
ing Optics. In SIGCOMM, 2003.

[30] J. H. Kim, W. S. Kwon, H. Lee, K.-S. Kim, and S. Kim. A
novel method to acquire ring-down interferograms using a
double-looped mach-zehnder interferometer. In Lasers and
Electro-Optics (CLEO), 2014.

[31] I. Kuon and J. Rose. Measuring the Gap Between FPGAs
and ASICs. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 26(2), Feb. 2007.

[32] M. Lapinski, T. Wlostowki, J. Serrano, and P. Alvarez. White
Rabbit: a PTP Application for Robust Sub-nanosecond Syn-
chronization. In Proceedings of the International IEEE Sym-

268 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.mcs.anl.gov/events/workshops/ross/2015/slides/ross2015-keeton.pdf
http://www.mcs.anl.gov/events/workshops/ross/2015/slides/ross2015-keeton.pdf

posium on Precision Clock Synchronization for Measurement
Control and Communication, 2011.

[33] K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon.
Globally Synchronized Time via Datacenter Networks. In
SIGCOMM, 2016.

[34] S.-J. Lee, K. Lee, and H.-J. Yoo. Analysis and Implemen-
tation of Practical, Cost-Effective Networks on Chips. IEEE
Des. Test, 22(5), Sept. 2005.

[35] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron,
H. Williams, and X. Zhao. XFabric: A Reconfigurable In-
Rack Network for Rack-Scale Computers. In NSDI, 2016.

[36] O. Liboiron-Ladouceur, A. Shacham, B. Small, B. Lee,
H. Wang, C. Lai, A. Biberman, and K. Bergman. The Data
Vortex Optical Packet Switched Interconnection Network.
Journal of Lightwave Technology, 26(13), 2008.

[37] M. Lipinski, T. Wlostowski, J. Serrano, P. Alvarez, J. D. G.
Cobas, A. Rubini, and P. Moreira. Performance results of
the first White Rabbit installation for CNGS time transfer. In
Proceedings of the International IEEE Symposium on Pre-
cision Clock Synchronization for Measurement Control and
Communication, 2012.

[38] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Pa-
pen, A. C. Snoeren, and G. Porter. RotorNet: A Scal-
able, Low-complexity, Optical Datacenter Network. In SIG-
COMM, 2017.

[39] R. Mittal, T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats.
TIMELY: RTT-based Congestion Control for the Datacenter.
In Sigcomm, 2015.

[40] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and
G. Gaderer. White Rabbit: Sub-Nanosecond Timing Dis-
tribution over Ethernet. In Proceedings of the International
IEEE Symposium on Precision Clock Synchronization for
Measurement Control and Communication, 2009.

[41] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot.
Scale-out NUMA. In ASPLOS, 2014.

[42] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-
Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat. Inte-
grating Microsecond Circuit Switching into the Data Center.
In SIGCOMM, 2013.

[43] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal,
J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y.
Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith,
J. Thong, P. Y. Xiao, and D. Burger. A Reconfigurable Fabric
for Accelerating Large-Scale Datacenter Services. In ISCA,
2014.

[44] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,
and M. Handley. Improving Datacenter Performance and Ro-
bustness with Multipath TCP. In SIGCOMM, 2011.

[45] M. Rizzi, M. Lipinski, T. Wlostowski, J. Serrano, G. Daniluk,
P. Ferrari, and S. Rinaldi. White Rabbit Clock Characteris-
tics. In Proceedings of the International IEEE Symposium
on Precision Clock Synchronization for Measurement Con-
trol and Communication, 2016.

[46] A. Rylyakov, J. E. Proesel, S. Rylov, B. G. Lee, J. F. Bulza-
cchelli, A. Ardey, B. Parker, M. Beakes, C. L. S. Christian
W. Baks, and M. Meghelli. A 25 Gb/s Burst-Mode Receiver
for Low Latency Photonic Switch Networks. IEEE JOUR-
NAL OF SOLID-STATE CIRCUITS, 50(12), Dec. 2015.

[47] Spectrum. 32-port non-blocking 100gbe open ether-
net switch system. http://format.com.pl/site/wp-
content/uploads/2015/09/pb sn2700.pdf.

[48] F. Testa and L. Pavesi, editors. Optical Switching in Next
Generation Data Centers. Springer, 2017.

[49] Tomahawk. As7712-32x/as7716-32x series switch.
http://www.edge-core.com/ upload/images/
AS7712 AS7716-32X DS R09 20170607.pdf.

[50] L. G. Valiant and G. J. Brebner. Universal Schemes for Paral-
lel Communication. In ACM Symposium on Theory of Com-
puting, 1981.

[51] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast
Congestion Control for TCP in Data Center Networks. In
CoNEXT, 2010.

[52] X. Ye, Y. Yin, S. Yoo, P. Mejia, R. Proietti, and V. Akella.
DOS - A scalable optical switch for datacenters. In ANCS,
2010.

[53] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y.
Zhao, and H. Zheng. Mirror Mirror on the Ceiling: Flexible
Wireless Links for Data Centers. In SIGCOMM, 2012.

[54] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang.
Congestion Control for Large-Scale RDMA Deployments .
In SIGCOMM, 2015.

[55] 40g/50g high speed ethernet subsystem v1.0.
https://www.xilinx.com/support/documentation/
ip documentation/l ethernet/v1 0/pg211-50g-
ethernet.pdf.

[56] Amazon joins other web giants trying to design its own chips.
http://bit.ly/1J5t0fE.

[57] Bluespec. www.bluespec.com.
[58] Broadcom BCM56960 series (Tomahawk). http://

bit.ly/2wPnJHI.
[59] Calxeda EnergyCore ECX-1000. http://bit.ly/1nCgdHO.
[60] Choosing the Optimal Data Center Power Density.

http://www.apc.com/salestools/VAVR-8B3VJQ/VAVR-
8B3VJQ R0 EN.pdf.

[61] Cisco Nexus 7700 Switches Data Sheet. http:
//www.cisco.com/c/en/us/products/collateral/
switches/nexus-7000-series-switches/
data sheet c78-728187.html.

[62] Data Plane Programming at Terabit
speeds. https://p4.org/assets/
p4 d2 2017 programmable data plane at terabit speeds.pdf.

[63] DE5-Net FPGA development kit. http://de5-
net.terasic.com.tw.

[64] Electronic Design Blog. http://bit.ly/2xsIhaU.
[65] Facebook Engineering Blog. Introducing ”Yosemite”: the

first open source modular chassis for high-powered mi-
croservers. http://bit.ly/1MpHjuW.

[66] How is a Mega Data Center Different from a Mas-
sive One? http://www.datacenterknowledge.com/
archives/2014/10/15/how-is-a-mega-data-
center-different-from-a-massive-one.

[67] How Microsoft Designs its Cloud-Scale Servers. http://
bit.ly/1HKCy27.

[68] HP Labs. The Machine. https://www.labs.hpe.com/the-
machine.

[69] HP Moonshot System. http://bit.ly/1mZD4yJ.
[70] IEEE Standard 1588-2008. http:

//ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=4579757.

[71] Intel, Facebook Collaborate on Future Data Center Rack
Technologies. http://intel.ly/MRpOM0.

[72] Intel Rack Scale Architecture. http://ubm.io/1iejjx5.
[73] Intel Xeon Processor D-1500. http://intel.ly/2hrn1hR.
[74] Introducing Big Basin: Our next-generation AI hardware.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 269

http://format.com.pl/site/wp-content/uploads/2015/09/pb_sn2700.pdf
http://format.com.pl/site/wp-content/uploads/2015/09/pb_sn2700.pdf
http://www.edge-core.com/_upload/images/AS7712_AS7716-32X_DS_R09_20170607.pdf
http://www.edge-core.com/_upload/images/AS7712_AS7716-32X_DS_R09_20170607.pdf
https://www.xilinx.com/support/documentation/ip_documentation/l_ethernet/v1_0/pg211-50g-ethernet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/l_ethernet/v1_0/pg211-50g-ethernet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/l_ethernet/v1_0/pg211-50g-ethernet.pdf
http://bit.ly/1J5t0fE
www.bluespec.com
http://bit.ly/2wPnJHI
http://bit.ly/2wPnJHI
http://bit.ly/1nCgdHO
http://www.apc.com/salestools/VAVR-8B3VJQ/VAVR-8B3VJQ_R0_EN.pdf
http://www.apc.com/salestools/VAVR-8B3VJQ/VAVR-8B3VJQ_R0_EN.pdf
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728187.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728187.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728187.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728187.html
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
http://de5-net.terasic.com.tw
http://de5-net.terasic.com.tw
http://bit.ly/2xsIhaU
http://bit.ly/1MpHjuW
http://www.datacenterknowledge.com/archives/2014/10/15/how-is-a-mega-data-center-different-from-a-massive-one
http://www.datacenterknowledge.com/archives/2014/10/15/how-is-a-mega-data-center-different-from-a-massive-one
http://www.datacenterknowledge.com/archives/2014/10/15/how-is-a-mega-data-center-different-from-a-massive-one
http://bit.ly/1HKCy27
http://bit.ly/1HKCy27
https://www.labs.hpe.com/the-machine
https://www.labs.hpe.com/the-machine
http://bit.ly/1mZD4yJ
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://intel.ly/MRpOM0
http://ubm.io/1iejjx5
http://intel.ly/2hrn1hR

http://bit.ly/2pQPu2S.
[75] ITU-T Rec. G.8262. http://www.itu.int/rec/T-REC-

G.8262.
[76] Macom M21605 Crosspoint Switch. http://

www.macom.com/products/product-detail/M21605/.
[77] Mellanox ConnectX-4 Ethernet Single and Dual QSFP28

Port Adapter Card User Manual. http://bit.ly/2flbOuZ.
[78] NVIDIA DGX-1 System Architecture. http://bit.ly/

2xjV54K.
[79] SeaMicro SM15000 Fabric Compute Systems. http://

bit.ly/1hQepIh.
[80] Stratix V FPGA. http://www.altera.com/devices/

fpga/stratix-fpgas/stratix-v/stxv-index.jsp.
[81] The Next Platform Blog. Mellanox Comes Out Swinging

With 100G Spectrum Ethernet. http://bit.ly/2cZXrwo.
[82] Under The Hood Of Googles TPU2 Machine Learning Clus-

ters. http://bit.ly/2qfaUDd.

Appendix
A Accounting for propagation delay
Even at the scale of a rack, the propagation delay is not neg-
ligible as compared to the transmission time of a cell. This
means that a cell sent at time slot t will not be received within
the same slot at the receiver. More generally, say that the
cell is received at slot t + k. For the feedback mechanism
described in § 3.3.2 to work optimally in the face of such
propagation delay, there should be at least k slots from the
time node i transmits to node j and the time node j trans-
mits to i, as j needs to know the destination of the last cell
that i sent to j to send back the right rate limit feedback. We
can easily re-arrange any cyclic permutation schedule such
as in Fig. 3 to ensure this property, as long as k is less than
half the number of slots in an epoch—when number of rack
nodes, N, is odd, this constraint can be easily accommodated
by inverting the order of the last N−1

2 columns. This would
ensure that there are exactly N−1

2 slots between the slot in
which i communicates with j and the one in which j com-
municates with i. This is shown in Fig. 19(a). For even N,
this is slightly more complicated as it requires to introduce
an additional empty slot per node to satisfy this requirement
as demonstrated in Fig. 19(b), consequently resulting in a
throughput reduction by a factor of 1

N for each node.

B Resource consumption for Shoal’s FPGA-
based implementation

To understand the resource utilization at scale, we synthesize
our design onto a Stratix-V FPGA [80], which comprises
234,720 adaptive logic modules (ALMs) and 52 Mbits of
BRAM. Assuming 500 nodes and 64-port switches, our NIC
logic consumes about 84% of ALMs and 13% of BRAM
(resp. 2% and 0.2% for the switch). Finally, we did a power
analysis to quantify the overhead of Shoal’s additional func-
tionalities. We leverage the study done in [31] to translate
the power consumption of our FPGA-based design into an
equivalent ASIC design. Assuming a 500-node rack, this re-

1 2

3

7

7
7 2

7
64

6

7

41

5

2

6321

4
3

26 1
4 6 2 7

65
1

5

1

3

5

4
3

3
5

5

4

1 2 3 4 5 6
1
2
3
4
5
6
7

Time slot

N
od

e

1
2
3
41 67 532

7

2
3
4

6

1
8

8 1

8

7

7
7 3

1
84

6

5

8

6

2

218

4
3

36 2
4 6 7 1

85
2

6

4

5

5
4

3
7

5

5

1 2 3 4 5 6
1
2
3
4
5
6
7

Time slot

N
od

e

7

8

(a) Fabric schedule for odd N (b) Fabric schedule for even N

8

Figure 19: Fabric schedule accounting for propagation delay.

sulted in Shoal NIC’s on-chip extra functionality – routing
and congestion control – consuming up to 11% of the power
consumed by commercial ASIC NICs, and Shoal switch’s
extra functionality – reconfiguration using a static schedule
– consuming just 0.1% of the power consumed by commeri-
cal ASIC circuit switches.

C Quality-of-Service
By default, Shoal assumes that each cell belongs to the same
traffic class, and schedules them using a single per destina-
tion FIFO queue. However, Shoal can be easily extended to
support multiple traffic classes by maintaining multiple per
destination FIFO queues, one per traffic class, and schedul-
ing cells from the FIFOs in the order of their priority. Note
that in this case the queue bound (§3.3.4) will only hold for
the highest priority traffic, while the lower priority traffic can
see tail drops. To notify the sender of the tail drop, the node
sets the last-cell-dropped field to 1 in the header of the
next cell it sends to the sender. And finally, the rate limit
feedback for a single traffic class in Eq 6 is updated for mul-
tiple traffic classes as follows—for a cell in traffic class c,

rate limit feedbackc
ji = ∑

p
[len(Qp

jk)+ len(Rp
jk)−1]

∀ traffic class p s.t. priority(p)� priority(c)

D Recovering from cell corruption
Shoal uses the CRC field in the cell header to check for
cell corruption. If node j receives a corrupted cell from
node i, it first extracts the header fields corresponding to
congestion control, namely the rate limit feedback and
last-cell-dropped, and then discards the cell. It also sig-
nals the sender i that the cell was dropped by setting the
last-cell-dropped field to 1 in the header of the next
cell sent to node i. Node i then re-transmits the last cell it
sent to node j. Since the last-cell-dropped field in the
corrupted cell might also have been corrupted, node j takes
the conservative approach of assuming the field was set to 1
and re-transmits the last cell it sent to node i. Further, if the
rate limit feedback field also happens to be corrupted,
the queue bound as described in §3.3.4 might get violated
and there could be tail drops in the worst case. Shoal again
uses the last-cell-dropped field in the cell header to no-
tify the sender of any tail drop.

270 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://bit.ly/2pQPu2S
http://www.itu.int/rec/T-REC-G.8262
http://www.itu.int/rec/T-REC-G.8262
http://www.macom.com/products/product-detail/M21605/
http://www.macom.com/products/product-detail/M21605/
http://bit.ly/2flbOuZ
http://bit.ly/2xjV54K
http://bit.ly/2xjV54K
http://bit.ly/1hQepIh
http://bit.ly/1hQepIh
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://bit.ly/2cZXrwo
http://bit.ly/2qfaUDd

NetScatter: Enabling Large-Scale Backscatter Networks

Mehrdad Hessar†, Ali Najafi† and Shyamnath Gollakota
University of Washington

†Co-primary Student Authors

Abstract – We present the first wireless protocol
that scales to hundreds of concurrent transmissions from
backscatter devices. Our key innovation is a distributed cod-
ing mechanism that works below the noise floor, operates
on backscatter devices and can decode all the concurrent
transmissions at the receiver using a single FFT operation.
Our design addresses practical issues such as timing and fre-
quency synchronization as well as the near-far problem. We
deploy our design using a testbed of backscatter hardware
and show that our protocol scales to concurrent transmis-
sions from 256 devices using a bandwidth of only 500 kHz.
Our results show throughput and latency improvements of
14–62x and 15–67x over existing approaches and 1–2 orders
of magnitude higher transmission concurrency.

1 Introduction
The last few years have seen rapid innovations in low-power
backscatter communication [20, 31, 18, 15, 17, 21], culmi-
nating in long range and reliable backscatter systems [26, 23,
28]. These designs enable wireless devices to communicate
at microwatts of power and operate reliably at long ranges
to provide whole-home or warehouse coverage. To achieve
this, they employ low-power coding techniques such as chirp
spread spectrum, to decode weak backscatter signals below
the noise floor [23, 26] and deliver long ranges.

While these long range backscatter systems are promis-
ing for enabling power harvesting devices (e.g., solar and
vibrations) as well as cheap and small Internet-connected de-
vices that operate on button-cells or flexible printed batteries,
they primarily work at the link layer and are not designed
to scale with the number of devices — all these prior de-
signs [26, 23, 28] are evaluated in a network of 1–2 devices.

Our goal in this paper is to design a network protocol
that enables these low-power backscatter networks to sup-
port hundreds to thousands of concurrent transmissions. This
is challenging because the resulting design must operate re-
liably with weak backscatter signals that can be close to or
below the noise floor. To this end, we present NetScatter, the
first wireless protocol that can scale to hundreds and thou-

Figure 1: Large-Scale Network Deployment of Backscat-
ter Devices. We deploy 256 backscatter devices across a
floor of an office building covering multiple rooms.

sands of concurrent transmissions from backscatter devices.
Our design enables concurrent transmissions from 256 de-
vices over a bandwidth of 500 kHz. Consequently, it can
support transmissions from a thousand concurrent backscat-
ter devices using a total bandwidth of only 2 MHz.

Our key innovation is a distributed coding mechanism that
satisfies four key constraints: i) it enables hundreds of de-
vices to concurrently transmit on the same frequency band,
ii) it can operate below the noise floor while achieving rea-
sonable bitrates, iii) its coding operation can be performed
by low-power backscatter devices, and iv) it can decode all
the transmissions at the receiver using a single FFT opera-
tion, thus minimizing the receiver complexity.

We introduce distributed chirp spread spectrum coding,
which uses a combination of chirp spread spectrum (CSS)
modulation and ON-OFF keying. In existing CSS systems
(e.g., LoRa backscatter [26]), the AP transmits a continuous
wave signal which each device backscatters and encodes bits
using different cyclic shifts of a chirp signal. In contrast,
in our distributed CSS coding, we assign a different cyclic
shift of the chirp to each of the concurrent devices. Each
device uses ON-OFF keying over these cyclic shifted chirps
to convey bits, i.e., the presence and absence of the corre-
sponding cyclic shifted chirp correspond to a ‘1’ and ‘0’ bit
respectively, as shown in Fig. 2. Note that in comparison to

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 271

(a) Existing CSS Modulation (i.e., LoRa)

(b) Our Distributed CSS Coding

Figure 2: NetScatter Overview. In traditional CSS systems,
a single device uses different cyclic shifts to convey bits. In
distributed CSS coding, each cyclic shift is assigned to a dif-
ferent backscatter device. Each device then uses the presence
and absence of cyclic shift to send ‘1’ and ‘0’ bits.

existing CSS systems where each device transmits log2N bits
using N cyclic shifts, our distributed design enables N con-
current devices, each of which transmits a single bit, using
ON-OFF keying. Thus, our design transmits a total of N bits
within a chirp duration, providing a theoretical gain of N

log2N .
Our design leverages the fact that creating concurrent

cyclic-shifted chirps at a single device requires distributing
its transmit power amongst all the cyclic shifts, which re-
duces the ability of the receiver to decode each chirp. In-
stead we generate concurrent cyclic-shifted chirps across a
distributed set of low-power devices in the network. This al-
lows us to efficiently leverage the coding gain provided by
chirp spread spectrum under the noise floor [9]. Further, we
can decode all the concurrent transmissions using a single
FFT operation, since cyclic shifting the chirps in the time
domain translates to offsets in the frequency domain.

Using the above distributed coding mechanism in practice,
however, is challenging for two key reasons.

• Near-far problem. A fundamental problem with en-
abling concurrent transmissions is that signals from a nearby
backscatter device can overpower a farther concurrent de-
vice. To address this issue, we introduce two main tech-
niques. First, we present a power-aware cyclic shift allo-
cation technique in §3.2.3, where lower SNR devices use
much different cyclic shifts than higher SNR devices. We
show that such an allocation can allow backscatter devices
that have an SNR difference of up to 35 dB to be concur-
rently decoded. Second, to account for channel variations
over time, we develop a zero-overhead power adaptation al-
gorithm where backscatter devices use reciprocity to esti-

mate their SNR at the AP, using the signal strength of the
AP’s query message. The backscatter devices then adjust
their transmission power to fall within the tolerable SNR dif-
ference. Since this calibration is done independently at each
backscatter device using the AP’s query, it does not require
additional communication overhead at the AP.
• Timing synchronization. The above design requires all
the devices to start transmitting at the same time so as to
enable concurrent decoding. However, hardware variations
and propagation delays of different devices can make it chal-
lenging for hundreds of devices to be tightly synchronized
in time. To avoid this coordination overhead, we leave gaps
between cyclic shifts to ensure that concurrent devices can
be decoded. We explore the trade-off between the required
gaps and the chirp bandwidths in §3.2.1.

We implement NetScatter on a testbed of backscat-
ter devices. We create backscatter hardware that imple-
ments NetScatter and includes circuits to perform automatic
power adaptation before each transmission. We deploy our
backscatter testbed with 256 devices in an office building
spanning multiple rooms as shown in Fig. 1. We implement
our receiver algorithm using USRP X-300 software-defined
radios. Our results reveal that over a 256 node backscatter
deployment, NetScatter achieves a 14–62x gain over prior
long-range backscatter systems [26] for its end-to-end link
layer data rates. The key benefit however is in the network
latency which sees a reduction of 15–67x.

Contributions. Our paper demonstrates, to the best of our
knowledge, the first network protocol that achieves orders
of magnitude more concurrent transmissions than existing
backscatter systems. The closest work to our design is
Choir [12] in the radio domain, which decodes concurrent
transmissions from 5–10 LoRa radios at a software radio.
Choir leverages frequency imperfections to disambiguate be-
tween LoRa radios. However, backscatter devices achieve
low-power operations by running at a lower frequency (1-
10 MHz) than radios (900 MHz) and thus have much smaller
frequency differences between backscatter devices. This
severely limits the ability to rely on frequency imperfections
to disambiguate between a large number of backscatter de-
vices (see §2.2). In contrast, our distributed chirp spread
spectrum coding mechanism provides a systematic approach
to enable large scale backscatter networks.

2 CSS Primer & Existing Approaches
2.1 Primer on Chirp Spread Spectrum
In CSS, data is modulated using linearly increasing fre-
quency signals or upchirps. The receiver demodulates these
symbols in a two step process. First, it de-spreads these up-
chirp symbols by multiplying them by a downchirp and it
then performs an FFT on the de-spread signal. Since the
slope of the downchirp is the inverse of the slope of the up-
chirp, multiplication results in a constant frequency signal,

272 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) (b) (c)

Figure 3: CSS Primer. We show upchirp and downchirp
symbols and FFT results of their multiplication. (a) Baseline
upchirp symbol, (b) frequency shifted upchirp symbol and
(c) cyclically shifted upchirp symbol.

as shown in Fig. 3(a). Thus, taking an FFT on this will lead
to a peak in an associated FFT bin. Changing the initial fre-
quency of an upchirp will result in a change in the demodu-
lated signal’s FFT bin peak index which corresponds to the
initial change in frequency, as shown in Fig. 3(b). This prop-
erty is used to convey information. When the sampling rate
is equal to chirp bandwidth (BW), frequencies higher than
BW

2 will alias down to −BW
2 as shown in Fig. 3(c). This means

cyclically shifting in time is equivalent to changing the initial
frequency and thus to conserve bandwidth, CSS uses cyclic
shifts of the chirp in the time-domain instead of frequency
shifts. This means that to modulate the data we just need to
cyclically shift the baseline upchirp in time. Note that one
can transmit multiple bits within each upchirp symbol. In
particular, say the receiver performs an N point FFT. It can
distinguish between N different cyclic shifts each of which
corresponds to a peak in one of the N FFT bins. Thus, we
can transmit SF = log2N bits within each upchirp symbol,
where SF is called the spreading factor.

Based on above explanations, CSS can be characterized by
two parameters: chirp bandwidth/sampling rate and spread-
ing factor. Thus, each chirp symbol duration is equal to 2SF

BW
and the symbol rate is BW

2SF . Since CSS sends SF bits per sym-
bol, the bitrate is equal to BW

2SF SF. This means increasing SF
or decreasing BW decreases the bitrate. Further, the sensitiv-
ity of the system depends on the symbol chirp duration and
increases with SF and decreases with BW.

2.2 Existing Collision Approaches
While existing CSS-based backscatter systems do not sup-
port collision decoding, we outline potential approaches to
deal with collisions in CSS radio systems, i.e. LoRa, and
explore whether they can be adopted for backscatter.

Using different spreading factors. One way to enable con-
current transmissions is to assign different spreading factors
to each device. There are three problems with using multiple
spreading factors in the same network: i) the receiver needs
to use multiple FFTs and downchirps with different spread-
ing factors to despread upchirp symbols of different devices,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

C
D

F

∆FFTBin

Backscatter Devices

LoRa Radios

Figure 4: Choir Approach. We evaluate FFT variation of
chirp symbols when BW = 500 kHz and SF = 9 for both
active LoRa radios and backscatter devices.

which increases the receiver complexity with the number of
concurrent transmissions, ii) in LoRa, different BW and SF
can be concurrently decoded without sensitivity degradation,
only if the chirp slope is different [25]. Specifically, if two
chirp symbols transmitted concurrently with different BW
and different SF, which result in the same chirp slope, BW2

SF
(shown in Fig. 6 as well), the receiver cannot decode their
concurrent transmissions. This results in only 19 different
BW and SF pairs that could be used concurrently, iii) fur-
ther, requiring receiver sensitivity better than -123 dBm and
bitrates of at least 1 kbps limits these concurrent configura-
tions to only 8, which does not support hundreds of concur-
rent devices on a 500 kHz band. Note that ignoring the re-
ceiver complexity, this approach is orthogonal to our design
since we could in principle run multiple concurrent NetScat-
ter networks with the above 8 SF and BW pairs. Evaluating
this is not in the scope of this paper.

Choir [12]. Recent work on decoding concurrent LoRa
transmissions leverages the hardware imperfections in radios
to disambiguate between multiple transmissions. Specifi-
cally, radios have slight variations which result in timing and
frequency offsets, which translate to fractional shifts in the
FFT indexes. Choir [12] uses these fractional shifts, with a
resolution of one-tenth of an FFT bin, to map the bits to each
transmitter. However, as demonstrated in [12], in practice
this approach does not scale to more than 5 to 10 concurrent
devices. To understand this limitation in theory, consider N
concurrent devices. The probability that each of these trans-
mitters has a different FFT peak index fraction, given the
resolution of one-tenth of an FFT bin, is equal to 10!

(10−N)!10N .
When N is 5 this probability is only 30%. Moreover, if any
two transmitters use the same cyclic shifted upchirp sym-
bol at the same time, it will result in a collision that can-
not be decoded. In the case of LoRa modulation, if there
are N transmitters and assuming each device transmits a ran-
dom set of bits during each symbol interval, the probability
of two transmitters using the same cyclic shift is equal to:
1−∏

N
i=1(1− i−1

2SF) which is approximately N(N−1)
2SF+1 .

For SF = 9 and N = 10, this probability is around 9%.
This means that there is around 9% probability that within
each CSS symbol, two transmitters will use the same up-
chirp cyclic shift, which the receiver cannot disambiguate.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 273

Figure 5: Bandwidth Aggregation. Here we use an aggre-
gate bandwidth of 2BW but each device transmits only using
BW. Upchirps with different cyclic shifts shown in different
colors. Each upchirp is assigned to a device.

This probability increases to 32% with 20 devices, prevent-
ing concurrent decoding of a large number of transmitters.

Moreover, Choir is based on oscillator imperfection caus-
ing frequency variation on different devices, and Choir can-
not differentiate two concurrent transmissions if both trans-
missions fall into same FFT bin fraction. Choir uses an active
radio system which generates frequencies in 900 MHz band.
However, since backscatter systems are designed to consume
less power and only generate baseband signals, their output
frequency is less than 10 MHz. Now, in the ideal scenario
where the same crystal oscillator is used for both radios and
backscatter devices, the frequency variation of the backscat-
ter devices is 90 times smaller than radios and can be even
less than 1 FFT bin depending on the SF and BW. This
means a backscatter network cannot use all 10 different FFT
bin fractions that Choir have used. Fig. 4 shows CDF of FFT
bin variation for our actual backscatter hardware which are
recorded over time. This results show that FFT variation is
always less than a third of an FFT bin. Thus, Choir cannot
enable large concurrent transmissions with backscatter.

In conclusion, the desired solution must satisfy three con-
straints: 1) ability to differentiate between FFT peaks cor-
responding to different backscatter devices, 2) ability to as-
sociate the FFT peaks to the corresponding devices, and 3)
ensure that two devices do not use the same FFT peak at the
same time. NetScatter design satisfies all these constraints.

3 NetScatter Design

3.1 Distributed CSS Coding
Our approach is to take advantage of low-power and high
sensitivity of CSS modulation to design a communication
and networking system that enables hundreds of backscatter
devices to transmit at the same time.

At a high level, we use a combination of CSS modula-
tion and ON-OFF keying to enable concurrent transmissions.
Our intuition is as follows: if we look at the FFT plots of
Fig. 3, all the FFT bins except one bin are empty; however
these empty bins could be utilized for orthogonal transmis-
sions. While it is difficult to design low-power backscatter
devices that can transmit multiple cyclic shifts at the same

Figure 6: Timing Mismatch, in detecting beginning of a
chirp symbol and its translation to FFT bin variation.

time, we can leverage all these empty bins by having dif-
ferent devices transmit different shifts and make use of the
unused FFT bins. In particular, each device is assigned to
a particular cyclic shifted upchirp symbol. It sends data by
either sending the upchirp symbol or not sending it, i.e., by
using ON-OFF keying of its assigned cyclic shifted chirp.
Since, there are 2SF FFT bins, ideally we can support 2SF

concurrent transmissions. This modulation will satisfy the
above three requirements. The peaks can be differentiated
and assigned to their corresponding devices. Moreover, none
of them will use the same FFT bin at the same time.

We note the following about our distributed design.

• Receiver complexity. The received signal is composed
of multiple transmissions. They can be demodulated by de-
spreading with a baseline downchirp multiplication and per-
forming an FFT operation. Then, we can determine the pres-
ence and absence of a peak in each FFT bin and find if the
corresponding backscatter device is sending ‘0’ or ‘1’. The
key point is that the process of despreading and performing
FFT, which are the major contributors of the demodulation
process and provide a coding gain for each of the backscat-
ter devices enabling them to operate below the noise floor,
are being done once and do not depend on the number of
concurrent transmissions. This means that the receiver com-
plexity is nearly constant with the number of devices.
• Throughput gain. In our approach, ideally there can be
as many as 2SF transmissions at each symbol period. Since
each backscatter device uses ON-OFF keying over a symbol,
their individual data rate is BW

2SF . Thus, the aggregate net-
work throughput is equal to BW. In comparison, LoRa have
a throughput of BW

2SF SF. Thus, we can achieve a through-

put gain of 2SF

SF , which shows that the gain exponentially in-
creases with the SF value used in the system. This is ex-
pected since the number of concurrent devices we can sup-
port is an exponential function of SF, i.e., 2SF .
• NetScatter and CDMA. Our distributed CSS coding can
be thought of as code-division multiplexing mechanism that
is low-power and where each of the 2SF cyclic shifts is in
an orthogonal set of codes in a CDMA system. These or-
thogonal codes are then assigned to 2SF different backscatter
devices which enables 2SF concurrent transmissions.

274 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Gain in the context of Shannon capacity. A key gain
we are achieving in our design stems from using the power
across all the concurrent backscatter devices. Specifically
we note that the Shannon capacity of a multi-user network
that operates under the noise floor linearly increases with the
number of devices. Said differently, the multi-user capacity
of an access point network is given as [27], C = BW log2(1+
NPS
PN

). Here BW is the channel bandwidth, PN and PS are the
noise and signal power and N is the number of concurrent
devices. At SNRs below the noise floor, the above equation
can be approximated as BW

ln(2)
NPS
PN

, since ln(1+ x) ≈ x when
x is small. This means that for systems that operate below
the noise-floor, the network capacity scales linearly with the
number of users. This linear increase stems from the fact that
the N backscatter devices put in N times more power back to
the AP than a single backscatter device.
• Bandwidth aggregation. The bitrate achieved by each
backscatter device in our distributed design is given by BW

2SF

and the number of concurrent devices is 2SF . Thus, while
we can increase the number of devices by increasing SF, it
would decrease the bitrate of each device. Thus, to increase
both the bitrate and the number of device we should increase
the bandwidth, BW. Say, we want to support twice the num-
ber of devices while maintaining the same bitrate by using
twice the bandwidth. This can be achieved in two ways.
First, we can use two filters and independently operate two
sets of devices across the two bands. This approach requires
two different FFTs to be performed independently across the
bands. The second approach is to use one aggregate band
with twice the bandwidth, 2BW, but use the same SF and
chirp BW as before and alias down to −BW whenever the
chirp frequency hits the maximum as shown in Fig. 5. To
demodulate this signal, we just need to multiply the signal
which is composed of the aggregate band by the downchirp
and perform 2×2SF FFT operation once. The complexity of
this method is lower than the former since there is no need to
use filters and separate the bands.

3.2 Addressing Practical Issues

3.2.1 Timing Mismatch
The above design requires all the backscatter devices to be
time synchronized. To understand why, consider two con-
secutive upchirps being sent by a device, as shown in Fig. 6.
Now say that we demodulate the signal in these two timing
durations, shown in blue and red, we will get different FFT
peak locations. Specifically, with a ∆t time difference be-
tween these durations, the corresponding FFT bin peak loca-
tion would change by, ∆FFTbin = ∆tBW. When this change
is greater than a single FFT bin, backscatter devices that are
assigned to consecutive cyclic shifts interfere with each other
and cannot be decoded. Thus, all the devices should be time
synchronized. In our design the access point sends a query
message telling devices to transmit concurrently. The de-

vices use this query to synchronize and respond concurrently.
First, we explain the sources of time delay in our system and
then we explain our solutions. There are multiple factors that
can contribute to time delays introduced in practice and can
be different for different backscatter devices.

• Hardware delay. Unlike Wi-Fi devices which use much
higher clock frequencies for processors, backscatter devices
use low-power microcontrollers (MCUs) that can introduce
a variable delay into the system. For backscatter devices,
the source of these hardware delay variations come from the
time the envelope detector receives the query message from
the access point, communicates it to the MCU and then the
device backscatters the chirp signal. As we show in §4.2, this
hardware delay variations can be as high as 3.5 µs, which can
translate to more than one FFT bin at 500 kHz bandwidth.
• Propagation delay and multipath. Since backscatter de-
vices can be at different distances to the access point, their
time of flight (TOF) can be different. However, since our tar-
get application is for whole-home or warehouse sensing, the
propagation distance is less than 100 m which translates to
a ToF < 666ns = 2×100

3×108 and corresponds to only a 0.33 FFT
bin change, assuming a bandwidth of 500 kHz. The multi-
path delay spread for indoor environments is between 50 to
300 ns [24, 11]. For 500 kHz, this delay spread translates to
less than 0.15 FFT bin change, which is negligible.

Our solution: Bandwidth-based cyclic-shift assignment.
Hardware delay variations over time are hard to correct
for. As described above, by nature of operating on MCUs
and other low-power computational platforms, these devices
have a hardware delay variation over time that changes be-
tween packets. Our solution to this problem is to put a few
empty FFT bins adjacent to each FFT bin assigned to a de-
vice. That is, if FFT bin i is assigned to a device, the adjacent
SKIP−1 FFT bins are empty and not assigned to any device.
This can be done by using only every SKIPth cyclic shift of
the chirp. This ensures that the hardware delay does not re-
sult in interference between adjacent devices.

Achieving such an assignment requires us to answer the
following key question: how do we pick the value SKIP?
As described earlier, given the hardware delay variation ∆t,
the shift in the number of FFT bins is ∆tBW. This means
that there is a trade-off in our system regarding the total net-
work throughput, bitrate for each device and sensitivity. In
particular, increasing BW increases the number of FFT bins
that have to be left empty and decreases the total network
throughput. On the other hand, decreasing BW reduces the
number of FFT bins but decreases the bitrate per device with
the same SF. To compensate for the decreased device’s bi-
trate, we can decrease the SF. Note that, we can choose total
bandwidth, chirp BW and SF of the system by considering
the hardware delay variations, required bitrate per device,
sensitivity for each device and total number of devices. For
our implementation, we pick the same total bandwidth and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 275

Table 1: NetScatter Different Modulation Configurations,
with maximum time/freq. mismatch that can be tolerated.

BW
[kHz] SF

Time
Variation

Frequency
Variation

Bit Rate
[bps]

Sensitivity
[dBm]

500 9 2 µs 976 Hz 976 -123
500 8 2 µs 1953 Hz 1953 -120
250 8 4 µs 976 Hz 976 -123
250 7 4 µs 1953 Hz 1953 -120
125 7 8 µs 976 Hz 976 -123
125 6 8 µs 1953 Hz 1953 -118

-30

-20

-10

 0

 0 200 400 600 800 1000

G
a
in

 (
d
B

)

Z0

(a) (b)
Figure 7: Power Adjustment for Backscatter. (a) gain nor-
malized to maximum power as a function of Z0 impedance
and (b) switch network to support multiple power levels.

chirp BW of 500 kHz and SF = 9 which supports around
1 kbps (976 bps) bitrate at each device while ensuring that
the number of empty bins between devices, SKIP, is two.

3.2.2 Frequency Mismatch
The devices experience frequency offsets because of hard-
ware variations in the crystals used in their oscillators. As
explained in §2.1, change in frequency translates to FFT bin
change of the demodulated device packet. This again, causes
one device to be misinterpreted as other device. Considering
a bandwidth of BW and spreading factor of SF, the frequency
difference between FFT bins is equal to BW

2SF . This means that
a ∆f frequency offset results in a change in the FFT bin of
∆FFTbin =

2SF∆f
BW . Therefore, either increasing the spreading

factor SF or decreasing the BW can increase the shift in the
FFT bin. Crystals’ frequency tolerance can be as high as
100 ppm [2]. Since backscatter devices run at a few MHz
frequencies, this frequency variation translates to less than
one FFT bin for the bandwidths and spreading factors in this
paper which makes it negligible for our backscatter network.

Table 1 shows the timing and frequency mismatch that can
be tolerated for different modulation configurations. As can
be seen, there are multiple options for achieving the same
bitrate and sensitivity. These options will result in different
tolerable timing and frequency mismatch, requiring a differ-
ent SKIP value; this is validated using experiments in §4.2.

3.2.3 Near-Far Problem
Since our network are designed to work in below-noise con-
ditions, we need to address the near-far problem in our de-
coding process at the receiver. Specifically, to account for
the residual timing and frequency offsets, a CSS receiver has
to achieve a sub-FFT bin resolution. To do so without in-
creasing the sampling rate, the receiver uses zero-padding
which adds zeros at the end of the time domain samples of

-50

-40

-30

-20

-10

 0

 0 640 1280 1920 2560 3200 3840 4480 5120

 0 64 128 192 256 320 384 448 512

P
o

w
e

r
(d

B
)

FFT Bin

SKIP

High Power Low Power High Power

∗ (SKIP=2,-13dB)

∗ (SKIP=3,-21dB)

Figure 8: Normalized Power Spectrum. We show power
spectrum of an upchirp multiplied by a baseline downchirp
in FFT domain. This plot shows the main lobe and side lobes
of a single chirp transmission. We assign devices to high and
low power regions based on their power level.

the single chirp [12]. Zero-padding operation in the time do-
main is effectively a multiplication operation with a pulse
which translates to convolution with a sinc function in the
FFT domain. This makes it easier to locate the FFT peak lo-
cation. However, convolving with a sinc function introduces
side lobes as shown in Fig. 8. Assume that there are two de-
vices with cyclic shifts C1 = 0 and C2. If the power of C2 is
lower than power of C1’s side lobes, it cannot be decoded.

Our solution. To address this issue, we propose two tech-
niques that work together to increase our dynamic range.

Coarse-grained power-aware cyclic shift assignment. Our
intuition here is as follows: Fig. 8 suggests that we should
assign adjacent FFT bins to devices that have a small SNR
difference. In particular, when SKIP is 2, for two neighbor-
ing backscatter devices with an SNR difference greater than
13 dB, the lower power device cannot be decoded. Further,
it shows that the side-lobe power of a high SNR device de-
creases as we go to farther FFT bins. Thus, we need to en-
sure that a lower SNR device has to correspond to FFT bins
that are farther from the FFT bins corresponding to higher
SNR devices. This ensures that the side-lobes of the high-
SNR device do not affect the decoding of the low-SNR de-
vices. Specifically, we assign different cyclic shifts to differ-
ent devices at association phase to ensure that the FFT bins
corresponding to the lower-SNR devices are close to each
other and are far from higher-SNR devices. To do this, the
AP computes the signal strength of the incoming device in
the association phase (see §3.3.2) and assigns its cyclic shift
based on its signal strength and also the strengths of the de-
vices that are already in the network.

We run simulations to understand the benefits of this al-
location. Specifically, we assign two devices to FFT bins
2 and 258, with SF = 9 and BW = 500 kHz. To be realis-
tic, we added Gaussian frequency mismatch with variance of
300 Hz to each device to account for timing and frequency
mismatches between them. We change the power of the sec-
ond device and measure the bit error rate (BER) for the first
device. Fig. 12 shows the BER over 104 symbols, for dif-
ferent power differences between the two devices. As can

276 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

C
D

F

SNR Variance (dB)

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Device 7

Device 8

Figure 9: Backscatter Devices SNR Variance. CDF of
SNR variance of backscatter devices in an office environ-
ment, when people were walking around, over 30 mins.

be seen, the BER remains unaffected even when the second
device is around 40 dB stronger than the first device. This
shows that our power-aware allocation can in theory toler-
ate power difference of 40 dB between devices. In practice
however this is a little lower at 35 dB (see §4.3).

Fine-grained self-aware power-adjustment. While the
above assignment is determined at association, mobility in
the environment and fading will change the SNR of each of
the devices over time (see Fig. 9). To address this, each de-
vice adjusts its power over time using the signal strength of
the query message from the AP, using three different levels.
We define the maximum power of the device as 0 dB power
gain. First, during association, we consider two cases for the
associating device. If it sees a low received signal strength
for the AP’s query packet, it sets its power gain to the max-
imum. Otherwise, it sets its gain to the middle level. This
gives the higher signal strength backscatter devices leeway
to both increase and decrease their power, after association.
The AP uses the resulting backscatter signal strengths dur-
ing association to assign a corresponding cyclic shift. The
backscatter devices use the signal strength at association as
a baseline and either increase or decrease their power gains
for the rest of the concurrent transmissions, i.e., if the signal
strength for the AP’s query message increases (decreases),
the backscatter devices decrease (increase) their power gain.
If the device cannot meet its expected SNR requirements
given its limited power levels and assigned cyclic shift, it
does not join the concurrent transmissions. If this happens
more than twice, the backscatter device re-initiates associa-
tion after which the AP reassigns the cyclic shifts to account
for the new significantly different power value (see §3.3.2).

The key question however is: how can a low-power
backscatter device change its transmission power gain? This
is interesting since power adaptation has not been used be-
fore in the network of backscatter devices. In backscatter, the
transmit power gain, Gainpower, is equal to |Γ0−Γ1|2

4 . Here
Γ0 and Γ1 are reflection coefficients for switching between
two impedance value, Z0 and Z1. Backscatter hardware is
designed to maximize the difference between reflection co-
efficients to maximize their transmission power. This cor-
responds to Gainpower = 0 dB. One way to achieve this
is to switch between extreme impedance values, Z0 = 0Ω

and Z1 = ∞Ω. To achieve power adaptation, in contrast, we
pick impedance values that correspond to multiple power set-

Figure 10: NetScatter Network Association Process. We
show the association process of an incoming NetScatter de-
vice (#2) to the network, while there are existing devices as-
sociated with the network (i.e., device #1).

tings. In particular, as shown in Fig. 7a, instead of switching
from Z0 = 0Ω, we switch from intermediary impedances and
hence achieve lower power gains. Our hardware implemen-
tation achieves three power gains of 0 dB, -4 dB and -10 dB
to achieve power adaptation. Note that [26] uses a similar
circuit structure as Fig. 7b to cancel higher order harmonics.
We instead design this circuit structure to control the power.

Design trade-off. Readers might wonder if reducing the
power of high SNR devices would decrease the network
throughput, since high SNR devices in traditional LoRa
backscatter designs can achieve a higher bitrate. In con-
trast, by reducing their power we are enabling a large num-
ber of concurrent transmissions with a fixed bitrate. Thus,
we are encouraging concurrency by reducing the bitrate of
high SNR devices. §4.4 compares the results for NetScat-
ter with one where each backscatter device uses rate adapta-
tion to pick its ideal bitrate, while transmitting alone using
LoRa backscatter [26]. The results show that the network
throughput and latency gains due to large scale concurrency
outweigh the reduction in the power for high SNR devices.

3.3 NetScatter Protocol & Receiver Details
Putting it together, the AP transmits an ASK modulated
query message which is used to synchronize all the partic-
ipating concurrent devices. This message conveys informa-
tion about cyclic shift assignment which are based on the
devices’ signal strength at the AP. The devices measure the
query message’s signal strength using the envelope detector
and use it to fine-tune their transmit power gain. In the rest
of this section, we describe various protocol details required
to make our design work in practice. Note that our focus in
the protocol design is about scheduling a set of concurrent
transmissions. Typically networks could have more devices
than concurrent transmitters supported by our design. Since
the AP knows the duty-cycle of each device from the associa-
tion phase (see §3.3.2), it can i) assign the cyclic shifts and ii)
schedule the devices involved in concurrent transmissions.

3.3.1 Link-Layer Backscatter Packet Structure
Similar to LoRa, the device packet starts with upchirp and
downchirp preambles. They are designed to serve two pur-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 277

poses: i) finding the start of the packet and ii) detect-
ing the transmissions. We emphasize here that the de-
vice transmits the same assigned cyclic shift for both up-
chirps and downchirps in the preamble as well as the pay-
load. The preamble consists of six upchirps followed by two
downchirps. This is then followed by the payload and the
checksum. We note that in our design, all the devices send
their preambles concurrently. This reduces the overhead of
transmitting preambles for each device, which in turn in-
crease the end-to-end throughput gain achieved by NetScat-
ter. The AP uses the above structure to achieve two goals.

i) Finding the exact packet start. We use the downchirp in
the preamble to find the start of the packet transmission.
Specifically, we use the middle point between an upchirp and
downchirp and switch by six upchirp symbols, number of
preamble symbols in our implementation, to the left to find
the packet beginning. We suspect that the LoRa preamble
has a downchirp for this exact purpose. We note that in our
case, since the upchirp and downchirp in the preamble from
each of the devices uses the same cyclic shifts, they are sym-
metric around the middle point and hence the same algorithm
for estimating the packet beginning is applied.

ii) Detecting and decoding each concurrent transmitter. Now
that we found the packet start, we need to find out which
transmitters are in the network. To do so, for each pream-
ble symbol, we demodulate it and look at the peaks in FFT
domain. If there is an FFT peak in the demodulator output
which repeats in all the preamble symbols, we conclude that
the device corresponding to that cyclic shift is sending data.
After finding current devices in the network, we compute
the average power over the six preamble symbols for each
device. This average power is used as a threshold to demod-
ulate the payload of each device. In particular, if the power
of the device’s FFT peak for each payload symbol is more
than half this average, we interpret that as 1 and 0 otherwise.

3.3.2 Network Association
Say the network already has N devices associated to the AP
and the N + 1th device wants to join the network. A naı̈ve
approach is to periodically dedicate time periods for asso-
ciation. This however can lead to high association delays
depending on the frequency of the association periods. Our
approach instead is to reserve Nassoc cyclic shifts and the cor-
responding FFT bins for association and use the rest for com-
munication. In other words, all the devices transmit at the
same time but the ones who want to enter the network trans-
mit with the Nassoc association cyclic shifts.

To address the near-far problem, we reserve two cyclic
shifts, one in high-SNR and the other one in the low-SNR
cyclic shift regions. The incoming device would choose
which association region to transmit based on the signal
strength of the AP’s query message, calculated using the en-
velope detector. However to account for the hardware delay
variations, as before, we skip two cyclic shifts to ensure that

Figure 11: Structure of AP’s Query Message.

the association packets from the devices can be decoded and
will not interfere with communication cyclic shifts. Finally,
to support scenarios where more than one device want to as-
sociate at the same time, one can use Aloha protocol with
binary exponential back-off in the association process. Our
deployment does not implement this option and turns ON the
backscatter devices one at a time and runs the network only
after all the devices are associated.

After the incoming device sends its packet to the AP in
association process using the association cyclic shifts, the
AP computes its signal strength and decides which cyclic
shift and timing schedule it should be assigned to. The AP
piggybacks these assignments in its query messages.

3.3.3 AP Query Message
Fig. 11 shows the ASK-modulated query message that the
AP sends. The message has a group ID which identifies the
set of 256 devices that should concurrently transmit. In our
implementation, since there are only 256 devices, we set this
group ID to 0. In a larger network, the AP can assign differ-
ent sets of devices to different groups depending on their sig-
nal strengths, i.e., devices that have a similar signal strength
are grouped into the same group to enable concurrent trans-
missions while further minimizing the near-far problem.

This is then followed by an optional association response
payload that assigns an 8-bit network ID and a 8-bit cyclic
shift. Note that prior LoRa backscatter designs are request-
response systems that query each backscatter device sequen-
tially and need most of the fields in Fig. 11 other than the
group ID and cyclic shift assignment. Since these additional
12 bits is transmitted using 160 kbps ASK downlink, the
overhead is negligible compared to the 1 kbps backscatter
uplink. Finally, we note that if the AP is unable to assign a
new device given the existing assignments, the AP updates
the cyclic shift assignments for all the devices in the net-
work. It does so by transmitting the identifier for one of the
the 256! orderings, which requires log2(256!) (≤1700) bits.
This occupies less than 11 ms using our 160 kbps downlink.

3.3.4 Network Protocol
Fig. 10 summarizes our network protocol. First the AP
broadcasts its query. Device 1, which is already associated
to the network receives the query and sends its data using its
assigned cyclic shift after performing any necessary power
control. Concurrently, device 2 sends a Association Request
using one of the Nassoc cyclic shifts. The AP receives these
two messages and broadcast another query which includes
association information for device 2. Upon receiving this
query, Device 1 continues to send its data, however, device 2
extract cyclic shift assignment from the query and then trans-
mits Association ACK to the AP in the assigned cyclic shift.

278 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0.0001

 0.001

 0.01

 0.1

 1

-20 -18 -16 -14 -12 -10

B
E

R

SNR (dB)

One Backscatter Device 35 dB 40 dB 45 dB

Figure 12: Near-Far BER Results. We show the effect of
the second device’s power on the first device’s BER vs. SNR
for different ratios of the second device’s to first device’s
power with power aware cyclic shift assignments.

Figure 13: Our Backscatter Devices. They are arranged
closely for this picture. They are spread out across more
than ten rooms in our deployment.

If AP receives Association ACK, it adds device 2 to asso-
ciated devices. Otherwise, it will repeat the association in-
formation in the following queries. After association, each
device uses its assigned cyclic shift for sending data.

4 Evaluation
4.1 Hardware Implementation
Implementation Using Discrete Hardware Components.
Our discrete hardware implementation shown in Fig. 13 con-
sists of RF section and baseband section, both implemented
on a four layers FR4 PCB. On RF receive side, we imple-
mented envelope detector similar to [18] but at 900 MHz
and it has a sensitivity of -49 dBm to receive downlink
query messages from AP.1 RF transmit side consists of five
ADG904 [3] switches cascaded in three levels to build an
impedance switch network for backscatter, power gain con-
trol and also switching between transmit and receive modes.
Our backscatter device uses a 2 dBi whip antenna to trans-
mit packets and receive query messages in the 900 MHz ISM
band. The baseband side is implemented using an IGLOO
nano AGLN250 FPGA [1] and an MSP430FR5969 [5]. We
generate CSS packets on the FPGA and output real and
imaginary components of the square wave signal to the
backscatter switch network. The envelope detector is con-
trolled by the MCU. Downlink receiver algorithm is imple-
mented on MCU. To be resilient to self-interference caused
by the AP’s single-tone, the baseband at the backscatter de-
vice shifts the AP’s signal by 3 MHz. Note that the discrete

1Note that since ASK-modulated AP query received by backscatter de-
vice experiences one-way path loss, its required sensitivity is only−44 dBm
in contrast to the -120 dBm sensitvity for the backscatter signals.

 0

 0.2

 0.4

 0.6

 0.8

 1

-150 -75 0 75 150

C
D

F

Frequency (Hz)

(a) Frequency Offset

10
-3

10
-2

10
-1

10
0

 0 0.5 1 1.5 2

1
-C

D
F

∆FFTBin

BW=500 kHz,SF=9

BW=250 kHz,SF=8

BW=125 kHz,SF=7

(b) FFT Bin Variation

Figure 14: Frequency Offset FFT Bin Variation. (a) fre-
quency offset of backscatter devices, and (b) effect of resid-
ual time and frequency offset for different configurations.

implementation is for prototyping and proof-of-concept; an
ASIC is typically required to achieve the orders of magni-
tude power benefits of backscatter communication. We use a
battery to power each backscatter device for our evaluations.

IC Simulation. We design and simulate an IC for our
backscatter device using TSMC 65nm LP process. It consists
of four blocks with total power consumption of 45.2 µW: i)
An envelope detector that demodulates the APs ASK query
messages and consumes less than 1 µW. ii) Baseband pro-
cessor for processing and extracting AP data from envelope
detector, interfacing with sensors and sending the chirp spec-
ifications and sequence of data to chirp generator consuming
5.7 µW of power. iii) A chirp generator that takes SF, BW,
cyclic shift assignment and data sequence from the base-
band processor to generate the sequence of ON-OFF keying
chirps. We use Verilog code to describe the baseband sig-
nal’s phase behavior and generate assigned cyclic-shift with
required frequency offset. We use Synthesis, Auto-Place
and Route (SAPR) to simulate Verliog code on chip. The
power consumption of this block is 36 µW. iv) We simulate
a Switch network including three resistors that are connected
to NMOS switches to generate backscatter signal with three
power gain levels. Note that since these resistors and NMOS
switches consume minimal area, more power gain levels can
be added at almost no cost. The power consumption of the
switch network is 2.5 µW with 3 MHz frequency offset.

Access Point Implementation. We implement the access
point on the X-300 USRP software-defined radio platform
by Ettus Research [8]. We use a mono-static radar configu-
ration with two co-located antennas separated by 3 feet. The
transmit antenna is connected to a UBX-40 daughterboard,
which transmits the query message and the single-tone sig-
nal. The USRP output power is set at 0 dBm and we use an
RF5110 RF power amplifier [6] to amplify the transmit sig-
nal to 30 dBm. The receiver antenna is connected to another
UBX-40 daughterboard, which down-converts the NetScat-
ter packets to baseband signal and samples them at 4 Msps.

4.2 Frequency and Timing Mismatch
Measurements 1: Hardware frequency variations. We mea-
sure the frequency offsets of our hardware by recording
thousand packets for each device. Using the method de-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 279

10
-3

10
-2

10
-1

10
0

 0 0.25 0.5 0.75 1 1.25 1.5

1
-C

D
F

∆FFTBin

5 m/s3 m/s1 m/sStatic

(a) Doppler Effect

-40

-30

-20

-10

 0

 64 128 192 256 320 384 448 512

P
o

w
e

r

D
if
fe

re
n

c
e

 (
d

B
)

FFT Bin Number

(b) Power Dynamic Range

Figure 15: Doppler Effect and Power Dynamic Range
Evaluation. We evaluate (a) Doppler effect, and (b) we show
power difference between two concurrent transmissions at
different locations of FFT domain. One transmission is fixed
and the other is sweeping across different chirp symbols.

scribed in §3.3.3, we compute the frequency offset for the
256 backscatter devices in our network deployment which
we show in Fig. 14a. The variations of backscatter devices
are less than 150 Hz which is nearly 0.15th of one FFT bin
when BW = 500kHz and SF = 9. Therefore, our system is
not affected by frequency variation of different devices.

Measurements 2: Timing offsets. Next, we characterize
how the timing offsets affect ∆FFTbin. This helps us under-
stand how many empty cyclic shifts, SKIP− 1, we need to
put for each occupied cyclic shift. To do this, we setup a
wireless experiment sending query messages from the AP
and receiving transmissions from the backscatter devices de-
ployed in our system. By decoding these transmissions and
comparing the received cyclic shifts with what we have pro-
grammed the devices to send, we can find the ∆FFTbin for
each device; this measurement is a combination of both tim-
ing and the small frequency variations on the hardware.

Fig. 14b shows residual ∆FFTbin for backscatter devices.
The plots show that the ∆FFTbin is considerable. This is be-
cause in backscatter devices, the energy detector receives the
amplitude modulated query message and sends interrupt to
initiate backscatter transmission. Both these steps add to the
timing variations. Specifically, the hardware delay variation
comes from variation in receiving query message and initi-
ating the transmission on FPGA which can vary from packet
to packet. In our deployment in §4.4 with backscatter de-
vices, we use BW=500 kHz, SF=9 and leave one FFT bin
between occupied cyclic shifts (SKIP = 2). This translates
to supporting 256 devices with an aggregate throughput of
around 250 kbps and bitrate per tag of around 1 kbps.

Measurements 3: Doppler effects. Other than hardware
frequency offsets, Doppler effect can cause changes in fre-
quency as well. However, this effect will be much less than
1 FFT bin, BW

2SF , for most cases. As an example, assume a
backscatter device is moving with a speed of 10 m/s. Con-
sidering the carrier frequency is 900 MHz, the Doppler ef-
fect induced frequency change would be 30 Hz which is
much less than 1 kHz, the FFT bin frequency, assuming
BW=500 kHz and SF=9. To confirm this, we run various mo-
bility experiments where a subject holds a backscatter device

-250 -125 0 125 250

Frequency (KHz)

-120

-100

-80

-60

(a) High

-250 -125 0 125 250

Frequency (KHz)

-120

-100

-80

-60

(b) Medium

-250 -125 0 125 250

Frequency (KHz)

-120

-100

-80

-60

(c) Low

Figure 16: Spectrogram of Backscattered Signal at the
Different Power Levels.

and moves with different average speeds which we measure
using an accelerometer. We receive transmissions from the
device and compute the ∆FFTbin for different motion sce-
narios. Fig. 15a shows ∆FFTbin for various speeds, which
confirms that these speeds do not have an effect on ∆FFTbin.

4.3 Near-Far Problem
Measurements 1: Power-aware cyclic shift assignment. As
mentioned in §3.2.3, we assign cyclic shifts to devices de-
pending on their signal strength values. To evaluate the ef-
fectiveness of this technique, we run experiments with two
devices where one of them transmits at a high power (equiv-
alent to being near the AP) with a cyclic shift corresponding
to the beginning of the FFT spectrum. Then, we sweep the
cyclic shift of the second device from small FFT bin differ-
ence cyclic shifts to high FFT bin difference ones. At each
cyclic shift, we decrease the power of the second device us-
ing an attenuator up to when it has packet error rates less
than one percent. Fig. 15b shows the maximum power dif-
ference that can be tolerated between these two devices ver-
sus the assigned FFT bin difference. As can be seen, as we
go further in FFT bin difference, we can tolerate more power
difference between the two devices. Note that, because of
aliasing Fig. 15b is symmetric around the center. The max-
imum happens in middle and is equal to 35 dB. This is the
dynamic range that our system can support in practice. We
also note that when the second device is assigned to an FFT
bin 2 cyclic shifts away from the first device, it can be up to
5 dB below the latter and still correctly decoded. This means
there is an in-built 5 dB dynamic range resilience to channel
variations between devices that have close cyclic shifts.

Measurements 2: Self-aware power-adjustment. The sec-
ond method to address the near-far problem and also increase
the dynamic-range is power adjustments at the devices us-
ing the signal strength of the AP’s query message. To eval-
uate this, we first measure how well we can adjust power
on the devices. We evaluate its efficacy in practical deploy-
ments. We use three different backscatter impedance values
to be able to transmit packets in three different power gains.
Fig. 16 shows the spectrum of backscattered signal at differ-
ent power levels. These plots show that the hardware creates
spectrum that is clean and does not introduce noticeable non-
linearities into the backscattered signal. Furthermore, we can
achieve three different power levels: 0, -4, and -10 dB.

280 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 50

 100

 150

 200

 250

1 16 32 64 96 128 160 192 224 256

P
h

y
s
ic

a
l
L

a
y
e

r
D

a
ta

 R
a

te
 (

k
b

p
s
)

of Backscatter Devices

LoRa Backscatter without Rate Adaptation

LoRa Backscatter with Rate Adaptation

NetScatter (Ideal)

NetScatter

Figure 17: Network Physical Rate. We evaluate NetScatter
network physical rate and compare it with other schemes.

4.4 Network Deployment
We evaluate three key network parameters:

• Network PHY bitrate. This is the bitrate achieved across
all the devices during the payload part of the packet.
• Link-layer data rate. This is the data rate achieved in the
network which is defined as the data rate for sending useful
payload bits, after considering overheads including the AP’s
query message and the preamble of the packet transmission.
• Network latency. This is the latency to get the payload
bits from all the backscatter devices in the network.

We compare three schemes: i) LoRa backscatter [26]
where all devices use a fixed bitrate of 8.7 kbps, ii) LoRa
backscatter with rate adaptation where each device uses the
best bitrate given its channel conditions and iii) NetScatter.
Note that the authors of [26] did not publicly release the code
and so, we replicate the implementation adding the missing
details and using BW = 500 kHz and SF = 9. We also note
that [26] is not designed to work with more than one to two
users. Here, we use query-response design with scheduling
when there are more users where the AP queries each device.
While LoRa backscatter does not support rate adaptation, we
want to compare with an ideal approach that maximizes the
bitrate of each device by picking the optimal SF and BW.
To do so, we measure the signal strength from each of the
backscatter devices and compute the bitrate using the SNR
table in [4]; this is the ideal performance a single-user LoRa
backscatter design achieves with rate adaptation.

Network PHY bitrate. We set each device bitrate to
976 bps, BWagg = 500 kHz, SF = 9 and a payload size of five
bytes. We deploy 256 backscatter devices across the floor of
an office building with more than ten rooms. Fig. 1 shows
our deployment in an office. We hard-code cyclic shift as-
signment on each device. Therefore, we skip the association
phase in this deployment. Fig. 17 shows the results of net-
work physical rate for our backscatter network deployment.
The plot highlights the following key observations.

• The network data rate scales with the number of concur-
rent backscatter devices. When the number of concurrent de-
vices is less than 128, the variance in the throughput is small.

 0

 50

 100

 150

 200

 250

1 16 32 64 96 128 160 192 224 256

L
in

k
-l
a

y
e

r
D

a
ta

 R
a

te
 (

k
b

p
s
)

of Backscatter Devices

LoRa Backscatter without Rate Adaptation

LoRa Backscatter with Rate Adaptation

NetScatter Config 1

NetScatter Config 2

Figure 18: Link-layer Data Rate. We evaluate link-layer
data rate for NetScatter and compare it with other schemes.

This is because in these scenarios effectively the backscatter
devices are separated from each other by more than 2 cyclic
shifts (SKIP ≥ 3). As a result, the devices do not interfere
with each other and hence can concurrently operate. As we
increase the concurrent devices to 256, we are pushing the
system to its theoretical limit (with SKIP = 2) and thus, we
see larger variances in the network data rate.
• With 256 backscatter devices, NetScatter increases the
PHY bitrate by 6.8x and 26.2x over LoRa backscatter with
and without rate adaptation. The gains are lower with the
ideal rate adaptation since with rate adaptation high-SNR de-
vices could pick the maximum LoRa bitrate of 32 kbps.

Link-layer data rate. While the above plots measure the
data rate improvements for the message payload, it does not
account for the end-to-end overheads including preambles
and the AP’s query message to coordinate the concurrent
transmissions. To see the effect of the AP query packet over-
head for NetScatter, we consider two configurations.
• NetScatter Config#1. In this scenario the cyclic shifts are
all assigned during the association phase and the AP query
packet coordinating the concurrent transmissions is 32 bits
long without the optional fields in Fig. 11.
• NetScatter Config#2. In this scenario, the AP query packet
contain cyclic shift assignments for all the devices in the net-
work and has a length of 1760 bits.
The above two configurations represent the two extremes of
our deployment. We set the backscatter payload and CRC
to 40 bits and use the total 8 upchirps and downchirps for
preamble. For LoRa backscatter which queries each individ-
ual device sequentially, the AP query is 28 bits long.

Fig. 18 shows that the gains at the link-layer are higher
for NetScatter over LoRa backscatter without and with rate
adaptation by 61.9x (50.9x) and 14.1x (11.6x) respectively
for config#1 (#2). This is because, in NetScatter, the added
overhead of devices’ preambles happen once and at the same
time for all devices. But the other schemes need to do TDMA
which means that sending preamble will not happen concur-
rently for all devices and these have to be sent individually
for each backscatter device since in traditional designs the
AP querying each of them sequentially. Further, in LoRa

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 281

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 16 32 64 96 128 160 192 224 256

N
e

tw
o

rk
 L

a
te

n
c
y

(m
s
)

of Backscatter Devices

LoRa Backscatter without Rate Adaptation

LoRa Backscatter with Rate Adaptation

NetScatter Config 1

NetScatter Config 2

Figure 19: Network Latency. We evaluate the latency of
NetScatter and compare it with other schemes. We define
latency as total time for transmitting all the devices’ data.

backscatter which queries sequentially, the AP query mes-
sage is transmitted once for each device in the network ver-
sus being transmitted once for all the devices in our design.
Finally, since the downlink uses ASK at 160 kbps, the over-
head of transmitting 1760 bits in config#2, while reducing
the link-layer data rate over config#1, is still low because the
backscatter links can only achieve a much lower bitrate.

Network latency. Finally, Fig. 19 shows that NetScatter
has a latency reduction of 67.0x (55.1x) and 15.3x (12.6x)
over prior LoRa backscatter without and with rate adapta-
tion respectively in network config#1 (#2). This is the key
advantage of using concurrent transmissions in low-power
backscatter networks. It is noteworthy that since the down-
link AP query bitrate is 160 kbps, AP query duration is negli-
gible compared to duration of backscatter devices’ preamble
for prior backscatter methods and also for config#1. For con-
fig#2, the AP query duration is significantly higher than the
config#1. However, the total duration is still dominated by
the backscatter payload + CRC and preamble. As a result,
AP query is not the dominant factor in link-layer latency.

5 Related Work
Recent systems use backscatter with Wi-Fi signals [18, 31],
have a receiver sensitivity of only -90 dBm and hence have
a limited range and cannot work across rooms unless the
RF source is placed close to the backscatter tag [19, 18].
LoRa backscatter [26] can achieve long ranges by generat-
ing LoRa-compliant chirp signals at the backscatter device.
pLoRa [23] backscatters ambient LoRa signals in the envi-
ronment in contrast to the single tone used as the RF source
in NetScatter as well as [26]. We note that all SemTech
LoRa chipsets have the capability in software to transmit
single tone signals. All these prior long range systems are
evaluated in a network of only 1–2 devices and propose to
use time-division to support multiple backscatter devices. In
contrast, our design enables large-scale concurrent transmis-
sions and can achieve much higher link-layer data rates as
well as lower latencies. We also note that these long range
backscatter systems [26, 23] claim a kilometer range in out-
door scenarios such as open fields. This however requires

placing the RF source close to the backscatter devices. In
indoor environments where the signal propagates through
walls and the RF source is not placed close to the backscatter
devices, our network operational range across ten different
rooms is consistent with these prior work. Finally, we note
that while prior work [26, 23] decodes the backscatter signal
on Semtech LoRa chipsets, our distributed CSS protocol is
decoded on a software radio. We however note that SemTech
LoRa SX1257 [7] chipsets provide I-Q samples and hence
our approach could also be implemented on these off-the-
shelf chipsets together with a low power FPGA for baseband
processing; this however is not in the scope of this paper.

In addition, prior work [10, 29] use FMCW techniques to
multiplex sources of FMCW reflectometry. Specifically, [10]
uses FMCW to multiplex Fiber Bragg Grating (FBG) sen-
sors at different positions which results in different delays
and different beat frequencies corresponding to each sen-
sor’s reflection. In contrast, NetScatter generates chirp sig-
nals with different cyclic-shifts to modulate information on
each backscatter device at the same time.

Finally, recent work on decoding concurrent transmis-
sions from RFID tags, does not achieve the long range op-
erations and below-noise operations of CSS based systems.
Buzz [30], LF-Backscatter [13], and others [14, 22, 16]
leverage the differences in the time domain signal transitions
and changes in the constellation diagram to decode multi-
ple RFIDs. However, the number of concurrent transmis-
sions in the above designs is limited — the latest in this line
of work, Fliptracer [16], can reliably decode up to five con-
current RFID tags. Further, these systems were tested with
ranges of 0.5 to 6 feet [30, 13, 16] and in the same room. Fi-
nally, receiver sensitivity of even battery-powered backscat-
ter tags for RFID EPC-GEN2 readers is around -85 dBm. So
it cannot support the long ranges and whole-home deploy-
ments that CSS modulation based backscatter achieves.

6 Conclusion
We present a new wireless protocol for backscatter networks
that scales to hundreds of concurrent transmissions. To this
end, we introduce, distributed chirp spread spectrum coding,
which uses a combination of chirp spread spectrum (CSS)
modulation and ON-OFF keying. Further, we address prac-
tical issues including near-far problem and timing and fre-
quency synchronization. Finally, we deploy our system in an
indoor environment with 256 concurrent devices to demon-
strate its throughput and latency performance.

7 Acknowledgments.
We thank Haitham Hassanieh, Vikram Iyer, Vamsi Talla,
Justin Chan, Anran Wang, Rajalakshmi Nandakumar, and
the anonymous reviewers for their helpful feedback on the
paper. This work was funded in part by NSF awards CNS-
1812554, CNS-1452494, CNS-1823148, Google Faculty
Research Awards and a Sloan Fellowship.

282 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Igloo nano fpga datasheet by, 2015. https://

www.microsemi.com/document-portal/doc download/
130695-igloo-nano-low-power-flash-fpgas-
datasheet.

[2] Xrcha-f-a series, 2015. https://www.murata.com/˜/media/
webrenewal/products/timingdevice/crystalu/
flyers/vppt-hcrj078-d.ashx?la=en-us.

[3] Adg904 datasheet by analog devices, 2016. http:
//www.analog.com/media/en/technical-
documentation/data-sheets/ADG904.pdf.

[4] Sx1276 datasheet by semtech, 2016. https://
www.semtech.com/uploads/documents/sx1276.pdf.

[5] Msp430fr5969 datasheet by ti, 2017. http://www.ti.com/lit/
ds/symlink/msp430fr5969.pdf.

[6] Rf5110 rf power amplifier, 2018. http://
www.rfmd.com/store/downloads/dl/file/id/30508/
5110g product data sheet.pdf.

[7] Sx1257 datasheet by semtech, 2018. https:
//www.semtech.com/uploads/documents/
DS SX1257 V1.2.pdf.

[8] Usrp x-300, 2018. https://www.ettus.com/product/
details/X300-KIT.

[9] A. Berni and W. Gregg. On the utility of chirp modulation for digital
signaling. IEEE Transactions on Communications, 1973.

[10] P. K. Chan, W. Jin, J. Gong, and N. Demokan. Multiplexing of
fiber bragg grating sensors using a fmcw technique. IEEE Photonics
Technology Letters, 11(11):1470–1472, 1999.

[11] D. M. Devasirvatham. Time delay spread measurements of wideband
radio signals within a building. Electronics Letters, 20(23):950–951,
1984.

[12] R. Eletreby, D. Zhang, S. Kumar, and O. Yağan. Empowering low-
power wide area networks in urban settings. SIGCOMM ’17.

[13] P. Hu, P. Zhang, and D. Ganesan. Laissez-faire: Fully asymmet-
ric backscatter communication. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, SIG-
COMM ’15.

[14] P. Hu, P. Zhang, and D. Ganesan. Leveraging interleaved signal edges
for concurrent backscatter. In hotWireless, 2014.

[15] V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith. Inter-
technology backscatter: Towards internet connectivity for implanted
devices. In Proceedings of the 2016 ACM SIGCOMM Conference.

[16] M. Jin, Y. He, X. Meng, Y. Zheng, D. Fang, and X. Chen. Flip-
tracer: Practical parallel decoding for backscatter communication. In
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, MobiCom ’17.

[17] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall.
Wi-fi backscatter: Internet connectivity for rf-powered devices. In
Proceedings of the 2014 ACM Conference on SIGCOMM.

[18] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. Passive wi-fi:
Bringing low power to wi-fi transmissions. In NSDI 16.

[19] M. Kotaru, P. Zhang, and S. Katti. Localizing low-power backscatter
tags using commodity wifi. In CoNext’17.

[20] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith.
Ambient backscatter: Wireless communication out of thin air. SIG-
COMM ’13.

[21] S. Naderiparizi, M. Hessar, V. Talla, S. Gollakota, and J. R. Smith. To-
wards battery-free hd video streaming. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), 2018.

[22] J. Ou, M. Li, and Y. Zheng. Come and be served: Parallel decoding
for cots rfid tags. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, pages 500–511.
ACM, 2015.

[23] Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and
K. Jamieson. Plora: a passive long-range data network from ambi-
ent lora transmissions. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM
’18, pages 147–160. ACM, 2018.

[24] A. A. Saleh and R. Valenzuela. A statistical model for indoor multi-
path propagation. IEEE Journal on selected areas in communications,
5(2):128–137, 1987.

[25] N. Sornin and L. Champion. Signal concentrator device, Oct. 17 2017.
US Patent 9,794,095.

[26] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gol-
lakota. Lora backscatter: Enabling the vision of ubiquitous connectiv-
ity. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2017.

[27] D. Tse and P. Viswanath. Fundamentals of wireless communication.
Cambridge university press, 2005.

[28] A. Varshney, O. Harms, C. M. Pérez-Penichet, C. Rohner, F. Hermans,
and T. Voigt. Lorea: A backscaer architecture that achieves a long
communication range. Sensys’17.

[29] A. Vasilyev. The optoelectronic swept-frequency laser and its
applications in ranging, three-dimensional imaging, and coherent
beam combining of chirped-seed amplifiers. PhD thesis, California
Institute of Technology, 2013.

[30] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and reliable
low-power backscatter networks. In SIGCOMM 2012.

[31] P. ZHANG, M. Rostami, P. Hu, and D. Ganesan. Enabling practical
backscatter communication for on-body sensors. In Proceedings of
the 2016 ACM SIGCOMM Conference.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 283

Towards Programming the Radio Environment with
Large Arrays of Inexpensive Antennas

Zhuqi Li1, Yaxiong Xie1, Longfei Shangguan1, R. Ivan Zelaya2

Jeremy Gummeson3, Wenjun Hu2, Kyle Jamieson1

1Princeton University, 2Yale University, 3UMass Amherst

Abstract

Conventional thinking treats the wireless channel as a con-

straint, so wireless network designs to date target endpoint

designs that best utilize the channel. Examples include rate

and power control at the transmitter, sophisticated receiver de-

coder designs, and high-performance forward error correction

for the data itself. We instead explore whether it is possi-

ble to reconfigure the environment itself to facilitate wireless

communication. In this work, we instrument the environment

with a large array of inexpensive antenna (LAIA) elements,

and design algorithms to configure LAIA elements in real

time. Our system achieves a high level of programmability

through rapid adjustments of an on-board phase shifter in

each LAIA element. We design a channel decomposition

algorithm to quickly estimate the wireless channel due to the

environment alone, which leads us to a process to align the

phases of the LAIA elements. Variations of our core algo-

rithm then improve wireless channels on the fly for single-

and multi-antenna links, as well as nearby networks operating

on adjacent frequency bands. We implement and deploy a

36-element LAIA array in a real indoor home environment.

Experiments in this setting show that, by reconfiguring the

wireless environment, we can achieve a 24% TCP throughput

improvement on average and a median improvement of 51.4%

in Shannon capacity over baseline single-antenna links. Over

baseline multi-antenna links, LAIA achieves an improvement

of 12.23% to 18.95% in Shannon capacity.

1 Introduction

While the vision of the Internet of Things is rapidly becoming

a reality, more and more wireless devices now crowd the

wireless spectrum both at home and in enterprise. Largely

unplanned wireless networks such as Wi-Fi and Zigbee have

proven their utility, yet still degrade in performance when

the number of radios operating in close proximity scales too

far. Network designers are aware of this wireless “success

disaster,” and have proposed many different approaches to

address the problem, but most—if not all—of the solutions

thus far formulated treat the wireless channel as a constraint

within which endpoint radios work to maximize throughput.

Prior work on improving wireless networks in isolation

has followed two broad themes: (i) wireless modulation and

channel coding schemes that aim to best utilize the wireless

channel, and (ii) diversity schemes that aim to minimize pe-

riods of time when the wireless channel is inoperable, i.e.,
outages. Modulation and channel coding have proved a re-

markable success, achieving the information theoretic channel

capacity both for static channel scenarios through fixed-rate

LDPC codes [12], and for dynamic channel scenarios through

rateless Spinal Codes [27]. Diversity schemes have taken on

many forms in terms of time, space, and frequency diversity.

Space diversity schemes generally fall into two categories.

The first involves exploiting diversity among different commu-

nication endpoints to route data around failures of individual

links. Schemes such as ExOR [7] leverage multiple relays,

and MRD [26] and SOFT [39] improve performance through

multiple APs serving mobile clients. Multiple Input, Multiple

Output (MIMO) links [14,28,29,34,42] use multiple antennas

to exploit spatial diversity across the multiple paths that make

up a single wireless link. OFDM [35] makes efficient use of

the wireless channel across different frequencies.

While the above ideas have reaped significant performance

benefits, the vast majority of the design innovation has hereto-

fore taken place at the endpoints of the wireless links, leaving

the wireless channel itself unchanged. This paper explores

a new approach: can we instead build a smarter radio en-

vironment, one that electronically reconfigures itself to the

communication happening at any particular instant in time?

After all, the wireless channel is the result of multipath signal

propagation through the ambient environment. If we could

configure signal propagation behavior at will, we could in-

stead create more favorable channel conditions for wireless

communication over the same spectrum. Since the number of

reflectors, diffractors, and absorbers in the environment po-

tentially dwarfs the number of antennas at the communication

endpoints, more degrees of freedom may result from chang-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 285

Figure 1: Building walls instrumented with LAIA, which modulate

wireless signals incident on the wall, configuring the environment to

improve wireless communication.

ing the environment itself rather than the communication end-

points. For this reason, our vision qualitatively differs from

recent proposals to cover walls with conductive paint [43],

add static reflectors [8, 16, 41, 44], or programmable phased-

array reflectors [1, 2] for 60 GHz links in the environment.

Furthermore, our vision raises new questions: is dynamically

reconfiguring the environment even feasible—let alone in real

time—in the face of constantly-changing channel conditions?

The approach we take in this paper is to augment the in-

door environment with a large array of inexpensive antennas
(LAIA), as illustrated in Figure 1. Each array element is pro-

grammable and capable of dynamically shifting the phase of

the wireless signal propagating through it. These elements

form a substrate that can rapidly modulate the signal propa-

gation characteristics of the environment itself as needed to

improve communication. Since the main determinant of wire-

less multipath fading and interference are the phase offsets

between signals arriving along different paths at each radio

receiver, shifting the phases of the signals passing the LAIA

array can generate desirable constructive or destructive signal

superposition at the receiver. Therefore, the LAIA substrate

is uniquely positioned to program these signals, and hence

the radio environment.

Different LAIA configurations are desirable for different

goals. For instance, if the desired outcome is to boost the

performance of an individual link, LAIA will likely effect

different phase shifts on the wireless signals passing through

it compared to a scenario where the goal is to optimize two

different links. Other possibilities include the handling of

single-antenna (single-input, single-output, i.e., SISO) links

versus MIMO links. Therefore, if we can adjust the phase

offsets on these paths, we can generate desirable signal align-

ment or separation—this process is explained further in §2.

In Section 3.1 we present the design of the LAIA element,

which consists of two antennas and a programmable phase

shifter. To control as many paths as possible, we deploy a

large array of LAIA elements in the environment, connecting

the array to a controller. We then tackle the central challenge

of the LAIA architecture: how to design a control algorithm

for the substrate, whose input consists of measurements at the

endpoints and whose output consists of a time series of phase

shifts (one such time series for each LAIA element) that the

substrate should actuate. The design space of this control

algorithm is significant, and so LAIA’s control algorithm

Figure 2: Signals propagating on two paths combine (a) construc-

tively and (b) destructively based on their relative phase offsets.

focuses on a particular subset of that design space:

1. Scaling to large numbers of LAIA elements given the

channel coherence time constraint;

2. Incorporating wireless channel measurements at commu-

nication endpoints, as supported by Wi-Fi standards, but

piggybacking on regular data traffic;

3. Configuring the LAIA array to accomplish several differ-

ent objectives simultaneously.

We describe our hardware and software implementation

in Section 4. Section 5 describes a LAIA testbed comprised

of 36 array elements deployed in a residential house. Exten-

sive experiments on this 36-element testbed show LAIA can

achieve a 24% TCP throughput improvement on average and

a median improvement of 51.4% in Shannon capacity over

the baseline single-antenna links. Over the baseline multi-

antenna links, LAIA achieves an improvement of 12.23% to

18.95% in Shannon capacity.

2 Programming the radio environment

The indoor wireless channel is comprised of a collection of

propagation paths in the environment. Radio signals radiated

from the transmitter are reflected, diffracted, and scattered by

multiple surfaces and objects, which cause them to traverse

different propagation paths before reconvening at the receiver.

The net effect of each path is captured by an attenuation in

signal strength and a phase shift, and so can be modeled by

hi = αi · e jφi with amplitude αi and the phase φi (for the ith

path). The L propagation paths superimpose at the receiver,

constructively or destructively, based on their relative phase

offsets, resulting in a wireless channel henv =∑L
i=1 hi. Figure 2

shows two examples where two signals are completely in

phase (add constructively) or out of phase (add destructively).

Consequently, if we can configure individual signal propa-

gation paths, we can generate different channel profiles. This

can be achieved by changing the phase of a path: as Figure 2

shows, when we change the phase of a propagation path, the

amplitude of the combined signal at the receiver may change

significantly, in the case that we turn destructive superposition

into constructive superposition, for instance.

In other words, by reconfiguring the phase offset on each

propagation path, we can in fact program the overall radio

environment! This suggests deploying a collection of phase-

286 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

hkejθ

phase shifter

LAIA element

Sender

Receiver hkejθ

(a) (b)

L

∑
i=1,i≠k

h1

h2

…
…

hihenv=

Figure 3: (a) The signal travels through the LAIA element superim-

poses with signals travels along all other propagation paths at the

receiver. (b) By adjusting the phase shift e jθ, the signal from LAIA

element to the receiver aligns completely with other signals from the

sender to the receiver.

shifting signal relays (which we term LAIA elements), each

with one antenna for transmission and reception, as shown in

Figure 3(a). The effect of a LAIA element can be modeled

by adding a phase shift of θ on the kth propagation path term

passing through the LAIA element between the sender and

the receiver, i.e.,

hcomb =

(
L

∑
i=1, i�=k

hi

)
+hk · e jθ (1)

as shown in Figure 3(b), we can adjust θ so that the signal

from the LAIA element to the receiver aligns completely with

the other signals from the sender to the receiver.1

2.1 LAIA: System goals
With the ability to configure individual propagation paths,

there is potential to address many link- or even network-level

performance goals by adopting different signal alignment

or separation strategies. LAIA takes the first step in this

direction, highlighting the potential of programming the envi-

ronment by addressing the following performance goals:

Goal 1: Removing the channel null that is associated with

frequency-selective fading, for a single link, thus improving

its throughput (§5.1).

Goal 2: Optimizing the throughput performance of individ-

ual single- (§5.2) and multi-antenna links (§5.3).

Goal 3: Jointly optimizing the throughput of two networks

operating on different frequencies in close proximity (§5.4),

Goal 4: Substituting for and/or improving the performance

of multi-AP diversity schemes (§5.2).

Discussion. Goal 1 is the least ambitious, simply requiring

that different propagation paths be co-phased at a particu-

lar frequency, to fill a null at that frequency, analogous to

transmit beamforming [4]. Goal 2, however, requires consid-

ering the different effects of each LAIA element on multiple

1It is also possible to use single-antenna elements that alter the reflected
propagation paths from the sender to the receiver, but we focus on a relay

design in this work.

OFDM subcarriers (frequencies) at the same time, substan-

tially complicating the problem. Multi-network and AP di-

versity scenarios (Goals 3 and 4) can be viewed as a problem

of beamforming on multiple links (with different channels)

simultaneously with a single beamforming matrix.

2.2 LAIA: Design challenges

A substrate design balancing cost and efficacy. As each

LAIA element provides only limited programmability, we

need a large array of inexpensive antennas to effectively pro-

gram the whole environment. The minimalist element design

of §3.1 addresses this challenge, and §4.1 gives an indication

of the cost.

A scalable control plane design. The LAIA control plane

orchestrates the many LAIA elements to achieve the desired

effects. The first challenge here is accurate estimation of each

LAIA element’s wireless channel hpi as well as the environ-

mental channel henv between the two communication end-

points, where only measurements of the combined wireless

channel are available at the receiver. The second challenge is

calculating the most desirable individual element phase set-

tings to align the wireless signals, given an enormous search

space in the control plane. Further, both channel estimation

and alignment challenges are exacerbated by the array size

of LAIA and the need to completion both tasks within the

channel coherence time. Our channel estimation, flip-and-
align, and channel alignment algorithms (§3.2) address each

of these challenges in turn.

Multi-objective control. At any given time instant, the

LAIA substrate can be in at most one configuration. There-

fore, when considering multiple subcarriers’, links’ and/or

networks’ simultaneous operation, we require algorithms to

address these joint optimization challenges. §3.3 explains

how LAIA solves these.

3 Design

We first describe the individual element design for LAIA,

followed by the overall system architecture including the

hardware and control infrastructure (§3.1). We then delve

into the control algorithm (§3.2), covering channel estimation

(§3.2.1) and alignment of the entire LAIA array (§3.2.2). We

conclude the section by explaining algorithms to optimize

wireless channels on the fly for single- and multi-antenna

links, as well as nearby networks operating on adjacent fre-

quency bands (§3.3).

3.1 Element design and control architecture

Each LAIA element is minimalist and passive, simply consist-

ing of two antennas connected to either end of a phase shifting

device and without drawing any power, as shown in Figure 4.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 287

……

……

Arduino MCU

GPIOGPIO

……

……

Arduino MCU

GPIOGPIO

Central controller

USB USB

Figure 4: The architecture of the LAIA array. The LAIA element is

controlled by Arduino MCU through GPIO. One Arduino is able to

control up to 10 elements. A large array is controlled by multiple

Arduino boards (two in the figure). All of the Arduino boards are

connected to a central controller through USB 3.0 interface. The

control algorithm is implemented on the central controller.

A wireless signal received by one antenna is thus shifted in

phase and then emitted to the environment through the other

antenna, and vice-versa for the wireless signal received by

the other antenna. A purely passive radio chain significantly

reduces the energy consumption and costs of each LAIA el-

ement. Each LAIA element is programmed by modulating

the phase shifter, using the micro-controller (MCU) of an

Arduino board as a controller to configure the phase shifter

through general purpose I/O pins, as shown in Figure 4. Since

each LAIA element is a passive device, it is low cost, but

provides only a limited impact on the environmental channel,

which we quantify in Section 5.1.

LAIA’s control architecture is also shown in Figure 4. The

phase shifters, which control up to 10 individual elements,

are configured through the low-cost Arduino MCU (the figure

gives an example of a LAIA array using two Arduino boards).

Each Arduino board is connected to a central controller via

a USB 3.0 interface. The central controller collects chan-

nel measurements from the AP, runs our control algorithm

and distributes the control signals, i.e., the amount of phase

shift on each element, to the Arduino boards, which in turn

configure the phase shifters of all the connected elements.

3.2 Control algorithm

We now present the control algorithm implemented on the

LAIA controller. Our algorithm aims to find the configuration,

i.e., the phase shifts of LAIA elements in the array, that can

accomplish a certain performance goal. We first introduce

our channel estimation algorithm, followed by the channel

alignment algorithm that aligns all the programmable element

channels with the environmental channel for maximum capac-

ity. Variations of the channel alignment algorithms optimize

wireless channels on the fly for multi-antenna links, as well

as nearby networks operating on adjacent frequency bands.

To program the environment, we need to first estimate the

channels of all LAIA elements and the environmental channel

and then align them, just as Figure 3(b) shows. The element

channels and environmental channel are linearly superim-

posed at the receiver. To estimate each individual channel

using only the superimposed channel measurement, we can

randomly configure the elements and measure the superim-

posed channel multiple times, using regular data frames from

the on-going communication for overhead-free measurement.

Individual channel measurements are uncorrelated, so we can

estimate the element and environmental channel by solving

the linear equations. On the other hand, channel alignment

requires all elements to be configured with the optimal phase

rotation so that they can add constructively. We implement a

controller which resolves such a conflict and simultaneously

estimate and align the channels.

3.2.1 Channel decomposition

Our first task is to separate (decompose) the ambient environ-

ment’s channel henv from the channel corresponding to the

propagation paths traversing the ith LAIA element. Suppose

the ith LAIA element is configured with phase setting θi. We

refer to the channel through that LAIA element in isolation as

e jθhpi . With LAIA in mind, we can model the combined wire-

less channel differently than the traditional wireless channel

model of Equation 1 and instead write the combined channel

in terms of the ambient environment and each of M LAIA

elements:

hcomb = henv +
M

∑
i=1

e jθihpi (2)

We start from a simplified algorithm to decompose the chan-

nel in the presence of only a single LAIA element before

generalizing to the realistic, multi-element case.

Single LAIA element case. In the case of single element,

the channel is comprised of the environment henv, plus that

element’s contribution, hp1
, supposing the element is initially

configured at 0◦ phase. We first measure the channel with

the element in the 0◦ state (henv +hp1
), then flip the element’s

phase to 180◦ and measure the channel again (henv − hp1
).

The two resulting measured channels can be represented in

matrix form as[
h1

comb
h2

comb

]
=

[
1 1

−1 1

][
hp1

henv

]
(3)

and the resulting linear system solved for henv and hp1
. Once

the environmental channel is known, we choose θ1 such that

∠e jθ1hp1
= ∠henv, thus phase-aligning the environment and

LAIA element channels with each other.

Multiple LAIA elements. We now consider the realistic case

where M LAIA elements are present. We form the channels

to be decomposed into an (M+1)-dimensional vector com-

prised of the M LAIA elements along with the environmental

channel itself:

h = [hp1
,hp2

, . . . ,hpM ,henv]
ᵀ (4)

288 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

henv

hp1

−hp1

(a) Flip

henv

(b) Align

henv

(c) Flip

henv

(d) Align

henv

(e) Flip

henv

(f) Align

Figure 5: Channel estimation process for three LAIA elements. Without conscious alignment, the environmental channel and all LAIA

elements superimpose randomly in (a). Instead, we estimate and then align the channels of elements 1, 2 and 3 in (b), (c), and (d), respectively.

Then M +1 channel measurements with different LAIA el-

ement phase settings can be expressed as another M +1 di-

mensional vector hcomb = [h1
comb,h

2
comb, . . . ,h

M+1
comb]

ᵀ, where

hcomb = Q ·h (5)

and Q is a control matrix whose M+1 rows correspond to M
different phase settings of each LAIA element (adjoined with

1 for the environmental channel which we cannot change) and

whose M+1 columns correspond to each of M+1 channel

measurements. We now decompose the channel, obtaining

h, by solving the linear system of Equation 5, and that this

solution exists whenever matrix Q is full rank.

We could construct a full rank control matrix by randomly

configuring the LAIA elements for each of the M+1 measure-

ments involved. But this would generate random contributions

to the perceived h, and so the intermediate combined channel

hcomb would be suboptimal. Hence we instead adopt a chan-

nel decomposition strategy such that we can achieve some

alignment along with each additional channel measurement,

even before we construct the entire control matrix Q.

Flip-and-align algorithm. LAIA’s approach simultaneously

decomposes the wireless channel and increasing the signal

to noise ratio of the channel being decomposed while the

measurements are taking place, thus making it more practi-

cal for networks where traffic is ongoing and present in the

background of the measurement process. In fact, the channel

measurements are piggybacked on ongoing traffic.

We use a three-element example to illustrate the flip-and-

align algorithm. We begin with a “cold start” scenario where

all element channels and the environmental channel are un-

known. Since all channels are unknown, we set the phase

shifter of all LAIA elements to 0◦ and collect the first channel

measurement h1
comb. We flip the phase of the first element,

just as Figure 5(a) shows and then collect the second channel

measurement h2
comb. According to Equation 3, we can now

calculate the channel hp1
of the first element and the super-

imposed channel henv +hp2
+hp3

, where hp2
and hp3

are the

channels of the second and third elements respectively. Next,

we rotate the channel hp1
to align with the superimposed chan-

nel, as Figure 5(b) shows. We then flip the channel of the

second element, as Figure 5(c) shows, and collect the third

channel measurement h3
comb. Similarly, the channel hp2

of

the second element and the superimposed channel henv +hp3

is calculated using three channel measurements h1
comb, h2

comb,

and h3
comb. All of the estimated channels, i.e., hp1

and hp2
,

are then aligned with the superimposed channel, as shown in

Figure 5 (d). We repeat until all channels are calculated and

aligned, as Figures 5(e), (f) show.

The flip-and-align control matrix Q is thus given by:2

Q =

⎡
⎢⎢⎣

1 1 1 1

−1 1 1 1

e jθ1,1 −1 1 1

e jθ1,2 e jθ2,1 −1 1

⎤
⎥⎥⎦ (6)

The control matrix Q in Eq. 6 can be extended to include an

arbitrary number of LAIA elements.3

When an ongoing round of channel measurements finishes,

LAIA begins a new round, following the same flip-and-align

algorithm with the only difference being the initial phase

of each LAIA element. In the new round each LAIA ele-

ment begins configured with its previously-computed phase

rotation, to leverage any correlation in the wireless channel

between the two measurement rounds that will be present if

both rounds complete at time intervals close to the channel

coherence time.

3.2.2 Channel alignment

Once we have decomposed the wireless channel, the LAIA

alignment algorithm calculates the most desirable phase set-

tings for individual elements to optimize a particular perfor-

mance metric, i.e., we find the solution Θ∗ to the following

optimization problem

Θ∗ = argmax
Θ

F(hcomb(Θ)) (7)

where Θ = [θ1,θ2, . . . ,θM] is the phase settings of all M ele-

ments, hcomb(Θ)4 is the combined channel of applying Θ to

2θ1,1 is the phase rotation calculated to align the first element with the

superimposed channel in the third channel measurement, as shown in Fig-

ure 5(b); θ1,2 and θ2,1 are phase rotations calculated to align the first and

second elements with the superimposed channel, as shown in Figure 5 (d).
3We prove that the control matrix Q is full rank in the Appendix.
4hcomb can be a scalar, a vector, or a matrix. We use the scalar notation

here and explain the other scenarios later in the section.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 289

LAIA, and F(hcomb(Θ)) is the objective function characteriz-

ing the performance metric.

Example. Say we want to maximize the Shannon capacity of

a narrowband single-antenna link. The combined channel

hcomb(Θ) (a scalar, like henv) after applying Θ is:

hcomb(Θ) = e jΘ ·Hp +henv (8)

where Hp = [hp1
,hp2

, . . . ,hpM]
T represents all the LAIA ele-

ment channels, and the objective function F(hcomb(Θ)) (Shan-

non capacity in bits per second per Hertz) is

F(hcomb(Θ)) = log2

(
1+ |hcomb(Θ)|2ρ

)
(9)

where ρ is the signal-to-noise ratio (SNR) on the channel.

Shannon capacity is maximized at the highest SNR for the

combined channel, which can be achieved by aligning the

phases of all LAIA element channels with the environmental

channel henv, as shown in Figure 5, to maximize |hcomb|2. The

ith element in Θ, θi, is simply set to the phase difference

between the channels hpi and henv.

3.3 Multi-objective control

Wideband single-antenna links. Wireless links typically op-

erate over a wide frequency band and therefore experience

frequency selective fading. This means that even a single-

antenna link is comprised of a set of distinct channels, cor-

responding to different frequency components (subcarriers).

In other words, the environmental channel henv and the com-

bined channel hcomb become vectors, whose length is the

number of subcarriers. We can still resort to Eq. 8, but now

each element channel hpi is also a vector. Since our phase

shifters operate over the entire frequency band without regard

for subcarriers, and so the same phase shift will be applied

to all subcarriers. Clearly we cannot optimize for different

channels simultaneously with one phase shift configuration.

Therefore, while we can still define an objective function F
over all subcarriers, for example, the total Shannon capacity

(i.e., summing the per-subcarrier Shannon capacity), F can

no longer be maximized analytically.

Multi-antenna (MIMO) links. MIMO links, narrowband or

wideband, are another form of "multi-channel" links. There-

fore, following a similar approach used to handling wideband

single-antenna links, we can derive the appropriate expres-

sions for the channels (using Eq. 8) and the objective function,

then again use the same optimization problem formulation

(Eq. 7). For example, the situation for narrowband MIMO
links (though not seen in practical wireless technologies) is

analogous to that of wideband single-antenna links. The en-

vironmental channel henv and the combined channel hcomb
are now both matrices, whose dimensions are determined by

the number of antennas at the wireless sender and receiver

respectively. Eq. 8 is still valid, but each element channel hpi

is now also a matrix of the same dimension as that of henv
and hcomb. The MIMO channel capacity is an example for

the objective function.

Extending this further to wideband MIMO links used in

Wi-Fi or LTE, the environmental channel henv, the com-

bined channel hcomb, and each element channel hpi are all

matrices of the form Nrx ×Ntx ×Nsubcarriers, where Nrx, Ntx,

and Nsubcarriers are the numbers of the receiver antennas, the

sender antennas, and the subcarriers respectively.

Multiple links. Only single-link (SISO or MIMO) scenarios

have been considered so far. Next, we extend LAIA to multi-

link scenarios and discuss two representative cases: (i) a

single cell with multiple clients associated with the same

access point (AP) and on the same frequency; and (ii) multiple

concurrent links on different frequencies.

In the first case, while the AP only communicates with one

client at a time, LAIA cannot predict which client will be ac-

tive and cannot configure the element array accordingly before

the transmission. Therefore, LAIA configures the element

array to maximize the total capacity of all AP-client links and

keep the configuration until any client joins or leaves the net-

work. In the second case, LAIA must find a configuration of

the element array that works for multiple links simultaneously.

This can again be reduced to maximizing the total capacity.

In either case, we use the total capacity expression as the

objective function in our optimization problem (Eq. 7). In

addition, we adjust the objective function to consider fairness

or other performance goals, i.e., we maximize the aggregate

capacity of all the links with the constraint that no individual

link will be harmed in terms of capacity.

3.3.1 Iterative search

In above multi-channel cases, there is no analytic solution

to the optimization problem in Eq. 7. Given a large array

size and the number of possible per-element phase choices

for LAIA, exhaustively searching for the optimal Θ that max-

imizes the objective function is too complex computationally.

For example, a 4-bit phase shifter, used in LAIA, provides

24 = 16 possible phase shifts per element and results in 16M

possible phase combinations for an M-element LAIA array!

We therefore identify heuristics to prune the search space.

Basic version. We adopt a multi-round iterative algorithm

to prune the search space. In each round, we sequentially

align all element channels with the environmental channel.

Specifically, in round one, we first align the channel hp1
with

henv by searching through all possible phase settings of the

first element that maximizes F , fixing the phases of the rest

of the array. Once we find the result, θ′1, we then align the

element channel hp2
with the intermediate combined channel

e jθ′1hp1
+henv, again fixing the phases elsewhere in the array.

We repeat the process for all LAIA elements until we obtain

a vector Θ′ = [θ′1,θ
′
2, . . . ,θ

′
M], when this round completes.

290 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

With Θ′ applied to the LAIA elements, the combined channel

becomes hcomb (Θ′): While F(hcomb(Θ′)) usually improves

over F(henv), the improvement is not guaranteed to be optimal.

Therefore, multiple rounds of the alignment may be needed.

These rounds proceed in much the same way as the first

round, except that in subsequent rounds of alignment, when

we align LAIA element k, we leave the phase of all the other

elements Θ(k) = [θ1, . . . ,θk−1,θk+1, . . . ,θM] constant so we

align element k with the combined channel, hcomb(Θ(k)). We

iterate until there is barely an additional improvement (i.e.,
below a threshold) in F from a new round. The algorithm

typically converges in two to three rounds in our experiments.

By tuning one element phase at a time, the iterative al-

gorithm already reduces the search complexity dramatically

from exponential to linear: 16M phase settings are checked

instead of 16M in each round. Strictly speaking this finds the

local optimal result, but we find empirically that the local op-

timal is typically very close to the global optimal (Figure 11).

Prioritizing “influential” elements. Still, the execution time

of our search algorithm may exceed the channel coherence

time, especially when given a large LAIA array. Therefore,

we further refine the basic iterative search as follows.

Recall that the number of dominant multipath components
in a typical indoor environment is limited to a small num-

ber [10, 21]. This suggests that the number of influential
elements in the whole LAIA array is also limited. Therefore,

we can speed up the search and reap most of the benefit by

prioritizing these influential elements. We assign a priority

level, initialized to 0, to each LAIA element to indicate the

order of search. In each round of iteration, the elements will

be reconfigured to the optimal phases in the order of their

priority levels. After an element is configured, its priority

level is increased by its contribution to the overall channel

improvement weighted by a random probability uniformly

distributed between 0 and 1. The element with the highest

contribution tends to get a large increment of its priority level

and will likely be tuned again sooner in the next round.

The advantages of the prioritized search algorithm are two-

fold. First, the priority level ensures the element that con-

tributes most to the channel is configured first, within the

channel coherence time, and thus adapting LAIA quickly to

changing environmental channels, which helps to mitigate the

effect of mobility. Second, the algorithm does not exclude

less influential elements and can still converge to the result

calculated by the basic iterative algorithm.

4 Implementation

In this section, we first introduce the LAIA element imple-

mentation (§4.1) and then describe the way to handle channel

measurement errors (§4.2).

(b) AP side

LAIA control
boardAccess point

(a) Control board

Phase
shifters

Arduino
board

USB
cable

(c) Client side

Client

Antennas

Figure 6: (a) A LAIA control board prototype, with ten phase

shifters and one Arduino board. A real-world deployment of a

36-element LAIA array, one antenna of each LAIA element is on

(b) the AP side of the wall and the other is on (c) the client side.

4.1 LAIA hardware

The hardware of LAIA includes two major parts: antenna and

control board. The antenna we use is small panel antenna,

with relatively narrow beam width (around 40 degree). Each

antenna only costs about 1.75 USD. We build a prototype

of LAIA control board using ten MACOM MAPS-010144

four-bit phase shifter [25] and an Arduino Adafruit Metro

Mini MCU [3] on a four-layer printed circuit board (PCB), as

shown in Figure 6(a). All the control boards are connected

to the central controller (a laptop) via a USB 3.0 hub. The

four-bit phase shifter can shift the phase of an incoming signal

at a granularity of π/8.

4.2 Channel measurement error

Our control algorithm relies on a very accurate channel mea-

surement at the receiver end, which is challenging to achieve

in practice. First, carrier frequency offset (CFO) describes the

frequency difference between the two transceivers’ oscillators.

The phase offset caused by CFO changes over time, causing a

random phase offset between channel measurements from dif-

ferent packets. The channel decomposition algorithm relies

on multiple packets to decompose the channel, thus suffering

from the random phase offset. We describe the detail of our

CFO estimation algorithm in Appendix.

Second, symbol timing offset (STO) introduces a sub-sam-

ple delay in the time domain, equivalent to a phase slope in

the frequency domain. As STO varies across different packets,

it introduces a phase offset across packets and thus affects

our channel decomposition algorithm. We leverage fractional

interpolation [22, 40] to detect and remove the phase slope in

channel readings, thus compensating for STO.

5 Evaluation

In this section, we evaluate LAIA’s performance, starting

with microbenchmarks (§5.1) to characterize basic wireless

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 291

0 5 10
Controllability (dBm)

10-4

10-2

100

C
C

D
F

Strong subcarriers

Middle subcarriers

(a) Two-meter links.

0 5 10
Controllability (dBm)

10-4

10-2

100

Middle subcarriers

Strong subcarriers

(b) Four-meter links.

0 5 10
Controllability (dBm)

10-4

10-2

100

Middle subcarriers

Strong subcarriers

Weak subcarriers

(c) Six-meter links.

0 5 10
Controllability (dBm)

10-4

10-2

100
Weak subcarriers

Middle subcarriers
Strong subcarriers

(d) Eight-meter links.

Figure 7: Distribution (across elements and subcarriers) of LAIA element controllability on strong (>−53 dBm), middle (>−65 dBm and

not strong), and weak (<−65 dBm) subcarriers of three links, for various link lengths noted. LAIA controls weaker subcarriers more easily.

-70 -60 -50 -40
Signal strength (dBm)

0

5

10

S
N

R
 im

pr
ov

em
en

t

Link 1

Link 2
Link 3 Link 4

Link 5
Link 6

Figure 8: LAIA SNR improve-

ment versus signal strength for six

links (one point per subcarrier).

0 5 10 15 20 25 30 35 40
Array Controllability (dB)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

ve
r

lin
ks

Strong subcarrier
Medium subcarrier
Weak subcarrier

Figure 9: Controllability distri-

bution of the 36-element LAIA

array, across 30 links.

channel controllability, accuracy of channel decomposition

and the gap between the LAIA control algorithm and the

optimal method. We then conduct field studies to quantify

the gain of channel capacity and TCP throughput of LAIA

for both SISO (§5.2) and MIMO (§5.3) links. An evaluation

of multiple links using both the same and adjacent channels

(§5.4) concludes our evaluation.

Experiment setup. We deploy 36 passive LAIA elements on

an interior wall of a house, as shown in Figures 6(b) and (c).

Each element is a passive relay with antennas attached to

either side of the wall. The drywall provides a 1.5 dB at-

tenuation for signal at 2.4GHz, which matches RADAR’s

Wall Attenuation Factor [5] and the results of a construction

material signal attenuation test [31, 38]. We use WARP v3

software-defined radios [37] as Wi-Fi senders and receivers

on the 2.4 GHz Wi-Fi band with 20 MHz channel bandwidth.

The sender and receiver are deployed in two different rooms

with a wall in between blocking the line-of-sight (LoS) path.

5.1 Microbenchmarks
We conduct microbenchmarks to better understand the per-

formance of each part of LAIA’s design. The experiments to

evaluate the controllability of LAIA emulate link optimiza-

tions to remove (i.e., “fill") null subcarriers.

LAIA element controllability. We define the difference be-

tween the maximum and the minimum signal strength that

one LAIA element can induce at a particular subcarrier as

the element controllability. We vary the link distance from

2 m to 8 m, and measure the controllability of each individual

LAIA element, over three different links, for each link length.

Due to frequency-selective fading, the environmental channel

differs across subcarriers, which leads to differences in con-

trollability. To investigate this effect, we separate subcarriers

into strong ([−53,+∞] dBm), middle ([−65,−53] dBm), and

weak ([−∞,−65 dBm) strength ranges and test the control-

lability of each subcarrier. Figure 7 shows the distribution

of controllability across different LAIA elements, with one

curve per physical link and subcarrier strength combination.

We see that two-meter links have no strong subcarriers, while

six meter and eight-meter links have the most weakest subcar-

riers. We also see consistent controllability across link length

after binning the data into the above subcarrier strength ranges.

Overall the clear trend is for greater controllability for weak

subcarriers than for medium and strong ones.

Considering absolute controllability, elements at different

locations achieve from ca. 0 dB to 7.5 dB apiece, since their

40◦ directional antennas capture differing amounts of RF

signal from different transmitter locations. As link distance

increases, signal power received from each element decreases,

resulting in generally higher controllability.

LAIA array controllability. Given the modest amount of

controllability a single LAIA element provides, we investigate

36 LAIA elements working together. We configure the array

to maximize link Shannon capacity. The SNR changes on

each subcarrier of six representative links are shown on the

y-axis of Figure 8. This scatter plot plots the original signal

strength of each subcarrier on the x-axis. We see that LAIA

improves the SNR for all subcarriers and generally the weaker

the subcarrier, the larger the improvement.

In a separate larger-scale experiment involving 30 links, we

bin the subcarriers of each individual link into the top, middle,

and lowest thirds by SNR. The controllability distribution

is shown for each bin (respectively, strong, medium, and

weak in Figure 9). From the figure, we can see that LAIA

provides up to 42 dB controllability. Median controllability

for the strongest, medium, and weakest bins is about 10.4 dB,

11.8 dB, and 27.3 dB, respectively. In summary, multiple

elements provide substantial controllability, especially when

transceivers experience poor channel conditions.

Accuracy of channel decomposition. We next evaluate the

accuracy of the channel decomposition algorithm. In these

experiments, we randomly select a 2.4 GHz Wi-Fi channel

292 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1/8 2/8 3/8 4/8
Phase difference (radian)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

ve
r

lin
ks

Figure 10: Predicted and measured phase dif-

ference for constructive superposition.

20 40 60 80 100
Portion of gain realized (%)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

ve
r

lin
ks

LAIA 4x4 MIMO
LAIA SISO

80 85 90 95 100
0

0.1

0.2

0.3

0.4

Figure 11: Percent improvement of LAIA

compared with exhaustive search.

0 1 2 3 4 5 6 7 8
Channel capacity (bps/Hz)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

ve
r

lin
ks

Environment
MRD
LAIA
MRD+LAIA

Figure 12: Channel capacity achieved by

MRD [26], LAIA, and MRD+LAIA.

and estimate the CSI of an individual LAIA element channel

and the environmental channel using the channel decompo-

sition algorithm presented in §3.2.1. With the decomposed

channel, we compute the phase setting for this LAIA element

that can maximize the reference SNR. At the same time, we

apply different phases to this LAIA element to measure the

difference between the computed phase setting and the real

phase setting that maximizes SNR. Since the accuracy of the

computed phase setting is only determined by the accuracy of

channel decomposition algorithm, we can use the deviation

between the computed and real phase setting as a metric to

measure channel decomposition accuracy.

We repeat the phase decomposition test 2,000 times with

different LAIA elements and different transmitter/receiver

locations and plot the absolute phase difference between the

computed and real phase settings in Figure 10. We can see

that 85.4% of the LAIA elements can be configured within an

error of one phase shift step (±1/8π) and 99.4% of the LAIA

elements can be configured within an error of two phase shift

steps (±1/4π). Based on our experience, we attribute most

of the error to the small phase oscillation of phase shifters.

LAIA control algorithm–optimal gap. We evaluate the gap

between the LAIA control algorithm and optimal exhaustive

search. We conduct extensive trace-based simulations on both

SISO OFDM links and 4x4 MIMO OFDM links. We collect

5,000 traces for both cases, one trace for each link. Each trace

includes the environmental channel and each LAIA element’s

channel. In order to make the comparison feasible within

reasonable time, we consider a subset of the search space:

five LAIA elements, each having eight phases. Consequently,

exhaustive search can find the answer in 85 = 32,768 search

combinations for each trace. We compute the Shannon ca-

pacity of the result of both the LAIA control algorithm and

exhaustive search. Additionally, we use percent Shannon

capacity increase
C(LAIA)−C(Env)
C(Opt)−C(Env) as a metric to evaluate how

close the LAIA control algorithm approaches the optimal.

We observe in Figure 11 that the LAIA control algorithm

provides a close approximation of the optimal. For SISO

OFDM, LAIA finds the exact optimal in 80.76% of the cases.

For 4x4 MIMO OFDM, LAIA finds the exact optimal in

61.6% of the cases. On average, LAIA can achieve 99.23%

-4 -2 0 2 4
X Location (m)

0

1

2

3

Y
 L

o
ca

ti
o

n
 (

m
)

Environment

T
hr

ou
gh

pu
t (

M
bp

s)

15

20

25

30

-4 -2 0 2 4
X Location (m)

0

1

2

3

Y
 L

o
ca

ti
o

n
 (

m
)

LAIA

T
hr

ou
gh

pu
t (

M
bp

s)

15

20

25

30

Figure 13: TCP throughput at different locations without (left) and

with (right) LAIA. The location of the transmitter and receiver is

symmetric to each other.

and 96.89% capacity increase compared to the optimal solu-

tion for SISO and 4x4 MIMO cases, respectively.

Element density. We evaluate the impact of LAIA element

density in the array. Our 36-element array is deployed on a

2×1.8 m wall. We build a 9-element array by selecting nine

adjacent elements from a 0.7×0.5 m wall area and measure

the controllability of each such array. We then build another

9-element array by randomly selecting nine elements from

all 36 elements. We repeat this random selection process

1,000 times. The controllability (averaged over subcarriers)

achieved using nine adjacent and nine randomly selected el-

ements (averaged over 1,000 experiments), is 2.57 dB and

2.50 dB, respectively. We see that the density of the LAIA

elements does not significantly affect achieved controllability.

5.2 SISO performance
In this section, we evaluate the end-to-end performance of

LAIA for single-antenna links.

Channel capacity. We first measure the channel capacity

achieved by LAIA in SISO communication systems and com-

pare it with that achieved by MRD [26], a link diversity

scheme that deploys two APs and always connects the client

to the AP with better channel. In these experiments, we place

two receivers in one room and a transmitter in another room.

The LAIA elements are deployed on the wall between these

two rooms. We compare LAIA with MRD in the following

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 293

0 5 10 15 20 25 30
Time (s)

0

0.4

0.8

1.2

1.6

2

2.4

C
ap

ac
ity

 (
bp

s/
H

z)

LAIA
Env

(a) Walking speed of 0.3 m/s

0 5 10 15 20 25 30
Time (s)

0

0.4

0.8

1.2

1.6

2

2.4

C
ap

ac
ity

 (
bp

s/
H

z)

LAIA
Env

(b) Walking speed of 0.9 m/s

Figure 14: Snapshot of the channel capacity when walking with

speed of (a) 0.3 m/s, and (b) 0.9 m/s.

way. We first connect the transmitter to the first receiver and

measure the channel capacity achieved by LAIA. We next

pick the better link between two transmitter-receiver links and

measure the capacity achieved by the MRD algorithm. At

last, we then pick the better link and measure the capacity

achieved by running LAIA. As a baseline, we also measure

the capacity of the environmental channel.

We repeat this experiment 30 times at different Tx/Rx loca-

tions and plot the CDF of the capacity of these four methods

in Figure 12. We can see that the pure environmental channel

achieves the lowest median capacity (3.13 bps/Hz), followed

by the MRD algorithm (4.04 bps/Hz). In contrast, we can see

that LAIA achieves a capacity of 4.74 bps/Hz, which is 51.4%

higher than the pure environmental channel. This capacity

further increases to 4.96 bps/Hz as we combine LAIA and the

MDR algorithm.

TCP throughput of a single user. We further evaluate the

TCP throughput achieved by LAIA using the WARP 802.11

reference design [36]. In these experiments, we set up a

transmitter-receiver link across a wall, and measure the TCP

throughput on different locations. The transmitter is placed on

the location symmetric to the receiver. During the transmis-

sion, LAIA’s uses the channel alignment algorithm described

in Section 3 to configure the phase of every element. The left

figure of Figure 13 shows the TCP throughput of the environ-

mental channel where we terminate all LAIA elements de-

ployed on the wall. We can see thst the TCP throughput varies

significantly across locations. In contrast, from the right fig-

ure we can see that LAIA successfully improves the TCP

throughput to above 26 Mbps for most locations. The average

TCP throughput achieved by LAIA is 26.9 Mbps, a 1.24×
improvement over the environmental channel (21.7 Mbps).

Additionally, LAIA can achieve a maximum of 1.56× TCP

throughput improvement.

Mobile case. The previous experiments demonstrate that

LAIA can successfully improve the channel capacity and

TCP throughput for static wireless links. In this section, we

evaluate the performance of LAIA in a mobile environment.

We place the receiver (AP) at a fixed location and move the

transmitter at two constant speeds: slow (0.3 m/s) and normal

(0.9 m/s). At the same time, the LAIA controller configures

the LAIA array in real time based on the CSI information

from the AP. We then measure the SNR and estimate the

Shannon capacity on the basis of that measurement during

the transmitter’s movement. Figure 14 shows a snapshot of

the real-time channel capacity. LAIA achieves consistently

higher channel capacity than the pure environmental channel

at both the slow and normal movement speeds. Specifically,

LAIA successfully improves the average channel capacity

from 1.28 bps/Hz to 1.79 bps/Hz for slow movement speed,

and from 1.04 bps/Hz to 1.39 bps/Hz for normal movement

speed, respectively, demonstrating that LAIA effectively im-

proves the channel capacity in mobile environments. We no-

tice that LAIA works slightly better when the moving speed

is slower. This is because the slower movement gives LAIA

more time to react to the channel change. We will further

discuss how to scale LAIA to high speed in future work.

5.3 MIMO links
We next evaluate the capacity improvement achieved by LAIA

for MIMO communication systems. We set up a multi-

antenna transmitter-receiver system in our testbed and mea-

sure the channel capacity improvement at 20 different loca-

tions. Figure 15(a) shows the CDF of the channel capacity

improvement LAIA achieves on 2×2, 3×3 and 4×4 MIMO

links. We see that the improvement increases with the number

of antennas used in the MIMO system. Specifically, the me-

dian capacity improvement is 2.96 bps/Hz, 3.71 bps/Hz and

4.6 bps/Hz for 2×2, 3×3, 4×4 MIMO, respectively, which

corresponds to 18.95%, 15.68% and 12.23% capacity im-

provement compared with the baseline.

Since both a received power increase and a better MIMO

conditioning can lead to channel capacity improvement in

MIMO systems, we plot the condition number and the total

channel SNR (summation of SNR for all LAIA elements) in

Figure 15(b) and Figure 15(c), respectively, to understand the

root cause of the capacity improvement in our experiments.

From Figure 15(b) we observe a significant condition num-

ber gap between the LAIA channel and the environmental

channel, indicating that the channel conditioning makes a

substantial contribution to the channel capacity gain. In con-

trast, Figure 15(c) shows that the difference of channel SNR

between the LAIA channel and the environmental channel is

small. Hence we conclude that most of the capacity improve-

ment comes from a channel conditioning improvement.

5.4 Multiple links
We also evaluate LAIA’s performance in cases where multiple

links operate in close proxmity.

Multiple users. We first evaluate the performance in a Wi-

Fi network consisting of five single-antenna clients and one

single-antenna AP. Only one client can communicate with

the AP at any given time instance. Since the LAIA controller

294 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 4 6 8 10
Capacity increase (bps/Hz)

0

0.2

0.4

0.6

0.8

1
C

D
F

 o
ve

r
lin

ks

MIMO 2x2
MIMO 3x3
MIMO 4x4

(a) Shannon capacity

0 5 10 15 20
Condition number (dB)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

ve
r

lin
ks LAIA 2x2

Env 2x2
LAIA 3x3
Env 3x3
LAIA 4x4
Env 4x4

(b) Condition number

30 35 40 45 50 55 60
Total channel SNR (dB)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

ve
r

lin
ks

LAIA 2x2
Env 2x2
LAIA 3x3
Env 3x3
LAIA 4x4
Env 4x4

(c) Total channel SNR

Figure 15: LAIA improvement on MIMO links (a) Shannon capacity increase achieved by LAIA, for 2×2, 3×3 and 4×4 MIMO communica-

tions; (b) Condition number changed by LAIA, for 2×2, 3×3 and 4×4 MIMO communications; and (c) Total channel SNR.

0 5 10 15 20 25 30
Link combinations

0

1

2

3

4

5

C
ap

ac
ity

 (
bp

s/
H

z) Link 1
Link 2

Link 3
Link 4

Link 5

Figure 16: Shannon capacity improvement achieved by LAIA over

five wireless links in 30 groups of experiments.

does not know which link is active, it configures the antenna

array to maximize the total channel capacity of the five links,

keeping the configuration until one user disassociates with

the AP. We move the AP and all five clients to 30 different

locations. At each location, we measure the CSI of all five

links and calculate Shannon capacity.

Figure 16 shows the Shannon capacity improvement (with

respect to the environmental channel) LAIA achieves. We ob-

serve that LAIA achieves a 3.43 bps/Hz capacity improvement

on average over 30 locations. The maximum and minimum

capacity improvement is 5.54 bps/Hz and 2.10 bps/Hz, re-

spectively. We also observe diverse capacity improvements

among different links, e.g., the capacity of Link 1 in Group

1 decreases, while Link 3 in Group 22 achieves a 72.9%

capacity improvement. This is because our current control

algorithm aims at maximizing the total capacity of all five

links instead of optimizing any individual link.

We further sort the results of these 30 groups of experi-

ments in ascending order of the capacity improvement over

Link 3. In Figure 17(a), LAIA aims at maximizing the total

capacity of all five links, while in Figure 17(b), LAIA aims

at maximizing the capacity of Link 3 only. LAIA achieves

much higher capacity improvement for a specific link when

we target at maximizing that link alone. However, the capacity

improvement of all the remaining links decreases significantly.

Therefore, the control algorithm of LAIA should consider the

fairness among all clients when serving them.

Concurrent transmissions. We next evaluate the perfor-

mance of LAIA in the presence of concurrent wireless SISO

links over two non-overlapping channels (channels 1 and 11

in the 2.4 GHz Wi-Fi band). LAIA’s controller optimizes the

1 2 3 4 5
Link index

-1

0

1

2

3

C
ap

ac
ity

 (
bp

s/
H

z)

(a) Capacity increase of five links (maximizing all links)

1 2 3 4 5
Link index

-1

0

1

2

3

C
ap

ac
ity

 (
bp

s/
H

z)

(b) Capacity increase of five links (maximizing link 3)

Figure 17: The sorted capacity improvement when LAIA aims at

(a) maximizing the total capacity of five links; and (b) maximizing

the capacity of link three.

channel capacity of these two SISO links with the fairness

constraint (denoted LAIA). We then measure the capacity

of the environmental channel as the baseline (denoted envi-
ronment). For comparison purposes, we also measure the

channel capacity when LAIA aims to maximize the channel

capacity of link one (Max link 1) and link two (Max link 2).

We conduct the above experiments in 30 random locations

and plot the CDF of the channel capacity in Figures 18(a)

and (b). We observe that LAIA can improve the aggregate

channel capacity of these two links without reducing the ca-

pacity of any link. These experimental results demonstrate the

feasibility of improving the capacity of two non-overlapping

links simultaneously with LAIA. When LAIA aims to maxi-

mize the channel capacity of a single link, we can see that the

achievable capacity improvement over this link increases, but

sometimes the capacity of the other link decreases, which is

unfair to the user of the other link.

6 Related Work

Directional antennas and static Wi-Fi signal shapers. Use

of directional antennas is perhaps one of the most straightfor-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 295

2 3 4 5
Channel capacity (bps/Hz)

0

0.5

1

C
D

F
 o

ve
r

lo
ca

tio
ns

Environment
Max link 1
Max link 2
LAIA

Algorithm

(a) Channel capacity of link #1

3 4 5 6
Channel capacity (bps/Hz)

0

0.5

1

C
D

F
 o

ve
r

lo
ca

tio
ns

Environment
Max link 1
Max link 2
LAIA

Algorithm

(b) Channel capacity of link #2

Figure 18: Channel capacity across locations when two wireless

links transmit simultaneously on non-overlapping channels.

ward mechanisms to shape the wireless signals. Multiple of

these antennas can be placed strategically to avoid interfer-

ence between networks [24]) or generate desirable network

coverage [30]. However, the granularity of the control is usu-

ally coarse, at the mercy of the beam specification and fluctu-

ations in the environment. In a similar spirit, there have been

several attempts at making the environment more amenable to

wireless communications, for example, by adding 3D-printed

static reflectors around the sender or receiver to shape outgo-

ing or incoming signals [8, 41] or deploying static reflectors

away from the AP [16]. However, these lack reconfigurability

and cannot adapt to changing environment conditions. In

contrast, LAIA aims to adapt to the environment in real time.

Millimeter-wave reflectors. Recent work uses reflectors,

static mirrors [44], or programmable phased-array reflec-

tors [1, 2] to generate alternate paths, which can circumvent

obstacles blocking the direct path. While this is promising in

the context of millimeter wave, the problem is qualitatively

different for lower frequencies. For communications below

10 GHz, the number of reflectors, diffractors, and absorbers

in the environment often creates a dense, high-dimensional

channel, unlike the sparse matrix for 10 GHz and above. Op-

timizing this dense matrix is a qualitatively different problem

than the one we undertake.

Wi-Fi extenders. Commercial Wi-Fi extenders are trending

recently [11, 13, 32, 33], typically decoding packets from

AP and forwarding them to clients located in longer ranges.

This is again coarse-grained, however, and simply shifts the

same coverage problem to a region further away from the

transmitter. In contrast, LAIA controls the phase offset on

different signal propagation paths to improve the SNR of

the received signals and can be customized to practically

any location within the antenna range. FastForward [6] uses

a relay node to improve the communication channel. The

fundamental difference between FastForward and LAIA is

FastForward’s active versus LAIA’s passive design.

Backscatter systems. Much recent work [19, 20, 23] har-

nesses ambient signals in the environment as the power source

for communication and computation. Another line of re-

search [17, 18] presents active-passive hybrid designs (i.e.,
traditional plus backscatter) for low-power radios as well

as addressing power asymmetry between end-user devices.

LAIA is diametrically different since it alters communication

signals instead of reusing them for another purpose. LAIA

instead reconfigures signal propagation.

Massive MIMO. The advent of massive MIMO systems has

ushered in a rapid growth in next generation wireless net-

works [14, 15, 28, 29, 42]. Massive MIMO leverages a large

number of antennas to focus energy into ever smaller beams

to serve multiple users simultaneously. These systems cus-

tomize transmission based on the channels between the base

station and the end users. In contrast, LAIA reconfigures

the propagation paths of the wireless signals and can work

synergistically with massive MIMO systems.

7 Discussion

Our current design merely scratches the surface of the design

space. We briefly discuss limitations and future work.

Limitations. LAIA’s channel decomposition algorithm re-

quires multiple packet exchanges to fully decompose wireless

channels and hence takes time that scales with the number of

elements. The channel decomposition requires highly accu-

rate CSI, which is not provided by current commodity Wi-Fi

devices, but may be in the future. Therefore, our current

system only works on WARP software defined radio.

Future work. Many open questions remain and there are ex-

citing avenues to explore. For example, what is the minimal

subset of LAIA elements to control for competitive results?

Further questions abound in the design of individual elements

themselves: investigating the design spectrum between pas-

sive and active elements is ongoing work.

8 Conclusion

We have taken a first step towards programming the radio

environment, a qualitatively different approach to the con-

ventional strategy of optimizing communication endpoints.

Our prototype implementation reconfigures the radio environ-

ment in real time, with an extensive evaluation demonstrating

communications throughput enhancements that complement

many other state of the art methods.

Acknowledgements

We thank the PAWS group, the reviewers and our shepherd,

Xinyu Zhang for their insightful comments. This material is

based upon work supported by the National Science Foun-

dation under Grant Nos. CNS-1617161, CNS-1763212, and

CNS-1763309. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the Na-

tional Science Foundation.

296 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] ABARI, O., BHARADIA, D., DUFFIELD, A., AND

KATABI, D. Cutting the Cord in Virtual Reality. In

HotNets (2016).

[2] ABARI, O., BHARADIA, D., DUFFIELD, A., AND

KATABI, D. Enabling high-quality untethered virtual

reality. In NSDI (2017).

[3] Arduino Adafruit Metro Mini. Website.

[4] ARYAFAR, E., ANAND, N., SALONIDIS, T., AND

KNIGHTLY, E. Design and experimental evaluation of

multi-user beamforming in wireless LANs. In

MobiCom (2010).

[5] BAHL, P., AND PADMANABHAN, V. N. RADAR: an

in-building rf-based user location and tracking system.

In IEEE INFOCOM (2000).

[6] BHARADIA, D., AND KATTI, S. Fastforward: Fast and

constructive full duplex relays. SIGCOMM (2015).

[7] BISWAS, S., AND MORRIS, R. ExOR: Opportunistic

Multi-hop Routing for Wireless Networks. In

SIGCOMM (2005).

[8] CHAN, J., ZHENG, C., AND ZHOU, X. 3D Printing

Your Wireless Coverage. In HotWireless Workshop
(2015).

[9] Chinese remainder theorem. https://en.wikipedia.
org/wiki/Chinese_remainder_theorem.

[10] CZINK, N., HERDIN, M., ÖZCELIK, H., AND BONEK,

E. Number of multipath clusters in indoor MIMO

propagation environments. Electronics letters 40, 23

(2004), 1498–1499.

[11] NETGEAR N300 Wi-Fi Range Extender. https:
//www.netgear.com/home/products/networking/
wifi-range-extenders/WN3000RP.aspx.

[12] GALLAGER, R. G. Low-Density Parity-Check Codes.

PhD thesis, MIT, 1963.

[13] Google Wi-Fi. https:
//store.google.com/us/product/google_wifi.

[14] HAMED, E., RAHUL, H., ABDELGHANY, M. A., AND

KATABI, D. Real-time Distributed MIMO Systems. In

SIGCOMM (2016).

[15] HAMED, E., RAHUL, H., AND PARTOV, B. Chorus:

truly distributed distributed-mimo. In SIGCOMM
(2018).

[16] HAN, S., AND SHIN, K. Enhancing wireless

performance using reflectors. In INFOCOM (2017).

[17] HU, P., ZHANG, P., AND GANESAN, D. Laissez-Faire:

Fully asymmetric backscatter communication. In

SIGCOMM (2015).

[18] HU, P., ZHANG, P., ROSTAMI, M., AND GANESAN,

D. Braidio: An integrated active-passive radio for

mobile devices with asymmetric energy budgets. In

SIGCOMM (2016).

[19] IYER, V., TALLA, V., KELLOGG, B., GOLLAKOTA,

S., AND SMITH, J. Inter-technology backscatter:

Towards internet connectivity for implanted devices. In

SIGCOMM (2016).

[20] KELLOGG, B., PARKS, A., GOLLAKOTA, S., SMITH,

J. R., AND WETHERALL, D. Wi-fi backscatter:

Internet connectivity for rf-powered devices. In

SIGCOMM (2014).

[21] KOTARU, M., JOSHI, K., BHARADIA, D., AND

KATTI, S. SpotFi: Decimeter level localization using

WiFi. In SIGCOMM (2015).

[22] LAAKSO, T. I., VALIMAKI, V., KARJALAINEN, M.,

AND LAINE, U. K. Splitting the unit delay [FIR/all

pass filters design]. IEEE Signal Processing Magazine
13, 1 (1996), 30–60.

[23] LIU, V., PARKS, A., TALLA, V., GOLLAKOTA, S.,

WETHERALL, D., AND SMITH, J. R. Ambient

backscatter: wireless communication out of thin air. In

SIGCOMM (2013).

[24] LIU, X., SHETH, A., KAMINSKY, M.,

PAPAGIANNAKI, K., SESHAN, S., AND STEENKISTE,

P. DIRC: Increasing indoor wireless capacity using

directional antennas. In SIGCOMM (2009).

[25] MACOM Maps-010144 four-bits phase shifter. http:
//cdn.macom.com/datasheets/maps-010144.pdf.

[26] MIU, A., BALAKRISHNAN, H., AND KOKSAL, C. E.

Improving loss resilience with multi-radio diversity in

wireless networks. In MobiCom (2005).

[27] PERRY, J., IANNUCCI, P., FLEMING, K.,

BALAKRISHNAN, H., AND SHAH, D. Spinal codes. In

SIGCOMM (2012).

[28] RAHUL, H., KUMAR, S., AND KATABI, D. JMB:

Scaling Wireless Capacity with User Demands. In

SIGCOMM (2012).

[29] SHEPARD, C., YU, H., ANAND, N., LI, L.,

MARZETTA, T., YANG, R., AND ZHONG, L. Argos:

Practical many-antenna base stations. In MobiCom
(2012).

[30] SHETH, A., SESHAN, S., AND WETHERALL, D.

Geo-fencing: Confining wi-fi coverage to physical

boundaries. In PerCom (2009).

[31] STONE, W. C. Electromagnetic signal attenuation in

construction materials. Tech. rep., National Institute of

Standards and Technology, 1997.

[32] Linksys - AC750 Boost Range Extender.

http://www.linksys.com/us/p/P-RE6300/.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 297

[33] TP-Link RE450 1750 Wi-Fi Range Extender.

https://www.tp-link.com/us/products/
details/cat-5508_RE450.html.

[34] TSE, D., AND VISWANATH, P. Fundamentals of
Wireless Communication. Cambridge University Press,

2005.

[35] VAN NEE, R. D., AND PRASAD, R. OFDM for
wireless multimedia communications. Artech house,

2000.

[36] Warp 802.11 throughput benchmarks.

https://warpproject.org/trac/wiki/802.11/
Benchmarks/Throughput.

[37] Rice Univ. WARP platform (v. 3). https:
//mangocomm.com/products/kits/warp-v3-kit.

[38] WILSON, R. Propagation losses through common

building materials 2.4 ghz vs 5 ghz. Magis Networks
Inc.: San Diego, CA, USA (2002).

[39] WOO, G. R., KHERADPOUR, P., SHEN, D., AND

KATABI, D. Beyond the bits: Cooperative packet

recovery using physical layer information. In

MobiCom (2007).

[40] XIONG, J., SUNDARESAN, K., AND JAMIESON, K.

ToneTrack: Leveraging frequency-agile radios for

time-based indoor wireless localization. In MobiCom
(2015).

[41] XIONG, X., CHAN, J., YU, E., KUMARI, N., SANI,

A. A., ZHENG, C., AND ZHOU, X. Customizing

indoor wireless coverage via 3d-fabricated reflectors.

In BuildSys (2017).

[42] YANG, Q., LI, X., YAO, H., FANG, J., TAN, K., HU,

W., ZHANG, J., AND ZHANG, Y. BigStation: Enabling

Scalable Real-time Signal Processing in Large

MU-MIMO systems. In SIGCOMM (2013).

[43] ZHANG, Y., YANG, C. J., HUDSON, S. E.,

HARRISON, C., AND SAMPLE, A. Wall++:

Room-scale interactive and context-aware sensing. In

Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (2018), ACM, p. 273.

[44] ZHOU, X., ZHANG, Z., ZHU, Y., LI, Y., KUMAR, S.,

VAHDAT, A., ZHAO, B., AND ZHENG, H. Mirror

Mirror on the Ceiling: Flexible Wireless Links for Data

Centers. In SIGCOMM (2012).

A Appendix

A.1 Probing Matrix Construction
Theorem 1. Q in the form of

Q =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1 1

−1 1 . . . 1 1

e jθ2,0 −1 . . . 1 1
...

... . . .
...

...
e jθM,0 e jθM,1 . . . −1 1

⎤
⎥⎥⎥⎥⎥⎦ (10)

is a full rank matrix regardless of the value of θi, j

Proof. To prove matrix Q is full rank, we try to prove the

value of the determinant of Q is non-zero. We first consider a

transfer matrix Q′,

Q′ =

⎡
⎢⎢⎢⎢⎢⎣

−1 1 . . . 1 1

e jθ2,0 −1 . . . 1 1
...

... . . .
...

...

e jθM,0 e jθM,1 . . . −1 1

1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎥⎦ (11)

which swaps the first row of Q with the last row. Notice that

the absolute value of the determinant of Q and Q′ are the

same. |detQ|= |detQ′|. For detQ′, We can subtract the last

row from the first n−1 rows, and we can get

detQ′ = det(

⎡
⎢⎢⎢⎢⎢⎣

−2 0 . . . 0 0

e jθ2,0 −1 −2 . . . 0 0
...

... . . .
...

...

e jθM,0 −1 e jθM,1 −1 . . . −2 0

1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎥⎦)

= (−2)n−1.
(12)

So the absolute value of the determinant of Q is not zero.

Since |detQ|= |detQ′| �= 0, Q is a full rank matrix.

A.2 CFO Estimation
Figure 19 demonstrates why CFO can cause a random phase

offset in CSI estimation. In the figure, the x-axis denotes time

and y-axis denotes the phase difference between the carrier

signals of sender and receiver. The slope of the green line is

CFO, denoted by Δ f . The blue boxes denote packets. In the

figure, the time gap between the first packet and the second

packet is Δt1. The time gap contributes to a phase difference

of Δφ1 between the CSI of two packets. In addition, the

phase difference will fold back modulo 2π. If φ0 is phase

difference between upconverter signal and downconverter

signal at time 0, we can write the phase error of the i th packet

as φi = (φ0 +Δ f · ti) mod 2π. Our goal is to estimate Δ f
accurately. To achieve this, we can change the formula to the

298 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 19: A example to demonstrate how LAIA estimate CFO.

form of the Chinese remainder theorem [9] φ0 = (φi +2π ·nk)
mod ti, where nk is a integer: we compute an accurate CFO

and compensate for the random phase offset accordingly.

This method has a more accurate CFO estimation than

the Schmidl-Cox method because it uses a much larger time

window to estimate CFO. The time window that Schmidl-

Cox uses to estimate CFO is typically a symbol time (4μs),

while the time window that LAIA uses is typical several

packet times (around 4 ms). Since phase errors due to CFO

accumulate with time, a longer observation time window can

provide better CFO estimation.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 299

Pushing the Range Limits of Commercial Passive RFIDs

Jingxian Wang
Carnegie Mellon University

Junbo Zhang
Tsinghua University

Rajarshi Saha
IIT Kharagpur

Haojian Jin
Carnegie Mellon University

Swarun Kumar
Carnegie Mellon University

Abstract

This paper asks: “Can we push the prevailing range limits of
commercial passive RFIDs?”. Today’s commercial passive
RFIDs report ranges of 5-15 meters at best. This constrains
RFIDs to be detected only at specific checkpoints in ware-
houses, stores and factories today, leaving them outside of
communication range beyond these spaces. State-of-the-art
approaches to improve the range of RFIDs develop new tag
hardware that necessarily sacrifices some of the most attrac-
tive features of passive RFIDs such as their low cost, small
form-factor or the absence of a battery.

We present PushID, a system that exploits collaboration
between readers to enhance the range of commercial passive
RFID tags, without altering the tags whatsoever. PushID uses
distributed MIMO to coherently combine signals across geo-
graphically separated RFID readers at the tags. In doing so, it
resolves the chicken-or-egg problem of inferring the optimal
beamforming parameters to beam energy to a tag without
any feedback from the tag itself, which needs this energy to
respond in the first place. A prototype evaluation of PushID
with 8 distributed RFID readers reveals a range of 64-meters
to the closest reader and a 7.4×, 1.2× and 1.6× improvement
in range compared to state-of-the-art commercial readers and
other two schemes [10, 33].

1 Introduction

Conventionally, passive commercial RFID tags have a max-
imum range of about 5-15 meters. Passive RFIDs are lim-
ited in range owing to their limited cost, form-factor, and the
FCC-mandated power limits of the RFID readers they har-
vest energy from. Indeed, in much of today’s factories [30]
and warehouses [7, 11], RFID-tagged products can only be
detected around specific checkpoints in the vicinity of an
RFID reader, and are virtually undetectable at other points in
between [21, 31]. Further, recent innovation on RFID-based
localization and sensing [24, 25, 35, 56] remain constrained to
a few meters around each reader in these large spaces.

Figure 1: (a) In traditional multi-antenna beamforming, a
beam forms towards a particular direction; (b) PushID’s
distributed MIMO beams create multiple energy peaks and
troughs over space resulting in complex energy distributions.

In this paper, we ask – “Can we push the range limits of
today’s commercial passive RFID tags without increasing
the prevailing density of deployment of RFID readers?”. In
particular, we aim to do so without modifying the RFID tags
in any way by adding to cost and complexity [27, 29, 49],
relays [34] or requiring batteries [37]. We further avoid us-
ing sophisticated multi-antenna or directional RFID readers
that can indeed expand range [10, 33], yet are vulnerable to
obstacles and limited by FCC transmit power limits [1]. More
importantly, such systems require commercial RFIDs that
are linearly polarized to be carefully oriented towards their
location [23] to harvest sufficient energy.

We present PushID, the first system that uses distributed
MIMO to increase the communication range of commercial
passive RFID tags. PushID synchronizes both transmissions
and receptions from multiple, distributed RFID readers to
beamform power to RFID tags that are several tens of meters
away from any individual reader antenna. In addition, PushID
exploits the diversity in location and polarization of reader
antennas to further improve range. Our detailed experimen-
tal evaluation on an eight-distributed multi-antenna reader
testbed reveals that PushID achieves a 7.4× improvement in
range compared to the state-of-the-art commercial readers
and 20% over the mean of distance improvement even when

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 301

compared to 8-antenna MIMO reader arrays [10], all while
remaining compliant with FCC power limits for the readers.

PushID’s main goal is to find optimal beamforming weights
to beam power to an RFID tag at an unknown location and
orientation. Since RFID systems are back-scatter [4], opti-
mal beamforming weights amplify both the transmitted and
received signals to/from RFID tags. At first blush, one may
consider using channel reciprocity [19], where one infers the
optimal beamforming weights based on the wireless channels
of signals from the RFID tag to the reader antennas. However,
in the context of passive RFIDs, this leads to a chicken-or-egg
problem. To emit a response, a passive RFID tag needs to
harvest sufficient energy from the beamformed signal of the
RFID reader antennas. Yet to perform accurate beamforming,
the readers need a response from the RFID tag in the first
place. Indeed, naively iterating over all possible beamforming
weights would take days to simply beamform power to one
tag from a long distance.

PushID resolves this dilemma by developing a novel dis-
tributed blind beamforming approach to efficiently search
through the space of beamforming weights without a response
from the tag. At a high level, PushID models the received sig-
nal power at each point in space for different beamforming
weights applied across reader antennas. It then identifies sub-
sets of 3-D space where RFIDs placed would receive sufficient
energy to respond. Unlike traditional beams of a directional
antenna, in the context of distributed MIMO, these regions of
space that receive sufficient energy are quite complex and they
span the entire 3-D space as shown in Fig. 1. PushID shows
that finding the optimal beamforming weights while minimiz-
ing overlap is analogous to the weighted set-cover problem, a
well-known NP-complete problem [5]. PushID then develops
heuristic approximation algorithms to efficiently search the
entire space for RFID tags under a limited time budget. A
key challenge in ensuring minimal overlap between patterns
is the unknown multipath characteristics of the environment
which can completely change the energy patterns that beam-
forming weights produce (See Fig. 3). PushID’s approach
to resolve this exploits responses from the RFID tags that
are progressively detected as it applies various beamforming
vectors. PushID uses these responses to better learn the nature
and extent of multipath-richness in the environment. We show
how this iteratively improves PushID’s ability to efficiently
look for and power other tags in the environment.

A second challenge PushID must resolve is achieving time
and frequency synchronization across multiple distributed
RFID readers to beamform coherently. PushID borrows from
classic distributed MIMO architectures in the Wi-Fi con-
text [19, 40] that one can treat a transmitter as the master
and apply phase shifts to the remaining slave transmitters to
emulate signals from the master. Yet, a key challenge in the
RFID context is that transmissions from the readers are signif-
icantly longer than Wi-Fi, causing phase drifts to accumulate
significantly even within one packet from the reader. PushID

resolves this by leveraging the full-duplex nature of RFID
readers. Specifically, each PushID slave transmitter subtracts
its own signal and tracks the drift in phase of a carefully cho-
sen subset of remaining transmitters. It then uses these phase
drifts to account for phase errors that accumulate within a
packet dynamically. We show how our system eventually con-
verges to tightly synchronized transmissions and receptions,
even if some RFID readers are not in the range of the master
reader.

Limitations: We note that PushID has two important limita-
tions common to RFID-systems: (1) First, despite significant
range improvements, a small fraction of RFID tags (< 5%)
are missed due to extreme shadowing or poor orientation; (2)
Second, while PushID can handle modest mobility of tags
(walking speeds), it struggles at higher speeds due to high
dynamism in the multipath characteristics of the tags. We
discuss and evaluate these limitations in Sec. 7.5- 7.6.

We implement PushID on eight USRP N210 software radio
readers, each connected to separate Jackson Lab Fury clocks
and commercial Alien passive RFID tags. We perform our
experiments on a 140 x 140 meter outdoor space and a 20 x 40
meter indoor space in both line-of-sight and non-line-of-sight
scenarios. Our experimental results reveal that:

• PushID achieves a maximum communication range of 64 m,
an improvement of 7.4× that of commercial RFIDs and
20% over expensive 8-antenna MIMO.
• Even at short range, PushID achieves a mean throughput of

300 kbps at 8.5 meters (2.6 × vs. commercial RFID).
• Our system detects over 95% of the tags in a 140× 140 m

area, while commercial readers can detect tags no further
than 8.5 m at best.

Contributions: To our knowledge, this paper presents the
first distributed MIMO system to power commercial passive
RFID tags. We present a novel blind distributed beamforming
algorithm to efficiently search through the space of beam-
forming weights as well as novel phase synchronization for
RFIDs. A detailed prototype evaluation on an eight-antenna
distributed reader testbed reveals a 7.4× improvement in
range compared to state-of-the-art commercial readers .

2 Related Work

RFID Communication and Sensing Systems: There has
been much past research on RFID tags including ways to mit-
igate collisions [6], improve communication speed [41] and
design a variety of localization and sensing solutions [24, 53].
However, all these solutions are limited to a range of at most
5-15 meters [32, 52] around the readers and thus have lim-
ited ability to locate, sense or communicate with RFID tags.
Closely related to our system are recent solutions that use
multi-antenna arrays connected to RFID readers to improve

302 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

range [10, 33]. While these systems improve range to com-
mercial RFID tags (distances of up to 38 meters), our system
varies in two ways: (1) First, systems with directional anten-
nas are vulnerable to obstacles between the reader antennas
and tags which can significantly attenuate the signal; (2) Sec-
ond, they fail when the RFID tags are oriented poorly rela-
tive to the reader antennas. We see our system as an alterna-
tive approach using diversity of spatially distributed antennas
within RFID ISM frequencies to extend the range of RFID
and as complementary to [33]. We do think that both PushID
and multi-antenna MIMO [42] as attractive solutions with
different deployment cost/requirements. We show how by
synchronizing signals across multiple RFID readers, PushID
exploits the diversity in location and orientations of the reader
antennas to significantly improve range compared to the state-
of-the-art.

Wireless Power Transfer: Recent advances in wireless
power transfer take two approaches: non-radiative near-field
coupling and far-field RF radiation. Near-field coupling
[22, 43] uses multiple coils to expand charging and communi-
cation range, yet is restricted to several tens of centimeters.

Far-field charging promises longer distance for wireless
power transfer on the order of meters through innovative
hardware design. Energy-harvesting RFID tags such as
the WISP [46] promise a range of 18 meters. Past solu-
tions [15, 16] have built wireless power transfer systems
to deliver an enhanced energy in a targeted area. Recent
work [48, 51] also demonstrates distances of kilometers
by building custom backscatter tags with small batteries.
Low-power WAN (LP-WAN) technologies [13, 14] including
LoRa [47], SIGFOX [59] have explored battery-powered tags
that can communicate over miles. In contrast, PushID strives
to improve the range of current battery-free commercial RFID
tags that cost a few cents by innovating at the RFID readers.

Blind Beamforming: In the RFID context, PushID needs to
perform beamforming to tags whose wireless channels are
unknown a priori. PushID builds upon blind beamforming [9],
which is a set of theoretical beamforming solutions developed
by the signal processing community in the presence of poor
quality or even no channel state information available from
the clients. Past work on blind beamforming with weak chan-
nel responses leverages its statistical features, for example,
the cyclostationary property [45], spectral self-coherence [2].
In contrast, PushID does not have any channel information to
leverage, given that tags are not a priori powered up. Other
work on blind beamforming with zero channel feedback builds
solutions without the need for carrier frequency synchroniza-
tion [8, 33, 44]. PushID builds upon this past work but over-
comes unique system-level challenges pertaining to the RFID
context: (1) It accounts for feedback from neighboring RFID
tags that are charged during the exploration of beamforming
weights to refine the search in multipath-rich settings; (2) It
deals with various synchronization challenges in distributed

Figure 2: Architecture of PushID

beamforming with long RFID packets.

3 Overview

PushID aims to power and communicate with commercial pas-
sive RFID tags via RF-backscatter from a team of distributed
commercial RFID readers, where tags are beyond the commu-
nication range of any single reader. PushID achieves this by
coherently combining signals across distributed RFID read-
ers to maximize received signal power at one or more RFID
tags, whose location and orientation are a priori unknown. We
note that since RFID systems are back-scatter, PushID applies
beamforming weights both on the transmitted and received
signals to maximize energy to/from RFID tags. We assume
all PushID RFID readers are connected to a wired backhaul,
which allows them to coordinate transmissions and data that
needs to be transmitted on the downlink. We further assume
that while the locations of the RFID readers are known, the
number of RFID tags, their locations and their environment
are unknown.

At a high level, PushID’s system design is as follows (see
Fig. 2): All RFID readers time and phase synchronize their
transmissions on the air and iteratively apply various beam-
forming vectors in the hope of receiving responses from RFID
tags in the environment. The readers then collect responses
from various RFID tags in the environment and use the wire-
less channels they perceive in improving the search for other
tags. The readers continue this process until they believe (with
sufficient confidence) that they have covered the entire desired
coverage area. To achieve this, PushID optimizes the follow-
ing (related) properties: (1) Maximize the total number of
RFIDs found within the coverage area under an overall time
budget (which limits the number of beamforming vectors that
can be iteratively attempted); (2) Maximize the throughput of
signals from each tag.

The rest of the paper addresses the key challenges in de-
signing the two main aspects of PushID’s architecture:

(1) Searching through the Beamforming Space: First, our
system needs to identify optimal beamforming weights to

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 303

iteratively search over in order to power RFID tags in the
entire space. While this problem can be trivially addressed
using channel reciprocity for RFID tags that are in range, the
key challenge is that tags are outside the coverage area of any
single reader. Therefore, PushID must identify the smallest
set of beamforming weights that can provide sufficient energy
to all tags over the entire area of interest. The key to this is to
effectively model multipath in the environment, which would
change the set of beamforming weights to search over. Sec. 4
describes our approach.

(2) Synchronizing Distributed RFID Readers: Second,
PushID should efficiently synchronize RFID readers that are
spatially distributed indoors, without a shared clock between
them. In contrast to past work in the Wi-Fi domain [40], our
key challenge comes from the longer duration of RFID trans-
missions, over which packets can quickly lose synchroniza-
tion in phase. Further, RFID transmissions, unlike Wi-Fi, are
narrowband, which makes time synchronization challenging
as well. Sec. 5 addresses these challenges.

4 Blind Distributed Beamforming

This section describes how PushID enables a team of RFID
readers with an arbitrary geometry to find the optimal beam-
forming weights and beam power to all RFID tags in their
coverage area, including those beyond the range of any single
reader. We aim to achieve this without any response from
these RFID tags to begin with or prior knowledge of their
locations and orientations. For ease of exposition, this section
assumes that all RFID readers experience no time, carrier
frequency and phase offsets. We will explicitly deal with
synchronizing distributed RFID readers in Sec. 5.

We make a few key observations about the scope and goals
of PushID’s approach:

• Beamforming on both Downlink and Uplink: We note
that PushID seeks to amplify the received signal power from
RFID readers to the tags and vice-versa. Specifically, since
RFIDs operate on RF-backscatter, and owing to channel
reciprocity [28], beamforming weights used on the transmit
chain to power tags on the downlink can also be used to
amplify their received signals on the uplink. For simplicity,
the rest of this section discusses PushID in the context of
maximizing energy on the downlink.

• How much energy to beamform?: We emphasize that
the goal of PushID in this section is to simply beamform
enough energy to detect an RFID tag. Once the RFID tag’s
response is received, we can then use the reciprocal channel
to obtain the optimal beamforming vector to maximize data
rate to that tag in future transmissions. As a result, the rest of
this section will favor PushID formulations that maximize
the energy RFIDs require over the entire space, as opposed
to focusing on individual tags.

4.1 Exploring the Beamforming Space

A naïve approach to perform blind beamforming is an ex-
haustive search of the space of beamforming vectors in hope
of eliciting a response. Prior work in the context of cellular
multi-antenna arrays [36] constructs codebooks that progres-
sively steer the beam along various discrete directions in hope
of covering an entire cell efficiently. For example, consider a
phased array of antennas (see Fig. 1(a)) where a transmitter
could simply beam power iteratively along discrete angles to
cover the space of interest.

However, the distributed RFID context makes such an el-
egant design challenging. First, given that RFID readers are
widely separated and they form an arbitrary geometry relative
to each other, beamforming weights distribute energy over the
space in very complex patterns. Further, it is challenging to
find weights that both cover the entire space of interest with
sufficient energy and minimize overlap.

What do beamforming energy patterns look like?: To bet-
ter understand how different beamforming weights from a
distributed array of antennas impact the distribution of energy
over the space, we perform a simple simulation. We consider
four transmitters in the corners of a square with a one meter
diagonal length. For simplicity, we consider that the transmit-
ters are in 2-D free space and use standard wireless channel
models [50]. We first apply a beamforming weight that allows
signals from the transmitters to add up coherently at the center
of the square. We plot the distribution of energy over the entire
2-D space around the square encompassing the transmitters in
Fig. 3 (a). We notice that while the center of the square indeed
receives maximum energy (denoted by bright yellow), there
are multiple spots around the center that are also energized
with a similar received signal strength. This shows that apply-
ing beamforming weights in a distributed array also focuses
energy on unintended points in the space. This means that
simply iterating beamforming weights to focus on individual
points in the space would lead to much unwanted overlap and
be grossly inefficient. We therefore conclude that:

OBSERVATION 1: PushID must seek to minimize overlap
between energy patterns of beamforming weights it applies.

Problem Formulation and Optimization: Based on the
above observation, we will now formulate PushID’s core op-
timization problem that seeks to find the smallest group of
beamforming vectors which energizes the entire space of in-
terest with minimum overlap between them. At least to begin
with, our system cannot rely on any feedback from RFID
tags in the environment, given that none of them may have
sufficient energy to respond. As a consequence, we have no
prior information on the nature and extent of multipath in the
environment. The rest of this section therefore assumes that
line-of-sight paths to RFID readers dominate all other paths,
and we explicitly account for multipath in Sec. 4.2.

At a high level, our approach shows that choosing the opti-

304 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: (a) Energy pattern when four transmitters focus
beamforming at the center. (b) Energy pattern when we apply
a phase shift (2

3 π) to one of the transmitters. (c) Energy pattern
when a strong reflector is placed along y-axis.

mal set of beamforming vectors is analogous to a well known
combinatorial problem: the weighted set coverage problem.
To see how, let us imagine that the 3-D space is divided into a
grid of discrete blocks. Each beamforming vector effectively
supplies sufficient energy to RFIDs in some subset of these
blocks. Our goal is to find the smallest set of such beamform-
ing vectors whose union is the universal set of all blocks in
the grid. This is analogous to the weighted set cover prob-
lem, which seeks to find the smallest number of sets, each
containing a few integers in the range 1, . . . ,N whose union is
precisely the universal set {1,2, . . . ,N}. Given that weighted
set cover is NP-complete [55], we propose an efficient approx-
imation algorithm, while presenting various optimization to
reduce algorithmic complexity.

Mathematically, let us assume that the space of beamform-
ing vectors has n discrete elements B = {B1, . . . ,Bn}, and
we aim to cover m discrete points in the space spanning the
desired coverage area denoted by G = {G1, . . . ,Gm}. Let the
variable ui j, i = 1, . . . ,n and j = 1, . . . ,m be one if the beam-
forming vector Bi provides energy to the point in space G j.
Given that we assume the L base station locations are known
and no information on multipath is available (we discuss mul-
tipath in Sec. 4.2), we can determine ui j as follows:

ui j =

{
1, |Bi.h j|2 > τ

0, otherwise
(1)

where h j =

[
1

dl j
e−2π

√
−1

dl j
λ , l = 1, . . . ,L

]
(2)

Where h j is the vector of wireless channels from base stations
to grid point j, λ is the wavelength, dl j is the distance between
the lth base station and jth grid point and τ is the minimum
received energy required to energize an RFID tag.

Our objective is to find the smallest set of beamforming
vectors that spans all m points in G. We can state this math-
ematically as the following integer linear program based on
the variable xi which is 1 if and only if the ith beamforming

vector is included in our optimal set:

min
n

∑
i=1

xi

s.t.
n

∑
i=1

xiui j ≥ 1 ∀ j ∈ {1, ...,m} (3)

xi ∈ {0,1} ∀i ∈ {1, ...,n} (4)

The above formulation directly resembles the well-known
weighted set cover problem [55], which processes a group of
sets to find the smallest sub-collection whose union is also
the union of the original group of sets. While this problem
is known to be NP-complete [26], a reasonable polynomial-
time approximation algorithm is to relax the above integer-
program formulation into a linear program (LP). Specifically,
we replace Eqn. 4 above by the following:

0≤ xi ≤ 1 ∀i ∈ {1, ...,n} (5)

We solve the optimization problem using standard linear pro-
gramming [3] to obtain the optimal set {x∗1, . . . ,x∗n}. We then
output the chosen set of beamforming weights by applying
randomized rounding [38] on the beamforming weights. This
technique interprets the fractional part of the solution to the
linear program as a probability distribution and then selects
a solution by sampling this distribution. Randomized round-
ing is known to return a set of beamforming weights that is
a valid set cover with probability at least 1/2 [38]. Mathe-
matically, to bound the probability, let ρ be a constant that
satisfies: e−ρ log n ≤ 1

4n . Then randomized rounding proceeds
for exactly ρ log n iterations, and in each iteration, it picks ith

beamforming weight with probability dictated by its respec-
tive solution xi to the linear program.

Prior work has shown that the above approximation algo-
rithm results in a set of beamforming vectors whose size is
within a factor O(logn) of the optimum [17]. Our implemen-
tation uses the Ellipsoid LP-solver [57] with a worst-case
complexity of O(n4), where n is the number of discrete beam-
forming vectors PushID’s algorithm optimizes over.

Reducing Complexity and Search Space: To reduce the
complexity of PushID, one must actively seek to reduce n,
the number of beamforming weights that PushID considers
in its optimization. Our key insight to this end is that while a
large number of beamforming vectors are available, not all are
created equally. To see why, let us revisit our example of the
energy pattern from a beamforming vector that focuses energy
at the center of a square in Fig. 3(a). We now slightly perturb
the beamforming vector of one of the transmitters by choosing
one of the transmitters and adding 2

3 π to its phase, and we
plot the updated energy pattern in Fig. 3(b). We make two
observations about the resulting energy pattern. First, each
local maximum of energy moves in different, complex ways.
This is precisely why we need the optimization algorithm
above to minimize overlap. Second, the size of each energized

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 305

region changes with maximum diffusing energy over wider
spots. In practical terms, this means that the same amount of
energy is spread out over a wider area than the previous case.
Spreading energy over a wider space is good in that RFID tags
over a wider region can be covered by a single beamforming
weight. Yet, spreading energy over too thin over a wide area is
likely to make the energy per unit area insufficient to activate
tags. Indeed, the most ideal beamforming weights are those
who diffuse energy in a Goldilocks zone between these two
extremes. We observe the following:

OBSERVATION 2: PushID must favor beamforming weights
with maximal total area where RFID tags remain powered.

PushID therefore aims to search over beamforming weights
that meet the above criterion of maximizing area-of-coverage
for RFID tags. Our approach begins with n beamforming
weights chosen randomly, where n is dictated by available
computing power. For each beamforming weight, we make
incremental phase shifts and measure the gradient of net in-
crease in coverage area. We then apply a gradient-based opti-
mization that favors phase shifts which maximize coverage
area. We implement Adadelta [58] to speed up the learning
rate. The below algorithm summarizes our approach.

Algorithm 1 Gradient-Based Beamforming Vector Pruning

1: B : random beamforming vectors. t = 1, ...,N. Di: energy
of the set of points which could be covered by the i-th
beamforming vector Bi.

Loop:
2: Q← |

⋃n
i Di|, where Q represents the number of points

covered in G by the beamforming vector set B
3: g(t)← ∇B(Q)

4: E[g2](t)← γE[g2](t−1)+(1− γ)g(t)
2

5: ∆B(t)←−RMS[∆B](t−1)

RMS[g](t)
g(t)

6: B← B+∆B
while Q < threshold
return arg maxB Q

We then feed the above n set of beamforming weights into
our optimization algorithm to find the optimal set.

Design Decisions: We emphasize a few key design choices:

(1) HOW FINELY TO DIVIDE SPACE?: First, PushID must
choose discrete points G in the space to capture the area
covered by a beamforming vector. Choosing too few would
lead to coverage holes, while choosing too many would waste
computation. PushID therefore samples the space at an inter-
val empirically measured to be below the minimum distance
between two adjacent energized regions across beamforming
vectors in B. We empirically find that this corresponds to a
sampling distance of λ/3 in our experiments.

(2) PICKING THE ENERGY THRESHOLD: PushID chooses
the threshold τ empirically by measuring the smallest amount
of energy needed for an RFID tag to respond at its smallest

Figure 4: We simulate 10 transmitters deployed on a circle
with a radius of 75 meters. Red points are the location of
omni-directional transmitters. White points indicate the area
that can activate the RFID tags (signal strength of energized
area ≤ -12.8dBm), black points are the opposite. From left
to right, the plots represent energized pattern with 1, 330 and
450 beamforming vectors. The corresponding energized area
is 34%, 80%, 97% of the enclosed area of transmitters.

data rate. Once the RFID tag is detected, future transmissions
can use the reciprocal channel measurements from this tag to
speed up data rates [50]. We note that τ must be calibrated
conservatively to support all RFID tag models in the space.

(3) IMPACT OF ORIENTATION: PushID explicitly accounts
for the reader’s antenna gain and polarization across spatial
directions by applying a weight to each term of Eqn. 2: αl j,
which captures the attenuation in the lth base station antenna
when it faces the jth grid point. We also account for the ori-
entation of the tag by setting τ conservatively to the smallest
amount of energy for a tag to respond should it be oriented
most unfavorably relative to the readers.

(4) RUN TIME: We find that PushID’s run-time is primarily
bottlenecked by the slow beamforming switch time of trans-
mitters (4.5 ms for our hardware) as opposed to computation.
PushID’s run time depends directly on the final number of
beamforming vectors PushID must iterate over. This depends
on the size of the space, placement of base stations and mul-
tipath. To get a sense for expected run time, we simulate ten
RFID readers in a circle of radius 75 m (Fig. 4). We consider
a threshold of RSSI>-12.8 dBm for the RFID tags to respond.
Without PushID, we find that only 33% of the total area of
interest is covered. However, after only 450 iterations we find
that nearly 97% of the area is covered by PushID. This maps
to a total time of 2.0 s for 97% coverage. Sec. 7.6 discusses
these tradeoffs in experiments (we observe 4 s run time due
to multipath and change in layout).

(5) ADAPTING TO NEW INFORMATION: Our approach so
far arrives at a static set of beamforming weights. However
PushID can benefit from the new information in the channel
response of RFID tags, as they are detected. In particular,
we are interested in learning about the extent and nature of
multipath, which can impact the optimal set of beamforming
vectors. Sec. 4.2 below deals with this explicitly.

306 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: A reflected path can be modeled by a virtual source
(r1,θ1,ψ1) – the mirror image of the tag about the reflector.

4.2 Accounting for Multipath

While so far our discussion considers free space, the presence
of multipath can considerably change the set of beamforming
weights to efficiently search over a given area. To see why,
we revisit our example in Fig. 3(a), and this time we add a
strong reflector and re-evaluate the energized regions of space
as shown in Fig. 3(c). We notice that the resulting energy
heatmap varies considerably from the free-space heatmap,
both in the number, size and placement of the hotspots. Note
that the same set of reflectors can influence the energy per-
ceived at different tags differently. As a result, we conclude:

OBSERVATION 3: PushID must account for multipath given
its impact on the optimal set of beamforming vectors.

PushID’s high-level approach to do so uses the responses
from RFID tags in the environment that are progressively
detected. Indeed, in the absence of any response, PushID has
no information about multipath to work with, and therefore
assumes a free-space channel. As responses from RFID tags
are collected, PushID progressively computes information of
the location and orientation of dominant reflecting surfaces
in the environment. It then uses this information to update
its optimization algorithm, specifically, it modifies the energy
patterns corresponding to our beamforming weights.

Finding Dominant Reflectors: To compute the location of
dominant reflectors, PushID adapts the MUSIC algorithm
while accounting for the arbitrary geometry of the RFID read-
ers. Specifically, the algorithm takes as input wireless chan-
nels along the various frequencies of operation of an RFID
tag (note that RFID tags naturally hop through a range of
frequencies in the 900 MHz ISM band). It then measures
the polar coordinates: (r,θ,φ) representing the mirror-image
of the RFID tag along dominant reflectors by measuring the
power of the received signal P(r,θ,φ) of signals received from
these coordinates. Mathematically, we write:

P(r,θ,φ) =
1

|a(r,θ,φ)†EnE†
n a(r,θ,φ)|

(6)

where: a(r,θ,φ) = [e4π j|r−ri|cos(θ−αi)cos(φ−βi)/λ]i=1,...,N

Where (ri,αi,βi) are the polar coordinates of the transmit-
ters, λ is the signal wavelength, j is the square root of −1,

En are the noise eigenvectors of hobsh
†
obs, hobs represents

the vector of observed wireless channels of the tags and
(.)† is the conjugate-transpose operator. Our algorithm com-
putes the top-s (s = 5 in our implementation) local maxima
in P(r,θ,φ) to define the set of polar reflector coordinates:
{(rk,θk,φk),k = 1, . . . ,s}.
Folding Multipath into the Optimization: At this point,
we model how the energy patterns of beamforming weights
change due to our knowledge of reflecting surfaces. We use a
ray-tracing model [50] to account for how multipath changes
received signal power. Mathematically, we rewrite Eqn. 2 in
the definition of ui j as:

h j =

[
s

∑
k=1

1/dl jke−2π
√
−1dl jk/λ, l = 1, . . . ,L

]
(7)

Where λ denotes the wavelength and dl jk represents the dis-
tance traversed by the ray emanating from base station l
to grid point j when reflecting off reflector at coordinates
(rk,θk,φk). This formulation effectively removes the free-
space assumption in our optimization to explicitly account
for ambient reflectors.

Accounting for past vectors: We note that as new infor-
mation about multipath emerges, one must account for how
this impacts the coverage area of beamforming vectors used
previously and therefore invoke the optimization to fill gaps
in coverage. Mathematically, let us denote x∗i as an indicator
function on which beamforming weights were used previ-
ously. Then we can rewrite Eqn. 3 as:

n

∑
i=1

xiui j ≥ 1−
n

∑
i=1

x∗i ui j ∀ j ∈ {1, ...,m} (8)

Modeling fleeting and small reflectors: While the above
formulation assumes reflectors impact all RFIDs in the cover-
age area equally, in practice, this may not be the case. Specifi-
cally, reflectors have a higher probability of impacting nearby
RFIDs compared to RFID tags that are further away. Simi-
larly, reflectors that were computed in the past may no longer
exist at the same location and orientation in the future. To
account for these effects, PushID employs the exponential
weighting method [12] to progressively reduce the contribu-
tion of reflectors to the optimization with increasing distance
from the reflector or time elapsed since detection. Specifically,
we re-write Eqn. 7 as:

h j =

[
s

∑
k=1

wk/dl jke−2π
√
−1dl jk/λ, l = 1, . . . ,L

]
(9)

Where wk = f
dl jk
1 f tk

2 and f1, f2 < 1 are constants (empirically
set to 0.9 in our implementation) and tk is the time elapsed
since the measurement of reflector k was made.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 307

5 Distributed Synchronization for RFIDs

In this section, we consider a classic challenge for distributed
MIMO systems: accurate time and frequency synchronization
with multiple distributed RFID readers for coherent beam-
forming. In particular, we actively estimate and correct for
carrier frequency and timing offsets, which would otherwise
cause transmissions across RFID readers to often combine
incoherently. We build upon the classic distributed MIMO
architecture used in the context of Wi-Fi [19, 40] while ac-
counting for new challenges in the RFID context.

Quick Primer on Distributed MIMO: At a high level, past
distributed MIMO systems for Wi-Fi [19, 40] use a master-
slave architecture where multiple slave transmitters attempt
to transmit in-phase with a master transmitter. Prior to trans-
mitting each data packet, the master sends a short beacon
containing a known preamble. Slave transmitters estimate
their phase relative to this beacon to account for frequency
offsets between the master’s clock and their own clocks. In
addition, slaves exploit the relatively wide bandwidth of Wi-
Fi to estimate phase shifts due to timing offsets. Slaves then
apply phase shifts compensating for these offsets when they
transmit data packets in-tandem with the master. Of course,
during the data packet transmission itself, small additional
phase drifts can accumulate owing to residual time and fre-
quency offsets. As the duration of packets is short, the slope
of such phase drifts can be readily corrected for.

Challenges in the RFID context: RFIDs bring two impor-
tant challenges for distributed MIMO: (1) First, RFID packets
last for a much longer time (∼100×) than Wi-Fi packets [40],
ensuring greater phase drift due to frequency offset. This is
because tags need to harvest enough energy in order to re-
spond to the readers’ queries, and this takes more time as the
distance between the RFID tags and readers increases. (2)
Second, RFID transmissions are narrowband (20 kHz), mean-
ing that resolving timing offsets is extremely challenging.1

The rest of this section tackles each of these challenges.

5.1 Frequency Offset Compensation

PushID’s key idea to compensate for frequency offsets lever-
ages the full-duplex nature of RFID readers. Specifically, each
PushID slave cancels out its own signal to recover the signal
from the master reader. By measuring how the phase of this
node drifts over time, PushID can correct for phase drifts that
accumulate since the initial synchronization.

Correcting for Drift: For simplicity, let us begin with the
case of two RFID readers – one master and one slave reader.
To achieve that, initial synchronization in phase, we bor-
row from MegaMIMO [40]’s phase synchronization protocol

1Past proposals for Wi-Fi like SourceSync [39] cannot be directly used in
the narrow-band RFID context, as they assume availability of phase measure-
ments over wide bandwidths (20 MHz) to estimate timing offsets.

Figure 6: PushID constructs a spanning tree of the RFID
readers in a distributed manner to guide synchronization.

where the RFID slave reader applies an initial phase shift to
synchronize with the master (see Algm. 2). However, as fre-
quency offset accumulates over time, the readers will notice
that the phase of the master drifts.

PushID forms a closed loop to compensate for residual fre-
quency offsets. Specifically, the slave RFID reader observes
the change in phase from the master over a time interval
(t, t +∆t), where t is the most recent time of synchronization
and ∆t is the time elapsed since then. Should we observe
a change in phase of the master transmitter since then, i.e.
phase(t +T)−phase(t), the slave applies the negative value
of this phase offset to its own transmission. Note that this
would, in effect, remove residual phase errors, allowing the
two readers to combine their signals coherently at RFID tags.
Further, note that due to channel reciprocity, the same phase
shifts would ensure coherent combining on both the downlink
and uplink.

Algorithm 2 Initial Frequency Synchronization

1: fM: master’s oscillator frequency, fSi : slave i oscillator
frequency.

2: H(t) = (h1e j2π(fM− fS1)t ,h2e j2π(fM− fS2)t)T

3: Decompose H(t) we have H(t) = R(t)HT(t) =(
e− j2π fS1 t 0

0 e− j2π fS2 t

)(
h1
h2

)
e j2π fMt

4: H(t) = e j2π fMtR(t)HT(t)e− j2π fMt =(
e j2π(fM− fS1)t 0

0 e j2π(fM− fS2)t

)
H = A H

5: Apply frequency compensation H−1A−1 at slaves.

Scaling the system: A key challenge, however, is scaling
the above system beyond two readers. This is because upon
canceling one’s own transmission, each reader would perceive
a linear combination of all other readers in its vicinity and not
that of the master alone. This means that should a phase drift
occur simultaneously for multiple readers (which is likely),
these readers would be misled by out-of-sync transmissions
from the others among them. To make matters worse, some
readers may be beyond the communication range of the master
and therefore may not be in a position to synchronize directly
with the master as the last resort.

To mitigate this problem, we seek to assign to each RFID

308 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

reader a unique reference reader to which it may synchro-
nize, should the master not be within its vicinity. Specifically,
we assign indexes 1, . . . ,n to each RFID reader, where RFID
reader 1 denotes the master and all other readers denote slaves.
We assume that these indexes are known a priori by the read-
ers and can be constantly broadcasted so that any reader that
fails can be removed from consideration in the optimization.
Each RFID reader aims to synchronize its phase relative to
the neighbor with the smallest index. In effect, our synchro-
nization scheme creates a spanning tree of RFID readers (see
Fig.6), provided the graph of all readers is a connected one,
which we assume. This spanning tree is designed to ensure
that all readers eventually synchronizes to the root – the mas-
ter RFID reader.

At this point each slave RFID reader subtracts its own sig-
nal and tracks the phase of the remaining linear combination.
Should this change beyond a threshold, the RFID reader re-
quests all its children and descendents in the spanning tree
to cease transmission and then attempts to re-synchronize
its transmission with the remaining active readers. We note
that the master RFID reader never stops its transmission. It
is easy to see that this scheme ensures that all RFID readers
eventually transmit in-sync with the master.

5.2 Time Synchronization

PushID performs a two-step time synchronization process,
a coarse synchronization to align symbols and a fine-
synchronization that leverages the phase of signals from the
master across frequency.

Coarse Synchronization: PushID synchronizes slaves with
the master using the known preamble of the Query command
transmitted by the reader to initialize an inventory. To maxi-
mize time resolution, slaves receive this signal from the master
at a high sampling rate. Slaves then apply correlation with the
known preamble to obtain the index of the master’s signal. We
then only consider correlation coefficients above a threshold
to reject outliers (we reject the bottom 6%). We repeat this
process over five preambles and choose the result with the
maximum correlation coefficient.

Fine Synchronization: To compensate for drift in timing
offsets, PushID exploits the phase of signals from the master
RFID reader a function of frequency. Specifically, recall that
RFID transmissions hop between a wide range of frequen-
cies in the 900 MHz ISM band spanning a total of 26 MHz.
Each slave RFID reader estimates the phase of signals, having
subtracted its own signal, across frequencies. PushID then
monitors for any change in the slope of the phase of this sig-
nal across frequencies between measurements. Specifically,
recall that any time offset of ∆t between the two readers re-
sults in a frequency-dependent phase shift of ∆φ = 2π f ∆t.
As a result, PushID can estimate timing drifts by applying a
least-squares linear regression [54] of φ as a function of t and

Figure 7: Depicts one round of PushID’s search for the un-
known tags. Without a tag response, PushID starts another
round by applying the next beamforming vector Bi+1.

obtain the resulting slope m. Any drift in timing offset can
simply be computed as m/2π and corrected for. We note that
our system can scale akin to frequency offset compensation
above, for more than two readers in the network. Specifically,
when any RFID reader goes out-of-sync in time, it informs
all its descendents to stop transmitting before attempting to
re-synchronize.

6 Implementation and Evaluation

We implement PushID on a testbed of USRP N210 software
radios with SBX/WBX daughterboards operating as RFID
readers. We feed an omnidirectional and planar antenna to the
antenna ports of each node for full-duplex use. All our readers
are SISO, unless specified otherwise. Each USRP connects
with an independent Jacksonlab Fury clock which could lead
frequency and timing offset among the nodes. At the backend,
each USRP is connected via Ethernet cables to a 64-bit Dell
computer running Ubuntu 16.04. We also assume dedicated
socket-based TCP connections between the reader nodes. Our
RFID tags are commercial passive Alien Squiggle RFID tags.
We measure a maximum range of up to 8.7 meters with our
setup using one reader antenna.

PushID software: PushID is fully implemented in UHD/C++
including beamforming and distributed synchronization. In
addition, we use an in-house UHD/Gnuradio based C++ RFID
emulator to decode signals from the tags. We implement the
set-cover based optimization in the cloud on a cluster of 64-bit
core i7 Ubuntu machines and report the optimal beamforming
weights to the reader nodes.

We ensure that all PushID RFID readers implement ASK
modulation with PIE encoding to align with the specifications
of the Gen2 RFID protocol. Apart from delivering energy,
PushID readers also actively transmit messages which specify
the tag’s modulation format, encoding scheme and backscatter
frequency. The RFID tags in our experiments employ ASK
modulation and FM0 encoding. The protocol flow of PushID
is shown in Fig. 7.

Testbed: We evaluate PushID in two testbeds indoors and
outdoors. (a) Outdoor Testbed: We deploy PushID around
a football field (140 × 140 meters) with 8 transmitters. (b)
Indoor Testbed: We deploy four-transmitter based PushID

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 309

Figure 8: (a) Outdoors: We deploy PushID in a football field with one case of the transmitters placed as shown above. (b)
Indoors: We deploy a four-transmitter based PushID on a floor (20 × 40 meters) of an office building covering multiple rooms
and cubicles (c) Plots maximum reading range vs. # of readers. M-A MIMO – Multi-antenna MIMO.

Figure 9: Time and Frequency Synchronization Accuracy

across a floor (20 × 40 meters) of an office building cover-
ing multiple rooms and cubicles. We note both testbeds are
multipath rich due to stands/partitions in the former and cu-
bicles/furniture in the latter blocking the direct path of some
readers. We mount readers in various positions including dif-
ferent elevations. We put RFID tags in various positions and
orientations that face towards different angles. Fig.8(a) and
(b) shows the candidate locations of RFID tags (represented
by blue dots) and readers (represented by orange dots). We
note that unless specified otherwise, all results incorporate an
equal amount of data points (over 1000 RFID tag locations
considered among them) from both testbeds with our core re-
sults evaluating how system accuracy changes in line-of-sight
vs. non-line-of-sight relative to all readers.

Baseline: We compare PushID against two competing
schemes: (1) Closest Reader: We assume that each reader
independently decodes signals and each tag receives energy
from the closest reader; (2) Multi-antenna MIMO: We assume
that all reader antennas are co-located and synchronized by an
external clock [10]. We note that unless specified otherwise,
error bars in graphs denote standard deviation.

7 Results

7.1 Synchronization Accuracy
We evaluate the accuracy of PushID in achieving accurate
frequency and time synchronization between base stations.

Method: We consider a testbed of up to eight USRP N210-

based RFID readers, one designated as the master and use
PushID to synchronize the slaves to the master at high ac-
curacy. The RFID readers are placed in various arbitrarily
chosen geometries and different relative distances between
the slaves and master reader. We measure two quantities of
interest: (1) The error in time synchronization; (2) The error
in frequency synchronization of signals at a USRP N210 re-
ceiver that compares the phase of the signals received from the
master and slave(s) post PushID’s synchronization. We per-
form this experiment in both our indoor and outdoor testbed
in which about half of the slaves on average are in non-line-of-
sight relative to the master and some slaves (>50% of nodes
>50 m away from master) synchronize via multiple hops
using PushID’s spanning tree approach.

Results: Fig. 9(a) shows the mean and standard deviation
(error bars) in accuracy of time synchronization for different
ranges of distance between a slave RFID reader and the master.
We note that, as expected, the mean error with increasing
distance also increases: PushID achieves a mean error of 0.12,
0.53, 2.69 µs with the range of 10 to 30, 30 to 50 and 50
to 70 meters. However, we note that even the worst-case
error is much smaller than one Nyquist time sample, given
the narrow bandwidth of RFIDs (20 kHz). This means that
PushID achieves the required level of time-synchronization
accuracy to perform efficient distributed MIMO.

Next, Fig. 9(b) depicts the accuracy in frequency synchro-
nization with increase in the number of RFID readers in the
network. We find as expected the mean and variance of phase
synchronization errors increase modestly as more readers join
the network. PushID achieves a mean error of 0.0001 Hz in
frequency offset overall across experiments. We note that this
error corresponds to a phase shift of 0.0005◦ over the duration
of a typical RFID packet and therefore minimally impacts
the throughput of PushID’s distributed MIMO architecture,
as observed in Sec. 7.3.
7.2 Range vs. Number of Nodes
In this experiment, we evaluate the maximum distance for a
number of slaves that can detect the response from the tag.

Method: We deploy up to eight RFID readers in various
geometries (starting from co-located and with progressively

310 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Throughput vs Distance (b) Throughput vs Number of Nodes (c) CDF of Throughput

Figure 10: Throughput vs. (a) Distance of closest reader; (b) number of readers; (c) CDF with changing tag orientation.

increasing spacing) with tags placed in both involving line-
of-sight and non-line-of-sight relative to the reader. Note that
neither the location or number of RFID tags placed in the
environment are known a priori to the readers. We consider,
in aggregate over 1000 RFID tag locations across experiments.
Across experiments, we note the distance between the RFID
tag and its closest reader. Our experiments consider distances
of up to 80 meters. Our goal is to estimate the maximum
distance at which an RFID tag can be detected at the readers.

Results: Fig. 8(c) shows the maximum range of RFID tags
with respect to the number of reader nodes (up to eight). As
expected, PushID amplifies the received signal power from
RFID readers to the tags and vice-versa, the PushID’s range
increases quasi-linearly as the number of RFID readers in-
creases. We note that the rate of increase does dip (gradually)
with increasing number of readers due to the increasing im-
pact of time and frequency synchronization errors as reported
in Sec. 7.1 above. We further notice a surprising decreasing
trend in the standard deviation with maximum distance. We
find that this stems from the robustness of PushID to orienta-
tion in the presence of multiple distributed readers all oriented
in diverse spatial directions. Our results show that PushID
achieves a maximum range to an RFID tag of 64 meters, a
gain of about 7.4× vs. commercial RFID and 20% over multi-
antenna MIMO. We also note that the standard deviation of
multi-antenna MIMO is large in various experimental settings.
In contrast, PushID has better resilience and stability across
experiments which gives more spatial diversity that benefits
the poor polarization sensitivity of the RFID dipole antennas.
We also notice that sometimes the multi-antenna MIMO has
better performance than PushID when tag’s orientation favors
the direction of collocated readers in the LOS setting.

7.3 Throughput vs. Distance and Scale
In this experiment, we evaluate the impact of PushID on the
throughput as we vary the number of RFID readers and the
distance between the tag and its closest reader.

Method: We measure the throughput by first measuring the
SNR of each RFID tag measured from the eight RFID readers
after coherently combining signals to and from the tag. We

then adapt the ESNR metric [18] to the RFID context to
estimate the maximum data rate achievable for the received
SNR. Note that once PushID’s algorithm is applied to detect
a tag, we use channel reciprocity to maximize throughput
to each detected tag in this experiment. We deploy PushID
in both the outdoor (Fig.8(a)) and indoor scenario (Fig.8(b))
and consider tags in both line-of-sight and non-line-of-sight
relative to the readers. Our RFID tags use FM0 modulation
which allows for data rates over 45 kbps.

Throughput vs. Distance: Fig.10a shows the increase in
throughput vs. distance in line-of-sight and non-line-of-sight
settings and compares it against the baseline system that con-
nects to the closest RFID reader. We observe that for the
baseline, as expected, a reader has a maximum range of about
8.7 m across both line-of-sight and non-line-of-sight settings
and we see that performance drops to zero throughput beyond
this distance. PushID, with a 67.5 meter maximum range on
average outperforms the baseline significantly in line-of-sight
and 58.9 meters in non-line-of-sight. Further, as expected the
throughput of PushID drops down as the distance increases
due to lower signal-to-noise ratio. We note that quite sig-
nificantly, PushID’s performance with eight transmitters in-
creases the throughput of RFID tags 2.6 × when compared
to the baseline closest-RFID reader scheme at its maximum
range of about 8.7 m.

Throughput vs. Number of Reader Nodes: As expected,
with the increasing number of reader nodes we observe a
gradual (logarithmic) increase in network throughput of cov-
ered RFID tags on average for PushID. There is a similar,
although much more modest increase with reader nodes for
the baseline owing to an increase in coverage area. However,
our system observes a net mean throughput gain of 2.6× over
a network of 8-nodes over the baseline closest-reader system.
7.4 Impact of Orientation
Method: In this experiment, we model the distribution of
the throughput of an RFID tag progressively oriented along
various directions in 100 locations with 8 readers and compare
three schemes: (1) PushID; (2) A 8-antenna MIMO scheme;
(3) The closest reader baseline.

Results: Fig. 10c plots the CDF of throughput across

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 311

(a) # of beamformers vs. distance (b) coverage vs. # of beamformers (c) Effect of Mobility

Figure 11: (a) Distance of closest reader; (b) % of tags covered; (c) CDF of throughput with mobility

schemes with changing tag orientation. We observe that
PushID outperforms both multi-antenna MIMO (by 1.54×
median) and the closest reader baseline (by 7.4× median).
This is because, as explained in Sec. 4.1, PushID readers are
oriented variously and therefore much more robust to change
in orientations of the tags. In contrast, multi-antenna MIMO
with reader antennas co-located loses performance when tags
are oriented away from the MIMO reader, unlike PushID.

7.5 Impact of Mobility
Method: We deploy two tags in the environment in our
indoor testbed, each placed initially at the same 100 randomly
chosen initial locations at varying distances (up to 60 m) from
the closest reader: (1) static RFID tags; and (2) an RFID tag
moved around at walking speeds by volunteers. We measure
the performance of PushID 8-antenna MIMO scheme and our
closest reader baseline from eight RFID readers and compare
performance.

Results: Fig. 11c plots the CDF of throughput across
schemes for static and mobile tags. As expected, through-
put dips in the presence of mobility across schemes. However,
we note that PushID achieves gains over the baseline despite
mobility (1.6× for static and 1.4× for mobile over multi-
antenna MIMO). PushID’s robustness to mobility stems from
two reasons: (1) The mobility of the RFID tag ensures that
the tag is highly likely to move out of coverage holes. As a
result, during its trajectory, PushID has a higher likelihood of
detecting the tag, compared to a static tag. This counteracts
to help recover some of the loss in performance owing to
changing multipath in PushID’s algorithms. (2) Once the tag
is first detected, PushID can use channel reciprocity to rapidly
continue beamforming to the tag and thereby respond to its
mobility. We however highlight (as stated in limitations in
Sec. 1) that mobility at very high speeds would significantly
deteriorate PushID’s performance and gains, just as it would
deteriorate commercial RFID systems.

7.6 Convergence and Coverage
Method: In this experiment, we measure the convergence
time of PushID’s algorithm and how it is impacted by the
distance of RFID tags and its trade-off with total area covered.

We note that the initial set of beamforming vectors PushID
uses can be found offline and future updates take minimal
time overhead, PushID’s main computational bottleneck is
the rate at which beamforming weights can be applied by the
USRP hardware which is 4.5 milliseconds in our testbed. We
therefore measure convergence time in terms of the number
of beamforming vectors that needs to be applied. Once again,
we consider RFID tags at a wide range of distances to the
closest reader with eight RFID readers and run PushID.
Results: Fig. 11b shows that the percentage of tags discov-
ered increases with increasing number of beamformers for
distances from the closest reader over 60 m. We emphasize
here that it is rare for our system to detect all tags, since some
tags remain virtually undetectable due to their location, ori-
entation or shadowing – a natural limitation of our system
(highlighted in Sec. 1) and indeed most wireless systems (for
e.g. even the best cellular networks have deadspots [20]).
Beyond 95% coverage, we see diminishing returns upon ap-
plying more beamforming vectors. Fig. 11a measures the
trade-off between the distance of the tag and the number of
beamformers needed to find > 95% of tags in the area. We
find that in the worst case at maximum distance, we need 980
beamformers (4.4 seconds for a USRP N210).

8 Conclusion and Future Work

This paper presents, to our knowledge, the first distributed
MIMO system to power commercial passive RFID tags.
PushID develops a blind distributed beamforming algorithm
to efficiently search through the space of beamforming vectors.
It further develops a novel phase synchronization algorithm
to synchronize distributed RFIDs. A detailed prototype evalu-
ation on an eight-antenna distributed reader testbed reveals
a 7.4× improvement in range compared to state-of-the-art
commercial readers. While this paper focuses on using exist-
ing commercial tags without modifications, we believe future
work needs to explore algorithms that innovate on radio de-
sign and light-weight computation on the tags themselves to
improve PushID’s performance.
Acknowledgements We thank anonymous NSDI reviewers
and our shepherd, Fadel Adib, for their feedback and insights.
We would like to thank NSF (grants 1718435, 1657318,
1823235 and 1837607) for their support.

312 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Regulatory status for using rfid in the epc gen2 (860 to
960 mhz) band of the uhf spectrum. https://www.gs1.
org/docs/epc/uhf_regulations.pdf, 2018. (Ac-
cessed on 08/27/2018).

[2] AGEE, B. G., SCHELL, S. V., AND GARDNER, W. A.
Spectral self-coherence restoral: a new approach to blind
adaptive signal extraction using antenna arrays. Pro-
ceedings of the IEEE 78, 4 (April 1990), 753–767.

[3] ALEVRAS, D., PADBERG, M., AND PADBERG, M. W.
Linear optimization and extensions: problems and solu-
tions. Springer Science & Business Media, 2001.

[4] ATLASRFIDSTORE. Impinj rhcp far field rfid antenna
(fcc/etsi). https://www.atlasrfidstore.com/
impinj-rhcp-far-field-rfid-antenna-fcc-etsi/.
(Accessed on 04/30/2018).

[5] BAR-YEHUDA, R., AND EVEN, S. A linear-time ap-
proximation algorithm for the weighted vertex cover
problem. Journal of Algorithms 2, 2 (1981), 198–203.

[6] BIRARI, S. M., AND IYER, S. Mitigating the reader
collision problem in rfid networks with mobile readers.
In Networks, 2005. Jointly held with the 2005 IEEE 7th
Malaysia International Conference on Communication.,
2005 13th IEEE International Conference on (2005),
vol. 1, IEEE, pp. 6–pp.

[7] BISWAL, A. K., JENAMANI, M., AND KUMAR, S. K.
Warehouse efficiency improvement using rfid in a hu-
manitarian supply chain: Implications for indian food
security system. Transportation Research Part E: Logis-
tics and Transportation Review 109 (2018), 205–224.

[8] BLETSAS, A., LIPPMAN, A., AND SAHALOS, J. N.
Simple, zero-feedback, distributed beamforming with
unsynchronized carriers. IEEE journal on selected areas
in communications 28, 7 (2010).

[9] CARDOSO, J.-F., AND SOULOUMIAC, A. Blind beam-
forming for non-gaussian signals. In IEE proceedings
F (radar and signal processing) (1993), vol. 140, IET,
pp. 362–370.

[10] CHEN, S., ZHONG, S., YANG, S., AND WANG, X. A
multiantenna rfid reader with blind adaptive beamform-
ing. IEEE Internet of Things Journal 3, 6 (2016), 986–
996.

[11] CHEN, Y.-C., CHU, C., CHEN, R.-S., SUN, H. M.,
AND JU, P. Rfid-based bonded warehouse for science
park. International Journal of Radio Frequency Identifi-
cation Technology and Applications 5, 1 (2018), 1–23.

[12] CROWDER, S. V. A simple method for studying run–
length distributions of exponentially weighted moving
average charts. Technometrics 29, 4 (1987), 401–407.

[13] DONGARE, A., NARAYANAN, R., GADRE, A., LUONG,
A., BALANUTA, A., KUMAR, S., IANNUCCI, B., AND
ROWE, A. Charm: exploiting geographical diversity
through coherent combining in low-power wide-area
networks. In Proceedings of the 17th ACM/IEEE In-
ternational Conference on Information Processing in
Sensor Networks (2018), IEEE Press, pp. 60–71.

[14] ELETREBY, R., ZHANG, D., KUMAR, S., AND YAĞAN,
O. Empowering low-power wide area networks in urban
settings. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (2017),
ACM, pp. 309–321.

[15] FAN, X., DING, H., LI, S., SANZARI, M., ZHANG, Y.,
TRAPPE, W., HAN, Z., AND HOWARD, R. E. Energy-
ball: Wireless power transfer for batteryless internet of
things through distributed beamforming. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 2, 2 (July
2018), 65:1–65:22.

[16] FAN, X., ZHANG, Z., TRAPPE, W., ZHANG, Y.,
HOWARD, R., AND HAN, Z. Secret-focus: A practical
physical layer secret communication system by perturb-
ing focused phases in distributed beamforming. In IEEE
INFOCOM 2018 - IEEE Conference on Computer Com-
munications (April 2018), pp. 1781–1789.

[17] FEIGE, U. A threshold of ln n for approximating set
cover. Journal of the ACM (JACM) 45, 4 (1998), 634–
652.

[18] HALPERIN, D., HU, W., SHETH, A., AND WETHER-
ALL, D. Predictable 802.11 packet delivery from wire-
less channel measurements. ACM SIGCOMM Computer
Communication Review 41, 4 (2011), 159–170.

[19] HAMED, E., RAHUL, H., ABDELGHANY, M. A., AND
KATABI, D. Real-time distributed mimo systems. In
Proceedings of the 2016 ACM SIGCOMM Conference
(2016), ACM, pp. 412–425.

[20] HARROLD, T., AND NIX, A. Intelligent relaying for
future personal communication systems.

[21] HSIA, K.-H., WU, M.-G., LIN, J.-N., ZHONG, H.-J.,
AND ZHUANG, Z.-Y. Development of auto-stacking
warehouse truck. JRNAL 4, 4 (2018), 334–337.

[22] JADIDIAN, J., AND KATABI, D. Magnetic mimo: How
to charge your phone in your pocket. In Proceedings
of the 20th annual international conference on Mobile
computing and networking (2014), ACM, pp. 495–506.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 313

https://www.gs1.org/docs/epc/uhf_regulations.pdf
https://www.gs1.org/docs/epc/uhf_regulations.pdf
https://www.atlasrfidstore.com/impinj-rhcp-far-field-rfid-antenna-fcc-etsi/
https://www.atlasrfidstore.com/impinj-rhcp-far-field-rfid-antenna-fcc-etsi/

[23] JIANG, C., HE, Y., ZHENG, X., AND LIU, Y.
Orientation-aware rfid tracking with centimeter-level
accuracy. In Proceedings of the 17th ACM/IEEE
International Conference on Information Processing in
Sensor Networks (2018), IEEE Press, pp. 290–301.

[24] JIN, H., WANG, J., YANG, Z., KUMAR, S., AND HONG,
J. Rf-wear: Towards wearable everyday skeleton track-
ing using passive rfids. In Proceedings of the 2018 ACM
International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing
and Wearable Computers (New York, NY, USA, 2018),
UbiComp ’18, ACM, pp. 369–372.

[25] JIN, H., WANG, J., YANG, Z., KUMAR, S., AND HONG,
J. Wish: Towards a wireless shape-aware world using
passive rfids. In Proceedings of the 16th Annual Inter-
national Conference on Mobile Systems, Applications,
and Services (New York, NY, USA, 2018), MobiSys ’18,
ACM, pp. 428–441.

[26] KARP, R. M. Reducibility among combinatorial
problems. In Complexity of computer computations.
Springer, 1972, pp. 85–103.

[27] KIM, D., AND YEO, J. Dual-band long-range passive
rfid tag antenna using an amc ground plane. IEEE
Transactions on Antennas and Propagation 60, 6 (2012),
2620–2626.

[28] KUESTER, D., AND POPOVIC, Z. How good is your
tag?: Rfid backscatter metrics and measurements. IEEE
Microwave Magazine 14, 5 (2013), 47–55.

[29] LEE, J., KWON, H., AND LEE, B. Design consider-
ation of uhf rfid tag for increased reading range. In
2006 IEEE MTT-S International Microwave Symposium
Digest (June 2006), pp. 1588–1591.

[30] LIUKKONEN, M., AND TSAI, T.-N. Toward decen-
tralized intelligence in manufacturing: recent trends in
automatic identification of things. The International
Journal of Advanced Manufacturing Technology 87, 9-
12 (2016), 2509–2531.

[31] LOO, C. H., ELSHERBENI, A. Z., YANG, F., AND KA-
JFEZ, D. Experimental and simulation investigation of
rfid blind spots. Journal of Electromagnetic Waves and
Applications 23, 5-6 (2009), 747–760.

[32] MA, Y., HUI, X., AND KAN, E. C. 3d real-time indoor
localization via broadband nonlinear backscatter in pas-
sive devices with centimeter precision. In Proceedings
of the 22nd Annual International Conference on Mobile
Computing and Networking (2016), ACM, pp. 216–229.

[33] MA, Y., LUO, Z., STEIGER, C., TRAVERSO, G., AND
ADIB, F. Enabling deep-tissue networking for miniature
medical devices. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation (2018), ACM, pp. 417–431.

[34] MA, Y., SELBY, N., AND ADIB, F. Drone relays for
battery-free networks. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation (2017), ACM, pp. 335–347.

[35] MA, Y., SELBY, N., AND ADIB, F. Minding the billions:
Ultra-wideband localization for deployed rfid tags. In
ACM MobiCom (2017).

[36] NADEEM, Q.-U.-A., KAMMOUN, A., AND ALOUINI,
M.-S. Elevation beamforming with full dimension
mimo architectures in 5g systems: A tutorial. arXiv
preprint arXiv:1805.00225 (2018).

[37] PILLAI, V., HEINRICH, H., DIESKA, D., NIKITIN,
P. V., MARTINEZ, R., AND RAO, K. S. An ultra-low-
power long range battery/passive rfid tag for uhf and
microwave bands with a current consumption of 700 na
at 1.5 v. IEEE Transactions on Circuits and Systems I:
Regular Papers 54, 7 (2007), 1500–1512.

[38] RAGHAVAN, P. Randomized Algorithms.

[39] RAHUL, H., HASSANIEH, H., AND KATABI, D.
Sourcesync: a distributed wireless architecture for ex-
ploiting sender diversity. ACM SIGCOMM Computer
Communication Review 41, 4 (2011), 171–182.

[40] RAHUL, H. S., KUMAR, S., AND KATABI, D. Jmb:
Scaling wireless capacity with user demands. In Pro-
ceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communication (New York, NY, USA,
2012), SIGCOMM ’12, ACM, pp. 235–246.

[41] SARANGAN, V., DEVARAPALLI, M. R., AND RAD-
HAKRISHNAN, S. A framework for fast rfid tag reading
in static and mobile environments. Computer Networks
52, 5 (2008), 1058–1073.

[42] SHEPARD, C., YU, H., ANAND, N., LI, E.,
MARZETTA, T., YANG, R., AND ZHONG, L. Argos:
Practical many-antenna base stations. In Proceedings
of the 18th annual international conference on Mobile
computing and networking (2012), ACM, pp. 53–64.

[43] SHI, L., KABELAC, Z., KATABI, D., AND PERREAULT,
D. Wireless power hotspot that charges all of your
devices. In Proceedings of the 21st Annual Interna-
tional Conference on Mobile Computing and Network-
ing (2015), ACM, pp. 2–13.

314 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] SKLIVANITIS, G., ALEXANDRIS, K., AND BLETSAS,
A. Testbed for non-coherent zero-feedback distributed
beamforming. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference on
(2013), IEEE, pp. 2563–2567.

[45] SLOCK, D. T. M. Blind fractionally-spaced equaliza-
tion, perfect-reconstruction filter banks and multichan-
nel linear prediction. In Proceedings of ICASSP ’94.
IEEE International Conference on Acoustics, Speech
and Signal Processing (April 1994), vol. iv, pp. IV/585–
IV/588 vol.4.

[46] SMITH, J. R., SAMPLE, A. P., POWLEDGE, P. S., ROY,
S., AND MAMISHEV, A. A wirelessly-powered plat-
form for sensing and computation. In International
Conference on Ubiquitous Computing (2006), Springer,
pp. 495–506.

[47] SORNIN, N., LUIS, M., EIRICH, T., KRAMP, T., AND
HERSENT, O. Lorawan specification. LoRa alliance
(2015).

[48] TALLA, V., HESSAR, M., KELLOGG, B., NAJAFI, A.,
SMITH, J. R., AND GOLLAKOTA, S. Lora backscatter:
Enabling the vision of ubiquitous connectivity. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 1, 3 (2017), 105.

[49] TRAN, N., LEE, B., AND LEE, J.-W. Development of
long-range uhf-band rfid tag chip using schottky diodes
in standard cmos technology. In Radio Frequency Inte-
grated Circuits (RFIC) Symposium, 2007 IEEE (2007),
IEEE, pp. 281–284.

[50] TSE, D. Fundamentals of wireless communication.

[51] VARSHNEY, A., HARMS, O., PÉREZ-PENICHET, C.,
ROHNER, C., HERMANS, F., AND VOIGT, T. Lorea: A
backscatter architecture that achieves a long communica-
tion range. In Proceedings of the 15th ACM Conference

on Embedded Network Sensor Systems (2017), ACM,
p. 18.

[52] WANG, J., AND KATABI, D. Dude, where’s my card?:
Rfid positioning that works with multipath and non-line
of sight. In ACM SIGCOMM Computer Communication
Review (2013), vol. 43, ACM, pp. 51–62.

[53] WANG, J., VASISHT, D., AND KATABI, D. Rf-idraw:
virtual touch screen in the air using rf signals. In ACM
SIGCOMM Computer Communication Review (2014),
vol. 44, ACM, pp. 235–246.

[54] WOLD, S., RUHE, A., WOLD, H., AND DUNN, III, W.
The collinearity problem in linear regression. the par-
tial least squares (pls) approach to generalized inverses.
SIAM Journal on Scientific and Statistical Computing 5,
3 (1984), 735–743.

[55] YANG, J., AND LEUNG, J. Y.-T. A generalization of
the weighted set covering problem. Naval Research
Logistics (NRL) 52, 2 (2005), 142–149.

[56] YANG, L., CHEN, Y., LI, X.-Y., XIAO, C., LI, M., AND
LIU, Y. Tagoram: Real-time tracking of mobile rfid tags
to high precision using cots devices. In Proceedings
of the 20th annual international conference on Mobile
computing and networking (2014), ACM, pp. 237–248.

[57] ZAK, S. H., UPATISING, V., AND HUI, S. Solving
linear programming problems with neural networks: a
comparative study. IEEE Transactions on Neural Net-
works 6, 1 (1995), 94–104.

[58] ZEILER, M. D. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701 (2012).

[59] ZUNIGA, J. C., AND PONSARD, B. Sigfox system
description. LPWAN@ IETF97, Nov. 14th (2016).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 315

SweepSense: Sensing 5 GHz in 5 Milliseconds with Low-Cost Radios

Yeswanth Guddeti, Raghav Subbaraman†, Moein Khazraee, Aaron Schulman, and Dinesh Bharadia

UC San Diego †IIT Madras

Abstract

Wireless transmissions occur intermittently across

the entire spectrum. For example, WiFi and Blue-

tooth devices transmit frames across the 100 MHz-wide

2.4 GHz band, and LTE devices transmit frames between

700 MHz and 3.7 GHz). Today, only high-cost radios can

sense across the spectrum with sufficient temporal reso-

lution to observe these individual transmissions.

We present “SweepSense”, a low-cost radio architec-

ture that senses the entire spectrum with high-temporal

resolution by rapidly sweeping across it. Sweeping intro-

duces new challenges for spectrum sensing: SweepSense

radios only capture a small number of distorted samples

of transmissions. To overcome this challenge, we cor-

rect the distortion with self-generated calibration data,

and classify the protocol that originated each transmis-

sion with only a fraction of the transmission’s samples.

We demonstrate that SweepSense can accurately iden-

tify four protocols transmitting simultaneously in the

2.4 GHz unlicensed band. We also demonstrate that it

can simultaneously monitor the load of several LTE base

stations operating in disjoint bands.

1 Introduction

High-time-resolution spectrum sensors [5, 18, 37, 32] en-

able new ways to share and manage the spectrum1. For

example, the FCC granted permission for LTE providers

to share licensed spectrum in the 3.5 GHz CBRS band

with military radars, only if spectrum sensors are in-

stalled that can detect the military’s millisecond-long

military radar bursts anywhere within the 100 MHz

bandwidth of the CBRS band [40]. In the future, we

may even be able to improve co-existence of devices op-

erating in the 5.8 GHz ISM band by performing high-

time-resolution spectrum sensing of its 150 MHz band-

1High-time-resolution spectrum sensors are defined by their capa-

bility to observe a portion of every transmission (e.g., packet).

T
im

e

Tune and Capture

T
im

e

SweepSense

Frequency Frequency

Transmitting

Sensed Missed

Sampling

Figure 1: SweepSense rapidly sweeps its center fre-

quency, rather than iteratively tuning and capturing the

transmissions one frequency at a time.

width. For instance, a third-party high-time-resolution

sensor can detect short intervals when WiFi devices are

not using the spectrum, and inform unlicensed LTE base

stations that they can operate without interfering [7].

Unfortunately, only complex and expensive spectrum

sensors have both wide bandwidth and high time reso-

lution. For example, there are radios that can sample

several GHz of RF bandwidth continuously (e.g., On-

eRadio [14]). However, they are expensive (∼$500,000)

due to their high-speed Analog-to-Digital converters, and

complex due to the heavy computational power needed to

perform real-time signal processing on high sample rates

(e.g., GPUs or FPGAs). On the other end of the spectrum

are narrow-bandwidth (∼50 MHz) radios (e.g., SDRs

such as the USRP or HackRF [30, 37, 34]) that can not

observe entire bands (e.g., 100 MHz) at once. The sens-

ing bandwidth of these radios can be improved by intel-

ligently tuning [37] but they are still likely to miss trans-

mission due to their narrow bandwidth and the downtime

they experience during tuning (as shown in Fig. 1).

We introduce a new paradigm in spectrum sensing,

called SweepSense, which achieves both wide sensing

bandwidth and high time resolution with off-the-shelf

narrow-bandwidth radios. SweepSense introduces a fun-

damental shift in the receiver architecture of narrow-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 317

bandwidth radios: instead of tuning into each frequency,

sampling for a short time, then switching to the next fre-

quency, SweepSense rapidly sweeps the frequency of the

receiver across the spectrum (Figure 1). By sweeping

rapidly across the spectrum, SweepSense achieves high

time resolution with a narrow bandwidth radio. How-

ever, there are several challenges that we must overcome

to demonstrate that SweepSense is practical and feasible:

Off-the-shelf radios do not sweep: SweepSense is

only practical if it can be deployed on existing radios,

such as SDR-based spectrum sensors [35]. The RF

signal path on the radio should not require extensive

changes to make it sweep. Prior approaches to making

radios sweep by adding an expensive high-sample

rate Digital-to-Analog converter that acts as a rapidly

sweeping local oscillator are impractical [9].

Sweeping radios distort samples: Rapidly sweeping

the center frequency of a radio results in samples that

are collected at an unknown, and changing, center fre-

quency. These samples need to be mapped to a sin-

gle center frequency, and corrected for distortions intro-

duced by sweeping. Furthermore, the continuous chang-

ing of frequency may reduce the sensitivity of the radio,

making it impossible to detect weak signals.

Sweeping radios only visit bands for a short time:

Rapidly sweeping radios collect a small number of

samples in each band. This may break typical spectrum

sensing-related signal analysis, such as signal type

identification and spectrum occupancy detection.

We make the following contributions that address each

of these challenges:

1. Making off-the-shelf radios sweep (Section 3):

We show that with only a simple modification to the

local oscillator circuit of a radio, we can make it rapidly

sweep its center frequency. Specifically, we disconnect

the feedback loop used to lock the receiver’s local

oscillator onto a specific frequency, and replace it with

a sawtooth signal, thus making the center frequency

sweep. We demonstrate the generality of this simple

modification, by performing it on three of the most

popular RF frontends for the USRP SDR, the WBX

(50 MHz–2.2 GHz), SBX (400 MHz–4.4 GHz), and

CBX (1.2 GHz–6 GHz).

2. Unsweeping samples (Section 4): We present a

novel calibration and recovery process that corrects the

continuously changing frequency in samples captured

by the sweeping radio receiver. Specifically, we created

a mechanism that inverts the effects of the sweeping

center frequency by mixing it with complex conjugate

of a calibration signal. Generating the calibration signal

does not require any extra hardware: it is received

through leakage from the radio’s own RF transmitter

(As TX loopback mode was not supported in the SDR).

The result of the unsweeping process is a stream of

samples that look as if they were collected at a fixed

center frequency.

3. Evaluating analysis of short captures (Section 5):

We demonstrate that even with the small number sam-

ples captured by SweepSense, the repeated patterns and

unique features of the captured signals are retained.

Specifically, we show that cyclo-stationary techniques

when used in tandem with standard classification

models need just 25 µsec captures of signals to classify

accurately. Previously it was assumed that these tech-

niques required capturing the entire transmission (e.g.,

∼ 1 msec packet for WiFi).

We evaluate SweepSense by modifying a USRP N210

SDR to sweep, and performing experiments in both in-

door and outdoor environments. We made the follow-

ing observations: (1) SweepSense can classify signals

with at least 90% accuracy (wideband DSSS and OFDM

WiFi, as well as narrowband Zigbee and Bluetooth) with

only 25 µs of samples, (2) SweepSense can simultane-

ously measure the millisecond level utilization of mul-

tiple LTE downlink channels over a bandwidth of 200

MHz. , and (3) SweepSense can accurately detect fleet-

ing radar bursts, required for serving as a spectrum sen-

sor for the CBRS spectrum.

The SweepSense implementation for the USRP N210

is open source and available at:
https://github.com/ucsdsysnet/sweepsense

2 Related Work

Spectrum sensing is an extensively studied area [23, 15,

42, 33, 41, 28, 24, 31]. Recent innovations have been

focusing on improving the time resolution of spectrum

sensors. To the best of our knowledge, SweepSense is

the first work to suggest improving the time resolution of

narrow-band spectrum sensors by making them rapidly

sweep—without sacrificing their ability to classify trans-

mitter type and characterize utilization. In this section,

we describe how SweepSense complements, compares,

and improves upon prior approaches to improving the

time resolution of spectrum sensors.

HIGH-SPEED SPECTRUM ANALYZERS: The most

common RF equipment that can sweep the spectrum

quickly (i.e., tens of milliseconds) are high-speed spec-

trum analyzers, such as the Oscor Blue [32, 3, 36]. These

devices are expensive high-end test equipment, designed

to accurately measure the absolute power of transmit-

ters (e.g., for certification), or discover bugging devices

that are transmitting in esoteric bands. Spectrum ana-

lyzers only measure the power of transmissions in the

318 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

frequency domain, they do not collect time-domain sig-

nals. Therefore, they cannot be used to perform signal

analysis such as signal classification. For example, sig-

nals operating on the same frequency cannot be differen-

tiated (e.g., in 2.4 GHz, antiquated DSSS 802.11b looks

the same as modern OFDM 802.11g/n) on spectrum an-

alyzer displays.

FMCW-BASED SPECTRUM SENSORS: As an im-

provement over spectrum analyzers which can only ob-

serve power, recent work by Cheema et al. [9] introduced

receivers that can rapidly sweep over the spectrum to

capture short time-domain samples across the spectrum.

Their work is a proof-of-concept that demonstrates, with

ideal hardware—namely, a costly signal generator—it

is possible to perform high time resolution spectrum

occupancy detection. This work inspired us to look

into a practical modification for off-the-shelf radios that

can make them sweep. However, unlike SweepSense,

Cheema et al. only demonstrate using these samples

to improve the time resolution of the spectrum occu-

pancy. SweepSense is the first to demonstrate how to

unsweep the samples to successfully perform signal anal-

ysis across GHz of spectrum, only with short captures

of each band (Section 5). Prior to SweepSense, wide-

bandwidth signal analysis was only considered possible

with wide-bandwidth radios.

In summary, SweepSense demonstrates that narrow-

bandwidth radios can be modified—with only the addi-

tion of an analog ramp generator fed to the VCO’s tuning

input—to create a rapidly sweeping radio. SweepSense

also introduces a novel algorithm to unsweep distorted

samples captured by modified off-the-shelf radios (Sec-

tion 4). SweepSense also demonstrates that these

unswept samples can still be used to perform rigorous

signal analysis such as signal classification (Section 5).

INTELLIGENT SCANNING FOR SDR-BASED SEN-

SORS: SpecInsight [37] improves the time resolu-

tion of spectrum sensing with narrow-bandwidth SDR’s

(∼25 Msps) by intelligently scheduling when bands

should be tuned into. Those that contain continu-

ous transmitters (e.g., FM Radio) or predictable trans-

mitters (e.g., airport RADAR) are tuned into infre-

quently, thereby improving the time resolution of

narrow-bandwidth spectrum sensors. SpecInsight is

complementary to SweepSense because it can use their

band selection algorithm to intelligently select when to

sweep particular bands. Therefore, other intelligent scan-

ning algorithms [43, 26, 44, 25] can also be integrated

into SweepSense to improve its time resolution.

SUB-NYQUIST SPECTRUM CAPTURE: Similar to

SweepSense’s goal of modifying off-the-shelf radios

to operate across a wide bandwidth, prior work [4,

18] demonstrates that an off-the-shelf SDR can sam-

ple outside of their Nyquist bandwidth by removing

ADC

T
im

e

DC 6 GHz

2. Received Sweep

ADC Bandwidth

T
im

e

DC 6 GHz

1. Local Oscillator Chirp

Figure 2: By chirping a receiver’s Local Oscillator, it

will rapidly sweep the spectrum.

the anti-aliasing filter on the RF frontend. However,

these techniques assume that spectrum is sparsely oc-

cupied, and make use of specialized techniques like

sparseFFT [16, 13, 17], or compressed sensing [4, 2,

10, 39]. SweepSense does not make such assumptions

about the power and frequency of the transmissions in

the spectrum, However, given that these systems are built

on the same inexpensive SDRs as SweepSense, we might

be able to increase our instantaneous bandwidth by sam-

pling at sub-Nyquist rate while sweeping.

3 Making Off-the-Shelf Radios Sweep

In this section, we describe how we modify the oscillator

in off-the-shelf radios so they can rapidly sweep across

several GHz. Fig. 2 shows an overview of the opera-

tion of a SweepSense receiver. To make the radio sweep,

we modify the behavior of the radio’s Local Oscillator

(LO)— the device that tunes a radio into a particular

frequency—to rapidly increase its frequency (chirp).

First, we describe how the LO in a radio can be mod-

ified to make it chirp. Then, we explain how to perform

this modification on a USRP N210 SDR—a common off-

the-shelf SDR with a wide tuning range.

3.1 How to make an LO chirp

To understand how to modify the LO to chirp, we must

first explain how the LO operates in a radio. The LO

is the hardware component in a radio that generates a

tone which gives the receiver the ability to tune into a

specific frequency. The tone from the LO is mixed with

the amplified signal from the antenna to change the fre-

quency of the received radio frequency (RF) signal and

downconvert it to baseband. The baseband signal is then

filtered and sampled by an ADC, and the raw digital sam-

ples are transferred to the host. Radios with a wide tun-

ing range (e.g., SDRs) are built with a special LO that

can generate tones across a wide frequency range; these

LOs are called “wideband frequency synthesizers”. For

instance, the MAX2870 [29] frequency synthesizer on

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 319

(a) Normal config: Closed-loop tuning

(b) Sweeping config: Open-loop chirping

VCO

VCO

Counter
Phase

Comparitor

Loop Filter

Ref. Clock

RFout

RFout

Figure 3: Replacing a PLL-based LO’s tuning feedback

loop with a sawtooth waveform makes it sweep.

the USRP CBX daughter card can generate tones rang-

ing from 23.5 MHz to 6 GHz.

A wideband frequency synthesizer is commonly im-

plemented using a Voltage Controlled Oscillator (VCO)

in a highly integrated Phase Locked Loop (PLL). A sim-

plified block diagram of a PLL is shown in Fig. 3 (a).

The input voltage of the VCO determines its output fre-

quency, and the PLL serves as the feedback loop that

maintains control over the VCO input voltage to gener-

ate a fixed frequency tone. The feedback loop is driven

by a phase comparator that compares the phase of the

VCO output (divided by the counter), and the reference

clock. The difference in phase is an indirect measure of

the frequency error between the desired VCO output and

its actual value. The external passive low-pass “loop fil-

ter” then filters the phase comparator output. The loop

filter output drives the VCO input voltage, completing

the control loop and “lock”ing the VCO output to the de-

sired frequency. The loop filter characteristics and cut-

off frequency determine the stability and accuracy of the

frequency lock. Each time the frequency synthesizer is

requested to generate a different frequency output, the

PLL takes 10–100 µs to lock, during which the radio

is temporarily offline. It is this repeated downtime that

SweepSense avoids by making the PLL sweep continu-

ously across a wide frequency range.

There are two parts of such an LO design that make

them amenable to sweeping (1) the ability to control out-

put frequency by adjusting the input voltage to the VCO,

and (2) the customizable loop filter that is implemented

with external passive components.

An LO can be modified to sweep by first disconnect-

ing (by desoldering) the loop filter components, giving

direct access to the VCO control input. Then, the now-

unconnected VCO control input is connected to an exter-

nally generated sawtooth voltage. As the sawtooth sig-

nal repeatedly ramps its voltage, the VCO to repeatedly

ramps its output frequency. As a result, the VCO out-

VCO Select Register

Loop Filter

2
GHz

1
GHz

3
GHz

4
GHz

VCOs

CPout

Counter

Phase

Comparitor

Vtune

Old: Tune

RFout to mixer

REFclk

FPGA

Loop

New: Sweep

Host

Wideband Frequency Synthesizer (e.g., MAX2870)

10 MHz

Figure 4: Modifications required to implement

SweepSense on a COTS wideband frequency synthe-

sizer.

put is a series of chirps (the modification is shown in

Fig. 3 (b)). However, removing the feedback loop intro-

duces several new challenges that we describe and ad-

dress in Section 4.

Additionally, the wideband frequency synthesizers in

off-the-shelf radios are particularly amenable to sweep-

ing for spectrum sensing because they contain a bank

of VCOs2, each of which has a smaller frequency range

(e.g., 100 MHz) that, put together, contribute to the LO’s

wide frequency range (depicted in Fig. 4). This modu-

lar construction makes such synthesizers much less ex-

pensive as compared to a single VCO synthesizer that

has comparable tuning range. Also, being able to select

which VCOs are used is important for frequency plan-

ning, such as skipping entire VCO bands that do not

have active transmitters (SpecInsight [37]). Many mod-

ern frequency synthesizers (like the MAX2870) provide

an explicit control register to select a particular VCO.

For such synthesizers, SweepSense can implement fine-

grained VCO selection and sweep with virtually no delay

introduced due to the selection process.

3.2 Proof of Concept: Sweeping USRP

We now describe the complete modification that makes

the commonly available USRP N210 SDRs sweep. We

demonstrate that these modifications are general by per-

forming them on three popular RF frontends for the

USRP: the WBX and SBX that have an older Analog De-

vices synthesizer, and the CBX that has a modern Maxim

synthesizer. We also believe it is compatible with the

HackRF One that has a modern synthesizer from Qorvo.

There are two aspects to this modification: (1) a hard-

ware modification to disconnect the VCO feedback loop

and replace it with a sawtooth signal and (2) an FPGA

2VCOs are implemented as a set of LC circuits (VCO cores) each of

which can switch in a set of varactors (bands) depending on the desired

frequency range

320 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-10 -5 0 5 10

Frequency (MHz)

0

5

10

15

20

25

T
im

e
 (

m
s
)

-50

-40

-30

-20

-10

0

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

ADC

-10 -5 0 5 10

Frequency (MHz)

0

5

10

15

20

25

T
im

e
 (

m
s
)

-30

-25

-20

-15

-10

-5

0

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

-10 -5 0 5 10

Frequency (MHz)

0

5

10

15

20

25

T
im

e
 (

m
s
)

-50

-40

-30

-20

-10

0

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

0. Sweeping 2. Recovery

(a) Transmitted signal (b) Swept samples (c) Unswept samples

fc

Chirping LO Calibration samples

fstart fend

−fs/2 +fs/2

1. Calibration

T
im
e

fc −fs/2 +fs/2

+fs/2−fs/2

×

x∗

Figure 5: Illustration of the the signal captured by SweepSense at different stages in the receiver.

logic modification that makes the PLL cycle through its

VCO bands, and generates the sawtooth waveform to

sweep each VCO. Fig. 4 provides a visual overview of

both modifications. The hardware schematics and Ver-

ilog needed to implement SweepSense will be made open

source at the time of publication.

The hardware modification is straightforward for

someone with surface mount soldering experience: you

need to remove a single passive component from the

SDR’s receiver RF frontend, and in its place connect a

wire that connects to one of the USRP’s auxiliary Digital

to Analog converters.

The FPGA’s frequency synthesizer control logic mod-

ification removes all tuning logic, and in its place we add

logic to iteratively loop through the selected VCO bands.

Also, a new logic module is added to generate a sawtooth

waveform and send it to the auxiliary DAC. These two

logic modules are designed to operate in sync with the

USRP’s ADC sampling clock. This is required because

unsweeping the samples requires knowing the configu-

ration of the PLL, including its approximate tuning volt-

age, while the USRP is collecting each sample.

4 Unsweeping the Samples

Unlike a standard radio which samples with a local os-

cillator tuned to a fixed center frequency, SweepSense

samples are distorted because they are captured while the

center frequency is rapidly increasing. To aid in under-

standing the effect of a chirping local oscillator on cap-

tured samples, we begin with a primer on downconver-

sion.

For a received signal x(t) centered at frequency fc as

shown in Fig. 5(a), a standard fixed frequency direct IQ

downconversion can be modeled as:

xb(t) = x(t)×e− j2π fct (1)

Where xb(t) is the downconverted signal (before base-

band filtering) and fc is also the frequency of the oscilla-

tor. In SweepSense, the oscillator frequency varies with

time as f (t). In our implementation, f (t) monotonically

increases with time (chirp). Therefore, similar to Eq. 1,

a chirp direct IQ downconversion can be modelled as:

xc(t) = x(t)×e− j2π f (t)t (2)

This equation shows how sweeping introduces a signif-

icant change to the received signal: the frequency with

which x(t) is multiplied in SweepSense changes at every

instant, and is offset from a fixed frequency oscillator at

fc by fc − f (t). Since f (t) monotonically increases with

the sawtooth waveform connected to the VCO tuning

input, the frequency offset continuously decreases with

time as shown in Fig. 5(b). The problem is, standard dig-

ital signal processing techniques rely on the assumption

that the signal is fixed around a constant frequency at all

times; therefore, these techniques can not be applied di-

rectly to the swept samples captured by SweepSense.

Undoing the sweeping effect requires removing

the time-varying frequency offset fc − f (t) from

SweepSense samples at time t, for which f (t) is re-

quired. We call this process of undoing the sweeping

effects “unsweeping”. Unsweeping involves two steps:

1. Calibration: First, we extract the effect of sweep-

ing (f (t)) by sending a known signal: we measure the

frequency offset fc − f (t) introduced by SweepSense

at time t.

2. Recovery: Then, we reverse the effect of sweep-

ing by removing the offset fc − f (t) from the samples

captured with SweepSense.

In summary, this method measures the sweeping cen-

ter frequency, and uses it to recover signals as if they

were captured at a fixed frequency.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 321

4.1 Calibration

Why is calibration difficult?

The VCO’s frequency increases as the voltage of the

sawtooth waveform increases. Intuitively, one may ex-

pect that the VCO’s frequency is directly related to the

input voltage. However, this is not true for an open loop

VCO (Section 3). An open loop VCO’s frequency does

not have a linear relationship with the input voltage : it

is also dependent on temperature and other environmen-

tal conditions. However, we do know that the frequency

increases monotonically as the input voltage increases.

Therefore, to calibrate the VCO, we need to find another

way to measure the center frequency f (t) of SweepSense

at each time instant in a sweep.

Insight and solution

Our insight is, we can calibrate the VCO by sweep-

ing while capturing a tone transmitted at a known fre-

quency. We measure the value of f (t) by sending a

tone at frequency fc (x f (t) = e j2π fct) and collecting the

received samples xcal(t) after the chirped direct down-

conversion, i.e., xcal(t) = e j2π(fc− f (t))t (Equation 2) as

shown in Fig. 6. In summary, we directly capture the

varying oscillator frequency in xcal(t). The implementa-

tion details of our calibration process appear in Section 6.

Calibration needs to be repeated at many reference

tones due to the effect of the narrow-band radio’s low-

pass baseband filter on xcal(t). This filter suppresses

the parts of xcal(t) whose frequencies lie outside the in-

terval [−Fs/2,Fs/2]. Since the instantaneous frequency

of xcal(t) is fc − f (t), it is detectable at time t only if

| f (t)− fc| ≤ Fs/2. Therefore, for a specific tone, we can

only calibrate the VCO behavior between [fc−Fs/2, fc+
Fs/2] using a tone of frequency fc. To calibrate VCO’s

behavior at an arbitrary frequency interval [fstart , fend],
we divide the calibration into chunks of bandwidth Fs

and transmit a different reference tone for each chunk.

Consecutive tones are each separated in frequency by Fs

starting from fstart +Fs/2. We collect the received sam-

ples for all xcal(t) = e j2π(fc− f (t))t where fc = fstart +k∗Fs

where k = 1,2,..(fend − fstart)/Fs. This produces calibra-

tion data for the behavior of the VCO across the entire

sensing bandwidth. This process only needs to be redone

when temperature and environmental conditions change

significantly.

4.2 Recovery

Next we describe how to use the data gathered in the cal-

ibration process to remove the time-varying frequency

offset (fc − f (t)). Recall that the downconversion in

SweepSense VCO can be modeled as multiplying a chirp

with the received signal. We observe that the frequency

ADC

(a) Reference tone (b) Calibration samples

Chirping LO

T
im
e

fc

fstart fendfc

−fs/2 +fs/2

Figure 6: VCO behavior over Fs bandwidth is calibrated

by sweeping over a reference frequency and collecting

the samples.

of the calibration samples also varies similarly with time,

motivating a similar multiplication to remove the effect

of the chirp. Indeed, by multiplying the swept samples

with the complex conjugate(.∗) of the calibration sam-

ples xcal(t), it cancels out the frequency offset. Mathe-

matically, the effect of sweeping cancels as follows:

xc(t)×x∗cal(t) = [x(t)×e
❳

❳
❳❳

− j2π f (t)t]×e
❳
❳
❳

j2π f (t)t− j2π fct

= x(t)×e− j2π fct
(3)

This process converts a chirped direct downconversion

to the corresponding fixed frequency downconversion as

in Equation 1. Therefore, signals are recovered as if they

were received by a standard fixed frequency receiver. We

evaluate the performance of unsweeping in Section 7.

Fig. 7 shows an example of signals captured between

2.380 GHz and 2.480 GHz after their recovery using

the calibration data. In this capture, we observe multi-

ple OFDM packets centered at 2.412 GHz (even an ac-

knowledgment packet around 400 µsec) and a Bluetooth

packet at 2.428 GHz. Unlike FMCW spectrum sensors

which can only detect signal energy, SweepSense can

capture short intervals of the time-domain samples of the

transmitted signal. These samples enable SweepSense to

distinguish different transmissions, even when they have

a similar center frequency and bandwidth. Unsweeping

therefore is an improvement to prior high-speed sweep-

ing spectrum sensing architectures (Section 2).

5 Analysis and Inference

In this section, we describe a method to detect modu-

lation scheme and protocol type from swept samples.

Conventional detection algorithms for signal classifica-

tion fixed frequency spectrum sensors rely on captur-

ing a significant portion of the transmission, sometimes

even requiring protocol-specific preambles [27]. How-

ever, SweepSense only captures a small number of sam-

ples for each frequency band. Hence, it is unlikely that

322 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

200 400 600 800 1000 1200

Time (us)

2.37

2.39

2.41

2.43

2.45

2.47
F

re
q

u
e

n
c
y
 (

G
H

z
)

Sampling

Sensed

Missed

Figure 7: Example of ISM-band transmissions recov-

ered from swept samples.

it will capture a preamble. Also, the open-loop operation

of VCO during sweeping introduces additional noise into

the signal, making it difficult to perform signal classifi-

cation.Therefore, we designed a classification algorithm

that is resilient to noise, and works even with only a short

capture of the signals.

Our algorithm is inspired by cyclostationary analy-

sis [12]. The basic premise behind cyclostationary anal-

ysis is that every human-made signal has inherent peri-

odicity associated with it. This periodicity is unique to

every protocol, independent of implementation or hard-

ware used. It also can serve as a fingerprint for in-

ference [19]. For example, in WiFi-OFDM, the cyclic

prefix (CP) repeats at the start and end of a symbol.

SweepSense’s key insight is that this periodicity is re-

tained even when we receive a small portion of trans-

mission filtered in time and frequency. Cyclostationary

functions evaluate this periodicity as correlations in time

and frequency domains. SweepSense uses these cyclo-

stationarity signatures to build reliable ML models for

signal classification. For all our analyses, we use two

second-order cyclostationary functions: the Cyclic Auto-

correlation Function (CAF) and the Spectral Correlation

Function (SCF).

If x[n] is the received signal, the CAF estimator is cal-

culated as follows [8]:

Rα
x (τ) =

∞

∑
n=−∞

x[n] [x∗[n− τ]]e− j2παn (4)

The CAF is maximized when the choice of delay (τ)

is equal to the time between consecutive repeating pat-

terns in x[n]. This causes them to align in the correla-

tion. These maxima occur periodically along n, and the

-0.05 0 0.05

 (Pattern Freq)

-100

-50

0

50

100

 (
D

e
la

y
)

(a) Fixed freq. receiver

-0.05 0 0.05

 (Pattern Freq)

-100

-50

0

50

100

 (
D

e
la

y
)

(b) SweepSense

Figure 8: The CAF is visible in SweepSense captures.

term e− j2παn is a transform that brings out the frequency

(α) of this periodicity. α may be interpreted as the fre-

quency of repetition of hidden patterns, defined as the

pattern frequency. Therefore, CAF peaks at values of

τ and α that correspond respectively to the time period

and repetition frequency of patterns in x[n]. The CAF is

particularly useful in analyzing signals like OFDM with

repetitive patterns in time (i.e., cyclic-prefixes [38]). The

SCF is the Fourier transform of the CAF over τ , making

them equivalent representations due to the unitary nature

of the transform. The SCF peaks for the same values of

α as the CAF and frequency f is the fourier dual of de-

lay τ . The SCF can be efficiently computed due to its

representation using FFTs as described below.

Consider L consecutive discrete time windows of x[n],
each of length N samples. XlN(f) is the FFT of x[n] for

the lth time window. The time-smoothed SCF estimator

for this signal is calculated as follows [8]:

Sα
x (f) =

1

LN

L−1

∑
l=0

XlN(f)X∗

lN(f −α) (5)

As an illustration, Fig. 8(a) shows the CAF plot of WiFi-

OFDM. The x-axis represents pattern frequency (α) and

the y-axis represents delay (τ). WiFi symbols are 80

samples long (of which 16 are CP) at 20 MHz sampling

rate. Since we sample at 25 Msps, we get 100 samples

per symbol (of which 20 are CP). Notice that the CAF

peaks at a τ =80 samples and α =0.01 (normalized to

25 Msps). We also observe peaks in the SCF plot (not

shown) at the same α values. Patterns such as these oc-

cur in every protocol, we do not need to capture the entire

packet to identify them. Indeed, we see in Fig. 8(b) that

the CAF of the unswept samples of WiFi-OFDM also

exhibits the peaks at same points as the fixed frequency

capture. The CAF and SCF are robust due to their highly

signal selective nature, magnifying the signal’s natural

patterns while averaging and suppressing distortions in-

troduced due to sweeping.

For ML-based classification, we extract CAF and SCF

features from the unswept signal at a set of precomputed

values of α , τ and f . Specifically, we to include values

that are at the expected peaks for the protocols that we

seek to detect.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 323

Figure 9: SweepSense requires a single-wire modifica-

tion to the USRP’s RF frontend to make the PLL chirp.

6 Implementation

Our hardware setup for SweepSense uses a standard off-

the-shelf USRP N210 SDR. We implement the LO mod-

ification as discussed in Section 3 on both the CBX

daughter card which supports 1.2 GHz to 6 GHz and

SBX daughter card which supports 400 MHz to 4.4 GHz

(shown in Figure 6).

We then make the following modifications to the

FPGA logic on the USRP. The voltage ramp used to con-

trol the VCO is generated using the AUX-DAC on the

daughtercard, which is controlled by the FPGA. Special

care is taken to ensure that the voltage generated by the

AUX-DAC on the USRP is time synchronised with the

baseband ADC samples. The added logic also selects the

PLL’s VCO band and RF divider. The user can config-

ure the sweeping bandwidth (VCO band and RF divider

selection) and sweep rate (sawtooth voltage ramp slope)

from the GNURadio python environment.

For our observations in the ISM band, we use a stan-

dard 2.4 GHz omnidirectional antenna, and for our wide-

band captures, we use a discone antenna mounted on the

roof of the CSE building at UC San Diego. We oper-

ate the USRP at a sampling rate of 25 MSps with 16-bit

resolution. For the evaluation, the captured samples are

streamed, stored on the PC and processed offline.

Calibration and Recovery

The calibration process is as follows: SweepSense trans-

mits a reference tone from the (unmodified) transmit

chain of USRP. It receives the tone with the (modi-

fied) sweeping receive chain indirectly from leakage be-

tween the transmitter and recevier RF paths3. To cali-

brate across the entire sensing bandwidth, we repeat this

process with tones separated by the sampling bandwidth

(Section 4.1). For example, we need to run the cali-

bration process 200 times when the sampling bandwidth

is 25 MHz and the sweeping bandwidth is 5 GHz. In

each of these files consisting calibration data for a dif-

ferent tone, the samples where the sweeping of a VCO

3This is inspired by the USRP’s use of TX/RX leakage to calibrate

for I/Q imbalance.

band starts and ends is deterministic since the voltage

input to VCO is synchronized with start of ADC sam-

pling. Further, since these tones are separated by Fs the

time intervals during which they are received are non-

overlapping. Therefore we can combine the calibration

data from these multiple tones by just adding the data

from each file.

Periodic re-calibration may be necessary due to fre-

quency drift of the VCO, particularly when the ambi-

ent temperature significantly changes (details in Sec-

tion 7.2). However, re-calibration only requires perform-

ing one sweep over each of the reference tones. For ex-

ample, calibrating at a sweeping bandwidth of 5 GHz

and rate of 125 µsec/100 MHz only requires 6.25 mil-

liseconds of downtime.

SweepSense recovers the time-domain samples from

the swept samples in real time. This is feasible because

recovery only requires performing conjugate multiplica-

tion of the swept samples with the calibration samples

(Section 4.2).

7 Evaluation

To evaluate the performance of SweepSense as a

spectrum sensor we first evaluate the performance of

SweepSense with several high-time-resolution spectrum

sensing case-studies that normally would require a wide-

bandwidth spectrum sensor. Then, we evaluate the limi-

tations of SweepSense with several micro-benchmarks.

We selected the case studies based on the results of

a sample full spectrum (0–6 GHz) capture that we per-

formed in the lab. Although there were many occupied

bands in this capture, we observed that the 2–3 GHz

spectrum was the most dynamic (shown in Figure 10)

due to nearby WiFi, Bluetooth, and LTE deployments.

In the ISM band (2.4 GHz), we demonstrate that we can

detect and classify diverse protocols. In addition, we

show how SweepSense can monitor the load on mul-

tiple LTE base stations (1.9–2.2 GHz) simultaneously.

We conclude the case studies by evaluating the perfor-

mance of SweepSense as an Environment Sensing Capa-

bility (ESC) sensor for the newly shared 3.5 GHz Citi-

zens Broadband Radio Service (CBRS) spectrum [40].

The micro-benchmarks evaluate the frequency distor-

tion and signal to noise ratio (SNR) loss due to the

sweep and unsweep processes, and a demonstration of

frequency stability across sweeps.

In summary, our evaluation contains the following the

results:

• Protocols can be classified based on unswept sam-

ples containing partial packets or a few symbols,

usually requiring only 25 µs to classify the signal

types in contrast to typical full packet lengths 1–10

ms, an improvement of over 40 ×.

324 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 50 100 150 200 250 300 350

Time (ms)

2100

2200

2300

2400

F
re

q
u
e
n
c
y
 (

M
H

z
)

Figure 10: Example of transmissions between 2 and 2.5 GHz captured by SweepSense every 2 ms.

• In contrast to a standard CBX receiver, which takes

500 µs to monitor 100 MHz (125µs to capture and

retune four times), SweepSense can do it in 125 µs,

a 4× improvement.

• Useful information such as channel utilization can

be extracted with 1 ms resolution in highly dynamic

and disjoint LTE distributed in a band of 200 MHz.

• Incumbent sensing can be reliably performed over

200 MHz of bandwidth for use in spectrum sharing

architectures like CBRS.

• The loss of quality in received samples due to a

free-running VCO and the unsweeping mechanism

can be characterized and do not limit the use of

SweepSense as a spectrum sensor

Our evaluation hardware setup is as described in the

previous section. We select VCO bands and sweep rates

that best suit the evaluation requirements. In situations

where comparisons are required, we use an oracle to pro-

vide the ground truth The oracle is an unmodified USRP

(CBX frontend) synchronized with SweepSense using a

MIMO cable. The oracle USRP is tuned to a particu-

lar frequency, while the SweepSense USRP continuously

sweeps multiple bands. We then repeat the experiments

while cycling the oracle through all of the relevant fre-

quency bands.

7.1 Case Studies

7.1.1 ISM Protocol Classification

In the first case study we evaluate the performance of

SweepSense in differentiating between four common

protocols in the ISM band: WiFi-OFDM (802.11g/n),

WiFi-DSSS (802.11b), Bluetooth (BLE), Zigbee (ZB),

and no transmission (Gaussian noise). These protocols

are diverse in their bandwidth, modulation scheme, and

behavior. Both WiFi-DSSS and WiFi-OFDM are rela-

tively wideband but have the same bandwidth (20 MHz)

and channel allocation. [20] BLE and ZB are relatively

narrowband (2 MHz), and have overlapping, but differ-

ent channel allocation, making the classification process

more difficult [21, 22].

We used a two-level classifier to distinguish between

the various protocols. The first level differentiates be-

tween narrowband and wideband signals using the Power

Spectral Density (PSD). The second level then imple-

ments an SVM classifier for the wideband signals and

a single layer neural network for narrow band sig-

nals [6]. Both of these classifiers take as input vec-

tors the SCD and CAF of the unswept samples within

each sweep. For wideband signals, CAF vectors are ob-

tained at cyclic frequency shifts of k ∗ 0.01; and for nar-

rowband signals, they are obtained at cyclic frequency

shift of k ∗ 0.0025. The classifiers were trained using

ground truth captures of each protocol captured over the

air. The ground truth signals were generated using rele-

vant MATLAB toolboxes or standard compliant scripts,

and included signals at a wide range of SNRs. The first

classifier (CLASSIFIER 1), differentiates between trans-

mission (noise), ZB, and BLE. The second classifier

(CLASSIFIER 2) differentiates between no transmission

(noise), WiFi-OFDM, and WiFi-DSSS.

Classification accuracy is used as the primary metric

in this evaluation, and is calculated as: the number of

sweeps that were classified correctly, divided by the total

number of sweeps where the signal was present. We per-

formed the evaluation with a SweepSense receiver cap-

turing signals over-the-air that we transmitted across the

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 325

a. OFDM

-5 0 5 10 15 20

SNR(dB)

0

20

40

60

80

100
A

c
c
u

ra
c
y
 (

%
)

1637 566 125

Sweep Time (us/100Mhz)

b. DSSS

-10 -5 0 5 10 15

SNR(dB)

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

1637 566 125

Sweep Time (us/100Mhz)

c. BLE

1 6 11 16 21 26

SNR(dB)

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

1637 566 125

Sweep Time (us/100Mhz)

d. Zigbee

-6 -1 4 9 14 19

SNR(dB)

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

1637 566 125

Sweep Time (us/100Mhz)

Figure 11: Classification accuracy for ISM protocols across SNRs.

802.11b 802.11g BL ZB

Signal Type

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

1637 566 125

Sweep Time (us/100Mhz)

Figure 12: Classification accuracy for ISM protocols

across multiple test locations.

entire 100 MHz wide 2.4 GHz ISM band. In each exper-

iment, we transmit the ground truth signals containing a

mix of protocols, and they are received simultaneously

by co-located SweepSense and oracle USRP receivers.

The classifier then operates on the unswept samples from

the SweepSense receiver, and the ground truth samples

from the oracle USRP. We then calculate the classifica-

tion accuracy. The receiver setup is then moved around

the lab to capture data from multiple locations.

Figure 12 shows the classification accuracy across all

four protocols. The average classification accuracy for

signals with the highest transmit SNR, across all proto-

cols, is 95%. While operating on the fastest sweep rate

of 125 µs per 100 MHz, we repeat the experiment while

varying the sweep rate and transmit SNR to understand

the classification accuracy’s dependence on these param-

eters. Figure 11 shows that SweepSense classification

accuracy is high for signals with decodable SNR even at

the fastest sweep rate of 125 µs per 100 MHz: CLAS-

SIFIER 1 can detect and classify signals with 95% accu-

racy at even low SNR with sweep as fast as 125 µs per

100 MHz. CLASSIFIER 2 can detect and classify signals

with 90% accuracy at even low SNR with a sweep as fast

as 125 µs per 100 MHz.

We note that the noise suppression properties of cyclo-

stationary analysis enables us to correctly classify signals

even when they’re sometimes below the noise floor. The

accuracy drops as the rate of sweep increases. We see

that the drop in accuracy is because faster sweep rates

lead to a smaller number of samples (the fastest sweep

yields only 3125 samples in every 100 MHz). It also

leads to larger distortions, both of which negatively affect

cyclo-stationary signatures. It should be noted that these

signatures are preserved at lower sweep rates, despite the

frequency distortions.

7.1.2 LTE Channel Utilization

The LTE bands are allocated to specific service

providers, but even within a service provider, the bands

are across a wide frequency range in the spectrum. Also,

LTE base stations schedule traffic at a millisecond gran-

ularity. Therefore, monitoring the load across many LTE

base stations demonstrates SweepSense’s ability to cap-

ture time dynamics of signals across a wide bandwidth.

Specifically, we show that SweepSense can simultane-

ously monitor the load of a set of disjoint LTE down-

link channels (with a total bandwidth of 75 MHz), spread

over the 1.9 GHz and the 2.1 GHz bands.

Our experimental setup is as follows: we connect the

SweepSense receiver to a wideband discone antenna on

the roof of the building. SweepSense is configured to

sense 1.9 GHz to 2.1 GHz spectrum in three sweeps,

each is 80MHz at the rate of 375 µs per 100MHz. We

captured several seconds of sweeps during a peak hour

in the evening.

Since the LTE protocol only puts energy on subcarriers

when downlink traffic is transmitted, the energy of each

subcarrier directly correlates with the downlink channel

usage [1]. Therefore, we use a short-term Fourier trans-

form on the unswept samples and report load as average

power levels detected in the respective bands. The max-

imum power level obtained over all our experiments is

used as the normalization factor to obtain the power cor-

responding to the maximum load. Fig. 13 shows a snap-

shot of simultaneously measured load of five LTE base

stations with 0.9 ms granularity (less than the scheduling

interval) per LTE base station. Surprisingly, even at peak

hours, the load across base stations is very uneven.

7.1.3 CBRS ESC Sensor

The FCC requires spectrum sensing in the CBRS band

to detect and avoid interfering with incumbent radar

transmissions. Highly reliable ESC sensors that moni-

326 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Centre Freq: 1940MHz, Bandwidth: 20MHz

Centre Freq: 1955MHz, Bandwidth: 10MHz

Centre Freq: 1970MHz, Bandwidth: 10MHz

Centre Freq: 2120MHz, Bandwidth: 20MHz

Centre Freq: 2147.5MHz, Bandwidth: 15MHz

Figure 13: Downlink channel occupancy of five LTE base stations as observed simultaneously by SweepSense.

tor the entire spectrum for incumbent transmissions, are

arguably one of the most critical parts of the rules for

using the CBRS spectrum [40].

We evaluate the capability of SweepSense as an ESC

sensor. Our experiment is to detect the “Bin 1 Lite”

radar waveform as per the official testing and certifica-

tion procedures for ESC sensors [11]: this radar type

closely resembles widely deployed maritime pulse radar.

We use MATLAB to generate the radar signals and add

Gaussian noise (GN) according to the specified relative

power levels in [11]. The samples are transmitted to

the SweepSense USRP with a Vector Signal Generator

(Keysight N5182B) at calibrated power levels. The sig-

nal generator is directly connected to the SweepSense

receiver with RF coax. SweepSense is configured to

sweep 3480 MHz - 3680 MHz every 1.3 ms. We sweep

the spectrum multiple times within one radar burst inter-

val, increasing chances of detection. In each experiment,

we initiate the SweepSense capture for 10 seconds and

then trigger the signal generator ten times. Our sens-

ing algorithm declares radar events based on peaks in

the short term Fourier transform of the unswept signal.

Since the SweepSense USRP is not designed to have a

low noise floor, the actual power levels used in this study

are 9 dB/MHz higher (-80dBm/Hz for radar pulses and

-100dBm/Hz for GN) than the respective values in [11].

Table 1 summarizes the radar detection performance

of SweepSense. We observe that SweepSense can

achieve 99.5% accuracy with a very simple receiver.

Added to this, we also demonstrate that SweepSense can

function as an ESC sensor over double the required band-

width, motivating broader spectrum sharing applications

in the future. In summary, SweepSense is effective in

detecting fleeting signals (e.g., radar).

Radar Pulse Pulses Pulses Detection

Type Width per per accuracy

(µs) second burst

Bin 1 0.8 1000 19 99.5%

Lite (398/400)

Table 1: ESC radar classification accuracy

-2 -1 0 1 2

Frequency (MHz)

-80

-70

-60

-50

-40

-30

-20

-10

0

P
o
w

e
r

o
f
to

n
e
 (

d
B

)

Normal RX 1300 280 160

Sweep time (us/100MHz)

Figure 14: PSD characteristics of a fixed tone captured

using SweepSense across multiple sweep rates.

7.2 Micro benchmarks

Frequency stability and phase noise are typical measure-

ments used to characterize radios. Since the sweep–

unsweep process recovers fixed frequency samples, we

can benchmark the performance of SweepSense using

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 327

these standard metrics. We isolate the loss in perfor-

mance due to sweeping by comparing with the perfor-

mance of un-modified USRP SDR radios. In each of

these evaluations, we connected a signal generator that

outputs a single frequency tone into both the SweepSense

USRP and the oracle USRP through identical RF paths.

SweepSense sweeps the relevant band and uses pre-

captured calibration data to obtain the unswept samples

at different sweep rates.

Since the VCO in SweepSense is operating in open-

loop mode, we observe a frequency drift over time

(shown in Fig. 15). The rapid rise and subsequent set-

tling of the frequency is due to the oscillator warming

up and settling on its stable operating temperature after

power-on. We observe that the settling time is consis-

tent: it takes the same amount of time every time we

power on the USRP (∼1500 s), and it is also consistent

across multiple VCO bands and sweep rates. Although

the VCO takes many minutes to settle, this is only a one-

time event at power-on and does not affect the perfor-

mance of a SweepSense sensor after it has warmed up or

switched bands.

Next, we characterize the performance of the

SweepSense un-sweeping and noise distortion added due

to un-sweeping compared to fixed frequency receiver.

On a standard fixed frequency radio, the PLL reduces the

phase noise of the VCO while it locks the frequency to

the desired value. Since we removed the PLL lock loop

for implementing SweepSense, it is essential to charac-

terize the distortion created by the open loop VCO be-

ing controlled by the the sawtooth signal from an ex-

ternal DAC. All measurements are taken after the fre-

quency drift settles. We compare Power Spectral Den-

sity of the unswept tone at different sweep rates against

samples received by the oracle USRP in Fig. 14. We

see that the phase noise floor rises by ∼10 dB for slower

sweep rates and the skirt around 0 Hz starts increasing

for higher sweep rates, compared to the oracle. An ideal

response would have a clean tone with no skirt or spread-

ing. Sweeping faster, therefore, comes at the cost of lim-

ited frequency resolution.

8 Limitation: SNR Loss and Inference

The phase noise of SweepSense will lead to a loss in sig-

nal quality. Phase noise is multiplicative noise, i.e., SNR

loss due to phase noise depends on the signal strength

of the transmission. If the transmission has 10 dB of

SNR, i.e., the noise floor would be 10 dB lower than sig-

nal; then the effect of phase noise will be insignificant

(less than 1 dB loss). Recall that the classification eval-

uation results demonstrate that even with a weak signal

(e..g, 5 dB SNR), SweepSense can classify the 20 MHz

OFDM signal with just a 25µsec capture (sampled at 25

0 500 1000 1500
0

300

600

900

1200

1500

1800

1500 1600 1700 1800 1900 2000

1.55 GHz

2.44 GHz

3.00 GHz

Time (s)

F
re

q
u
e
n
c
y
 E

rr
o
r

(k
H

z
)

Figure 15: Frequency error in VCO output vs time

of capture. The VCO reaches temperature stability in

(∼1500 s).

Msps). This means that even with such high phase noise,

the inference algorithms still perform well. In summary,

SweepSense has high distortion due to phase noise, but

even then it still performs well for signal detection.

9 Conclusion

SweepSense presents the first spectrum sensor which

can rapidly sweep the entire terrestrial spectrum with

low-cost SDRs, while providing detailed measure-

ments including transmitter classification and utilization.

SweepSense achieves this by making a single-wire modi-

fication to the frontend of SDRs such as the USRP, allow-

ing us to make this improvement to current deployments

of USRP radios in multiple wide-scale deployments such

as CityScape [35], and the Microsoft Spectrum Observa-

tory [31].

In addition to spectrum sharing, SweepSense can be

used for data mining, since communication signals are

generated when humans, machines, and objects change

their state. In the future we envision the community

adding other spectrum analysis techniques beyond clas-

sifying communication protocol, namely transmitter lo-

calization.

References

[1] 3GPP Consortium. 3GPP Specification series 36.

http://www.3gpp.org/dynareport/36-series.htm.

[2] O. Abari, F. Lim, F. Chen, and V. Stojanović. Why

analog-to-information converters suffer in high-

bandwidth sparse signal applications. IEEE Trans-

actions on Circuits and Systems I: Regular Papers,

60(9):2273–2284, Sep. 2013.

[3] Anritsu. MS2840A Spectrum Ana-

lyzer. https://www.anritsu.com/en-IN/test-

measurement/solutions/ms2840a-066/.

328 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[4] M. R. Avendi, K. Haghighi, A. Panahi, and

M. Viberg. A NLLS based sub-nyquist rate spec-

trum sensing for wideband cognitive radio. CoRR,

abs/1408.4544, 2014.

[5] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and

M. Welsh. White space networking with Wi-Fi like

connectivity. In Proc. ACM SIGCOMM, 2009.

[6] C. M. Bishop. Pattern Recognition and Ma-

chine Learning (Information Science and Statis-

tics). Springer-Verlag, Berlin, Heidelberg, 2006.

[7] A. M. Cavalcante, E. Almeida, R. D. Vieira,

S. Choudhury, E. Tuomaala, K. Doppler, F. Chaves,

R. C. D. Paiva, and F. Abinader. Performance eval-

uation of lte and wi-fi coexistence in unlicensed

bands. In IEEE Vehicular Technology Conference

(VTC Spring), June 2013.

[8] chad spooner. Cyclostationarity blog. https://

cyclostationary.blog/.

[9] A. A. Cheema and S. Salous. Digital FMCW for

ultrawideband spectrum sensing. Radio Science,

51(8):1413–1420, Aug 2016.

[10] M. F. Duarte and R. G. Baraniuk. Spectral com-

pressive sensing. Applied and Computational Har-

monic Analysis, 35(1):111 – 129, 2013.

[11] F. H. Sanders, J. E. Carroll, G. A. Sanders,

R. L. Sole, J. S. Devereux, and E. F. Dro-

cella. “Procedures for laboratory testing of envi-

ronmental sensing capability sensor devices” Na-

tional Telecommunications and Information Ad-

ministration, Techincal Memorandum TM 18-

527”. https://www.its.bldrdoc.gov/publications/

3184.aspx, Nov. 2017.

[12] W. A. Gardner. The spectral correlation theory

of cyclostationary time-series. Signal Processing,

11(1), July 1986.

[13] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi,

E. Price, and L. Shi. Sample-optimal average-case

sparse fourier transform in two dimensions. CoRR,

abs/1303.1209, 2013.

[14] A. P. Goodson. A multi-function, broad band, high

dynamic range RF receiver. Technical report, On-

eRadio, 2017.

[15] T. Harrold, R. Cepeda, and M. Beach. Long-term

measurements of spectrum occupancy characteris-

tics. In New Frontiers in Dynamic Spectrum Ac-

cess Networks (DySPAN), 2011 IEEE Symposium

on, pages 83–89. IEEE, 2011.

[16] H. Hassanieh, P. Indyk, D. Katabi, and E. Price.

Nearly optimal sparse fourier transform. CoRR,

abs/1201.2501, 2012.

[17] H. Hassanieh, P. Indyk, D. Katabi, and E. Price.

Simple and practical algorithm for sparse fourier

transform. In Proceedings of the Twenty-third

Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA ’12, pages 1183–1194, Philadelphia,

PA, USA, 2012. Society for Industrial and Applied

Mathematics.

[18] H. Hassanieh, L. Shi, O. Abari, E. Hamed, and

D. Katabi. GHz-Wide sensing and decoding using

the sparse fourier transform. In Proc. IEEE Confer-

ence on Computer Communications (INFOCOM),

2014.

[19] S. S. Hong and S. R. Katti. DOF: a local wireless

information plane. In Proceedings of the ACM SIG-

COMM 2011 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Com-

puter Communications, Toronto, ON, Canada, Au-

gust 15-19, 2011, pages 230–241, 2011.

[20] IEEE. IEEE 802.11: Wireless LAN Medium

Access Control (MAC) and Physical Layer

(PHY) Specifications”. (2016 revision). IEEE-SA.

14 December 2016. http://ieeexplore.ieee.org/

document/7786995/.

[21] IEEE Standard. ”802.15.4k-2013 - IEEE Stan-

dard for Local and metropolitan area networks–

Part 15.4: Low-Rate Wireless Personal Area

Networks (LR-WPANs)–Amendment 5: Physi-

cal Layer Specifications for Low Energy, Criti-

cal Infrastructure Monitoring Networks.”. https:

//ieeexplore.ieee.org/document/6581828/.

[22] IEEE Standard. ”IEEE Std 802.15.1–2005 – IEEE

Standard for Information technology – Telecom-

munications and information exchange between

systems – Local and metropolitan area networks –

Specific requirements Part 15.1: Wireless Medium

Access Control (MAC) and Physical Layer (PHY)

Specifications for Wireless Personal Area Net-

works (W Pans)”. Ieeexplore.ieee.org.

[23] M. H. Islam, C. L. Koh, S. W. Oh, X. Qing, Y. Y.

Lai, C. Wang, Y. Liang, B. E. Toh, F. Chin, G. L.

Tan, and W. Toh. Spectrum survey in singapore:

Occupancy measurements and analyses. In 2008

3rd International Conference on Cognitive Radio

Oriented Wireless Networks and Communications

(CrownCom 2008), pages 1–7, May 2008.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 329

[24] A. P. Iyer, K. Chintalapudi, V. Navda, R. Ramjee,

V. N. Padmanabhan, and C. R. Murthy. SpecNet:

Spectrum sensing sans frontières. In Proc. Sympo-

sium on Networked Systems Design and Implemen-

tation (NSDI), 2011.

[25] H. Kim and K. G. Shin. Efficient discovery of spec-

trum opportunities with mac-layer sensing in cog-

nitive radio networks. IEEE transactions on mobile

computing, 7(5):533–545, 2008.

[26] H. Kim and K. G. Shin. Fast discovery of spec-

trum opportunities in cognitive radio networks. In

New Frontiers in Dynamic Spectrum Access Net-

works, 2008. DySPAN 2008. 3rd IEEE Symposium

on, pages 1–12. IEEE, 2008.

[27] K. Lakshminarayanan, S. Sapra, S. Seshan, and

P. Steenkiste. Rfdump: An architecture for mon-

itoring the wireless ether. In Proceedings of the 5th

International Conference on Emerging Network-

ing Experiments and Technologies, CoNEXT ’09,

pages 253–264, New York, NY, USA, 2009. ACM.

[28] M. Lopez-Benitez, A. Umbert, and F. Casadevall.

Evaluation of spectrum occupancy in spain for cog-

nitive radio applications. In Vehicular technology

conference, 2009. VTC Spring 2009. IEEE 69th,

pages 1–5. IEEE, 2009.

[29] Maxim Integrated. 23.5MHz to 6000

MHz Fractional Integer-N synthesizer/VCO.

http://hforsten.com/third-version-of-homemade-

6-ghz-fmcw-radar.html.

[30] MetaGeek. Wi-Spy and Chanalyzer. https://www.

metageek.com/products/wi-spy/.

[31] Microsoft. Spectrum Observatory. http://

observatory.microsoftspectrum.com/.

[32] OSCOR. Blue Spectrum Analyzer. https://reiusa.

net/rf-detection/oscor-blue-spectrum-analyzer/.

[33] K. Qaraqe, H. Celebi, M. Alouini, A. El-Saigh,

L. Abuhantash, M. Al-Mulla, O. Al-Mulla, A. Jolo,

and A. Ahmed. Measurement and analysis of wide-

band spectrum utilization in indoor and outdoor en-

vironments. In International Conference on Com-

munications Technologies (ICCT 2010). Citeseer,

2010.

[34] S. Rayanchu, A. Patro, and S. Banerjee. Airshark:

Detecting non-WiFi RF devices using commodity

WiFi hardware. In Proc. ACM Internet Measure-

ment Conference (IMC), 2011.

[35] S. Roy, K. Shin, A. Ashok, M. McHenry, G. Vigil,

S. Kannam, and D. Aragon. Cityscape: A metro-

area spectrum observatory. In Proc. IEEE Inter-

national Conference on Computer Communication

and Networks (ICCCN), 2017.

[36] S. Salous, N. Nikandrou, and N. Bajj. Digi-

tal techniques for mobile radio chirp sounders.

IEE Proceedings-Communications, 145(3):191–

196, 1998.

[37] L. Shi, P. Bahl, and D. Katabi. Beyond sensing:

Multi-GHz realtime spectrum analytics. In Proc.

Symposium on Networked Systems Design and Im-

plementation (NSDI), 2015.

[38] P. D. Sutton, K. E. Nolan, and L. E. Doyle. Cy-

clostationary signatures in practical cognitive radio

applications. IEEE Journal on Selected Areas in

Communications, 26(1):13–24, Jan 2008.

[39] Z. Tian and G. B. Giannakis. Compressed sens-

ing for wideband cognitive radios. Technical

report, MICHIGAN TECHNOLOGICAL UNIV

HOUGHTON, 2007.

[40] U.S. Government. CFR title 47 section 96.67 Envi-

ronmental Sensing Capability.

[41] M. Wellens, J. Wu, and P. Mähönen. Evaluation of

spectrum occupancy in indoor and outdoor scenario

in the context of cognitive radio. In CrownCom,

pages 420–427, 2007.

[42] J. Xue, Z. Feng, and P. Zhang. Spectrum occupancy

measurements and analysis in beijing. IERI Proce-

dia, 4:295–302, 2013.

[43] S. Yoon, L. E. Li, S. C. Liew, R. R. Choudhury,

I. Rhee, and K. Tan. Quicksense: Fast and energy-

efficient channel sensing for dynamic spectrum ac-

cess networks. In INFOCOM, 2013 Proceedings

IEEE, pages 2247–2255. IEEE, 2013.

[44] T. Yucek and H. Arslan. A survey of spec-

trum sensing algorithms for cognitive radio appli-

cations. IEEE communications surveys & tutorials,

11(1):116–130, 2009.

330 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Slim: OS Kernel Support for a Low-Overhead Container Overlay Network

Danyang Zhuo Kaiyuan Zhang Yibo Zhu†∗ Hongqiang Harry Liu#

Matthew Rockett Arvind Krishnamurthy Thomas Anderson

University of Washington † Microsoft Research # Alibaba

Abstract
Containers have become the de facto method for hosting
large-scale distributed applications. Container overlay net-
works are essential to providing portability for containers,
yet they impose significant overhead in terms of throughput,
latency, and CPU utilization. The key problem is a reliance
on packet transformation to implement network virtualiza-
tion. As a result, each packet has to traverse the network
stack twice in both the sender and the receiver’s host OS
kernel. We have designed and implemented Slim, a low-
overhead container overlay network that implements net-
work virtualization by manipulating connection-level meta-
data. Our solution maintains compatibility with today’s con-
tainerized applications. Evaluation results show that Slim
improves the throughput of an in-memory key-value store by
71% while reducing the latency by 42%. Slim reduces the
CPU utilization of the in-memory key-value store by 56%.
Slim also reduces the CPU utilization of a web server by
22%-24%, a database server by 22%, and a stream process-
ing framework by 10%.

1 Introduction
Containers [6] have quickly become the de facto method to
manage and deploy large-scale distributed applications, in-
cluding in-memory key-value stores [32], web servers [36],
databases [45], and data processing frameworks [1, 26].
Containers are attractive because they are lightweight and
portable. A single physical machine can easily host more
than ten times as many containers as standard virtual ma-
chines [30], resulting in substantial cost savings.

Container overlay networks—a key component in provid-
ing portability for distributed containerized applications—
allow a set of containers to communicate using their own
independent IP addresses and port numbers, no matter where
they are assigned or which other containers reside on the
same physical machines. The overlay network removes the
burden of coordinating ports and IP addresses between ap-
plication developers, and vastly simplifies migrating legacy
enterprise applications to the cloud [14]. Today, container
orchestrators, such as Docker Swarm [9], require the usage
of overlay network for hosting containerized applications.

∗Yibo now works at Bytedance.

a)

KernelContainer

Overlay Network
Stack

vSwitch

Kernel Container

Overlay Network
Stack

Host Network
Stack

ApplicationApplication

Host Network
Stack

b)

HypervisorVM

Overlay Network
Stack

Hypervisor VM

Application Host Network
Stack

vSwitch

vSwitch

Host Network
Stack

vSwitch Overlay Network
Stack

Application

Figure 1: Packet flow in: (a) today’s container overlay net-
works, (b) overlay networks for virtual machines.

However, container overlay networks impose significant
overhead. Our benchmarks show that, compared to a host
network connection, the throughput of an overlay network
connection is 23-48% less, the packet-level latency is 34-
85% higher, and the CPU utilization is 93% more. (See
§2.2.) Known optimization techniques (e.g., packet steer-
ing [40] and hardware support for virtualization [22, 14])
only partly address these issues.

The key problem is that today’s container overlay net-
works depend on multiple packet transformations within the
OS for network virtualization (Figure 1a). This means each
packet has to traverse network stack twice and also a virtual
switch on both the sender and the receiver side. Take sending
a packet as an example. A packet sent by a container appli-
cation first traverses the overlay network stack on the virtual
network interface. The packet then traverses a virtual switch
for packet transformation (e.g, adding host network head-
ers). Finally, the packet traverses the host network stack, and
is sent out on the host network interface. On the receiving
server, these layers are repeated in the opposite order.

This design largely resembles the overlay network for vir-
tual machines (Figure 1b). Because a virtual machine has its
own network stack, the hypervisor has to send/receive raw
overlay packets without the context of network connections.
However, for containers, the OS kernel has full knowledge
of each network connection.

In this paper, we ask whether we can design and imple-
ment a container overlay network, where packets go through

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 331

the OS kernel’s network stack only once. This requires us
to remove packet transformation from the overlay network’s
data-plane. Instead, we implement network virtualization by
manipulating connection-level metadata at connection setup
time, saving CPU cycles and reducing packet latency.

Realizing such a container overlay network is challenging
because: (1) network virtualization has to be compatible with
today’s unmodified containerized applications; (2) we need
to support the same networking policies currently enforced
by today’s container overlay network on the data-plane; and
(3) we need to enforce the same security model as in today’s
container overlay networks.

We design and implement Slim, a low-overhead container
overlay network that provides network virtualization by ma-
nipulating connection-level metadata. Our evaluations show
that Slim improves the throughput of an in-memory key-
value store, Memcached [32], by 71% and reduces its latency
by 42%, compared to a well-tuned container overlay net-
work based on packet transformation. Slim reduces the CPU
utilization of Memcached by 56%. Slim also reduces the
CPU utilization of a web server, Nginx [36], by 22%-24%;
a database server, PostgreSQL [45], by 22%; and a stream
processing framework, Apache Kafka [1, 26], by 10%. How-
ever, Slim adds complexity to connection setup, resulting
in 106% longer connection setup time. Other limitations of
Slim: Slim supports quiescent container migration, but not
container live migration; connection-based network policies
but not packet-based network policies; and TCP, defaulting
to standard processing for UDP sockets. (See §7.)

The paper makes the following contributions:

• Benchmarking of existing container overlay network
with several data-plane optimizations. We identify per-
packet processing costs (e.g., packet transformation, ex-
tra traversal of network stack) as the main bottleneck in
today’s container overlay network. (See §2.2, §2.3.)
• Design and implementation of Slim, a solution that ma-

nipulates connection-level metadata to achieve network
virtualization. Slim is compatible with today’s con-
tainerized applications and standard OS kernels. Slim
supports various network policies and guarantees the
same security model as that of today’s container overlay
network. (See §4.)
• Demonstration of the benefits of Slim for a wide range

of popular containerized applications, including an in-
memory key-value store, a web server, a database
server, and a stream processing framework. (See §6.)

Fundamentally, Slim integrates efficient virtualization into
the OS kernel’s networking stack. A modern OS kernel al-
ready has efficient native support to virtualize file systems
(using mount namespace) and other OS components (e.g.,
process id, user group). The network stack is the remaining
performance gap for efficient container virtualization. Slim
bridges this gap.

Mode Applications use Routing uses

Bridge Container IP –
Host Host IP Host IP
Macvlan Container IP Container IP
Overlay Container IP Host IP

Table 1: Container networking mode comparison.

2 Background
We first describe the architecture of traditional container
overlay networks and why they are useful for containerized
applications. We then quantify the overhead of today’s con-
tainer overlay network solutions in terms of throughput, la-
tency, and CPU utilization. Finally, we show that the over-
head is significant even after applying known overhead re-
duction techniques (e.g., packet steering [40]).

2.1 Container Overlay Network
Containers typically have four options for communication:
bridge mode, host mode, macvlan mode, and overlay mode.
Table 1 shows the comparison between different modes in
terms of the IP addresses used by containerized applications
and routing in the host network. Bridge mode is used exclu-
sively for containers communicating on the same host. With
bridge mode, each container has an independent IP address,
and the OS kernel routes traffic between different containers.

How can we enable communication between containers
on different hosts? With host mode, containers directly use
the IP address of their host network interface. The network
performance of host mode is close to the performance of any
process that directly uses the host OS’s network stack. How-
ever, host mode creates many management and deployment
challenges. First, containers cannot be configured with their
own IP addresses; they must use the IP address of the host
network interface. This complicates porting: distributed ap-
plications must be re-written to discover and use the host IP
addresses, and if containers can migrate (e.g., after a check-
point), the application must be able to adapt to dynamic
changes in their IP address. Worse, because all containers
on the same host share the same host IP address, only one
container can bind to a given port (e.g., port 80), resulting
in complex coordination between different applications run-
ning on the same host. In fact, container orchestrators, such
as Kubernetes, do not allow usage of host mode [27] due to
these issues.

Macvlan mode or similar hardware mechanisms (e.g., SR-
IOV) allow containers to have their own IP addresses differ-
ent from their hosts. Macvlan or SR-IOV allow the physical
NIC to emulate multiple NICs each with a different MAC
address and IP address. Macvlan 1 extends the host network
into the containers by making the container IP routable on
the host network. However, this approach fundamentally

1There are software approaches (e.g., Calico [3]) to extend the host net-
work into containers. They have the same problem as macvlan.

332 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

KernelCgroup

Namespace

Application

Virtual Network Interface
IP = 10.0.0.1

vSwitch

Host Network Interface
IP = 1.2.3.4

Figure 2: Architecture of container overlay network.

complicates data center network routing. Let’s say a dis-
tributed application with IP addresses IP 1.2.3.[1-10] is not
co-located on the same rack, or starts co-located but then
some containers are migrated. Then the host IP addresses
will not be contiguous, e.g., one might be on host 5.6.7.8
and another might be on host 9.10.11.12. Macvlan requires
the cloud provider to change its core network routing to redi-
rect traffic with destination IP 1.2.3.[1-10] to 5.6.7.8 and
9.10.11.12, potentially requiring a separate routing table en-
try for each of the millions of containers running in the data
center. Another limitation is that containers must choose IP
addresses that do not overlap with the IP addresses of any
other container (or host). Because of these complications,
today, most cloud providers block macvlan mode [29].

To avoid interference with routing on the host network, the
popular choice is to use overlay mode. This is the analog of
a virtual machine, but for a group of containers—each appli-
cation has its own network namespace with no impact or vis-
ibility into the choices made by other containers or the host
network. A virtual network interface (assigned an IP address
chosen by the application) is created per-container. The vir-
tual network interface is connected to the outside world via a
virtual switch (e.g., Open vSwitch [42]) inside the OS kernel.
Overlay packets are encapsulated with host network headers
when routed on the host network. This lets the container
overlay network have its own IP address space and network
configuration that is disjoint from that of the host network;
each can be managed completely independently. Many con-
tainer overlay network solutions are available today—such
as Weave [52], Flannel [15], and Docker Overlay [8]—all of
which share similar internal architectures.

Figure 2 presents a high-level system diagram of a con-
tainer overlay network that uses packet transformation to im-
plement network virtualization. It shows an OS kernel and
a container built with namespaces and cgroups. Namespace
isolation prevents a containerized application from access-
ing the host network interface. Cgroups allow fine-grained
control on the total amount of resources (e.g., CPU, mem-
ory, and network) that the application inside the container
can consume.

The key component of a container overlay network is a vir-
tual switch inside the kernel (Figure 2). The virtual switch
has two main functionalities: (1) network bridging, allowing
containers on the same host to communicate, and (2) net-

work tunneling to enable overlay traffic to travel across the
physical network. The virtual switch is typically configured
using the Open vSwitch kernel module [42] with VXLAN as
the tunneling protocol.

To enforce various network policies (e.g., access control,
rate limiting, and quality of service), a network operator or a
container orchestrator [27, 9, 18] issues policy updates to the
virtual network interface or the virtual switch. For example,
firewall rules are typically implemented via iptables [20],
and rate limiting and quality of service (QoS) can also be
configured inside the Open vSwitch kernel module. These
rules are typically specified in terms of the application’s vir-
tual IP addresses, rather than the host’s IP addresses which
can change depending on where the container is assigned.

The hosts running a set of containers in an overlay network
must maintain a consistent global network view (e.g., virtual
to physical IP mappings) across hosts. They typically do this
using an external, fault-tolerant distributed datastore [13] or
gossiping protocols.

2.2 Overhead in Container Overlay Networks
The overhead of today’s container overlay networks comes
from per-packet processing (e.g., packet transformation, ex-
tra traversal of the network stack) inside the OS kernel.

2.2.1 Journey of an Overlay Network Packet

In our example (Figure 2), assume that a TCP connection has
previously been established between 10.0.0.1 and 10.0.0.2.
Now, the container sends a packet to 10.0.0.2 through this
connection. The OS kernel’s overlay network stack first
writes the virtual destination IP address 10.0.0.2 and source
IP address 10.0.0.1 on the packet header. The OS kernel also
writes the Ethernet header of the packet to make the packet a
proper Ethernet frame. The Ethernet frame traverses a virtual
Ethernet link to the virtual switch’s input buffer.

The virtual switch recognizes the IP address 10.0.0.2 in-
side the Ethernet frame as that of a container on a remote
host. It adds a physical IP header to the Ethernet frame using
host source and destination addresses from its routing table.
The packet now has both a physical and a virtual header. On
the host network, the packet is simply a UDP packet (assum-
ing the tunneling protocol is VXLAN) and its UDP payload
is the Ethernet frame. The OS kernel then delivers the en-
capsulated packet to the wire using the host network stack.

The receiving pipeline is the same except that the virtual
switch removes the host network header instead of adding
one. The receiving side receives the exact same Ethernet
frame from the sending side’s virtual network interface.

We can thus see why the overlay network is expensive:
delivering a packet on the overlay network requires one extra
traversal of the network stack and also packet encapsulation
and decapsulation.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 333

Setup Throughput (Gbps) RTT (µs)

Intra, Host 48.4 ± 0.7 5.9 ± 0.2
Intra, Overlay 37.4 ± 0.8 (23%) 7.9 ± 0.2 (34%)
Inter, Host 26.8 ± 0.1 11.3 ± 0.2
Inter, Overlay 14.0 ± 0.4 (48%) 20.9 ± 0.3 (85%)

Table 2: Throughput and latency of a single TCP connection
on a container overlay network, compared with that using
host mode. Intra is a connection on the same physical ma-
chine; Inter is a connection between two different physical
machines over a 40 Gbps link. The numbers followed by ±
show the standard deviations. The numbers in parentheses
show the relative slowdown compared with using host mode.

2.2.2 Quantifying Overhead

We give a detailed breakdown of the overhead in one popu-
lar container overlay network implementation, Weave [52].
Our testbed consists of two machines with Intel Xeon E5-
2680 (12 physical cores, 2.5 GHz). The machines use hyper-
threading and therefore each has 24 virtual cores. Each ma-
chine runs Linux version 4.4 and has a 40 Gbps Intel XL710
NIC. The two machines are directly connected via a 40 Gbps
link. The physical NIC is configured to use Receive Side
Scaling (RSS). In all of our experiments, we do not change
the configuration of the physical NICs.

We create an overlay network with Weave’s fast data-
plane mode (similar to the architecture in Figure 2). We
use iperf3 [19] to create a single TCP connection and study
TCP throughput atop the container overlay network. We use
NPtcp [39] to measure packet-level latency. For compari-
son, we also perform the same test using host mode container
networking. In all of our experiments, we keep the CPU in
maximum clock frequency (using Intel P-State driver [47]).

The overhead of the container overlay network is signif-
icant. We compare TCP flow throughput and packet-level
latency under four different settings. Table 2 shows aver-
age TCP flow throughput with maximum ethernet frame size
over a 10-second interval and the round trip latency for 32-
byte TCP packets for 10 tests. For two containers on the
same host, TCP throughput reduces by 23% and latency in-
creases by 34%. For containers across physical machines,
TCP throughput reduces by almost half (48%) and latency
increases by 85%. Intra-host container overlay network has
lower overheads because packet encapsulation is not needed.

To understand the source of the main bottleneck, we mea-
sure CPU utilization with a standard Linux kernel CPU pro-
filing tool, mpstat. We specifically inspect the overlay net-
work across two different physical machines. We set the
speed of the TCP connection to 10 Gbps and then use mpstat
to identify where CPU cycles are spent for 10 tests where
each test lasts 10 seconds. Figure 3 shows the overall CPU
utilization and the breakdown. Compared with using a direct
host connection, in the default mode (Random IRQ load bal-

Host Random RPS RFS
0.0

0.2

0.4

0.6

0.8

V
ir

tu
al

C
or

es

usr

sys

soft

Figure 3: CPU utilization under different overlay network
setups measured by number of virtual cores used for a sin-
gle 10 Gbps TCP connection. The CPU cycles are spent: in
user-level application (usr), inside kernel but excluding in-
terrupt handling (sys), and serving software interrupts (soft).
Error bars denote standard deviations.

ancing), the overlay network increases CPU utilization (rel-
atively) by 93%. RPS (receive packet steering) and RFS (re-
ceive flow steering) are two optimizations we have done to
Weave. (See §2.3.)

The main CPU overhead of the overlay network comes
from serving software interrupts; in the default overlay set-
ting, it corresponds to 0.56 virtual cores. The reason why
the extra CPU utilization is in the software interrupt han-
dling category is that packet transformation and the traversal
of the extra network stack is not directly associated with a
system call. These tasks are offloaded to per-core dedicated
softirq thread. For comparison, using the host mode, only
0.21 virtual cores are spent on serving software interrupts.
This difference in CPU utilization captures the extra CPU
cycles wasted on traversing the network stack one extra time
and packet transformation. Note here we do not separate the
CPU utilization due to the virtual switch and due to the extra
network stack traversal. Our solution, Slim, removes both
these two components from the container overlay network
data-plane at the same time, so understanding how much
CPU utilization these two components consume combined
is sufficient.

In §2.3, we show that existing techniques (e.g., packet
steering) can address some of the performance issues of a
container overlay network. However, significant overhead
still remains.

2.3 Fine-Tuning Data-plane
There are several known techniques to reduce the data-plane
overhead. Packet steering creates multiple queues, each per
CPU core, for a network interface and uses consistent hash-
ing to map packets to different queues. In this way, pack-
ets in the same network connection are processed only on a
single core. Different cores therefore do not have to access
the same queue, removing the overhead due to multi-core

334 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Setup Throughput (Gbps) RTT (µs)

Random LB 14.0 ± 0.4 (48%) 20.9 ± 0.3 (85%)
RPS 24.1 ± 0.8 (10%) 20.8 ± 0.1 (84%)
RFS 24.5 ± 0.3 (9%) 21.2 ± 0.2 (88%)

Host 26.8 ± 0.1 11.3 ± 0.2

Table 3: TCP throughput and latency (round-trip time for
32-byte TCP packets) for different packet steering mecha-
nisms atop a container overlay network across two physical
hosts. The numbers followed by ± show the standard devi-
ations. The numbers in parentheses show the relative slow-
down compared with using the host mode.

synchronization (e.g., cache-line conflicts, locking). Table 3
shows the changes to throughput and latency on a container
overlay network using packet steering.

Packet steering improves TCP throughput to within 91%
of using a host TCP connection, but it does not reduce
packet-level latency. We experimented with two packet
steering options, Receive Packet Steering (RPS) and Receive
Flow Steering (RFS), for internal virtual network interfaces
in the overlay network. RPS2 ensures that packets in the
same flow always hit the same core. RFS, an enhancement
of RPS, ensures that software interrupt processing occurs on
the same core as the application.

Although packet steering can imporve throughput, it has a
more modest impact on CPU utilizaion than throughput and
almost no change to latency. Packets still have to go through
the same packet transformations and traverse the network
stack twice. Our design, Slim, focuses directly on remov-
ing this per-packet processing overhead in container overlay
networks.

3 Overview
Slim provides a low-overhead container overlay network in
which packets in the overlay network traverse the network
stack exactly once. Like other container overlay network
implementations [52, 8, 15], Slim creates a virtual network
with a configuration completely decoupled from the host net-
work’s. Containers have no visibility of host network inter-
faces, and they communicate only using virtual network in-
terfaces that the OS kernel creates.

We require Slim to be (1) readily deployable, supporting
unmodified application binaries; (2) flexible, supporting var-
ious network policies, such as access control, rate limiting,
and quality of service (QoS), at both per-connection and per-
container levels; and (3) secure, the container cannot learn
information about the physical hosts, create connections di-
rectly on host network, or increase its traffic priority.

Figure 4 shows Slim’s architecture. It has three main com-
ponents: (1) a user-space shim layer, SlimSocket, that is dy-

2RSS requires hardware NIC support. RPS is a software implementation
of RSS that can be used on virtual network interfaces inside the OS kernel.

KernelCgroup

Namespace

Application

Virtual Network Interface
IP = 10.0.0.1

vSwitch

Host Network Interface
IP = 1.2.3.4

SlimSocket Sl
im

R
ou

te
r

SlimKernModule

Data Plane Control Plane

Figure 4: Architecture of Slim.

namically linked with application binaries; (2) a user-space
router, SlimRouter, running in the host namespace; and (3) a
small optional kernel module, SlimKernModule, which aug-
ments the OS kernel with advanced Slim features (e.g., dy-
namically changing access control rules, enforcing security).

Slim virtualizes the network by manipulating connection-
level metadata. SlimSocket exposes the POSIX socket inter-
face to application binaries to intercept invocations of socket-
related system calls. When SlimSocket detects an applica-
tion is trying to set up a connection, it sends a request to
SlimRouter. After SlimRouter sets up the network connec-
tion, it passes access to the connection as a file descriptor
to the process inside the container. The application inside
the container then uses the host namespace file descriptor to
send/receive packets directly to/from the host network. Be-
cause SlimSocket has the exact same interface as the POSIX
socket, and Slim dynamically links SlimSocket into the ap-
plication, the application binary need not be modified.

In Slim, packets go directly to the host network, circum-
venting the virtual network interface and the virtual switch;
hence, a separate mechanism is needed to support various
flexible control-plane policies (e.g., access control) and data-
plane policies (e.g., rate limiting, QoS). Control-plane poli-
cies isolate different components of containerized applica-
tions. Data-plane policies limit a container’s network re-
source usage and allow prioritization of network traffic. In
many current overlay network implementations, both types
of policies are actually enforced inside the data-plane. For
example, a typical network firewall inspects every packet to
determine if it is blocked by an access control list.

SlimRouter stores control-plane policies and enforces
them at connection setup time. This approach obviates the
need to inspect every packet in the connection. Before
creating a connection, SlimRouter checks whether the ac-
cess control list permits the connection. When the policy
changes, SlimRouter scans all existing connections and re-
moves the file descriptors for any connection that violates
the updated access control policy through SlimKernModule.
Slim leverages existing kernel functionalities to enforce data-
plane policies.

Sending a host namespace file descriptor directly to a ma-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 335

licious container raises security concerns. For example, if
a malicious container circumvents SlimSocket and invokes
the getpeername call directly on the host namespace file de-
scriptor, it would be able to learn the IP addresses of the host
machines. A container could also call connect with a host
network IP address to create a connection directly on the host
network, circumventing the overlay network. Finally, a con-
tainer could call setsockopt to increase its traffic priority.

To enforce the same security model as in today’s con-
tainer overlay network, Slim offers a secure mode. When
secure mode is on, Slim leverages a kernel module, SlimK-
ernModule, to restrict the power of host namespace file de-
scriptors inside containers. SlimKernModule implements a
lightweight capability system for file descriptors. SlimKern-
Module has three roles: (1) track file descriptors as they
propagate inside the container, (2) revoke file descriptors
upon request from SlimRouter, and (3) prohibit a list of un-
safe system calls using these file descriptors (e.g., getpeer-
name, connect, setsockopt). SlimSocket emulates these sys-
tem calls for non-malicious applications.

4 Slim
We first describe how to implement network virtualization
without needing packet transformations in the data-plane
while maintaining compatibility with current containerized
applications. We then describe how to support flexible net-
work polices and enforce security for malicious containers.

Slim does not change how virtual to physical IP mappings
are stored. They can still be either stored in external storage
or obtained through gossiping. As with today’s container
overlay network, Slim relies on a consistent and current view
of containers’ locations in the host network.

4.1 Connection-based Network Virtualization
Slim provides a connection-based network virtualization for
containers. When a container is initiated on the host, Slim
dispatches an instance of SlimRouter in the host namespace.
Slim links a user-level shim layer, SlimSocket, to the con-
tainer. When the process inside the container creates a con-
nection, instead of making standard socket calls, SlimSocket
sends a request to SlimRouter with the destination IP address
and port number. SlimRouter creates a connection on behalf
of the container and returns a host namespace file descriptor
back to the container. We first present an example that shows
how Slim supports traditional blocking I/O. We then describe
how to additionally make Slim support non-blocking I/O.

Support for blocking I/O. Figure 5 shows how a TCP
connection is created between a web client and a web server
on Slim. Consider the web server side. The container first
creates a socket object with the socket function call. This call
is intercepted by SlimSocket and forwarded to SlimRouter,
which creates a socket object in the host network. When the
container calls bind on the socket with virtual network inter-
face IP address 10.0.0.1 and port 80, SlimRouter also calls

bind on the host network interface IP address 1.2.3.5 and
with some unused port 1234. The port translation is needed
because a host can run multiple web servers binding on port
80, but the host network interface only has a single port 80.
SlimRouter updates the port mapping. The web server then
uses accept to wait for an incoming TCP connection. This
function call is also forwarded to SlimRouter, which waits
on the host socket.

We move next to the web client side. The client per-
forms similar steps to create the socket object. When the
client side connects the overlay socket to the server side at
IP address 10.0.0.1 port 80, SlimRouter looks up the virtual
IP address 10.0.0.1 and finds its corresponding host IP ad-
dress 1.2.3.5. SlimRouter then contacts the SlimRouter for
the destination container on 1.2.3.5 to locate the correspond-
ing host port, 1234. SlimRouter sets up a direct connection
to port 1234 on 1.2.3.5. After the TCP handshake is com-
plete, accept/connect returns a file descriptor in which socket
send/recv is enabled. SlimRouter passes the file descriptor
back to the container, and SlimSocket replaces the overlay
connection file descriptor with the host namespace file de-
scriptor using system call dup2. From this point on, the ap-
plication directly uses the host namespace file descriptor to
send or receive packets.

To ensure compatibility with current containerized appli-
cations, SlimSocket exposes the same POSIX socket inter-
face. Besides forwarding most socket-related system calls
(e.g., socket, bind, accept, connect) to SlimRouter, Slim-
Socket also carefully maintains the expected POSIX socket
semantics. For example, when a containerized application
calls getpeername to get an IP address on the other side of the
connection, SlimSocket returns the overlay IP address rather
than the host IP address, even when the file descriptor for the
overlay connection has already been replaced with the host
namespace file descriptor.

Support for non-blocking I/O. Most of today’s applica-
tions [32, 36] use a non-blocking I/O API (e.g., select, epoll)
to achieve high I/O performance. Slim must also intercept
these calls because they interact with the socket interface.
For example, epoll creates a meta file descriptor that denotes
a set of file descriptors. An application uses epoll wait to
wait any event in the set, eliminating the need to create a
separate thread to wait on an event in each file descriptor.
On connection setup, we must change the corresponding file
descriptor inside the epoll’s file descriptor set. SlimSocket
keeps track of the mapping between the epoll file descriptor
and epoll’s set of file descriptors by intercepting epoll ctl.
For an accept or connect on a file descriptor that is inside
an epoll file descriptor set, SlimSocket removes the original
overlay network file descriptor from the epoll file descriptor
set and adds host namespace file descriptor into the set.

Service discovery. Our example in Figure 5 assumes that
the SlimRouter on the client side knows the server side has
bound to physical IP 1.2.3.4 and port 1234. To automatically

336 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Container

sock = socket()

bind(sock,
10.0.0.1, 80)

con = accept(
sock, addr)

send(con, buf)

recv(con, buf)

SlimRouter

h_s = socket()

bind(h_s, 1.2.3.4, 1234)

h_c = accept(h_s, addr)
h_c

SlimRouter

h_c = socket()

connect(h_c,
1.2.3.4, 1234)

Container

con = socket()

connect(con,
10.0.0.1, 80)

recv(con, buf)

send(con, buf)Host Network
Interface

IP = 1.2.3.4

Slim
Socket

Slim
Socket

dup2(h_c, con)

h_s
h_s

listen(sock)

dup2(h_c, con)

listen(h_s)
h_s

h_c

h_c

(a) Web Server (b) Web Client

Host Network
Interface

IP = 1.2.3.5

host connection established

Figure 5: TCP connection setup between a web client and a web server atop Slim.

discover the server’s physical IP address and port, we could
store a mapping from virtual IP/port to physical IP/port on
every node in the virtual network. Unfortunately, this map-
ping has to change whenever a new connection is listened.

Instead, Slim uses a distributed mechanism for service dis-
covery. Slim keeps a standard container overlay network
running in the background. When the client calls connect, it
actually creates an overlay network connection on the stan-
dard container overlay network. When the server receives
an incoming connection on the standard overlay network,
SlimSocket queries SlimRouter for the physical IP address
and port and sends them to the client side inside the over-
lay connection. In secure mode (§4.3), the result queried
from SlimRouter is encrypted. SlimSocket on the client side
sends the physical IP address and port (encrypted if in se-
cure mode) to its SlimRouter and the SlimRouter establishes
the host connection. This means connection setup time is
longer in Slim than that on container overlay networks based
on packet transformation. (See §6.1.)

4.2 Supporting Flexible Network Policies
This section describes Slim’s support for both control- and
data-plane policies.

Control-plane policies. Slim supports standard ac-
cess control over overlay packet header fields, such as the
source/destination IP addresses and ports. Access control
can also filter specific types of traffic (e.g., SSH, FTP) or
traffic from specific IP prefixes.

In the normal case where policies are static, Slim enforces
access control at connection creation. SlimRouter maintains
a copy of current access control policies from the container
orchestrator or network operator. When a connection is cre-
ated by accept or connect, SlimRouter checks whether the
created connection violates any existing access control pol-
icy. If so, SlimRouter rejects the connection by returning -1
to connect or by ignoring the connection in accept.

Access control policies can change dynamically, and any

connection in violation of the updated access control policy
must be aborted. SlimRouter keeps per-connection state, in-
cluding source and destination IP addresses, ports, and the
corresponding host namespace file descriptors. When access
control policies change, SlimRouter iterates through all cur-
rent connections to find connections that are forbidden in the
updated policies. SlimRouter aborts those connections by
removing the corresponding file descriptors from the con-
tainer. Removing a file descriptor from a running process is
not an existing feature in commodity operating systems such
as Linux. We build this functionality in SlimKernModule.
(See §4.3 for more details.)

Data-plane policies. Slim supports two types of data-
plane policies: rate limiting and quality of service (QoS).
Rate limiting limits the amount of resources that a container
can use. QoS ensures that the performance of certain appli-
cations is favored over other applications.

Slim reuses an OS kernel’s existing features to support
data-plane policies. A modern OS kernel has support for rate
limiting and QoS for a single connection or a set of connec-
tions. Slim simply sets up the correct identifier to let the OS
kernel recognize the container that generates the traffic.

In Slim, rate limits are enforced both at the per-connection
and per-container level. Per-connection rate limits are set in a
similar way as in today’s overlay network using Linux’s traf-
fic control program, tc. For per-container rate limits, Slim
first configures the net cls cgroups to include the SlimRouter
process. The net cls cgroup tags traffic from the container or
the corresponding SlimRouter with a unique identifier. Slim-
Router then sets the rate limit for traffic with this identifier
using tc on the host network interface. In this way, the net-
work usage by SlimRouter is also restricted by the rate limit.
Correct accounting of network usage is the fundamental rea-
son why each container requires a separate SlimRouter.

Quality of service (QoS) also uses tc. SlimRouter uses
socket options to set up the type of service (ToS) field (via

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 337

setsockopt). In this way, switches/routers on the physical
network are notified of the priority of the container’s traffic.

Compatibility with existing IT tools. In general, IT
tools3 need to be modified to interact with SlimRouter in or-
der to function with Slim. IT tools usually use some user-
kernel interface (e.g., iptables) to inject firewall and rate lim-
its rules. When working with Slim, they should instead inject
these rules to SlimRouter. Because Slim is fundamentally a
connection-based virtualization approach, a limitation of our
approach is that it cannot support packet-based network pol-
icy (e.g., drop an overlay packet if the hash of the packet
matches a signature). (See §7.) If packet-based policies are
needed, the standard Linux overlay should be used instead.

If static connection-based access control is the only net-
work policy needed, then existing IT tools need not be modi-
fied. If an IT tool blocks a connection on a standard container
overlay network, it also blocks the metadata for service dis-
covery for that connection on Slim, thus it blocks the host
connection from being created on Slim.

4.3 Addressing Security Concerns
Slim includes an optional kernel module, SlimKernModule,
to ensure that Slim maintains the same security model as to-
day’s container overlay networks. The issue concerns po-
tentially malicious containers that want to circumvent Slim-
Socket. Slim exposes host namespace file descriptors to con-
tainers and therefore needs an extra mechanism inside the
OS kernel to track and manage access.

SlimKernModule implements a lightweight and general
capability system based on file descriptors. SlimKernMod-
ule tracks tagged file descriptors in a similar way as taint-
tracking tools [12] and filters unsafe system calls on these
file descriptors. We envision this kernel module could also
be used by other systems to track and control file descriptors.
For example, a file server might want to revoke access from
a suspicious process if it triggers an alert. Slim cannot use
existing kernel features like seccomp [50] because seccomp
cannot track tagged file descriptors.

SlimKernModule monitors how host namespace file de-
scriptors propagate inside containers. It lets SlimRouter or
other privileged processes tag a file descriptor. It then inter-
poses on system calls that may copy or remove tagged file
descriptors, such as dup, fork and close—to track their prop-
agation. If the container passes the file descriptor to other
processes inside the container, the tag is also copied.

Tagged file descriptors have limited powers within a con-
tainer. SlimKernModule disallows invocation of certain un-
safe system calls using these file descriptors. For example,
in the case of Slim, a tagged file descriptor cannot be used
with the following system calls: connect, bind, getsockname,
getpeername, setsockopt, etc. This prevents containers from

3We only consider IT tools that run on the host to manage containers but
not those run inside containers. IT tools usually require root privilege to the
kernel (e.g., iptables) and are thus disabled inside containers.

learning their host IP addresses or increasing their traffic pri-
ority. It also prevents containers from directly creating a host
network connection. For a non-malicious container, Slim-
Socket and SlimRouter emulate the functionalities of these
forbidden system calls.

SlimKernModule revokes tagged file descriptors upon re-
quest. To do so, it needs a process identifier (pid) and a file
descriptor index. SlimRouter uses this functionality to imple-
ment dynamic access control. When the access control list
changes for existing connections, SlimRouter removes the
file descriptors through SlimKernModule. SlimKernModule
revokes all the copies of the file descriptors.

Secure versus Non-secure mode. Whether to use Slim
in secure mode (with SlimKernModule) or not depends on
the use case. When containers and the physical infrastruc-
ture are under the same entity’s control, such as for a cloud
provider’s own use [28], non-secure mode is sufficient. Non-
secure mode is easier to deploy because it does not need ker-
nel modification. When containers are potentially malicious
to the physical infrastructure or containers of other entities,
secure mode is required. Secure mode has slightly (∼25%)
longer connection setup time, making the overall connection
setup time 106% longer than that of a traditional container
overlay network. (See §6.1.)

5 Implementation
Our implementation of Slim is based on Linux and Docker.
Our prototype includes all features described in §4. Slim-
Socket, SlimRouter, and SlimKernModule are implemented
in 1184 lines of C, 1196 lines of C++ (excluding standard
libraries), and 1438 lines of C, respectively.

Our prototype relies on a standard overlay network,
Weave [52], for service discovery and packets that require
data-plane handling (e.g., ICMP, UDP).

SlimSocket uses LD PRELOAD to dynamically link to the
application binary. Communication between SlimSocket and
SlimRouter is via a Unix Domain Socket. In non-secure
mode, file descriptors are passed between SlimRouter and
SlimSocket by sendmsg. For secure mode, file descriptors are
passed with SlimKernModule’s cross-process file descriptor
duplication method.

SlimRouter allows an network operator to express the ac-
cess control as a list of entries based on source/destination
IP address prefixes and ports in a JSON file. SlimRouter
has a command-line interface for network operators to is-
sue changes in the access control list via reloading the JSON
file. Slim rejects any connection matched in the list. Slim-
Router uses htb qdisc to implement rate limits and prio qdisc
for QoS with tc.

SlimRouter and SlimKernModule communicate via a
dummy file in procfs [46] created by SlimKernModule.
SlimKernModule treats writes to this file as requests. Ac-
cessing the dummy file requires host root privilege.

338 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SlimKernModule interposes on system calls by replacing
function pointers in the system call table. SlimKernModule
stores tagged file descriptors in a hash table and a list of
unsafe system calls. SlimKernModule rejects unsafe system
calls on tagged file descriptors.

SlimKernModule also interposes on system calls such
as dup, dup2 and close to ensure that file descriptor tags
are appropriately propagated. For process fork (e.g., fork,
vfork, clone in Linux kernel), SlimKernModule uses the
sched process fork as a callback function. Slim does not
change the behavior of process forking. A forked process
still has SlimSocket dynamically linked.

6 Evaluation
We first microbenchmark Slim’s performance and CPU uti-
lization in both secure and non-secure mode and then with
four popular containerized applications: an in-memory key-
value store, Memcached [32]; a web server, Nginx [36]; a
database, PostgreSQL [45]; and a stream processing frame-
work, Apache Kafka [1, 26]. Finally, we show performance
results for container migration. Our testbed setup is the same
as that for our measurement study (§2.2). In all the experi-
ments, we compare Slim with Weave [52] with its fast data-
plane enabled and with RFS enabled by default. We use
Docker [6] to create containers.

6.1 Microbenchmarks
Similar to the performance tests in §2.2, we use iperf3 [19]
and NPtcp [39] to measure performance of a TCP flow. We
use mpstat to measure CPU utilization.

A single TCP flow running on our 40 Gbps testbed reaches
26.8 Gbps with 11.4 µs latency in both secure and non-secure
modes. Slim’s throughput is the same as the throughput on
the host network and is 9% faster than Weave with RFS.
Slim’s latency is also the same as using the host network,
and it is 86% faster than Weave with RFS.

Using Slim, the creation of a TCP connection takes longer
because of the need to invoke the user-space router. On our
testbed, in a container with Weave, creating a TCP connec-
tion takes 270 µs. With the non-secure mode of Slim, it takes
444 µs. With the secure mode, it takes 556 µs. As a ref-
erence, creation of a TCP connection on the host network
takes 58 µs. This means that Slim is not always better, e.g.,
if an application has many short-lived TCP connections. We
did not observe this effect in the four applications studied
because they support persistent connections [35, 37], a com-
mon design paradigm.

For long-lived connections, Slim reduces CPU utilization.
We measure the CPU utilization using mpstat for Slim in se-
cure mode and Weave with RFS when varying TCP through-
put from 0 to 25 Gbps. RFS cannot reach 25 Gbps, so we
omit that data point. Figure 6a shows the total CPU utiliza-
tion in terms of number of virtual cores consumed. Com-
pared to RFS, CPU overhead declines by 22-41% for Slim;

0 5 10 15 20 25
TCP Throughput (Gbps)

0.0

0.5

1.0

1.5

2.0

V
ir

tu
al

C
or

es

RFS

SLIM

Host

(a) Total CPU Utilization

RFS SLIM Host
0.0

0.5

1.0

1.5

2.0

V
ir

tu
al

C
or

es

usr

sys

soft

(b) Breakdown

Figure 6: CPU utilization and breakdown for a TCP connec-
tion. In Figure 6a, the Slim and the host lines overlap. In
Figure 6b, the usr bar is at the bottom and negligible. Error
bars denote standard deviations.

0 10 20 30 40 50 60
Time (second)

0

10

20

30

40

T
hr

ou
gh

pu
t

(G
bp

s)

15 Gbps

10 Gbps

5 Gbps

access
revoked

container1 container2

Figure 7: A bar graph of the combined throughput of two
Slim containers, with rate limit and access control policy up-
dates to one of the containers.

Slim’s CPU costs are the same as using the host network di-
rectly. To determine the source of this reduction, we break
down different components using mpstat when TCP through-
put is 22.5 Gbps. Figure 6b shows the result. As expected,
the largest reduction in CPU costs comes from serving soft-
ware interrupts. These decline 49%: Using Slim, a packet
no longer needs data-plane transformations and traverses the
host OS kernel’s network stack only once.

Network policies. Slim supports access control, rate lim-
iting and QoS policies, including when applied to existing
connections. We examine a set of example scenarios when
rate limits and access control are used. We run two paral-
lel containers, each with a TCP connection. The other end
of those connections is a container on a different machine.
We use iperf to report average throughput per half second.
Figure 7 shows the result.

Without network policy, each container gets around 18-
18.5 Gbps. We first set a rate limit of 15 Gbps on one con-
tainer. The container’s throughput immediately drops to
around 14 Gbps, and the other container’s throughput in-
creases. A slight mismatch occurs between the rate limit we
set and our observed throughput, which we suspect is due
to tc being imperfect. We subsequently set the rate limit to
10 Gbps and 5 Gbps. As expected, the container’s throughput
declines to 10 and 5 Gbps, respectively, while the other con-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 339

Rand RPS RFS SLIM Host
0

100

200

300

400

T
hr

ou
gh

pu
t

(K
)

(a) Throughput

Rand RPS RFS SLIM Host
0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
at

en
cy

(m
s)

(b) Latency

Figure 8: Throughput and latency of Memcached with Weave
(in various configurations) and with Slim. Error bars in
Figure 8a shows the standard deviation of completed Mem-
cached operations per-second.

tainer’s throughput increases. Finally, Slim stops rate lim-
iting and sets an ACL to bar the container from communi-
cating with the destination. The affected connection is de-
stroyed, and the connection from the other container speeds
up to standard connection speed.

6.2 Applications
We evaluate Slim with four real world applications: Mem-
cached, Nginx, PostgreSQL, and Apache Kafka. From this
point on, our evaluation uses Slim running in secure mode.

6.2.1 Memcached
We measure the performance of Memcached [32] on Slim.
We create one container on each of the two physical ma-
chines; one runs the Memcached (v1.5.6) server, and the
other container runs a standard Memcached benchmark tool,
memtier benchmark [33] developed by redislab [49]. The
benchmark tool spawns 4 threads. Each thread creates 50
TCP connections to the Memcached server and reports the
average number of responses per second, the average latency
to respond to a memcache command, and the distribution of
response latency (SET:GET ratio = 1:10).

Slim improves Memcached throughput (relative to
Weave). Figure 8a shows the number of total Memcached
operations per-second completed on Slim and Weave with
different configurations. Receive Flow Steering (RFS) is
our best-tuned configuration, yet Slim still outperforms it by
71%. With the default overlay network setting (random IRQ
load balancing), Slim outperforms Weave by 79%. Slim’s
throughput is within 3% of host mode.

Slim also reduces Memcached latency. Figure 8b shows
the average latency to complete a memcache operation. The
average latency reduces by 42% using Slim compared to
RFS. The latency of the default setting (random IRQ load
balancing), RPS, and RFS are not significantly different
(within 5%). Slim’s latency is exactly the same as host mode.

Slim also reduces Memcached tail latency. Figure 9 shows
the CDF of latency for SET and GET operations. The default
configuration (i.e., IRQ load balancing) has the worst tail la-
tency behavior. Synchronization overhead depends on tem-
poral kernel state and thus makes latency less predictable.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (ms)

0

20

40

60

80

100

C
D

F
(p

er
ce

nt
ag

e) Rand

RPS

RFS

SLIM

Host

(a) GET

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (ms)

0

20

40

60

80

100

C
D

F
(p

er
ce

nt
ag

e) Rand

RPS

RFS

SLIM

Host

(b) SET

Figure 9: Distribution of latency for Memcached SET and
GET operations, illustrating tail latency effects. The Slim
and Host lines overlap.

RFS SLIM Host
0

1

2

3

4

5

6

V
ir

tu
al

C
or

es

363M
reqs/s

351M
reqs/s

205M
reqs/s

usr

sys

soft

(a) Client

RFS SLIM Host
0

1

2

3

4

5

V
ir

tu
al

C
or

es 363M
reqs/s

351M
reqs/s

205M
reqs/s

usr

sys

soft

(b) Server

Figure 10: CPU utilization of Memcached client and server.
Error bars denote standard deviations.

RPS and RFS partially remove the synchronization over-
head, improving predictability. Compared to the best config-
uration, RFS, Slim reduces the 99.9% tail latency by 41%.

Slim reduces the CPU utilization per operation. We mea-
sure average CPU utilization on both the client and the Mem-
cached server when memtier benchmark is running. Fig-
ure 10 shows the result. The total CPU utilization is sim-
ilar on the client side, while the utilization is 25% lower
with Slim on the server compared to RFS. Remember that
Slim performs 71% more operations/second. As expected,
the amount of CPU utilization in serving software interrupts
declines in Slim. We also compare CPU utilization when the
throughput is constrained to be identical. Slim reduces CPU
utilization by 41% on the Memcached client and 56% on the
Memcached server, relative to Weave.

6.2.2 Nginx
We run one Nginx (v1.10.3) server in one container and a
standard web server benchmarking tool, wrk2 [53], in an-
other container. Both containers are on two different phys-
ical machines. The tool, wrk2, spawns 2 threads to create
a total of 100 connections to the Nginx server to request an
HTML file. This tool lets us set throughput (requests/sec),
and it outputs latency. We set up two HTML files (1KB,
1MB) on the Nginx server.

Nginx server’s CPU utilization is significantly reduced
with Slim. We use mpstat to break down the CPU utilization
of the Nginx server for scenarios when RFS, Slim, and host

340 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RFS SLIM Host
0

1

2

3

4

5

6

V
ir

tu
al

C
or

es

usr

sys

soft

(a) 1KB, 60K reqs/s

RFS SLIM Host
0

1

2

3

V
ir

tu
al

C
or

es

usr

sys

soft

(b) 1MB, 3K reqs/s

Figure 11: CPU utilization breakdown of Nginx. Error bars
denote standard deviations.

RFS SLIM Host
0.0

0.5

1.0

1.5

2.0

2.5

L
at

en
cy

(m
s)

(a) 1KB, 60K reqs/s

RFS SLIM Host
0

10

20

30

L
at

en
cy

(m
s)

(b) 1MB, 3K reqs/s

Figure 12: Latency of Nginx server. Error bars denote stan-
dard deviations.

can serve the throughput. Figure 11 shows the CPU utiliza-
tion breakdown when the file size is 1KB and the through-
put is 60K reqs/second, and also when the file size is 1MB
and the throughput is 3K reqs/second. (We choose 60K
reqs/second and 3K reqs/second because they are close to
the limit of what RFS can handle.). For the 1 KB file, the
CPU utilization reduction is 24% compared with RFS. For
the 1 MB file, the CPU utilization reduction is 22% com-
pared with RFS. Note that much of the CPU utilization re-
duction comes from reduced CPU cycles spent in serving
software interrupts in the kernel. The CPU utilization still
has a 5%-6% gap between Slim and host. We expect this
gap is from the longer connection setup time in Slim. Un-
like our Memcached benchmark, where connections are pre-
established, we observe that wrk2 creates TCP connections
on the fly to send HTTP requests.

While Slim improves the CPU utilization, the improve-
ments to latency are lost in the noise of the natural variance
in latency for Nginx. The benchmark tool, wrk2, reports
the average and the standard deviation of Nginx’s latency.
Figure 12 shows the result. The standard deviation is much
larger than the difference of the average latencies.

6.2.3 PostgreSQL
We deploy a relational database, PostgreSQL [45] (version
9.5), in a container and then use its default benchmark tool,
pgbench [43], to benchmark its performance in another con-
tainer. The tool, pgbench, implements the standard TPC-B
benchmark. It creates a database with 1 million banking ac-
counts and executes transactions with 4 threads and a total of

RFS SLIM Host
0.0

0.1

0.2

0.3

0.4

V
ir

tu
al

C
or

es

usr

sys

soft

(a) PostgreSQL

RFS SLIM Host
0.0

0.5

1.0

1.5

V
ir

tu
al

C
or

es

usr

sys

soft

(b) Kafka

Figure 13: CPU utilization of PostgreSQL and Kafka. Error
bars denote standard deviations.

RFS SLIM Host
0

50

100

150

L
at

en
cy

(m
s)

(a) PostgreSQL

RFS SLIM Host
0.0

0.5

1.0

1.5

L
at

en
cy

(m
s)

(b) Kafka

Figure 14: Latency of PostgreSQL and Kafka. Error bars
denote standard deviations.

100 connections.
Slim reduces the CPU utilization of PostgreSQL server.

We set up pgbench to generate 300 transactions per second.
(We choose 300 transactions per second because it is close to
what RFS can handle.) Figure 13a shows the CPU utiliza-
tion breakdown of the PostgreSQL server. Compared with
RFS, Slim reduces the CPU utilization by 22% and the CPU
utilization is exactly the same as using host mode network-
ing. Note here, the reduction in CPU utilization is much less
than in Memcached and Nginx. The reason is that the Post-
greSQL server spends a larger fraction of its CPU cycles in
user space, processing SQL queries. Thus, the fraction of
CPU cycles consumed by the overlay network is less.

Similar to Nginx, the latency of PostgreSQL naturally has
a high variance because of the involvement of disk opera-
tions, and it is difficult to conclude any latency benefit of
Slim. The benchmark tool, pgbench, reports the average and
the standard deviation of PostgreSQL’s latency. Figure 14a
shows the results. The standard deviation is much larger than
the difference of the mean latencies.

6.2.4 Apache Kafka
We now evaluate a popular data streaming framework,
Apache Kafka [1, 26]. It is used to build real-time data
processing applications. We run Kafka (version 2.0.0) in-
side one container, and Kafka’s default benchmarking tool,
kafka-producer-perf-test, in another container on a different
physical machine.

Slim reduces the CPU utilization of both the Kafka server
and the Kafka client. We use kafka-producer-perf-test to set

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 341

Weave Slim

Stop running container 0.75 ± 0.02 0.75 ± 0.02
Extract fs into image 0.43 ± 0.01 0.43 ± 0.01
Transfer container image 0.44 ± 0.01 0.44 ± 0.01
Restore fs 0.82 ± 0.09 1.20 ± 0.10
Start SlimRouter - 0.003 ± 0.001
Start container 0.90 ± 0.09 0.94 ± 0.17

Total 3.34 ± 0.12 s 3.76 ± 0.20 s

Table 4: Time to migrate a Memcached container. The num-
bers followed by ± show the standard deviations.

throughput to be 500K messages per second. (We choose
500K messages per second because it is close to what RFS
can handle.) Each message is 100 bytes and the batch size
is 8192. The tool spawns 10 threads that generate messages
in parallel. Figure 13b shows the breakdown of CPU utiliza-
tion. The total CPU utilization of the Kafka server reduces
by 10% with Slim. The CPU utilization reduction is even
smaller than PostgreSQL because Kafka spends more time
in user space processing.

Slim reduces message latencies in Kafka. The benchmark
tool, kafka-producer-perf-test, reports the latency of Kafka.
Figure 14b shows the results. Kafka’s latency reduces by
0.28 ms (28%), compared with RFS. There is still a 0.09 ms
latency gap between using Slim and the host mode.

6.3 Container Migration
Slim supports container migration. On our testbed, we mi-
grate a Memcached container from one physical server to
another physical server on the 40 Gbps network. We test mi-
gration 20 times with/without Slim. The container’s IP ad-
dress is kept the same across the migration. Likewise, we do
not change the host network’s routing table. The container
image extracted from the file system is 58 Mbytes.

Using Slim marginally slows down container migration.
Table 4 is the breakdown of the average container migration
time on Weave and on Slim. In total, Slim slows down con-
tainer migration from 3.34 s to 3.76 s. Slim does not change
most of the migration process. The extra overhead is intro-
duced mainly in restoring the file system. With Slim, a con-
tainer has an additional disk volume containing SlimSocket
and also a dummy file to support communication over UNIX
domain socket between SlimSocket and SlimRouter. We sus-
pect that the additional disk volume slows down the file sys-
tem restoration process. Further, starting a container with
Slim adds a small amount of additional overhead.

7 Discussion
Connection Setup Time. One drawback of Slim is that con-
nection setup time is significantly longer (§6.1). This can
penalize applications with many short connections. Slim al-
lows indiviual applications in a container to opt out by de-
taching SlimSocket. In the future, we want the choice of opt-

ing out to be at a per-connection level. We can either (1)
allow developers to specify which connection to opt out, or
(2) automatically opt out based on predicted flow sizes [10].

Container Live Migration. Although Slim does support
quiescent container migration, it does not currently support
container live migration. All the TCP connections are dis-
connected during the migration process, and memory states
are not migrated. However, in live migration, live applica-
tion state has to be fully restored, including state such as
application threads waiting on events inside the OS kernel.
Docker is currently experimenting with live checkpointing
and restoration with criu [4], but it is focused on the simpler
case of a single host [7]. Provided a practical live container
migration system could be built, Slim would make that more
difficult because: (1) the state of the container now includes
host namespace file descriptors and (2) data-plane policies
(e.g., rate limits) are enforced on host connection identifiers
(i.e., five tuples) that would need to be properly translated
when migrated.

UDP. The focus of this paper has been on improving
the container communication performance of connection-
oriented protocols, such as TCP, by moving operations from
the data-plane to connection setup. This poses a challenge
for connectionless protocols such as UDP. Slim potentially
could support UDP using similar mechanisms as for TCP,
by intercepting socket, bind, connect, sendto, and recvfrom.
However, we chose not to do this in our prototype because
of two reasons. First, we do not have a good mechanism to
support flexible network policy for UDP. In UDP, a file de-
scriptor does not describe a single network pair, but rather
an open port to which every node in the virtual network can
send packets. Second, the most common use case for UDP
in data centers is to avoid the overhead of connection setup;
since Slim makes connection setup more expensive, it would
subvert some of those benefits. Instead, to work with unmod-
ified applications that may use a mixture of TCP and UDP
packets, our prototype simply directs UDP traffic to Weave.

Packet-based Network Policy. A limitation of Slim is
that it supports connection-based network policy and not
packet-based network policy. For example, a virtual network
can be set up to prevent access to a backend database, except
from certain containers; Slim supports this kind of access
control. Packet-based filters allow the system drop packets if
the hash of the overlay packet matches a signature. On Slim,
the virtual overlay packet is never constructed and so check-
ing against a signature would be prohibitively expensive. If
packet-based network policy is needed, a standard overlay
network should be used instead.

LD PRELOAD. Our prototype uses LD PRELOAD to
dynamically link SlimSocket into unmodified application bi-
naries. Some systems assume statically linked application
binaries (e.g., applications written in Go). These can benefit
from Slim by patching the application binaries to use Slim-
Socket instead of POSIX sockets; we do not implement this

342 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

support in our prototype.
Error Code. Our current prototype implementation is not

transparent in one significant way. When an access control
list changes, requiring Slim to revoke a file descriptor, the
application receives a different error code when it used that
file descriptor, relative to Weave. In Slim, a send on a re-
voked file descriptor returns a bad file descriptor error code,
while in Weave the packet would be silently discarded. We
believe it is possible to address this but it was not needed for
our benchmark applications.

SmartNICs. A recent research trend has been to explore
moving common case network data-plane operations to hard-
ware. Catapult [48], for example, moves packet encapsu-
lation required for virtual machine emulation to hardware.
Catapult runs as a bump on the wire, however, so in order
to offload overlay network processing, Linux would need to
be modified to accept virtual network packets on its physical
network interface. SR-IOV is commodity hardware, but it
suffers from the same problem as macvlan mode. (See §2.1.)
FlexNIC [22] has proposed a flexible model that can incorpo-
rate application, guest OS, and virtual machine packet man-
agement, but to date it is only experimental hardware. While
new hardware support is likely to become increasingly avail-
able, what we have shown is that such hardware support is
not necessary for efficient virtual overlay networks for con-
tainers; the container OS has all the information it needs to
perform virtualization at connection setup.

8 Related Work
Network namespace. Mapping resources from a host into
a container is not a new idea. In Plan9 [44], resources,
such as directories in the file system or process identifiers,
are directly mapped between namespaces. Our work revis-
its Plan9’s idea in the networking context, but with perfor-
mance as a goal, rather than portability. Today’s Linux net-
work namespace works at a per-device level, and so is not
strong enough for supporting connection-based network vir-
tualization. Slim uses the Linux networking namespace to
isolate the container from using the host network interface.

Host support for efficient virtual networking. Host sup-
port for efficient virtual networking is an old topic, mostly
in the context of VMs. Menon et al. co-design the driver
of the virtual network interface and the hypervisor for ef-
ficient virtual network interface emulation [34]. Socket-
outsourcing [11], VMCI socket [51], and Slipstream [5] im-
prove intra-host networking. FreeFlow [23] redirects RDMA
library calls to create a fast container RDMA network. To
the best of our knowledge, Slim is first work that provides
network virtualization at TCP connection setup time for un-
modified containerized applications.

Redirecting system calls. Redirecting system calls is
a useful technique for many purposes, such as taint track-
ing [12], building user-level file systems [16] and performing
other advanced OS kernel features (e.g., sandboxing [24],

record and replay [17], and intrusion detection [25]). In a
networking context, mTCP [21] redirects socket calls to con-
struct a user-level networking stack. NetKernel [38] redirects
socket calls to decouple networking stack from virtual ma-
chine images.

Separation of control- and data-plane. The perfor-
mance gain of Slim comes from moving network virtualiza-
tion logic from the data- to the control-plane. Separation of
the control- and the data-plane is a well-known technique to
improve system performance in building fast data-plane op-
erating systems [41, 2] and routing in flexible networks [31].

9 Conclusion
Containers have become the de facto method for host-
ing distributed applications. The key component for pro-
viding portability, the container overlay network, imposes
significant overhead in terms of throughput, latency, and
CPU utilizations, because it adds a layer to the data-plane.
We propose Slim, a low-overhead container overlay net-
work that implements network virtualization by manipulat-
ing connection-level metadata. Slim transparently supports
unmodified, potentially malicious, applications. Slim im-
proves throughput of an in-memory key-value store by 71%
and reduces latency by 42%. Slim reduces CPU utilization
of the in-memory key-value store by 56%, a web server by
22%-24%, a database server by 22%, and a stream process-
ing framework by 10%. Slim’s source code is publicly avail-
able at https://github.com/danyangz/slim.

Acknowledgments
We thank Antoine Kaufmann, Jialin Li, Ming Liu, Jitu Pad-
hye, and Xi Wang for their feedback on earlier versions of
the paper. We thank our shepherd Jon Howell and the anony-
mous reviewers for their helpful feedback on the paper. This
work was partially supported by the National Science Foun-
dation (CNS-1518702 and CNS-1616774) and by gifts from
Google, Facebook, and Huawei.

References
[1] Apache Kafka. https://kafka.apache.org/.

[2] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In OSDI
(2014).

[3] Calico. https://www.projectcalico.org/.

[4] CRIU. https://criu.org/Main_Page.

[5] DIETZ, W., CRANMER, J., DAUTENHAHN, N., AND ADVE, V. Slip-
stream: Automatic Interprocess Communication Optimization. In
USENIX ATC (2015).

[6] Docker. http://www.docker.com.

[7] Docker Checkpoint and Restore. https://github.com/docker/

cli/blob/master/experimental/checkpoint-restore.md.

[8] Docker container networking. https://docs.docker.com/

engine/userguide/networking/.

[9] Docker Swarm. https://docs.docker.com/engine/swarm/.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 343

https://github.com/danyangz/slim
https://kafka.apache.org/
https://www.projectcalico.org/
https://criu.org/Main_Page
http://www.docker.com
https://github.com/docker/cli/blob/master/experimental/checkpoint-restore.md
https://github.com/docker/cli/blob/master/experimental/checkpoint-restore.md
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/swarm/

[10] DUKIC, V., JYOTHI, S. A., KARLAS, B., OWAIDA, M., ZHANG,
C., AND SINGLA, A. Is advance knowledge of flow sizes a plausible
assumption? In NSDI (2019).

[11] EIRAKU, H., SHINJO, Y., PU, C., KOH, Y., AND KATO, K. Fast
Networking with Socket-outsourcing in Hosted Virtual Machine En-
vironments. In ACM Symposium on Applied Computing (2009).

[12] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J., MC-
DANIEL, P., AND SHETH, A. N. TaintDroid: An Information-flow
Tracking System for Realtime Privacy Monitoring on Smartphones.
In OSDI (2010).

[13] etcd: A distributed, reliable key-value store for the most critical data
of a distributed system. https://coreos.com/etcd/.

[14] FIRESTONE, D., PUTNAM, A., ANGEPAT, H., CHIOU, D.,
CAULFIELD, A., CHUNG, E., HUMPHREY, M., OVTCHAROV, K.,
PADHYE, J., BURGER, D., MALTZ, D., GREENBERG, A., MUND-
KUR, S., DABAGH, A., ANDREWARTHA, M., BHANU, V., CHAN-
DRAPPA, H. K., CHATURMOHTA, S., LAVIER, J., LAM, N., LIU,
F., POPURI, G., RAINDEL, S., SAPRE, T., SHAW, M., SILVA, G.,
SIVAKUMAR, M., SRIVASTAVA, N., VERMA, A., ZUHAIR, Q.,
BANSAL, D., VAID, K., AND MALTZ, D. A. Azure Accelerated
Networking: SmartNICs in the Public Cloud. In NSDI (2018).

[15] Flannel. https://github.com/coreos/flannel.

[16] Filesystem in userspace. https://github.com/libfuse/

libfuse.

[17] GUO, Z., WANG, X., TANG, J., LIU, X., XU, Z., WU, M.,
KAASHOEK, M. F., AND ZHANG, Z. R2: An Application-level Ker-
nel for Record and Replay. In OSDI (2008).

[18] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,
JOSEPH, A. D., KATZ, R., SHENKER, S., AND STOICA, I. Mesos:
A Platform for Fine-grained Resource Sharing in the Data Center. In
NSDI (2011).

[19] iperf. https://iperf.fr/.

[20] iptables. https://linux.die.net/man/8/iptables.

[21] JEONG, E. Y., WOO, S., JAMSHED, M., JEONG, H., IHM, S., HAN,
D., AND PARK, K. mTCP: A Highly Scalable User-level TCP Stack
for Multicore Systems. In NSDI (2014).

[22] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND
KRISHNAMURTHY, A. High Performance Packet Processing with
FlexNIC. In ASPLOS (2016).

[23] KIM, D., YU, T., LIU, H. H., ZHU, Y., PADHYE, J., RAINDEL,
S., GUO, C., SEKAR, V., AND SESHAN, S. FreeFlow: Software-
based Virtual RDMA Networking for Containerized Clouds. In NSDI
(2019).

[24] KIM, T., AND ZELDOVICH, N. Practical and effective sandboxing
for non-root users. In USENIX ATC (2013).

[25] KING, S. T., AND CHEN, P. M. Backtracking Intrusions. In SOSP
(2003).

[26] KREPS, J., NARKHEDE, N., AND RAO, J. Kafka: a Distributed Mes-
saging System for Log Processing. In NetDB (2016).

[27] Kubernetes: Cluster Networking. https://kubernetes.io/docs/
concepts/cluster-administration/networking/.

[28] LIU, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRAGADA, S.,
LOPES, N. P., RYBALCHENKO, A., LU, G., AND YUAN, L. Crys-
talNet: Faithfully Emulating Large Production Networks. In SOSP
(2017).

[29] Networking using a macvlan network. https://docs.docker.

com/network/network-tutorial-macvlan/.

[30] MANCO, F., LUPU, C., SCHMIDT, F., MENDES, J., KUENZER, S.,
SATI, S., YASUKATA, K., RAICIU, C., AND HUICI, F. My VM is
Lighter (and Safer) Than Your Container. In SOSP (2017).

[31] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR,
G., PETERSON, L., REXFORD, J., SHENKER, S., AND TURNER, J.
OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM
CCR (2008).

[32] Memcached. https://memcached.org/.

[33] memtier benchmark. https://github.com/RedisLabs/

memtier_benchmark.

[34] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimizing Net-
work Virtualization in Xen. In USENIX ATC (2006).

[35] MOGUL, J. C. The Case for Persistent-connection HTTP. In SIG-
COMM (1995).

[36] Nginx. https://nginx.org/.

[37] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE,
H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB,
P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V. Scaling
Memcache at Facebook. In NSDI (2013).

[38] NIU, Z., XU, H., HAN, D., CHENG, P., XIONG, Y., CHEN, G., AND
WINSTEIN, K. Network stack as a service in the cloud. In HotNets
(2017).

[39] netpipe(1) - Linux man page. https://linux.die.net/man/1/

netpipe.

[40] Scaling in the Linux Networking Stack. https://www.kernel.

org/doc/Documentation/networking/scaling.txt.

[41] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D., KR-
ISHNAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Arrakis: The
Operating System is the Control Plane. In OSDI (2014).

[42] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E., ZHOU, A.,
RAJAHALME, J., GROSS, J., WANG, A., STRINGER, J., SHELAR,
P., AMIDON, K., AND CASADO, M. The Design and Implementation
of Open vSwitch. In NSDI (2015).

[43] pgbench. https://www.postgresql.org/docs/9.5/static/

pgbench.html.

[44] PIKE, R., PRESOTTO, D., THOMPSON, K., TRICKEY, H., AND
WINTERBOTTOM, P. The Use of Name Spaces in Plan 9. SIGOPS
OSR (1993).

[45] PostgreSQL. https://www.postgresql.org/.

[46] proc - process information pseudo-filesystem. http://man7.org/

linux/man-pages/man5/proc.5.html.

[47] Intel P-State driver. https://www.kernel.org/doc/

Documentation/cpu-freq/intel-pstate.txt.

[48] PUTNAM, A., CAULFIELD, A. M., CHUNG, E. S., CHIOU, D.,
CONSTANTINIDES, K., DEMME, J., ESMAEILZADEH, H., FOWERS,
J., GOPAL, G. P., GRAY, J., HASELMAN, M., HAUCK, S., HEIL, S.,
HORMATI, A., KIM, J.-Y., LANKA, S., LARUS, J., PETERSON, E.,
POPE, S., SMITH, A., THONG, J., XIAO, P. Y., AND BURGER, D.
A Reconfigurable Fabric for Accelerating Large-scale Datacenter Ser-
vices. In ISCA (2014).

[49] redislab. https://redislabs.com/.

[50] SECure COMPuting with filters. https://www.kernel.org/doc/
Documentation/prctl/seccomp_filter.txt.

[51] VMCI Socket Performance. https://www.vmware.com/

techpapers/2009/vmci-socket-performance-10075.html.

[52] Weave. https://www.weave.works/.

[53] wrk2. https://github.com/giltene/wrk2.

344 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://coreos.com/etcd/
https://github.com/coreos/flannel
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://iperf.fr/
https://linux.die.net/man/8/iptables
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://docs.docker.com/network/network-tutorial-macvlan/
https://docs.docker.com/network/network-tutorial-macvlan/
https://memcached.org/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://nginx.org/
https://linux.die.net/man/1/netpipe
https://linux.die.net/man/1/netpipe
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.postgresql.org/docs/9.5/static/pgbench.html
https://www.postgresql.org/docs/9.5/static/pgbench.html
https://www.postgresql.org/
http://man7.org/linux/man-pages/man5/proc.5.html
http://man7.org/linux/man-pages/man5/proc.5.html
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://redislabs.com/
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.vmware.com/techpapers/2009/vmci-socket-performance-10075.html
https://www.vmware.com/techpapers/2009/vmci-socket-performance-10075.html
https://www.weave.works/
https://github.com/giltene/wrk2

Shinjuku: Preemptive Scheduling for µsecond-scale Tail Latency

Kostis Kaffes1 Timothy Chong1 Jack Tigar Humphries1

Adam Belay2 David Mazières1 Christos Kozyrakis1

1 Stanford University 2 Massachusetts Institute of Technology

Abstract

The recently proposed dataplanes for microsecond scale
applications, such as IX and ZygOS, use non-preemptive
policies to schedule requests to cores. For the many real-
world scenarios where request service times follow dis-
tributions with high dispersion or a heavy tail, they allow
short requests to be blocked behind long requests, which
leads to poor tail latency.

Shinjuku is a single-address space operating system
that uses hardware support for virtualization to make
preemption practical at the microsecond scale. This al-
lows Shinjuku to implement centralized scheduling poli-
cies that preempt requests as often as every 5µsec and
work well for both light and heavy tailed request service
time distributions. We demonstrate that Shinjuku pro-
vides significant tail latency and throughput improve-
ments over IX and ZygOS for a wide range of workload
scenarios. For the case of a RocksDB server processing
both point and range queries, Shinjuku achieves up to
6.6× higher throughput and 88% lower tail latency.

1 Introduction
Popular cloud applications such as web search, social
networks, and machine translation fan out requests to
hundreds of communicating services running on thou-
sands of machines. End-to-end response times are then
dominated by the slowest machine to respond [23]. Re-
acting to user actions within tens of milliseconds re-
quires that each participating service process requests
with tail latency in the range of ten to a few hundred
microseconds [14]. Unfortunately, thread management
in modern operating systems such as Linux is not de-
signed for microsecond-scale tasks and frequently pro-
duces long, unpredictable scheduling delays resulting in
millisecond-scale tail latencies [36, 37].

To compensate, researchers have developed network
stacks, dataplanes, and full applications that bypass
the operating system [44, 31, 39, 32, 16, 45, 22].
Most of these systems operate in a similar way: the
NIC uses receive-side scaling (RSS) [21] to distribute

incoming requests across multiple queues in a flow-
consistent manner; a polling thread serves requests in
each queue in a first-come-first-served manner (FCFS)
without scheduling interruptions; optimizations such as
zero copy, run-to-completion, adaptive batching, and
cache-friendly and thread-private data structures reduce
overheads. The resulting request scheduling is known as
distributed queuing and FCFS scheduling, or d-FCFS.

d-FCFS is effective when request service times ex-
hibit low dispersion [57], as is the case for get/put
requests to simple in-memory key-value stores (KVS)
such as Memcached [43]. d-FCFS fares poorly un-
der high dispersion or heavy-tailed request distributions
(e.g., bimodal, log-normal, Zipf, or Pareto distribu-
tions), as short requests get stuck behind older long ones
assigned to the same queue. d-FCFS is also not work-
conserving, an effect exacerbated by implementations
based on RSS’s flow-consistent hashing, which approx-
imates true d-FCFS only with high numbers of client
connections spreading requests out evenly over queues.

ZygOS [46] improved on d-FCFS by implementing
low-overhead task stealing: threads that complete short
requests steal work from threads tied up by longer ones.
It approximates centralized FCFS scheduling (c-FCFS),
in which all threads serve a single queue. Work steal-
ing is not free. It requires scanning queues cached on
non-local cores and forwarding system calls back to a
request’s home core. However, if service times exhibit
low dispersion and there are enough client connections
for RSS to spread requests evenly across queues, steal-
ing happens infrequently.

Unfortunately, c-FCFS is also inefficient for work-
loads with request times that follow heavy-tailed distri-
butions or even light-tailed distributions with high dis-
persion. These workloads include search engines that
score and rank a number of items depending on the pop-
ularity of search terms [13]; microservices and function-
as-a-service (FaaS) frameworks [17]; and in-memory
stores or databases, such as RocksDB [26], Redis [35],
and Silo [54], that support both simple get/put requests

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 345

and complex range or SQL queries, and use slower non-
volatile memory in addition to fast DRAM. Theory tells
us that such workloads do best in terms of tail latency
under processor sharing (PS) [57], where all requests
receive a fine-grain, fair fraction of the available pro-
cessing capacity.

To approximate PS, we need preemption, as built into
any modern kernel scheduler including Linux. However,
any service that uses one thread per request or connec-
tion and allows Linux to manage threads will experi-
ence millisecond-scale tail latencies, because the ker-
nel employs preemption at millisecond granularities and
its policies are not optimized for microsecond-scale tail
latency [36, 37]. User-level libraries for cooperative
threading can avoid the overheads of kernel schedul-
ing [56]. However, it is difficult to yield often enough
during requests with longer processing times and with-
out many blocking I/O calls, which are precisely the re-
quests impacting tail latency.

This paper presents Shinjuku, a single-address space
operating system that implements preemptive schedul-
ing at the microsecond-scale and improves tail latency
and throughput for both light- and heavy-tailed service
time distributions. Shinjuku deemphasizes RSS in favor
of true centralized scheduling by one or more dedicated
dispatcher threads with centralized knowledge of load
and service time distribution. It leverages hardware sup-
port for virtualization—specifically posted interrupts—
to achieve preemption overheads of 298 cycles in the
dispatcher core and 1,212 cycles in worker cores. The
single address space architecture allows us to optimize
context switches down to 110 cycles.

Fast preemption enables scheduling policies that
switch between requests as often as every 5 µsec when
needed. We developed two policies. The first assumes
no prior knowledge of request service times and uses
preemption to select at fine granularity between FCFS or
PS based on observed service times. The second policy
assumes we can segregate requests with different ser-
vice level objectives (SLO) in order to ensure good tail
latency for both short and long requests. Both policies
are work conserving and work well across multiple dis-
tributions of service times (light-tailed, heavy-tailed, bi-
modal, or multimodal). The two policies make Shinjuku
the first system to support microsecond-scale tail latency
for workloads beyond those with fixed or low-dispersion
service time distributions.

We compare Shinjuku with IX [16] and ZygOS [46],
two state-of-the-art dataplane operating systems. Us-
ing synthetic workloads, we show that Shinjuku matches
IX’s and ZygOS’ performance for light-tailed workloads

while it supports up to 5x larger load for heavy-tailed
and multi-modal distributions. Using RocksDB, a pop-
ular key-value store that also supports range queries,
we show that Shinjuku improves upon ZygOS by up to
6.6× in terms of throughput at a given 99th percentile
latency. We show that Shinjuku scales well with the
number of cores available, can saturate high speed net-
work links, and is efficient even with small connection
counts.

The rest of the paper is organized as follows.
§2 motivates the need for preemptive scheduling at
microsecond-scale. §3 discusses the design and imple-
mentation of Shinjuku. §4 presents a thorough quantita-
tive evaluation while §5 discusses related work.

Shinjuku is open-source software. The
code is available at https://github.com/
stanford-mast/shinjuku.

2 Motivation
Background: We aim to improve the SLO of latency-
critical services on a single server. For cloud services
and microservices with high fan-out, Shinjuku must
achieve low tail latency at the microsecond scale [14].
Low average or median latency is not sufficient [23].
While tail latency can be improved through overprovi-
sioning, doing so is not economical for services with
millions of users. To be cost-effective, Shinjuku must
maintain low tail latency in the face of high request
throughput. Finally, it must be practical for a wide
range of workloads and support intuitive APIs that sim-
plify development and maintenance of large code bases.

The key to achieving low tail latency and high
throughput is effective request scheduling, which re-
quires both good policies and low-overhead mechanisms
that operate at the microsecond scale. Good policies are
easy to achieve in isolation. Linux already supplies ap-
proximations of the optimal policies for workloads we
target. Unfortunately, the Linux kernel scheduler oper-
ates at the millisecond scale because of preemption and
context switch overheads and the complexity of simul-
taneously accommodating batch, background, and inter-
active tasks at different time scales [36, 37].

Recent proposals for user-level networking stacks,
dataplanes, RPC protocols, and applications [22, 44,
16, 45, 31, 39, 32] sidestep the bloated kernel network-
ing and thread management stacks in order to optimize
tail latency and throughput. Most of these systems use
RSS to approximate a d-FCFS scheduling policy [21],
the IX dataplane being a canonical example [16]. Zy-
gOS improves on IX by using work stealing to ap-
proximate c-FCFS [46]. Linux applications built with
libevent [47] or libuv [5] also implement c-FCFS,

346 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/stanford-mast/shinjuku
https://github.com/stanford-mast/shinjuku

d-FCFS c-FCFS c-PRE-SQ PS

0 0.2 0.4 0.6 0.8 1

Load (%)

0

10

20

30

40

50

9
9
%

 T
a
il

L
a
te

n
c
y
 (

u
s
)

(a) Exp(1)

0 0.2 0.4 0.6 0.8 1

Load (%)

0

100

200

300

400

(b) log-normal(1,10)

0 0.2 0.4 0.6 0.8 1

Load (%)

0

200

400

600

800

1000

(c)
Bimodal(99.5−0.5,0.5−500)

Figure 1: Simulation results for different workloads and scheduling policies for a 16-core system.

d-FCFS c-FCFS c-PRE-MQ PS

0 0.5 1

Load (%)

0

20

40

60

80

100

9
9
%

 T
a
il

L
a
te

n
c
y
 (

u
s
)

(a) 1µs Requests

0 0.5 1

Load (%)

0

500

1000

9
9
%

 T
a
il

L
a
te

n
c
y
 (

u
s
)

(b) 100µs Requests

0 0.5 1

Load (%)

0

100

200

300

400

500

9
9
%

 S
lo

w
d
o
w

n

(c) Total 99% Slowdown

Figure 2: Simulation results for Bimodal(50−1,50−100) for a 16-core system.

but at much higher overheads due to the use of interrupts
for request distribution instead of RSS and polling.

Policy comparison: In order to quantify the dif-
ferences between different scheduling policies, we de-
veloped a discrete event simulator. The simulator al-
lowed us to configure parameters such as scheduling
policy, number of host cores, system load, service and
inter-arrival time distributions as well as various system-
related overheads. Figure 1 compares idealized ver-
sions of scheduling policies—i.e., no stealing or pre-
emption overhead—using the simulator. Plot (a) shows
a light-tailed exponential distribution of service times
with mean µ = 1 µsec, representative of workloads such
as the get/set requests of in-memory key-value stores.
d-FCFS is arguably tolerable under such simple work-
loads, but suffers at moderate and high load as requests
are not perfectly distributed across workers. c-FCFS
is optimal under such workloads, while PS is slightly
worse because it preempts even short requests. The PS
time slice used for all simulations is 0.1 µsec.

d-FCFS is a poor option for heavy-tailed request dis-
tributions [42], as found in search engines [38] or in-
duced by activities such as garbage collection or com-
paction [23, 6, 26]. Plot (b) shows performance un-
der a heavy-tailed log-normal distribution with mean
µ = 1 µsec and standard deviation σ = 10 µsec. Any
long request blocks every short request assigned to the
same queue in d-FCFS. c-FCFS performs significantly
better as a worker can service any request; short re-
quests are only delayed when most workers simultane-
ously process older long requests, which is uncommon
for the log-normal distribution.

c-FCFS performs significantly worse under a light-
tailed bimodal distribution, commonly found in object
stores and databases that mix simple get/put requests
with complex range or relational queries [35, 26, 54].
Plot (c) shows such a distribution in which 99.5% of re-
quests take 0.5µsec and 0.5% take 500µsec. Compared
to a heavy-tailed case, the bimodal distribution’s long
requests are not as long but far more frequent. PS han-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 347

dles both cases in Plots (b) and (c) well by preempting
long requests to interleave execution of short ones.

Figure 2 provides further insights by separating the
performance of short and long requests in a bimodal
workload with service times evenly split between 1 µsec
and 100 µsec. This approximates a KVS in which half
of the requests are get/put requests and the other half are
range queries. The tail latency for the two request types
is drawn separately in Plots (a) and (b), and Plot (c)
shows the 99th percentile of the request slowdown for
all requests, which is the ratio of a request’s overall la-
tency to its service time. This ratio is a useful metric for
measuring how well we achieve our goal of reducing
queuing time for all request types: if this ratio is small,
it means that queuing time is small for all types and no
requests are affected by the requests of different types.

Plot 2a shows that both d-FCFS and c-FCFS heavily
penalize 1-µsec requests. Plot 2b shows that c-FCFS is
marginally better than PS for 100 µsec requests, as it
effectively prioritizes older, long requests that would be
preempted by PS. Plot 2c shows that, in relative terms,
the penalty c-FCFS inflicts on short requests dwarfs any
benefit to long requests.

Shinjuku approach: Shinjuku implements the c-
PRE policies (see §3.4) that achieve the best of both
worlds between PS and c-FCFS as shown in Figures 1
and 2. The reason other recent systems cannot imple-
ment similar policies is that these policies require pre-
emption at arbitrary execution points. Preemption typi-
cally involves interrupts and kernel threads whose over-
heads are incompatible with microsecond-scale laten-
cies. Therefore, Shinjuku aims to achieve the follow-
ing goals: 1) Implement low-overhead preemption and
context switching mechanisms for user-level threads. 2)
Use these mechanisms to build scheduling policies that
work well across all possible distributions of service
times for microsecond-scale workloads.

3 Shinjuku
Shinjuku1 is a single-address space operating system for
low-latency applications. Shinjuku is a significant de-
parture from the common pattern in IX [16] and Zy-
gOS [46], which rely heavily on RSS to distribute in-
coming requests to workers that process them without
interruption. Instead, Shinjuku uses a centralized queu-
ing and scheduling architecture and relies on low over-
head and frequent preemption in order to ensure low tail
latency for a wide variety of service time distributions.

1Shinjuku (新宿駅）is a major train station in Tokyo that serves
millions traveling on 12 lines of various types and speeds.

Figure 3: Shinjuku system design.

3.1 Design Overview
Figure 3 summarizes the key components in Shinjuku
and the typical request flow. Incoming requests are first
processed by the networking subsystem that handles
all network protocol processing and identifies request
boundaries ¶. The networking subsystem can be im-
plemented using one or more dedicated cores or hyper-
threads [22], a smartNIC [33, 53], or a combination of
the two. By separating network processing from request
scheduling, Shinjuku can be combined with a range of
networking protocols that optimize for different condi-
tions (UDP, TCP, ROCE [52], TIMELY [41], etc.) and
various optimized network stacks [31, 28, 22]. The net-
working subsystem passes requests to a centralized dis-
patcher thread · that will queue and schedule them to
worker threads. The dispatcher generates a context for
each incoming request in order to support preemption
and rescheduling. In its simplest form, the dispatcher
maintains a single queue for all pending requests. The
dispatcher sends requests to worker threads ¸, each us-
ing a dedicated hardware core or hyperthread. Most re-
quests will complete their execution without interrup-
tion. Network processing for any replies can take place
either at the networking subsystem or the worker thread
itself to optimize for latency. At a minimum, the worker
thread notifies the networking subsystem to free any
buffer space allocated for the incoming request ¹.

The dispatcher uses timestamps to identify long run-
ning requests that should be preempted based on the
scheduling policy. Assuming there are queued requests,
we preempt running requests after 5µsec to 15µsec for
the workloads we studied (see §4), which is extremely
frequent compared to the time slice in the Linux kernel.
For example, the CFS scheduler has a target preemption
latency of 6ms and a minimum one of 0.75ms. The dis-
patcher sends an interrupt to the worker thread º, which
performs a context switch and receives a different re-
quest to run from the dispatcher. The long request is
re-enqueued » in the dispatcher and processed later us-

348 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Preemption Sender Receiver Total
Mechanism Cost Cost Latency

Linux Signal 2084 2523 4950
Vanilla IPI 2081 2662 4219
IPI Sender-only Exit 2081 1212 2768
IPI Receiver-only Exit 298 2662 3433
IPI No Exits 298 1212 1993

Table 1: Average preemption overhead in cycles.
Sender/receiver cost refers to cycles consumed in the
sending/receiving core, including the receiver overhead
of invoking an empty interrupt handler. Total cost in-
cludes interrupt propagation through the system bus.
Hence, it is not equal to the sum of sender and receiver
overhead. For “IPI Sender-only Exit” and “Vanilla IPI,”
the receiver starts interrupt processing before the sender
returns from its VM exit.

ing steps ·-» as many times as needed.
Since Shinjuku is a single-address space operating

system, communication between its components occurs
over shared memory. We use dedicated pairs of cache
lines for each pair of communicating threads (see §3.5).

Similar to IX and ZygOS, Shinjuku leverages the
Dune system for process virtualization [15]. With Dune,
Linux and the Dune kernel module run in VMX root
mode ring 0, where a hypervisor would run in a virtu-
alized system. Shinjuku runs in VMX non-root mode
ring 0, where a guest OS would run. This allows it to
use very low overhead interrupts while separating the
control from the data plane. The application context that
uses Shinjuku can run in VMX non-root mode ring 0 or
ring 3. For the results in §4, we run applications in VMX
non-root mode ring 0 to avoid the address space cross-
ings between Shinjuku and the application code. There
is a separate instance of Shinjuku for each low-latency
application running on the server.

3.2 Fast Preemption
To use preemptive scheduling at microsecond latencies,
Shinjuku requires fast preemption. A naive approach
would be for the dispatcher to notify workers using
Linux signals. As we show in Table 1, however, sig-
nals incur high overheads for both the sender and the
receiver (roughly 2.5 µsec on a 2GHz machine). They
require user- to kernel-space transitions plus some ker-
nel processing.

Preemption through interrupts. Direct use of inter-
processor interrupts (IPIs) is potentially faster than
signals. x86 processors implement IPIs using the
Advanced Programmable Interrupt Controller (APIC).

Each core has a local APIC and an I/O APIC is at-
tached to the system bus. To send an IPI, the sending
core writes registers in its local APIC which propagates
the interrupt via the I/O APIC to the destination core’s
APIC, which in turn vectors execution to an interrupt
handler.

We extended Dune to support IPIs by virtualizing the
local APIC registers. When a non-root thread on core
A writes its virtual APIC to send interrupt number V to
core B, this causes a VM exit to Dune running in root
mode. Dune writes V to core B’s posted interrupt de-
scriptor, and then uses the real APIC to send interrupt
242 to core B. That causes core B to perform a VM exit
to an interrupt handler in Dune, which injects interrupt
number V into non-root mode on resuming the applica-
tion.

As Table 1 shows, this vanilla implementation of pre-
emption using IPIs is slightly faster than Linux signals
but still suffers from significant overheads due to the
cost of VM exits in both the sender and the receiver.

Optimized interrupt delivery. We first focus on re-
moving the VM exit on the receiving core B (the Shin-
juku worker) using posted interrupts, an x86 feature
for receiving interrupts without a VM exit. To enable
posted interrupts, Dune on B configures its hardware-
defined VM control structure (VMCS) to recognize in-
terrupt 242 as the special posted interrupt notification
vector. B also registers its posted interrupt descriptor
with the VMCS. Core A still performs a VM exit upon
writing the virtual APIC. Dune code on A writes V into
B’s posted interrupt descriptor and sends interrupt 242 to
B. However, B then directly injects interrupt V without
a VM exit. Table 1 shows that eliminating the receiver-
side VM exit reduces receiver overhead by 54% (from
2662 to 1212 cycles). This allows frequent preemption
of worker threads without significant reduction in use-
ful worker throughput. This receiver overhead consists
of modifications to hardware structures, and it cannot be
significantly improved without hardware changes, such
as support for lightweight user-level interrupts [51].

Optimized interrupt sending. Finally, we remove
the VM exit on the sending core (dispatcher thread) by
trusting the Shinjuku dispatcher with direct access to the
real (non-virtual) APIC. Using the extended page ta-
ble (EPT), we map both the posted interrupt descriptors
of other cores and the local APIC’s registers into the
guest physical address space of the Shinjuku dispatcher.
Hence, the dispatcher can directly send an IPI without
incurring a VM exit. Table 1 shows that eliminating the
sender-side VM exit reduces sender overheads down to
298 cycles (149ns in a 2GHz system). This improves

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 349

Mechanism Linux process Dune process

swapcontext 985 2290
No signal mask 140 140
No FP-restore 36 36

No FP-save 109 109

Table 2: Average overhead in clock cycles of different
context-switch mechanisms for both an ordinary Linux
process and the Dune process used by Shinjuku.

dispatcher scalability and allows it to serve more re-
quests per second and/or more worker threads (cores).

Table 1 presents the result of combining the sender-
side and receiver-side optimization for the interrupt de-
livery used to support preemption in Shinjuku. The
low sender-side overhead (298 cycles) makes it prac-
tical to build a centralized, preemptive dispatcher that
handles millions of scheduling actions per second. The
low receiver-side overhead (1212 cycles) makes it prac-
tical to preempt requests as often as every 5µsec in order
to schedule longer requests without wasting more than
10% of the workers’ throughput.

3.3 Low-overhead Context Switch
When a request is scheduled to an idling core or upon
preemption, we context switch between the main con-
text in each worker and the request handling con-
text. The direct approach would be to use the
swapcontext function in the Linux ucontext li-
brary. According to Table 2, the overhead is signif-
icant in an ordinary Linux process and doubles when
used in a Dune process. swapcontext requires a
system call to set the signal masks during the switch,
which requires a VM exit in Dune. The rest of the work
in swapcontext—i.e., saving/restoring register state
and the stack pointer—does not require system calls.

Table 2 evaluates context switch optimizations. First,
we skip setting the signal mask which eliminates the
system call and brings Dune to parity with ordinary
Linux. This introduces the limitation that all tasks be-
longing to the same application need to share the same
signal mask. Next, we exploit that the main worker
context does not use floating (FP) instructions. When
switching from a request context to the worker context,
we must save FP registers as they may have been used in
request processing, but we do not need to restore them
for the worker context. When switching from the worker
context to a request context, we skip saving FP registers
and just restore them for the request context. Shinjuku
uses the last two options in Table 2 for context switching
in worker cores. The overall cost ranges from 36 to 109

cycles (18 to 55ns for a 2GHz system).

3.4 Preemptive Scheduling
The centralized dispatcher and fast preemption and con-
text switch mechanisms allow Shinjuku to implement
preemptive scheduling policies. We developed two poli-
cies that differ on whether we can differentiate a pri-
ori between requests types. The policies rely on fre-
quent preemption to provide near-optimal tail latency
for any workload, approximating c-FCFS for low dis-
persion workloads and PS for all other cases.

Single queue (SQ) policy: This policy assumes that
we do not differentiate a priori between request types
and that there is a single service-level agreement (SLO)
for tail latency. This is the case, for example, in a search
service where we cannot know a priori which requests
will have longer service times. All incoming requests
are placed in a single FCFS queue. When a worker is
idle, the dispatcher assigns to it the request at the head
of the queue. If requests are processed quickly, this pol-
icy operates as centralized FCFS. The dispatcher uses
timestamps to identify any request running for more
than a predefined quantum (5 to 15µsec in our exper-
iments) and, assuming the queue is not empty, preempts
it. The request is placed back in the queue and the
worker is assigned the request at the current head of the
queue. The c-PRE-SQ policy evaluated through simula-
tion in Figure 1 is this single queue policy.

Multi queue (MQ) policy: This policy assumes that
the network subsystem can identify different request
types. For example, it can parse the request header
for KVS like Redis and RocksDB and separate simple
get/put requests from complex range query requests [33]
or use different ports for different request types. Linux
already supports peeking into packets with eBPF [2].
Each request type can have a different tail latency SLO.
The dispatcher maintains one queue per request type. If
only one queue has pending requests, this policy oper-
ates just like the single queue policy described above. If
more than one queue is non empty, the dispatcher must
select a queue to serve when a worker becomes idle or
a request is preempted. Once the queue is selected, the
dispatcher always takes the request at the head.

The queue selection algorithm is inspired by
BVT [24], a process scheduling algorithm for latency
sensitive tasks. In BVT, each process has a warp factor
that quantifies its priority compared to other processes.
For Shinjuku, we need a similar warp factor that favors
requests with smaller target latency in the short term,
but also considers aging of requests with longer latency
targets. Since Shinjuku schedules requests and not long
running processes with priorities like BVT, the selec-

350 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion algorithm shown below uses as input the target SLO
latency for each queue (e.g., target 99th percentile la-
tency). For the request at the head of each queue, the
algorithm uses timestamps to calculate the ratio of the
time it has already spent in the system (queuing time) to
the SLO target latency for this request type. The queue
with the highest such ratio is selected. The algorithm
initially favors short requests that can only tolerate short
queuing times, but eventually selects long requests that
may have been waiting for a while. The per-queue SLO
is a user-set parameter. In our experiments, we set it by
running each request type individually using the single
queue policy and use the observed 99% latency. This
captures the requirement that the performance of a re-
quest type should not be affected by the existence of re-
quests with different service time distributions.

1 Queue Selection Policy

1: procedure QUEUESELECTION(QUEUES):
2: max← 0
3: max queue←−1
4: time← timestamp()
5: for queue in queues do
6: cur ratio← time−queue[0].timestamp

queue.SLO
7: if cur ratio> max then
8: max← cur ratio
9: max queue← queue

10: return max queue

A preempted request can be placed either at the tail
of its queue to approximate PS or at the head of the
queue to approximate c-FCFS. This choice can be set
by the application or based on online measurements of
service time statistics. The rule of thumb we use is
that for multi-modal or heavy-tailed workloads, the re-
quests should be placed at the tail of the queue, while
for light-tailed ones at the head. Frequent preemption
is needed even with light-tailed distributions in order
to allow Shinjuku to serve the queues for other request
types. The c-PRE-MQ policy evaluated through simu-
lation in Figure 2 is this multi-queue policy, where both
request types are placed at the head of their correspond-
ing queues when preempted.

3.5 Implementation
The current Shinjuku implementation is based on Dune
and requires the VT-x virtualization features in x86-64
systems [20]. Dune can be ported to other architectures
with similar virtualization support. Our modifications to
Dune involve 1365 SLOC. The Shinjuku dispatcher and
worker code are 2535 SLOC. The network subsystem
we used in §4 is based on IX [16]. All the aforemen-
tioned codebases are in C.

API: To use Shinjuku, applications need to reg-
ister three callback functions: the init() func-
tion that initializes global application state; the
init per core(int core num) function that ini-
tializes application state for each worker thread
(e.g. local variables or configuration options); the
reply * handle request(request *) func-
tion that handles a single application-level request and
returns a pointer to the reply data.

Context management: We use a modified version of
the Linux ucontext library for context management.
The context structure consists of a machine-specific rep-
resentation of the saved state, the signal mask, a pointer
to the context stack, and a pointer to the context that will
be resumed when this context finishes execution. The
dispatcher allocates context objects and stack space for
each request from a memory pool. They are freed by
the dispatcher when the request context completes exe-
cution and is returned by a worker thread.

Inter-thread communication: In adition to preemp-
tion, we use a low-overhead, shared memory commu-
nication scheme similar to that used in [50]. Each pair
of threads, running on dedicated cores or hyperthreads,
communicates over shared pairs of cache lines, one for
each direction of communication. The sending thread
fills the cache line with the data it wants to send, e.g.
request or context pointers, as shown in Figure 3. Then,
it sets the value of the byte the receiver polls to notify it
that the cache line is ready for reading. This approach
requires two cache line state transitions, one from shared
to exclusive state which takes place when the sender
writes the data and one from exclusive to shared state
when the receiver reads the data. The average roundtrip
latency for a message sent and received over a cache line
is 211 cycles. The dispatcher’s minimum work for send-
ing a message is approximately 70 cycles, i.e. 35ns in
a 2GHz machine. This sets a theoretical upper bound
of 28 MRPS for the number of requests the dispatcher
can handle, assuming all it has to do is to place pointers
to the requests in shared memory locations and notify
idling workers.

3.6 Discussion
Hardware constraints: §4 shows that a single dis-
patcher thread can process at least 5M requests per sec-
ond and comfortably saturate a full socket with 12 cores
and 24 hyperthreads. To scale a single application to
higher core and/or socket counts, we must improve the
dispatcher throughput. The approach we use is to have
each dispatcher thread handle a subset of the worker
threads and steer requests to different dispatchers using
the NIC RSS feature. A relatively simple hardware fea-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 351

0 50 100

Queues

0

5

10

C
o

n
n

e
c
ti
o

n
s

10
4

Figure 4: Number of concurrent connections needed for
load imbalance among queues to be less than 10% with
probability greater than 90%.

ture that would vastly improve the dispatcher scalability
would be a low-overhead message passing mechanism
among different cores [34, 51]. Ideally, such a mecha-
nism would offer two variations, a preemptive one that
would be used for scheduling and a non-preemptive one
where messages are added to per core queues and would
be used for work assignment.

Connection counts: IX and ZygOS use RSS to dis-
tribute requests to workers. Using a Monte-Carlo sim-
ulation, we calculate the connection count needed for
RSS to keep imbalance below 10% with high probability
as we increase the number of cores. As shown in Fig-
ure 4, they need 16,000 connections (clients or flows)
to avoid imbalance on a server with 24 hyperthreads.
High connection counts are common for public facing
services (e.g., public load balancer or HTTP server), but
not for internal ones. The DCTCP project [9] found
at most a few hundred connections to back-end servers
over each 1 msec window. In contrast, Shinjuku uses
RSS to distribute requests to dispatchers. Since each
dispatcher can manage tens of cores, Shinjuku is not
subject to the requirement of high connection (clients or
flows) counts discussed in §2. For example, 300 connec-
tions are sufficient to load balance across 2 dispatchers.
When a single dispatcher suffices, Shinjuku will operate
efficiently even with a single connection.

Alternative scheduling policies: Shinjuku can sup-
port more scheduling policies in addition to the two
we presented. In future work, we will explore inte-
grating Shinjuku with datacenter-wide profiling tools
[49] and online experimentation tools [55] in order
to dynamically infer the service time distributions and
adjust the policy accordingly. We will also explore
microsecond-scale scheduling policies that are locality-
and heterogeneity-aware [30, 27]. For example, con-
sider an application which creates a large memory foot-
print before responding to a client request. In such

cases, we will want to avoid preempting and context
switching as multiple cache lines will have to move to a
different core, which can be very expensive.

Control plane: Online services experience load vari-
ations, such as a diurnal load patterns and spikes. Hence,
it makes sense to adjust over time the number of work-
ers a Shinjuku process uses. Shenango [7] solves this
problem by adjusting core allocation between applica-
tions in microsecond timescales. We plan to explore the
possibility of integrating the two systems.

Security model: The Dune kernel module [15] uses
hardware support for virtualization to isolate a Shinjuku
process from the Linux kernel and any other process,
ordinary Linux or Shinjuku based. Linux can also re-
move cores and network queues from a Shinjuku pro-
cess at any time. Within a Shinjuku process, the ap-
plication code must trust the Shinjuku runtime and, if
the application contexts execute in VMX non-root ring
0, the Shinjuku runtime must trust the application code.
For example, the fact that APIC registers are mapped in
the process address space means that one process could
launch a denial-of-service attack on another process by
issuing a large number of interrupts to a specific core.

We measured the cost of a ring 3→ ring 0→ ring 3
transition to be only 84 cycles. Future versions of Shin-
juku will run application code in ring 3 while the Shin-
juku runtime will be running in VMX non-root ring 0
eliminating this attack vector with very small overhead.
Moreover, with this approach, bugs in application code
will only cause contexts to crash, not affecting the run-
time system.

Synchronization in user code: Online services are
designed to run well on multiple cores. They synchro-
nize across requests, but synchronization is short and
infrequent to achieve scalability. Scalable applications
will perform with Shinjuku regardless of whether we
disable or allow preemption around read/write locks.
We currently disable interrupts during any non thread-
safe code, using a call safe(fn) API call to sim-
plify application porting. The runtime overhead of the
instructions that are used to disable interrupts is only a
few clock cycles and they do not affect the Linux ker-
nel’s abilities to reclaim the cores. Memory allocation
code is a special case that often optimizes away locks
using thread-local storage. We preload our own ver-
sion of the C and C++ libraries that disable interrupts
(and hence preemption) during the execution of alloca-
tion functions. If these functions take a long time, it will
affect the tail latency observed with Shinjuku.

Any application that frequently uses coarse-grain or
contested locks within requests will scale poorly regard-

352 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

less of scheduling policy on any system, including Shin-
juku.

4 Evaluation
We compare Shinjuku to IX [16] and ZygOS [46], two
recent systems that use d-FCFS and approximate c-
FCFS respectively to improve tail latency. All three sys-
tems are built on top of Dune [15]. We use the latest IX
and ZygOS versions available at [4].

4.1 Experimental Methodology
Machines: We use a cluster of 6 client and one server
machines, connected through an Arista 7050-S switch
with 48 10GbE ports. The client machines each include
two Intel Xeon E5-2630 CPUs operating at 2.3GHz.
Their NICs are a mixture of Intel 82599ES and So-
larflare SFC9020 10GbE NICs. The server machine that
runs IX, ZygOS, or Shinjuku includes two Intel E5-2658
CPUs operating at 2.3GHz, 128GB of DRAM, and an
Intel 82599ES 10Gb NIC. All machines run Ubuntu
LTS 16.0.4 with the 4.4.0 Linux kernel. Hyperthread-
ing is always enabled unless noted. NICs are configured
as half-duplex by the IX and ZygOS drivers and we use
the same setting for Shinjuku. To perform scalability ex-
periments, we also use the server machine with a 40Gb
Intel XL710-QDA2 NIC and an identical E5-2658 two-
socket machine as the client.

Each of the two server CPUs has 12 cores and 24 hy-
perthreads. However, ZygOS and IX can only support
up to 16 hyperthreads as their network drivers are lim-
ited to 16 RSS RX queues. Hence, we use an 8-core
(16-hyperthread) configuration for most experiments.
Shinjuku always uses two of the available hyperthreads
for the networking subsystem and dispatcher. Hence,
our results use the notation Shinjuku(x) to specify
that Shinjuku uses x-2 hyperthreads for workers and
a total of x hyperthreads. The notation IX(x) and
ZygOS(x) specify that IX and ZygOS use x hyper-
threads, all for d-FCFS or c-FCFS processing respec-
tively.

Networking: We use the following networking sub-
system with Shinjuku. A single hyperthread, co-located
on the same physical core with the dispatcher, polls the
NIC queue and processes raw packets. It performs UDP
processing, identifies requests, and optionally parses the
request header to identify types. The Shinjuku workers
process network replies. This simple subsystem is suffi-
cient to evaluate Shinjuku. Since Shinjuku decouples
network processing from request scheduling, we can
combine Shinjuku in the future with alternative systems
that implement other transport protocols and use opti-
mizations such as multithreaded stacks [31, 22] or stacks

that offload networking to a SmartNIC [33, 18, 53, 19].
The latter will free x86 hyperthreads for Shinjuku work-
ers. If the SmartNIC is connected to the processor chip
through a coherent interconnect like Intel’s UPI, we can
also offload the Shinjuku dispatcher to the NIC cores.

IX supports both UDP and TCP networking. We use
it with UDP and a batch size of 64. ZygOS supports
only TCP networking [4], but is configured to use ex-
actly one TCP segment per request and reply. Hence,
ZygOS requests have some additional service time for
TCP processing (< 0.25µsec), but are otherwise simi-
lar to UDP-based IX and Shinjuku requests.

Workloads: We use one synthetic and one real work-
load. The synthetic workload is a server application
where requests perform dummy work that we can con-
trol in order to emulate any target distribution of service
times. This synthetic server allows us to derive insights
about how the three systems compare across a large ap-
plication space.

We also use RocksDB version 5.13 [26], a popular
and widely deployed key-value store developed by Face-
book. The IX, ZygOS, and Shinjuku servers handle
RocksDB queries that may be simple get/put requests or
range scans. We configure RocksDB to keep all data in
DRAM in order to evaluate all three systems under the
lowest latency requirements possible. If some RocksDB
requests had to access data in Flash, the variability of
service times would be even higher, and the preemp-
tive Shinjuku would perform even better than the non-
preemptive IX and ZygOS.

We developed an open loop load generator similar to
mutilate [36] that transmits requests over either TCP or
UDP. The load generator starts a large number of con-
nections in a set of client machines, while it measures
latency from a single unloaded machine. Unless oth-
erwise noted, we use 1920 persistent TCP connections
(ZygOS) and 1920 distinct UDP 5-tuples (IX and Shin-
juku). Using fewer connections significantly affected
the performance of IX and ZygOS (see §3.6).

4.2 Synthetic Workload Comparison
Figure 5 compares Shinjuku to IX and ZygOS for three
service time distributions. Figure 5a uses a fixed ser-
vice time of 1µsec, while Figure 5b uses an exponential
distribution with a mean of 1µsec. These two cases are
ideal for IX that uses d-FCFS. IX benefits further from
its ability to batch similarly sized requests. Shinjuku
(SQ) performs close to IX, despite exclusively using two
hyperthreads for networking and the dispatcher and de-
spite preempting requests that exceed 5µsec. In this
case, Shinjuku places preempted requests at the head of
the queues. Moreover, preemption is fast and for light-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 353

IX(16) ZygOS(16) Shinjuku(16)-SQ

0 2 4 6

Throughput (MRPS)

0

100

200

300

400

9
9

%
 L

a
te

n
c
y
 (

u
s
)

(a) Fixed(1)

0 2 4 6

Throughput (MRPS)

0

200

400

600

800

1000

(b) Exp(1)

0 2 4 6

Throughput (MRPS)

0

200

400

600

800

1000

(c)
Bimodal(99.5−0.5,0.5−500)

Figure 5: Systems comparison with synthetic workloads. Shinjuku uses the single queue policy.

IX(16) ZygOS(16) Shinjuku(16)-MQ

0 100 200 300

Throughput (kRPS)

10
2

10
3

10
4

10
5

9
9
%

 S
lo

w
d
o
w

n

(a) Two request types
Bimodal(50−1,50−100)

0 100 200 300

Throughput (kRPS)

10
2

10
3

10
4

9
9
%

 S
lo

w
d
o
w

n

(b) Three request types
Trimodal(33.3−1,33.3−10,33.3−100)

Figure 6: Systems comparison with multi-modal syn-
thetic workloads. Shinjuku uses the multi-queue policy.

tailed workloads only a few requests will be preempted
allowing Shinjuku to outperform ZygOS for both sce-
narios. ZygOS also has a high stealing rate (60%) even
for homogeneous workloads which exacerbates its steal-
ing overheads. A similar performance drop was also ob-
served in the original ZygOS paper [46].

Figure 5c uses a Bimodal(99.5− 0.5,0.5− 500)
service time distribution where 99.5% of the requests
have a 0.5µsec service time and 0.5% 500µsec. Shin-
juku with the single queue policy is vastly better than
both IX and ZygOS, achieving up to 50% lower tail
latency at low load and 5x better throughput for a
given 300µs tail latency target. IX and ZygOS lack pre-
emption, hence the 0.5% of long requests determine the
overall 99th percentile tail latency as short requests are
frequently blocked behind them. The task stealing in
ZygOS improves upon IX but is not sufficient to deal
with the high dispersion in service times. In contrast,
Shinjuku preempts long requests and places them at the
tail of the single queue to allow short requests to com-
plete quickly.

Figure 6 evaluates the three systems with multiple re-
quest types, a key experiment that was missing from the
original IX and ZygOS papers. We use Shinjuku’s multi-
queue policy which assumes knowledge of the request
types (e.g., from packet inspection). Figure 6a uses a
Bimodal(50−1,50−100) workload, while Figure 6b
uses a Trimodal(33−1,33−10,33−100) workload.
In all cases, Shinjuku places preempted requests to the
head of their corresponding queues. Both figures show
the 99th percentile of request slowdown (overall request
latency / service time) with a logarithmic y-axis. The
preemptive, multi-queue policy allows Shinjuku to out-
perform IX and Zygos by having 94% lower slowdown
at low load and over 2x higer throughput (RPS). In
addition to the frequent preemption that avoids head-of-
line blocking, Shinjuku benefits from its ability to select
the type of requests (long vs. short) to serve next based
on their ratio of queuing time to target latency.

4.3 Shinjuku Analysis
How important is frequent preemption? Figure 7a

354 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100us 50us 20us 5us 1 Dispatcher 2 Dispatchers 64-Byte Frames 258-Byte Frames

0 100 200 300

Throughput (kRPS)

0

20

40

60

80

100
9

9
%

 S
lo

w
d

o
w

n

(a)

0 5 10 15 20

Worker Cores

0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
(M

R
P

S
)

(b)

0 5 10 15 20

Worker Cores

0

10

20

30

40

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

(c)
Figure 7: (a) Two request types Bimodal(50−1,50−100) with varying preemption time slice. (b) Shinjuku through-
put (Million RPS) as we scale the worker cores. (c) Shinjuku throughput (Gbps) as we scale the worker cores.

ZygOS(16) Shinjuku(16) IX(16)
ZygOS(16) Shinjuku(16)-SQ without Preemption Shinjuku(16)-SQ Shinjuku(16)-MQ

0 200 400 600

Throughput (kRPS)

0

200

400

600

800

1000

9
9

%
 L

a
te

n
c
y
 (

u
s
)

(a)

0 5 10 15 20

Throughput (kRPS)

0

2000

4000

6000

9
9

%
 G

E
T

 L
a

te
n

c
y
 (

u
s
)

(b)

0 5 10 15 20

Throughput (kRPS)

0

2000

4000

6000

8000

10000

9
9

%
 S

C
A

N
 L

a
te

n
c
y
 (

u
s
)

(c)
Figure 8: RocksDB (a) Shinjuku, IX, and ZygOS 99.5% GET 0.5% SCAN(1000). (b + c) Shinjuku Performance -
50% GET(b) 50% SCAN(5000)(c).

varies the preemption interval for a Bimodal(50−
1,50− 100) synthetic workload. Shinjuku uses the
multi-queue policy. The shorter the preemption interval,
the better Shinjuku performs as the impact of 100µsec
requests on 1µsec is reduced. Shinjuku performs well
even at the very frequent 5µsec preemption interval.

How does Shinjuku scale? Figures 7{b,c} exam-
ine how Shinjuku scales with more workers. We issue
short requests with 1µsec fixed service time to stress the
dispatcher. We also use the Intel XL710-QDA2 40Gb
NICs so that networking is not a bottleneck. Since each
worker thread can saturate its core, we turn off hyper-
threading and pin each worker thread to a physical core.
We use the two hyperthreads in the 12th physical core
for the dispatcher and the networking threads. Figure 7b
shows that a single dispatcher thread scales almost lin-
early to 11 worker cores, which is the socket size in
our server. A second dispatcher thread allows Shinjuku
to schedule across the 22 worker cores on both sock-
ets for a single application. Shinjuku can schedule 5M
and 9.5M RPS with 1 and 2 dispatchers respectively.
Figure 7c measures the outgoing network throughput of

Shinjuku using two dispatchers. Shinjuku saturates the
40Gb NIC when reply frames are as short as 258 bytes.

These two figures validate that a single Shinjuku ap-
plication can scale to high core counts and high line rates
even with short 1µsec service times.

4.4 RocksDB Comparison
We use RocksDB with a simple server we ported to IX,
ZygOS, and Shinjuku. Client requests are looked up
in a RocksDB database created on an in-memory file
system (/tmpfs/) with random key-value pairs. We use
two request types: GET requests for a single key-value
pair that execute within 6µsec; SCAN requests that scan
1,000 or 5,000 key-value pairs and require 240µsec or
1,200µsec respectively. We use memory-mapped plain
tables as the backing files to avoid memory copies and
access to block devices. Shinjuku uses a preemption
time slice of 15µsec and places preempted requests at
the head of their corresponding queues for the multi-
queue policy and at the tail for the single-queue policy.

Figure 8a compares IX, ZygOS, and Shinjuku with
the single queue policy for a 99.5-0.5 mix of GET and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 355

SCAN(1000) requests. Shinjuku provides a vast im-
provement over ZygOS in tail latency (88% decrease)
and throughput (6.6x improvement). Frequent preemp-
tion in Shinjuku allows GET requests to avoid long
queuing times due to SCAN requests. IX performs even
worse due to the combination of highly imbalanced re-
quest service times and d-FCFS scheduling.

Preemption and queue selection policy matter:
Figures 8b and 8c use a 50-50 workload between GET
and SCAN(5000) requests. In addition to comparing
with ZygOS, we modified the Shinjuku dispatcher to
show the impact of using Shinjuku without preemption,
the single-queue preemptive policy, and the multi-queue
preemptive policy. IX is omitted because its latency is
outside the range of our plot. The results show that
Shinjuku without preemption (SQ without preemption)
favors the longer SCAN requests over the shorter GET
requests. The addition of preemption (SQ) fixes this
problem and allows both request types to achieve fair
throughput and low tail latency. The multi-queue policy
(MQ) improves SCAN requests as it avoids excessive
queuing for them as well. ZygOS performs significantly
worse even than Shinjuku without preemption. ZygOS
uses distributed queuing and is susceptible to head-of-
line blocking for requests within the same connection.
This supports our decision to decouple network process-
ing and request scheduling in Shinjuku.

5 Related Work
Optimized network stacks: There is significant
work in optimizing network stacks, including polling
based processing (DPDK [3]), multi-core scalability
(mTCP [31]), modularity and specialization (Sand-
storm [40]), and OS bypass (Andromeda [22]). Shin-
juku is orthogonal to this work as it optimizes request
scheduling after network protocol processing.

Dataplane operating systems: Several recent sys-
tems optimize for throughput and tail latency by sep-
arating the OS dataplane from the OS control plane, an
idea originating in Exokernel [25]. IX [16], Arrakis [45],
MICA [39], Chronos [32], and ZygOS [46] fall in this
category. Shinjuku improves on these systems by intro-
ducing preemptive scheduling that allows short requests
to avoid excessive queuing.

Task scheduling: Li et al. [38] control tail latency
by reducing the amount of resources dedicated to long-
running requests that violate the SLO. Haque et al. [29]
take the opposite approach and devote more resources
to stragglers so that they finish faster. Interestingly, both
approaches work well. However, these approaches are
applicable to millisecond-scale workloads and require
workloads that are dynamically parallelizable. Shinjuku

allows the development of efficient scheduling policies
for requests 3 orders of magnitude shorter than what this
line of work can handle.

Flow scheduling: PIAS [12] is a network flow
scheduling mechanism that uses hardware priority
queues available in switches to approximate the Short-
est Job First (SJF) scheduling policy and prioritize short
flows over longs ones. We do not follow a similar ap-
proach in Shinjuku as SJF is optimal in terms of mini-
mizing average but not tail latency [57]. Moreover, in
order to be effective, PIAS requires some form of con-
gestion control to keep the queue length short. This is
not practical in non-networked settings where the run-
time does not control the application.

Exit-less interrupts: The idea of safe, low-overhead
interrupts was introduced in ELI for fast delivery of in-
terrupts to VMs [10]. ZygOS [46] uses inter-processor
interrupts for work stealing but does not implement pre-
emptive scheduling. Shinjuku uses Dune [15] to opti-
mize processor-to-processor interrupts.

User-space thread management: Starting with
scheduler activations [11], there have been several
efforts to implement efficient, user-space thread li-
braries [8, 56, 48, 1]. They all focus on cooperative
scheduling. Shinjuku shows that preemptive scheduling
is practical at microsecond-scales and leads to low tail
latency and high throughput.

6 Conclusion

Shinjuku uses hardware support for virtualization to
make frequent preemption practical at the microsec-
ond scale. Hence, its scheduling policies can avoid
the common pitfall of non-preemptive policies where
short requests are blocked behind long requests. Shin-
juku provides low tail latency and high throughput for
a wide range of distributions and request service times
regardless of the number of client connections. For
the RocksDB KVS, we show that Shinjuku improves
upon the recently published ZygOS system by 6.6x in
throughput and 88% in tail latency.

Acknowledgements

We thank our shepherd, Irene Zhang, and the anony-
mous NSDI reviewers for their helpful feedback. We
also thank John Ousterhout, Adam Wierman, and Ana
Klimovic for providing feedback on early versions of
this paper. This work was supported by the Stanford
Platform Lab and by gifts from Google, Huawei, and
Samsung.

356 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] libfiber: A user space threading library support-
ing multi-core systems. https://github.com/
brianwatling/libfiber, 2015.

[2] ebpf - extended berkeley packet filter. http:
//prototype-kernel.readthedocs.io/en/
latest/bpf/ , 2016.

[3] Data plan development kit. http://www.dpdk.org/,
2018.

[4] Ix-project: Protected dataplane for low latency and high perfor-
mance. https://github.com/ix-project/ , 2018.

[5] libuv: Cross-platform asynchronous i/o. https://libuv.
org/, 2018.

[6] Memcached. https://memcached.org/ , 2018.

[7] Shenango: Achieving high CPU efficiency for latency-sensitive
datacenter workloads. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19),
Boston, MA, 2019. USENIX Association.

[8] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky,
and John R. Douceur. Cooperative task management with-
out manual stack management. In Proceedings of the General
Track of the Annual Conference on USENIX Annual Technical
Conference, ATC ’02, pages 289–302. USENIX Association,
2002.

[9] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Ji-
tendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sen-
gupta, and Murari Sridharan. Data center tcp (dctcp). In Pro-
ceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM
’10, pages 63–74, New Delhi, India, 2010. ACM.

[10] Nadav Amit, Abel Gordon, Nadav Har’El, Muli Ben-Yehuda,
Alex Landau, Assaf Schuster, and Dan Tsafrir. Bare-metal per-
formance for virtual machines with exitless interrupts. Com-
mun. ACM, 59(1):108–116, December 2015.

[11] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska,
and Henry M. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism. In Pro-
ceedings of the Thirteenth ACM Symposium on Operating Sys-
tems Principles, SOSP ’91, pages 95–109, Pacific Grove, Cali-
fornia, USA, 1991. ACM.

[12] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao
Wang. Information-agnostic flow scheduling for commodity
data centers. In 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15), pages 455–468,
Oakland, CA, 2015. USENIX Association.

[13] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet:
The google cluster architecture. IEEE Micro, 23(2):22–28,
March 2003.

[14] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy
Ranganathan. Attack of the killer microseconds. Commun.
ACM, 60(4):48–54, March 2017.

[15] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei,
David Mazières, and Christos Kozyrakis. Dune: Safe user-level
access to privileged cpu features. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’12, pages 335–348, Hollywood, CA, USA,
2012. USENIX Association.

[16] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. Ix: A protected dat-
aplane operating system for high throughput and low latency.
In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, pages 49–65,
Broomfield, CO, 2014. USENIX Association.

[17] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael
Kaminsky. Putting the ”micro” back in microservice. In
2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 645–650, Boston, MA, 2018. USENIX Association.

[18] Broadcom. Ps225. https://www.broadcom.
com/products/ethernet-connectivity/
network-adapters/ps225 , 2017.

[19] Cavium. Liquidio smartnic. https://www.cavium.com/
product-liquidio-adapters.html , 2018.

[20] Intel Corp. Intel virtualization technology. https:
//www.intel.com/content/www/us/en/
virtualization/virtualization-technology/
intel-virtualization-technology.html , 2018.

[21] Microsoft Corp. Receive side scaling. http:
//msdn.microsoft.com/library/windows/
hardware/ff556942.aspx , 2018.

[22] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Are-
fin, Anshuman Gupta, Brian Fahs, Dima Rubinstein, En-
rique Cauich Zermeno, Erik Rubow, James Alexander Docauer,
Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter, Marc
de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Ric-
cardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata, Yossi
Richter, Uday Naik, and Amin Vahdat. Andromeda: Perfor-
mance, isolation, and velocity at scale in cloud network virtu-
alization. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 373–387, Ren-
ton, WA, 2018. USENIX Association.

[23] Jeffrey Dean and Luiz André Barroso. The tail at scale. Com-
munications of the ACM, 56:74–80, 2013.

[24] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-
time (bvt) scheduling: Supporting latency-sensitive threads in
a general-purpose scheduler. In Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles, SOSP ’99,
pages 261–276, Charleston, South Carolina, USA, 1999. ACM.

[25] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
An operating system architecture for application-level resource
management. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, SOSP ’95, pages 251–266,
Copper Mountain, Colorado, USA, 1995. ACM.

[26] Facebook. Rocksdb. http://rocksdb.org/ , 2018.

[27] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. Slaw:
A scalable locality-aware adaptive work-stealing scheduler for
multi-core systems. In Proceedings of the 15th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’10, pages 341–342, Bangalore, India, 2010.
ACM.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 357

https://github.com/brianwatling/libfiber
https://github.com/brianwatling/libfiber
http://prototype-kernel.readthedocs.io/en/latest/bpf/
http://prototype-kernel.readthedocs.io/en/latest/bpf/
http://prototype-kernel.readthedocs.io/en/latest/bpf/
http://www.dpdk.org/
https://github.com/ix-project/
https://libuv.org/
https://libuv.org/
https://memcached.org/
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/ps225
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/ps225
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/ps225
https://www.cavium.com/product-liquidio-adapters.html
https://www.cavium.com/product-liquidio-adapters.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://msdn.microsoft.com/library/ windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/ windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/ windows/hardware/ff556942.aspx
http://rocksdb.org/

[28] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. Softnic: A software nic to
augment hardware. Technical Report UCB/EECS-2015-155,
EECS Department, University of California, Berkeley, May
2015.

[29] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety,
Ricardo Bianchini, and Kathryn S. McKinley. Few-to-many:
Incremental parallelism for reducing tail latency in interactive
services. In Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 161–175, Istan-
bul, Turkey, 2015. ACM.

[30] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D. Nguyen,
Ricardo Bianchini, and Kathryn S. McKinley. Exploiting het-
erogeneity for tail latency and energy efficiency. In Proceedings
of the 50th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-50 ’17, pages 625–638, Cambridge,
Massachusetts, 2017. ACM.

[31] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon
Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo Park.
mtcp: a highly scalable user-level TCP stack for multicore sys-
tems. In 11th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 14), pages 489–502, Seattle,
WA, 2014. USENIX Association.

[32] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M.
Voelker, and Amin Vahdat. Chronos: Predictable low latency
for data center applications. In Proceedings of the Third ACM
Symposium on Cloud Computing, SoCC ’12, pages 9:1–9:14,
San Jose, California, 2012. ACM.

[33] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas
Anderson, and Arvind Krishnamurthy. High performance
packet processing with flexnic. In Proceedings of the Twenty-
First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’16, pages 67–81, Atlanta, Georgia, USA, 2016. ACM.

[34] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen.
Carbon: Architectural support for fine-grained parallelism on
chip multiprocessors. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture, ISCA ’07,
pages 162–173, San Diego, California, USA, 2007. ACM.

[35] Redis Labs. Redis. https://redis.io/ , 2018.

[36] Jacob Leverich and Christos Kozyrakis. Reconciling high
server utilization and sub-millisecond quality-of-service. In
Proceedings of the Ninth European Conference on Com-
puter Systems, EuroSys ’14, pages 4:1–4:14, Amsterdam, The
Netherlands, 2014. ACM.

[37] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D.
Gribble. Tales of the tail: Hardware, os, and application-level
sources of tail latency. In Proceedings of the ACM Symposium
on Cloud Computing, SOCC ’14, pages 9:1–9:14, Seattle, WA,
USA, 2014. ACM.

[38] Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I-
Ting Angelina Lee, Chenyang Lu, and Kathryn S. McKinley.
Work stealing for interactive services to meet target latency. In
Proceedings of the 21st ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’16, pages
14:1–14:13, Barcelona, Spain, 2016. ACM.

[39] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael
Kaminsky. Mica: A holistic approach to fast in-memory key-
value storage. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation, NSDI’14,
pages 429–444, Seattle, WA, 2014. USENIX Association.

[40] Ilias Marinos, Robert N.M. Watson, and Mark Handley. Net-
work stack specialization for performance. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 175–186, Chicago, Illinois, USA, 2014. ACM.

[41] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily
Blem, Hassan Wassel, Monia Ghobadi, Amin Vahdat, Yaogong
Wang, David Wetherall, and David Zats. Timely: Rtt-based
congestion control for the datacenter. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM ’15, pages 537–550, London, United
Kingdom, 2015. ACM.

[42] Jayakrishnan Nair, Adam Wierman, and Bert Zwart. The funda-
mentals of heavy-tails: Properties, emergence, and identifica-
tion. In Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’13, pages 387–388, Pittsburgh, PA, USA,
2013. ACM.

[43] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony
Tung, and Venkateshwaran Venkataramani. Scaling memcache
at facebook. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 13), pages 385–398, Lombard, IL, 2013. USENIX.

[44] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejri-
wal, Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin
Park, Henry Qin, Mendel Rosenblum, Stephen Rumble, Ryan
Stutsman, and Stephen Yang. The ramcloud storage system.
ACM Trans. Comput. Syst., 33(3):7:1–7:55, August 2015.

[45] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and Timothy
Roscoe. Arrakis: The operating system is the control plane.
In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 1–16, Broomfield, CO, 2014.
USENIX Association.

[46] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos:
Achieving low tail latency for microsecond-scale networked
tasks. In Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 325–341, Shanghai, China,
2017. ACM.

[47] N. Provos and N. Mathewson. libevent: An event notification
library. http://libevent.org , 2018.

[48] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John
Ousterhout. Arachne: Core-aware thread management. In 13th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 145–160, Carlsbad, CA, 2018.
USENIX Association.

[49] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus,
and Robert Hundt. Google-wide profiling: A continuous pro-
filing infrastructure for data centers. IEEE Micro, pages 65–79,
2010.

358 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://redis.io/
http://libevent.org

[50] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu.
Ffwd: Delegation is (much) faster than you think. In Proceed-
ings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 342–358, Shanghai, China, 2017. ACM.

[51] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis.
Flexible architectural support for fine-grain scheduling. In Pro-
ceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XV, pages 311–322, Pittsburgh, Pennsylvania, USA,
2010. ACM.

[52] Mellanox Technologies. Rdma over converged ethernet.
http://www.mellanox.com/related-docs/
whitepapers/roce_in_the_data_center.pdf ,
2014.

[53] Mellanox Technologies. Bluefield multicore system on
chip. http://www.mellanox.com/related-docs/
npu-multicore-processors/PB_Bluefield_
SoC.pdf , 2017.

[54] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and
Samuel Madden. Speedy transactions in multicore in-memory

databases. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, pages 18–32,
Farminton, Pennsylvania, 2013. ACM.

[55] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho
Kim, Sonia Margulis, Scott Michelson, Rajesh Nishtala, Daniel
Obenshain, Dmitri Perelman, and Yee Jiun Song. Kraken:
Leveraging live traffic tests to identify and resolve resource
utilization bottlenecks in large scale web services. In 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 635–651, Savannah, GA, 2016.
USENIX Association.

[56] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Nec-
ula, and Eric Brewer. Capriccio: Scalable threads for internet
services. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, SOSP ’03, pages 268–281,
Bolton Landing, NY, USA, 2003. ACM.

[57] Adam Wierman and Bert Zwart. Is tail-optimal scheduling pos-
sible? Oper. Res., 60(5):1249–1257, September 2012.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 359

http://www.mellanox.com/related-docs/whitepapers/roce_in_the_data_center.pdf
http://www.mellanox.com/related-docs/whitepapers/roce_in_the_data_center.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf

Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter Workloads
Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, Hari Balakrishnan

MIT CSAIL

Abstract

Datacenter applications demand microsecond-scale tail
latencies and high request rates from operating systems,
and most applications handle loads that have high
variance over multiple timescales. Achieving these goals
in a CPU-efficient way is an open problem. Because
of the high overheads of today’s kernels, the best avail-
able solution to achieve microsecond-scale latencies is
kernel-bypass networking, which dedicates CPU cores to
applications for spin-polling the network card. But this
approach wastes CPU: even at modest average loads, one
must dedicate enough cores for the peak expected load.

Shenango achieves comparable latencies but at far
greater CPU efficiency. It reallocates cores across appli-
cations at very fine granularity—every 5 µs—enabling
cycles unused by latency-sensitive applications to be
used productively by batch processing applications. It
achieves such fast reallocation rates with (1) an efficient
algorithm that detects when applications would benefit
from more cores, and (2) a privileged component called
the IOKernel that runs on a dedicated core, steering
packets from the NIC and orchestrating core realloca-
tions. When handling latency-sensitive applications,
such as memcached, we found that Shenango achieves
tail latency and throughput comparable to ZygOS, a
state-of-the-art, kernel-bypass network stack, but can
linearly trade latency-sensitive application throughput
for batch processing application throughput, vastly
increasing CPU efficiency.

1 Introduction
In many datacenter applications, responding to a sin-
gle user request requires responses from thousands
of software services. To deliver fast responses to
users, it is necessary to support high request rates
and microsecond-scale tail latencies (e.g., 99.9th

percentile) [10, 24, 28, 56, 67]. This is particularly
important for requests with service times of only a
couple of microseconds (e.g., memcached [43] or
RAMCloud [57]). Networking hardware has risen to the
occasion; high-speed networks today provide round-trip
times (RTTs) on the order of a few µs [54, 55]. However,
when applications run atop current operating systems
and network stacks, latencies are in the milliseconds.

At the same time, as Moore’s law slows and network
rates rise [26], CPU efficiency becomes paramount. In
large-scale datacenters, even small improvements in

CPU efficiency (the fraction of CPU cycles spent per-
forming useful work) can save millions of dollars [72].
As a result, datacenter operators commonly fill any
cores left unused by latency-sensitive tasks with batch-
processing applications so they can keep CPU utilization
high as load varies over time [16]. For example, Mi-
crosoft Bing colocates latency-sensitive and batch jobs
on over 90,000 servers [34], and the median machine in
a Google compute cluster runs eight applications [76].

Unfortunately, existing systems do a poor job of
achieving high CPU efficiency when they are also re-
quired to maintain microsecond-scale tail latency. Linux
can only support microsecond latency when CPU utiliza-
tion is kept low, leaving enough idle cores available to
quickly handle incoming requests [41, 43, 76]. Alterna-
tively, kernel-bypass network stacks such as ZygOS are
able to support microsecond latency at higher throughput
by circumventing the kernel scheduler [2, 18, 50, 57, 59,
61]. However, these systems still waste significant CPU
cycles; instead of interrupts, they rely on spin-polling the
network interface card (NIC) to detect packet arrivals, so
the CPU is always in use even when there are no packets
to process. Moreover, they lack mechanisms to quickly
reallocate cores across applications, so they must be
provisioned with enough cores to handle peak load.

This tension between low tail latency and high CPU
efficiency is exacerbated by the bursty arrival patterns
of today’s datacenter workloads. Offered load varies
not only over long timescales of minutes to hours, but
also over timescales as short as a few microseconds.
For example, micro bursts in Google’s Gmail servers
cause sudden 50% increases in CPU usage [12], and,
in Microsoft’s Bing service, 15 threads can become
runnable in just 5 µs [34]. This variability requires that
servers leave extra cores idle at all times so that they can
keep tail latency low during bursts [16, 34, 41].

Why do today’s systems force us to waste cores to
maintain microsecond-scale latency? A recent paper
from Google argues that poor tail latency and efficiency
are the result of system software that has been tuned
for millisecond-scale I/O (e.g., disks) [15]. Indeed,
today’s schedulers only make thread balancing and core
allocation decisions at coarse granularities (every four
milliseconds for Linux and 50–100 milliseconds for
Arachne [63] and IX [62]), preventing quick reactions to
load imbalances.

This paper presents Shenango, a system that focuses

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 361

on achieving three goals: (1) microsecond-scale end-
to-end tail latencies and high throughput for datacenter
applications; (2) CPU-efficient packing of applications
on multi-core machines; and (3) high application de-
veloper productivity, thanks to synchronous I/O and
standard programming abstractions such as lightweight
threads and blocking TCP network sockets.

To achieve its goals, Shenango solves the hard prob-
lem of reallocating cores across applications at very fine
time scales; it reallocates cores every 5 microseconds,
orders of magnitude faster than any system we are aware
of. Shenango proposes two key ideas. First, Shenango
introduces an efficient algorithm that accurately deter-
mines when applications would benefit from additional
cores based on runnable threads and incoming packets.
Second, Shenango dedicates a single busy-spinning
core per machine to a centralized software entity called
the IOKernel, which steers packets to applications
and allocates cores across them. Applications run in
user-level runtimes, which provide efficient, high-level
programming abstractions and communicate with the
IOKernel to facilitate core allocations.

Our implementation of Shenango uses existing
Linux facilities, and we have made it available at
https://github.com/shenango. We found that
Shenango achieves similar throughput and latency to
ZygOS [61], a state-of-the-art kernel-bypass network
stack, but with much higher CPU efficiency. For ex-
ample, Shenango can achieve over five million requests
per second of memcached throughput while maintaining
99.9th percentile latency below 100 µs (one million
more than ZygOS). However, unlike ZygOS, Shenango
can linearly trade memcached throughput for batch
application throughput when request rates are lower
than peak load. To our knowledge, Shenango is the first
system that can both multiplex cores and maintain low
tail latency during microsecond-scale bursts in load.
For example, Shenango’s core allocator reacts quickly
enough to keep 99.9th percentile latency below 125 µs
even during an extreme shift in load from one hundred
thousand to five million requests per second.

2 The Case Against Slow Core Allocators
In this section, we explain why millisecond-scale core
allocators are unable to maintain high CPU efficiency
when handling microsecond-scale requests. We define
CPU efficiency as the fraction of cycles spent doing
application-level work, as opposed to busy-spinning,
context switching, packet processing, or other systems
software overhead.

Modern datacenter applications experience re-
quest rate and service time variability over multiple

1
 c

o
re

2

3
4

5 6 7 8

0%

25%

50%

75%

100%

0.0 0.2 0.4 0.6

Throughput (million requests/s)

E
ff

ic
ie

n
c
y

Shenango, 5 μs interval

Simulated upper bound, 1 ms interval

Figure 1: With 5 µs intervals between core reallocations, a
Shenango runtime achieves higher CPU efficiency than an
optimal simulation of a 1 ms core allocator.

timescales [16]. To provide low latency in the face of
these fluctuations, most kernel bypass network stacks,
including ZygOS [61], statically provision cores for
peak load, wasting significant cycles on busy polling.
Recently, efforts such as IX [62] and Arachne [63]
introduced user-level core allocators that adjust core
allocations at 50–100 millisecond intervals. Similarly,
Linux rebalances tasks across cores primarily in re-
sponse to millisecond-scale timer ticks. Unfortunately,
all of these systems adjust cores too slowly to handle
microsecond-scale requests efficiently.

To show why, we built a simulator that determines
a conservative upper-bound on the CPU efficiency of
a core allocator that adjusts cores at one millisecond
intervals. The simulator models an M/M/n/FCFS
queuing system and determines through trial and error
the minimum number of cores needed to maintain a tail
latency limit for a given level of offered load. We assume
a Poisson arrival process (empirically shown to be rep-
resentative of Google’s datacenters [53]), exponentially
distributed service times with a mean of 10 µs, and a
latency limit of 100 µs at the 99.9th percentile. To elim-
inate any time dependence on past load, we also assume
that the arrival queue starts out empty at the beginning
of each one millisecond interval and that all pending
requests can be processed immediately at the end of each
millisecond interval. Together, these assumptions allow
us to calculate the best case CPU efficiency regardless of
the core allocation algorithm used.

Figure 1 shows the relationship between offered load
and CPU efficiency (cycles used divided by cycles allo-
cated) for our simulation. It also shows the efficiency of a
Shenango runtime running the same workload locally by
spawning a thread to perform synthetic work for the du-
ration of each request. For the simulated results, we label
each line segment with the number of cores assigned by
the simulator; the sawtooth pattern occurs because it is
only possible to assign an integer number of cores. Even
with zero network or systems software overhead, mostly
idle cores must be reserved to absorb bursts in load, re-
sulting in a loss in CPU efficiency. This loss is especially

362 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/shenango

severe between one and four cores, and as load varies over
time, applications are likely to spend a significant amount
of time in this low-efficiency region. The ideal system
would spin up a core for exactly the duration of each re-
quest and achieve perfect efficiency, as application-level
work would correspond one-to-one with CPU cycles.
Shenango comes close to this ideal, yielding significant
efficiency improvements over the theoretical upper
bound for a slow allocator, despite incurring real-world
overheads for context switching, synchronization, etc.

On the other hand, a slow core allocator is likely
to perform worse than its theoretical upper bound in
practice. First, CPU efficiency would be even lower
if there were more service time variability or tighter
tail-latency requirements. Second, if the average request
rate were to change during the adjustment interval,
latency would spike until more cores could be added; in
Arachne, load changes result in latency spikes lasting
a few hundred milliseconds (§7.2) and in IX they last
1-2 seconds [62]. Finally, accurately predicting the
relationship between number of cores and performance
over millisecond intervals is extremely difficult; both IX
and Arachne rely on load estimation parameters that may
need to be hand tuned for different applications [62, 63].
If the estimate is too conservative, latency will suffer,
and, if it is too liberal, unnecessary cores will be wasted.
We now discuss how Shenango’s fast core allocation rate
allows it to overcome these problems.

3 Challenges and Approach
Shenango’s goal is to optimize CPU efficiency by
granting each application as few cores as possible while
avoiding a condition we call compute congestion, in
which failing to grant an additional core to an application
would cause work to be delayed by more than a few
microseconds. This objective frees up underused cores
for use by other applications, while still keeping tail
latency in check.

Modern services often experience very high request
rates (millions of packets per second on a single server),
and core allocation overheads make it infeasible to scale
to per-request core reallocations. Instead, Shenango
closely approximates this ideal, detecting load changes
every five microseconds and adjusting core allocations
over 60,000 times per second. Such a short adjustment
interval requires new approaches to estimating load. We
now discuss these challenges in more detail.

Core allocations impose overhead. The speed at
which cores can be reallocated is ultimately limited
by reallocation overheads: determining that a core
should be reallocated, instructing an application to

yield a core, etc. Existing systems impose too much
overhead for microsecond-scale core reallocations to be
practical: Arachne requires 29 microseconds of latency
to reallocate a core [63], and IX requires hundreds of
microseconds because it must update NIC rules for
steering packets to cores [62].
Estimating required cores is difficult. Previous sys-
tems have used application-level metrics such as latency,
throughput, or core utilization to estimate core require-
ments over long time scales [22, 34, 48, 63]. However,
these metrics cannot be applied over microsecond-scale
intervals. Instead, Shenango aims to estimate instanta-
neous load, but this is non-trivial. While requests arriving
over the network provide one source of load, applications
themselves can independently spawn threads.

3.1 Shenango’s Approach

Shenango addresses these challenges with two key
ideas. First, Shenango considers both thread and packet
queuing delays as signals of compute congestion, and it
introduces an efficient congestion detection algorithm
that leverages these signals to decide if an application
would benefit from more cores. This algorithm requires
fine-grained, high-frequency visibility into each appli-
cation’s thread and packet queues. Thus, Shenango’s
second key idea is to dedicate a single, busy-spinning
core to a centralized software entity called the IOKernel
(§4). The IOKernel process runs with root privileges,
serving as an intermediary between applications and NIC
hardware queues. By busy-spinning, the IOKernel can
examine thread and packet queues at microsecond-scale
to orchestrate core allocations. Moreover, it can provide
low-latency access to networking and enable steering of
packets to cores in software, allowing packet steering
rules to be quickly reconfigured when cores are reallo-
cated. The result is that core reallocations complete in
only 5.9 µs and require less than two microseconds of
IOKernel compute time to orchestrate. These overheads
support a core allocation rate that is fast enough to
both adapt to shifts in load and quickly correct any
mispredictions in our congestion detection algorithm.

Application logic runs in per-application runtimes
(§5), which communicate with the IOKernel via shared
memory (Figure 2). Each runtime is untrusted and
is responsible for providing useful programming
abstractions, including threads, mutexes, condition
variables, and network sockets. Applications link with
the Shenango runtime as a library, allowing kernel-like
functions to run within their address spaces.

At start-up, the runtime creates multiple kernel
threads (i.e., pthreads), each with a local runqueue, up
to the maximum number of cores the runtime may use.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 363

IOKernel	

Kernel	

NIC	queues	

runtime	
library	

App	1	

packet	
queues	

idle	core	active	
core	 App	2	

app	
thread	

work	stealing	App	3	

a	 c	b	

Figure 2: Shenango architecture. (a) User applications run as separate processes and link with our kernel-bypass runtime. (b) The
IOKernel runs on a dedicated core, forwarding packets and allocating cores to runtimes. (c) The runtime schedules lightweight
application threads on each core and uses work stealing to balance load.

Application logic runs in lightweight user-level threads
that are placed into these queues; work is balanced
across cores via work stealing. We refer to each per-core
kernel thread created by the runtime as a kthread and to
the user-level threads as uthreads. Shenango is designed
to coexist inside an unmodified Linux environment; the
IOKernel can be configured to manage a subset of cores
while the Linux scheduler manages others.

4 IOKernel
The IOKernel runs on a dedicated core and performs two
main functions:

1. At any given time, it decides how many cores to
allocate to each application (§4.1.1) and which
cores to allocate to each application (§4.1.2).

2. It handles all network I/O, bypassing the kernel. On
the receive path, it directly polls the NIC receive
queue and places each incoming packet onto a
shared memory queue for one of the application’s
cores. On the transmission path, it polls each run-
time’s packet egress queues and forwards packets
to the NIC (§4.2).

4.1 Core Allocation

The IOKernel must make core allocation decisions
quickly because any time it spends on core allocations
cannot be spent forwarding packets, thereby decreasing
throughput. For simplicity, the IOKernel decouples
its two decisions; in most cases, it first decides if an
application should be granted an additional core, and
then decides which core to grant.

4.1.1 Number of cores per application

Each application’s runtime is provisioned with a number
of guaranteed cores and a number of burstable cores.
A runtime is always entitled to use its guaranteed cores
without risk of preemption (oversubscription is not
allowed), but it may use fewer (even zero) cores if it

does not have enough work to occupy them. When extra
cores are available, the IOKernel may allocate them as
burstable cores, allowing busy runtimes to temporarily
exceed their guaranteed core limit.

When deciding how many cores to grant a runtime,
the IOKernel’s objective is to minimize the number of
cores allocated to each runtime, while still avoiding
compute congestion (§3). To determine when a runtime
has more cores than necessary, the IOKernel relies on
runtime kthreads to voluntarily yield cores when they
are unneeded. When a kthread cannot find any work to
do, meaning its local runqueue is empty and it did not
find stealable work from other active kthreads, it cedes
its core and notifies the IOKernel (we refer to this as
parking). The IOKernel may also preempt burstable
cores at any time, forcing them to park immediately.

The IOKernel leverages its unique vantage point to
detect incipient compute congestion by monitoring the
queue occupancies of active kthreads. When a packet
arrives for a runtime that has no allocated cores, the IOK-
ernel immediately grants it a core. To monitor active run-
times for congestion, the IOKernel invokes the conges-
tion detection algorithm at 5 µs intervals (Algorithm 1).

The congestion detection algorithm determines
whether a runtime is overloaded or not based on two
sources of load: queued threads and queued ingress pack-
ets. If any item is found to be present in a queue for two
consecutive runs of the detection algorithm, it indicates
that a packet or thread queued for at least 5 µs. Because
queued packets or threads represent work that could
be handled in parallel on another core, the runtime is
deemed to be “congested,” and the IOKernel grants it one
additional core. We found that the duration of queuing is
a more robust signal than the length of a queue, because
using queue length requires carefully tuning a threshold
parameter for different durations of requests [63, 74].

Implementing the queues as ring buffers enables a

364 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Congestion Detection Algorithm

1: for each application app do
2: for each active kthread k of app do
3: runq← k’s runqueue
4: prev runq← k’s runq last iteration
5: inq← k’s ingress packet queue
6: prev inq← k’s inq last iteration
7: if runq contains threads in prev runq or
8: inq contains packets in prev inq then
9: try to allocate a core to app

10: break . go to next app in outer loop

simple and efficient detection mechanism. Detecting
that an item is present in a queue for two consecutive
intervals is simply a matter of comparing the current
head pointer with the tail pointer from the previous
iteration. Runtimes expose this state to the IOKernel in
a single cache line of shared memory per kthread.

Intuitively, core allocation is capable of oscillatory
behavior, potentially adding and parking a core every
iteration. This is by design because slower adjustments
would either sacrifice tail latency or prevent us from mul-
tiplexing cores over short timescales. Indeed, modern
CPUs are capable of efficient enough context switching;
Process Context Identifiers (PCIDs) allow page tables
to be swapped without flushing the TLB. Linux takes
about 600 nanoseconds to switch between processes,
so it is fast enough to handle the core reallocation
rates produced by the IOKernel. In §7.3 we evaluate
the impact of different core allocation intervals on tail
latency and CPU efficiency.

4.1.2 Which cores for each application

When deciding which core to grant to an application, the
IOKernel considers three factors:

1. Hyper-threading efficiency. Intel’s HyperThreads
enable two hardware threads to run on the same
physical core. These threads share processor re-
sources such as the L1 and L2 caches and execu-
tion units, but are exposed as two separate logical
cores [51]. If hyper-threads from the same appli-
cation run on the same physical core, they benefit
from cache locality; if hyper-threads from different
applications share the same physical core, they can
contend for cache space and degrade each others’
performance. Thus, the IOKernel favors granting
hyper-threads on the same physical core to the same
application.

2. Cache locality. If an application’s state is already
present in the L1/L2 cache of a core it is newly

Algorithm 2 Core Selection Algorithm

1: function CANBEALLOCATED(core)
2: if core is idle then return True
3: app← the app currently using core
4: if n idle cores is 0 and app is bursting then
5: return True
6: return False
7:
8: function SELECTCORE(app)
9: for each active core c of app do

10: chyper← the hyper-thread pair core of c
11: if CANBEALLOCATED(chyper) then
12: return chyper

13: crecent← core most recently yielded by app
14: if CANBEALLOCATED(crecent) then
15: return crecent

16: if n idle cores >0 then return any idle core
17: app bursting← random bursting app
18: return any core in use by app bursting

granted, it can avoid many time-consuming cache
misses. Because hyperthreads share the same cache
resources, granting an application a hyper-thread
pair of an already-running core will yield good
cache locality. In addition, an application may expe-
rience cache locality benefits by running on a core
that it ran on recently.1 Thus, the IOKernel tracks
current and past core allocations for runtimes.

3. Latency. Preempting a core and waiting for it to be-
come available takes time, and wastes cycles that
could be spent doing useful work. Thus, the IOKer-
nel always grants an idle core instead of preempting
a busy core, if an idle core exists.

The IOKernel’s core selection algorithm (Algorithm 2)
considers the three factors described above. A core is
only eligible for allocation (function CANBEALLO-
CATED) if it is idle (line 2), or if there are no idle cores
and the application using core is bursting (using more
than its guaranteed number of cores) (line 4). Amongst
the eligible cores, the selection algorithm SELECTCORE
first tries to allocate the hyper-thread pair of a core the
application is currently using (lines 9–12). Next, it tries
to allocate the core that this application most recently
used, but is no longer using (lines 13–15). Finally, the
algorithm chooses any idle core if one exists, or a random
core from a bursting application.

1This benefit is ephemeral; a core with a clock frequency of 2.2 GHz
can completely overwrite a 3 MB L2 cache in as little as 60 µs.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 365

Once the IOKernel has chosen a core to grant to an
application, it must also select one of its parked kthreads
to wake up and run on that core. For cache locality, it
first attempts to pick one that recently ran on that core.
If such a kthread is not available, the IOKernel selects
the kthread that has been parked the longest, leaving
other kthreads parked in case a core they ran on recently
becomes available.

The runtime for SELECTCORE(APP) is linear in the
number of active cores for APP (it checks whether each
active core has an available hyper-thread). The conges-
tion detection algorithm may invoke SELECTCORE up
to once per active application in one pass, and the sum
of active cores across active applications never exceeds
the number of cores in the system. Thus the total cost
of invoking the detection algorithm is linear in the total
number of cores.

4.2 Dataplane

The IOKernel busy loops, continuously polling the in-
coming NIC packet queue and the outgoing application
packet queues.

Packet steering. Because the IOKernel tracks which
cores belong to each runtime, it can deliver incoming
packets directly to a core running the appropriate run-
time. In Shenango, each runtime is configured with its
own IP and MAC address. When a new packet arrives,
the IOKernel identifies its runtime by looking up the
MAC address in a hash table. The IOKernel then chooses
a core within that runtime using an RSS hash [4], and
enqueues the packet to that core’s ingress packet queue.
Shenango may occasionally reorder packets (e.g., when
the number of cores allocated to a runtime changes), but
we found that packets in the same flow typically arrive
in the same runtime ingress packet queue over short time
intervals (§7.3). Our system could be extended to further
optimize packet steering through techniques like Intel’s
Flow Director [8] or FlexNIC [42].

Polling transmission queues. Polling many egress
queues in order to find packets to transmit can incur
high CPU overhead, particularly in systems with many
queues [68]. Because the IOKernel tracks which
kthreads are active, it is able to only poll the outgoing
runtime packet queues that correspond to active kthreads.
This allows the CPU overhead of polling egress queues
to scale with the number of cores in the system.

5 Runtime
Shenango’s runtime is optimized for programmability,
providing high-level abstractions like blocking TCP net-
work sockets and lightweight threads. Our design scales

to thousands of uthreads, each capable of performing
arbitrary computation interspersed with synchronous I/O
operations. By contrast, many previous kernel-bypass
network stacks trade functionality for performance,
forcing developers to use restrictive, event-driven
programming models with APIs that differ significantly
from Berkeley Sockets [2, 18, 40, 61].

Similar to a library OS [37, 60], our runtime is linked
within each application’s address space. After the
runtime is initialized, applications should only interact
with the Linux Kernel to allocate memory; other system
calls remain available, but we discourage applications
from performing any blocking kernel operations, as
this could reduce CPU utilization. Instead, the runtime
provides kernel-bypass alternatives to these system
calls (in contrast to scheduler activations [11], which
activates new threads to recover lost concurrency). As
an additional benefit, memory and CPU usage, including
for packet processing, can be perfectly accounted to each
application because the kernel no longer performs these
requests on their behalf.

Scheduling. The runtime performs scheduling within
an application across the cores that are dynamically
allocated to it by the IOKernel. During initialization,
the runtime registers its kthreads (enough to handle
the maximum provisioned number of cores) with the
IOKernel and establishes a shared memory region for
network packet queues. Each time the IOKernel assigns
a core, it wakes one of the runtime’s kthreads and binds
it to that specific core.

Our runtime is structured around per-kthread run-
queues and work stealing, similar to Go [6] and in
contrast with Arachne’s work sharing model [63].
Despite embracing this more traditional design, we
found that it was possible to make our uthread handling
extremely efficient. For example, because only the local
kthread can append to its runqueue, uthread wakeups
can be performed without locking. Inspired by ZygOS,
we perform fine-grained work stealing of uthreads to
reduce tail latency, which is particularly beneficial for
workloads that have service time variability [61].

Our runtime also employs run-to-completion, allow-
ing uthreads to run uninterrupted until they voluntarily
yield, in most cases. This policy further reduces tail
latency with light-tailed request patterns.2 When a
uthread yields, any necessary register state is saved on
the stack, allowing execution to resume later. When
the yield is cooperative, we can save less register state

2Preemption within an application, as in Shinjuku [38], could
reduce tail latency for request patterns with high dispersion or a heavy
tail; we leave this to future work.

366 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

because function call boundaries allow clobbering of
some general purpose registers as well as all vector and
floating point state [49]. However, any uthread may be
preempted if the IOKernel reclaims a core; in this case
all register state must be saved.

To find the next uthread to run after a yield, the
scheduler first checks the local runqueue; if it is empty
and there are no incoming packets or expired timers to
process, it engages in work stealing. It first checks the
core’s hyper-thread sibling to exploit cache locality.
If that fails, the scheduler tries to steal from a random
kthread. Finally, the scheduler iterates through all
active kthreads. It repeats these steps for a couple of
microseconds, and if all attempts fail, the scheduler
parks the kthread, yielding its core back to the IOKernel.

Networking. Our runtime is responsible for providing
all networking functionality to the application, including
UDP and TCP protocol handling. After a uthread yields
or whenever the local runqueue is empty, each kthread
checks its ingress packet queue for new packets to handle.
Unlike previous systems, kthreads can also steal packets
from remote ingress packet queues. This contrasts with
ZygOS, which can steal application-level work above
the TCP socket layer but must maintain flow consistent
hashing of packets. Thus this stealing, along with the
packet steering adjustments made by the IOKernel, can
cause packet reordering over short timescales.

A variety of efficient techniques have been proposed
to resequence packets [29, 30, 33]. Where ordering is
required, our runtime provides a similar low overhead
mechanism to reassemble the packet sequence in the
transport layer. This resequencing involves acquiring a
per-socket lock, but because packets from the same flow
typically arrive at the same core over short time scales,
cache locality is preserved and the overhead of acquiring
the lock is small.

On the other hand, we found that there were signifi-
cant advantages to relaxing ordering requirements and
violating flow consistent hashing. ZygOS must send and
receive packets from a given flow on the same core, so
it relies on expensive IPIs to ensure timely processing
of pending ingress packets and to ensure egress handling
happens on the same core. By contrast, Shenango’s
approach enables more fine-grained load balancing of
network flow processing, yielding better performance
with imbalanced workloads (§7.3).

An earlier version of the runtime attempted to support
zero-copy networking. However, we found this approach
had serious drawbacks. First, it required API changes,
breaking compatibility with Berkeley Sockets. Second,
we were surprised to find it had a negative impact on

performance. Upon further investigation, we discovered
that our IOKernel’s throughput was sensitive to the
amount of resident buffering because DDIO (an Intel
technology that pushes packet payloads directly into the
LLC) places limits on the maximum number of cache
lines that can be occupied by packet data. When that
limit is exceeded, packet data is pushed to RAM, greatly
increasing access latency. By copying payloads, we
can encourage DDIO to reuse the same buffers, thus
staying within its cache occupancy threshold. This bears
similarity to the “leaky DMA” issue [70].

Because an application could potentially corrupt its
runtime network stack, we assume security validation
(e.g., bandwidth capping and network virtualization) will
be efficiently handled out-of-band, in exactly the same
manner as for virtual machine guest kernels [23, 27].

6 Implementation
Shenango’s implementation consists of the IOKernel
(§6.1), which runs as a separate, privileged process, and
the runtime (§6.2), which users link with their appli-
cations. Shenango is implemented in C and includes
bindings for C++ and Rust. The IOKernel is imple-
mented in 2,244 LOC and the runtime is implemented
in 6,155 LOC. Both components depend on a 4,762
LOC collection of custom library routines. The imple-
mentation currently supports 64-bit x86, and adapting
it to other platforms would not require many changes.
The IOKernel uses Intel Data Plane Development Kit
(DPDK) [2], version 18.11, for fast access to NIC queues
from user space. Our entire system runs in an unmodified
Linux environment.

6.1 IOKernel Implementation

Shenango relies on several Linux kernel mechanisms to
pin threads to cores and for communication between the
IOKernel and runtimes. The IOKernel passes data via
System-V shared memory segments that are mapped into
each runtime. The runtime sets up a series of descriptor
ring queues (inspired by Barrelfish’s implementation
of lightweight RPC [17]), including ingress packet
queues, egress packet queues, and separate egress
command queues (to prevent head-of-line blocking).
It also designates a portion of the mapped-memory for
outgoing network buffers. We currently place all ingress
packet buffers in a single, read-only region shared with
all runtimes. In the future, we plan to maintain separate
buffers, using NIC HW filtering to segregate packets.

To assign a runtime kthread to a specific core, the
IOKernel uses sched setaffinity. The IOKernel
maintains a shared eventfd file descriptor with each
kthread. When a kthread cannot find more uthreads to

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 367

run, it notifies the IOKernel via a command queue mes-
sage that it is parking and then parks itself by performing
a blocking read on its eventfd. To unpark a kthread,
the IOKernel simply writes a value into the eventfd.
To preempt runtime kthreads when it needs to reassign
a core, the IOKernel directs a SIGUSR1 signal to the
intended kthread using the tgkill system call. This
prompts the kthread to park itself. A malicious kthread
could refuse to park after a signal. While we have yet
to implement mitigation strategies, the IOKernel could
wait a few microseconds and then migrate an offending
kthread to a shared core that is multiplexed by the Linux
scheduler, so that other runtimes are not impacted.

6.2 Runtime Implementation

Our runtime includes support for lightweight threads,
mutexes, condition variables, read-copy-update (RCU),
high resolution timers, and synchronous TCP and UDP
sockets. Like the IOKernel, the runtime makes use of
a limited set of existing Linux primitives; it allocates
memory with mmap, creates kthreads through calls to
pthread create(), and interacts with the IOKernel
through shared memory, eventfd file descriptors, and
signals. We implemented TCP from scratch according to
the RFC [36]. Our TCP stack is interoperable with those
of Linux and ZygOS and includes flow control and fast
retransmit but omits congestion control.

To improve memory allocation performance, the
runtime makes use of per-kthread caches [21], particu-
larly when allocating thread stacks and network packet
buffers. The runtime provides an RCU subsystem to sup-
port efficient access to read-mostly data structures [52].
The runtime detects a quiescent period after each kthread
has rescheduled, allowing it to free any stale RCU
objects. Internally, RCU is used for the ARP table and
for the TCP and UDP socket tables.

Shenango provides bindings for both C++ and Rust
with idiomatic interfaces (e.g., like std::thread)
and support for lambdas and closures respectively. Most
of the bindings are implemented as a thin wrapper around
the underlying C library. However, our uthread support
takes advantage of a unique optimization. We extended
Shenango’s spawn function to reserve space at the base
of each uthread’s stack for the trampoline data (captures,
space for a return value, etc.), avoiding extra allocations.
Preemption. Upon receipt of a SIGUSR1 sent by the
IOKernel, the Linux kernel saves the CPU state into
a trapframe on the thread stack and invokes the signal
handler installed by the runtime. The signal handler
immediately transfers to the scheduler context and parks,
placing the preempted uthread back into the runqueue.
The running uthread could eventually be stolen by

another kthread or resume on the same kthread if it is
re-granted a core.

During certain critical sections of runtime execution,
preemption signals are deferred by incrementing a
thread-local counter. These sections include the entire
scheduler context, RCU and spinlock critical sections,
and code regions that access per-kthread state. Support-
ing preemption of active uthreads poses some challenges.
Pointers to thread-local storage (TLS) may become stale
if a thread context starts executing on a different kthread.
Unfortunately, gcc does not provide a way to disable
caching these addresses. To our knowledge, Microsoft’s
C++ compiler is the only compiler to support this. As
a workaround, we use our own TLS mechanisms for
per-kthread data structures that are accessed outside
of the scheduler context, and we currently require that
applications disable preemption during accesses to
thread-local variables (including glibc’s malloc and
free). We are considering extending the runtime to
support TLS for each uthread, alleviating this burden
on developers. However, the TLS data section would
have to be kept small to prevent higher initialization
overheads when spawning uthreads.

7 Evaluation
In evaluating Shenango, we aim to answer the following
questions:

1. How do latency and CPU efficiency compare
for Shenango and other systems across different
workloads and service-time distributions? (§7.1)

2. How well can Shenango respond to sudden bursts
in load? (§7.2)

3. What is the contribution of the individual mecha-
nisms in Shenango to its observed performance?
(§7.3)

Experimental setup. We used one dual-socket server
with 12-core Intel Xeon E5-2650v4 CPUs running
at 2.20 GHz, 64 GB of RAM, and a 10 Gbits/s Intel
82599ES NIC. We enabled hyper-threads and evaluated
only the first socket, steering NIC interrupts, memory
allocations, and threads. To reduce jitter, we disabled
TurboBoost, C-states, and CPU frequency scaling. We
generated load from six additional quad-core machines
connected to the server through a Mellanox SX1024
switch and Mellanox ConnectX-3 Pro NICs. We used
Ubuntu 18.04 with kernel version 4.15.0. We disabled
kernel mitigations for Meltdown for consistency with
prior results; future CPUs will support these mitigations
in hardware [9].

Systems evaluated. We compare Shenango to Arachne,
ZygOS, and Linux. Arachne is a state-of-the-art,

368 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

System Kernel-
bypass Net.

Lightweight
Threading

Balancing
Interval

Linux 7 7 4 ms
Arachne [63] 7 3 50 ms
ZygOS [61] 3 7 N/A
Shenango 3 3 5 µs

Table 1: Features of the systems we evaluated.

user-level threading system [63]. It achieves better tail
latency and CPU efficiency than Linux by introducing a
user-level core allocator that adjusts the cores assigned to
each application over millisecond timescales. However,
Arachne provides no network stack integration and ap-
plications typically rely on Linux kernel system calls for
network I/O. ZygOS is a state-of-the-art, kernel-bypass
network stack [61] that builds upon IX [18] to achieve
better tail latency, adding fine-grained load balancing of
application-level work between cores. However, it does
not support threads, instead requiring developers to adopt
a restrictive, event-driven API, and it can only run on a
fixed set of statically provisioned cores. Finally, Linux
is the most widely deployed of these systems in practice,
but its performance, as previously studied, is limited by
kernel overheads [18, 35]. Table 1 summarizes the salient
differences between Shenango and these three systems.

For Arachne, we used the latest available source
code [1] as of mid January 2019. We found that the
default load factor of 1.5, a tuning parameter for the core
allocator, yielded the best results in our experiments.
For ZygOS, we similarly used the latest available source
code [7]. We found that ZygOS was unstable with recent
kernels, so we instead used Ubuntu 16.04 with kernel
version 4.11.0.

Finally, for Linux, we used prior work [43, 45] and
invested substantial effort in finding the best possible
configuration. In many cases, the performance of Linux
was unstable, making it challenging to measure. For
example, we noticed signs of performance hysteresis,
where measurement runs converged to different values
despite identical configuration [77]. Increasing the
number of active flows resolved this issue by allowing
for more uniform RSS hashing. We ran batch tasks using
SCHED IDLE (a Linux scheduling policy intended for
very low priority background jobs), though we found
this did not improve performance much over using the
lowest normal scheduler priority (niceness 19).
Applications. We evaluate memcached (v1.5.6), a popu-
lar key-value store that is well supported by all four sys-
tems.3 We also wrote several new Shenango applications
in Rust to measure different load patterns, taking advan-

3We don’t run LRU cache maintenance/eviction and slab rebalanc-
ing for Arachne because Arachne’s memcached implementation does
not support them.

tage of language features like closures and move seman-
tics. For example, we implemented a spin-server that em-
ulates a compute-bound application by using the CPU for
a specified duration before responding to each request. In
addition, we implemented loadgen, a realistic load gen-
erator that can generate precisely-timed request patterns
for our spin-server as well as for memcached. Combined,
these two applications required 1,366 LOC. For com-
paring to other systems, we used variants of the ZygOS
and Linux spin-servers in the ZygOS repository [7] and
implemented our own spin-server for Arachne.

To support batch processing applications, we im-
plemented a pthread shim layer for Shenango that
enables it to run the entire PARSEC suite [19] without
modifications. In our experiments, we use PARSEC’s
swaptions benchmark for batch processing. It computes
prices of a portfolio using Monte Carlo simulations;
each thread computes the price of a swaption with no
synchronization or data dependencies between threads.
Finally, we ported the gdnsd (v2.4.0) [3] DNS server, to
demonstrate Shenango’s UDP support. The source code
for all of these applications is available on GitHub [5].

We used open-loop Poisson processes to model packet
arrivals [69, 77]. Our experiments measure throughput
and the 99.9th percentile tail response latency. All exper-
iments use our Rust loadgen application to generate load
over TCP, unless stated otherwise.

7.1 CPU Efficiency and Latency

In this section we evaluate the CPU efficiency and
latency of memcached, the spin-server, and gdnsd. We
use 6 client servers to generate load, enough to minimize
client-side queuing delays. Each client uses 200 persis-
tent connections (1200 total). We ramp up load gradually
and measure each offered load over several seconds, so
that bursts come only from the Poisson arrival process.

To ensure a fair comparison with ZygOS, which
cannot support more than 16 hyperthreads with our NIC,
we confine all systems to use 16 hyperthreads (8 cores) in
total. Shenango must dedicate one core (2 hyperthreads)
to running the IOKernel, so two fewer hyperthreads
are available for applications; Arachne must dedicate
one hyperthread to the core arbiter. For all but ZygOS,
we also run swaptions, filling any unused cycles with
lower-priority batch processing work. For ZygOS, we
reserve all 16 hyperthreads for the latency-sensitive
application, as required to achieve peak throughput.
Memcached. We use the USR workload from [13]:
requests follow a Poisson arrival process and consist
of 99.8% GET requests and 0.2% SET requests. For
Shenango, we limit memcached to using at most 12
hyperthreads, because this yields the best performance

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 369

0

100

200

300

400

0 2 4 6

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
)

Linux Arachne Shenango ZygOS

0

20

40

60

0 2 4 6

M
e

d
ia

n
 L

a
te

n
c
y
 (
μ

s
)

0

25

50

75

100

0 2 4 6

Memcached Offered Load (million requests/s)

B
a

tc
h

 O
p

s
/s

Figure 3: Shenango maintains consistently low median and
99.9% latency, comparable to those of ZygOS, while allowing
unused cycles to be used by a batch processing application.

for memcached. Figure 3 shows how 99.9th percentile
latency for memcached, median latency for memcached,
and throughput for the batch application (y-axes) change
as we increase the load offered to memcached (x-axis).
We only show data points for which achieved load is
within 0.1% of offered load.

Shenango can handle over five million requests per
second while maintaining a median response time of
37 µs and 99.9th percentile response time of 93 µs.
Despite busy polling on all 16 hyperthreads, ZygOS
maintains similar response times only up to four million
requests per second. ZygOS does scale to support higher
throughput than Shenango, though at a high latency
penalty. Shenango achieves lower throughput because
at the very low service times of memcached (< 2 µs),
the IOKernel becomes a bottleneck. We discuss options
for scaling out the IOKernel further in Section 8. For all
other systems, memcached is bottlenecked by CPU.

Similar to previous studies [18, 61], when there
is no batch work running, we achieve about 800,000
requests per second with memcached in Linux before
99th percentile latency spikes (not shown). However,
we found that Linux’s latency degrades significantly
due to the presence of batch work, especially at the
99.9th percentile. For example, at 0.4 million requests
per second, the 99.9th percentile latency without batch
work is only 83 µs compared to over 2 ms with batch
work. Arachne improves upon Linux, maintaining
99.9th percentile latency below 200 µs with batch work.
However, even without batch work, both systems suffer

significantly from their use of the Linux network stack;
kernel bypass enables both Shenango and ZygOS to
achieve much lower median latency and much higher
peak throughput for memcached.

Shenango outperforms the other systems in terms of
throughput for the batch application at all but the lowest
loads. At very low load, Linux achieves the most batch
throughput because it does not reserve any hyperthreads
for the IOKernel or the core arbiter. As the load offered
to memcached increases, Shenango’s batch throughput
decreases linearly and then plateaus once the batch task
is restricted to only the two remaining hyperthreads.
Memcached throughput still increases beyond this point,
however, because Shenango becomes more efficient near
peak load, spending fewer cycles on core reallocations
and work stealing.

In aggregate, our memcached results illustrate that
Shenango has key advantages over previous systems.
Shenango can achieve tail latencies similar to ZygOS
while at the same time sparing significantly more cycles
for batch work than all three systems, despite reserving
two hyperthreads for the IOKernel.

Spin-server. To evaluate Shenango’s ability to handle
service-time variability in the presence of a batch
processing application, we ran our spin-server with
three service-time distributions, each with a mean of
10 µs: constant, where all requests take equal time;
exponential; and bimodal, where 90% of requests take
5 µs and 10% take 55 µs.

Figure 4 shows the resulting 99.9th percentile latency
and batch throughput as we vary the load on the spin-
server. All systems fall short of the theoretical maximum
throughput achievable by an M/G/16/FCFS simulation,
due to overheads such as packet processing. Compared
to ZygOS, Shenango achieves slightly higher throughput
for the spin server, even though two out of Shenango’s
16 hyperthreads are dedicated to running the IOKernel.
Shenango’s tail latency is similar to that of ZygOS, but
because ZygOS must provision all cores for the spin
server in order to achieve peak throughput, it does not
achieve any batch throughput.

At the 99.9th percentile, Linux’s tail latency varies
drastically, at times reaching several milliseconds, even
at low load. Arachne achieves higher throughput than
Linux for both applications, demonstrating the benefit
of granting applications exclusive use of their cores.
Surprisingly, we observe that Arachne’s tail latency is
slightly higher at the lowest loads than at moderate load.
We suspect that this is due to misestimation of core
requirements. Granting too few cores for up to 50 ms at
a time can result in high latencies for many requests, par-

370 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

constant exponential bimodal

0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6

0

100

200

300

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
)

Linux Arachne Shenango ZygOS Theoretical M/G/16/FCFS

0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6

0

50

100

Spin Server Offered Load (million requests/s)

B
a

tc
h

 O
p

s
/s

Figure 4: Shenango maintains low 99.9% latency across a variety of service time distributions (mean of 10 µs) and linearly trades off
batch processing throughput for latency-sensitive throughput. Linux and Arachne suffer from poor latency and low throughput, while
ZygOS must dedicate all cores to the latency-sensitive spin server in order to achieve peak throughput, resulting in no batch throughput.

ticularly at low loads when there are few cores allocated
to absorb the extra load. We also found that decreasing
Arachne’s core allocation interval to 1 ms or 100 µs
yielded similar or worse performance for both the spin
server and batch application, suggesting that Arachne’s
load estimation mechanisms are not well-tuned for small
core allocation intervals. In contrast, in this experiment
Shenango reallocates cores up to 60,000 times per
second, enabling it to adjust quickly to bursts in load and
maintain much lower tail latency, while granting unused
cycles to the batch application.

DNS. We evaluate UDP performance by running gdnsd
and swaptions simultaneously for Linux and Shenango;
we did not port gdnsd to ZygOS or Arachne. Linux gdnsd
can drive up to 900,000 requests per second with 41 µs
median latency and sub-millisecond 99.9th percentile
latency before starting to drop packets. Shenango gdnsd
is capable of scaling to 5.7 million requests per second
(a 6.33× improvement) with 36 µs median latency and
73 µs 99.9th percentile latency. We omit a graph due to
space constraints.

7.2 Resilience to Bursts in Load

In this experiment, we generate TCP requests with 1 µs
of fake work, and measure the impact of sudden load
increases on tail latency. We offer a baseline load of
100,000 requests per second for one second, followed
by an instantaneous increase to an elevated rate. After an
additional second at the new rate, the load drops back to
the baseline rate. Any unused cores are allocated to batch
processing, keeping overall CPU utilization at 100%.

Figure 5 shows the 99.9th percentile tail latency and
throughput for Arachne and Shenango (computed over
10 ms windows). We exclude Linux because, under these
conditions, it has milliseconds of tail latency even at the

0

250

500

750

1000

0 5 10 15

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
)

Arachne Shenango

0
1
2
3
4
5

0 5 10 15

Time (s)

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 r

e
q

u
e

s
ts

/s
)

Figure 5: Under sudden changes in load, low tail latency is
only possible with a short core allocation interval.

lowest offered load, and we exclude ZygOS because it
cannot adjust core allocations. By contrast, Arachne can
eventually meet the loads offered in the experiment, up
to 1 million requests per second. However, because of its
slow core allocation speed, it can take over 500 millisec-
onds to add enough cores to adapt after a load transition,
causing it to accumulate a backlog of pending requests.
As a result, Arachne experiences milliseconds of tail
latency, even after relatively modest shifts in load. By
contrast, Shenango reacts so quickly that it incurs almost
no additional tail latency, even when handling an extreme
load shift from 100,000 to 5 million requests per second.

7.3 Microbenchmarks

We now evaluate the individual components of Shenango
with microbenchmarks.

Thread library. Shenango depends on efficient thread
scheduling to support high-level programming abstrac-
tions at low cost. Here we compare Shenango’s latency
for common threading operations to Linux pthreads and
to Go and Arachne’s optimized user space threading
implementations (Table 2). These benchmarks are

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 371

pthreads Go Arachne Shenango

Uncontended Mutex 30 24 55 37
Yield Ping Pong 593 109 79 52
Condvar Ping Pong 1,900 281 203 100
Spawn-Join 12,996 462 595 148

Table 2: Nanoseconds to perform common threading opera-
tions (fastest highlighted in green). Shenango performs best
for all but mutexes.

Shenango

DPDK

0 5 10 15

Round trip time (μs)

DPDK

IOKernel + runtime

+ wakeup

+ preemption

Figure 6: Traversing the network stack, waking a kthread, and
preempting a kthread each add only a few µs of overhead to a
packet’s RTT in Shenango.

written in C++ and configure each system to use a single
core. Shenango outperforms all three systems in all
but one benchmark because of its preallocated stacks,
atomic-free wakeups, and care to avoid saving registers
that can safely be clobbered. In Go, mutexes are slightly
faster because its compiler can inline them.

Network stack and core allocation overheads. We
evaluate the baseline latency of our network stack and the
overhead of waking and preempting cores with a simple
C/C++ UDP echo benchmark. The client is a minimal
DPDK client. On the server side, we compare a minimal
DPDK server to three variants of Shenango which are
configured so that: (1) the runtime core busy-spins, (2)
the runtime core does not busy-spin and must be reallo-
cated on every packet arrival, and (3) a batch application
fills all cores and must be preempted on every packet
arrival. Figure 6 shows that the runtime and the IOKernel
add little latency over using raw packets in DPDK. Wak-
ing sleeping kthreads and preempting running kthreads,
however, do incur some overhead, due to the use of Linux
system calls (§6.1). While we were pleasantly surprised
to find that the overhead of these Linux mechanisms is
acceptable, we believe they can be reduced in the future.

Packet load balancing. Shenango allows packet han-
dling to be performed on any core; here we evaluate this
approach. To challenge our system’s load balancing, we
replicate the central graph of Figure 4 but vary the num-
ber of client connections used. With only 24 connections,
RSS distributes flows unevenly across cores. Figure 7
shows that by allowing cores to steal packet processing
work, including TCP protocol handling, Shenango is able
to maintain good performance even with an unbalanced
workload. In contrast, ZygOS’s latency degrades signifi-
cantly because it only allows work stealing at the applica-
tion layer and performs all packet processing on the core

0

100

200

300

0.0 0.4 0.8 1.2

Spin Server Offered Load (million requests/s)

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
)

ZygOS, 24 ZygOS, 1200 Shenango, 24 Shenango, 1200

Figure 7: By work stealing packet handling, Shenango can
load balance more effectively than ZygOS and maintain almost
as good performance with 24 client connections as with 1200.

0

100

200

300

400

500

0.0 0.4 0.8 1.2

Spin Server Offered Load (million requests/s)

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
) Interval (μs) 100 50 25 5

Figure 8: Shenango’s tail latency degrades with larger core
allocation intervals.

on which a packet arrives. At the same time, the costs of
Shenango’s fine-grained work stealing remain quite low.
With 1200 connections, less than 0.07% of packets arrive
at Shenango’s ingress network stack out of order. With 24
connections, this percentage increases at moderate loads
but remains below 3%. The result is that the application
spends less than 0.5% of its cycles resequencing packets.
Core allocation interval. A major strength of Shenango
is its ability to make µs-scale adjustments to the al-
location of cores to runtimes. To illustrate the impact
of core allocation speed on Shenango’s performance,
we replicate the central graph of Figure 4 but vary the
interval between core allocations. Figure 8 demonstrates
that a short interval between adjustments is required
to maintain low tail latency. Such frequent realloca-
tions do impact CPU efficiency; the batch application
performs up to 6% fewer operations per second (of the
max possible) with a 5 µs interval than with a 25, 50,
or 100 µs interval. However, we do not think these
efficiency savings are worth the tail latency increase of at
least 150 µs. We did not use a smaller interval because,
at faster rates, latency is only marginally improved but
more cycles are wasted parking threads.

8 Discussion
We found, in practice, that the IOKernel can support
packet rates of up to 6.5 million incoming and outgoing
packets per second. This is sufficient to saturate a 10
Gbits/s NIC with 114 byte TCP packets or a 40 Gbits/s
NIC with typical Ethernet MTU-sized packets. We
note our evaluation of Shenango does not consider
multisocket, NUMA machines. One option may be to
run multiple instances of the IOKernel, one per socket.

372 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Each IOKernel instance could exchange messages
with the others, perhaps enabling coarse-grained load
balancing between sockets. Such a design would enable
our IOKernel to scale out further. We observed that
the majority of IOKernel overhead was in forwarding
packets rather than in orchestrating core allocations.
Therefore, we also plan to explore hardware offloads,
such as new NIC designs that can efficiently expose
information about queuing buildups to the IOKernel.

9 Related Work

Two-level scheduling: In two-level scheduling (first
proposed in [71]), a first-level spatial scheduler allocates
cores to applications and a second-level scheduler
handles threads on top of the allocated cores. Scheduler
activations [11] provide a kernel mechanism to enable
two-level scheduling; this work inspired recent systems
such as Tessellation [22, 47], Akaros [65], and Cal-
listo [32]. All of these systems decouple core allocation
from thread scheduling. Shenango introduces a new
approach to two-level scheduling by combining the first
scheduler level directly with the NIC.

User-level threading: Several systems have multiplexed
user space threads across one or more cores. Examples
include Capriccio [73], Lithe [58], Intel’s TBB [64],
µThreads [14], Arachne [63], and the Go runtime [6].
Shenango’s runtime borrows many techniques from
these prior works, including work stealing [20]. How-
ever, to our knowledge, no prior system is designed
to tolerate core allocations and revocations at the
granularity of µs.

Dynamic resource allocation: When deciding how
to allocate threads or cores across applications, previ-
ous systems have employed resource controllers that
monitor performance metrics, utilization, or internal
queue lengths (e.g., Tessellation [22], PerfIso [34],
Arachne [63], SEDA [74], and IX [62]). However,
because these metrics are gathered over several millisec-
onds or even seconds, they are too coarse-grained to
manage tail latency. Furthermore, using core utilization
to estimate core requirements is only possible in systems
in which cores remain allocated to applications even
while they are idle or busy-spinning [34, 63]; this
approach wastes CPU cycles.

Several scheduling optimizations have been proposed
to reduce tail latency. For example, Heracles [48] adjusts
CPU isolation mechanisms (e.g., cache partitioning),
Elfen Scheduling [75] strategically disables hyper-
threading lanes, and Tail Control [44] improves upon
work stealing. We are interested in exploring ways of
integrating these techniques with Shenango in the future.

Kernel-bypass networking: Many systems bypass
the kernel to achieve low-latency networking by using
RDMA, SR-IOV, or libraries such as DPDK [2] or
netmap [66]. Examples include MICA [46], IX [18],
Arrakis [59], mTCP [35], Sandstorm [50], FaRM [25],
HERD [39], RAMCloud [57], SoftNIC [31], Zy-
gOS [61], Shinjuku [38], and eRPC [40]. IX and eRPC
process packets in batches and may provide higher
throughput than Shenango for workloads with short,
uniform service times and many connections to balance
load across cores. ZygOS is most similar to Shenango;
it builds on IX by adding work stealing to improve load
balancing within an application. However, none of
these systems can dynamically reallocate cores across
applications at a fine granularity. Instead, they statically
partition cores across applications, or else use an external
control plane to reconfigure core assignments over large
timescales.

10 Conclusion
This paper presented Shenango, a system that can simul-
taneously maintain CPU efficiency, low tail latency, and
high network throughput on machines handling multiple
latency-sensitive and batch processing applications.
Shenango achieves these benefits through its IOKernel,
a dedicated core that integrates with networking to
drive fine-grained core allocation adjustments between
applications. The IOKernel makes use of a conges-
tion detection algorithm that can react to application
overload in µs timescales by tracking queuing backlog
information for both packets and application threads.
This design allows Shenango to significantly improve
upon previous kernel bypass network stacks by recov-
ering cycles wasted on busy spinning because of the
provisioning gap between minimum and peak load.
Finally, our per-application runtime makes these benefits
more accessible to developers by providing high-level
programming abstractions (e.g., lightweight threads and
synchronous network sockets) at low overhead.

11 Acknowledgments
We thank our shepherd KyoungSoo Park, the anony-
mous reviewers, John Ousterhout, Tom Anderson, Frans
Kaashoek, Nickolai Zeldovich, and other members of
PDOS for their useful feedback. We thank Henry Qin
for helping us evaluate Arachne. Amy Ousterhout was
supported by an NSF Fellowship and a Hertz Foundation
Fellowship. This work was funded in part by a Google
Faculty Award and by NSF Grants CNS-1407470,
CNS-1526791, and CNS-1563826.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 373

References
[1] Arachne: Towards Core-Aware Scheduling.

https://github.com/PlatformLab/

Arachne.

[2] DPDK Boosts Packet Processing, Performance,
and Throughput. http://www.intel.com/go/

dpdk.

[3] gdnsd – an authoritative-only dns server.
http://gdnsd.org/.

[4] Introduction to Receive Side Scaling.
https://docs.microsoft.com/en-us/

windows-hardware/drivers/network/

introduction-to-receive-side-scaling.

[5] Shenango. https://github.com/shenango.

[6] The Go Programming Language. https:

//golang.org/.

[7] ZygOS: Achieving Low Tail Latency
for Microsecond-scale Networked Tasks.
https://github.com/ix-project/zygos.

[8] Intel 82599 10 GbE Controller Datasheet. https:
//www.intel.com/content/dam/www/

public/us/en/documents/datasheets/

82599-10-gbe-controller-datasheet.

pdf, 2016.

[9] Intel Analysis of Speculative Execution Side
Channels. Technical report, January 2018.

[10] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-
haran. Data Center TCP (DCTCP). In SIGCOMM,
2010.

[11] T. E. Anderson, B. N. Bershad, E. D. Lazowska,
and H. M. Levy. Scheduler Activations: Effective
Kernel Support for the User-Level Management of
Parallelism. TOCS, 1992.

[12] D. Ardelean, A. Diwan, and C. Erdman. Perfor-
mance Analysis of Cloud Applications. In NSDI,
2018.

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-Scale
Key-Value Store. In SIGMETRICS, 2012.

[14] S. Barghi. uThreads: Concurrent User Threads
in C++(and C). https://github.com/

samanbarghi/uThreads.

[15] L. Barroso, M. Marty, D. Patterson, and P. Ran-
ganathan. Attack of the Killer Microseconds.
Communications of the ACM, 2017.

[16] L. A. Barroso, J. Clidaras, and U. Hölzle. The
Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture, 2013.

[17] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: A new OS architec-
ture for scalable multicore systems. In SOSP, 2009.

[18] A. Belay, G. Prekas, M. Primorac, A. Klimovic,
S. Grossman, C. Kozyrakis, and E. Bugnion. The
IX Operating System: Combining Low Latency,
High Throughput, and Efficiency in a Protected
Dataplane. TOCS, 2017.

[19] C. Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, January 2011.

[20] R. D. Blumofe and C. E. Leiserson. Scheduling
Multithreaded Computations by Work Stealing.
JACM, 1999.

[21] J. Bonwick and J. Adams. Magazines and Vmem:
Extending the Slab Allocator to Many CPUs and
Arbitrary Resources. In USENIX ATC, 2001.

[22] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird,
M. Moretó, D. Chou, B. Gluzman, E. Roman, D. B.
Bartolini, N. Mor, et al. Tessellation: Refactoring
the OS around Explicit Resource Containers with
Continuous Adaptation. In DAC, 2013.

[23] M. Dalton, D. Schultz, J. Adriaens, A. Arefin,
A. Gupta, B. Fahs, D. Rubinstein, E. C. Zer-
meno, E. Rubow, J. A. Docauer, J. Alpert, J. Ai,
J. Olson, K. DeCabooter, M. de Kruijf, N. Hua,
N. Lewis, N. Kasinadhuni, R. Crepaldi, S. Krish-
nan, S. Venkata, Y. Richter, U. Naik, and A. Vahdat.
Andromeda: Performance, Isolation, and Velocity
at Scale in Cloud Network Virtualization. In NSDI,
2018.

[24] J. Dean and L. A. Barroso. The Tail at Scale.
Communications of the ACM, 2013.

[25] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast Remote Memory. In NSDI,
2014.

374 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/PlatformLab/Arachne
https://github.com/PlatformLab/Arachne
http://www.intel.com/go/dpdk
http://www.intel.com/go/dpdk
http://gdnsd.org/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://github.com/shenango
https://golang.org/
https://golang.org/
https://github.com/ix-project/zygos
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://github.com/samanbarghi/uThreads
https://github.com/samanbarghi/uThreads

[26] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankar-
alingam, and D. Burger. Dark Silicon and the End
of Multicore Scaling. In ISCA, 2011.

[27] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat,
V. Bhanu, A. M. Caulfield, E. S. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey,
J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye,
G. Popuri, S. Raindel, T. Sapre, M. Shaw, G. Silva,
M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair,
D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and
A. G. Greenberg. Azure Accelerated Networking:
SmartNICs in the Public Cloud. In NSDI, 2018.

[28] P. X. Gao, A. Narayan, S. Karandikar, J. Car-
reira, S. Han, R. Agarwal, S. Ratnasamy, and
S. Shenker. Network Requirements for Resource
Disaggregation. In OSDI, 2016.

[29] Y. Geng, V. Jeyakumar, A. Kabbani, and M. Al-
izadeh. JUGGLER: A Practical Reordering
Resilient Network Stack for Datacenters. In
EuroSys, 2016.

[30] S. Ghorbani, Z. Yang, P. Godfrey, Y. Ganjali, and
A. Firoozshahian. DRILL: Micro Load Balanc-
ing for Low-latency Data Center Networks. In
SIGCOMM, 2017.

[31] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and
S. Ratnasamy. SoftNIC: A Software NIC to Aug-
ment Hardware. Technical Report UCB/EECS-
2015-155, Univ. California, Berkeley, 2015.

[32] T. Harris, M. Maas, and V. J. Marathe. Callisto:
Co-Scheduling Parallel Runtime Systems. In
EuroSys, 2014.

[33] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter,
and A. Akella. Presto: Edge-based Load Balancing
for Fast Datacenter Networks. In SIGCOMM, 2015.

[34] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety,
M. Syamala, V. R. Narasayya, H. Herodotou,
P. Tomita, A. Chen, J. Zhang, and J. Wang. PerfIso:
Performance Isolation for Commercial Latency-
Sensitive Services. In USENIX ATC, 2018.

[35] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: a Highly Scalable
User-level TCP Stack for Multicore Systems. In
NSDI, 2014.

[36] P. Jon. Transmission Control Protocol: DARPA
Internet Program Protocol Specification. Technical
report, RFC-793, DARPA, 1981.

[37] M. F. Kaashoek, D. R. Engler, G. R. Ganger,
H. M. Briceño, R. Hunt, D. Mazières, T. Pinckney,
R. Grimm, J. Jannotti, and K. Mackenzie. Appli-
cation Performance and Flexibility on Exokernel
Systems. In SOSP, 1997.

[38] K. Kaffes, T. Chong, J. T. Humphries, A. Belay,
D. Mazières, and C. Kozyrakis. Shinjuku: Preemp-
tive Scheduling for µsecond-scale Tail Latency. In
NSDI, 2019.

[39] A. Kalia, M. Kaminsky, and D. Andersen. Using
RDMA Efficiently for Key-Value Services. In
SIGCOMM, 2014.

[40] A. Kalia, M. Kaminsky, and D. Andersen. Datacen-
ter RPCs can be General and Fast. In NSDI, 2019.

[41] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker,
and A. Vahdat. Chronos: Predictable Low Latency
for Data Center Applications. In SOCC, 2012.

[42] A. Kaufmann, S. Peter, N. K. Sharma, T. E. An-
derson, and A. Krishnamurthy. High Performance
Packet Processing with FlexNIC. In ASPLOS,
2016.

[43] J. Leverich and C. Kozyrakis. Reconciling
High Server Utilization and Sub-millisecond
Quality-of-Service. In EuroSys, 2014.

[44] J. Li, K. Agrawal, S. Elnikety, Y. He, I. A. Lee,
C. Lu, and K. S. McKinley. Work Stealing for
Interactive Services to Meet Target Latency. In
PPoPP, 2016.

[45] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble.
Tales of the Tail: Hardware, OS, and Application-
level Sources of Tail Latency. In SoCC, 2014.

[46] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A Holistic Approach to Fast In-Memory
Key-Value Storage. In NSDI, 2014.

[47] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic,
and J. Kubiatowicz. Tessellation: Space-Time Par-
titioning in a Manycore Client OS. In HotPar, 2009.

[48] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving Resource
Efficiency at Scale. In ISCA, 2015.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 375

[49] H. Lu, M. Matz, J. Hubicka, A. Jaeger, and
M. Mitchell. System V Application Binary Inter-
face. AMD64 Architecture Processor Supplement,
2018.

[50] I. Marinos, R. N. Watson, and M. Handley. Net-
work Stack Specialization for Performance. In
SIGCOMM, 2014.

[51] D. T. Marr, F. Binns, D. L. Hill, G. Hinton,
D. A. Koufaty, J. A. Miller, and M. Upton.
Hyper-Threading Technology Architecture and
Microarchitecture. Intel Technology Journal, 2002.

[52] P. E. McKenney, S. Boyd-Wickizer, and J. Walpole.
RCU Usage in the Linux Kernel: One Decade
Later. Technical report, 2013.

[53] D. Meisner, C. M. Sadler, L. A. Barroso, W. Weber,
and T. F. Wenisch. Power Management of Online
Data-Intensive Services. In ISCA, 2011.

[54] Mellanox Technologies. HP and Mellanox
Benchmarking Report for Ultra Low Latency
10 and 40Gb/s Ethernet Interconnect. http:
//www.mellanox.com/related-docs/
whitepapers/HP_Mellanox_FSI%
20Benchmarking%20Report%20for%
2010%20%26%2040GbE.pdf, 2012.

[55] Mellanox Technologies. RoCE vs. iWARP Com-
petitive Analysis. http://www.mellanox.com/
related-docs/whitepapers/WP_RoCE_vs_

iWARP.pdf, 2017.

[56] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkatara-
mani. Scaling Memcache at Facebook. In NSDI,
2013.

[57] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and
S. Yang. The RAMCloud Storage System. TOCS,
2015.

[58] H. Pan, B. Hindman, and K. Asanović. Composing
Parallel Software Efficiently with Lithe. PLDI,
2010.

[59] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control
Plane. OSDI, 2014.

[60] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olin-
sky, and G. C. Hunt. Rethinking the Library OS
from the Top Down. In ASPLOS, 2011.

[61] G. Prekas, M. Kogias, and E. Bugnion. ZygOS:
Achieving Low Tail Latency for Microsecond-scale
Networked Tasks. In SOSP, 2017.

[62] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis,
and E. Bugnion. Energy Proportionality and
Workload Consolidation for Latency-critical
Applications. In SoCC, 2015.

[63] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.
Arachne: Core-Aware Thread Management. In
OSDI, 2018.

[64] J. Reinders. Intel Threading Building Blocks: Out-
fitting C++ for Multi-Core Processor Parallelism.
2007.

[65] B. Rhoden, K. Klues, D. Zhu, and E. Brewer.
Improving Per-Node Efficiency in the Datacenter
with New OS Abstractions. In SoCC, 2011.

[66] L. Rizzo. netmap: a novel framework for fast
packet I/O. In USENIX ATC, 2012.

[67] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosen-
blum, and J. K. Ousterhout. It’s Time for Low
Latency. In HotOS, 2011.

[68] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam,
C. Contavalli, and A. Vahdat. Carousel: Scalable
Traffic Shaping at End Hosts. In SIGCOMM, 2017.

[69] B. Schroeder, A. Wierman, and M. Harchol-Balter.
Open Versus Closed: A Cautionary Tale. In NSDI,
2006.

[70] A. Tootoonchian, A. Panda, C. Lan, M. Walls,
K. J. Argyraki, S. Ratnasamy, and S. Shenker.
ResQ: Enabling SLOs in Network Function
Virtualization. In NSDI, 2018.

[71] A. Tucker and A. Gupta. Process Control and
Scheduling Issues for Multiprogrammed Shared-
Memory Multiprocessors. In SOSP, 1989.

[72] A. Verma, L. Pedrosa, M. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale cluster
management at Google with Borg. In EuroSys,
2015.

[73] R. Von Behren, J. Condit, F. Zhou, G. C. Necula,
and E. Brewer. Capriccio: Scalable Threads for
Internet Services. In SOSP, 2003.

376 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf

[74] M. Welsh, D. Culler, and E. Brewer. SEDA:
An Architecture for Well-Conditioned, Scalable
Internet Services. In SOSP, 2001.

[75] X. Yang, S. M. Blackburn, and K. S. McKinley.
Elfen Scheduling: Fine-Grain Principled Borrow-
ing from Latency-Critical Workloads Using Simul-
taneous Multithreading. In USENIX ATC, 2016.

[76] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. CPI2: CPU perfor-
mance isolation for shared compute clusters. In
EuroSys, 2013.

[77] Y. Zhang, D. Meisner, J. Mars, and L. Tang.
Treadmill: Attributing the Source of Tail Latency
through Precise Load Testing and Statistical
Inference. In ISCA, 2016.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 377

End-to-end I/O Monitoring on a Leading Supercomputer

Bin Yang1,3, Xu Ji2,3, Xiaosong Ma4, Xiyang Wang3, Tianyu Zhang1,3, Xiupeng Zhu1,3,
Nosayba El-Sayed∗ 5, Haidong Lan1, Yibo Yang1, Jidong Zhai2, Weiguo Liu1,3, and Wei Xue† 2,3

1Shandong University, 2Tsinghua University, 3National Supercomputer Center in Wuxi, 4Qatar
Computing Research institute, HBKU, 5Emory University

Abstract

This paper presents an effort to overcome the complexities
of production system I/O performance monitoring. We de-
sign Beacon, an end-to-end I/O resource monitoring and
diagnosis system, for the 40960-node Sunway TaihuLight
supercomputer, current ranked world No.3. Beacon si-
multaneously collects and correlates I/O tracing/profiling
data from all the compute nodes, forwarding nodes, stor-
age nodes and metadata servers. With mechanisms such as
aggressive online+offline trace compression and distributed
caching/storage, it delivers scalable, low-overhead, and sus-
tainable I/O diagnosis under production use. Higher-level
per-application I/O performance behaviors are reconstructed
from system-level monitoring data to reveal correlations be-
tween system performance bottlenecks, utilization symp-
toms, and application behaviors. Beacon further provides
query, statistics, and visualization utilities to users and ad-
ministrators, allowing comprehensive and in-depth analysis
without requiring any code/script modification.

With its deployment on TaihuLight for around 18 months,
we demonstrate Beacon’s effectiveness with real-world use
cases for I/O performance issue identification and diagnosis.
It has successfully helped center administrators identify ob-
scure design or configuration flaws, system anomaly occur-
rences, I/O performance interference, and resource under- or
over-provisioning problems. Several of the exposed prob-
lems have already been fixed, with others being currently
addressed. In addition, we demonstrate Beacon’s generality
by its recent extension to monitor interconnection networks,
another contention point on supercomputers. Both Beacon
codes and part of collected monitoring data are released.1

1 Introduction
Modern supercomputers are networked systems with in-
creasingly deep storage hierarchy, serving applications with
growing scale and complexity. The long I/O path from stor-
age media to application, combined with complex software

∗Most work conducted at Qatar Computing Research Institute.
†Wei Xue is the corresponding author. Email: xuewei@tsinghua.edu.cn
1Github link: https://github.com/Beaconsys/Beacon

stacks and hardware configurations, makes I/O optimiza-
tions increasingly challenging, both for application devel-
opers and supercomputer administrators. In addition, since
I/O utilizes heavily shared system components (unlike com-
putation or memory accesses), it usually suffers substantial
inter-workload interference, causing high performance vari-
ance [37, 44, 47, 55, 60, 71].

Online tools that can capture/analyze I/O activities and
guide optimization are highly needed. They also need to
provide I/O usage information and performance records to
guide future systems’ design, configuration, and deploy-
ment. To this end, several profiling/tracing tools and frame-
works have been developed, including application-side (e.g.,
Darshan [31] and ScalableIOTrace [77]), backend-side (e.g.,
LustreDU [29], IOSI [50] and LIOProf [85]), and multi-layer
tools (e.g., Modular Darshan [70] and GUIDE [91]).

These proposed tools, however, suffer one or more of the
following limitations. Application-oriented tools often re-
quire developers to instrument their source code or link extra
libraries. They also do not offer intuitive ways to analyze
inter-application I/O performance behaviors such as interfer-
ence issues. Backend-oriented tools can collect system-level
performance data and monitor cross-application interactions,
but have difficulty in identifying performance issues for spe-
cific applications and in finding their root causes. Finally,
problematic applications issuing inefficient I/O requests es-
cape the radar of backend-side analytical methods [50, 52]
relying on high-bandwidth applications.

This paper reports our design, implementation, and de-
ployment of a light-weight, end-to-end I/O resource monitor-
ing and diagnosis system, Beacon, for TaihuLight, currently
the world’s No.3 supercomputer [75]. It works with Taihu-
Light’s 40,960 compute nodes (over ten-million cores in to-
tal), 288 forwarding nodes, 288 storage nodes, and 2 meta-
data nodes. Beacon integrates frontend tracing and backend
profiling into a seamless framework, enabling tasks such as
automatic per-application I/O behavior profiling, I/O bottle-
neck/interference analysis, and system anomaly detection.

To our best knowledge, this is the first system-level, multi-
layer monitoring and real-time diagnosis framework de-
ployed on ultra scale supercomputers. Beacon collects per-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 379

formance data simultaneously from different types of nodes
(including compute, I/O forwarding, storage, and metadata
nodes) and analyzes them collaboratively, without requiring
any involvement of application developers. Its elaborated
collection scheme and aggressive compression minimize the
system cost: only 85 part-time servers to monitor the en-
tire 40960-node system, with < 1% performance overhead
on user applications.

We have deployed Beacon for production use since April,
2017. It has helped the TaihuLight system administra-
tion and I/O performance team to identify several perfor-
mance degradation problems. With its rich I/O perfor-
mance data collection and real-time system monitoring, Bea-
con successfully exposes the mismatch between applica-
tion I/O patterns and widely-adopted underlying storage
design/configurations. To help application developers and
users, it enables detailed per-application I/O behavior study,
with novel inter-application interference identification and
analysis. Beacon also performs automatic anomaly detec-
tion. Finally, we have recently started to expand Beacon be-
yond I/O, to network switch monitoring.

Based on our design and deployment experience, we argue
that having such end-to-end detailed I/O monitoring frame-
work is a highly rewarding practice. Beacon’s all-system-
level monitoring decouples it from language, library, or com-
piler constraints, enabling monitoring data collection and
analysis for all applications and users. Much of its infrastruc-
ture reuses existing server/network/storage resources, and it
has proven to bring with it negligible overhead. In exchange,
users and administrators harvest deep insights into the com-
plex I/O system components’ operation and interaction, and
save both human resources and machine core-hours wasted
on unnecessarily slow/jittery I/O, or system anomalies.

2 Background: TaihuLight Network Storage

TaihuLight compute
nodes(40960)

I/O forwarding nodes (288) Storage nodes (2*144)

40 cabinets

…

Supernode
(256 nodes)

Sugon
DS800

Disk arrays
(72)

……

6 OSTs

/Online1(default) /Online2(reserved)
I/O forwarding(reserved)

IB FDR

Monitoring and management network
ҁGigabit Ethernet҂

……

I/O forwarding(default)

Sugon
DS800

Disk arrays
(72)

Metadata QRGHV (2)

IB FDR

…

Login nodes

…

Auxiliary Compute Cluster

…

…

Sunway TaihuLight

Figure 1: TaihuLight and its Icefish storage system architecture
overview. Beacon uses the separate monitoring and management
Ethernet network shown at the bottom.

We first introduce the TaihuLight supercomputer (and its
Icefish I/O subsystem), where we performed our implemen-
tation and deployment. Though the rest of our discussion

will be based on this specific platform, many aspects of Bea-
con’s design and operation can be applied to other large-scale
supercomputers or clusters.

TaihuLight is currently the world No.3 supercomputer, a
many-core accelerated 125-petaflop system [36]. Figure 1 il-
lustrates its architecture, highlighting the Icefish storage sub-
system. The 40,960 260-core compute nodes are organized
in 40 cabinets, each containing 4 supernodes. Through dual-
rail FDR InfiniBand, all the 256 compute nodes in one su-
pernode are fully connected and then connected to Icefish
via a Fat-tree network. In addition, Icefish serves an Aux-
iliary Compute Cluster (ACC) with Intel Xeon processors,
mainly used for data pre- and post-processing.

The Icefish backend employs the Lustre parallel file sys-
tem [26], with an aggregate capacity of 10 PB on top of 288
storage nodes and 144 Sugon DS800 disk enclosures. An en-
closure contains 60 1.2 TB SAS HDD drives, composing 6
OSTs, each an 8+2 RAID6 array. The controller within each
enclosure connects to two storage nodes, via 2 fiber channels
for path redundancy. Therefore every storage node manages
3 OSTs, while the two adjacent storage nodes sharing a con-
troller form a failover pair.

Between the compute nodes and the Lustre backend is a
layer of 288 I/O forwarding nodes. Each plays a dual role,
both as a LWFS (Lightweight File System) based on Glus-
ter [6] server to the compute nodes and client to the Lustre
backend. This I/O forwarding practice is adopted by multiple
other platforms that operate at such scale [15, 28, 54, 78, 90].

A forwarding node provides a bandwidth of 2.5 GB/s, ag-
gregating to over 720 GB/s for the entire forwarding system.
Each backend controller provides about 1.8 GB/s, amounting
to a file system bandwidth of around 260 GB/s. Overall Ice-
fish delivers 240 GB/s and 220 GB/s aggregate bandwidths
for reads and writes, respectively.

TaihuLight debuted on the Top500 list in June 2016. At
the time of this study, Icefish was equally partitioned into two
namespaces: Online1 (for everyday workloads) and Online2
(reserved for ultra-scale jobs that occupy the majority of the
compute nodes), with disjoint sets of forwarding nodes. A
batch job can only use either namespace. I/O requests from a
compute node are served by a specified forwarding node us-
ing a static mapping strategy for easy maintenance (48 fixed
forwarding nodes for ACC and 80 fixed forwarding nodes
for Sunway compute nodes).

Therefore the two namespaces, along with statically par-
titioned backend resources, are currently utilized separately
by routine jobs and “VIP” jobs. One motivation for deploy-
ing an end-to-end monitoring system is to analyze the I/O
behavior of the entire supercomputer’s workloads and to de-
sign more flexible I/O resource allocation/scheduling mech-
anisms. For example, motivated by the findings of our mon-
itoring system, a dynamic forwarding allocation system [43]
for better forwarding resource utilization has been developed
and test deployed.

380 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Beacon Design and Implementation
3.1 Beacon Architecture Overview
Figure 2 outlines the working of Beacon on top of the Ice-
fish I/O architecture, designed to operate at different levels
of distribution for both scalability and ease of management.

Beacon performs I/O monitoring at all five Icefish com-
ponents: the LWFS client (on compute nodes), the LWFS
server and Lustre client (both on forwarding nodes), the Lus-
tre server (on storage nodes), and the Lustre metadata server
(on metadata nodes). At each of these monitoring points,
Beacon deploys lightweight monitoring daemons that col-
lect I/O-relevant events, status, and performance data lo-
cally, then transmit data for aggregation. Aggressive first-
pass compression is conducted on all compute nodes for ef-
ficient per-application I/O trace collection/storage.

 84+1 “part-time” servers (running on 85 storage nodes)

I/O forwarding
nodes (240)

Storage
nodes(288)

N1

Metadata
nodes(2)

Compute nodes
(40960)

LWFS client̴ LWFS server̴ MDS

App
users

Profiling

Lustre client̴

Lustre server̴

N81 N84N82 N83

Job
database
(MySQL)

N80

In-memory cache (Redis)
I/O data collector (Logstash)

Distributed I/O record database (Elasticsearch)

N85ŏ

Tracing Sampled monitoring Monitoring point

Dedicated Beacon server

Periodic update

In-memory cache for recent Jobs (Redis)

Per-job I/O information summarization (MySQL)

Log processing&inter-node compression (Elasticsearch)

Web interface for query/visualization

ŏ

ŏ

Sys
admin

Figure 2: Beacon’s main components: daemons at monitoring
points, distributed I/O record database, job database, plus a dedi-
cated Beacon server. The different width of arrows into and out
from a module indicates data compression.

Beacon has its major backend processing and storage
workflow distributed to part of the storage nodes on their
node-local disks, utilizing hardware resources and paral-
lelism. To this end, Beacon divides the 40,960 compute
nodes into 80 groups and enlists 80 of the 288 storage
nodes to communicate with one group each. Two more
storage nodes are used to collect data from the forwarding
nodes, plus another for storage nodes and one last for MDS.
Together, these 84 “part-time” servers (shown as “N1” to
“N84” in Figure 2) are called log servers, which host a dis-
tributed I/O record database of Beacon. The numbers of
such servers were selected empirically considering Icefish’s
peak monitoring data processing workload.

These log servers adopt a layered software architecture
built upon mature open-source frameworks. They collect
I/O-relevant events, status and performance data through
Logstash [9], a server-side log processing pipeline for simul-
taneously ingesting data from multiple sources. The data are
then imported to Redis [16], a widely-used in-memory data

store, acting as a cache to quickly absorb monitoring output.
Persistent data storage and subsequent analysis are done via
Elasticsearch [5], a distributed, lightweight search and ana-
lytics engine supporting a NoSQL database. It also supports
efficient Beacon queries, for real-time and offline analysis.

One more storage node (N85 in Figure 2) is used to host
Beacon’s job database (implemented using MySQL [11]),
which interacts with the job queuing system and keeps track
of per-job information obtained by Beacon.

Finally, Beacon processes and presents its monitoring re-
sults to users (either system administrators or application
users) using a dedicated Beacon server. There it performs
two kinds of offline data analysis periodically: (1) second-
pass, inter-node compression to further remove data re-
dundancy by comparing and combining logs from compute
nodes running the same job, and (2) extracting and caching
in MySQL using SQL views the per-job statistic summary,
while generating and caching in Redis common performance
visualization results, to facilitate speedy user response. Log
and monitoring data, after the two-pass compression, are per-
manently stored using Elasticsearch on this dedicated Bea-
con server. 2 Considering the typical daily data collection
size of 10-100 GB, its 120 TB RAID5 capacity far exceeds
the system’s lifetime storage space needs.

(a) For user: per-job I/O performance (b) For admin: OST anomaly detection

Figure 3: Sample display from Beacon’s web interface: (a) cross-
layer read/write bandwidth of one user job, (b) bandwidth of three
OSTs identified as undergoing anomaly.

On top of its Elasticsearch-MySQL-Redis stack, Beacon’s
web interface provides users with a friendly GUI for I/O-
related job/system information query processing and visual-
ization. For instance, application users could query a sum-
mary of their programs’ I/O behavior based on job ID, along
the entire I/O path, to help diagnosing I/O performance prob-
lems; system administrators can monitor real-time load lev-
els on all forwarding, storage nodes and metadata servers,
facilitating future job scheduling optimizations and center-
level resource allocation policies. Figure 3 shows corre-
sponding screenshots. Section 4 provides more details with
concrete case studies.

All communication among Beacon entities uses a low-
cost, easy-to-maintain Ethernet connection (marked in green
in Figure 1), separate from both the main computation and

2Data in the distributed I/O record database are kept for 6 months.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 381

the storage interconnects.

3.2 Multi-layer I/O Monitoring
Compute nodes On each of the 40,960 compute nodes,
Beacon collects LWFS client trace logs. Each log entry con-
tains the node’s IP, I/O operation type, file descriptor, offset,
request size, and timestamp.

On a typical day, such raw trace data alone amounts
to over 100 GB, making their collection/processing a non-
trivial task on Beacon’s I/O record database, which takes
away resources from the storage nodes. However, there ex-
ists abundant redundancy in HPC workloads’ I/O operations.
For example, since each compute node is usually dedicated
to one job at a time, the job IDs are identical among many
trace entries. Similarly, due to the regular, tightly coupled
nature of many parallel applications, adjacent I/O operations
likely have common components such as target file, opera-
tion type, and request size. Recognizing this, Beacon per-
forms aggressive online compression on each compute node
to dramatically reduce the I/O trace size. This is done by a
simple, linear algorithm comparing adjacent log items and
combining those with identical operation type, file descrip-
tor, and request size, and accessing contiguous areas. These
log items are replaced with a single item plus a counter. Con-
sidering the low computing overhead, we perform such par-
allel first-pass compression on compute nodes.

Beacon conducts offline log processing and second-pass
compression on the dedicated server. Here it extracts the
feature vector <time, operation, file descriptor, size, offset>
from the original log records, and performs inter-node com-
pression by comparing feature vector lists from all nodes
and merging identical vectors, using a similar approach as
in block trace modeling [74] or ScalaTrace [61].

The compute-node-side first-pass compression reduces
the raw trace size by a factor of 5.4 to 34.6 across 8 real-
world, large-scale applications, where the gain relies on the
amount of “immediate” redundancy in an application’s I/O
operations. The second-pass compression on the dedicated
Beacon server further delivers a 2- to 4-fold reduction. De-
tailed results are given in Appendix A.
Forwarding nodes On each forwarding node, Beacon pro-
files both the LWFS server and Lustre client. It collects the
latency and processing time for each LWFS server request,
and the request queue length for each LWFS server (by sam-
pling the queue status once per 1000 requests). Rather than
saving the per-request traces, the Beacon daemon periodi-
cally processes new traces and only saves I/O request statis-
tics such as latency and queue length distribution.

For the Lustre client, Beacon collects request statistics by
sampling the status of all outstanding RPC requests, once
every second. Each sample contains the forwarding ID and
RPC request size to the Lustre server.
Storage nodes and MDS On the storage nodes, Beacon
daemons periodically sample the Lustre OST status table,

record data items such as the OST ID and OST total data size,
and further send high-level statistics such as count of RPC
requests and average per-RPC data size in the past time win-
dow. On the Lustre MDS, Beacon also periodically collects
and records statistics on active metadata operations (such as
open and lookup) at 1-second intervals, while storing a sum-
mary of the periodic statistics in its database.

3.3 Multi-layer I/O Profiling Data Analysis
All the aforementioned monitoring data are transmitted for
long-term storage and processing at the Elasticsearch-based
database on the dedicated Beacon server as JSON objects,
on top of which Beacon builds I/O monitoring/profiling ser-
vices. These include automatic anomaly detection that runs
periodically, as well as query and visualization tools that
supercomputer users and administrators could use interac-
tively. Below we give more detailed descriptions.
Automatic anomaly detection Outright failures are rela-
tively easy to detect in a large system, commonly handled
by tools such as heartbeat detection [67, 72], and is beyond
the scope of this work. However, alive yet very slow com-
ponents, such as forwarding nodes and OSTs under perfor-
mance degradation, may continue to serve requests, but at
a much lower pace that drags down entire applications’ per-
formance and reduces overall system utilization. With a busy
storage system serving multiple platforms and on each many
concurrent applications, such stragglers are rather hard to be
identified. Assisted by its continuous, end-to-end I/O moni-
toring, Beacon enables automatic I/O system anomaly detec-
tion, identifying system components processing I/O work-
load at a significantly slower pace than their peers.

This is done by processing I/O monitoring data from the
current and historical execution(s) of the same application,
using clustering to detect apparent performance degradation
on forwarding nodes and OSTs. The frequency of running
such detection processing is configurable and is currently set
at once every hour. Upon the identification of a serious sys-
tem anomaly, an alarm email will be automatically generated
and sent to TaihuLight administrators. We give a use case
study in Section 4.2, plus detailed workflow description in
Appendix B.
Per-job I/O performance analysis Upon a job’s comple-
tion, Beacon performs automatic analysis of its I/O moni-
toring data collected from all layers. It performs inter-layer
correlation by first identifying jobs from the job database
that run on given compute node(s) at the log entry collection
time. The involved forwarding nodes, leading to relevant for-
warding monitoring data, are then located via the compute-
to-forwarding node mapping using a system-wide mapping
table lookup. Finally, relevant OSTs and corresponding stor-
age node monitoring data entries are found by file system
lookup using the Lustre command lfs.

From the above data, Beacon derives and stores coarse-
grained information for quick query, including average and

382 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

peak I/O bandwidth, average IOPS, runtime, number of pro-
cesses (and compute nodes) performing I/O, I/O mode, total
count of metadata operations, and average metadata opera-
tions per second during I/O phases. Among them, the I/O
mode indicates the parallel file sharing mode among pro-
cesses, where common modes include “N-N” (each compute
process accesses a separate file), “N-1” (all processes share
one file), “N-M” (N processes perform I/O aggregation to
access M files, M<N), and “1-1” (only one of all processes
performs sequential I/O on a single file).

To help users understand/debug their applications’ I/O
performance, Beacon provides web-based I/O data visual-
ization. This diagnosis system can be queried using a job
ID, after appropriate authentication, and allows visualizing
the I/O statistics of the job, both real-time and post-mortem.
It reports the measured I/O metrics (such as bandwidth and
IOPS) and inferred characteristics (such as the number of
I/O processes and I/O mode). Users are also presented with
user-configurable visualization tools, showing time-series
measurement in I/O metrics, statistics information such as
request type/size distribution, and performance variances.
Our powerful I/O monitoring database allows further user-
initiated navigation such as per-compute-node traffic history,
and zooming control to examine data at different granular-
ity. For security/privacy, users are only allowed to view I/O
data from compute, forwarding, and storage nodes involved
in and for the duration of their jobs’ execution.
I/O subsystem monitoring for administrators Beacon
also provides administrators with the capability of monitor-
ing the I/O status for any time period, on any node.

Besides all the user-visible information and facilities men-
tioned above, the administrators can further obtain and visu-
alize: (1) detailed I/O bandwidth and IOPS for each com-
pute node, forwarding node, and storage node, (2) resource
utilization status of forwarding nodes, storage nodes and the
MDS, including detailed request queue length statistics, and
(3) I/O request latency distribution on forwarding nodes. Ad-
ditionally, Beacon authorizes administrators with direct I/O
record database access, to facilitate in-depth analysis.

Combining such facilities, administrators could perform
powerful and thorough I/O traffic and performance analysis,
e.g., by checking multi-level traffic, latency, and throughput
monitoring information regarding a certain job execution.

3.4 Generality and Limitations
Beacon can be adopted by other platforms. The I/O forward-
ing architecture is widely used, by 9 out of the current Top 20
machines (listed in Table 1). It is also targeted by the DAOS
Exascale storage design [54] and the TOKIO I/O monitoring
framework [24].

Beacon’s building blocks, such as operation log col-
lection and compression, scheduler-assisted per-application
data correlation and analysis, history-based anomaly identi-
fication, automatic I/O mode detection, and built-in interfer-

Rank Machine Vendor File system
3 Taihulight [19] NRCPC Lustre
4 Tianhe-2A [87] NUDT Lustre+H2FS
5 Piz Daint [15] Cray Lustre+GPFS
6 Trinity [21] Cray Lustre
9 Titan [20] Cray Lustre

10 Sequoia [17] IBM Lustre
12 Cori [1] Cray Lustre+GPFS
14 Oakforest-PACS [12] Fujitsu Lustre
18 K computer [8] Fujitsu FEFS [65]

Table 1: I/O forwarding adopters among top-20 supercomputers, as
of November 2018

ence analysis, can all be performed on other supercomputers.
Its data management components, such as Logstash, Redis,
and ElasticSearch, are open-source software that will run on
these machines as well. Our forwarding layer design valida-
tion and load analysis could also help recent platforms with
a layer of burst buffer nodes, such as NERSC’s Cori [2].

Meanwhile, the current Beacon system has limitations that
can be addressed in future work or application to other plat-
forms. For example, it currently performs data analysis and
detects anomalies by bringing unusual patterns to the atten-
tion of system administrators. Additional historical data col-
lection to correlate symptoms and solutions would make the
process more intelligent and reduce human labor require-
ment [86]. Similarly, application users who are not parallel
I/O experts could benefit from system-generated direct sug-
gestions (such as for I/O mode or request size change, and
against using the parallel file system for metadata-heavy in-
teractive tasks), beyond performance data visualization.

4 Beacon Use Cases
Beacon has been deployed on TaihuLight for around 18
months and has gathered massive I/O information. So far
it has accumulated around 10 TB of trace data (after two
passes of compression). This history contains 116,765 jobs
that used at least 32 compute nodes, consuming 323,951,208
core-hours in total. 28,330 (24%) of these jobs featured non-
trivial I/O, with per-job I/O volume over 200 MB.

The insights and issues revealed by Beacon’s monitoring
and diagnosis have already helped TaihuLight administrators
fix several design flaws, develop a dynamic and automatic
forwarding node allocation tool, and improve system relia-
bility/consistency plus application efficiency. Due to space
limit, we focus on three types of use cases: (1) Performance
issue diagnosis, (2) Automatic I/O anomaly diagnosis, and
(3) Application and user behavior analysis.

4.1 Performance Issue Diagnosis
Forwarding node cache thrashing Beacon’s end-to-end
monitoring facilitates cross-layer correlation of I/O profiling
data, at different temporal or spatial granularity. By compar-
ing the total request volume at each layer, Beacon has helped
TaihuLight’s infrastructure management team in identifying
a previously unknown performance issue, as detailed next.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 383

A major reason driving the adoption of I/O forwarding or
burst buffer layer is the opportunity to perform prefetching,
caching, and buffering, to reduce the pressure on slower disk
storage. Figure 4 shows the read volume on compute and
forwarding node layers, during two sampled 70-hour peri-
ods in August 2017. Figure 4(a) shows a case with expected
behavior, where the total volume requested by the compute
nodes is significantly higher than that requested by the for-
warding nodes, signaling good access locality and effective
caching. Figure 4(b), however, tells the opposite story (that
surprised system administrators): the forwarding layer could
incur much higher read traffic from the backend than re-
quested by user applications, reading much more data from
the storage nodes than returning to compute nodes. Such sit-
uation does not apply to writes, where Beacon always shows
matching aggregate bandwidth across the two levels.

0 20 40 60
Time (hour)

0

2

4

6

I/
O

 v
o

lu
m

e
 (

G
B

)

10
4

Comp_Read Fwd_Read

(a) 70 hours starting from 08/14/2017

0 20 40 60
Time (hour)

0

1

2

3

4

I/
O

 v
o

lu
m

e
 (

G
B

)

10
5

Comp_Read Fwd_Read

(b) 70 hours starting from 08/01/2017

Figure 4: Sample segments of TaihuLight read volume history, each
collected at two layers

Further analysis of the applications executed and their
assigned forwarding nodes during the problem period in
Figure 4(b) reveals an unknown cache thrashing problem,
caused by the N-N sequential data access behavior. By de-
fault, the Lustre client has a 40 MB read-ahead cache for
each file. Under the N-N sequential read scenarios, such ag-
gressive prefetching causes severe memory contention, with
data repeatedly read from the backend (and evicted on for-
warding nodes). E.g., an 1024-process Shentu [25] execu-
tion has each I/O process read an 1-GB single file, incur-
ring a 3.5× I/O amplification at the Lustre backend of Ice-
fish. This echos previous finding on the existence of I/O self-
contention within a single application [55].
Solution This problem can be addressed by adjusting the
Lustre prefetching cache size per file. For example, changing
it from 40MB per file to 2MB is shown to remove the thrash-
ing. Automatic, per-job forwarding node cache reconfigura-
tion, which leverages real-time Beacon monitoring results, is
currently under development for TaihuLight. Alternatively,
switching the application from an N-N to N-M mode (per-
forming I/O aggregation, by having each set of N/M com-
pute processes group their I/O to one file) also eliminates
cache thrashing, and brings 3× I/O performance improve-
ment. Given the close collaboration between application
teams and machine administrators, making performance-
critical program changes as suggested by monitoring data

analysis is an accepted practice on leading supercomputers.
Bursty forwarding node utilization Beacon’s continuous
end-to-end I/O monitoring gives center management a global
picture on system resource utilization. While such systems
were often built and configured using rough estimates based
on past experience, Beacon collects detailed resource usage
history to help both in improving the current system’s effi-
ciency and in assisting future system upgrade and design.

Figure 5 gives one example, again on forwarding load dis-
tribution, by showing two one-day samples from July 2017.
Each row portraits the by-hour peak load on one of the same
40 forwarding nodes randomly sampled from the 80 active
ones. The darkness reflects the maximum bandwidth reached
within that hour. The labels “high”, “mid”, “low”, and “idle”
correspond to that maximum residing in the >90%, 50-90%,
10-50%, or 0-10% interval (relative to the benchmarked per-
forwarding-node peak bandwidth), respectively.

4 8 12 16 20 24
Time (hour)

Idle

Low

Mid

High

(a) Regular load (07/01/2017)

4 8 12 16 20 24
Time (hour)

Idle

Low

Mid

High

(b) Heavy load (07/28/2017)

Figure 5: Sample TaihuLight one-day load summary, showing peak
load level by hour, across 40 randomly sampled forwarding nodes

Figure 5(a) shows the more typical load distribution,
where the majority of forwarding nodes stay lightly used for
the vast majority of time (90.7% of cells show maximum
load being under 50% of peak bandwidth). Figure 5(b) gives
a very different picture, with a significant set of sampled for-
warding nodes serving I/O-intensive large jobs for a good
part of the day. 35.7% of the cells actually see a maximum
load of over 99% of peak forwarding node bandwidth.

These results indicate that (1) overall there is forwarding
resource overprovisioning (confirming prior findings [41,52,
57, 64]), (2) even with the more representative low-load sce-
narios, it is not rare for forwarding node bandwidth to be sat-
urated by application I/O, and (3) load imbalance across for-
warding nodes exists regardless of load level, presenting idle
resources potentially helpful to I/O-intensive applications.
Solution Recognizing the above, recently TaihuLight has
enlisted more of its “backup forwarding nodes” into regu-
lar service. Meanwhile, a dynamic, application-aware for-
warding node allocation scheme is designed and partially de-
ployed (turned on for a subset of applications) [43]. Lever-
aging application-specific job history information, such an
allocation scheme is intended to replace the default, static
mapping between compute and forwarding nodes.
MDS request priority setting While overall we found
that most TaihuLight jobs are rather metadata-light, Beacon

384 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

does observe a small fraction of parallel jobs (0.69%) with
high metadata request rate (more than 300 metadata oper-
ations/s on average during I/O phases). Beacon found that
these metadata-heavy (“high-MDOPS”) applications tend to
cause significant I/O performance interference. Among jobs
with Beacon-detected I/O performance anomaly, those shar-
ing forwarding nodes with high-MDOPS jobs experienced
an average 13.6× increase in read/write request latency dur-
ing affected time periods.

Such severe delay and corresponding Beacon forwarding
node queue status history prompted us to examine the Taihu-
Light LWFS server policy. We found that metadata requests
were given priority over file I/O, based on the single-MDS
design and the need to provide fast response to interactive
user operations such as ls. Here, as neither disk bandwidth
nor metadata server capacity was saturated, such interference
could easily remain undetected using existing approaches
that focus on I/O-intensive workloads only [37, 52].

0 50 100 150 200

Time (s)

1

2

3

4

I/
O

 t
h

ro
u

g
h

p
u

t
(G

B
/s

) LAMMPS-Solo
LAMMPS-Co-run
LAMMPS-Adjusted

Co-run end

Adjusted Co-run end

(a) LAMMPS

0 50 100 150 200

Time (s)

100

200

300

400

500

600

700

M
D

O
P

S

DNDC-Solo
DNDC-Co-run
DNDC-Adjusted

Co-run end

Adjusted Co-run end

(b) DNDC

Figure 6: Impact of metadata operations’ priority adjustment

Solution As a temporary solution, we added probabilistic
processing across priority classes to the TaihuLight LWFS
scheduling. Instead of always giving metadata requests high
priority, an LWFS server thread now follows a P : (1−P)
split (P configurable) between picking the next request from
the separate queues hosting metadata and non-metadata re-
quests. Figure 6 shows the “before” and “after” pictures,
with LAMMPS [34] (a classical molecular dynamics simula-
tor with middle scale 256 compute nodes) running against
the high-MDOPS DNDC [39] (a bio-geochemistry application
for agro-ecosystems simulation). Throughput of their solo-
runs, where each application runs by itself on an isolated
testbed, is given as reference. With a simple equal proba-
bility split, LAMMPS co-run throughput doubles, while DNDC

only perceives a 10% slowdown. For a long-term solution,
we plan to leverage Beacon to automatically adapt the LWFS
scheduling policies, considering operation types, the MDS
load level, and application request scheduling fairness.

4.2 Automatic I/O Anomaly Diagnosis
In extreme-scale supercomputers, users typically accept jit-
tery application performance, recognizing wide-spread re-
source sharing among jobs. System administrators, mean-
while, see different behaviors among system components

with homogeneous configuration, but cannot tell how much
of that difference comes from these components’ function-
ing, and how much from the diversity of tasks they perform.

Beacon’s multi-layer monitoring capacity, therefore,
presents a new window for supercomputer administra-
tors to examine system health, by connecting statistics on
application-issued I/O requests all the way to that of individ-
ual OST’s bandwidth measurement. Such connection guides
Beacon to deduce what is considered the norm and what an
exception. Leveraging this capability, we design and im-
plement a lightweight, automatic anomaly detection tool to
identify such apparent exceptions that signal significant per-
formance degradation or faulty system components.

Application-driven anomaly detection Most I/O-intensive
applications have distinct I/O phases, i.e., episodes in their
execution where they perform I/O continuously, such as
those to read input files during initialization or to write in-
termediate results or checkpoints. For a given application,
such I/O phase behavior is often quite consistent. Taking
advantage of such repeated I/O operations and its multi-
layer I/O information collection, Beacon performs automatic
I/O phase recognition, on top of which it conducts I/O-
related anomaly detection. More specifically, larger applica-
tions (such as those using 1024 compute nodes or more) are
spreading their I/O load to multiple forwarding nodes and
backend nodes, giving us opportunities to directly compare
the behavior of these servers processing requests known to
Beacon as homogeneous or highly similar.

0 50 100 150 200 250 300 350 400 450 500
Time (s)

0

3

3

3

I/O
 b

an
dw

id
th

 (G
B

/s
)

Write

Fwd1

Fwd2

Fwd3

Figure 7: Forwarding bandwidth in a 6000-process LAMMPS run

Figure 7 gives an example of a 6000-process LAMMPS run
with checkpointing. The 1500 compute nodes are assigned
to 3 forwarding nodes, whose bandwidth and I/O time are
reflected in the time-series data from Beacon. We can clearly
see here the Fwd1 node is a straggler in this case, serving at
a bandwidth much slower than its peak (without answering
to other applications). As a result, there is a 20× increase in
the application-visible checkpoint operation time, estimated
using the other two forwarding nodes’ I/O phase duration.

0 50 100 150 200 250 300 350 400
OST_ID

0

200

400

I/O
 B

W
 (M

B
/s

)

Figure 8: Per-OST bandwidth during a Shentu execution

Anomaly alert and node screening Such continuous, on-
line application performance anomaly detection could iden-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 385

tify forwarding nodes or backend units with deviant perfor-
mance metrics, which in turn will trigger Beacon’s more de-
tailed monitoring and analysis. If it finds such a system com-
ponent to consistently under-perform relative to peers serv-
ing similar workloads, with configurable thresholds in mon-
itoring window and degree of behavior deviation, it reports
this as an automatically detected system anomaly. By gen-
erating and sending an alarm email to the system adminis-
tration team, Beacon prompts system administrators to do a
thorough examination, where its detailed performance his-
tory information and visualization tools are also helpful.

Such anomaly screening is especially important for expen-
sive, large-scale executions. For example, among all applica-
tions running on TaihuLight so far, the parallel graph engine
Shentu [49] has the most intensive I/O load. It scales well to
the entire supercomputer in both computation and I/O, with
160,000 processes and large input graphs distributed evenly
to nearly 400 Lustre OSTs. During test runs preparing for its
Gordon Bell bid in April 2018, Beacon’s monitoring discov-
ered a few OSTs significantly lagging behind in the parallel
read, slowing down the initialization as a result (Figure 8).
By removing them temporarily from service and relocating
their data to other OSTs, Shentu cut its production run ini-
tialization time by 60%, saving expensive dedicated system
allocation and power consumption. In this particular case,
further manual examination attributed the problem to these
OSTs’ RAID controllers, which were later fixed.

Had it not been for Beacon’s backend monitoring, applica-
tions like Shentu would have accepted whatever bandwidth
they got, without suspecting I/O performance being abnor-
mal. Similarly, had it not been for Beacon’s routine frontend
tracing, profiling, and per-application performance anomaly
detection, it would not have noticed the backend outliers. As
full-system benchmarking requires taking the supercomputer
offline and cannot be regularly attempted, Beacon provides
a much more affordable way for continuous system health
monitoring and diagnosis, by coupling application-side and
server-side tracing/profiling information.

Location of anomaly
Duration (hours) Forwarding node (times) OSS+OST (times)

(0,1) 23 31
[1,4) 14 17
[4,12) 5 9
[12,96) 3 6

≥96, manually verified 6 8

Table 2: Duration of Beacon-identified system anomalies

Beacon’s deployment on TaihuLight started around April
2017, with features and tools incrementally developed and
added to production use. Table 2 summarizes the automat-
ically identified I/O system anomaly occurrences at the two
service layers, from Apr 2017 to Aug 2018. Such identifi-
cation adopted a minimum threshold of measured maximum
bandwidth under 30% of the known peak value, as well as
a minimum duration of 60 minutes. Such parameters can be
configured to adjust the anomaly detection system sensitiv-

ity. Most performance anomaly occurrences are found to be
transient, lasting under 4 hours.

There are a total of 14 occasions of performance anomaly
over 4 hours on the forwarding layer, and 23 on the back-
end layer, confirming the existence of fail-slow situations
found common with data centers [42]. Reasons for such
relatively long yet “self-healed” anomalies include service
migration and RAID reconstruction. With our rather con-
servative setting during such initial deployment period, Bea-
con was set to send the aforementioned alert email when a
detected anomaly situation lasted beyond 96 hours (except
for large-scale production runs as in the Shentu example
above, where the faulty units were immediately reported).
With all these occasions, the Beacon detected anomaly was
confirmed by human examination.

4.3 Application and User Behavior Analysis
With its powerful information collection and multi-layer I/O
activity correlation, Beacon provides new capability to per-
form detailed application or user behavior analysis. Re-
sults of such analysis assist in performance optimization,
resource provisioning, and future system design. Here we
showcase several application/user behavior studies, some of
which have brought corresponding optimizations or design
changes to the TaihuLight system.

Type (0,1K] (1K,10K] (10K,100K] (100K,1000K] (1000K,∞)
Read 8.1 GB 101.0 GB 166.9 GB 1172.9 GB 2010.6 GB
Write 18.2 GB 83.9 GB 426.6 GB 615.9 GB 41458.8 GB

Table 3: Avg. per-job I/O volume by core-hour consumption

(a) Read (b) Write

Figure 9: Distribution of file access modes, in access volume

I/O mode Avg. read volume Avg. write volume Job count
N-N 96.8 GB 120.1 GB 11073
N-M 36.2 GB 63.2 GB 324
N-1 19.6 GB 19.3 GB 2382
1-1 33.0 GB 142.3 GB 16251

Table 4: Avg. I/O volume and job count by I/O mode

Application I/O mode analysis First, Table 3 gives an
overview of I/O volume across all profiled jobs with non-
trivial I/O, categorized by per-job core-hour consumption.
Here, 1000K core-hours correspond to a 10-hour run using
100,000 cores on 25,000 compute nodes, and jobs with such
consumption or higher write more than 40 TB of data on av-
erage.3 Overall, the amount of data read/written grows as

3Further examination reveals that in each core-hour category, average
read/write volumes are influenced by a minority group of heavy consumers.

386 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the jobs consume more compute node resources. The less
resource-intensive applications tend to perform more reads,
while the larger consumers are more write-intensive.

Figure 9 shows the breakdown of I/O-mode adoption
among all TaihuLight jobs performing non-trivial I/O, by to-
tal read/write volume. The first impression one gets from
these results is that the rather “extreme” cases, such as N-N
and 1-1, form the dominant choices, especially in the case of
writes. We suspected that this distribution could be skewed
by a large number of small jobs doing very limited I/O, and
calculated the average per-job read/write volume for each
I/O mode. The results (Table 4) show that this is not the
case. Actually, applications that choose to use 1-1 mode for
writes actually have a much higher overall write volume.

The 1-1 mode is the closest to sequential processing be-
havior and is conceptually simple. However, it obviously
lacks scalability and fails to utilize the abundant hardware
parallelism in the TaihuLight I/O system. The wide presen-
tation of this I/O mode might help explain the overall under-
utilization of forwarding resources, discussed earlier in Sec-
tion 4.1. Echoing similar findings (though not so extreme) on
other supercomputers [57] (including Intrepid [7], Mira [10]
and Edison [4]), effective user education on I/O performance
and scalability would both help improve storage system uti-
lization and reduce wasted compute resources.

The N-1 mode has a different story. It is an intuitive par-
allel I/O solution that allows compute processes to directly
read to or write from their local memory without gather-
scatter operations, while retaining the convenience of having
a single input/output file. However, our detailed monitoring
finds it a quite damaging I/O mode that users should steer
away from, as explained below.

First, our monitoring results confirm findings by existing
research [23, 56] that the N-1 mode offers low application
I/O performance (by reading/writing to a shared file). Even
with a large N, such applications receive no more than 250
MB/s I/O aggregate throughput, despite the peak TaihuLight
backend combined bandwidth of 260 GB/s. For read op-
erations, users here also rarely modify the default Lustre
stripe width, confirming behavior reported in a recent ORNL
study [48]. The problem is much worse with writes, as per-
formance severely degrades due to file system locking.

This study, however, finds N-1 applications to be extraor-
dinarily disruptive as they harm all kinds of neighbor appli-
cations that share forwarding nodes with them, particularly
when N is large (e.g., over 32 compute nodes).

The reason is that each forwarding node operates an
LWFS server thread pool (currently sized at 16), providing
forwarding service to assigned compute nodes. Applications
using the N-1 mode tend to flood this thread pool with re-
quests in bursts. Unlike with the N-N or N-M modes, N-1
suffers from the aforementioned poor backend performance
by using a single shared file. This, in turn, makes N-1 re-
quests slow to process, further exacerbating their conges-

tion in the queue and delaying requests from other applica-
tions, even when those victims are accessing disjoint back-
end servers and OSTs.

Here we give a concrete example of I/O mode-induced
performance interference, featuring the earthquake simula-
tion AWP [35] (2017 Gordon Bell Prize winner) that started
with N-1 mode. In this sample execution, it co-runs with the
weather forecast application WRF [69] using the 1-1 mode,
each having 1024 processes on 256 compute nodes. Under
the “solo” mode, we assign each application a dedicated for-
warding node in a small testbed partition of TaihuLight. In
the “co-run” mode, we let them share one forwarding node
(as the default compute-to-forwarding mapping is 512-to-1).

Operation Avg. wait time Avg. proc. time Avg. queue length
WRF write (solo) 2.73 ms 0.052 ms 0.22
WRF write (co-run) 30.06 ms 0.054 ms 208.51
AWP read (solo) 58.17 ms 3.44 ms 226.37
AWP read (co-run) 58.18 ms 3.44 ms 208.51

Table 5: Performance interference during WRF and AWP co-run shar-
ing a forwarding node

Table 5 lists the two applications’ average request
wait/processing time and forwarding node queue length dur-
ing these runs. Note that with “co-run”, the queue is shared
by both applications. We find that the average wait time of
WRF has been increased by 11× when co-running, but AWP is
not affected. This result reveals the profound malpractice of
the N-1 file sharing mode and confirms prior finding that I/O
interference is access-pattern-dependent [47, 53].
Solution Our tests confirm that increasing the LWFS thread
pool size does not help in this case, as the bottleneck lies
on the OSTs. Meanwhile, avoiding the N-1 mode has been
advised in prior work [23, 84], as well as numerous paral-
lel I/O tutorials. Considering our new inter-application study
results, it is rather an obvious “win-win” strategy that simul-
taneously improves large applications’ I/O performance and
reduces their disruption to concurrent workloads. However,
based on our experience with real applications, this message
needs to be better promoted.

In our case, the Beacon developers worked with the AWP

team to replace its original N-1 file read (for initializa-
tion/restart) with the N-M mode, during the 2017 Gorden
Bell Prize final submission phase. This change produced
an over 400% enhancement in I/O performance. Note that
the GB Prize submission does not report I/O time; we found
that AWP’s 130,000-process production runs spend the bulk
of their execution time reading around 100 TB of input or
checkpoint data. Significant reduction in this time greatly
facilitated AWP’s development/testing and saved non-trivial
supercomputer resources.
Metadata Server Usage Unlike forwarding nodes utiliza-
tion (discussed earlier), the Lustre MDS is found with rather
evenly distributed load levels by Beacon’s continuous load
monitoring (Figure 10(a)). In particular, in 26.8% of the
time, the MDS experiences a load level (in requests per sec-
ond) above 75% of its peak processing throughput.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 387

Beacon allows us to further split the requests between sys-
tems sharing the MDS, including the TaihuLight forwarding
nodes, login nodes, and the ACC. TaihuLight administrators
were surprised to find that over 80% of the metadata access
workload actually comes from the ACC (Figure 10(b)).

Note that the login node and ACC have their own local file
systems, ext4 and GPFS [66], respectively, which users are
encouraged to use for purposes such as application compila-
tion and data post-processing/visualization. However, since
the users are likely TaihuLight users too, we found most of
them prefer to directly use the main Lustre scratch file sys-
tem intended for TaihuLight jobs, for convenience. While
the I/O bandwidth/IOPS resources consumed by such tasks
are negligible, user interactive activities (such as compiling
or post-processing) turn out to be metadata heavy.

Large waves of unintended user activities correspond to
the most heavy-load periods at the tail end in Figure 10(a),
and have led to MDS crashes that directly affected applica-
tions running on TaihuLight. According to our survey, many
other machines, including 2 out of the top 10 supercomput-
ers (Sequoia [17] and Sierra [18]), also have a single MDS,
assuming that their users follow similar usage guidelines.

0 1000 2000 3000 4000 5000

Metadata access request /s

0

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 o
f

s
y

s
te

m
 t

im
e

(a) CDF of MDS utilization (b) MDS load across platforms

Figure 10: TaihuLight Lustre MDS load statistics

Solution There are several potential solutions to this prob-
lem. With the help of Beacon, we can identify and remind
users performing metadata-heavy activities to avoid using
the PFS directly. Or we can support more scalable Lustre
metadata processing with an MDS cluster. A third approach
is to facilitate intelligent workflow support that automatically
performs data transfer, based on users’ needs. This third ap-
proach is the one we are currently developing.

4.4 Extension to network monitoring
Encouraged by Beacon’s success in I/O monitoring, in sum-
mer 2018 we began to design and test its extension to
monitor and analyze network problems, motivated by the
network performance debugging needs of ultra large-scale
applications. Figure 11(a) shows the architecture of this
new module. Beacon samples performance counters on the
5984 Mellanox InfiniBand network switches, such as per-
port sent and received volumes. Again the data collected
are passed to low-overhead daemons on Beacon log servers,
more specifically, 75 of its 85 part-time servers, each as-
signed 80 switches. Similar processing and compression are
conducted, with result data persisted in Beacon’s distributed

database, then periodically relocated to its dedicated server
for user queries and permanent storage.

monitoring servers
(running on 75 storage nodes)

5984 fat-tree
interconnection

switches

performance counter

monitoring data

0

Monitoring daemon

N1 N2 N3 N750

75 Beacon “part-time” servers

(a) Overview of Beacon’s network
monitoring module

(0,2] (2,3] (3,4] (4,5] (5,7]

Inter-supernode
communication volume (GB)

0

10

20

30

S
u

p
e

rn
o

d
e

 s
w

it
c

h
s

FixedPart FlexPart

(b) Distribution of communication
volume inter-supernode

Figure 11: Network monitoring architecture and its use case

This Beacon network monitoring prototype was tested in
time to help in the aforementioned Shentu [49] production
runs, for its final submission to Supercomputing’18 as an
ACM Gordon Bell Award finalist. Beacon was called upon
to identify the reason of aggregate network bandwidth sig-
nificantly lower than theoretical peak. Figure 11(b) illus-
trates this with a 3-supernode Shentu test run. The dark bars
(FixedPart) form a histogram of communication volumes
measured on 40 switches connecting these 256-node supern-
odes for inter-supernode communication, reporting the count
of switches within 5 volume brackets. There is a clear bi-
polar distribution, showing severe load imbalance and more
than expected inter-supernode communication. This mon-
itoring result led to discovery that due to the existence of
faulty compute nodes within each supernode, the fixed par-
titioning relay strategy adopted by Shentu led to a subset
of relay nodes receiving twice the “normal” load. Note that
Shentu’s own application-level profiling found communica-
tion volume across compute nodes very well balanced, hence
the problem was not obvious to application developers until
Beacon provided such switch-level traffic data.
Solution This finding prompted Shentu designers to opti-
mize their relay strategy, using a topology-aware scholastic
assignment algorithm to uniformly partition source nodes to
relay nodes [49], whose results are shown by gray bars (Flex-
Part) in Figure 11(b). The peak per-switch communication
volume is reduced by 27.0% (from 6.3 GB to 4.6 GB), with
significantly improved load balance, bringing a total com-
munication performance enhancement of around 30%.

5 Beacon Framework Evaluation
We now evaluate Beacon’s per-application profiling accu-
racy, as well as its performance overhead.

5.1 Accuracy Verification
Beacon collects full traces from the compute node side, thus
has access to complete application-level I/O operation infor-
mation. However, since the LWFS client trace interface pro-
vides only coarse timestamp data (at per-second granularity),
and due to the clock drift across compute nodes, it is possi-
ble that the I/O patterns recovered from Beacon logs deviate
from the application-level captured records.

388 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To evaluate the degree of such errors, we compare the I/O
throughput statistics reported by MPI-IO Test [40] to those
by Beacon. In the experiments, we use MPI-IO Test to test
different parallel I/O modes, including N-N and N-1 inde-
pendent operations, plus MPI-IO library collective calls. 10
experiments were repeated at each execution scale.

The accuracy evaluation results are shown in Figure 12.
We plot the average error in Beacon, measured as the per-
centage of deviation of the recorded aggregate compute
node-side I/O throughput from the application-level through-
put reported by the MPI-IO library.

We find Beacon able to accurately capture application per-
formance, even for applications with non-trivial parallel I/O
activities. More precisely, Beacon’s recorded throughput
deviates from MPI-IO Test reported values by only 0.78–
3.39% (1.84% on average) for the read test and 0.81–3.31%
(2.03% on average) for write, respectively. Results are simi-
lar with high-IOPS applications, omitted due to space limit.

16 64 256 1024 409610000
No. of processes

0

1

2

3

4

5

Er
ro

r (
%

)

N-N
N-1
Collective

(a) Read tests

16 64 256 1024 409610000
No. of processes

0

1

2

3

4

5

Er
ro

r (
%

)

N-N
N-1
Collective

(b) Write tests

Figure 12: Average error rate of Beacon reported bandwidth (error
bars show 95% confidence intervals.)

Beacon’s accuracy can be attributed to that it records
all compute node-side trace logs, facilitated by its efficient
and nearly lossless compression method (described in Sec-
tion 3.2). We find that even though individual trace items
may be off in timestamps, data-intensive applications on su-
percomputers seldom perform isolated, fast I/O operations
(which are not of interest for profiling purposes); instead,
they exhibit I/O phases with sustained high I/O intensity.
By collecting a large set of per-application I/O trace entries,
Beacon is able to paint an accurate picture of an application’s
I/O behavior and performance.

5.2 Monitoring and Query Overhead
We now evaluate Beacon’s monitoring overhead in a pro-
duction environment. We compare the performance of im-
portant I/O-intensive real-world applications and the MPI-IO
Test benchmark discussed earlier, with and without Beacon
turned on (Tw and Tw/o, respectively). We report the overall
run time of each program and calculate the slowdown in-
troduced by turning on Beacon. Table 6 shows the results,
listing the average slowdown measured from at least 5 runs
for each program (variance of slowdown across runs very
low: under 2%). Note that for the largest applications, such
testing was piggybacked on actual production runs of stable
codes, with Beacon turned on during certain allocation time

frames. Applications like AWP often break their executions to
run a certain number of simulation timesteps at a time.

Application #Process Tw/o (s) Tw (s) %Slowdown
MPI-ION 64 26.6 26.8 0.79%
MPI-ION 128 31.5 31.6 0.25%
MPI-ION 256 41.6 41.9 0.72%
MPI-ION 512 57.9 58.4 0.86%
MPI-ION 1024 123.1 123.5 0.36%
WRF1 1024 2813.3 2819.1 0.21%
DNDC 2048 1041.2 1045.5 0.53%
XCFD 4000 2642.1 2644.6 0.09%
GKUA 16384 297.5 299.9 0.82%
GKUA 32768 182.8 184.1 0.66%
AWP 130000 3233.5 3241.5 0.25%

Shentu 160000 5468.2 5476.3 0.15%

Table 6: Avg. Beacon monitoring overhead on applications

These results show that the Beacon tool introduces very
low overhead: under 1% across all test cases. Also, the over-
head does not grow with application execution scale, and
actually appears smaller (below 0.25%) for the two largest
jobs, which use 130K processes or more. Such cost is partic-
ularly negligible considering the significant I/O performance
enhancement and run time saving produced by optimizations
or problem diagnosis from Beacon-supplied information.

Table 7 lists the CPU and memory usage of Beacon’s
data collection daemon. In addition, the storage overhead
from Beacon’s deployment on TaihuLight since April 2017
is around 10 TB. Such low operational overhead and scalable
operation attest to Beacon’s lightweight design, with back-
ground trace-collection and compression generating negligi-
ble additional resource consumption. Also, having separate
monitoring network and storage avoids potential disturbance
to application execution.

Level CPU usage Memory usage (MB)
Compute node 0.0% 10

Forwarding node 0.1% 6
Storage node 0.1% 5

Table 7: System overhead of Beacon

0 100 200 300 400 500
Query processing time (s)

0

20%

40%

60%

80%

100%

%
 o

f
q

u
e
ri

e
s

Caching on
Caching off

95.6% < 10s

54.3% < 1s

Figure 13: CDF of Beacon query processing time

Finally we assess Beacon’s query processing perfor-
mance. We measured the query processing time of 2000 Bea-
con queries in September 2018, including both application
users accessing job performance analysis and system admin-
istrators checking forwarding/storage nodes performance. In
particular, we examined the impact of Beacon’s in-memory
cache system between the web interface and Elasticsearch,
as shown in Figure 2. Figure 13 gives the CDF of queries

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 389

in processing time and demonstrates that (1) the majority of
Beacon user queries can be processed within 1 second and
95.6% of them under 10 seconds (visualization queries take
longer), and (2) Beacon’s in-memory caching significantly
improves user experience. Additional checking reveals that
about 95% of these queries can be served from data cached.

6 Related Work
Several I/O tracing and profiling tools have been proposed
for HPC systems, which can be divided into two categories:
application-oriented tools and backend-oriented tools.

Application-oriented tools can provide detailed informa-
tion about a particular execution on a function-by-function
basis. Work at this front includes Darshan [31], IPM [76],
and RIOT [81], all aiming at building an accurate picture
of application I/O behavior by capturing key characteristics
of the mainstream I/O stack on compute nodes. Carns et
al. evaluated performance and runtime overheads of Dar-
shan [30]. Wu et al. proposed a scalable methodology for
MPI and I/O event tracing [58, 82, 83]. Recorder [56] fo-
cused on collecting additional HDF5 trace data.

Tools like Darshan provide user-transparent monitoring
via automatic environment configuration. Still, instrumenta-
tion based tools have restrictions on programming languages
or libraries/linkers. In contrast, Beacon is designed to be a
non-stop, full-system I/O monitoring system capturing I/O
activities at the system level.

Backend-oriented tools collect system-level I/O perfor-
mance data across applications and provide summary statis-
tics (e.g. LIOProf [85], LustreDU [29,48,62] and LMT [38]).
However, identifying application performance issues and
finding the cause of application performance degradation are
difficult with these tools. While backend analytical meth-
ods [50, 52] made progress in identifying high-throughput
applications using backend logs only, they lack application-
side information. Beacon, on the other hand, holds complete
cross-layer monitoring data to afford such tasks.

Along this line, there exist tools collecting multi-layer
data. Static instrumentation was used to trace parallel I/O
calls from MPI to PVFS servers [46]. SIOX [80] and
IOPin [45] characterize HPC I/O workloads across the I/O
stack. These projects extended the application-level I/O in-
strumentation approach that Darshan [31] used, to other sys-
tem layers. However, their overhead hinders its deployment
on large-scale production environments [70].

Regarding end-to-end frameworks, the TOKIO [24] ar-
chitecture combined frontend tools (Darshan, Recorder) and
backend ones (LMT). E.g., the UMAMI monitoring infer-
face [53] provided cross-layer I/O performance analysis and
visualization. In addition, OVIS [27] used the Cray specific
tool LDMS [22] to provide scalable failure and anormaly
detection. GUIDE [91] performed center-wide and multi-
source log collection and motivated further analysis and op-
timizations. Beacon differs by its aggressive real-time per-

formance and utilization monitoring, automatic anomaly de-
tection, and continuous per-application I/O pattern profiling.

I/O interference is identified as an important cause for per-
formance variability in HPC systems [52,63]. Kuo et al. [47]
focused on interference from different file access patterns
with synchronized time-slice profiles. Yildiz et al. [88] stud-
ied root causes of cross-application I/O interference across
software and hardware configurations. To our knowledge,
Beacon is the first monitoring framework with built-in fea-
tures for inter-application interference analysis. Our study
confirms findings on large-scale HPC applications’ adoption
of poor I/O design choices [57]. It further suggests that aside
from workload-dependent, I/O-aware scheduling [33,52], in-
terference should be countered with application I/O mode
optimization and adaptive I/O resource allocation.

Finally, on network monitoring, there are dedicated
tools [51, 59, 68] for monitoring switch performance,
anomaly detection, and resource utilization optimization.
There are also tools specializing in network monitor-
ing/debugging for data centers [14, 73, 89]. However, these
tools/systems typically do not target InfiniBand interconnec-
tions commonly used on supercomputers. To this end, Bea-
con adopts the open-source OFED stack [13, 32] to retrieve
relevant information from IB network. More importantly, it
leverages its scalable and efficient monitoring infrastructure,
originally designed for I/O, for network problems.

7 Conclusion
We present Beacon, an end-to-end I/O resource monitoring
and diagnosis system for the leading supercomputer Tai-
huLight. It facilitates comprehensive I/O behavior analy-
sis along the long I/O path and has identified hidden per-
formance and user I/O behavior issues, as well as system
anomalies. Enhancement enabled by Beacon in the past 18
months has significantly improved ultra large-scale applica-
tions’ I/O performance and the overall TaihuLight I/O re-
source utilization. More generally, our results and experi-
ence indicate that this type of detailed multi-layer I/O moni-
toring/profiling is affordable at state-of-the-art supercomput-
ers, offering valuable insights while incurring very low cost.

Acknowledgement
We appreciate the thorough and constructive comments from
all reviewers. Particularly, we thank our shepherd, Haryadi
Gunawi, for his responsiveness and detailed guidance. We
also thank Prof. Zheng Weimin for his valuable guidance and
advice, and colleagues Xiongchao Tang and Haojie Wang for
their input. We thank NSCC-Wuxi for supporting our devel-
opment, data collection, and deployment. This work is par-
tially supported by the National Key R&D Program of China
(Grant No. 2017YFA0604500 and 2016YFA0602100) and
the National Natural Science Foundation of China (Grant
No. 61722208, 41776010, and U1806205).

390 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Cori supercomputer. http://www.nersc.gov/users/

computational-systems/cori/.

[2] Cray burst buffer in Cori. http://www.nersc.gov/

users/computational-systems/cori/burst-buffer/

burst-buffer/.

[3] DBSCAN. https://scikit-learn.org/stable/modules/

generated/sklearn.cluster.DBSCAN.html.

[4] Edison supercomputer. http://www.nersc.gov/users/

computational-systems/edison/.

[5] Elasticsearch. https://www.elastic.co/products/

elasticsearch.

[6] GlusterFS. https://www.gluster.org/.

[7] Intrepid. https://www.alcf.anl.gov/intrepid.

[8] K supercomputer. http://www.aics.riken.jp/en/.

[9] Logstash. https://www.elastic.co/products/logstash.

[10] Mira supercomputer. https://www.alcf.anl.gov/mira.

[11] MySQL database. https://www.mysql.com/.

[12] Oakforest-PACS supercomputer. http://jcahpc.jp/eng/ofp_

intro.html.

[13] Open Fabrics Alliance. http://www.openfabrics.org/.

[14] PathDump. https://github.com/PathDump.

[15] Piz Daint supercomputer. https://www.cscs.ch/computers/

dismissed/piz-daint-piz-dora/.

[16] Redis. http://redis.io/.

[17] Sequoia supercomputer. https://computation.llnl.gov/

computers/sequoia.

[18] Sierra supercomputer. https://hpc.llnl.gov/hardware/

platforms/sierra.

[19] Sunway TaihuLight supercomputer. https://http://www.

nsccwx.cn/.

[20] Titan supercomputer. https://www.olcf.ornl.gov/

olcf-resources/compute-systems/titan/.

[21] Trinity supercomputer. http://www.lanl.gov/projects/

trinity/.

[22] AGELASTOS, A., ALLAN, B., BRANDT, J., CASSELLA, P., ENOS,
J., FULLOP, J., GENTILE, A., MONK, S., NAKSINEHABOON,
N., OGDEN, J., RAJAN, M., SHOWERMAN, M., STEVENSON, J.,
TAERAT, N., AND TUCKER, T. The lightweight distributed met-
ric service: A scalable infrastructure for continuous monitoring of
large scale computing systems and applications. In ACM/IEEE Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC) (2014).

[23] BENT, J., GIBSON, G., GRIDER, G., MCCLELLAND, B.,
NOWOCZYNSKI, P., NUNEZ, J., POLTE, M., AND WINGATE, M.
PLFS: A Checkpoint filesystem for parallel applications. In Proceed-
ings of Supercomputing (2009).

[24] BERKELEY, L., AND ANL. TOKIO:Total knowledge of I/O, 2017.
http://www.nersc.gov/research-and-development/tokio.

[25] BOWEN YU, YOUWEI ZHOU, H. L. X. T. W. C. J. Z. W. Y., AND
ZHENG, W. Scalable graph traversal on Sunway TaihuLight with ten
million cores. In IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (2017).

[26] BRAAM, P. J., AND ZAHIR, R. Lustre: A scalable, high performance
file system. Cluster File Systems, Inc (2002).

[27] BRANDT, J., GENTILE, A., MAYO, J., PEBAY, P., ROE, D., THOMP-
SON, D., AND WONG, M. Resource monitoring and management
with OVIS to enable HPC in cloud computing environments. In
IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (2009).

[28] BUDNIK, T., KNUDSON, B., MEGERIAN, M., MILLER, S., MUNDY,
M., AND STOCKDELL, W. Blue Gene/Q resource management archi-
tecture. In IEEE Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS) (2010).

[29] CARLYLE, A. G., MILLER, R. G., LEVERMAN, D. B., RENAUD,
W. A., AND MAXWELL, D. E. Practical support solutions for a
workflow-oriented Cray environment. In Proceedings of Cray User
Group Conference (CUG) (2012).

[30] CARNS, P., HARMS, K., LATHAM, R., AND ROSS, R. Performance
analysis of Darshan 2.2.3 on the Cray XE6 platform. Argonne Na-
tional Laboratory (ANL) (2012).

[31] CARNS, P. H., LATHAM, R., ROSS, R. B., ISKRA, K., LANG, S.,
AND RILEY, K. 24/7 characterization of petascale I/O workloads. In
Proceedings of the First Workshop on Interfaces and Abstractions for
Scientific Data Storage (IASDS) (2009).

[32] DANDAPANTHULA, N., SUBRAMONI, H., VIENNE, J., KANDALLA,
K., SUR, S., PANDA, D. K., AND BRIGHTWELL, R. INAM-a scal-
able infiniband network analysis and monitoring tool. In European
Conference on Parallel Processing (Euro-Par) (2011).

[33] DORIER, M., ANTONIU, G., ROSS, R., KIMPE, D., AND IBRAHIM,
S. CALCioM: Mitigating I/O interference in HPC systems through
cross-application coordination. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS) (2014).

[34] DUAN, X., CHEN, D., MENG, X., YANG, G., GAO, P., ZHANG,
T., ZHANG, M., LIU, W., ZHANG, W., AND XUE, W. Re-
designing LAMMPS for petascale and hundred-billion-atom simula-
tion on Sunway TaihuLight. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC) (2018).

[35] FU, H., HE, C., CHEN, B., YIN, Z., ZHANG, Z., ZHANG, W.,
ZHANG, T., XUE, W., LIU, W., YIN, W., YANG, G., AND CHEN, X.
18.9-Pflops nonlinear earthquake simulation on Sunway TaihuLight:
Enabling depiction of 18-Hz and 8-meter scenarios. In ACM/IEEE In-
ternational Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC) (2017).

[36] FU, H., LIAO, J., YANG, J., WANG, L., SONG, Z., HUANG, X.,
YANG, C., XUE, W., LIU, F., QIAO, F., ZHAO, W., YIN, X., HOU,
C., ZHANG, C., GE, W., ZHANG, J., WANG, Y., ZHOU, C., AND
YANG, G. The Sunway TaihuLight supercomputer: System and ap-
plications. Science China Information Sciences (2016).

[37] GAINARU, A., AUPY, G., BENOIT, A., CAPPELLO, F., ROBERT, Y.,
AND SNIR, M. Scheduling the I/O of HPC applications under con-
gestion. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (2015).

[38] GARLICK, J. Lustre monitoring tool, 2010. https://github.com/
LLNL/lmt.

[39] GILTRAP, D. L., LI, C., AND SAGGAR, S. DNDC: A process-based
model of greenhouse gas fluxes from agricultural soils. Agriculture,
Ecosystems & Environment (2010).

[40] GRIDER, G., NUNEZ, J., AND BENT, J. LANL MPI-IO test, 2008.
http://freshmeat.sourceforge.net/projects/mpiiotest.

[41] GUNASEKARAN, R., ORAL, S., HILL, J., MILLER, R., WANG, F.,
AND LEVERMAN, D. Comparative I/O workload characterization of
two leadership class storage clusters. In Proceedings of the 10th Par-
allel Data Storage Workshop (2015).

[42] GUNAWI, H. S., SUMINTO, R. O., SEARS, R., GOLLIHER,
C., SUNDARARAMAN, S., LIN, X., EMAMI, T., SHENG, W.,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 391

http://www.nersc.gov/users/computational-systems/cori/
http://www.nersc.gov/users/computational-systems/cori/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
http://www.nersc.gov/users/computational-systems/edison/
http://www.nersc.gov/users/computational-systems/edison/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.gluster.org/
https://www.alcf.anl.gov/intrepid
http://www.aics.riken.jp/en/
https://www.elastic.co/products/logstash
https://www.alcf.anl.gov/mira
https://www.mysql.com/
http://jcahpc.jp/eng/ofp_intro.html
http://jcahpc.jp/eng/ofp_intro.html
http://www.openfabrics.org/
https://github.com/PathDump
https://www.cscs.ch/computers/dismissed/piz-daint-piz-dora/
https://www.cscs.ch/computers/dismissed/piz-daint-piz-dora/
http://redis.io/
https://computation.llnl.gov/computers/sequoia
https://computation.llnl.gov/computers/sequoia
https://hpc.llnl.gov/hardware/platforms/sierra
https://hpc.llnl.gov/hardware/platforms/sierra
https://http://www.nsccwx.cn/
https://http://www.nsccwx.cn/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
http://www.lanl.gov/projects/trinity/
http://www.lanl.gov/projects/trinity/
http://www.nersc.gov/research-and-development/tokio
https://github.com/LLNL/lmt
https://github.com/LLNL/lmt
http://freshmeat.sourceforge.net/projects/mpiiotest

BIDOKHTI, N., MCCAFFREY, C., SRINIVASAN, D., PANDA, B.,
BAPTIST, A., GRIDER, G., FIELDS, P. M., HARMS, K., ROSS,
R. B., JACOBSON, A., RICCI, R., WEBB, K., ALVARO, P., RUNE-
SHA, H. B., HAO, M., AND LI, H. Fail-slow at scale: evidence
of hardware performance faults in large production systems. In 16th
USENIX Conference on File and Storage Technologies (FAST) (2018).

[43] JI, X., YANG, B., ZHANG, T., MA, X., ZHU, X., WANG, X.,
EI-SAYED, N., ZHAI, J., LIU, W., AND XUE, W. Automatic,
Application-Aware I/O Forwarding Resource Allocation for High-end
System. In 17th USENIX Conference on File and Storage Technolo-
gies (FAST) (2019).

[44] JOKANOVIC, A., SANCHO, J. C., RODRIGUEZ, G., LUCERO, A.,
MINKENBERG, C., AND LABARTA, J. Quiet neighborhoods: Key to
protect job performance predictability. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS) (2015).

[45] KIM, S. J., SON, S. W., LIAO, W.-K., KANDEMIR, M., THAKUR,
R., AND CHOUDHARY, A. IOPin: Runtime profiling of parallel I/O in
HPC systems. In High Performance Computing, Networking, Storage
and Analysis (SCC) (2012).

[46] KIM, S. J., ZHANG, Y., SON, S. W., PRABHAKAR, R., KANDEMIR,
M., PATRICK, C., LIAO, W.-K., AND CHOUDHARY, A. Automated
tracing of I/O stack. In European MPI Users’ Group Meeting (2010).

[47] KUO, C.-S., SHAH, A., NOMURA, A., MATSUOKA, S., AND
WOLF, F. How file access patterns influence interference among clus-
ter applications. In IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (2014).

[48] LIM, SEUNG-HWAN AND SIM, HYOGI AND GUNASEKARAN,
RAGHUL AND VAZHKUDAI, SUDHARSHAN S. Scientific user behav-
ior and data-sharing trends in a petascale file system. In ACM/IEEE
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC) (2017).

[49] LIN, H., ZHU, X., YU, B., TANG, X., XUE, W., CHEN, W.,
ZHANG, L., HOEFLER, T., MA, X., LIU, X., ZHENG, W., AND XU,
J. Shentu: Processing multi-trillion edge graphs on millions of cores
in seconds. In ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC) (2018).

[50] LIU, Y., GUNASEKARAN, R., MA, X., AND VAZHKUDAI, S. S. Au-
tomatic identification of application I/O signatures from noisy server-
side traces. In 12th USENIX Conference on File and Storage Tech-
nologies (FAST) (2014).

[51] LIU, Z., MANOUSIS, A., VORSANGER, G., SEKAR, V., AND
BRAVERMAN, V. One sketch to rule them all: Rethinking network
flow monitoring with univmon. In Proceedings of the 2016 ACM SIG-
COMM Conference (2016).

[52] LIU, YANG AND GUNASEKARAN, RAGHUL AND MA, XIAOSONG
AND VAZHKUDAI, SUDHARSHAN S. Server-side log data analytics
for I/O workload characterization and coordination on large shared
storage systems. In ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC)
(2016).

[53] LOCKWOOD, G. K., YOO, W., BYNA, S., WRIGHT, N. J., SNYDER,
S., HARMS, K., NAULT, Z., AND CARNS, P. UMAMI: A recipe
for generating meaningful metrics through holistic I/O performance
analysis. In Proceedings of the 2nd Joint International Workshop on
Parallel Data Storage & Data Intensive Scalable Computing Systems
(2017).

[54] LOFSTEAD, J., JIMENEZ, I., MALTZAHN, C., KOZIOL, Q., BENT,
J., AND BARTON, E. Daos and friends: A proposal for an exascale
storage system. In ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC) (2016).

[55] LOFSTEAD, J., ZHENG, F., LIU, Q., KLASKY, S., OLDFIELD, R.,
KORDENBROCK, T., SCHWAN, K., AND WOLF, M. Managing
variability in the I/O performance of petascale storage systems. In
ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC) (2010).

[56] LUU, H., BEHZAD, B., AYDT, R., AND WINSLETT, M. A multi-
level approach for understanding I/O activity in HPC applications.
In IEEE International Conference on Cluster Computing (CLUSTER)
(2013).

[57] LUU, H., WINSLETT, M., GROPP, W., ROSS, R., CARNS, P.,
HARMS, K., PRABHAT, M., BYNA, S., AND YAO, Y. A multi-
platform study of I/O behavior on petascale supercomputers. In In-
ternational ACM Symposium on High-Performance Parallel and Dis-
tributed Computing (HPDC) (2015).

[58] MUELLER, F., WU, X., SCHULZ, M., DE SUPINSKI, B. R., AND
GAMBLIN, T. ScalaTrace: tracing, analysis and modeling of HPC
codes at scale. In International Workshop on Applied Parallel Com-
puting (2010).

[59] NATHAN, V., NARAYANA, S., SIVARAMAN, A., GOYAL, P., ARUN,
V., ALIZADEH, M., JEYAKUMAR, V., AND KIM, C. Demonstration
of the marple system for network performance monitoring. In Pro-
ceedings of the SIGCOMM Posters and Demos (2017).

[60] NEUWIRTH, S., WANG, F., ORAL, S., VAZHKUDAI, S., ROGERS,
J., AND BRUENING, U. Using balanced data placement to address
I/O contention in production environments. In International Sympo-
sium on Computer Architecture and High PERFORMANCE Comput-
ing (SBAC-PAD) (2016).

[61] NOETH, M., RATN, P., MUELLER, F., SCHULZ, M., AND
DE SUPINSKI, B. R. Scalatrace: Scalable compression and replay
of communication traces for high-performance computing. Journal of
Parallel and Distributed Computing (2009).

[62] ORAL, S., SIMMONS, J., HILL, J., LEVERMAN, D., WANG, F.,
EZELL, M., MILLER, R., FULLER, D., GUNASEKARAN, R., KIM,
Y., GUPTA, S., VAZHKUDAI, D. T. S. S., ROGERS, J. H., DILLOW,
D., SHIPMAN, G. M., AND BLAND, A. S. Best practices and lessons
learned from deploying and operating large-scale data-centric parallel
file systems. In ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC) (2014).

[63] OUYANG, J., KOCOLOSKI, B., LANGE, J. R., AND PEDRETTI, K.
Achieving performance isolation with lightweight co-kernels. In In-
ternational ACM Symposium on High-Performance Parallel and Dis-
tributed Computing (HPDC) (2015).

[64] PAUL, A. K., GOYAL, A., WANG, F., ORAL, S., BUTT, A. R.,
BRIM, M. J., AND SRINIVASA, S. B. I/O load balancing for big data
HPC applications. In IEEE International Conference on Big Data (Big
Data) (2017).

[65] SAKAI, K., SUMIMOTO, S., AND KUROKAWA, M. High-
performance and highly reliable file system for the K computer. Fu-
jitsu Scientific & Technical Journal (2012).

[66] SCHMUCK, F. B., AND HASKIN, R. L. Gpfs: A shared-disk file
system for large computing clusters. In 1st USENIX Conference on
File and Storage Technologies (FAST) (2002).

[67] SERGENT, N., DÉFAGO, X., AND SCHIPER, A. Impact of a fail-
ure detection mechanism on the performance of consensus. In Pro-
ceedings 2001 Pacific Rim International Symposium on Dependable
Computing (2001).

[68] SHEN, S.-H., AND AKELLA, A. Decor: A distributed coordinated re-
source monitoring system. In IEEE International Workshop on Qual-
ity of Service (IWQoS) (2012).

[69] SKAMAROCK, W. C., KLEMP, J. B., DUDHIA, J., GILL, D. O.,
BARKER, D. M., WANG, W., AND POWERS, J. G. A description
of the advanced research wrf version 2. National Center For Atmo-
spheric Research Boulder Co Mesoscale and Microscale Meteorology
Div (2005).

[70] SNYDER, S., CARNS, P., HARMS, K., ROSS, R., LOCKWOOD,
G. K., AND WRIGHT, N. J. Modular HPC I/O characterization with
Darshan. In Proceedings of the 5th Workshop on Extreme-Scale Pro-
gramming Tools (2016).

392 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[71] SONG, H., YIN, Y., SUN, X. H., THAKUR, R., AND LANG, S.
Server-side I/O coordination for parallel file systems. In ACM/IEEE
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC) (2011).

[72] TAI, A. T., TSO, K. S., AND SANDERS, W. H. Cluster-based fail-
ure detection service for large-scale ad hoc wireless network applica-
tions. In International Conference on Dependable Systems and Net-
works (DSN) (2004).

[73] TAMMANA, P., AGARWAL, R., AND LEE, M. Distributed network
monitoring and debugging with switchpointer. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI)
(2018).

[74] TARASOV, V., KUMAR, S., MA, J., HILDEBRAND, D., POVZNER,
A., KUENNING, G., AND ZADOK, E. Extracting flexible, replayable
models from large block traces. In 10th USENIX Conference on File
and Storage Technologies (FAST) (2012).

[75] Top 500 list. https://www.top500.org/resources/

top-systems/.

[76] USELTON, A., HOWISON, M., WRIGHT, N., SKINNER, D., KEEN,
N., SHALF, J., KARAVANIC, K., AND OLIKER, L. Parallel I/O per-
formance: From events to ensembles. In Proceedings of the Interna-
tional Parallel Distributed Processing Symposium (IPDPS) (2010).

[77] VIJAYAKUMAR, K., MUELLER, F., MA, X., AND ROTH, P. C. Scal-
able I/O tracing and analysis. In Proceedings of the 4th Annual Work-
shop on Petascale Data Storage (PDSW) (2009).

[78] VISHWANATH, V., HERELD, M., ISKRA, K., KIMPE, D., MORO-
ZOV, V., PAPKA, M. E., ROSS, R., AND YOSHII, K. Accelerating I/O
forwarding in ibm blue gene/p systems. In ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis (SC) (2010).

[79] WANG, Y., LIU, J., QIN, H., YU, Z., AND YAO, Y. The accurate
particle tracer code. Computer Physics Communications (2017).

[80] WIEDEMANN, M. C., KUNKEL, J. M., ZIMMER, M., LUDWIG, T.,
RESCH, M., BÖNISCH, T., WANG, X., CHUT, A., AGUILERA, A.,
NAGEL, W. E., KLUGE, M., AND MICKLER, H. Towards I/O anal-
ysis of HPC systems and a generic architecture to collect access pat-
terns. Computer Science-Research and Development (2013).

[81] WRIGHT, S. A., HAMMOND, S. D., PENNYCOOK, S. J., BIRD,
R. F., HERDMAN, J., MILLER, I., VADGAMA, A., BHALERAO, A.,
AND JARVIS, S. A. Parallel file system analysis through application
I/O tracing. The Computer Journal (2013).

[82] WU, X., AND MUELLER, F. Elastic and scalable tracing and accurate
replay of non-deterministic events. In International Conference on
Supercomputing (ICS) (2013).

[83] WU, X., VIJAYAKUMAR, K., MUELLER, F., MA, X., AND ROTH,
P. C. Probabilistic communication and I/O tracing with deterministic
replay at scale. In International Conference on Parallel Processing
(ICPP) (2011).

[84] XIE, B., CHASE, J., DILLOW, D., DROKIN, O., KLASKY, S.,
ORAL, S., AND PODHORSZKI, N. Characterizing output bottle-
necks in a supercomputer. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC) (2012).

[85] XU, C., BYNA, S., VENKATESAN, V., SISNEROS, R., KULKARNI,
O., CHAARAWI, M., AND CHADALAVADA, K. LIOProf: Exposing
Lustre file system behavior for I/O middleware. In Proceedings of
Cray User Group Conference (CUG) (2016).

[86] XU, T., JIN, X., HUANG, P., ZHOU, Y., LU, S., JIN, L., AND PASU-
PATHY, S. Early Detection of Configuration Errors to Reduce Failure
Damage. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2016).

[87] XU, W., LU, Y., LI, Q., ZHOU, E., SONG, Z., DONG, Y., ZHANG,
W., WEI, D., ZHANG, X., CHEN, H., XING, J., AND YUAN, Y. Hy-
brid hierarchy storage system in MilkyWay-2 supercomputer. Fron-
tiers of Computer Science (2014).

[88] YILDIZ, O., DORIER, M., IBRAHIM, S., ROSS, R., AND ANTONIU,
G. On the root causes of cross-application I/O interference in HPC
storage systems. In IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (2016).

[89] YU, M., GREENBERG, A. G., MALTZ, D. A., REXFORD, J., YUAN,
L., KANDULA, S., AND KIM, C. Profiling network performance
for multi-tier data center applications. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2011).

[90] YU, W., VETTER, J. S., AND ORAL, H. S. Performance character-
ization and optimization of parallel I/O on the Cray XT. In IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS)
(2008).

[91] ZIMMER, CHRISTOPHER J. GUIDE: A scalable information directory
service to collect, federate, and analyze logs for operational insights
into a leadership HPC facility. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC) (2017).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 393

https://www.top500.org/resources/top-systems/
https://www.top500.org/resources/top-systems/

Appendix A Evaluation of Beacon Data Com-
pression

App. 1st-pass 2nd-pass (lossless) 2nd-pass (lossy)
APT 5.4 2.1 2.3
WRF 14.2 3.8 5.5

DNDC 10.1 3.4 5.3
XCFD 12.2 3.8 6.2
GKUA 34.6 3.6 5.1
CAM 9.2 4.4 5.4
AWP 15.1 3.2 11.3

Shentu 22.2 2.6 5.7

Table 8: Compression ratio of sample applications

Table 8 summarizes the effectiveness of Beacon’s moni-
toring data compression. It gives the compression ratio un-
der three kinds of methods of 8 applications, 5 of which are
Shentu, LAMMPS, DNDC, WRF and AWP, discussed in more de-
tails previously. The other three are APT [79] (particle dy-
namics simulation), plus GKUA and XCFD (both closed-source
computational fluid dynamics simulators).

We report the compression ratio of the 1st-pass compres-
sion (intra-node compression during monitoring data col-
lection) and 2nd-pass compression (inter-node compression
during offline log processing on dedicated Beacon server).
We experimented with two compression techniques for the
latter, one lossless and one lossy (with reduced data preci-
sion in file descriptor and offset).

Results in Table 8 indicate significant data size reduction
by the 1st-pass compression, with a factor of 5.4 to 34.6
right at the source of monitoring. The second pass, on the
other hand, achieves less impressive reduction, partly due
to that data have already undergone one pass of compres-
sion. Here, though the compute nodes are performing simi-
lar I/O operations, different values in parameters such as file
offset make it harder to combine data entries. In particular,
lossy compression may bring an additional 2.3×-11.3× af-
ter 1st-pass compression improvement in compression ratio,
however trading the capability of performing certain analy-
sis tasks. Considering our dedicated Beacon server’s storage
capacity (120 TB) and Beacon’s data collection rate (10 TB
in 18 months), we elect to use a lossless algorithm for our
2nd-pass compression.

Appendix B Anomaly Detection

Beacon performs two types of automatic anomaly detection,
to identify job I/O performance anomaly and node anomaly,
respectively.

Beacon detects job I/O performance anomaly by checking
newly measured I/O performance results against historical
records, based on the assumption that most data-intensive
applications have rather consistent I/O behavior. First, it
adopts the automatic I/O phase identification technique as
in the IOSI system [50] developed on the Oak Ridge Na-

tional Laboratory Titan supercomputer, which uses Discrete
Wavelet Transform (DWT) to find distinct “I/O bursts” from
continuous I/O bandwidth time-series data. It then deploys
DBSCAN algorithm [3], also used in IOSI, to check whether
I/O phases from the new job execution conform to known
clusters of the same application’s past executions at the same
scale. More specifically, it performs 2-D clustering in terms
of the I/O phases’ time duration and total I/O volume. When
outliers are found, Beacon further utilizes its rich monitoring
data to examine neighbor jobs that share forwarding node(s)
with the job in question. In particular, it determines whether
such neighbors have interference-prone features, such as
high MDOPS, high I/O bandwidth, high IOPS, or N-1 I/O
mode. Such findings are saved in the Beacon database and
provided to users via the Beacon web-based application I/O
query tool. Applications of course will need to accumulate
at least several executions for such detection to take effect.

Beacon’s node anomaly detection relies on the execu-
tion of large-scale jobs (those using 1024 or more compute
nodes in our current implementation), where it leverages the
common homogeneity in I/O behavior across compute and
server nodes to spot outliers. Its multi-level monitoring al-
lows the correlation of I/O activities or loads back to ac-
tual client side issued requests. Again by using clustering
algorithms like DBSCAN and configurable thresholds, Bea-
con performs outlier detection across forwarding nodes and
OSTs involved in a single job, where the vast majority of en-
tities report highly similar performance while a few members
produce contrasting readings. Figure 8 in Section 4.2 gives
an example of per-OST bandwidth data within the same ex-
ecution.

394 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Zeno: Diagnosing Performance Problems with Temporal Provenance
Yang Wu
Facebook

Ang Chen
Rice University

Linh Thi Xuan Phan
University of Pennsylvania

Abstract

When diagnosing a problem in a distributed system, it is
sometimes necessary to explain the timing of an event – for
instance, why a response has been delayed, or why the net-
work latency is high. Existing tools offer some support for
this, typically by tracing the problem to a bottleneck or to
an overloaded server. However, locating the bottleneck is
merely the first step: the real problem may be some other
service that is sending traffic over the bottleneck link, or a
machine that is overloading the server with requests. These
off-path causes do not appear in a conventional trace and will
thus be missed by most existing diagnostic tools.

In this paper, we introduce a new concept we call tempo-
ral provenance that can help with diagnosing timing-related
problems. Temporal provenance is inspired by earlier work
on provenance-based network debugging; however, in addi-
tion to the functional problems that can already be handled
with classical provenance, it can also diagnose problems that
are related to timing. We present an algorithm for generating
temporal provenance and an experimental debugger called
Zeno; our experimental evaluation shows that Zeno can suc-
cessfully diagnose several realistic performance bugs.

1 Introduction

Debugging networked systems is already difficult for func-
tional problems, such as requests that are processed incor-
rectly, and this has given rise to a rich literature on sophisti-
cated debugging tools. Diagnosing timing-related problems,
such as requests that incur a high delay, adds another layer of
complexity: delays are often nondeterministic and can arise
from subtle interactions between different components.

Performance debugging has already been explored in prior
work. For instance, distributed tracing systems [55, 48, 58,
21, 33, 28, 37, 34, 64, 18, 44] can record and analyze execu-
tions of a request. These systems offer operators a lot of help
with debugging performance problems; for instance, Dap-
per [55] produces a “trace tree” – a directed graph whose ver-
tices represent execution stages and whose edges represent
causal relationships. If the operator observes that a request is
taking unusually long, she can inspect its trace tree and look
for bottlenecks, such as the RPCs to an overloaded server.
Similarly, network provenance systems [69, 67, 61, 30, 60],
such as DTaP [68], can be used to generate a causal explana-
tion of an observed event, and the operator can then inspect
this explanation for possible bottlenecks.

However, in practice, locating a bottleneck is only the first
step. The operator must then find the causes of the bottleneck

in order to fix the problem. Existing tools offer far less help
with this step. For instance, suppose a misconfigured ma-
chine is sending a large number of RPCs to a storage back-
end, which becomes overloaded and delays requests from
other clients. When the operator receives complaints from
one of the clients about the delayed requests, she can inspect
the trace tree or the provenance and identify the bottleneck
(in this case, the storage backend). However, neither of these
data structures explains why the bottleneck exists – in fact,
the actual cause (in this case, the misconfigured machine)
would not even appear in either of them!

The reason why existing approaches fall short in this sce-
nario is that they focus exclusively on functional causality –
they explain why a given computation had some particular
result. This kind of explanation looks only at the direct in-
puts of the computation: for instance, if we want to explain
the existence of a cup of coffee, we can focus on the source of
the coffee beans, the source of the cup, and the barista’s ac-
tions. In contrast, temporal causality may also involve other,
seemingly unrelated computations: for instance, the reason
why it took too long to get the cup of coffee might be the
many customers that were waiting in front of us, which in
turn might be the result of a traffic jam elsewhere that caused
an unusually large number of customers to pass by the local
store. At the same time, some functional dependencies may
turn out to be irrelevant when explaining delays: for instance,
even though the coffee beans were needed to make the cof-
fee, they may not have contributed to the delay because they
were already available in the store.

The above example illustrates that reasoning about tem-
poral causality is very different from reasoning about func-
tional causality. This is not a superficial difference: as we
will show, temporal causality requires additional informa-
tion (about event ordering) that existing tracing systems do
not capture. Thus, although systems like Dapper or DTaP
do record timestamps and thus may appear to be capable of
reasoning about time, they are in fact limited to functional
causality and use the timestamps merely as an annotation.

In this paper, we propose a way to reason about tempo-
ral causality, and we show how it can be integrated with an
existing diagnostic technique – specifically, network prove-
nance. The result is a technique we call temporal provenance
that can reason about both functional and temporal causality.
We present a concrete algorithm that can generate temporal
provenance for distributed systems, and we describe Zeno,
a prototype debugger that implements this algorithm. We
have applied Zeno to seven scenarios with high delay that
are based on real incident reports from Google Cloud En-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 395

Queuing
delay! …

S3
S4

S2

Storage
Backend (B)

Computing
Service (C)

Maintenance
Service (M)S1

Why is the request taking
so long to complete?

Computing Request

Victim Storage RPC

Misbehaving Storage RPCs

Figure 1: Scenario: The misconfigured maintenance service
is overloading the storage backend and is causing requests
from the computing service to be delayed.

gine. Our evaluation shows that, in each case, the resulting
temporal provenance clearly identifies the cause of the de-
lay. We also show that the runtime overhead is comparable
to that of existing tools, such as Zipkin [1], which is based
on Google Dapper [55]. In summary, our contributions are:

• The concept of temporal provenance (Section 2);
• an algorithm that generates temporal provenance (Sec-

tion 4);
• a post-processing technique that improves the readabil-

ity of timing provenance graphs (Section 5);
• Zeno, a prototype debugger that records and displays

temporal provenance (Section 6); and
• an experimental evaluation of Zeno (Section 7).

In the following two sections, we begin with an overview of
timing diagnostics and its key challenges.

2 Overview

Figure 1 illustrates the example scenario we have already
sketched above. In this scenario, an operator manages a
small network that connects a maintenance service M, a
computing service C, and a storage backend B. Both M and
C communicate with the backend using RPCs. A job on M is
misconfigured and is sending an excessive number of RPCs
(red) to the storage backend. This is causing queuing at the
backend, which is delaying RPCs from the computing ser-
vice (green). The operator notices the delays on C, but is
unaware of the misconfiguration on M.

We refer to this situation as a timing fault: the RPCs from
C are being handled correctly, but not as quickly as the opera-
tor expects. A particularly challenging aspect of this scenario
is that the cause of the delays that C’s requests are experienc-
ing (the misconfiguration on M) is not on the path from C to
B; we call this an off-path cause.

Timing faults are quite common in practice. To illustrate
this, we surveyed incidents disclosed by Google Cloud Plat-
form [2], which occur across a variety of different cloud ser-
vices and directly impact cloud tenants. To obtain a good
sample size, we examined all incidents that happened from

Bottleneck!
Cause?

t1 t2 t3 t4 t5

Server
Recv

Server
Send

Start
Job

Client
Recv

Client
Send

Computing Request span id: 1, parent id: none

Storage RPC span id: 2, parent id: 1
t0 t6

Start End

(time)

Figure 2: A trace tree for the slow computing requests in
Figure 1. B received the storage RPC at t2 but only started
processing it at t3, after a long queuing delay.

January 2014 until May 2016, and we selected all 95 inci-
dent reports that describe both the symptoms and the causes.
We found that more than a third (34.7%) of these incidents
were timing faults.

2.1 Prior work: Trace trees
Today, a common way to diagnose such a situation is to track
the execution of the request and to identify the bottleneck –
that is, components that are contributing unusual delays. For
instance, a distributed tracing system would produce a “trace
tree” [55]. Figure 2 shows an example tree for one of the de-
layed responses from the computing service C in Figure 1.
The yellow bars represent basic units of work, which are
usually referred to as spans, and the up/down arrows indi-
cate causal relationships between a span and its parent span.
A span is also associated with a simple log of timestamped
records that encode events within the span.

Trace trees are helpful because they show the steps that
were involved in executing the request: the computation was
started at t0 and issued an RPC to the storage backend at t1;
the backend received the RPC at t2, started processing it at
t3, and sent a response at t4, which the client received at t5;
finally, the computation ended at t6. This data structure helps
the operator to find abnormal delays: for instance, the opera-
tor will notice that the RPC waited unusually long (t2 . . . t3)
before it was processed by B.

However, the operator also must understand what caused
the unusual delay, and trace trees offer far less help with this
step. In our scenario, the cause – the misbehaving mainte-
nance service – never even appears in any span! The reason
is that trace trees include only the spans that are on the ex-
ecution path of the request that is being examined. In prac-
tice, off-path causes are very common: when we further in-
vestigated the 33 timing faults in our survey from above, we
found that, in over 60% of the cases, the real problem was
not on the execution path of the original request, so it would
not have appeared in the corresponding trace tree.

2.2 Prior work: Provenance
Another approach that has been explored recently [61, 30,
60, 68, 69, 67] is to use provenance [26] as a diagnostic
tool. Provenance is a way to obtain causal explanations of

396 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Bottleneck!
Cause?

Computing Rsp
generated at C at 95s

Computing Req
received by C at 80s

Storage RPC Req
sent by C at 81s

Storage RPC Req
received by B at 81s

Storage RPC Rsp
sent by B at 93s

Storage RPC Rsp
received by C at 93s

Storage Type
was remote during [0s,∞)

V1

V2

Storage Block
was ... during [0s,93s)

(Q) How was the computing response generated?

Figure 3: Time-aware provenance, as in DTaP [68], for the
example scenario from Figure 1.

an event; a provenance system maintains, for each (recent)
event in the network, a bit of metadata that keeps track of the
event’s direct causes. Thus, when the operator requests an
explanation for some event of interest (say, the arrival of a
packet), the system can produce a recursive explanation that
links the event to a set of causes (such as the original trans-
mission of the packet and the relevant routing state). Such a
representation is useful because the diagnostician often finds
herself swimming in a sea of possibilities: at any given mo-
ment, there are millions of events happening in the data cen-
ter, and many of them could hypothetically be related to the
observed symptom. Moreover, a substantial fraction of these
events tend to be unusual in some way or another, which is
why the use of anomaly detection often yields many false
positives. In contrast, provenance is a way to quickly and
reliably identify the (few) events that actually were causally
related, which can be an enormous time saver.

Provenance can be represented as a DAG, whose vertices
represent events and whose edges represent direct causal-
ity. Figure 3 shows the DAG that a provenance system like
DTaP [68] would generate for our example scenario. (We
picked DTaP because it proposed a “time-aware” variant of
provenance, which already considers a notion of time.) This
data structure is considerably more detailed than a trace tree;
for instance, it not only shows the path from the original re-
quest (V2) to the final response (V1), but also the data and
the configuration state that were involved in processing the
request along the way. However, the actual cause from the
scenario (the misconfigured maintenance service) is still ab-
sent from the data structure. The reason is that DTaP’s prove-
nance is “time-aware” only in the sense that it can remember
the provenance of past system states. It does annotate each
event with a timestamp, as shown in the figure, but it does
not reason about temporal causality. Thus, it actually does
not offer very much extra help compared to trace trees: like
the latter, it can be used to find bottlenecks, such as the high
response times in the backend, but it is not able to explain

Computing Req
received by C at 80s

Storage RPC Req
sent by C at 81s

Storage RPC Req
received by B at 81s

Storage Type
was remote during [0s,∞)

V2

Storage Block
was ... during [0s,93s)

(Q) Why did the computing response take 14 seconds?

1s
(A) 1 second spent
on issuing RPC.

11s

Maintenance Req
received by M at ...,79s

Storage RPC Req
sent by M at ...,80s

Storage RPC Req
received by B at ...,80s

(B) 11 seconds spent on
queuing for other RPCs.

Off-path
cause!

Storage RPC Rsp
sent by B at ...,92s

(C) The remaining 2 seconds
spent on processing the RPC
and sending back response.

14s
Computing Rsp

generated at C at 95s

Storage RPC Rsp
sent by B at 93s

Storage RPC Rsp
received by C at 93s

V1

Figure 4: Temporal provenance, as proposed in this paper,
for the example scenario from Figure 1.

them by identifying causally related events, such as the RPCs
from the maintenance service. Tracking such dependencies
between functional and temporal behavior, potentially across
several components, is the problem we focus on.

2.3 Our approach
We propose to solve this problem with a combination of
three insights. The first is that temporal causality critically
depends on a type of information that existing tracing tech-
niques tend not to capture: the sequence in which the system
has processed requests, whether the requests are related or
not. By looking only at functional dependencies, these tech-
niques simply consider each request in isolation, and thus
cannot make the connection between the slow storage RPC
and the requests from the maintenance service that are de-
laying it. With provenance, we can fix this by including a
second kind of edge e1 → e2 that connects each event e1 to
the event e2 that was processed on the same node and imme-
diately after e1. We refer to such an edge as a sequencing
edge (Section 4.1). Notice that these edges essentially cap-
ture the well-known happens-before relation [45].

Our next insight is a connection between temporal rea-
soning and the critical path analysis from scheduling theory.
When scheduling a set of parallel tasks with dependencies,
the critical path is the longest dependency chain, and it de-
termines the overall completion time. This concept is not
directly applicable to off-path causes, but we have found a
way to generalize it (Section 4.3). The result is a method
that recursively allocates delay to the branches of a prove-
nance tree, which yields a data structure that we call tempo-
ral provenance.

Our third insight has to do with readability. At first glance,
temporal provenance is considerably richer than classical
provenance because it considers not only functionally related
events, but also events that could have contributed only delay
(of which there can be many). However, in practice, many of
these events do not actually contribute to the end-to-end de-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 397

lay, and the ones that do are often structurally similar – such
as the maintenance requests in our example scenario – and
can be aggregated. Thus, it is usually possible to extract a
compact representation that can be easily understood by the
human operator (Section 5).

Figure 4 shows the temporal provenance for a random
computing request in our example scenario. Starting at the
root, the provenance forks into two branches; the left branch
(A) shows that one second was spent on issuing the RPC it-
self; and the right branch (B) shows that the majority of the
delay (11 seconds) was caused by RPCs from the mainte-
nance service (M). This tree has all the properties we mo-
tivated earlier: it provides a quantitative explanation of the
delay, and it includes the actual cause (the maintenance ser-
vice), even though it is an off-path cause and does not appear
on the path the request has taken.

3 Background

Since temporal provenance is a generalization of network
provenance, we begin with a brief description of the latter,
and refer interested readers to [67] for more detail.

3.1 Network Datalog
For ease of exposition, we will present our approach in the
context of network datalog (NDlog) [47]. The approach it-
self is not specific to either NDlog or to declarative lan-
guages; provenance has been applied to imperative systems
that were written in a variety of languages [49, 22, 38, 35,
39, 60], and our own evaluation in Section 7 includes exper-
iments with Google Dapper [55]. However, NDlog’s declar-
ative syntax makes the provenance very easy to see.

In NDlog, the state of a node is modeled as tables, each
of which contains a number of tuples. For example, an RPC
server might have a table called RPC that contains the RPC
calls it has received from clients. Tuples can be manually
inserted, or they can be programmatically derived from other
tuples. The former represent external inputs and are called
base tuples, whereas the latter represent computations in the
system itself and are called derived tuples.

NDlog programs consist of rules that describe how tuples
should be derived from one another. For instance, the rule
A(@L,P):-B(@L,Q),Q=3*P says that a tuple A(@L,P)
should be derived on node L whenever a B(@L,Q) tuple is
also on that node, and Q=3*P. Here, P and Q are variables
that are instantiated with values when the rule is applied; for
instance, a B(@L,6) tuple would create an A(@L,2) tuple.
The @ operator specifies the location of the tuple.

Note that, in this declarative formulation, the direct causes
of a tuple’s existence are simply the preconditions of the rule
that was used to derive it. For instance, if A(@L,2) was
derived using the rule above, then the direct causes were the
existence of B(@L,6) and the fact that 6=3*2.

3.2 System model
If our goal was classical data provenance, the declarative de-
scription above would already be sufficient. However, since
we are particularly interested in timing, we need to consider
some more details of how the system works. For concrete-
ness, we use an event-driven model: the system reacts to
events such as packet arrivals and configuration changes;
each node has a queue of events that it processes in a FIFO
order; and each event can trigger one or more additional
events, either locally or on another node. (Note that the
“nodes” here do not necessarily have to correspond to phys-
ical machines; they could be different CPU cores, or line
cards in a switch.) This model captures how pipelined semi-
naı̈ve evaluation [47] works in NDlog: the events are tuple
insertions and deletions, and the processing corresponds to
tuple derivations. However, more importantly, it is also a
good description of networks and services with FIFO queues.

3.3 Classical provenance
In order to be able to answer provenance queries, a system
must collect some additional metadata at runtime. Conceptu-
ally, this can be done by maintaining a large DAG, the prove-
nance graph, that contains a vertex for every event that has
occurred in the system, and in which there is an edge (a, b)
between two vertices if event a was a direct cause of event
b. (A practical implementation would typically not main-
tain this graph explicitly, but instead collect only enough in-
formation to reconstruct a recent subgraph when necessary;
however, we will use this concept for now because it is easier
to explain.) If the system later receives a provenance query
QUERY(e) for some event e, it can find the answer by locat-
ing the vertex that corresponds to e and then projecting out
the subgraph that is rooted at e. This subgraph will be the
provenance of e.

For concreteness, we will use a provenance graph with six
types of vertices, which is loosely based on [68]:

• INS([ts, te], N, τ), DEL([ts, te], N, τ): Base tuple τ
was inserted (deleted) on node N during [ts, te];
• DRV([ts, te], N, τ), UDRV([ts, te], N, τ): Derived tu-

ple τ acquired (lost) support on N during [ts, te];
• SND([ts, te], N→N ′,±τ), RCV([ts, te], N←N ′, ±τ):
±τ was sent (received) by N to (from) N ′ during
[ts, te].

Note that each vertex is annotated with the node on which it
occurred, as well as with a time interval that indicates when
the node processed that event. For instance, when a switch
makes a forwarding decision for a packet, it derives a new
tuple that specifies the next hop, and the time [ts, te] that
was spent on this decision is indicated in the corresponding
DRV vertex. This will be useful (but not yet sufficient) for
temporal provenance later on.

398 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The edges between the vertices represent their causal re-
lationships. A SND vertex has an edge from an INS or a
DRV that produced the tuple that is being sent; a RCV has
an edge from the SND vertex for the received message; and
a DRV vertex for a rule A:-B,C,D has an edge from each
precondition (B, C, and D) that leads to the vertex that pro-
duced the corresponding tuple. An INS vertex corresponds
to an event that cannot be explained further (the insertion of
a base tuple); thus, it has no incoming edges. The edges for
the negative “twins” of these vertices – UDRV and DEL – are
analogous.

The above definition has two useful properties. First, is re-
cursive: the provenance of an event e includes, as subgraphs,
the provenances of all the events that contributed to e. This
is useful to an operator because she can start at the root and
“drill down” into the explanation until she identifies a root
cause. Second, there is a single data structure – the prove-
nance graph – that can be maintained at runtime, without
knowing a priori what kinds of queries will be asked later.

4 Temporal provenance

In this section, we generalize the basic provenance model
from Section 3 to reason about the timing of events.

4.1 Sequencing edges
The provenance model we have introduced so far would pro-
duce provenance that looks like the tree in Figure 3: it would
explain why the event at the top occurred, but it would not
explain why the event occurred at that particular time. The
fact that the vertices are annotated with timestamps, as in
prior work [68], does not change this: the operator would be
able to see, for instance, that the storage service took a long
time to respond to a request, but the underlying reason (that
requests from another node were queued in front of it) is not
shown; in fact, it does not even appear in the graph!

To rectify this, we need to capture some additional infor-
mation – namely, the sequence in which events were pro-
cessed by a given node. Thus, we introduce a second type
of edge that we call sequencing edge. A sequencing edge
(v1,v2) exists between two vertices a and b iff either a) the
corresponding events happened on the same node, and a was
the event that immediately preceded b, or b) a is an SND ver-
tex and b is the corresponding RCV vertex. We refer to the
first type of edge as a local sequencing edge, and to the sec-
ond type as a remote sequencing edge. In the illustrations,
we will render the sequencing edges with green, dotted lines
to distinguish them from the causal edges that are already
part of classical provenance.

Although causal edges and sequencing edges often coin-
cide, they are in fact orthogonal. For instance, consider the
scenario in Figure 5(a). Here, a node X has two rules, B:-A
and C:-A; in the concrete execution (shown on the timeline),

A is inserted at time 0, which triggers both rules, but B is de-
rived first, and then C. In the provenance graph (shown at the
bottom), INS(A) is connected to DRV(B) by both a causal and
a sequencing edge, since the two events happened back-to-
back and B’s derivation was directly caused by A’s insertion.
But DRV(B) is connected to DRV(C) only by a sequencing
edge, since the former did precede the latter but was not a
direct cause; in contrast, INS(A) is connected to DRV(C) only
by a causal edge, since A’s insertion did cause C’s derivation,
but the latter was directly delayed by another event.

4.2 Queries
Next, we turn to the question what a query for temporal
provenance should look like, and what it should return. Un-
like a classical provenance query QUERY(e), which aims to
explain a specific event e, a temporal provenance query aims
to explain a delay between a pair of events e1 and e2. For in-
stance, in the scenario from Figure 1, the operator wanted to
know why his request had taken so long to complete, which
is, in essence, a question about the delay between the request
itself (e1) and the resulting response (e2). Hence, we aim to
answer queries of the form T-QUERY(e1,e2), which ask about
delay between two events e1 and e2. Our only requirement is
that the events are causally related – i.e., that there is a causal
path from e1 to e2.

As a first approximation, we can answer T-QUERY(e1,e2)
as follows. We first query the classical provenance P :=
QUERY(e2). Since we require that e1 and e2 are causally re-
lated, P will include a vertex for e1. We then identify all
pairs of vertices (v1,v2) in P that are connected by a causal
edge but not by a sequencing edge. We note that, a) in each
such pair, v2 must have been delayed by some other inter-
vening event, and b) v1 is nevertheless connected to v2 via
a multi-hop path along the sequencing edges. (The reason
is simply that v1 was one of v2’s causes and must therefore
have happened before it.) Thus, we can augment the causal
provenance by adding these sequencing paths, as well as the
provenance of any events along such a path. The resulting
provenance P ′ contains all the events that have somehow
contributed to the delay between e1 and e2. We can then
return P ′ as the answer to T-QUERY(e1,e2).

4.3 Delay annotations
As defined so far, the temporal provenance still lacks a way
for the operator to tell how much each subtree has contributed
to the overall delay. This is important for usability: the op-
erator should have a way to “drill down” into the graph to
look for the most important causes of delay. To facilitate
this, we additionally annotate the vertices with the delay that
they (and the subtrees below them) have contributed.

Computing these annotations is surprisingly nontrivial and
involves some interesting design decisions. Our algorithm
is shown in Figure 6; we explain it below in several re-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 399

A@X :- B@X
B@X :- C@X
C@X :- Z@X

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- F@Y
C@X :- Z@X

A@X :- B@X
B@X :- Z@X
H@X :- I@X

I@X :- J@X
K@X :- L@X
L@X :- M@X

X
Y

0 1 2 3 4 5 6 7 8

AC B

E

INS(Z) INS(F)

X
Y

-3 -2 -1 0 1 2 3 4 5

L B

INS(M) INS(Z,J)

I K H

6

A

X
Y

0 1 2 3 4 5 6 7 8

C B A

INS(Z)

5s

4s

2s

X
Y

0 1 2 3 4 5 6 7 8

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X

C B A

E

INS(Z)

7s

4s

DRV(A)

DRV(B)

INS(Z)

2s

DRV(C)

8s

2s

DRV(A)

DRV(B) RCV(+E) 3s

2.5s

2.5s

DRV(C)

INS(Z)

4s

1s

DRV(A)

DRV(B)

INS(Z)

DRV(H)

DRV(I)

INS(J)

DRV(K)

DRV(L)

INS(M)

6s

2s

1s

1s

1s

1.5s

1.5s

(b) (c)

(d) (e) (f)

X
Y

0 1 2 3 4 5 6 7 8

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X
F@Y :- G@Y

C B A

E

INS(Z)

7s

2s

DRV(A)

DRV(B)

2s

1.5s
1.5s

F

B@X :- A@X
C@X :- A@X

X
0 1 2 3 4 5 6 7 8

B C
INS(A)

DRV(B) DRV(C)

INS(A)

(a)

2s

4s

INS(G)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

INS(G)

DRV(F)

DRV(E)

INS(F)

SND(+E)

DRV(A)

DRV(B)

DRV(C)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

Figure 5: Example scenarios, with NDlog rules at the top, the timing of a concrete execution in the middle, and the resulting
temporal provenance at the bottom. The query is T-QUERY(INS(Z), DRV(A)) in all scenarios; the start and end vertices are
marked in bold. Vertex names have been shortened and some fields have been omitted for clarity.

400 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1: // the subtree rooted at v is responsible for the delay during [ts, te]
2: function ANNOTATE(v, [ts, te])
3: ASSERT(te == tend(v))
4: if [ts, te] = ∅ then
5: RETURN
6: // weight v by the amount of delay it contributes
7: SET-WEIGHT(v, te − ts)
8: // recursive calls for functional children in order of appearance
9: C← FUNCTIONAL-CHILDREN(v)

10: T← ts
11: while C 6= ∅ do
12: v′← c ∈ C WITH MIN tend(c)
13: C← C \ {v′}
14: if tend(v

′) ≥ T then
15: ANNOTATE(v′, [T, tend(v

′)])
16: T ← tend(v

′)

17: // recursive calls for sequencing children
18: s← SEQUENCING-CHILD(v)
19: E← tstart(v)
20: while T < E do
21: ANNOTATE(s, [MAX(T, tstart(s)), E])
22: E← tstart(s)
23: s← SEQUENCING-CHILD(s)

Figure 6: Algorithm for computing delay annotations (ex-
plained in Sections 4.3–4.5).

finements, using the simple examples in Figures 5(b)–(f).
The examples are shown in the same format as in Fig-
ure 5(a): each shows a set of simple NDlog rules, the tim-
ing of events during the actual execution, and the resulting
temporal provenance, with the delay annotations in red. The
query is always the same: T-QUERY(INS(Z), DRV(A)); that
is, we want to explain the delay between the insertion of Z
and the derivation of A. One difference to Figure 5(a) is that
some of the examples require two nodes, X and Y. To make
the connections more visible, we show the vertices that be-
long to Y in orange, and the ones that belong to X in green,
as in Figure 5(a). If a vertex did not contribute to the delay,
we omit its annotation.

Our algorithm computes the delay annotations recursively.
A function ANNOTATE is called on the root of the provenance;
the function then invokes itself on (some of) the children to
compute the annotations on the subgraphs. As a first approx-
imation, this works as follows:

Rule #1: Annotate the top vertex v with the overall delay
T , then subtract the execution time tv of v, and repeat
with v’s child vertex, using delay T − tv .

In our algorithm, this corresponds to line 7, which sets the
weight for the current vertex, and the recursive call in line 15;
lines 4–5 contain the base case, where the delay is zero.

4.4 Handling multiple preconditions
This approach works well for linear provenance, such as the
one in Figure 5(b): deriving A from Z took 5s because it
took 1s to compute A itself, and 4s to derive A’s precondi-
tion, B; deriving B from Z took 4s because 2s were spent

on B itself and another 2s on C. However, it does not work
well for rules with multiple preconditions. Consider the sce-
nario in Figure 5(c): A now has two preconditions, B and E,
so the question is how much of the overall delay should be
attributed to each.

Two answers immediately suggest themselves: 1) since B
completed after 4s, we can attribute 4s to B and the remain-
ing 2s to E, which finished later, or 2) we can attribute the
entire 6s to E, because it was the last to finish. The latter is
somewhat similar to the choice made in critical path analy-
sis [34, 62]; however, the theorems in Section 4.6 actually
require the former: if we find a way to speed up E (or cause
F to be inserted sooner), this can only reduce the end-to-
end delay by 3s. Any further reductions would have to come
from speeding up B. This leads to the following refinement:

Refinement #2: Like rule #1, except that the remaining
delay is allocated among the preconditions in the order
in which they were satisfied.
This refinement is implemented in lines 11–13 and 16 of our
algorithm, which iterate through the preconditions in the or-
der of their appearance (that is, local derivation or arrival
from another node) and allocate to each the interval between
its own appearance and the appearance of its predecessor.

Notice that this approach deviates from critical-path anal-
ysis in an interesting way. Consider the scenario in Fig-
ure 5(d): here, the provenance has two “branches”, one con-
nected to the insertion of Z and the other to the insertion of
F, but there is no causal path from Z to F. (We call such a
branch an off-path branch.) This raises the question whether
any delay should be apportioned to off-path branches, and if
so, how much. Critical path analysis has no guidance to offer
for this case because it only considers tasks that are transi-
tively connected to the start task.

At first glance, it may seem that F’s branch should not get
any delay at all; for instance, F could be a configuration entry
that is causally unrelated to Z and thus did not obviously
contribute to a delay from Z to A. However, notice that all the
“on-path” derivations (in Z’s branch) finished at t = 4s, but
A’s derivation was nevertheless delayed until t = 7s because
E was not yet available. Thus, it seems appropriate that the
other branch gets the remaining 3s.

4.5 Handling sequencing delays
The one question that remains is what to do if there is further
delay after the last precondition is satisfied. This occurs in
the scenario in Figure 5(e): although B is derived immedi-
ately after Z is inserted at t = 0, A’s derivation is delayed by
another 3s due to some causally unrelated derivations (I, K,
and H). Here, the sequencing edges come into play: we can
attribute the remaining delay to the predecessor along the lo-
cal sequencing edge (here, DRV(H), which will subtract its
own computation time and pass on any remaining delay to
its own predecessor, etc. This brings us to the final rule:

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 401

Final rule: Like #2, except that, if any delay remains af-
ter the last precondition, that delay is attributed to the
predecessors along the local sequencing edge.
This is implemented in lines 17–23.

So far, we have focused on the rule for DRV vertices, which
is the most complex one. SND vertices are easy because they
only have one (causal) child; RCV vertices are even easier be-
cause they cannot be delayed by sequencing; and INS vertices
are trivial – they have no causal children.

4.6 Correctness
We have formally modeled the properties of temporal prove-
nance, and we have proven that our algorithm achieves them.
Due to lack of space, we cannot include the full model or the
proofs here (they are available in Appendix A); however, we
informally describe the properties below.

The properties we considered fall into two categories. The
first category consists of basic properties that provenance
is generally expected to have; for instance, the provenance
should describe a correct execution of the system (validity),
it should respect happens-before relationships (soundness),
it should be self-contained and fully explain the relevant
event (completeness), and it should only contain events that
are actually necessary for the explanation (minimality). We
have formalized these properties using existing definitions
from [68]. Since these definitions are for provenance in gen-
eral and do not consider the temporal aspect at all, our proofs
basically indicate that we did not “break” anything.

The second category contains the properties of the de-
lay annotations that our algorithm creates. Since this is a
key contribution of this paper, we briefly sketch our ap-
proach. We carefully define what it means for a derivation
τ : −c1, c2, . . . to be directly “delayed” by one of its pre-
conditions, and we then recursively extend this definition to
transitive delays (that is, one of the ci was itself delayed by
one of its own preconditions, etc.). Our first theorem (Sec-
tion A.5) states that each vertex is labeled with the amount
of (direct or transitive) delay that is contributed by the sub-
tree that is rooted at that vertex. Our second theorem (Sec-
tion A.6) essentially says that, if there is a vertex v in a tem-
poral provenance tree that is annotated with T and the sum of
the annotations on its children and immediate predecessors is
S < T , then it is possible to construct another valid (but hy-
pothetical) execution in which v’s execution time is reduced
by (T − S) and in which the derivation finishes (T − S)
units of time earlier. This shows that the annotations really
do correspond to the “potential for speedup” that we intu-
itively associate with the concept of delay.

4.7 Limitations

Temporal provenance is not magic: when the real reasons for
a delay are complex – e.g., many small but unrelated factors

that simply add up – the temporal provenance will likewise
by complex and will not show a single root cause. Even in
cases where there really is a single unusual factor that causes
a lot of delay, temporal provenance does not always single it
out, since it has no notion of what is unusual, or which de-
lays are avoidable; instead, it will simply identify all causes,
annotate each with the delay it caused, and leave the deci-
sion to the operator. (However, it could be combined with
an additional root-cause analysis, e.g., the one from [30].)
Finally, unlike functional provenance, temporal provenance
might experience a “Heisenberg effect” in certain cases – that
is, collecting the necessary information could subtly alter the
timing of the system and prevent the very bugs from appear-
ing that the operator wishes to diagnose (or trigger new, dif-
ferent ones).

5 Improving readability

As defined above, temporal provenance is already useful for
diagnostics because it can explain the reasons for a delay be-
tween two events. However, the provenance may not be as
succinct as a human operator would prefer due to two rea-
sons. First, the temporal provenance for [e1, e2] contains the
entire classical provenance of e2 as a subgraph, even though
some of the functional causes did not actually contribute to
the delay. Second, sequencing delay is often the result of
many similar events that each contribute a relatively small
amount of delay. To declutter the graph, we perform two
post-processing steps.

5.1 Pruning zero-delay subgraphs
Our first post-processing step hides any vertices that are an-
notated with zero (or not annotated at all) by the ANNOTATE

function. The only exception is that we keep vertices that
are connected via a causal path (i.e., a path with only causal
edges) to a vertex that is annotated with a positive delay. For
instance, in Figure 5, the original INS(Z) vertex – the starting
point of the interval – would be preserved, even though the
insertion itself did not contribute any delay.

To illustrate the effect of this step we consider the exam-
ple in Figure 5(f), which is almost identical to the one in
Figure 5(c), except that an additional, unrelated derivation
(F) occurred before the derivation of E. Here, the INS(G) and
the DRV(F) would be hidden because they do not contribute
to the overall delay.

5.2 Provenance aggregation
Our second post-processing step aggregates structurally sim-
ilar subgraphs [54]. This helps with cases where there are
many events that each contribute only a very small amount of
delay. For instance, in our scenario from Figure 1, the delay
is caused by a large number of RPCs from the maintenance

402 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

service that are queued in front of the RPC. The “raw” tem-
poral provenance contains a subtree for each such RPC. Dur-
ing post-processing, these nearly identical subtrees would be
aggregated into a single subtree whose weight is the sum of
the weights of the individual trees, as shown in Figure 4.

There are two key challenges with this approach. The first
is to decompose the temporal provenance into smaller sub-
graphs that can potentially be aggregated. At first glance,
there are exponentially many decompositions, so the prob-
lem seems intractable. However, we observe that (1) aggre-
gation is most likely to be possible for sequencing delays,
which are often due to similar kinds of events (network pack-
ets, RPCs) that have a similar provenance; and that (2) the
corresponding subtrees can easily be identified because they
are laterally connected to the functional provenance through
a chain of sequencing edges. Thus, we can extract candi-
dates simply by following such lateral sequencing edges and
by taking the subgraphs below any vertices we encounter.

The second challenge is deciding whether two subgraphs
can be aggregated. As a first approximation, this is a graph
isomorphism problem, and since our provenance graphs have
a bounded chromatic index (which roughly corresponds to
the number of preconditions in the largest rule), the clas-
sic algorithms – e.g., [23] – should work well. However, in
our case the candidate subgraphs are often similar but rarely
identical; thus, we need to define an equivalence relation that
controls which vertices and are safe to aggregate. We use a
simple heuristic that considers two vertices to be similar if
they share a tuple name and have been derived on the same
node. To aggregate two subgraphs, we start at their root ver-
tices; if the vertices are similar, we merge them, annotate
them with the sum of their individual annotations, and recur-
sively attempt to merge pairs of their children. If the vertices
are not similar, we stop aggregation at that point and connect
the two remaining subgraphs directly to the last vertex that
was successfully aggregated.

The aggregation procedure is commutative and associa-
tive; thus, rather than attempting aggregation for all pairs of
subgraphs, we can simply try to aggregate each new sub-
graph with all existing aggregates. In our experience, the
O(N2) complexity is not a problem in practice because N is
often relatively small and/or most of the subgraphs are simi-
lar, so there are very few aggregates.

6 The Zeno debugger

We have built a temporal provenance debugger called Zeno
with five components in 23, 603 lines of code.
Runtime: To demonstrate that Zeno can work with different
languages and platforms, we built three different front-ends.
The first is integrated with RapidNet [3] and enables Zeno
to generate temporal provenance for NDlog programs. The
second is integrated with the Zipkin [1] framework – a cross-
language distributed tracing library that is based on Google

Dapper [55] and can run a network of microservices written
in Node.js [4] (JavaScript), Pyramid [5] (Python), and WE-
Brick [6] (Ruby). The third is integrated with Mininet [7],
which we use to emulate a network environment with P4
switches [17]. All front-ends share the same back-end for
reasoning about temporal provenance. In our evaluation, we
use the first and the third front-end for SDN applications, and
the second one for native Zipkin services.
Provenance recorder: At runtime, our debugger must
record enough metadata to be able to answer provenance
queries later on. Previous work [69, 46, 61] has already
shown that provenance can be captured at scale; this is typ-
ically done either (1) by explicitly recording all events and
their direct causes, or (2) by recording only nondeterminis-
tic inputs at runtime, and by later replaying the execution
with additional instrumentation to extract events and causes
if and when a query is actually asked [68]. The Zipkin front-
end follows the first approach, because Zipkin already has
well-defined interfaces to capture both base events and inter-
mediate events (such as RPC invocations and completions),
which yields a complete trace tree for each request. There-
fore, Zeno merely adds a post-processing engine that con-
verts the trace trees to functional provenance and that infers
most of the sequencing edges from the recorded sequence of
events across all trace trees. In addition, Zeno extends the
Zipkin runtime with dtrace [27] to capture sequencing edges
that cannot be directly inferred (e.g., edges representing lock
contention). The NDlog front-end uses the second approach
and is based on an existing record+replay engine from [68].
The Mininet platform leverages P4 switches to directly ob-
tain ingress/egress timestamps. (More on this below.) In
both approaches, we record timestamps at microsecond-level
precision, which should be sufficient in practice [57].
Query processor: The third and final component accepts
queries T-QUERY(e1,e2) from the operator, as defined in Sec-
tion 4.2, and it answers each query by first generating the raw
temporal provenance and then applying the post-processing
steps. The resulting graph is then displayed to the operator.
Retention policy: To prevent the storage requirements from
growing indefinitely, our prototype maintains the provenance
data only for a configurable retention time R, and prunes it
afterwards. Because of this, the result of a T-QUERY(e1,e2)
can be incomplete: for instance, if a particular forwarding
decision was made based on a routing table entry that is older
thanR, the corresponding branch of the provenance tree will
be “pruned” at that point, since the entry’s provenance will
already have been discarded. However, if e1 is no older than
R, all vertices that would be annotated with a nonzero delay
will be included, so, if most queries are about recent events,
this is not a big sacrifice to make. If desired, the retention
policy could easily be refined or replaced.
P4 integration: Obtaining sequencing edges is not always
straightforward, especially at the network switches. Fortu-
nately, we can leverage the in-band network telemetry (INT)

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 403

capability [16] in emerging switches [24] to obtain sequenc-
ing edges. These switches can stamp into a packet’s header
the ingress/egress timestamps at each queue, which can then
be used to obtain sequencing edges. If two packets p1 and p2
traverse the same queue and their ingress/egress timestamps
were ti1/te1 and ti2/te2, with ti1 < ti2 < te1 < te2, then we
know that p2 must have been queued after p1, and Zeno can
add a sequencing edge to the provenance graph. We have im-
plemented an extension in our prototype to approximate this
capability; note, however, that modern switches can perform
these operations directly in hardware at line speed.

7 Evaluation

In this section, we report results from an experimental evalu-
ation of our debugger. We have designed our experiments to
answer four high-level questions: 1) Is temporal provenance
useful for debugging realistic timing faults? 2) What is the
cost for maintaining temporal provenance? 3) How fast can
our debugger process diagnostic queries? And 4) Does tem-
poral provenance scale well with the network size?

We ran our experiments on a Dell OptiPlex 9020 worksta-
tion, which has a 8-core 3.40 GHz Intel i7-4770 CPU with
16 GB of RAM. The OS was Ubuntu 16.04, and the kernel
version was 4.10.0. Parts of the Zipkin front-end ran on a
MacBook Pro, which has a 4-core 2.40 GHz Intel i5-4258
CPU with 8GB of RAM. The OS was macOS 10.13.2, and
the kernel version was 17.3.0.

7.1 Diagnostic scenarios
We reproduced seven representative scenarios that we sam-
pled from incidents reported by Google Cloud Engine [2]:

• R1, Z1: Misbehaving maintenance task [8]. Clients
of the Compute Engine API experienced delays of up
to two minutes because a scheduled maintenance task
caused queuing within the compute service. This is the
scenario from Section 2.
• R2, Z2: Elevated API latency [9]. A failure caused

the URL Fetch API infrastructure to migrate to a re-
mote site. This increased the latency, which in turn
caused clients to retry, worsening the latency. Latencies
remained high for more than 3 hours.
• R3: Slow deployments after release [10]. A new re-

lease of App Engine caused the underlying pub/sub in-
frastructure to send an update to each existing instance.
This additional load slowed down the delivery of de-
ployment messages; thus, the creation of new instances
remained slow for more than an hour.
• R4: Network traffic changes [11]. Rapid changes in

external traffic patterns caused the networking infras-
tructure to reconfigure itself repeatedly, which created
a substantial queue of modifications. Since the network

Frontend (F) span id: 1, parent id: none

0s
(time)

Compute (C) span id: 2, parent id: 1

Billing (B) ...

Storage (S) span id: 4, parent id: 2

30s10s 20s 40s 50s

Figure 7: Zipkin trace tree for scenario Z1, which shows
that the RPC to the storage service is the bottleneck, but the
actual cause (the RPCs from the maintenance service) is off-
path and thus is absent.

registration of new instances had to wait on events in
this queue, the deployment of new instances was slowed
down for 90 minutes.
• Z3: Lock contention [12]. User-submitted jobs ex-

periences increased execution time for over 13 hours
because lock contention in an underlying component
slowed down query scheduling and execution.
• Z4: Slow load jobs [13]. Load jobs to an analytics ser-

vice experienced long latencies for 29 hours. The ser-
vice received an elevated number of jobs that exceeded
its ingestion capacity and caused new jobs to wait in-
creasingly longer to be scheduled.
• M1: Network congestion [14]. Two cloud services ex-

perienced high latency for over 6 hours due to network
congestion.

We reproduced four scenarios in RapidNet (R1–R4) and
four in the microservice environment (Z1–Z4), including two
scenarios in both environments. The microservice scenarios
used five to eight servers. (We do not model switches in the
microservice scenarios.) We used single-core nodes for Z1
and Z2, but we used up to four cores for Z3 and Z4, to test
Zeno’s ability to handle concurrency; in this case, we spread
the workload equally across the available cores. The first
two RapidNet scenarios use four switches, one controller,
and three servers; for the remaining RapidNet scenarios, we
used four switches and one controller but a larger number of
servers (115 for R3, and 95 for R4). We reproduced the fi-
nal scenario in Mininet (M1) with 20 P4 switches with 16
hosts organized in a three-tiered Fat-tree topology, where
the sequencing edges were obtained using the ingress/egress
timestamps exported by the P4 switches [17].

7.2 Identifying off-path causes
A key motivator for this work is the fact that off-path causes
for a delay are often not even visible with an existing debug-
ger. To test whether Zeno addresses this, we generated trace
trees (using Zipkin) and classic provenance (using DTaP),
and compared their ability to identify off-path causes.

Figure 7 shows a Zipkin trace tree for Z1. A human op-
erator can clearly see that the API call to the frontend took
50 seconds, and that the compute RPC and the storage RPC

404 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

78 Storage Req
sent by M at 0.75s,...,1.05s

78 Storage Reqs
received S at 1.20s,..,0.90s

Off-path
cause!

78 Storage Rsps
sent by S at 50.70s,...,10.90s

(1) The compute response took
50.63 seconds to generate after
the frontend received the request.
Because the compute node took
50.62s to process the request.

Compute Rsp
send by C at 51.36s

Billing Rsp
received by C at 11.34s

Billing Rsp
sent by B at 11.29s

Billing Req
received by B at 1.19s

Compute Rsp
received by F at 51.37s

Billing Req
sent by C at 1.01s

Storage Rsp
received by C at 51.36s

Storage Rsp
sent by S at 51.21s

Storage Req
received by S at 1.20s

Storage Req
sent by C at 1.05s

(2) The compute node processing
depended on two other RPC
responses, in which the storage
RPC finished last.

(3) The storage response was
triggered around 50 seconds
ago. The majority of this delay
was due to 78 other RPCs that
arrived earlier, which were all
from the maintenance service.

50.63s

50.62s

50.62s

50.47s

0.36s 49.50s

0.31s

0.16s

(Q) Why did the compute request took 50.63 seconds to generate a response?

0.01s

0.01s

...

...

Compute Req
received by F at 0.74s

Compute Req
received by C at 0.90s

Figure 8: Temporal provenance for scenario Z1. In contrast
to the trace tree in Figure 7, the off-path cause (the requests
from the maintenance service) does appear and can easily be
found by starting at the root and by following the chain of
vertices with the highest delay.

both took almost as long. The latter may seem suspicious,
but the trace tree contains no further explanation. Similarly,
the classic provenance tree for Z1, which are essentially the
yellow vertices in Figure 8, offers a more comprehensive ex-
planation compared to the trace tree; however, like the trace
tree, it also misses the actual off-path cause. This consis-
tently happened in all experiments with Zipkin and DTaP:
since these systems do not reason about temporal causal-
ity, the underlying cause was never included in any of their
results. On the other hand, Z1’s temporal provenance (all
vertices in Figure 8) not only captures the information from
Zipkin or DTaP, but also explains that the requests from the
off-path maintenance service are causing the delay.

7.3 Size of the provenance
The provenance has to be simple enough for the operator to
make sense of it. Recall that, before showing the provenance
to operators, our debugger (1) prunes vertices that do not
contribute to the overall delay, and (2) aggregates subgraphs
that are structurally similar. To quantify how well these tech-
niques work, and whether they do indeed lead to a readable
explanation, we re-ran the diagnostic queries in Section 7.1
with different subsets of these steps disabled, and we mea-
sured the size of the corresponding provenance graphs.

Figure 9 shows our results. The leftmost bars show the
size of the raw temporal provenance, which ranged from 748
to 2,564 vertices. A graph of this size would be far too com-
plex for most operators to interpret. However, not all of these

 0

 1000

 2000

 3000

 4000

 5000

 6000

R1 R2 R3 R4 Z1 Z2 Z3 Z4 M1

V
e

rt
ic

e
s
 i
n

 r
e

s
p

o
n

s
e

Query

Raw
w/ annotation (w>0)
w/ annotation (w=0)

w/ pruning (w>0)
w/ pruning (w=0)

w/ aggregation (w>0)
w/ aggregation (w=0)

Figure 9: Size of the temporal provenance for all scenarios
in Section 5, with different post-processing steps.

vertices actually contribute to the overall delay. The second
set of bars shows the number of vertices that Zeno would
annotate with a nonzero delay (w > 0) and a zero delay
(w = 0), respectively: only 4.6–32.1% of all vertices ac-
tually contributed any delays. However, the subgraphs with
nonzero delays nevertheless remain too large to read effec-
tively.

Our first post-processing step prunes vertices and subtrees
that are annotated with zero delay and that do not make a
causal contribution. As the third set of bars shows, this re-
duces the size of the graph by more than 30% in all scenarios.
The second and final post-processing step coalesces struc-
turally similar subtrees and aggregates their delays. As the
rightmost set of bars shows, this is extremely effective and
shrinks the graph to between 13 and 93 vertices; the number
of vertices that actually contribute delay is between 11 and
28. (Recall that vertices with a causal contribution are pre-
served even if they do not contribute delay.) A provenance
graph of this size should be relatively easy to interpret.

To explain where the large reduction comes from, we
sketch the raw provenance tree – without post-processing –
for scenario Z1 in Figure 10. The structure of this tree is typ-
ical for the ones we have generated. First, there is a relatively
small “backbone” (shown in yellow) that functionally ex-
plains the result and roughly corresponds to classical prove-
nance. Second, there is a large number of small branches
(shown in red) along long sequencing chains (shown in
green) that describe the sources of any delay; these are col-
lapsed into a much smaller number of branches, or even a
single branch. Third, there are further branches (shown in
white) that are connected via sequencing edges but do not
contribute any delay; these are pruned entirely. The last two
categories typically contain the vast majority of vertices, and
our post-processing steps shrink them very effectively, which
in this case yields the much simpler tree from Figure 8.

7.4 Runtime overhead
Next, we quantified the overhead of collecting the metadata
for temporal provenance at runtime. We ran a fixed workload
of 1,000 requests in all scenarios, and measured the overall

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 405

...

...

...

...

...

...

...

...

...
...

...

...

...

...
...

...

...

...

...

...

...

...

......

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

......

...

......

...

...
...

...

...

...

...

...

...
...

...

...

...

...

...
Compute
response

Compute
request

Off-path
causes!

(A1)

(A2)

(P1)

(P2)

......
... ...

Figure 10: Sketch of the raw temporal provenance for sce-
nario Z1. The post-processing steps from Section 5 reduce
this to the provenance shown in Figure 8.

latency and the storage needed to maintain provenance. Zip-
kin is closely based on Dapper, which incurs low overhead
in production systems [55]; for instance, instrumenting every
request in a web search cluster increased latency by 16.3%
and decreased throughput by 1.48% [55]. Temporal prove-
nance mostly uses the data Zipkin collects, but does not mod-
ify its collection system; the dtrace [27] extension, which
complements Zipkin traces, incurs an additional latency in-
crease of 0.8% and a storage overhead of 270 bytes per RPC.
In Mininet, each packet consumes 106 bytes, which includes
the packet header and timestamps. In RapidNet, maintaining
classical provenance alone resulted in a latency increase of
0.3–1.2% and a storage overhead of 145–168 bytes per in-
put event. Maintaining temporal provenance causes an addi-
tional latency increase of 0.4–1.5% and a storage overhead of
49 bytes per event. Notice that, for temporal provenance, it
is not enough to merely record input events, since this would
not necessarily reproduce the timing or sequence of events.

The total storage consumption also depends on the reten-
tion time R. (Recall that Zeno prunes provenance data be-
yond R.) R needs to be large enough to cover the interval
between the root cause and the time the query is issued. In-
tuitively, a small R should be sufficient because root causes
of current issues are usually not in the distant past. To con-
firm this intuition, and to estimate a suitable value for R,
we re-examined our survey of incidents disclosed by Google
Cloud Platform [2]. We found 12 timing faults whose de-
scriptions included timestamps for both the symptom and the
root cause; in 11 of the 12 cases, the interval between the root
cause and the symptom was less than 30 minutes.

7.5 Query processing speed
When the operator queries the temporal provenance, our de-
bugger must execute the algorithm from Section 4 and apply

the post-processing steps from Section 5. Since debugging is
an interactive process, a quick response is important. To see
whether our debugger can meet this requirement, we mea-
sured the turnaround time for all queries, as well as the frac-
tion of time consumed by each of the major components.

Figure 11(a) shows our results. We make two high-level
observations. First, for scenarios where provenance is cap-
tured using deterministic replay (R1–R4), the turnaround
time is dominated by the replay and by the storage lookups
that would be needed even for classical provenance. This is
expected because neither our annotation algorithm nor the
post-processing steps are computationally expensive. Sec-
ond, although the queries vary in complexity and thus their
turnaround times are difficult to compare, we observe that
none of them took more than 10 seconds, which should be
fast enough for interactive use. Notice that this delay is in-
curred only once per query; the operator can then explore the
resulting temporal provenance without further delays.

7.6 Scalability
To evaluate the scalability of Zeno with regard to the network
size, we tested the turnaround time and provenance size of
query R3 on larger networks with up to 700 nodes. We ob-
tained these networks by adding more servers.
Turnaround time: As we can see from the left part of Fig-
ure 11(b), the turnaround time increased linearly with the
network size, but it was within 65 seconds for all cases. As
the breakdown shows, the increase mainly comes from the
latency increase of the historical lookups and of the replay.
This is because the additional nodes and traffic caused the
size of the logs to increase. This in turn resulted in a longer
time to replay the logs, and to search through the events. Pro-
filing [15] shows that log replay is dominated by sending and
receiving packets in RapidNet [3] (Recall from Section 6 that
the replay engine is based on an existing one from [68].). Be-
cause the replay runs on a single machine, we can optimize
turnaround time by reducing unnecessary I/O.
Size of the provenance: The right part of Figure 11(c)
shows that the size of the raw provenance grew linearly to
the network size – by 7x from 1, 939 to 13, 960 vertices –
because traffic from additional servers caused additional de-
lays, which required extra vertices to be represented in the
provenance. With the annotation and aggregation heuristics
applied, the number of vertices that actually contributed de-
lay still grew, because more hops were congested due to bus-
ier networks. However, the increase – a factor of 1.5, from
28 to 40 – is much less than the increase in the network size
(7x), which suggests that the heuristic scales well.

8 Related Work

Provenance: None of the provenance systems we are aware
of [61, 30, 60, 68, 69, 67, 49, 22, 38, 35, 39] can reason about
temporal causality, which is essential for diagnosing timing

406 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 2
 4
 6
 8

 10
 12
 14
 16

R1 R2 R3 R4 Z1 Z2 Z3 Z4 M1

T
im

e
 (

s
e

c
o

n
d

s
)

Query

Replay/Post-processing
Storage lookups

Graph construction
Annotation+Aggregation

(a)

 0

 20

 40

 60

 80

 100

 120

100 300 500 700

T
im

e
 (

s
e

c
o

n
d

s
)

Network size

Replay
Storage lookups

Graph construction
Annotation+Aggregation

(b)

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

100 300 500 700

V
e

rt
ic

e
s
 i
n

 r
e

s
p

o
n

s
e

Network size

Raw
w/ anno. (w>0)
w/ anno. (w=0)
w/ prun. (w>0)
w/ prun. (w=0)
w/ aggr. (w>0)
w/ aggr. (w=0)

(c)

Figure 11: Turnaround for all queries in Section 7.1 (a). Scalability of turnaround (b) and provenance size (c) for R3.

faults. This is true even for DTaP [68] and its predecessor
TAP [66], which are “time-aware” only in the very limited
sense that they can remember the provenance of past system
states. As our experiments confirm, these systems are not
able to find off-path causes of timing faults.

Tracing: Tracing systems broadly fall into two classes.
The first class of systems infer causality, e.g., using log
messages [34], static analysis [64, 53], or external annota-
tions [18, 44]; however, the inference is not always accu-
rate, so such systems can have false positives and negatives.
For example, Roy et al. [53] localizes network faults in real
time by correlating end-host flow metrics with network paths
that flows traverse; however, the technique relies on statisti-
cal analysis and applies best to huge data centers where the
rich structure and massive volume of traffic information re-
duces imprecision. The second class of systems avoid this
imprecision by recording causality, at the expense of instru-
mentation [55, 48, 58, 21, 33, 28, 37, 40, 57, 56]. For ex-
ample, Canopy [40] annotates traces with performance data;
SwitchPointer [57] divides time into epochs and records the
epochs during which a packet was forwarded. To our knowl-
edge, our approach is the first to explicitly record temporal
causality using sequencing edges and thus also the first to
offer precise reasoning about the causes of timing behavior.

Performance diagnosis: Existing systems have used ma-
chine learning or statistical analysis for performance diagno-
sis [63, 21, 19, 41, 20, 32] – they perform learning on the
normal system behaviors and use learned models for diagno-
sis. This tends to work well when there is abundant training
data, but its power is limited when diagnosing rare anoma-
lies or occasional glitches, which are often the trickiest and
most time-consuming problems to debug. Performance di-
agnosis can also be done by comparing “good” and “bad”
instances [51, 52, 50, 54] and analyzing their differences,
when both types of instances are available. Since these types
of diagnosis do not use causality, the analysis is not always
precise. DiffProv [30] does rely on causality, but it focuses
exclusively on functional but not temporal causality. We be-
lieve that Zeno may be able to benefit from a similar differ-
ential diagnosis to narrow down the root causes further.

Timing faults: Our approach is potentially useful for diag-
nosing timing faults in real-time systems, where tasks have

deadlines [31]. Researchers have proposed solutions to con-
trol program timing, but they either require specialized hard-
ware [36] or incur significant overhead [29]. Worst-case ex-
ecution time analysis [59] can estimate an upper bound on
the execution time of a program, but it does not reason about
the causes of delays.
Queuing theory: Queuing theory [42, 43, 25] has been used
to model, analyze, and optimize the performance of dis-
tributed systems. This approach, however, assumes a cer-
tain distribution of arrival patterns in the input workloads,
which may not always hold in practice, and it does not auto-
matically identify the causes of a performance violation. In
contrast, temporal provenance can help diagnosing problems
in practical systems without assumptions on the input model.

9 Conclusion

Diagnosing timing-related issues is a tricky business that re-
quires expertise and a considerable amount of time. Hence,
it seems useful to develop better tools that can at least par-
tially automate this process. Existing tools work well for
functional problems, but they fail to identify the root causes
of temporal problems; this requires a very different approach
that involves different information and a new way of reason-
ing about causality. We have proposed temporal provenance
as a concrete solution to this problem. Although tempo-
ral provenance takes the concept of provenance in a some-
what different direction than the existing work on functional
provenance, the two lines of work share the same starting
point (classical provenance) and thus look very similar to
the operator, which helps with usability. The experimental
results from our prototype debugger suggest that temporal
provenance can provide compact, readable explanations for
temporal behavior, and that the necessary metadata can be
collected at a reasonable cost.

Acknowledgments: We thank our shepherd Ariosto Panda
and the anonymous reviewers for their comments and
suggestions. This work was supported in part by NSF
grants CNS-1563873, CNS-1703936, CNS-1750158, CNS-
1703936 and CNS-1801884, and the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
HR0011-16-C-0056 and HR0011-17-C-0047.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 407

References
[1] http://zipkin.io/.

[2] https://status.cloud.google.com/summary.

[3] http://netdb.cis.upenn.edu/rapidnet/.

[4] https://nodejs.org/.

[5] https://trypyramid.com/.

[6] https://github.com/ruby/webrick.

[7] http://mininet.org/.

[8] https://status.cloud.google.com/incident/
compute/15039.

[9] https://status.cloud.google.com/incident/
appengine/14005.

[10] https://status.cloud.google.com/incident/
appengine/15005.

[11] https://status.cloud.google.com/incident/
compute/15057.

[12] https://status.cloud.google.com/incident/
bigquery/18003.

[13] https://status.cloud.google.com/incident/
bigquery/18007.

[14] https://status.cloud.google.com/incident/
appengine/15023.

[15] https://github.com/gperftools/gperftools.

[16] In-band network telemetry. http://p4.org/wp-content/
uploads/fixed/INT/INT-current-spec.pdf.

[17] The P4 language. https://github.com/p4lang/.

[18] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P.,
AND MUTHITACHAROEN, A. Performance debugging for distributed
systems of black boxes. In Proc. SOSP (Oct. 2003).

[19] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Automating
root-cause diagnosis of performance anomalies in production soft-
ware. In Proc. OSDI (Oct. 2012).

[20] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S.,
MALTZ, D. A., AND ZHANG, M. Towards highly reliable enterprise
network services via inference of multi-level dependencies. In Proc.
SIGCOMM (2007).

[21] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. Us-
ing Magpie for request extraction and workload modelling. In Proc.
OSDI (Dec. 2004).

[22] BATES, A., TIAN, D., BUTLER, K. R., AND MOYER, T. Trustwor-
thy whole-system provenance for the Linux kernel. In Proc. USENIX
Security (Aug. 2015).

[23] BODLAENDER, H. L. Polynomial algorithms for graph isomorphism
and chromatic index on partial k-Trees. Journal of Algorithms (1990),
631–643.

[24] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. ACM SIGCOMM CCR 44, 3 (2014).

[25] BOUDEC, J.-Y. L., AND THIRAN, P. Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet, vol. LNCS 2050.
Springer, 2001.

[26] BUNEMAN, P., KHANNA, S., AND WANG-CHIEW, T. Why and
where: A characterization of data provenance. In Proc. ICDT (Jan.
2001).

[27] CANTRILL, B., SHAPIRO, M. W., AND LEVENTHAL, A. H. Dy-
namic instrumentation of production systems. In Proc. USENIX ATC
(2004).

[28] CHANDA, A., COX, A. L., AND ZWAENEPOEL, W. Whodunit:
Transactional profiling for multi-tier applications. In Proc. SOSP (Oct.
2007).

[29] CHEN, A., MOORE, W. B., XIAO, H., HAEBERLEN, A., PHAN, L.
T. X., SHERR, M., AND ZHOU, W. Detecting covert timing channels
with time-deterministic replay. In Proc. OSDI (Oct. 2014).

[30] CHEN, A., WU, Y., HAEBERLEN, A., ZHOU, W., AND LOO, B. T.
The Good, the bad, and the differences: Better network diagnostics
with differential provenance. In Proc. SIGCOMM (Aug. 2016).

[31] CHEN, A., XIAO, H., PHAN, L. T. X., AND HAEBERLEN, A. Fault
tolerance and the five-second rule. In Proc. HotOS (May 2015).

[32] CHEN, M. Y., KICIMAN, E., FRATKIN, E., FOX, A., AND BREWER,
E. Pinpoint: Problem determination in large, dynamic internet ser-
vices. In Proc. DSN (2002).

[33] CHEN, Y.-Y. M., ACCARDI, A., KICIMAN, E., PATTERSON, D. A.,
FOX, A., AND BREWER, E. A. Path-based failure and evolution
management. PhD thesis, University of California, Berkeley, 2004.

[34] CHOW, M., MEISNER, D., FLINN, J., PEEK, D., AND WENISCH,
T. F. The mystery machine: end-to-end performance analysis of large-
scale Internet services. In Proc. OSDI (Oct. 2014).

[35] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-
LACH, D. S. Quire: Lightweight provenance for smart phone op-
erating systems. In Proc. USENIX Security (Aug. 2011).

[36] EDWARDS, S. A., AND LEE, E. A. The case for the precision timed
(PRET) machine. In Proc. DAC (June 2007).

[37] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND STO-
ICA, I. X-trace: A pervasive network tracing framework. In Proc.
NSDI (Apr. 2007).

[38] GEHANI, A., AND TARIQ, D. Spade: Support for provenance audit-
ing in distributed environments. In Proc. Middleware (Dec. 2012).

[39] HASAN, R., SION, R., AND WINSLETT, M. The case of the fake
picasso: Preventing history forgery with secure provenance. In Proc.
FAST (2009).

[40] KALDOR, J., MACE, J., BEJDA, M., GAO, E., KUROPATWA, W.,
O’NEILL, J., ONG, K. W., SCHALLER, B., SHAN, P., VISCOMI,
B., ET AL. Canopy: An end-to-end performance tracing and analysis
system. In Proc. SOSP (2017).

[41] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S., PAD-
HYE, J., AND BAHL, P. Detailed diagnosis in enterprise networks. In
Proc. SIGCOMM (Aug. 2009).

[42] KLEINROCK, L. Queueing Systems, Volume 1: Theory. Wiley-
Interscience, 1975.

[43] KLEINROCK, L. Queueing Systems, Volume 2: Computer Applica-
tions. Wiley-Interscience, 1976.

[44] KOSKINEN, E., AND JANNOTTI, J. Borderpatrol: Isolating events for
black-box tracing. In Proc. EuroSys (Mar. 2008).

[45] LAMPORT, L. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21, 7 (July 1978).

[46] LOGOTHETIS, D., DE, S., AND YOCUM, K. Scalable lineage capture
for debugging DISC analysis. Tech. Rep. CSE2012-0990, UCSD.

[47] LOO, B. T., CONDIE, T., GAROFALAKIS, M., GAY, D. E., HELLER-
STEIN, J. M., MANIATIS, P., RAMAKRISHNAN, R., ROSCOE, T.,
AND STOICA, I. Declarative networking. Communications of the
ACM 52, 11 (Nov. 2009), 87–95.

[48] MILLER, B. P. Dpm: A measurement system for distributed pro-
grams. IEEE Transactions on Computers 37, 2 (1988), 243–248.

[49] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U., AND
SELTZER, M. I. Provenance-aware storage systems. In Proc. USENIX
ATC (May 2006).

408 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://zipkin.io/
https://status.cloud.google.com/summary
http://netdb.cis.upenn.edu/rapidnet/
https://nodejs.org/
https://trypyramid.com/
https://github.com/ruby/webrick
http://mininet.org/
https://status.cloud.google.com/incident/compute/15039
https://status.cloud.google.com/incident/compute/15039
https://status.cloud.google.com/incident/appengine/14005
https://status.cloud.google.com/incident/appengine/14005
https://status.cloud.google.com/incident/appengine/15005
https://status.cloud.google.com/incident/appengine/15005
https://status.cloud.google.com/incident/compute/15057
https://status.cloud.google.com/incident/compute/15057
https://status.cloud.google.com/incident/bigquery/18003
https://status.cloud.google.com/incident/bigquery/18003
https://status.cloud.google.com/incident/bigquery/18007
https://status.cloud.google.com/incident/bigquery/18007
https://status.cloud.google.com/incident/appengine/15023
https://status.cloud.google.com/incident/appengine/15023
https://github.com/gperftools/gperftools
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
https://github.com/p4lang/

[50] NAGARAJ, K., KILLIAN, C., AND NEVILLE, J. Structured compar-
ative analysis of systems logs to diagnose performance problems. In
Proc. NSDI (Apr. 2012).

[51] NOVAKOVIĆ, D., VASIĆ, N., NOVAKOVIĆ, S., KOSTIĆ, D., AND
BIANCHINI, R. Deepdive: Transparently identifying and manag-
ing performance interference in virtualized environments. In Proc.
USENIX ATC (June 2013).

[52] REYNOLDS, P., KILLIAN, C. E., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unexpected in
distributed systems. In Proc. NSDI (May 2006).

[53] ROY, A., ZENG, H., BAGGA, J., AND SNOEREN, A. C. Passive
realtime datacenter fault detection and localization. In Proc. NSDI
(2017).

[54] SAMBASIVAN, R. R., ZHENG, A. X., DE ROSA, M., KREVAT,
E., WHITMAN, S., STROUCKEN, M., WANG, W., XU, L., AND
GANGER, G. R. Diagnosing performance changes by comparing re-
quest flows. In Proc. NSDI (Apr. 2011).

[55] SIGELMAN, B. H., BARROSO, L. A., BURROWS, M., STEPHEN-
SON, P., PLAKAL, M., BEAVER, D., JASPAN, S., AND SHANBHAG,
C. Dapper, a large-scale distributed systems tracing infrastructure.

[56] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying datacenter
network debugging with pathdump. In Proc. OSDI (2016).

[57] TAMMANA, P., AGARWAL, R., AND LEE, M. Distributed network
monitoring and debugging with switchpointer. In Proc. NSDI (2018).

[58] TIERNEY, B., JOHNSTON, W., CROWLEY, B., HOO, G., BROOKS,
C., AND GUNTER, D. The NetLogger methodology for high per-
formance distributed systems performance analysis. In Proc. HPDC
(July 1998).

[59] WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N.,
THESING, S., WHALLEY, D., BERNAT, G., FERDINAND, C.,
HECKMANN, R., MITRA, T., MUELLER, F., PUAUT, I., PUSCHNER,
P., STASCHULAT, J., AND STENSTRÖM, P. The worst-case

execution-time problem–overview of methods and survey of tools.
ACM TECS 7, 3 (May 2008), 36:1–36:53.

[60] WU, Y., CHEN, A., HAEBERLEN, A., ZHOU, W., AND LOO, B. T.
Automated bug removal for software-defined networks. In Proc. NSDI
(Mar. 2017).

[61] WU, Y., ZHAO, M., HAEBERLEN, A., ZHOU, W., AND LOO, B. T.
Diagnosing missing events in distributed systems negative prove-
nance. In Proc. SIGCOMM (Aug. 2014).

[62] YANG, C.-Q., AND MILLER, B. P. Critical path analysis for the
execution of parallel and distributed programs. In Proc. DCS (1988).

[63] ZHANG, X., TUNE, E., HAGMANN, R., JNAGAL, R., GOKHALE,
V., AND WILKES, J. CPI 2: CPU performance isolation for shared
compute clusters. In Proc. EuroSys (Apr. 2013).

[64] ZHAO, X., ZHANG, Y., LION, D., ULLAH, M. F., LUO, Y., YUAN,
D., AND STUMM, M. lprof: A non-intrusive request flow profiler for
distributed systems. In Proc. OSDI (Oct. 2014).

[65] ZHOU, W. Secure Time-Aware Provenance For Distributed Systems.
PhD thesis, University of Pennsylvania, 2012.

[66] ZHOU, W., DING, L., HAEBERLEN, A., IVES, Z., AND LOO, B. T.
TAP: Time-aware provenance for distributed systems. In Proc. TaPP
(June 2011).

[67] ZHOU, W., FEI, Q., NARAYAN, A., HAEBERLEN, A., LOO, B. T.,
AND SHERR, M. Secure network provenance. In Proc. SOSP (Oct.
2011).

[68] ZHOU, W., MAPARA, S., REN, Y., LI, Y., HAEBERLEN, A., IVES,
Z., LOO, B. T., AND SHERR, M. Distributed time-aware provenance.
In Proc. VLDB (Aug. 2013).

[69] ZHOU, W., SHERR, M., TAO, T., LI, X., LOO, B. T., AND MAO, Y.
Efficient querying and maintenance of network provenance at Internet-
scale. In Proc. SIGMOD (June 2010).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 409

A Formal Model
Temporal provenance preserves all properties of classical provenance (va-
lidity, soundness, completeness, and minimality). We have obtained the
corresponding proofs by extending the formal model from TAP/DTaP [65].
Although there are some parts of the proof from [65] that require few or no
changes (e.g., because they only relate to functional provenance and not to
sequencing), we present the full formal model here for completeness. Our
extensions include the following:

• Temporal provenance has a different set of vertex types (Section 3.3)
and contains sequencing edges (Section 4.1); consequently, temporal
provenance graphs are constructed differently (Section A.2).

• The validity property, in addition to its prior requirements from TAP,
requires that the temporal provenance include all the events necessary
to reproduce the execution temporally (Section A.3).

• The proofs follow the same structure as in TAP, but are adjusted to
handle the different graph structure and the stronger validity property
of temporal provenance (Section A.4).

We have also formally modeled the properties of the delay annotations that
our algorithm creates (and that were not part of [65]):

• Definitions of direct delay and transitive delay; and a theorem states
that each vertex is labeled with the amount of delay that is contributed
by the subtree that is rooted at that vertex (Section A.5).

• A theorem states that the annotations do correspond to the “potential
for speedup” that we intuitively associate with the concept of delay
(Section A.6).

A.1 Background: Execution Traces
To set stage for the discussion, we introduce some necessary concepts for
reasoning about the execution of the system in our temporal provenance
model.

An execution trace of an NDlog program can be characterized by a se-
quence of events that take place in the system, starting from the initial sys-
tem state. Each event on a node captures the execution of a particular rule r
that is triggered by a certain tuple τ , under the existence of some other tu-
ples on the node, and that results in a new tuple being derived or an existing
tuple being underived (i.e., lost). We formally define them below.

Definition (Event): An event d@n on a node n is represented by d@n =
(τ, r, ts, te, c,±τ ′), where

• τ is the tuple that triggers the event,
• r is the derivation rule that is being triggered,
• ts is the time at which r is triggered (called start timestamp),
• te is the time at which r finishes its execution (called end timestamp),
• c is the set of tuples that are preconditions of the event, which must

exist on n at time ts, and
• τ ′ is the tuple that is derived (+) or underived (−) as a result of the

derivation.

Definition (Trace): A trace E is a sequence of events
〈d1@n1, d2@n2, . . . , dk@nk〉 that reflects an execution of the sys-
tem from the initial state S0, i.e.,

S0
d1@n1−−−−−→ S1

d2@n2−−−−−→ · · · dk@nk−−−−−→ Sk.

To quantify the timing behaviors of the system, it is necessary to reason
about the order among events. Ideally, we would like to have a total ordering
among all events in all nodes in the system; however, due to the lack of fully
synchronized clocks, this is difficult to achieve in distributed systems. To
address this, we introduce the concept of trace equivalence that preserves
the total ordering of events on each node, without imposing a total ordering
among events across nodes. Intuitively, two traces E and E ′ are considered

equivalent if the subsequence of events that every node observes in E is the
same as that is observed in E ′.

Definition (Subtrace): E ′ is a subtrace of E (written as E ′ ⊆ E) iff E ′ is
a subsequence of E . We denote by E|n the subtrace of E that consists of all
and only the events of E that take place on node n.

Definition (Equivalence): Two traces E and E ′ are equivalent (written as
E ∼ E ′) iff for all nodes n, E|n = E ′|n.

By definition, the equivalence relation is transitive: if E ∼ E ′ and E ′ ∼ E ′′,
then E ∼ E ′′.
Example: As an example, consider the following traces:

E1 = 〈d1@n1, d2@n2, d3@n1, d4@n2〉,

E2 = 〈d1@n1, d2@n2, d4@n2, d3@n1〉,
E3 = 〈d1@n1, d2@n2, d3@n1〉.

It is easy to observe that E1 and E2 are equivalent, since E1|n1 = E2|n1 =
〈d1@n1, d3@n1〉 and E1|n2 = E2|n2 = 〈d2@n2, d4@n2〉. In contrast,
E3 is a subtrace of E1, but it is not equivalent to E1 (since E3|n2 6= E1|n2).

A.2 Graph construction
We now describe our algorithm for constructing the temporal provenance
that explains the reasons for a delay between two events. As discussed in
Section 4.6, temporal provenance is recursive – the temporal provenance
for [e′, e] includes, as subgraphs, the temporal provenances of all events
that contributed to both e and the delay from e′ to e. Leveraging this prop-
erty, we can construct the temporal provenance of a pair of events “on de-
mand” using a top-down procedure, without the need to materialize the en-
tire provenance graph.

Towards this, we first define a function RAW-QUERY that, when called
on a vertex v in the temporal provenance graph, returns two sets of imme-
diate children of v: the first consists of vertices that are connected to v via
causal edges, and the second consists of vertices that are connected to v via
sequencing edges. Given an execution trace E of the system, the temporal
provenance for a diagnostic query T-QUERY(e′,e) can be obtained by first
constructing a vertex ve that describes e (i.e., a DRV/UDRV/RCV ver-
tex for e), and then calling RAW-QUERY recursively on the vertices starting
from ve until reaching the leaf vertices (lines 1-18); note that a vertex re-
turned by a RAW-QUERY call is connected to its parent vertex via either
a causal edge and/or a sequencing edge, depending on the set(s) it belongs
to (lines 12-17). The resulting graph, denoted by G(e′, e, E), includes all
necessary events to explain both e and the delay from e′ to e. However, as
it requires delay annotation (Sections 4.3–4.5) to be useful for diagnostics,
we refer to it as the “raw” temporal provenance of T-QUERY(e′,e).

The RAW-QUERY(v) procedures rely on a helper function called
PREV-VERTEX to find vertices that are connected to v via sequenc-
ing edges. For ease of exposition, we first explain the pseudo-code of
PREV-VERTEX in Figure 12: given an interval [t′, t] and a node N (sup-
plied by RAW-QUERY calls), PREV-VERTEX finds the chain of preceding
events that happened on N during [t′, t]; it first locates the last event v
whose execution ends at t and constructs a corresponding vertex (lines 51-
60); it then shortens the interval to until the starting timestamp of v and
recursively find prior events on N (line 61); it stops until the interval is
exhausted or if no event can be found (line 67); finally, it recursively con-
nects this chain of events using sequencing edges and returns the last event
in the chain to its caller (line 65-66). For example, consider the prove-
nance graph from Figure 13: a PREV-VERTEX([2.5s, 3.5s],Y) call will
first find the DRV(F) event, which ends at exactly t = 3.5s; it con-
structs a vertex and shortens the interval to [2.5s, 2.5s], by excluding the
execution time of DRV(F); this interval is passed into a recursive call –
PREV-VERTEX([2.5s, 2.5s],Y) – that finds the event of and constructs a
vertex for INS(G); the recursion then stops because the interval becomes
empty (because INS(G) takes a positive amount of time); the two con-
structed vertices are connected via sequencing edges and the last event in
the chain – DRV(F) – is returned to the caller.

Figure 12 shows the pseudo-code for RAW-QUERY(v) depending on the
type of v (DRV, UDRV, SND, RCV, INS and DEL). Note that each

410 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1: function CONSTRUCT-GRAPH(ve)
2: G← {ve} // the “raw” temporal provenance graph
3: // a queue of vertices that need explanation
4: NodeToProcess ← {ve}
5: while NodeToProcess 6= ∅ do
6: v ← NodeToProcess.POP()
7: S, S′ ← RAW-QUERY(v)
8: for v′ ∈ {S ∪ S′} do
9: if v′ 6∈ G then

10: G← G ∪ v′ // add vertices
11: NodeToProcess.PUSH(v′)

12: for v′ ∈ S do
13: // add causal edges
14: G← G ∪ (v′, v)causal
15: for v′ ∈ S′ do
16: // add sequencing edges
17: G← G ∪ (v′, v)sequencing

18: RETURN G
19: function RAW-QUERY(DRV([ts, te],N,τ , τ :- τ1, τ2, . . . , τm))
20: S← ∅
21: tmaxe ← 0 // the last precondition was satisfied at tmaxe

22: for τi ∈ {τ1, τ2, . . . , τm} do
23: Find di@N = (τ ′, r, t′s, t′e, {c1, c2, . . . , ck}, ±τi) ∈ E :

t′e≤ ts and t′e is maximized
24: tmaxe ← MAX(tmaxe , t′e)
25: if r = rins then
26: S← S ∪ INS([t′s, t

′
e],N ,τi)

27: else if r = rrcv then
28: S← S ∪ RCV([t′s, t

′
e],N←r.N ,±τi)

29: else
30: S← S ∪ DRV([t′s, t

′
e],N ,τi, τi:-τ ′,c1,c2, . . . , ck)

31: // include all preceding events that happened after the last
32: // precondition was satified and before the derivation of τ
33: RETURN

(
S; PREV-VERTEX([tmaxe , ts], N)

)
34: function RAW-QUERY(INS([ts, te],N ,τ))
35: RETURN (∅; ∅)
36: function RAW-QUERY(SND([ts, te],N→N ′,±τ))
37: Find d@N = (τ ′, r, t′s, t′e, {c1, c2, . . . , ck},±τ) ∈ E :

t′e≤ ts and r 6= rrcv and t′e is maximized.
38: if r = rins/del then
39: RETURN

(
INS/DEL([t′s, t

′
e],N ,τ);

PREV-VERTEX([t′e, ts],N)
)

40: else
41: RETURN

(
DRV/UDRV([t′s, t

′
e],N ,τ , τ :- τ ′, c1, c2, . . .);

PREV-VERTEX([t′e, ts], N)
)

42: function RAW-QUERY(RCV([ts, te],N←N ′,±τ))
43: Find d@N ′=(τ ′,r,t′s,t′e,±τ) ∈ E :

t′e≤ ts and r = rsnd and t′e is maximized
44: v← SND([t′s, t

′
e],N

′→N ,±τ)
45: // a remote sequencing edge exists from the SND vertex
46: RETURN

(
v; v

)
47: function PREV-VERTEX([t′, t],N)
48: if t′ < t then
49: // If an immediate preceding event exists, then add a
50: // sequencing edge from the corresponding vertex.
51: if ∃ d@N=(τ ′,r,ts,te,{c1, c2, ...},±τ): te= t then
52: v ← null
53: if r = rsnd then
54: v ← SND([ts, te],N→r.N ,±τ)
55: else if r = rrcv then
56: v ← RCV([ts, te],N←r.N ,±τ)
57: else if r = rins/del then
58: v ← INS/DEL([ts, te],N ,τ)
59: else
60: v ← DRV/UDRV([ts, te],N ,τ ,τ :-τ ′,c1,c2,...)
61: v′ = PREV-VERTEX([t′, ts],N)
62: if v′! = null then
63: // recusively add preceding events until the
64: // entire [t′, t] interval is explained
65: G← G ∪ (v′, v)sequencing

66: RETURN v
67: RETURN null
68: function RAW-QUERY(UDRV([ts, te],N,τ , τ :- τ1, τ2, . . . , τm))
69: S← ∅
70: tmaxe ← 0 // the last precondition was satisfied at tmaxe
71: for τi ∈ {τ1, τ2, . . . , τm} do
72: Find di@N = (τ ′, r, t′s, t′e, {c1, c2, . . . , ck}, ±τi) ∈ E :

t′e≤ ts and t′e is maximized
73: tmaxe ← MAX(tmaxe , t′e)
74: if r = rins/del then
75: S← S ∪ INS/DEL([t′s, t

′
e],N ,τi)

76: else if r = rrcv then
77: S← S ∪ RCV([t′s, t

′
e],N←r.N ,±τi)

78: else
79: S← S ∪ DRV/UDRV([t′s, t

′
e],N ,τi, τi:-τ ′,c1,c2, . . . , ck)

80: // includes all preceding events that happened after the last
81: // precondition was satified and before the underivation of τ
82: RETURN

(
S; PREV-VERTEX([tmaxe , ts], N)

)
83: function RAW-QUERY(DEL([ts, te],N ,τ))
84: RETURN (∅; ∅)

Figure 12: Algorithm for constructing temporal provenance graph for a given execution trace E . The trace E consists of
events (Definition A.1), which are recorded at runtime or reconstructed via replay. The function RAW-QUERY(v), when called
on a vertex v, returns two sets of immediate children of v, which are connected to v via causal edges and sequencing edges,
respectively. It calls PREV-VERTEX([t′, t],N) as a subprocedure, which finds a chain of vertices connected via sequencing edges
that immediately precedes v during [t′, t].

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 411

Algorithm 1 Extracting traces from provenance
1: // This algorithm extracts the trace A(e′, e, E) from the “raw” temporal prove-

nance G(e′, e, E); for ease of explanation, we rewrite G as (V,E), where V
represents vertices andE represent edges

2: proc EXTRACTTRACE(G = (V,E))
3: // Calculate the out-degree of every vertex inG
4: for all v ∈ V do degree(v)← 0
5: for all e = (v, v′) ∈ E do degree(v)++
6: // Generate the race based on topological sort
7: trace← ∅
8: NodeToProcess ← V
9: while NodeToProcess 6= ∅ do

10: // Select the next event based on topological ordering and timestamps
11: select v ∈ NodeToProcess : degree(v) = 0 and 6 ∃v′

that is located on the same node and has a larger end timestamp
12: NodeToProcess.REMOVE(v)
13: if type(v) = DRV or UDRV or SND then
14: preconditions ← ∅
15: for ∀ (v′, v) ∈ E s.t. (v′, v) is a causal edge do
16: preconditions .ADD(tuple(v′)) // tuple(v′) is a precondition
17: // find the trigger from the preconditions
18: trigger← τ ′ ∈ preconditions:

(a) τ ′ is a message, or (b) τ ′ is a state and
6 ∃τ ′′ ∈ preconditions that has a larger end timestamp

19: preconditions .DELETE(trigger)
20: event← (trigger, rule(v), startTime(v),
21: endTime(v), preconditions, tuple(v))
22: trace.push front(event)

23: if type(v) = RCV then
24: output← tuple(v)
25: trigger ← tuple(v′): (v′, v) ∈ E s.t. type(v′) = SND
26: event← (trigger, rule(v), startTime(v),
27: endTime(v), ∅, tuple(v))
28: trace.push front(event)

29: if type(v) = INS or DEL then
30: output← tuple(v)
31: event← (∅, rule(v), startTime(v),
32: endTime(v), ∅, tuple(v))
33: trace.push front(event)

34: for all (v′, v) ∈ E, degree(v′)← degree(v′)− 1

35: return trace

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X
F@Y :- G@Y

X
Y

0 1 2 3 4 5 6 7 8

C B A

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)F

INS(G)

DRV(F)

INS(G)

Figure 13: An example scenario, with NDlog rules at the top
left, the timing of a concrete execution in the bottom left,
and the temporal provenance graph at the right. The query
is T-QUERY(INS(Z), DRV(A)); the start and end vertices are
marked in bold. Vertex names are shortened and some fields
are omitted for clarity.

DRV or UDRV vertex is also associated with the corresponding derivation
rule. Next, we explained the pseudo-code of RAW-QUERY(v) for each
vertex type in more detail. For ease of exposition, we use the provenance
graph from Figure 13:

• To explain a SND vertex, we find the most recent event in the original
trace that produced (or deleted) the tuple that is being sent (line 37),

construct an INS (or DEL) or a DRV (or UDRV) vertex for the
found event, and add an incoming causal edge from the constructed
vertex (lines 38-41); in addition, a SND vertex has an incoming se-
quencing edge from the chain of preceding events that happened after
the message was produced or deleted (the PREV-VERTEX calls in
lines 39 and line 41). For example, in the temporal provenance graph
from Figure 13, the SND(+C) vertex has a causal edge from the
DRV(C) vertex, because DRV(C) functionally triggered SND(+C);
in addition, a PREV-VERTEX([2s, 2s],X) call adds a sequencing
edge from DRV(C) to SND(+C), as the former directly precedes
the latter.

• A RCV has an incoming causal edge and an incoming remote
sequencing edge from the SND vertex for the received message
(lines 42-46). This is the case for RCV(+E) and RCV(+C) in Fig-
ure 13.

• A DRV vertex for a rule A:-B,C,D has an incoming causal edge
for each precondition (B, C, and D) that leads to the vertex that pro-
duced the corresponding tuple (line 22); this can be an INS, a RCV,
or another DRV (lines 25-30); in addition, a DRV vertex has an in-
coming sequencing edge from the chain of preceding events that hap-
pened after the last precondition was satisfied (the PREV-VERTEX
call in line 33). For example, in the provenance from Figure 13,
DRV(F) has a causal edge from its (only) precondition INS(G);
in addition, a PREV-VERTEX([2.5s, 3.5s],Y) finds the preceding
event RCV(+C) that occurred between INS(G) ended and DRV(F)
started.

• An INS vertex corresponds to the insertion of a base tuple, which
cannot be explained further; thus, it has no incoming edges (line 35).
This is true for INS(Z) and INS(G) in Figure 13.

• The edges for the negative “twins” of these vertices – UDRV and
DEL – are analogous.

A.3 Properties
Given the “raw” temporal provenance G(e′, e, E) of a diagnostic query
T-QUERY(e′,e) in an execution trace E , we say thatG(e′, e, E) is correct if
it is possible to extract a subtrace from G that has the properties of validity,
soundness, completeness, and minimality. We first describe our algorithm
for extracting such a subtrace, and then formally define these properties and
their proofs.

Definition (Trace Extraction): Given a temporal provenanceG(e′, e, E),
the trace A(e′, e, E) is extracted by running Algorithm 1 based on topolog-
ical sort.

Algorithm 1 converts the vertices in the provenance graph to events and
then uses a topological ordering and timestamps to assemble the events
into a trace. In particular, Line 13-33 implements the construction of
one individual event, where the information of a rule evaluation (such
as triggering event, conditions, and action) is extracted from vertices in
G(e′, e, E): a DRV/UDRV/SND vertex and their children; a pair
of RCV and SND vertices; or a INS/DEL vertex. In the algorithm,
type(v), tuple(v), rule(v), startTime(v) and endTime(v) denote the
vertex type, the tuple, the derivation rule, the start timestamp, and the
end timestamp of the vertex v, respectively. For example, Algorithm 1
extracts the following trace from the provenance graph in Figure 13:
〈INS(Z)@X , DRV(C)@X , SND(+C)@X , INS(G)@Y , DRV(B)@X ,
RCV(+C)@Y ,
DRV(F)@Y , DRV(E)@Y , SND(+E)@Y , RCV(+E)@X ,
DRV(A)@X〉.

We will show that the extracted trace A(e′, e, E) obtained from Algo-
rithm 1 satisfies the following four properties.

Definition (Soundness): A subtraceA extracted from G(e′, e, E) is sound
if and only if it is a subtrace of some trace E ′ that is equivalent to E , i.e.,
A ⊆ E ′ ∼ E .

Intuitively, the soundness property means thatA(e′, e, E) must preserve all
the happens-before relationships among events and the exact timestamps of

412 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

events in the original execution trace obtained from running the NDlog pro-
gram. Ideally, we would like A(e′, e, E) to be a subtrace of E , but without
synchronized clocks, we cannot always order concurrent events on differ-
ent nodes. However, for practical purposes E and E0 are indistinguishable:
each node observes the same sequence of events in the same order and at
the same times.

Definition (Completeness): A subtrace A extracted from G(e′, e, E) is
complete if and only if it ends with the event e and e happens at the same
time as in E .

Intuitively, completeness means that A(e′, e, E) must include all events
necessary to reproduce e both functionally and temporally. Note that the
validity property already requires that any event that is needed for e be in-
cluded in A(e′, e, E); hence, we can simply verify the completeness prop-
erty of a valid trace by checking whether it ends with e.

Definition (Validity): A subtrace A extracted from G(e′, e, E) is valid
if and only if, given the initial state S0, for every event di@Ni =
(τi, ri, ti, t

′
i, ci,±τ ′i) ∈ A, the following holds:

(a) there exists dj@Nj = (τj , rj , tj , t
′
j , cj ,±τ ′j) that precedes di@Ni

inA such that τi = τ ′j ;

(b) for all τk ∈ ci, we have τk ∈ Si−1, where S0
d1@n1−−−−−→ S1

d2@n2−−−−−→

· · ·
di−1@ni−1−−−−−−−−→ Si−1; and

(c) based on the conditions (a) and (b), consider the set of all events Pi
such that dk@Nk ∈ Pi generates τk ∈ (ci ∪ τi); denote dj@Nj
as the latest event in Pi; if Nj = Ni and t′j < ti, there must exist
a set of events {d1p@Ni, ..., dnp@Ni} ∈ A such that: t′j = t1p;

t′mp = tm+1
p , 1 ≤ m < n; and t′np = ti.

Intuitively, the validity property means that A(e′, e, E) must correspond to
a correct execution of the NDlog program both in terms of functionality
and timing. Condition (a) states that any event that triggers a rule evalu-
ation must be generated before the rule is evaluated. Condition (b) states
that the preconditions of the rule evaluation must hold at the time of the
rule evaluation. Finally, condition (c) requires that the evaluation is “work-
conserving”: the node cannot be idle when it is ready to compute a deriva-
tion.

Definition (Minimality): A subtrace A extracted from G(e′, e, E) is mini-
mal iff there exists no trace E ′ such that: (a) there ∃di@Ni where di@Ni ∈
A and di@Ni 6∈ E ′; (b) E ′ is valid, sound, and complete.

Intuitively, minimality means thatA(e′, e, E) should not contain any events
that are not necessary to reproduce e. If this property were omitted,
A(e′, e, E) could trivially output the complete trace E .

A.4 Proofs
Lemma 1 For any execution E , and a temporal provenance query
T-QUERY(e′,e), the provenance graph G(e′, e, E) is acyclic.

Proof. We first show that if there exists a cycle in G(e′, e, E), the cycle
cannot include two vertices located on different nodes. Suppose there exists
a cycle that contains two vertices v1 and v2 located on N1 and N2 respec-
tively. Then the cycle must contain a least one pair of SND and RCV
vertices in both the path from v1 to v2, and the path from v2 and v1. Each
SND and RCV corresponds to a message communication which takes a
positive amount of time. Therefore, traversing from v1 along the cycle back
to v1 results in an absolute increment in the timestamp. This is a contradic-
tion.

If all the vertices in the cycle are located on the same node, then we
can order the vertices according to their associated timestamps (now all the
timestamps are with respect to the same local clock). Such order corre-
sponds to the precedence of events in the execution. As time always pro-
gresses forward, such cycle cannot exist in G(e′, e, E). 2

Theorem 2 A(e′, e, E) is sound.

Proof. We need to show that a) all the events in A(e′, e, E) also appear in
E at the same time (and thus in any E0 ∼ E), and b) the local event ordering
pertains on each node, that is, for any two events d1@Ni and d2@Ni in
A(e′, e, E) that are located on the same nodeNi, d1@Ni precedes d2@Ni
inA(e′, e, E) iff d1@Ni precedes d2@Ni in E .

Condition a. We perform a case analysis by considering the type of the root
vertex of G(e′, e, E):

• DRV. According to Algorithm 1 (lines 13-22), an event di@Ni is
generated and included in A(e′, e, E) for each DRV vertex (and its
children) in the provenance graph G(e′, e, E). However, by con-
struction, each DRV vertex v corresponds to an rule evaluation
in E . In our model, the rule evaluation is modeled as an event
dj@Nj = (τj , rj , tj , t

′
j , {c1j , ..., c

p
j },±τ

′
j), where τj is the trigger

event, rj and [tj , t
′
j] are the rule used in and the time interval of the

rule evaluation, ckj represents preconditions, and±τ ′j is the generated
update. We need to show that di@Ni is identical to dj@Nj . This
follows straightforwardly from the construction of G(e′, e, E): The
RAW-QUERY(v) procedures generate a DRV vertex v by: (a) find
a derivation event dj@Nj from E , (b) add incoming edges from the
trigger event (a vertex for τj), and (c) add incoming edges from the
preconditions (vertices for {c1j , ..., c

p
j }). Algorithm 1 reverses this

process and generates event di@Ni from these information, which is
extracted from dj@Nj , and therefore di@Ni = dj@Nj .

• RCV/INS/DEL/UDRV/SND Following the same argument for
the DRV case above, we can prove that condition (a) holds.

Condition b. According to Algorithm 1 (specifically, Line 11), d1@Ni
precedes d2@Ni in A(e′, e, E), iff d2@Ni has a larger timestamp than
d1@Ni. However, d2@Ni is assigned a larger timestamp iff d1@Ni pre-
cedes d2@Ni in the actual execution E . Note that events on different nodes
may be reordered inA(e′, e, E), but this is captured by the equivalence (∼)
relation. 2

Theorem 3 A(e′, e, E) is complete.

Proof. We need to show that a) A(e′, e, E) contains an event di@Ni that
generates e at the same time as in E , and b) di@Ni is the last event in
A(e′, e, E).
Condition a. By construction, the vertex for e has incoming edges
from vertices representing the triggering event τ and all preconditions
c1, ..., cp (if any). Algorithm 1 (specifically, Lines 13-28) construct an
event (τ, r, t, t′, c,±e), where r and [t, t′] are the rule name and time in-
terval encoded in the vertex. Note that the tuple τ as well as the timestamps
t and t′ are exactly the ones that are extracted from E (Algorithm 12).

Condition b. Now we have proved that some event di@Ni that generates
e must exist in A(e′, e, E), we next show that di@Ni is the last event in
A(e′, e, E). The provenance graph G(e′, e, E) is rooted by a vertex that
corresponds to e. Since all other vertices in G(e′, e, E) have a directed
path to the root vertex, the corresponding events must all be ordered before
di@Ni, so di@Ni must necessarily be the last event in the subtrace. 2

Theorem 4 A(e′, e, E) is valid.

Proof. Lemma 1 shows that any provenance graph G(e′, e, E) is acyclic,
and thus G(e′, e, E) has a well-defined height: the length of the longest
path from any leaf to e. We prove validity using structural induction on the
height of the provenance graph G(e′, e, E).
Base case: The height of G(e′, e, E) is one. In this case, e must be an
insertion or deletion of a base tuple; G(e′, e, E) contains a single INS (or
DEL) vertex that corresponds to the update of the base tuple. Therefore,
A(e′, e, E) consists of a single event and is trivially valid, because the event
has neither a trigger nor any precondition (Algorithm 1 lines 29–33).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 413

c1

c2

c3

c4

a

delayed by c3 c2 c4

g

g a

t0 t5t4t3

in interval

t1 t2

Figure 14: Illustration for the definition of direct and tran-
sitive delay. Shaded boxes represent intervals where a tu-
ple was being derived, and solid boxes represent intervals
where the tuple existed. The derivation is α : −c1, c2, c3, c4,
and the interval in question is [t0, t5]; γ is an unrelated tuple
whose derivation just happened to be sequenced before that
of α.

Induction case: Suppose the validity of the extracted trace A(e′, e, E)
holds for any provenance graph with height less than k (k ≥ 1). Con-
sider a provenance graph G(e′, e, E) with height k+ 1. We perform a case
analysis by considering the type of the root vertex of G(e′, e, E). For every
event di@Ni = (τi, ri, ti, t

′
i, ci,±τ ′i) ∈ A(e′, e, E), we prove that the

three conditions in Definition A.3 hold.

• DRV. We know that, by construction, the DRV vertex has an in-
coming edge from vertices representing the triggering event τ and all
preconditions c1, ..., cp. By the induction hypothesis, Algorithm 1
outputs a valid trace d1@N1, ..., dj@Nj for the subgraph for the
trigger event τ , where dj@Nj corresponds to the generation of τ
(following the completeness property proved in Theorem 3). Be-
cause of the nature of Algorithm 1 (which is based on topological
sort), dj@Nj must be ordered before di@Ni, which satisfies con-
dition (a) in the definition of validity. For example, in the prove-
nance graph from Figure 13, the trigger event INS(G) must pre-
cede the derived event DRV(F) in the extracted trace, because a
causal edge exists from the former to the latter. Similarly, valid
traces are generated for the updates that support the preconditions
c1, ..., cp, which satisfies conditions (b). Condition (c) holds by con-
struction: the original execution trace E is valid and must include a
set of events {d1p@Ni, ..., dnp@Ni} that satisfies condition (c); the
PREV-VERTEX call in Figure 12 finds all these events because the
call recursively find such events from E until the interval between the
end of dj@Nj and the start of di@Ni is fully exhausted (line 48);
therefore, all events in {d1p@Ni, ..., dnp@Ni} will be represented by
vertices in the temporal provenance; the extraction algorithm merely
reverses this process and reconstructs each of {d1p@Ni, ..., dnp@Ni},
while preserving their ordering and timestamps (following the sound-
ness property proved in Theorem 2). Therefore, the extracted trace
A(e′, e, E) is valid. For example, consider the DRV(F) event in
the provenance from Figure 13: there is a gap of [2.5s, 3.5s] be-
tween when its last precondition INS(G) completed and when its own
derivation started; in the original execution, node Y must be busy dur-
ing the gap, because it is work-conserving; in this case, Y was busy
with handling RCV(+C); while constructing the vertex for DRV(F),
the RAW-QUERY procedure calls PREV-VERTEX([2.5s, 3.5s],Y),
which finds the RCV(+C) event from the original trace and added a
vertex toG; Algorithm 1 extracts events fromG based on topological
ordering, therefore, RCV(+C) will present in A, after INS(G) and
before DRV(F).

• RCV. We know that, by construction, the RCV vertex has
an incoming edge from a SND vertex with the same tuple τ .

By the induction hypothesis, Algorithm 1 outputs a valid trace
d1@N1, ..., dj@Nj for the subgraph rooted at the SND vertex,
where dj@Nj corresponds to the generation of τ (following the com-
pleteness property proved in Theorem 3). Because of the nature of
Algorithm 1 (which is based on topological sort), dj@Nj must be
ordered before di@Ni, which satisfies condition (a) in the definition
of validity. A SND vertex have no preconditions, consequently, con-
ditions (b) holds trivially. di@Ni and dj@Nj happened on different
nodes, which satisfies condition (c) trivially. Therefore, the extracted
traceA(e′, e, E) is valid.

• UDRV/SND. Following the same argument for the DRV case
above, the extracted traceA(e′, e, E) is valid.

• INS/DEL. This case cannot occur because INS and DEL have no
preconditions, so the tree would have to have a height of one.

2

Theorem 5 A(e′, e, E) is minimal.

Proof. We prove the minimality property by induction on the syntactic
structure of A(e′, e, E): we show that an event di@Ni ∈ A(e′, e, E) can-
not be removed because it is necessary for some event dj@Nj appeared
later in the trace. Suppose thatA(e′, e, E) = d1@N1, ..., dm@Nm.
Base case. According to the completeness property (Theorem 3), the last
event dm@Nm inA(e′, e, E) generates e. Therefore the base case trivially
holds, as the removal of dm@Nm breaks the completeness property.

Induction case. Suppose the last k events dm−k+1@Nm−k+1,
..., dm@Nm(K >= 1) cannot be remove. We show that event
dm−k@Nm−k cannot be removed as well: According to Algorithm 1,
dm−k@Nm−k is constructed from a vertex v. v must have an outgo-
ing edge to some other vertex in G(e′, e, E). Otherwise, v would not be
included in G(e′, e, E) which is a subgraph rooted by e. Consider u as
the first vertex on the path from v to the root of G(e′, e, E). According
to Algorithm 1, an event dj@Nj is constructed from u and its children
(if any). Given the edge from v to u, we know that dj@Nj depends on
dm−k@Nm−k , and that dm−k@Nm−k precedes dj@Nj . By applying
the induction hypothesis (dj@Nj cannot be removed fromA(e′, e, E)), we
can conclude that dm−k@Nm−k also cannot be removed. 2

A.5 Delay annotations
In this section, we show that each vertex is annotated with the delay that
it contributed. We first define what it means for a derivation to be directly
“delayed” by one of its preconditions (Definition A.5), and then recursively
extends this definition to transitive delays (Definition A.5). We continue by
discussing several properties of the annotations computed by the algorithm
from Figure 6 (Definition A.5, Lemmas 6-9). This allows us to further prove
the first theorem which states that the algorithm from Figure 6 labels each
vertex with the amount of (direct or transitive) delay that is contributed by
the subtree that is rooted at that vertex (Theorem 10).

Definition (Direct delay): Consider a derivation rule α : −c1, c2, . . . , ck
and an interval [t0, t5], such that α begins its derivation at t4 < t5 and fin-
ishes it at time t5. We say that a precondition ci directly delays the deriva-
tion of α during an interval [tx, ty], t0≤ tx, ty≤ t4, iff

• (a) ci became true at ty and remain true until t4 (and was false before
ty); and

• (b) there either was some cj , i 6= j, that delayed the derivation of α
during some interval [x, tx); or there was no such cj , and tx = t0.

For convenience, we say that α itself delays its own derivation during
[t4, t5] . Find the time t3 ≤ t4 such that t3 is the earliest time when all pre-
conditions were true (and remained true until t4). If a tuple γ resides on the
same node as α and the derivation of γ happened during [tx, ty] ⊆ [t3, t4],
we also say that γ directly delays the derivation of α.

414 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A@X :- B@X,C@X
B@X :- D@X
C@X :- D@X
D@X :- Z@X

X
Y

0 1 2 3 4 5 6 7 8

C B A
INS(Z)

[0s,6s]

DRV(A)

DRV(B)DRV(C)

DRV(D)

[3s,5s][0s,3s]

D

INS(Z)

[0s,1s]

Figure 15: An example scenario, with NDlog rules at the
top left, the timing of a concrete execution in the bottom left,
and the resulting temporal provenance at the right. The query
is T-QUERY(INS(Z), DRV(A)); the start and end vertices are
marked in bold. Vertex names have been shortened and some
fields have been omitted for clarity. Each vertex is annotated
with its annotation interval (Definition A.5).

Figure 14 contains a brief illustration. c3 directly delays the derivation of α
during the interval [t0, t1], because: (a) c3 became true at t1 and remained
true until t4; (b) t0 was the start of the interval in question (the second case
of condition (b)). c2 directly delays the derivation of α during the interval
[t1, t2], because: (a) c2 became true at t2 and remained true until t4; (b)
c3 delayed the derivation of α during [t0, t1] (the first case of condition
(b)). Similarly, c4 delays the derivation of α during the interval [t2, t3]. γ
delays the derivation of α during the interval [t3, t4] because, during that
interval, all preconditions were true and γ was derived on the same node
as α. Finally, α delays the derivation of itself during [t4, t5]. We can now
expand this definition to other derivations:

Definition (Transitive delay): Consider two derivations
α : −c1, c2, . . . , ck and β : −d1, d2, . . . , dm, and suppose β (di-
rectly or transitively) delays the derivation of α during an interval [t0, t3].
Then we say that a tuple di transitively delays the derivation of α during
an interval [t1, t2], t0 ≤ t1, t2 ≤ t3, iff di directly delays the derivation
of β during [t1, t2].

We can think of the definition of transitive delay as recursively partitioning
the interval [t0, t5] into smaller intervals that are each associated with some
lower-level derivation that caused delay to the top-level derivation of α.

Definition (Annotation interval): We associate a vertex v inG with an an-
notation interval Iαv = [ts, te] for each call of the ANNOTATE(v, [ts, te])
procedure in the algorithm in Figure 6.

Figure 15 shows how the algorithm in Figure 6 would have assigned
annotation intervals to an example temporal provenance graph. Before pre-
senting the main theorem, we discuss a few properties of annotation inter-
vals.

Lemma 6 In the algorithm in Figure 6, each invocation of the
ANNOTATE(v, [ts, te]) procedure assigns a set of annotation intervals
{Iα
vi
} to vertices {vi} such that

⋂
i I
α
vi

= ∅.

Proof. This holds by construction. When v has no child, {Iα
vi
} = ∅ and

the condition holds trivially. When v has children: the first WHILE loop in
the ANNOTATE procedure subdivides the interval between ts and the end
timestamp of the last precondition into annotation intervals for functional
children (in lines 8–16); the second WHILE loop subdivides the interval be-
tween the end timestamp of the last precondition and ts(v) into annotation
intervals for sequencing vertices (in lines 17–23); note that if a functional
precondition v′ is also connected via a sequencing edge to v, it is only han-
dled by the first while loop, because T = tend(v

′) = tstart(v) = E after
the first while loop finishes and the second while loop will not execute;
therefore, all the generated annotation intervals within an ANNOTATE call
are non-overlapping. 2

This lemma states that the annotation intervals generated by recursive
calls within the same ANNOTATE invocation do not overlap. For example,
in Figure 15, the annotation intervals of the DRV(C) and DRV(B) vertices
are both assigned by a recursive call on the DRV(A) vertex and thus do not
overlap.

Lemma 7 An annotation interval Iαv of vertex v always ends at te(v),
where te(v) is when the execution of v finishes or the end timestamp of
v (Section 3.3).

Proof. This holds by construction of the algorithm in Figure 6. In the first
WHILE loop in the ANNOTATE procedure (in lines 8–16), the annotation
interval associated with v always ends with te(v). In the second WHILE
loop (in lines 17–23), the annotation interval of the current vertex is E =
ts(s), which is the start timestamp of the previous vertex connected via a
sequencing edge; E is also the end timestamp of the current vertex, which
follows from the construction of sequencing edges (PREV-VERTEX calls
in the algorithm in Figure 12). 2

This lemma states that the annotation interval ends when the actual exe-
cution finishes. For example, this holds for all annotation intervals in Fig-
ure 15.

Lemma 8 Suppose a vertex v is associated with an annotation interval Iαv ,
there exists a chain of ancestor vertices v→a1→a2→ ... →e (→ repre-
sents an edge in G, and e is the root of G) such that for each ai (including
e) there exists an annotation interval Iαai and Iαv ⊆ Iαai .

Proof. This holds by construction of the algorithm in Figure 6. It follows
from the recursive nature of ANNOTATE calls that the annotation interval of
each vertex v is a subinterval of one annotation interval of one of its parents:
in the first while loop (in lines 8–16), the ANNOTATE is called with an inter-
val of [T, tend(v

′)], ts ≤ T and tend(v
′) ≤ tend(v) because v′ is a child

of v; in the second while loop (in lines 17–23), the ANNOTATE is called
with an interval of [MAX(T, tstart(s)), E], ts ≤ T ≤ MAX(T, tstart(s))
andE ≤ tstart(v) ≤ te (Lemma 7). We can simply find the specified chain
by following such parents recursively until reaching the root vertex e. As
the annotation interval is initially Iαv and is gradually extended as we climb
the chain, Iαv ⊆ Iαai . 2

For instance, consider the provenance from Figure 15, suppose
[0s, 1s]@DRV(D) represents that the DRV(D) vertex is associated with
an annotation interval of [0s, 1s] ; the ancestor chain of [0s, 1s]@DRV(D)
would be [0s, 1s]@DRV(D)→ [0s, 3s]@DRV(C)→ [0s, 6s]@DRV(A).

Lemma 9 Each vertex v in G is associated with at most one annotation
interval Iαv , that is, each vertex v is annotated at most once by the algorithm
in Figure 6.

Proof. We prove by contradiction. Without loss of generality, suppose a ver-
tex v is associated with two annotation intervals Iαv and Iαv

′. There must
exist two corresponding ancestor chains (Lemma 8). We make two obser-
vation about the chains: (a) they cannot be identical, because an ancestor
chain represents a unique stack of recursive ANNOTATE calls; by the na-
ture of a single-rooted DAG, there cannot exist two stacks of recursive calls
that visit the exact same sequence of vertices; (b) the two chains must share
a common suffix, this holds trivially because both of the chains end at the
root of G. Based on these observations, we can represent the two ancestor
chains as v→ ...→ ai→ aj→ ... and v→ ...→ a′i→ aj→ ..., where
ai 6=a′i. It follows from Lemma 8 that Iαv ⊆ Iαai and Iαv

′ ⊆ Iα
a′i

. It follows

from Lemma 7 that [te(v)− ε, te(v)] ⊆ Iαv and [te(v)− ε, te(v)] ⊆ Iαv ′,
where ε is a small value. Therefore, Iαai and Iα

a′i
overlap. This contra-

dicts with Lemma 6, because Iαai and Iα
a′i

and divided from Iαaj in the same

ANNOTATE call and cannot overlap. 2

These lemmas allow us to formulate our main claim:

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 415

Theorem 10 Suppose T-QUERY(e′, e) returnsG(e′, e, E) in some execu-
tion E , and suppose a vertex v in G is annotated with a value T by the
algorithm in Figure 6. Then T > 0 iff v directly or transitively delayed the
derivation of e during an interval [t1, t2] ⊆ [START(e′), FINISH(e)] and
T = t2 − t1, and T = 0 otherwise.

Proof. We begin by observing that the algorithm in Figure 6 labels each
vertex at most once (Lemma 9). Therefore, we only need to show that any
single invocation of the ANNOTATE procedure in Figure 6 correctly labels
vertices with respect to Definition A.5.

Next, we observe that the ANNOTATE procedure in Figure 6 partitions
the interval to explain into annotation intervals of other vertices in exactly
the same way that the definition requires. Therefore, Iαv is exactly the direct
or transitive delay of v. We discuss the partition logic of the ANNOTATE
procedure in more detail below.

The children of a DRV vertex in the provenance graph would be DRV,
INS, or RCV vertices for its preconditions, and lines 8–16 iterate over these
vertices in the order of their end times. (The original trace only records the
preconditions of an event at the point when its derivation starts; thus, if a
precondition had temporarily become true and then false again, the corre-
sponding DRV vertex would not appear as children here.) The loop calls
ANNOTATE on vertex v′. with a subinterval of [ts, te] that ends at the
point where the precondition is fully derived, and starts either at ts itself
or the end of the previous interval. This subinterval is the annotation inter-
val Iα

v′ for v′ (Definition A.5). Preconditions that were already true at ts
and remained true during the entire interval do not enter the IF block and
thus do not generate a recursive call. The first WHILE loop exits with T
set to the end time of the last precondition; the WHILE loop that follows it
(in lines 17–23) subdivides any non-empty interval between the last satis-
fied precondition and the start of the derivation of v, just as the definition
requires. Again, here each of the divided intervals is the annotation inter-
val Iα

v′ for another vertex v′ (Definition A.5). In particular, noticed that
recursive calls happen only for vertices that directly delayed v (and, hence,
directly or transitively delayed the vertex in the original query).

Finally, we observe that each vertex v gets labeled with the length of Iαv
in line 7. The labeled value is also the amount of direct or transitive delay
that v contributes, because we have proved above that the Iαv is exactly the
direct or transitive delay of v. For example, the intervals annotated beside
vertices in Figure 15 are also their direct or transitive delay. 2

A.6 Semantics of delay annotations
Although the definitions from Section A.5 do capture the intuitive notion
of “delay”, we want to reinforce this by formalizing another aspect of this
concept: if a vertex v really did delay a derivation by some time Tv , then it
should be possible to “speed up” the derivation by T (i.e., cause it to happen
Tv units of time sooner) by reducing the duration of v by Tv . In other words,
we should be able to construct a valid (hypothetical) trace that differs from
the actual trace in that v takes less time, such that the hypothetical trace
finishes Tv units of time earlier. (Note that the hypothetical trace might not
be “realistic” in a practical sense because some of the events in it may take
zero time, and thus be instantaneous; the goal is merely to demonstrate that
v is really “responsible for” Tv units of delay.) For example, Figures 16
shows the steps of “speeding up” vertices based on their annotations ((a)→
... → (g)). This procedure shortens the overall (hypothetical) execution at
each step and eventually eliminates any delay.

For this discussion, the annotation intervals that are computed by the al-
gorithm in Figure 6 are not directly useful, because they describe the delay
that was caused by an entire subgraph of the provenance. Hence, we first
describe how we have derived a more fine-grain form of annotation, which
describes the delay that is contributed by a vertex itself (Definition A.6). We
then discuss two properties of the derived annotation (Lemmas 11-12). We
continue by defining the procedure of “speeding up” an execution based on
derived annotations (Definitions A.6-A.6). We conclude by presenting the
main theorem which states that if there is a vertex v in a temporal prove-
nance tree with a (derived) annotation of T , then it is possible to construct
another valid (but hypothetical) execution in which v’s finished time is re-
duced by T and in which the derivation finishes T units of time earlier
(Definition A.6 and Theorem 13).

Definition (Speedup interval): The speed interval Iδv = [ts, te] of ver-
tex v is the difference between v’s annotation interval, as computed by the
algorithm from Figure 6, and the union of the annotation intervals of the
vertices directly annotated by v (via the recursive calls in the ANNOTATE
procedure).

Intuitively, Iδv represents the interval during which the execution of v
itself delays e. For example, in the provenance from Figure 16(a), red in-
tervals represent annotation intervals and blue intervals represent speedup
intervals. The speed up interval of DRV(A) is [6s, 7s], which is the differ-
ence from its annotation interval ([0s, 7s]), and the union of the annotations
intervals of DRV(B) and RCV(+E) ([0s, 4s]

⋃
[4s, 6s]). Speed up inter-

vals have the following two properties:

Lemma 11 The speedup interval Iδv of vertex v always ends at te(v),
where te(v) is when the execution of v finishes or the end timestamp of
v (Section 3.3).

Proof. The annotation interval of v always ends at te(v) (Lemma 7). We
prove that that Iδv ends when Iαv ends. If v has no child, Iδv = Iαv ; if v has
children, the two WHILE loops in the algorithm in Figure 6 distribute the
interval between ts and ts(v) to other vertices via recursive ANNOTATE
calls, and the remaining interval in [ts, te] is the speedup interval; in either
case, Iδv ends when Iαv ends, and therefore, Iδv ends at te(v). 2

Lemma 12 Given the temporal provenance of T-QUERY(e′, e), consider
the set of all speedup intervals {Iδ

vi
}: (a)

⋂
i I
δ
vi

= ∅; (b)
⋃
i I
δ
vi

= Iαe .

Proof. In a temporal provenance graph, vertices with annotation intervals
form a tree, because vertex v is annotated at most once (Lemma 9) by a
parent of v. Consequently, vertices with speedup intervals form a tree (Def-
inition A.6). We prove by structural induction on the height of the tree.

Base case: The height of the tree is one. Denote the root vertex as v. The
set of speedup intervals has one element ({Iδ

vi
} = Iδv), condition (a) holds.

Iδv = Iαv because v has no child (Definition A.6), condition (b) holds.

Induction case: Suppose the conditions hold for trees (of vertices with an-
notation or speedup intervals) with height less than k (k ≥ 1). Consider a
tree with depth k+ 1, rooted at vertex v. Without loss of generality, denote
T (v1) and T (v2) as subtrees of v that have annotation intervals. Note that
the speedup intervals of vertices in T (v) must be a subinterval of the anno-
tation interval of v, because: the speedup interval is simply the difference
of the annotation interval of v and the annotation intervals of the children
of v (Definition A.6); the annotation interval of v is a subinterval of the
annotation interval of its parent in the tree (Lemma 8).

It follows from Definition A.6 that the speedup interval of v and that of
T (v1) (or T (v2)) cannot overlap. It follows from Lemma 6 that the speedup
intervals of T (v1) and T (v2) cannot overlap. It follow from the induction
hypothesis that the speedup intervals within T (v1) (or T (v2)) cannot over-
lap. Therefore, condition (a) holds. It follows from Definition A.6 that
condition (b) holds. 2

Intuitively, the above two lemmas states that, given a temporal prove-
nance that explains T-QUERY(e′, e), the overall delayed interval – that
is, [ts(e′), te(e)] – can be subdivided into a sequence of all speedup
intervals {Iδvi}. In the example provenance from Figure 16(a), such a
sequence of speedup intervals is [0s, 2s]@DRV(C), [2s, 4s]@DRV(B),
[4s, 5.5s]@DRV(E), [5.5s, 6s]@RCV(+E), and [6s, 7s]@DRV(A).

Definition (Terminal event): A vertex v is a terminal event if any of the
following conditions holds:

• (a) if v is annotated, v ends at te(e), and Iδv = ∅ (a vertex is an-
noated if it is associated with an annotation interval in the original
G);

• (b) if v is not annotated, on any path in G from v to e, select u as the
first annotated vertex, Iαu = ∅.

416 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X

C B A

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,7s]

[0s,4s]

[4s,6s]

[4s,5.5s]

[4s,5.5s]

[0s,2s]

[6s,7s]

[5.5s,6s]

[4s,5.5s]

[2s,4s]

[0s,2s]

speed up
DRV(A)

X
Y

0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,6s]

[0s,4s]

[4s,6s]

[4s,5.5s]

[4s,5.5s]

[0s,2s]

[6s,6s]

[5.5s,6s]

[4s,5.5s]

[2s,4s]

[0s,2s]

X
Y

0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,5.5s]

[0s,4s]

[4s,5.5s]

[4s,5.5s]

[4s,5.5s]

[0s,2s]

[5.5s,5.5s]

[5.5s,5.5s]

[4s,5.5s]

[2s,4s]

[0s,2s]

TEs

speed up
DRV(E)

speed up
RCV(+E)

TEs

X
Y

0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,4s]

[0s,4s]

[4s,4s]

[4s,4s]

[4s,4s]

[0s,2s]

[4s,4s]
]

[4s,4s]

[4s,4s]

[2s,4s]

[0s,2s]

TEs

X
Y

0 1 2 3 4 5 6 7 8

C

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,2s]

[0s,2s]

[0s,2s]

[2s,2s]
]

[2s,2s]

[0s,2s]

TEs

speed up
DRV(C)

X
Y

0 1 2 3 4 5 6 7 8

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

TEs

speed up
DRV(B)

(a) (b) (c)

(d)(e)(f)

[2s,2s]

[2s,2s]

[2s,2s]

[2s,2s]

[2s,2s]

Figure 16: An example of “speeding up” temporal provenance using a series of transformations (Definition A.6). The NDlog
rules are at the top left. Each sub-figure shows a step of the transformation ((a)→ ... → (g)). In each sub-figure, the execution
trace is at the top, and the resulting temporal provenance at the bottom. The query is T-QUERY(INS(Z), DRV(A)) in all sub-
figures; the start and end vertices are marked in bold. Vertex names have been shortened and some fields have been omitted for
clarity. Each vertex is associated with its annotation interval (red, Definition A.5) and speed up interval (blue, Definition A.6).
Crossed intervals represent that the interval becomes empty but the annotation is preserved. White vertices are terminal events.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 417

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X

X
Y

0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,4s]

[0s,4s]

[4s,4s]

[4s,4s]

[4s,4s]

[0s,2s]

[4s,4s]
]

[4s,4s]

[4s,4s]

[2s,4s]

[0s,2s]

``barrier``

(a)

X
Y

0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,3.5s]

[0s,3.5s] [3.5s,3.5s]

[3.5s,3.5s]

[0s,2s]

[3.5s,3.5s]
]

[3.5s,3.5s]

[3.5s,3.5s]

[2s,3.5s]

[0s,2s]

``barrier``

(b)

[3.5s,3.5s]

X
Y

0 1 2 3 4 5 6 7 8

C

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,2s]

[0s,2s]

[0s,2s]

[2s,2s]
]

[2s,2s]

[0s,2s]

``barrier``

[2s,2s]

[2s,2s]

[2s,2s]

[2s,2s]

[2s,2s]

(c)

Figure 17: An example of “speeding up” temporal provenance using an annotated vertex DRV(B) (Definition A.6). The NDlog
rules are at the left. In each sub-figure, the execution trace is at the top, and the resulting temporal provenance at the bottom.
The query is T-QUERY(INS(Z), DRV(A)) in all sub-figures; the start and end vertices are marked in bold. Vertex names have
been shortened and some fields have been omitted for clarity. Each vertex is associated with its annotation interval (red,
Definition A.5) and speed up interval (blue, Definition A.6). Crossed intervals represent that the interval becomes empty but
the annotation is preserved. White vertices are terminal events.

Intuitively, terminal events represent executions that no longer contribute
any delay (in a hypothetical execution). Condition (a) describes an event that
finishes at the end of the entire execution and that no longer contributes any
delay. For example, RCV(+E) in Figure 16(c) is a terminal event: it was an-
notated in the original provenance (Figure 16(a)); it ends at t = 5.5s, which
is the end timestamp of DRV(A); and its speedup interval is empty. Con-
dition (b) describes an event that only belongs to subgraphs that no longer
contribute any delay. For example, RCV(C) in Figure 16(e) is a terminal
event: it was not annotated in the original provenance (Figure 16(a)); on
its (only) path to DRV(A), the first annotated vertex is DRV(E), whose
annotation interval is already empty ([4s, 4s]). Next, we describe steps to
transform the original execution to hypothetical executions.

Definition (Speed up): Given a vertex v in G(e′, e, E), where te(v) =
te(e) and Iδv > 0, v speeds up G by Iδv using the following procedure.
Consider a “barrier” tb that moves on the timeline; it starts from the right
boundary of Iδv and moves leftwards (and thus tb becomes smaller); it stops
when it reaches the left boundary of Iδv . For ease of exposition, we say that
the “barrier” pushes a timestamp t when we set t to MIN(t, tb). During its
move, if the “barrier” encounters a vertex vi that is either v or a terminal
event, it transforms vi by pushing these timestamps: (a) the starting times-
tamp (or the ending timestamp) of vi, (b) the left boundary (or the right
boundary) of Iαvi (if any); and (c) the left boundary (or the right boundary)
of Iδvi (if any).

Intuitively, the “speed up” operation represents a transformation step that
essentially “squeezes” a set of vertices to the left. Note that, while v speeds
up G, only v itself and terminal events – vertices that no longer contribute
any delay – are pushed leftwards. For example, Figure 17 shows the process
of speeding up the provenance using DRV(B): the “barrier” starts from the
right boundary of Iδ

DRV(A) (Figure 17(a)); while it moves, the “barrier”

pushes DRV(B) as well as terminal events DRV(E) and RCV(C) leftwards
(Figure 17(b) shows the snapshot of tb = 3.5s); the “barrier” stops at the
left boundary of Iδ

DRV(A) (Figure 17(c)).

Figure 16 shows the process of speeding up an entire provenance graph
until it becomes instantaneous. Next, we briefly show the effect of each
“speed up” operation:

• (a)→ (b), DRV(A) speeds up G by Iδ
DRV(A) = [6s, 7s]: the exe-

cution is shortened to [0s, 6s], DRV(A) becomes a terminal event;
• (b)→ (c), RCV(+E) speeds up G by Iδ

RCV(+E) = [5.5s, 6s]: the

execution is shortened to [0s, 5.5s], RCV(+E) and SND(+E) be-
come terminal events;

• (c) → (d), DRV(E) speeds up G by Iδ
DRV(E) = [4s, 5.5s]: the

execution is shortened to [0s, 4s], DRV(E) and RCV(+C) become
terminal events;

• (d)→ (e), DRV(B) speeds up G by Iδ
DRV(B) = [2, 4s]: the execu-

tion trace is shortened to [0s, 2s], DRV(B) becomes terminal events;
• (e)→ (f), DRV(C) speeds up G by Iδ

DRV(C) = [0, 2s]: the execu-

tion trace is shortened to [0s, 0s], all events are now terminal events.

Definition (Well-annotated): Consider an annotated temporal provenance
graph G(e′, e, E). G is well-annotated iff either (a) ts(e′) = te(e), that
is, the entire execution is instantaneous; (b) we can transform G into an-
other valid and well-annotated temporal provenance graph G′ by locating
an unique vertex v, where te(v) = te(e) and Iδv > 0, and speeding up G
by v (Definition A.6).

Theorem 13 Temporal provenance is well-annotated.

Proof. Consider the speedup intervals {Iδvi} of G. It follows from
Lemma 12 that {Iδvi} do not overlap and unions to [ts(e′), te(e)]. There-
fore, we can sort intervals in {Iδvi} by descending (ending) timestamp. At
the ith step, we speed up G by vi. We need to prove that: (a) each “speed
up” operation pushes the timestamps of all events that ends during Iδvi ; (b)

418 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B A

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,7s]

[0s,6s]

[0s,5.5s]
[0s,5.5s]

[6s,7s]

[5.5s,6s]

[2.5s,5.5s]

speed up
DRV(A)

speed up
SND(+E)

speed up
RCV(+E)

speed up
DRV(E)

(a)

(d)

[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,6s]

[0s,6s]

[0s,5.5s]
[0s,5.5s]

[6s,6s]

[5.5s,6s]

[2.5s,5.5s]

(b)

[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

TEs
INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,5.5s]

[0s,5.5s]

[0s,5.5s]
[0s,5.5s]

[5.5s,5.5s]

[5.5s,5.5s]

[2.5s,5.5s]

(c)

[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

TEs

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,5.5s]

[0s,5.5s]

[0s,5.5s]
[0s,5.5s]

[5.5s,5.5s]

[5.5s,5.5s]

[2.5s,5.5s]
[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

TEs

(e)

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,2.5s]

[0s,2.5s]

[0s,2.5s]
[0s,2.5s]

[2.5s,2.5s]

[2.5s,2.5s]

[2.5s,2.5s]
[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

TEs

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X

Figure 18: An example of “poorly annotated” temporal provenance. The NDlog rules are at the top left. Each sub-figure
shows a step of the transformation ((a) → ... → (g)). In each sub-figure, the execution trace is at the top, and the resulting
temporal provenance at the bottom. The query is T-QUERY(INS(Z), DRV(A)) in all sub-figures; the start and end vertices are
marked in bold. Vertex names have been shortened and some fields have been omitted for clarity. Each vertex is associated
with its annotation interval (red, Definition A.5) and speed up interval (blue, Definition A.6). Crossed intervals represent that
the interval becomes empty but the annotation is preserved. White vertices are terminal events.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 419

the length of the execution [ts(e′), te(e)] is reduced by the length of Iδvi ;
(c) the temporal provenance remains valid.

To prove condition (a), given any vertex v′i that ends during Iδvi , we
perform a case analysis of v′i:

• v′i= vi: the timestamps of v′i= vi is pushed, by the construction of
Definition A.6.

• v′i 6= vi and v′i is annotated in the original provenance: v′i must be a
terminal event, and therefore, its timestamps is pushed. Because Iδ

v′i
ends when v′i ends (Lemma 11); consequently, Iδ

v′i
must end during

Iδvi ; if Iδ
v′i

is not empty, Iδ
v′i

will overlap with Iδvi , which contradicts

with Lemma 12.
• v′i 6= vi and v′i is not annotated in the original provenance: v′i must

be a terminal event, and therefore, its timestamps is pushed. Because,
given any path from v′i to e, consider the first annotated ancestor u
and its child on the path w; if we assume that Iαu is not empty when
the “barrier” reaches the end of w, then Iαu must start before the end
of w; by construction of the algorithm from Figure 6, w must be
annotated by u, which contradicts the fact that w is not annotated.

Condition (b) follows directly from the statement above: the execution
is shortened by the length of Iδvi , because all events that end during Iδvi are
pushed leftwards until the left boundary of Iδvi .

Condition (c) holds because the “speed up” operation does not invert
causality: if an event a caused another event b, it does not alter the ordering
of a and b; nor does it delete any event. 2

Note that Definition A.6 weeds out some annotation approaches. For
example, Figure 18 shows how a straw-man approach that associates the
entire delay with the last precondition would have annotate the same prove-
nance graph in Figure 16. The result is not well annotated: while DRV(E)
speeds up G ((d)→ (e)), another vertex DRV(B) becomes the bottleneck;
however, DRV(B) cannot be pushed leftwards, because it is not a terminal
event, that is, it has not been “sped up”.

Theorem 13 suggests that the annotations on temporal provenance do
correspond to the “potential for speedup” that one may intuitively associate
with the concept of delay. This is useful, because, while the temporal prove-
nance maybe gigantic and complex, operators can focus on vertices with an-
notations and gain a comprehensive understanding of the end-to-end delay,
including potential operations to speed up.

420 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Confluo: Distributed Monitoring and Diagnosis Stack for High-speed Networks

Anurag Khandelwal
UC Berkeley

Rachit Agarwal
Cornell University

Ion Stoica
UC Berkeley

Abstract
Confluo is an end-host stack that can be integrated with
existing network management tools to enable monitoring
and diagnosis of network-wide events using telemetry data
distributed across end-hosts, even for high-speed networks.
Confluo achieves these properties using a new data struc-
ture — Atomic MultiLog— that supports highly-concurrent
read-write operations by exploiting two properties specific
to telemetry data: (1) once processed by the stack, the data
is neither updated nor deleted; and (2) each field in the data
has a fixed pre-defined size. Our evaluation results show that,
for packet sizes 128B or larger, Confluo executes thousands
of triggers and tens of filters at line rate (for 10Gbps links)
using a single core.

1 Introduction
Recent years have witnessed tremendous progress on (the
notoriously hard problem of) network monitoring and diag-
nosis by exploiting programmable network hardware [1–18].
This progress has been along two complementary dimen-
sions. First, elegant data structures and interfaces have been
designed that enable capturing increasingly rich telemetry
data at network switches [1–6,10,13–17]. On the other hand,
recent work [6–12] has shown that capitalizing on the bene-
fits of above data structures and interfaces does not need to
be gated upon the availability of network switches with large
data plane resources — switches can store a small amount
of state to enable in-network visibility, and can embed rich
telemetry data in the packet headers; individual end-hosts
monitor local packet header logs for monitoring spurious
network events. When a spurious network event is triggered,
network operator can diagnose the root cause of the event
using switch state along with packet header logs distributed
across end-hosts [7–10].

Programmable switches have indeed been the enabling
factor for this progress — on design and implementation of
novel interfaces to collect increasingly rich telemetry data,
and on flexible packet processing to embed this data into the
packet headers. To collect these packet headers and to use

them for monitoring and diagnosis purposes, however, we
need end-host stacks that can support:

• monitoring of rich telemetry data embedded in packet
headers, e.g., packet trajectory [7–11], queue lengths [1,
10], ingress and egress timestamps [10], etc. (§2.2);

• low-overhead diagnosis of network events by network
operator, using header logs distributed across end-hosts;

• highly-concurrent low-overhead read-write operations
for capturing headers, and for using the header logs for
monitoring and diagnosis purposes using minimal CPU
resources. The challenge here is that, depending on packet
sizes, monitoring headers at line rate even for 10Gbps
links requires 0.9-16 million operations per second!

Unfortunately, end-host monitoring and diagnosis stacks
have not kept up with advances in programmable hardware
and are unable to simultaneously support these three func-
tionalities (§2.1, §6). Existing stacks that support monitoring
of rich telemetry data (e.g., OpenSOC [19], Tigon [20], Gi-
gascope [21], Tribeca [22] and PathDump [8]) use general-
purpose streaming and time-series data processing systems;
we show in §2.1 that these systems are unable to sustain the
target throughput even for 10Gbps links. This limitation has
motivated design of stacks (e.g., Trumpet [23]) that can mon-
itor traffic at 10Gbps using a single core, but only by limiting
the functionality — they do not support monitoring of even
basic telemetry data like packet trajectory and queue lengths;
we discuss in §2.1 that this is in fact a fundamental design
constraint in these stacks.

Confluo is an end-host stack, designed and optimized for
high-speed networks, that can be integrated with existing
network management tools to enable monitoring and diagno-
sis of network-wide events using telemetry data distributed
across end-hosts. Confluo simultaneously supports the above
three functionalities by exploiting two properties specific to
telemetry data and applications. First, telemetry data has a
special structure: once headers are processed in the stack,
these headers are not updated and are only aggregated over

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 421

long time scales. Second, unlike traditional databases where
each record may have fields of arbitrary size, packet headers
capture a precise protocol with fixed field sizes (e.g., 32-bit
IP addresses, 16-bit port numbers, 16-bit switchIDs [8–10],
16-bit queue lengths [1, 10], 32-bit timestamps [10], etc.)1.

Confluo achieves its goals using a new data structure —
Atomic MultiLog— that exploits the above two properties
of telemetry data to trim down traditional lock-free concur-
rency mechanisms to a bare minimum without sacrificing
correctness guarantees. A MultiLog, as the name suggests,
generalizes traditional logs into a collection of lock-free logs.
Atomic MultiLog uses a collection of such logs, one for each
of the filters and aggregates (for monitoring purposes), one
for each of the materialized views (for diagnosis purposes),
and one for raw header logs. Atomic MultiLogs use the first
property to efficiently maintain an updated view of these logs
upon receiving new headers (each new header may incur
multiple concurrent write operations on Atomic MultiLog
for updating individual logs). Essentially, we show that the
first property allows trimming down the traditional lock-free
concurrency mechanisms to updating two integers per header
(§3); using atomic hardware primitives readily available in
commodity servers, Atomic MultiLog is able to ingest mil-
lions of headers per second using a single CPU core.

As headers are processed in the stack, Confluo also needs
to simultaneously execute monitoring and diagnosis queries
that, in turn, require executing multiple concurrent read op-
erations on Atomic MultiLogs. We show that having fixed
field sizes in packet headers makes it extremely simple to
handle race conditions for concurrent reads and writes over
individual logs within an Atomic MultiLog. Finally, we show
that these two properties allow Atomic MultiLog to not only
achieve highly-concurrent read and write operations but to
also support two strong distributed systems properties. First,
updates to all the individual logs within an Atomic Multi-
Log are visible to the monitoring and diagnosis application
atomically (formal proofs in [24]); and second, atomic snap-
shots of telemetry data distributed across the end-hosts can
be obtained using a simple distributed algorithm (§4).

Confluo implementation is now open-sourced [25], with
an API that is expressive enough to integrate Confluo with
most existing end-host based monitoring and diagnosis sys-
tems [8–11, 23]. We have compiled an exhaustive list of
monitoring and diagnosis applications from these systems;
we show, in [24], that our implementation already sup-
ports all these applications. Evaluation of Confluo using
packet traces from standard generators [26,27], and from real
testbeds [8, 9] shows that, even for 128B packets, Confluo
executes thousands of triggers and tens of filters at line rate
(for 10Gbps links) using a single core. Moreover, for 40Gbps
links and beyond, where multiple cores may be necessary,
Confluo’s performance scales well with number of cores.

1Packet headers can contain arbitrary number of fields, and the number
of fields may vary across each packet; however, each field has a fixed size.

Storm Flink Kafka CorfuDB TimescaleDB BTrDB Confluo

Max. packet rate @ 10Gbps

100K

1M

10M

100M

T
hr

ou
gh

pu
t(

Pa
ck

et
s/

s)

Transactions?
#Cores

7 7 7 3 3 7 7

32 32 32 32 32 32 1

Figure 1: Header ingestion rates (no filters, aggregates, or in-
dexes) for several open-sourced streaming and time-series data
processing systems, and for Confluo, on a single end-host. The
workload uses 64B TCP packets using DPDK’s pktgen tool [28].
Unfortunately, existing systems are unable to sustain write rates for
10Gbps links, even when using 32 cores. Note that: (1) CorfuDB
and TimescaleDB tradeoff write rates for stronger semantics; (2)
BTrDB results use 16B packet prefixes since it does not support
larger entries; (3) Storm and Flink results use Kafka as a data sink
since these systems do not store data. See §2.1 for discussion.

2 Confluo Overview
This section provides an overview of Confluo. We start by
elaborating on the observation that end-host monitoring and
diagnosis stacks have not kept up with increasing network
bandwidths and with advances in programmable network
hardware (§2.1). We then outline Confluo interface, along
with an example on how a network operator can use this in-
terface for monitoring and diagnosis (§2.2). We conclude the
section with a high-level overview of Confluo design (§2.3).

2.1 Motivation
Existing end-host stacks fall short of simultaneously support-
ing the three functionalities outlined in the introduction ei-
ther because they cannot scale to large network bandwidths
(10Gbps and beyond), or do not support monitoring of rich
telemetry data (e.g., packet trajectory, queue lengths, ingress
and egress timestamps, and many others outlined in [10]).
We discuss these challenges next.

Challenges with larger network bandwidths. Existing
end-host monitoring stacks that support rich telemetry data
(e.g., Time Machine [29], Gigascope [21], Tribeca [22]) were
designed for 1Gbps links, with reported performance of 180-
610 Mbit/sec [21] and 20-30k headers/sec [22]. While these
systems are not available for evaluation, they are unlikely to
scale to 10Gbps and higher link bandwidths since this would
require processing 10-100×more headers. To overcome this
limitation, recently developed stacks [8, 9, 19, 20] use open-
source streaming and time-series data processing systems.
However, as shown in Figure 1, these systems are unable to
support write rates at 10Gbps even when using 32 cores. We
believe that the fundamental reason behind this limitation is
that these systems are targeting data types that are too general
— supporting the three functionalities outlined in the intro-
duction with minimal CPU resources requires exploiting the

422 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Confluo’s End-Host API. In addition, Confluo exposes certain API to the coordinator to facilitate distributed snapshot (§4). All
supported operations are guaranteed to be atomic. See §2.2 for definitions and detailed discussion.

API Description

setup_packet_capture(fExpression, sampleRatio) Capture packet headers matching filter fExpression at sampleRatio.

M
on

ito
ri

ng

filterId = add_filter(fExpression) Add filter fExpression on incoming packet headers.
aggId = add_aggregate(filterId, aFunction) Add aggregate aFunction on headers filtered by filterId.
trigId = install_trigger(aggId,condition,period) Install trigger over aggregate aggId evaluating condition every period.
remove_filter(filterId), remove_aggregate(aggId),

uninstall_trigger(trigId)
Remove or uninstall specified filter, aggregate or trigger.

D
ia

gn
os

is

add_index(attribute) Add an index on a packet header attribute.
Iterator<Header> it = query(fExpression,tLo,tHi) Filter headers matching fExpression during time (tLo,tHi).

agg = aggregate(fExpression,aFunction,tLo,tHi)
Compute aggregate aFunction on headers matching fExpression during
time (tLo,tHi).

remove_index(attribute) Remove index for specified packet header attribute.

Table 2: Elements of Confluo filters, aggregates and triggers.

Operator Examples

R
el

at
io

na
l Equality dstPort==80

Range ipTTL<3, srcIP in 10.1.3.0/24
Wildcard dstIP like 192.*.*.1

B
oo

le
an Conjunction srcIP=10.1.3.2 && pktSize<100B

Disjunction dstPort==80 || dstPort==443

Negation protocol!=TCP

A
gg

re
ga

te AVG AVG(ipTTL)

COUNT, SUM COUNT(ecn), SUM(pktSize)
MAX, MIN MIN(ipTOS), MAX(tcpRxWin)

specific structure in network packet headers, especially for
40-100Gbps links where multiple cores may be necessary to
process packet headers at line rate.

Challenges with monitoring rich telemetry data. The
aforementioned limitations of streaming and time-series data
processing systems have motivated custom-designed end-
host monitoring stacks [23, 30–34]. State-of-the-art among
these stacks (e.g., Trumpet [23] and FloSIS [34]) can oper-
ate at high link speeds — Trumpet enables monitoring at line
rate for 10Gbps links using a single core; similarly, FloSIS
can support offline diagnosis for up to 40Gbps links using
multiple cores. However, these systems achieve such high
performance either by giving up on online monitoring (e.g.,
FloSIS) or by applying filters only on the first packet in the
flow (e.g., Trumpet). This is a rather fundamental limitation
and severely limits how rich telemetry data embedded in the
packet headers is utilized — for instance, since header state
(e.g., trajectories or timestamps) may vary across packets,
monitoring and diagnosing network events requires applying
filters to each packet [6, 8, 9, 18]. For instance, if a packet is
rerouted due to failures or bugs, its trajectory in the header
could be used to raise an alarm [8, 9, 18]; however, if this is
not the first packet in the flow, optimizations like those in

Trumpet will fail to trigger this network event2. On the other
hand, if filters were applied to each and every packet, these
systems will observe significantly worse performance.

2.2 Confluo Interface
We now describe Confluo interface. Confluo is designed to
integrate with existing tools that require a high-performant
end-host stack [8,9,11,12,23]. To that end, Confluo exposes
an interface that is expressive enough to enable integration
with most existing tools; we discuss, in [24], that Confluo
interface already allows implementing all applications from
recent end-host monitoring and diagnosis systems.

Confluo operates on packet headers, where each header
is associated with a number of attributes that may be
protocol-specific (e.g., attributes in TCP header like srcIP,
dstIP, rwnd, ttl, seq, dup) or custom-defined (e.g.,
packet trajectories [8, 9, 11], or queue lengths [1, 10], times-
tamps [10], etc.). Confluo does not require packet headers to
be fixed; each header can contain arbitrary number of fields,
and the number of fields may vary across each packet.

API. Table 1 outlines Confluo’s end-host API. While Con-
fluo captures headers for all incoming packets by default, it
can be configured to only capture headers matching a filter
fExpression, sampled at a specific sampleRatio.

Confluo uses a match-action language similar to [8, 23]
with three elements: filters, aggregates and triggers. A filter
is an expression fExpression comprising of relational and
boolean operators (Table 2) over an arbitrary subset of header
attributes, and identifies headers that match fExpression.
An aggregate evaluates a computable function (Table 2) on
an attribute for all headers that match a certain filter expres-
sion. Finally, a trigger is a boolean condition (e.g., <, >,
=, etc.) evaluated over an aggregate.

2For some applications, detecting such cases may be necessary due to
privacy laws. The canonical example here is that of a bug leading to in-
correct packet forwarding and violating isolation constraints in datacenters
storing patient information — patient data from two healthcare providers
must never share the same network element due to HIPAA laws [35, 36]

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 423

E1 E2 E3 E4

S S′

flow1 flow2 Scenario Monitoring Diagnosis

flow1 rate+flow2 rate > bandwidth,
flow1 priority = flow2 priority
Packet drops for flow1, flow2 at S

Tracking retransmissions (rtms):
MAXSEQ((maxSeq, maxTs), pkt) {

if (pkt.seqNo > maxSeq)
return (pkt.seqNo, pkt.ts)

else return (maxSeq, maxTs)
}
SEQ,TS=add_aggregate(flow,MAXSEQ)
cond = seqNo<SEQ && ts>TS+tdelay
rtms = add_filter(cond)
R = add_aggregate(rtms, COUNT)
T = add_trigger(R, R>T, 1ms)

t = T.timestamp,
p1 = flow1 priority, p2 = flow2 priority
r1 = flow1 retransmits, r2 = flow2 retransmits,
c1 = aggregate(r1,COUNT,t-1ms,t),
c2 = aggregate(r2,COUNT,t-1ms,t),
check if c1 ≈ c2 > 0 && p1 = p2

flow1 rate+flow2 rate > bandwidth,
flow1 priority < flow2 priority
Packet drops for flow1 at S

t, r1, r2, c1, c2, p1, p2 → Same as above
check if c1 ≈ 0 && c2 > 0 && p1 < p2

or, c2 ≈ 0 && c1 > 0 && p2 < p1
flow1 rate+flow2 rate < bandwidth,
Bug at S drops based on packet timing,
Packet drops for flow1, flow2 at S

ti = Timestamp buckets of packets in rtms,
δi = ti− ti−1 and σδ = STDEV on δi
check if AVG(δi)≈ 100ms && σδ < 1ms

Figure 2: Examples of monitoring and diagnosis of network events in Confluo. See §2.2 for details.

Confluo supports ad-hoc filter queries and aggregates via
indexes on arbitrary packet header attributes. These indexes
serve to speed up diagnostic queries when filters or aggre-
gates have not been pre-defined. We describe the design and
implementation of Confluo indexes, filters, aggregates and
triggers in §3.2 and §3.3.

Examples. Figure 2 shows Confluo functionality using a
simple example comprising three scenarios where switch S
is dropping packets. This example assumes that the monitor-
ing and diagnosis application employing Confluo uses TCP
retransmissions as an indicator of packet loss. A network op-
erator can use Confluo to maintain an aggregate to determine
the latest TCP sequence number SEQ and the corresponding
packet timestamp TS in a flow. The operator then filters out
packets that have TCP sequence number smaller than SEQ
and timestamp larger than TS by a delay threshold (tdelay) as
probable retransmissions. Confluo can then be configured to
trigger an alarm if estimated retransmission count exceeds
a limit. Confluo also allows the operator to issue diagnostic
queries to the relevant end-hosts to determine priorities of
involved flows, their retransmission counts, and periodicity
of retransmissions during the relevant time-period to distin-
guish between the three scenarios based on observed values.

2.3 Confluo Design Overview
We now provide an overview of Confluo design (Figure 3),
that comprises a central coordinator interface and an end-
host module at each end-host in the network.

Coordinator Interface. Confluo’s coordinator interface al-
lows monitoring and diagnosing network-wide events by del-
egating monitoring responsibilities to Confluo’s individual
end-host modules, and by providing the diagnostic informa-
tion from individual modules to the network operator. An op-
erator submits control programs composed of Confluo API
calls to the coordinator, which in turn contacts relevant end-
host modules and coordinates the execution of Confluo API
calls via RPC. The coordinator API also allows obtaining
distributed atomic snapshots of telemetry data distributed
across the end-hosts (§4).

End-host
Module (§3)

Hypervisor
VM2

VM1

VMk

... End-host
Module (§3)

Hypervisor
VM2

VM1

VMk

End-host
Module (§3)

Hypervisor
VM2

VM1

VMk

Coordinator (§4)

NIC

MM

SM

...

RING
BUFFERS

Confluo
Writer

Confluo
Writer

... Confluo
Writer

Confluo Data Structures (Atomic MultiLog)

Confluo
Monitor

Confluo
Diagnoser

Confluo
Archiver

Native Apps

MM = Mirror Module, SM = Spray Module

mirrored headers

or
ig

in
al

pa
ck

et
s

Figure 3: High-level Confluo Architecture (§2).

End-host Module. Confluo conducts bulk of monitoring and
diagnosis operations at the end-hosts. Confluo captures and
monitors packets in the hypervisor, where a software switch
could deliver packets between NICs and VMs. A mirroring
module mirrors packet headers to a spray module, that writes
these headers to one of multiple ring buffers in a round-robin
manner. Confluo currently uses DPDK [37] to bypass the
kernel stack, and Open vSwitch [38] to implement the mirror
and spray modules. This choice of implementation is merely
to perform our prototype evaluation without the overheads
of existing cloud frameworks (e.g., KVM or Xen); our im-
plementation on OVS trivially allows us to integrate Confluo
with these frameworks.

Confluo’s end-host module makes two important archi-
tectural choices. First, as outlined in §1, Confluo optimizes
for highly-concurrent operations, potentially from multiple
cores processing different packet streams, at the end-host.
To that end, Confluo uses multiple ring buffers so that down-
stream modules can keep up with incoming headers. Mul-
tiple Confluo writers read headers from these ring buffers
and write them to Confluo data structures. Achieving high
throughput with multiple Confluo writers requires highly

424 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

concurrent write operations. This is where Confluo’s new
data structure — Atomic MultiLog — makes its key con-
tribution. Recall from §1 that Atomic MultiLog exploits two
unique properties of network logs — append-only workload
and fixed field sizes for each header attribute — to minimize
the overheads of traditional lock-free concurrency mecha-
nisms while providing atomicity guarantees. We describe the
design and implementation of Atomic MultiLogs in §3.

The second architectural decision is to separate threads
that “read” from, and that “write” to Atomic MultiLog.
Specifically, read threads in Confluo implement monitoring
functionality (that requires evaluating potentially thousands
of triggers on each header) and on-the-fly diagnosis func-
tionality (that requires evaluating ad-hoc filters and aggre-
gates using header logs and materialized views). The write
threads, on the other hand, are the Confluo writers described
above. This architectural decision is motivated by two ob-
servations. First, while separating read and write threads in
general leads to more concurrency issues, Atomic MultiLog
provides low-overhead mechanisms to achieve highly con-
current reads and writes. Second, separating read and write
threads also require slightly higher CPU overhead (less than
4% in our evaluation even for a thousand triggers per packet);
however, this is a good tradeoff to achieve on-the-fly diagno-
sis, since interleaving reads and writes within a single thread
may lead to packet drops when complex ad-hoc filters need
to be executed (§3).

Atomic MultiLogs guarantee that all read/write operations
corresponding to an individual header become visible to the
application atomically. However, due to a number of reasons
(e.g., different queue lengths on the NICs during packet cap-
turing, random CPU scheduling delays, etc.), the ordering
of packets visible at an Atomic MultiLog may not necessar-
ily be the same as ordering of packets received at the NIC.
One easy way to overcome this problem, that Confluo nat-
urally supports, is to use ingress/egress NIC timestamps to
order the updates in Atomic MultiLog to reflect the ordering
of packets received at the NIC; almost all current generation
10Gbps and above NICs support ingress and egress packet
timestamps at line rate. Without exploiting such timestamps
or any additional information about packet arrival ordering
at the NIC, unfortunately, this is an issue with any end-host
based monitoring and diagnosis stack.

Distributed Diagnosis. Confluo supports low-overhead di-
agnosis of spurious network events even when diagnosing
the event requires telemetry data distributed across multi-
ple end-hosts [8–11]. Diagnosis using telemetry data dis-
tributed across multiple end-hosts leads to the classical con-
sistency problems from distributed systems — unless all
records (packets in our case) go through a central sequencer,
it is impossible to achieve an absolutely perfect view of the
system state. Confluo does not attempt to solve this classical
problem, but rather shows that by exploiting the properties

of telemetry data, it is possible to simplify the classical dis-
tributed atomic snapshot algorithm to a very low-overhead
one (§4). This is indeed the strongest semantics possible
without all packets going through a central sequencer.

3 Confluo Design
We now describe the design for Confluo end-host module
(see Figure 3), that comprises of packet processing (mirror
and spray) modules, multiple concurrent Confluo writers, the
Atomic MultiLog, Confluo monitor, diagnoser and archival
modules. We discussed the main design decisions made in
the packet processing and writer modules in §2.3. We now
focus on the Atomic MultiLog (§3.1, §3.2) and the remaining
three modules (§3.3, §3.4).

3.1 Background
We briefly review two concepts from prior work that will be
useful in succinctly describing the Atomic MultiLog.

Atomic Hardware Primitives. Most modern CPU archi-
tectures support a variety of atomic instructions. Confluo
will use four such instructions: AtomicLoad, AtomicStore,
FetchAndAdd and CompareAndSwap. All four instructions
operate on 64 bit operands. The first two permit atom-
ically reading from and writing to memory locations.
FetchAndAdd atomically obtains the value at a memory lo-
cation and increments it. Finally, CompareAndSwap atomi-
cally compares the value at a memory location to a given
value, and only if they are equal, modifies the value at the
memory location to a new specified value.

Concurrent Logs. There has been a lot of prior work on
design of efficient, lock-free concurrent logs [39–42] that
exploit the append-only nature in many applications to sup-
port high-throughput writes. Intuitively, each log maintains a
“writeTail” that marks the end of the log. Every new append
operation increments the writeTail by the number of bytes to
be written, and then writes to the log. Using the above hard-
ware primitives to atomically increment the writeTail, these
log based data structure support extremely high write rates.

It is easy to show that by additionally maintaining a “read-
Tail” that marks the end of completed append operations
(and thus, always lags behind the writeTail) and by carefully
updating the readTail, it is possible to guarantee atomicity for
concurrent reads and writes on a single log (see [24] for a for-
mal proof). Using atomic hardware primitives to update both
readTail and writeTail, it is possible to achieve high through-
put for concurrent reads and writes for such logs.

3.2 Atomic MultiLog
An Atomic MultiLog uses a collection of concurrent lock-
free logs to store packet header data, packet attribute indexes,
aggregates and filters defined in §2.2 (see Figure 4). As out-
lined earlier, Atomic MultiLog exploit two unique properties
of network logs to facilitate this:

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 425

<header#1>

<header#2>

...

<header#18>

<header#19>

<header#20>

Raw data

0

54

...

972

1026

1080

Offset

HeaderLog

Attribute
Index

...

Log
Pointers

0, 108, 486, ...

54, 270, 1080, ...

...

NULL

216, 378, 972, ...

Matching
header offsets

IndexLogs

Time
Index

...

Log
Pointers

0, 54, 108, ...

270, 324, 378, ...

1026, 1080, ...

...

Matching
header offsets

0−1 ms

1−2 ms

2−3 ms

...

...

...

...

Thread-local
Aggregates

+
attr1 < 10
&&

attr2 > 1

Filter
Expression

FilterLogs/AggregateLogs
globalReadTail:

globalWriteTail:

1026

1134

Global Tails

Log
Perfect k-ary tree
Incomplete write

Legend

Figure 4: The Atomic MultiLog uses a collection of concurrent lock-free logs to store packet headers, indexes, aggregates and filters (as
defined in §2.2) and efficiently updates these data structures as a single atomic operation as new packet headers arrive. See §3.2 for details.

• Property 1: Packet headers, once processed by the stack,
are not updated and only aggregated over long time scales.

• Property 2: Each packet header attribute has a fixed size
(number of bits used to represent the attribute)

HeaderLog. This concurrent append-only log stores the raw
data for all captured packet headers in Confluo. Each packet
header in the HeaderLog has an offset, which is used as
a unique reference to the packet across all data structures
within the Atomic MultiLog. We will discuss in §3.2.1 how
this simplifies guaranteeing atomicity for operations that
span multiple data structures within the Atomic MultiLog.

IndexLog. An Atomic MultiLog stores an IndexLog for
each indexed packet attribute (e.g., srcIP, dstPort), that
maps each unique attribute value (e.g., srcIP=10.0.0.1 or
dstPort=80) to corresponding packet headers in Header-
Log. IndexLogs efficiently support concurrent, lock-free in-
sertions and lookups using two main ideas.

Protocol-defined fixed attribute widths in packet headers
allow IndexLogs to use a perfect k-ary tree [43] (referred to
as an attribute index in Figure 4) for high-throughput inser-
tions upon new data arrival. Specifically, an n-bit attribute
is indexed using a k-ary tree with a depth of d n

log2ke nodes,
where each node indexes log2k bits of the attribute. For in-
stance, Figure 5 shows an example of a 216-ary tree for IP
addresses, where the root node has 216 child pointers corre-
sponding to all possible values of the 16-bit IP prefix, and
each of its children have 216 pointers for the 16-bit IP suffix.

The use of a perfect k-ary tree greatly simplifies the
write path. All child pointers in a k-ary tree node initially
point to NULL. When a new packet attribute value (e.g.,
srcIP=10.0.0.1) is indexed, all unallocated nodes along

...

0
.
0

0
.
1

2
5
5
.
2
5
5

0
.
0

0
.
1

2
5
5
.
2
5
5

0
.
0

0
.
1

2
5
5
.
2
5
5IP

Suffix

...

0
.
0

0
.
1

2
5
5
.
2
5
5IP

Prefix

N
U
L
L

N
U
L
L

N
U
L
L

N
U
L
L

N
U
L
L

Perfect
k-ary

tree
L

ock-free
L

ogs

Figure 5: 216-ary IndexLog for 32-bit IP address. Each node in
the tree (depth=2) has k=216 children and indexes 16 bits (2 bytes)
of the IP address.

the path corresponding to the attribute value are allocated.
This is where an IndexLog uses the second idea — since
the workload is append-only, HeaderLog offsets for attribute
value to packet header mapping are also append-only; thus,
traditional lock-free concurrent logs can be used to store this
mapping at the leaves of the k-ary tree.

Conflicts among concurrent attribute index nodes and log
allocations are resolved using the CompareAndSwap instruc-
tion, thus alleviating the need for locks. Subsequent packet
headers with the same attribute value are indexed by travers-
ing the tree to the relevant leaf, and appending the headers’s
offset to the log. To evaluate range queries on the index,
Confluo identifies the sub-tree corresponding to the attribute
range (e.g., 10.0.0.0/24); the final result is then the union
of header offsets across logs in the sub-tree leaves.

FilterLog. A FilterLog is simply a filter expression (e.g.,
srcIP==10.0.0.1 && dstPort==80), and a time-indexed

426 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

collection of logs that store references to headers that match
the expression (bucketed along user-specified time intervals).
The logs corresponding to different time-intervals are in-
dexed using a perfect k-ary tree, similar to IndexLogs.

AggregateLog. Similar to FilterLogs, an AggregateLog
employs a perfect k-ary tree to index aggregates (e.g.,
SUM(pktSize)) that match a filter expression across user-
specified time buckets. However, atomic updates on aggre-
gate values is slightly more challenging — it requires read-
ing the most recent version, modifying it, and writing it back.
Maintaining a single concurrent log for aggregates requires
handling complex race conditions to guarantee atomicity.

Confluo instead maintains a collection of thread-local
logs, with each writer thread executing read-modify-write
operations on its own aggregate log. The latest version of an
aggregate is obtained by combining the most recent thread-
local aggregate values from individual logs. We note that the
use of thread-local logs restricts aggregation to associative,
commutative operations, that are sufficient to implement net-
work monitoring and diagnosis functionalities.

3.2.1 Atomic Operations on Collection of Logs
End-to-end Atomic MultiLog operations may require updat-
ing multiple logs across HeaderLog, IndexLogs and Filter-
Logs. Even if individual logs support atomic operations, end-
to-end Atomic MultiLog operations are not guaranteed to be
atomic by default. Fortunately, it is possible to extend the
readTail/writeTail mechanism for concurrent logs to guaran-
tee atomicity for Atomic MultiLog operations; however, this
requires resolving two challenges.

First, in order to guarantee total order for Atomic Mul-
tiLog operations, its component logs must agree on an or-
dering scheme. Confluo uses HeaderLog as single source
of ground truth, and designates its readTail and writeTail
as globalReadTail and globalWriteTail for the Atomic Mul-
tiLog. Before packet headers are written to different ring
buffers, Confluo first atomically increments globalWrite-
Tail by the size of the packet header using FetchAndAdd.
This atomic instruction resolves potential write-write con-
flicts, since it assigns a unique HeaderLog offset to each
header. When Confluo writers read headers from different
ring buffers, they update all relevant logs in Atomic Multi-
Log, and finally update the globalReadTail to make the data
available to subsequent queries.

The globalReadTail imposes a total order among Atomic
MultiLog write operations based on HeaderLog offsets: Con-
fluo only permits a write operation to update the global-
ReadTail after all write operations writing at smaller Head-
erLog offsets have updated the globalReadTail, via repeated
CompareAndSwap attempts. This ensures that there are no
“holes” in the HeaderLog, and allows Confluo to ensure
atomicity for queries via a simple globalReadTail check.
In particular, queries first atomically obtain globalReadTail
value using AtomicLoad, and only access headers and their

Naive
Approach:

Synchronization overhead Useful Work

Atomic

Confluo
Approach:

Time

Figure 6: Confluo relaxes atomicity guarantees of individual logs,
guaranteeing atomicity only for end-to-end Atomic MultiLog oper-
ations. Different colors correspond to operations on different logs.

references (across IndexLogs, FilterLogs and AggregateL-
ogs) if the header lies within the globalReadTail in Header-
Log. Note that since queries do not modify globalReadTail,
they cannot conflict with other queries or write operations.

The second challenge lies in preserving atomicity for op-
erations on Confluo aggregates, since they are not associated
with any single packet header that lies within or outside the
globalReadTail. To this end, aggregate values in AggregateL-
ogs are versioned with the HeaderLog offset of the write op-
eration that updates it. To get the final aggregate value, Con-
fluo obtains the aggregate with the largest version smaller
than the current globalReadTail for each of the thread-local
aggregates. Since each Confluo writer thread modifies its
own local aggregate, and queries on aggregates only access
versions smaller than the globalReadTail, operations on pre-
defined aggregates are rendered atomic.

While the operations above enable end-to-end atomicity
for Atomic MultiLog operations, we note that readTail up-
dates for each individual log in the Atomic MultiLog may
add up to a non-trivial amount of overhead (Figure 6). Con-
fluo alleviates this overhead by observing that in any Atomic
MultiLog operation, the globalReadTail is only updated af-
ter each of the individual log readTails are updated. There-
fore, any query that passes the globalReadTail check trivially
passes the individual readTail checks, obviating the need for
maintaining individual readTails. Removing individual log
readTails relaxes unnecessary ordering guarantees for them,
while enforcing it only for end-to-end operations. This sig-
nificantly reduces contention among concurrent operations.

3.3 Monitor & Diagnoser Modules
We now describe Confluo monitor and diagnoser modules.

Monitor Module. This module is responsible for online
evaluation of Confluo triggers via a dedicated monitor
thread. Confluo triggers operate on pre-defined aggregates
(§2.2) in the Atomic MultiLog. Since the aggregates are up-
dated for every packet, trigger evaluation itself involves little
work. The monitor thread wakes up at periodic intervals, and
first obtains relevant aggregates for intervals since the trigger
was last evaluated, performing coarse aggregations over mul-
tiple stored aggregates over sliding windows. It then checks
if the trigger predicate (e.g., SUM(pktSize)>1GB) is satis-
fied, and if so, generates an alert.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 427

MultiLog#1 MultiLog#2 MultiLog#3 MultiLog#4

p1

p2

p3

p4

p5
p6

p7

Tim
e

pi = Packet Write AtomicLoad(readTail)

(a) Naive approach may lead to inconsistent snapshots

MultiLog#1 MultiLog#2 MultiLog#3 MultiLog#4

p1

p2

p3

p4

p5

p6

p7

Tim
e

pi = Packet Write AtomicLoad(readTail)

(b) Atomic snapshots with delayed packet writes

Figure 7: Simply obtaining (global) readTails for a collection Atomic MultiLogs can yield inconsistent snapshots, as shown in (a), where
AtomicLoad on readTails at different Atomic MultiLogs are skewed in time, and packets p1, p5 appear to be written after p3, p7 (inconsistent).
(b) We can render the same snapshot consistent by delaying completion of p1, p5 until after AtomicLoad on on Atomic MultiLog #4.

Diagnoser Module. Confluo’s diagnoser module serves ad-
hoc queries on packet headers captured by the Atomic Mul-
tiLog. Recall from Table 1 that Confluo allows a diagnostic
query to provide a filter expression fExpression as well as
a time range. If there already exists a filter fExpression,
query execution is fairly straightforward — since Filter-
Logs are time-indexed (Figure 4), Confluo simply looks up
the FilterLog(s) to extract packet header offsets correspond-
ing to the specified time interval, drops the offsets that are
greater than the globalReadTail value, and returns packet
headers corresponding to the remaining offsets. Confluo al-
lows nested queries; Confluo can apply additional filters on
these packet headers or obtain attribute aggregates for them.

If a filter for fExpression specified in the query does
not already exist, Confluo first performs IndexLog lookups
for individual packet attributes in the filter expression (§3.2),
and then combines their results based on the boolean oper-
ators in the expression (Table 2). This can be an expensive
operation; to that end, Confluo uses several optimizations.
For instance, Confluo first converts the filter expression to its
canonical disjunctive normal form (DNF) [44], where the re-
sulting filter expression is a disjunction (OR) of conjunction
(AND) clauses. The DNF form yields the most selective filter
sub-expressions in its conjunction clauses. In order to mini-
mize the number of packet references scanned for a specific
conjunction clause, Confluo uses the tail value for individ-
ual attributes IndexLog as an estimate of their selectivity;
Confluo then evaluates the conjunction clause by scanning
through IndexLog entries for the most selective attribute,
dropping all packet headers that occur after the globalRead-
Tail, or do not satisfy the remaining predicates in the clause.
The results for individual conjunction clauses are combined
using a simple set union for the disjunction operator.

3.4 Archival Module
Confluo stores network logs with rich telemetry data, along
with materialized views, pre-defined filters and aggregates
to support low-overhead monitoring and diagnostic queries.
Storing these logs and materialized views in their raw form
over long time periods would lead to tremendous storage re-

quirements. Confluo overcomes this via periodic archival of
Atomic MultiLog data. Our current implementation employs
a basic approach — an archival thread periodically flushes
packet header entries up to a certain offset in the Header-
Log to secondary storage, along with associated IndexLog,
FilterLog and AggregateLog entries, and ensures that the in-
memory footprint does not exceed a user-configured thresh-
old. While Confluo data structures are amenable to several
approaches that exist for log archival (e.g., periodically sum-
marizing older data with aggregated statistics, log compres-
sion [45–47], compaction [48–50], etc.), a detailed treatment
of the archival process is an interesting future work.

4 Distributed Diagnosis

Confluo Coordinator interface (Figure 3) facilitates monitor-
ing and diagnosis of network-wide events. Recall from §2.3
that operators express monitoring and diagnosis tasks via
control programs composed of Confluo API calls (Table 1).
Based on the control program, the coordinator interface del-
egates tasks to individual end-host modules and collects di-
agnostic information from them. The coordinator interface
facilitates consistent distributed analysis for high-speed net-
works via a distributed atomic snapshot algorithm.

Existing approaches for distributed snapshots either use a
centralized sequencer to order all writes to the system (e.g.,
transaction managers [51–53], log sequencers [54–56]) sim-
plifying global snapshots, or employ algorithms with weak
consistency guarantees (e.g., causal consistency [57]). How-
ever, neither is acceptable for Confluo; the former is infeasi-
ble for high speed networks, while the latter provides weaker
consistency semantics than Confluo end-host stack.

Confluo does not attempt to resolve complex distributed
consistency issues, but instead strives for an efficient dis-
tributed atomic snapshot algorithm. We note that append-
only semantics in Confluo greatly simplify snapshot for indi-
vidual Atomic MultiLogs3. While naively reading readTails
at individual Atomic MultiLogs across multiple end-hosts

3Atomic snapshot of any Atomic MultiLog is trivially obtained by read-
ing its globalReadTail.

428 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Distributed Atomic Snapshot
Obtains the snapshot vector (Atomic MultiLog readTails).
At Coordinator:

1: snapshotVector← /0
2: Broadcast FreezeReadTail requests to all Atomic MultiLogs
3: for each mLog in multiLogSet do
4: Receive readTail from mLog & add to snapshotVector

5: Broadcast UnfreezeReadTail requests to all Atomic MultiLogs
6: for each Atomic MultiLogmLog do
7: Wait for ACK from mLog

8: return snapshotVector

At Each Atomic MultiLog:

On receiving FreezeReadTail request
1: Atomically read and freeze readTail using CompareAndSwap
2: Send readTail value to Coordinator

On receiving UnfreezeReadTail request
1: Atomically unfreeze readTail using CompareAndSwap
2: Send ACK to Coordinator

may not produce an atomic snapshot (Figure 7(a)), it does
hint towards a possible solution.

In particular, atomic distributed snapshot in Confluo re-
duces to the widely studied problem of obtaining a snapshot
of n atomic registers in shared memory architectures [58–
60]. These approaches, however, rely on multiple iterations
of register reads with large theoretical bounds on iteration
counts. While feasible in shared memory architectures where
reads are cheap, they are impractical for distributed settings
since reads over the network are expensive.

Confluo’s atomic distributed snapshot algorithm exploits
the observation that any snapshot can be rendered atomic by
delaying completion of certain writes that would otherwise
break atomicity for the snapshot. For instance, in Figure 7(a),
if we ensure that packet writes p1 and p5 do not complete
until after the globalReadTail read on Atomic MultiLog #4
(dashed line in Figure 7(b)), the original snapshot becomes
atomic since p1 and p5 now appear to be written after p3 and
p7, in line with the actual order of events.

Algorithm 1 outlines the steps involved in obtaining an
atomic snapshot. The coordinator interface first sends out
FreezeReadTail requests to all Atomic MultiLogs in par-
allel. The Atomic MultiLogs then freeze and return the
value of their readTail atomically via CompareAndSwap.
This temporarily prevents packet writes across the Atomic
MultiLogs from completing since they are unable to up-
date the corresponding readTails, but does not affect Con-
fluo queries. Once the coordinator receives all the readTails,
it issues UnfreezeReadTail requests to all the Atomic
MultiLogs, causing them to unfreeze their readTail via
CompareAndSwap. They then send an acknowledgement to
the coordinator interface, allowing pending writes to com-
plete at once. Since the first UnfreezeReadTail message
is sent out only after the last Atomic MultiLog readTail has
been read, all writes that would conflict with the snapshot are
delayed until after the snapshot has been obtained.

The coordinator interface executes the snapshot algorithm

across arbitrary collections of end-hosts based on the pro-
vided control program, and generates a snapshot vector. Note
that while the readTails remain frozen, write operations can
still update HeaderLog, IndexLogs, FilterLogs and Aggre-
gateLogs, but wait for the readTail to unfreeze (up to one net-
work round-trip time) in order to make their effects visible.
As such, write throughput in Confluo is minimally impacted,
but write latencies can increase for short durations. More-
over, since Confluo supports annotating packets with NIC
timestamps to determine ordering (§2.3) before potentially
delaying packet writes, Confluo’s atomic snapshot algorithm
does not affect the accuracy of diagnostic queries.

5 Evaluation
Confluo prototype is implemented in∼ 20K lines of C++. In
this section, we evaluate Confluo to demonstrate:

• Confluo can capture packet headers at line rate (even
for 10Gbps and higher bandwidth links) while evaluating
thousands of triggers and tens of filters with minimal CPU
utilization (§5.1);

• Confluo can exploit rich telemetry data embedded in
packet headers to enable a large class of network moni-
toring and diagnosis applications (§5.2).

5.1 Confluo Performance
We now evaluate Confluo performance on servers with 2×
12-core 2.30GHz Xeon CPUs and 252GB RAM, connected
via 10Gbps links. We used DPDK’s pktgen tool [28] to gen-
erate network traffic composed of TCP packets with 54 byte
headers, IPs drawn from a /24 prefix and ports drawn from 10
common application port values. Our experiments used up to
5 attribute indexes, corresponding to the connection 4-tuple
(source/destination IPs and ports) and the packet timestamp.
We perform all our evaluations with Confluo running in the
user space to avoid the performance bottlenecks out of Con-
fluo implementation (e.g., hypervisor overheads).

Packet Capture. Figure 8(a) shows Confluo peak packet
capture rate as the number of attribute indexes and pre-
defined filters are increased on a single core. Without any fil-
ters or indexes, the Atomic MultiLog is able to sustain ∼ 25
million packets/s per core, with throughput degrading grace-
fully as more filters or indexes are added. The degradation is
close to linear with the number of indexes, since each addi-
tional index incurs fixed indexing overhead for every packet.
The degradation is sub-linear for filters, since additional fil-
ters incur negligible overheads for packets that do not match
them. Interestingly, as we show in [24], monitoring and di-
agnosing even complex network issues only requires a few
filters (often bounded by the number of active flows on a
server) and 1-2 indexes in Confluo.

The packet capture performance indicates that, even when
average packet size is 128B or larger, Confluo can sustain

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 429

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4T
h
ro

u
g
h
p
u
t
(m

ill
io

n
 p

p
s
)

#Attribute Indexes

1 filter
4 filter

16 filters
64 filters

(a) Packet rate with filters, indexes

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8T
h
ro

u
g
h
p
u
t
(m

ill
io

n
 p

p
s
)

#Cores

1 filter
4 filter

16 filters
64 filters

(b) Packet rate with filters only

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8T
h
ro

u
g
h
p
u
t
(m

ill
io

n
 p

p
s
)

#Cores

0 indexes
1 index

2 indexes
4 indexes

(c) Packet rate with indexes only

 0

 20

 40

 60

 80

 100

 0 250 500 750 1000 1250 1500

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Packet Size (bytes)

1 filters
4 filter

16 filters
64 filters

(d) CPU% @ 10Gbps

 0

 20

 40

 60

 80

 100

 0 250 500 750 1000 1250 1500

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Packet Size (bytes)

0 indexes
1 index

2 indexes
4 indexes

(e) CPU% @ 10Gbps

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 10 100 1000

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

#Per-packet Triggers

1 ms
5 ms

10 ms
20 ms

(f) Trigger CPU%

 10

 100

 1000

 10000

 100000

 1 10 100 1000

L
a
te

n
c
y
 (

n
s
)

#Per-packet Triggers

(g) Trigger Latency

 0

 50

 100

 150

 200

 250

 50 100 150 200 250 300

D
ia

g
n
o
s
is

 L
a
te

n
c
y
 (

m
s
)

#Captured Packets (millions)

q1
q2
q3
q4
q5

(h) Diagnostic Query Latency

Figure 8: (a) Confluo’s peak packet capture throughput (measured in packets per second or pps) for 64B packets degrades gracefully on
increasing the number of attribute indexes and the number of pre-defined filters; (b, c) the peak throughput scales well with the number of
cores, even as the number of pre-defined filters and indexes are increased. (d, e) At line rate of 10Gbps, Confluo can handle average packet
size as small as 128B with 16 filters and 2 indexes on a single core. (f, g) Confluo can evaluate 1000s of trigger queries with less than 4%
CPU utilization at 1ms intervals, and with latency less than 70µs. (h) Diagnostic query latency in Confluo increases linearly with number of
captured packets in Confluo, and varies across different queries due to differing intermediate result cardinalities and complexity for combining
them. The filters in the figures use the following templates (varying value of A, B, IP, and port for various filters): (q1) packets from VM A
to VM B; (q2) packets to VM A; (q3) packets from VM A on destination port P; (q4) packets between (IP1, P1) and (IP2, P2); and (q5)
packets to or from VM A.

line rate for 10Gbps link using a single core! Real-world
workloads [61] show that average packet size in datacenter
networks is much larger. Confluo is able to ingest such work-
loads on a single core with each of 64 filters, 1000 triggers,
and 5 indexes, updated for each packet. Figure 8(b) and 8(c)
show packet capture scaling with number of cores. We note
that, while packet capture scales well, it is not perfectly lin-
ear; this is due to stalling of globalReadTail updates for Con-
fluo writers that attempt to update the Atomic MultiLog out-
of-order (§3.2). However, the impact of stalling is mitigated
to a great extent due to the use of lock-free primitives, and
the use of a globalReadTail instead of separate readTails for
each log in Atomic MultiLog.

CPU Utilization at 10Gbps. Figure 8(d) and 8(e) show CPU
utilization for Confluo updating data structures, varying with
the packet size for different number of filters and indexes.
Observe that CPU utilization is higher for smaller packet
sizes, since smaller packet sizes at line rate correspond to
higher packet rates. For smaller packet sizes along with 4
indexes and 64 filters, CPU becomes a bottleneck; however,
CPU utilization drops dramatically with fewer filters or in-
dexes. Confluo can scale up its packet capture rate with more
CPU cores, as discussed before.

Evaluating Triggers. Recall from §3.2 that Confluo eval-
uates triggers over pre-defined aggregates, making trigger
evaluation extremely cheap. Figure 8(f) shows that even

when Confluo evaluates 1000 triggers at 1ms time intervals,
the CPU utilization remains < 4% of a single core. This is
because a single trigger evaluation incurs roughly 100ns la-
tency, with latency increasing to 70µs for 1000 triggers4.

Diagnosis Latency. We evaluate Confluo’s diagnostic query
performance using five queries (q1 to q5 outlined in Fig-
ure 8). Since these queries combine results from different
Confluo IndexLogs, query latency depends on intermedi-
ate result cardinalities. Consequently, the query latency in-
creases linearly with the number of captured packets, since
cardinalities of intermediate results also grow linearly with
the latter. As such, Confluo is able to perform complex diag-
nostic queries on-the-fly with sub-second latencies on 100s
of millions of packets (Figure 8(h)).

Atomic Snapshots. To evaluate the overhead of atomic
snapshots in Confluo, we measure percentage decrease in
packet capture rate while periodically performing snapshots
across 1− 8 end-hosts (to emulate diagnostic queries). We
found the impact of atomic snapshots on write rate to be in-
significant — while performing snapshots every 1ms, packet
rate at each end-host drops by < 2%, even as number of
end-hosts in the snapshot is increased from 1 to 8. This re-
sult might be non-intuitive; the reason is that Confluo only

4A 70µs latency over 1ms period may result in as high as 7% CPU
utilization; we believe the discrepancy is because of the reporting frequency
for CPU utilization metrics from the OS.

430 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

blocks updates to the globalReadTail during the snapshot op-
eration — bulk of the writes including those to HeaderLog,
IndexLogs and FilterLogs can still proceed, with entire set of
pending globalReadTail updates going through at once when
the snapshot operation completes.

We note that a diagnostic query that spans multiple servers
would incur the end-host query execution latency shown in
Figure 8(h), as well as the atomic snapshot latency. Since
the snapshot algorithm queries different Atomic MultiLogs
across different end-hosts in parallel, the snapshot is ob-
tained in roughly 1 network round-trip (about ∼ 180µs in
our setup), with slightly higher latencies across larger num-
ber of end-hosts due to skew in queuing and scheduling de-
lays (about 1.2ms for 128 end-hosts). Since network-wide
diagnosis tasks often only involve a very small fraction of a
data center’s end-hosts, Confluo can employ switch metadata
to isolate the end-hosts it needs to query, similar to [9].

5.2 Confluo Applications
We now use Confluo to detect and debug a variety of network
issues in modern data center networks. Our setup (compris-
ing 96 virtual machines and Pica8 P-3297 switches), deploy-
ment and workloads are exactly the same as those in [8, 9],
but with the end-host stack replaced with Confluo. Conse-
quently, our setup inherits (1) in-network mechanisms that
embed switch ID and timestamp at each switch traversed by
a packet in its header, and (2) switch pointers to end hosts
where the telemetry data for packets processed by the switch
are stored. While we present only a subset of Confluo appli-
cations here for brevity, we discuss more applications in [24].

Path Conformance. We demonstrate Confluo’s ability to
quickly monitor and debug path conformance violations by
randomly routing a subset of the packets within a flow via a
particular switch S. Each end-host is configured with a sin-
gle filter that matches packets that passes through switch S.
A companion trigger to the filter raises an alert if the count
of packets satisfying the filter is non-zero. Confluo monitor
evaluates the trigger at 1 ms intervals, and alerts the pres-
ence of path non-conformant packets within milliseconds of
its incidence at the end-host.

Figure 9(a) shows the latency in Confluo with varying
number of path conformance checks (filters). We note that
while a single conformance check incurs average batch la-
tency of 1µs, 100 checks incur 11µs latency; this indicates
sub-linear increase in latency with the number of checks.
As such, Confluo is able to perform per-packet path confor-
mance checks with minimal overheads.

Packet Losses at a Single Switch. In this application, we
consider monitoring and diagnosis for generalized versions
of the scenarios from Figure 2 (left), where k flows compete
at a common output port at switch S and one or more of these
flows experience packet losses. Confluo’s approach is out-
lined in Figure 2 (right). Confluo exploits network telemetry

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12

C
D

F

Batch latency (microseconds)

1 filter
10 filters

100 filters

(a) Path Conformance

0

5

10

15

20

L
at

en
cy

(m
s)

1 2 4 8 16 32 64 128
Number of competing flows (k)

Connection Setup
Atomic Snapshot
Query Execution

(b) Packet Losses at a Single Switch

E1 E2 E3 E4

S S′

flow1 flow2 flow3

Priority(flow1) < Priority(flow2)
Priority(flow2) = Priority(flow3)
Packet drops for flow1 at S, S′

(c) Packet Losses at Multiple Switches

Figure 9: (a) Confluo can perform 100 path conformance checks
and ingest packet headers in batches of size 32 in about 11µs per-
batch (∼ 350ns per-packet); (b) Diagnosis latency for packet losses
due to traffic congestion; most of the time is spent in connection
setup. Confluo takes < 18ms for querying 128 hosts. (c) Setup used
for monitoring and diagnosing packet losses at multiple switches.

data in packet headers (switch IDs and timestamps) to iden-
tify contending TCP flows and their destination end-points.

Confluo is able to detect the presence of packet loss due to
TCP retransmissions in under 1ms (trigger periodicity), and
the coordinator interface receives the alert within ∼ 250µs.
Figure 9(b) shows the diagnosis latency at the coordinator
as the number of competing flows (k) at switch S increases.
With more flows, Confluo has to contact more end-hosts to
collect diagnostic information. Even while collecting diag-
nostic information across 128 end-hosts, the time taken to
obtain the atomic snapshot and performing the diagnostic
query at the coordinator are only 1.2 ms and 3 ms respec-
tively. Most of the diagnosis time is spent in establishing
connections to the relevant end-hosts, although this can be
mitigated via connection pooling. Even so, Confluo is able
to diagnose the issue across 128 hosts in under 18 ms.

Packet Losses at Multiple Switches. We now consider a
scenario where a flow experiences packet losses at multiple
switches, as outlined Figure 9(c). Again, we detect packet
losses using TCP retransmissions, and employ telemetry data
embedded in packet headers (switch IDs) to aid diagnosis.
Using ideas discussed in [8, 9], we issue diagnostic queries
to determine the flow information (IDs, traffic volume and
priorities) that contended with flow1 at switches S and S′.
By comparing the traffic volume and priorities of contending
flows, Confluo concludes that the losses for flow1 are due to
contention with higher priority flow2 and flow3 at switches
S and S′. Confluo takes roughly 1.8ms for the end-to-end di-
agnosis: 1.15ms for connection setup, 180µs for the snap-
shot algorithm and 350µs for performing the actual query.

TCP Outcast. In TCP outcast problem [62], two sets of

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 431

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

M
in

.
#
p
a
c
k
e
ts

/
M

a
x
.
#
p
a
c
k
e
ts

Time (s)

(a) Packet Ratio

30

60

90

T
hr

ou
gh

pu
t(

M
bp

s)

1 5 10 15
Flow ID

(b) Flow Throughput

D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6.
7k

5.5k 5.
1k

5.3k 6.
5k

6.5k 6.
2k 6k

5.
3k

6.3k 5.
6k 5k

12
.2k

10.4k 13
k

12.2k 11
.6k

10.6k

22.6k 25.2k

22.2k70k

4.
7k 5k

9.7k79
.7k

3k

82
.7

k

(c) Packet Distribution across Links

Figure 10: Diagnosing TCP Outcast. (a) Confluo measures the cu-
mulative ratio of smallest and largest packet counts across all flows
at 10ms intervals to diagnose outcast; smallest and largest packet
counts correspond to flows with smallest and largest hop-counts re-
spectively, with their ratio stabilizing to 0.4 in 1s after measurement
starts. (b) Flow throughputs at t = 1s. (c) Using [7–10], Confluo can
obtain packet distribution across links (numbers along links) in a 1s
window during outcast. Circles represent switches, 1-15 represent
flowIDs, and D represents destination end-host.

flows (one with small number of flows, and one with large
number of flows) from two different input ports of a switch
compete for the same output port; it has been shown [62]
that in such a scenario, TCP can result in severe through-
put degradation for the small set of flows. This occurs due
to port blackout in switches that employ tail-drop queuing,
wherein a batch of consecutive packets are dropped from an
input port. In TCP Outcast, this disproportionately affects the
small set of flows, leading to TCP timeouts.

In our experiment, we recreate a setup similar to [62],
where 15 TCP flows with different sources and the same des-
tination (shown as D in the figure) compete for a single out-
put port at the final-hop switch. One flow traverses a 1-hop
path, two of them traverse a 3-hop path, and the remaining
12 traverse a 5-hop path. All links in the setup have 1Gbps
bandwidth. To monitor the TCP outcast problem, Confluo
first adds triggers to detect packet losses (Table 2(b)). Once
the trigger raises an alarm, the coordinator interface issues
diagnostic queries at 10ms intervals to obtain packet count
for each flow in that window, and compute cumulatively (1)
ratio of smallest to largest packet counts across all flows, and
(2) individual flow throughputs (Figure 10). Each diagnostic
query incurs an average latency of 250µs.

Owing to port blackout, the flow with smallest hop-count
observes the lowest throughput, while flows with larger hop-
counts observe higher throughput (Figure 10(b)). By exploit-
ing telemetry data embedded in packet headers, Confluo can

also obtain the number of packets transmitted through each
link in the network over a 1s window (Figure 10(c)).

6 Related Work
We already discussed related work in network monitoring
and diagnosis in §2.1. In this section, we focus on related
work in the context of Atomic MultiLog.

There has been a lot of work on the design of efficient,
concurrent logs [39–42, 54–56, 63–65]. Since log-based sys-
tems have been around for several decades, it would be im-
practical to attempt an exhaustive comparison. However, at a
high-level, we note that traditional log-based systems focus
on simple atomic operations on a single log; in contrast, Con-
fluo combines a collection of logs in the Atomic MultiLog to
support atomic filters, aggregates and triggers over packet
headers. By relaxing the atomicity guarantees for its indi-
vidual logs and guaranteeing atomicity only for end-to-end
MultiLog operations, Confluo achieves high concurrency for
these collection of logs. Figure 1 compares the performance
of Confluo against the state-of-the-art log-based system [54].

Database Management Systems (DBMS) [66–68] use sec-
ondary indexes to support filters and aggregates on records.
Unfortunately, atomically updating tree-based index struc-
tures such as B-Trees [69, 70] and Tries [71–74] incur high
write overheads due to complex tree traversals and locking
overheads, resulting in low write throughput. On the other
hand, hash-based indexes [75–77] sustain high throughput,
but do not support ordered access to data items. Confluo bor-
rows heavily from these approaches, but makes design trade-
offs to meet the high throughput and rich functionality re-
quirements of network monitoring and diagnosis (§3.2).

7 Conclusion
Confluo is an end-host stack that can be integrated with ex-
isting network management tools to enable monitoring and
diagnosis of network events. Confluo achieves this using
Atomic MultiLog, a new data structure that exploits structure
in network traffic to support highly concurrent read-write op-
erations. Confluo executes 1000s of triggers and 10s of filters
at line rate (for 10Gbps links) on a single core.

Acknowledgments
We would like to thank our shepherd, Cole Schlesinger,
and anonymous NSDI reviewers for their insightful feed-
back. We are also grateful to Praveen Tammana for help-
ing us in setting up experimental testbed, and for sharing
packet traces from PathDump and SwitchPointer experi-
ments. This research is supported in part by NSF CISE Ex-
peditions Award CCF-1730628, NSF DGE-1106400, NSF
CNS-1704742, and gifts from Alibaba, Amazon Web Ser-
vices, Ant Financial, Arm, CapitalOne, Ericsson, Facebook,
Google, Huawei, Intel, Microsoft, Scotiabank, Splunk and
VMware.

432 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,
V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim,
“Language-Directed Hardware Design for Network
Performance Monitoring,” in ACM SIGCOMM, 2017.

[2] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C.
Chen, and G. Zhang, “SketchVisor: Robust Network
Measurement for Software Packet Processing,” in ACM
SIGCOMM, 2017.

[3] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: a better
netflow for data centers,” in USENIX NSDI, 2016.

[4] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman, “One sketch to rule them all: Rethink-
ing network flow monitoring with UnivMon,” in ACM
SIGCOMM, 2016.

[5] M. Yu, L. Jose, and R. Miao, “Software defined traf-
fic measurement with opensketch,” in USENIX NSDI,
2013.

[6] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazières, “Millions of Little Minions: Using Pack-
ets for Low Latency Network Programming and Visi-
bility,” in ACM SIGCOMM, 2014.

[7] P. Tammana, R. Agarwal, and M. Lee, “CherryPick:
Tracing Packet Trajectory in Software-Defined Data-
center Networks,” in USENIX SOSR, 2015.

[8] P. Tammana, R. Agarwal, and M. Lee, “Simplifying
Datacenter Network Debugging with PathDump,” in
USENIX OSDI, 2016.

[9] P. Tammana, R. Agarwal, and M. Lee, “Distributed
Network Monitoring and Debugging with Switch-
Pointer,” in USENIX NSDI, 2018.

[10] “In-band Network Telemetry (INT).” https://p4.org/
assets/INT-current-spec.pdf.

[11] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren, “Passive
Realtime Datacenter Fault Detection and Localization,”
in USENIX NSDI, 2017.

[12] H. Chen, N. Foster, J. Silverman, M. Whittaker,
B. Zhang, and R. Zhang, “Felix: Implementing Traffic
Measurement on End Hosts Using Program Analysis,”
in USENIX SOSR, 2016.

[13] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker,
“Compiling Path Queries,” in USENIX NSDI, 2016.

[14] A. Gupta, R. Harrison, A. Pawar, M. Canini, N. Feam-
ster, J. Rexford, and W. Willinger, “Sonata: Query-
Driven Streaming Network Telemetry,” in ACM SIG-
COMM, 2018.

[15] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown, “I Know What Your Packet Did
Last Hop: Using Packet Histories to Troubleshoot Net-
works,” in USENIX NSDI, 2014.

[16] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Fel-
ter, K. Agarwal, J. Carter, and R. Fonseca, “Planck:
Millisecond-scale monitoring and control for commod-
ity networks,” in ACM SIGCOMM, 2014.

[17] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Ma-
hajan, D. Maltz, L. Yuan, M. Zhang, B. Y. Zhao, and
H. Zheng, “Packet-Level Telemetry in Large Datacen-
ter Networks,” in ACM SIGCOMM, 2015.

[18] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu,
J. Padhye, B. T. Loo, and G. Outhred, “007: Democrat-
ically Finding the Cause of Packet Drops,” in USENIX
NSDI, 2018.

[19] “OpenSOC.” http://opensoc.github.io/.

[20] “Tigon.” http://tigon.io.

[21] C. Cranor, T. Johnson, O. Spataschek, and
V. Shkapenyuk, “Gigascope: A Stream Database
for Network Applications,” in ACM SIGMOD, 2003.

[22] M. Sullivan, “Tribeca: A Stream Database Manager for
Network Traffic Analysis,” in VLDB, 1996.

[23] M. Moshref, M. Yu, R. Govindan, and A. Vahdat,
“Trumpet: Timely and Precise Triggers in Data Cen-
ters,” in ACM SIGCOMM, 2016.

[24] A. Khandelwal, R. Agarwal, and I. Stoica, “Confluo:
Distributed Monitoring and Diagnosis Stack for High
Speed Networks.” Technical Report, 2018.

[25] “Confluo GitHub Repository.” https://github.com/
ucbrise/confluo.

[26] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and
S. Shenker, “NetBricks: Taking the V out of NFV,” in
USENIX OSDI, 2016.

[27] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and
S. Ratnasamy, “SoftNIC: A Software NIC to Augment
Hardware,” Tech. Rep. UCB/EECS-2015-155, EECS
Department, University of California, Berkeley, 2015.

[28] “The Pktgen Application.” https : / / pktgen .

readthedocs.io/en/latest/.

[29] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Pax-
son, and F. Schneider, “Enriching Network Security
Analysis with Time Travel,” in ACM SIGCOMM, 2008.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 433

https://p4.org/assets/INT-current-spec.pdf
https://p4.org/assets/INT-current-spec.pdf
http://opensoc.github.io/
http://tigon.io
https://github.com/ucbrise/confluo
https://github.com/ucbrise/confluo
https://pktgen.readthedocs.io/en/latest/
https://pktgen.readthedocs.io/en/latest/

[30] “Deepfield Defender.” http : / / deepfield . com /

products/deepfield-defender/.

[31] “Kentik Detect.” https://www.kentik.com.

[32] F. Fusco, M. P. Stoecklin, and M. Vlachos, “NET-FLi:
On-the-fly Compression, Archiving and Indexing of
Streaming Network Traffic,” VLDB, 2010.

[33] P. Giura and N. Memon, “NetStore: An Efficient Stor-
age Infrastructure for Network Forensics and Monitor-
ing,” in Springer-Verlag RAID, 2010.

[34] J. Lee, S. Lee, J. Lee, Y. Yi, and K. Park, “Flo-
SIS: A Highly Scalable Network Flow Capture System
for Fast Retrieval and Storage Efficiency,” in USENIX
ATC, 2015.

[35] “The health insurance portability and accountability
act.” http://www.hhs.gov/ocr/privacy/.

[36] “Cisco Compliance Solution for HIPAA Security
Rule Design and Implementation Guide.” https://
tinyurl.com/y94u8sqq.

[37] “Intel Data Plane Development Kit (DPDK).” http://
dpdk.org.

[38] “Open vSwitch (OVS).” http://openvswitch.org.

[39] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Kei-
dar, “Scaling Concurrent Log-structured Data Stores,”
in ACM EuroSys, 2015.

[40] M. P. Herlihy and J. M. Wing, “Linearizability: A
Correctness Condition for Concurrent Objects,” ACM
TOPLAS, 1990.

[41] “A Fast Lock-Free Queue for C++.”
http : / / moodycamel . com / blog / 2013 /

a-fast-lock-free-queue-for-c++.

[42] P. Tsigas and Y. Zhang, “A simple, fast and scalable
non-blocking concurrent fifo queue for shared memory
multiprocessor systems,” in ACM SPAA, 2001.

[43] P. E. Black, “perfect k-ary tree.” https://www.nist.
gov/dads/HTML/perfectKaryTree.html.

[44] “Disjunctive normal form.” https://en.wikipedia.
org/wiki/Disjunctive_normal_form.

[45] R. Agarwal, A. Khandelwal, and I. Stoica, “Succinct:
Enabling Queries on Compressed Data,” in USENIX
NSDI, 2015.

[46] “Configuring compression in Cassandra.” https://
docs.datastax.com/en/cassandra/2.0/cassandra/

operations/ops_config_compress_t.html.

[47] “RocksDB Tuning Guide.” https://github.com/
facebook/rocksdb/wiki/RocksDB-Tuning-Guide.

[48] “Memtables in Cassandra.” https://wiki.apache.
org/cassandra/MemtableSSTable.

[49] “Configuring compaction in Cassandra.” https://
docs.datastax.com/en/cassandra/2.1/cassandra/

operations/ops_configure_compaction_t.html.

[50] “SSTable and Log Structured Storage: Lev-
elDB.” https : / / www . igvita . com / 2012 / 02 / 06 /
sstable-and-log-structured-storage-leveldb.

[51] “SQLServer: Distributed Transactions (Database En-
gine).” https://technet.microsoft.com/en-us/
library/ms191440(v=sql.105).aspx.

[52] “Oracle: Distributed Transactions Concepts.” https:
//docs.oracle.com/cd/B10501_01/server.920/

a96521/ds_txns.htm.

[53] “Postgres: eXtensible Transaction Manager.” https://
wiki.postgresql.org/wiki/DTM.

[54] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wob-
bler, M. Wei, and J. D. Davis, “CORFU: A Shared Log
Design for Flash Clusters,” in USENIX NSDI, 2012.

[55] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,
V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,
and A. Zuck, “Tango: Distributed Data Structures over
a Shared Log,” in ACM SOSP, 2013.

[56] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Mun-
shed, M. Dhawan, J. Stabile, U. Wieder, S. Fritchie,
S. Swanson, M. J. Freedman, and D. Malkhi, “vCorfu:
A Cloud-Scale Object Store on a Shared Log,” in
USENIX NSDI, 2017.

[57] K. M. Chandy and L. Lamport, “Distributed Snap-
shots: Determining Global States of Distributed Sys-
tems,” ACM TOCS, 1985.

[58] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt,
and N. Shavit, “Atomic Snapshots of Shared Memory,”
JACM, 1993.

[59] H. Attiya and O. Rachman, “Atomic Snapshots in O
(N Log N) Operations,” SIAM Journal on Computing,
1998.

[60] H. Attiya, M. Herlihy, and O. Rachman, “Atomic Snap-
shots Using Lattice Agreement,” Springer-Verlag Dis-
tributed Computing, 1995.

[61] T. A. Benson, A. Anand, A. Akella, and M. Zhang,
“Understanding Data Center Traffic Characteristics,” in
ACM SIGCOMM CCR, 2009.

434 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://deepfield.com/products/deepfield-defender/
http://deepfield.com/products/deepfield-defender/
https://www.kentik.com
http:// www.hhs.gov/ ocr/ privacy/
https://tinyurl.com/y94u8sqq
https://tinyurl.com/y94u8sqq
http://dpdk.org
http://dpdk.org
http://openvswitch.org
http://moodycamel.com/blog/2013/a-fast-lock-free-queue-for-c++
http://moodycamel.com/blog/2013/a-fast-lock-free-queue-for-c++
https://www.nist.gov/dads/HTML/perfectKaryTree.html
https://www.nist.gov/dads/HTML/perfectKaryTree.html
https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_config_compress_t.html
https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_config_compress_t.html
https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_config_compress_t.html
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://wiki.apache.org/cassandra/MemtableSSTable
https://wiki.apache.org/cassandra/MemtableSSTable
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb
https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb
https://technet.microsoft.com/en-us/library/ms191440(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms191440(v=sql.105).aspx
https://docs.oracle.com/cd/B10501_01/server.920/a96521/ds_txns.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96521/ds_txns.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96521/ds_txns.htm
https://wiki.postgresql.org/wiki/DTM
https://wiki.postgresql.org/wiki/DTM

[62] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella, “The
TCP Outcast Problem: Exposing Unfairness in Data
Center Networks,” in USENIX NSDI, 2012.

[63] B. Chandramouli, G. Prasaad, D. Kossmann, J. Levan-
doski, J. Hunter, and M. Barnett, “FASTER: A Concur-
rent Key-Value Store with In-Place Updates,” in ACM
SIGMOD, 2018.

[64] “Lock-Free Programming.” https://www.cs.cmu.
edu/~410-s05/lectures/L31_LockFree.pdf.

[65] I. Calciu, S. Sen, M. Balakrishnan, and M. K. Aguilera,
“Black-box Concurrent Data Structures for NUMA Ar-
chitectures,” in ACM ASPLOS, 2017.

[66] “Oracle Database.” https://www.oracle.com/index.
html.

[67] “MySQL.” https://www.mysql.com.

[68] “Microsoft SQL Server.” https://www.microsoft.
com/en-us/sql-server/sql-server-2016.

[69] R. Bayer and E. McCreight, “Organization and Main-
tenance of Large Ordered Indices,” in ACM SIGMOD,
1970.

[70] A. Braginsky and E. Petrank, “A Lock-free B+Tree,” in
ACM SPAA, 2012.

[71] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Oder-
sky, “Concurrent Tries with Efficient Non-blocking
Snapshots,” in ACM SIGPLAN PPoPP, 2012.

[72] S. Heinz, J. Zobel, and H. E. Williams, “Burst tries: a
fast, efficient data structure for string keys,” ACM TOIS,
2002.

[73] N. Askitis and R. Sinha, “HAT-trie: A Cache-conscious
Trie-based Data Structure for Strings,” in ACSC, 2007.

[74] D. R. Morrison, “PATRICIA - Practical Algorithm To
Retrieve Information Coded in Alphanumeric,” JACM,
1968.

[75] “MySQL: Comparison of B-Tree and Hash Indexes.”
https : / / dev . mysql . com / doc / refman / 5 . 5 / en /

index-btree-hash.html.

[76] “Oracle: About Hash Clusters.” https : / / docs .

oracle.com/cd/B28359_01/server.111/b28310/

hash001.htm.

[77] “SQL Server: Hash Indexes.” https : / / docs .

microsoft . com / en-us / sql / database-engine /

hash-indexes.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 435

https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://www.oracle.com/index.html
https://www.oracle.com/index.html
https://www.mysql.com
https://www.microsoft.com/en-us/sql-server/sql-server-2016
https://www.microsoft.com/en-us/sql-server/sql-server-2016
https://dev.mysql.com/doc/refman/5.5/en/index-btree-hash.html
https://dev.mysql.com/doc/refman/5.5/en/index-btree-hash.html
https://docs.oracle.com/cd/B28359_01/server.111/b28310/hash001.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28310/hash001.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28310/hash001.htm
https://docs.microsoft.com/en-us/sql/database-engine/hash-indexes
https://docs.microsoft.com/en-us/sql/database-engine/hash-indexes
https://docs.microsoft.com/en-us/sql/database-engine/hash-indexes

DETER: Deterministic TCP Replay for Performance Diagnosis

Yuliang Li
Harvard University

Rui Miao
Alibaba Group

Mohammad Alizadeh
Massachusetts Institute of Technology

Minlan Yu
Harvard University

Abstract

TCP performance problems are notoriously difficult to di-
agnose because subtle differences in TCP parameters and
features may lead to completely different performance. The
gold standard for diagnosis is to collect packet traces and trace
TCP executions. However, it is not easy to use these tools in
large-scale data centers where many TCP connections interact
with each other. In this paper, we introduce DETER, a deter-
ministic TCP replay tool, which runs lightweight recording
all the time at all the hosts and then replays selected collec-
tions where operators can collect packet traces and trace TCP
executions for diagnosis. The key challenge for deterministic
TCP replay is the butterfly effect—a small timing variation
causes a chain reaction between TCP and the network that
drives the system to a completely different state in the replay.
To eliminate the butterfly effect, we propose to replay individ-
ual TCP connection separately and capture all the interactions
between a connection with the applications and the network.
We show that DETER has low recording overhead and can
help diagnose many TCP performance problems such as long
latency related to receive buffer shrinking, zero windows,
late fast retransmission, frequent retransmission timeout, and
problems related to the switch shared buffer.

1 Introduction

Modern data center applications increasingly rely on high
throughput and low latency TCP performance. Yet, these
applications often experience TCP performance problems
that are hard to diagnose. This is because the TCP stack
is a complex system that involves many heuristics to deal
with network conditions and application behaviors, and it has
many variations that optimize for different traffic scenarios
and application objectives.

As a result, there is simply no single best setting for all
scenarios. Researchers invent more than two TCP variations
every year and there are already tens of congestion control
algorithms to choose in Linux. TCP in Linux 4.4 has 63

parameters to configure, some of which are less known to
normal application developers, such as early retransmission
flag and TCP low latency flag which provides options for
optimizing specific traffic settings. Other parameters are hard
to configure even for TCP experts, as they have to run TCP
multiple times to fully understand the influences of different
parameter settings and the interactions of various TCP fea-
tures. For example, thin-dupACK dynamically changes the
threshold of the number of dupACK for fast retransmission
based on the size of the current transfer. TSO window divi-
sor affects the Nagle test for TSO, which decides how many
packets to wait in order to form a larger packet.

Moreover, TCP is under continuous, error-prone develop-
ment. There are 16 bugs identified in Linux TCP [25] in just
July and August of 2018. As an example, one bug is related
to DCTCP, where the DCTCP CC’s ACK generation conflicts
with the basic TCP framework’s ACK generation, resulting
in some packets never being acknowledged [19].

Many misconfigurations and bugs are hard to diagnose
because they are sporadic and intermittent. However, they are
still sufficient to degrade application performance, especially
in data centers where large scale distributed systems often
involve thousands of requests to fulfill a task [48, 39], because
a single long latency may delay the entire task [32, 42].

Although diagnosing TCP performance problems is notori-
ously hard, the gold standard tools are still the same as what
have been used for tens of years: capturing packet traces [18]
and tracing TCP executions [13, 1]. While these tools are
useful for diagnosing individual connections, using them in
large-scale data center environments is hard, because there
are millions of flows from hundreds of thousands of hosts
interfering with each other constantly. Collecting packets and
tracing TCP executions at all hosts and switches takes large
quantities of storage, computing, and bandwidth resources.
TCP counters [58, 28] are useful lightweight tools in pro-
duction, but they are not detailed enough to diagnose the
complex settings and interactions mentioned above (see more
examples of complex TCP performance problems in §5).

A common way to debug complex large-scale systems is

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 437

deterministic replay [52, 40, 33, 49, 27, 37]. Deterministic
replay is proven to be an effective tool for developers to
recreate performance problems, identify their root causes,
and uncover many long-standing bugs in popular software. It
would be ideal if we can deterministically replay TCP (i.e.,
deterministically re-execute the TCP code).

However, deterministically replaying a large network of
TCP connections is difficult because TCP is a tightly coupled
system with multiple interacting parties: applications, the
network, other TCP connections traversing through a common
switch, and the kernel at hosts.

In particular, the closed-loop nature of TCP creates a but-
terfly effect, where even small timing variations (e.g., clock
drifts) between the runtime and the replay can drive the sys-
tem to an entirely different state. Better time synchronization
cannot solve this problem: even a nanosecond of timing varia-
tion leads to completely different TCP behaviors (§2.2). This
is because small timing variations at hosts can cause differ-
ent packet arriving orders at switches and therefore different
packet drops. The differences in packet drops cause different
TCP behaviors (e.g., congestion control) in turn, leading to
different traffic rates from TCP senders and causing more
differences in switch behaviors such as packet drops. Such
butterfly effect propagates to many flows in the entire network
after many rounds.

To eliminate the butterfly effect, we propose DETER, a
DEterministic TCP Replay system, which breaks the closed
loop interactions by replaying each TCP connection sepa-
rately. We identify the minimal set of signals that capture all
the interactions between a TCP connection with the applica-
tion and the network, and record these signals at hosts in a
lightweight manner. Specifically, DETER captures applica-
tion socket calls and any impact on packets (e.g., if they are
dropped or marked ECN) in the runtime. In the replay, we
no longer need switches because all their actions to packets
have been recorded and can be simply replayed. Since all
the switch actions are deterministically replayed, we break
the butterfly effect. We also isolate the TCP connection with
other connections in the network because they only interact
through switch actions.

The next question is how to deterministically replay an
individual TCP connection. Although we already capture
the interactions with the application and the network, there
are still non-determinisms in the kernel at hosts. We design
a customized solution for TCP which captures TCP-kernel
interactions such as the kernel calling TCP handler functions,
TCP reading kernel variables, and locks in thread scheduling.
Note that we do not need to capture every packet, as the
sender and receiver can generate packets and ACK for each
other. The size of our total recording is just 2.1~3.1% of the
size of fully compressed packet traces.

Since the recording is lightweight, DETER can run at all
times for every connection on each host. Upon observing
a performance problem, we can use DETER to zoom into

any TCP connection, deterministically replay its exact same
execution, capture packet traces, and examine TCP state dur-
ing the execution—all after the fact. We can also iteratively
debug the same performance problem instance multiple times
to collect different levels of detail each time.

Once we have the packet traces for each connection using
DETER, we can also replay network queues in a physical net-
work, emulator, or simulator as long as the setup has the same
topology, routing, buffer size, and switch queuing algorithms
as the runtime. During the replay, we push all the outgoing
packets for all the senders into the network based on their
timestamps. We also introduce a heuristic that significantly
improves the accuracy of replaying packet drops.

We demonstrate the benefits of DETER by showing how we
diagnose TCP performance problems in a Spark application
with 6.2K connections, tail latency problems in an empirical
web search workload with incasts, and example performance
problems in a local testbed. With DETER, we can also di-
agnose a wide range of performance problems that require
tracing the TCP execution, such as long latency related to re-
ceive buffer shrinking, zero windows, late fast retransmission,
frequent retransmission timeout, and problems related to the
switch shared buffer. The main limitation of DETER is that
it requires recording at both the sender and the receiver of a
connection and therefore cannot work when we do not have
access to both ends.

2 Diagnosis Example and Challenges

We use a diagnosis example to demonstrate the benefits of
deterministic replay. We then use the example to show the key
challenge to enable the deterministic replay—the butterfly
effect. Even a nanosecond of sending timing variation leads
to completely different TCP behaviors.

2.1 A Diagnosis Example
We use an example to show how DETER helps diagnose TCP
performance problems. We run a network with two senders
(A and B) and one receiver, which are connected to a single
switch and 10 Gbps links between them. Each sender sends
two long flows of 20 MB each. 30 ms after the long flow
starts, sender A sends a short flow of 30 KB to the same
receiver. In one run, the short flow takes 49 ms to complete,
which is two orders of magnitude higher than its expected
completion time. In comparison, the RTO is just 16 ms.

Usually, people diagnose a problem by reproducing it.
However, this problem is very hard to reproduce (shown in
§2.2). If we cannot reproduce a problem, we have to rely on
the information captured online, such as the TCP counters
that data centers usually continuously monitor [58, 28]. Un-
fortunately, TCP counters are not enough for diagnosing this
problem. The counter for retransmission timeout is two, but
twice the RTO (2*16 ms) is still much less than 49 ms.

438 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

�

����

�����

�����

�����

�����

�����

�����

��� ��� ����� �����

��
��
�
��
��
�
��
�

���� ����

���
���

1st RTO: 16ms 2nd RTO: 32ms

Figure 1: Receiver side Seq and Ack number of the short flow that
experiences 49 ms FCT.

With DETER, we can deterministically replay the connec-
tions using the lightweight data recorded in the runtime (Table
1). During the replay, we capture the packet trace at the re-
ceiver side for the short flow (Figure 1). The trace shows that
the second timeout is 32 ms. This is because the two timeouts
are consecutive and thus trigger exponential backoff. The
trace also shows the reason why the sender experiences the
second timeout: the receiver receives the first retransmitted
packet at 16.94 ms, but it does not send an ACK. Without the
ACK, the sender has to retransmit again at 48.93 ms.

Why does the receiver not send an ACK for the first retrans-
mitted packet? DETER allows us to replay multiple times, in
order to collect more data and iteratively diagnose the prob-
lem. We replay again and use Ftrace [1] to get the function
call graph on the processing of the first retransmitted packet.
It shows that TCP enters the delayed ACK function, which
means TCP decides to delay the ACK for the first retransmit-
ted packet. The delayed ACK timeout is 40ms (which is a
hardcoded value in the kernel and not configurable), which
is longer than 2*RTO, so the second retransmission triggers
first.

The root cause of this problem is that delayed ACK is
very risky in the presence of RTO, because after RTO the
sender can only send one packet. Ideally, the receiver needs
a way to identify retransmissions (e.g., the sender marks the
retransmitted packets), so it does not delay the ACK for them.
As a workaround today, reducing the delayed ACK timeout
can mitigate the problem.

2.2 Butterfly Effect
While deterministic TCP replay is a powerful tool for diag-
nosing TCP performance problems, it is not easy to ensure
determinism. For the above example, if we simply replay
with the same socket calls at the same times as the runtime,
we cannot reproduce the problem.1 Figure 2 shows that when
we replay 100 times, the short flow always has way less
than 49 ms flow completion times (FCT). In the production

1We synchronize the clocks among the senders and receivers to 100s of
nanoseconds precision by PTP (Precision Time Protocol [2]).

���

�

��

���

� �� �� �� �� �� �� �� �� ��

��
�
��
��

��� �

Figure 2: FCT of the short flow across 100 attempts of replay with
socket calls. The blue dashed-line is 49 ms.

where there are more flows and more dynamic traffic than our
testbed, it is more difficult to reproduce the same problem.

The key challenge for the deterministic replay is the
butterfly effect. Packet sending times at hosts often have
microsecond-level variation between the replay and the run-
time. This is caused by the inherent host non-determinisms,
such as the clock drift, context switching, kernel scheduling,
and cache state [42].

The small variation gets amplified by the butterfly effect—
the closed loop interactions between switches and TCP. A
small packet sending time variation may change the order of
packets from different hosts at a switch, which causes switch
action variations—the switch may drop or mark ECN on a
different set of packets. This starts the butterfly effect in the
closed loop between switches and TCP: Switch action vari-
ations cause TCP behavior variations (e.g., TCP changing
congestion window size differently). TCP behavior variations
change its flow sending rates, which affect the queue lengths
at all the switches the flow traverses ever since and lead to
more switch action variations. Such a chain reaction between
switches and TCP affects more and more flows all over the
network in multiple rounds.

One may expect that reducing the sending time variation
(e.g., better clock synchronization, more deterministic packet
processing time) can improve the replay accuracy. However,
our experiment shows that even a nanosecond of variation
can lead to completely different packet-level behaviors.

We run an ns3 simulation [15] to control the sending time
variation. We use the same topology and traffic as in §2.1. For
the runtime, we set the host packet processing delay to 10 us,
the same as what we measure in the testbed. The short flow
incurs a long flow completion time because of the correlated
RTO and delayed ACK. We then replay the experiment with
the same socket calls and timings. To simulate different levels
of sending time variation, we simulate a normal distribution
of host packet processing delay with the same mean delay of
10 us but with a standard deviation ranging from 0 to 1000 ns.
For each level, we replay 100 times.

Figure 3 shows the percentage of replays that reproduce
the correlated RTO and ACK delay on the short flow. Once
the sending time variation exceeds zero, even just 1 ns, the
probability of reproducing the same problem suddenly drops.

This is because with a non-zero sending time variation,
there is always a chance that a switch takes different actions
on a packet between the runtime and the replay. Smaller
timing variation can only delay the appearance of different ac-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 439

0
20
40
60
80
100

0 1 10 100 1000

R
ep
ro
du
ce
R
at
e
(%
)

Host Packet Delay Std-dev (ns)

Figure 3: The rate of reproducing the corre-
lated RTO and ACK delay.

0

50

100

150

200

0 10 20 30 40 50 60

Q
ue
ue
D
iff
(K
B)

Time (ms)

1ns
10ns

100ns
1000ns

Figure 4: The time series of queue length
difference.

0
100
200
300
400
500
600
700
800

0 100 200 300 400 500

Se
nd
in
g
tim
e
(u
s)

Packet number

original sending time
gap-based sampling
rate-based sampling

38us

Figure 5: Inference error of sampling ap-
proaches. (The lines indicate the inferred
sending time of each packet. The end points
of the lines are sampled sending times.)

tions, but cannot prevent it. Once the switch takes a different
action, the butterfly effect starts, causing a chain reaction of
changing sending rates and queue lengths. The chain reaction
persists regardless of the level of the sending time variation.

Figure 4 illustrates this. We show the time series of queue
length difference between runtime and replay experienced
by each packet. For each level of sending time variation, we
show a typical one of the 100 replays2. For 1 ns variations,
although the queue length difference starts later than with
higher variations, once the difference starts at 12 ms, it never
goes down to 0.

This result indicates that we cannot simply rely on reducing
the sending time variation. This motivates our DETER design,
which decouples the TCP and the network so that switch
action variations cannot affect TCP.

3 DETER Design

In this section, we discuss DETER design with four key ideas:
first, we break the butterfly effect by replaying individual
TCP connections separately and record TCP’s interactions
with the application and the network. Second, to determin-
istically replay each TCP connection, we record all the non-
determinisms that happen in the interactions between TCP
and the kernel. Third, we introduce a rate-based sampling
solution to reduce the overhead of recoding packet sending
times. Finally, with the packet traces of all the connections,
we show how to replay switch queuing behaviors.

3.1 Breaking the Butterfly Effect
We break the closed loop between TCP and the switches by
replaying individual connections separately. We identify the
minimal set of signals that capture all the interactions of a
TCP connection with the application and the network.

TCP interacts with applications through socket calls. DE-
TER captures all socket calls and its input arguments such as
the number of read/recv bytes and socket flags.

2Although we cannot show all 100 replays here, we inspect each of them,
and they have similar trend.

TCP interacts with the network through packets. TCP
sends packets into the network and receives packets from the
network. We do not need to record most incoming packets
because we replay the sender and the receiver of a connection
together and they can automatically generate packets for each
other. We only need to record how the switches inside the
network change the packet stream such as dropping packets
or marking them with ECN bits. At the receiver, we detect
packet drops by checking if the IP_ID fields are continuous
and ECN by checking the ECN bits (see Section 4 for details)
and record them there.

Note that for a TCP connection, it does not matter which
switch drops or marks the packets. Only the final changes
to the packets matter. So in the replay, we no longer need
switches because their actions to packets have been recorded
and we can just replay them. Since the switch actions are
deterministically replayed, we break the butterfly effect.

A TCP connection interacts with other connections when
they share switch resources in the network and cause different
switch actions3. Since we recorded switch actions, we also
isolate the interactions among TCP connections.

In summary, in the runtime, we record socket calls and
switch changes to packets at all the hosts. Users can specify
which connections to replay. To replay a connection, we set up
a simple two-host testbed that runs as a sender and a receiver
for every single connection without involving any switches.
We run a socket call generator to generate socket calls at
the right time and run a packet corrector to inject actions on
packets before they arrive at the TCP sender and receiver.
We can easily parallelize the replay of multiple connections
because we replay each connection independently.

3.2 Handling Non-determinisms in the Kernel
The next question is how to deterministically replay a sin-
gle TCP connection. It is complex to replay a general sys-
tem [49, 27], which requires record and replay lots of non-
determinisms. We use the knowledge of TCP to design a
customized replay for TCP, which is lightweight. Specifically,
besides the interaction with the application and the network,

3We discussion TCP connections on the same host in the next subsection.

440 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TCP also has three non-determinisms from interacting with
the kernel: the kernel may call TCP handler functions, the
TCP may read kernel variables, and there is thread scheduling.
(1) TCP handler function calls from kernel: The kernel
may call some TCP handler functions. For example, the OS
timer may call TCP timeout handler. The kernel may also call
resume transmission handler, which sends more packets in
the send buffer. We need to record them.
(2) Reading kernel variables: TCP reads a few variables
that are updated by other kernel programs (or hardware), such
as memory pressure indicator, the jiffies (a low-resolution
clock), the mstamp (a microsecond-resolution clock), and the
send queue byte count. We should record the return value of
each read.
(3) Thread scheduling: TCP works in a multi-threaded
environment. Different threads, such as applications, NIC
interrupts, and OS timers, access the shared socket variables
by calling TCP handler functions. For example, an application
thread calls a socket call handler to copy data into the socket
send buffer; a NIC interrupt may call the TCP receive packet
handler to frees up some space of the send buffer; OS timer
may call the timeout handler to send a pending packet in the
send buffer. It is important to ensure the order of different
threads accessing the same variable. Fortunately, TCP uses a
single socket lock to ensure that only one thread can access all
the shared variables at a time. Thus, we just record the order
of lock acquisition of different threads by giving a sequence
number for each lock acquisition.

In the replay, we run the same TCP stack with the same
TCP configuration as the runtime. In addition to the socket
call generator and the packet corrector, we also generate
handler calls from the kernel based on the recorded logs. We
feed in the recorded kernel variables when TCP reads them.
We also enforce the order of lock acquisition of different
threads (see §4 for more details).

3.3 Sampling Packet Sending Times
So far we have ensured the ordering of TCP behaviors (e.g.,
the sequence of packets, state updates, loss detections, time-
outs). One remaining question is how to replay packet send-
ing times accurately. Recording the sending times for all the
packets takes high storage overhead. To reduce the overhead,
we choose to sample packets, record the sending times for
sampled packets, and infer the times for the other packets.
The question is how to select the samples in real-time while
bounding the inference error within a given threshold th.
Strawman solution: gap-based sampling. TCP usually
sends packets in bursts. So intuitively for each burst, we
can keep the sending time of the first packet and the burst
length. Assuming all the packets in the same burst follow the
same sending rate, we can then infer the sending times of all
the unsampled packets. We can identify packets in the same
bursts if their interarrival time is below a threshold.

We perform a simple experiment to show that this approach
has an unbounded error. We send two flows from two senders
through a shared 10 Gbps link. The second flow starts 500us
after the first flow. Figure 5 shows the packet sending time
series of the first flow. All the packets from the 96-th to the
499-th are in the same burst (i.e., no gap of packet sending
time), but the rate changes. As a result, the inferred sending
time of the 323-th packet is 38 us later than the actual time.
Our solution: Rate-based sampling. Gap-based sampling
fails to sample packets when the packet rate changes. There-
fore, instead of recording the burst length, we propose to
record the packet rate. When the inferred sending time based
on the recorded packet rate is wrong (i.e., the difference with
the actual time is above the threshold th), we sample a new
packet. We set th to 5 us by default.

Specifically, in the runtime, we follow Algorithm 1. s
is the previous sampled packet and p is the new packet.
Given the sending time of s (s.time) and a packet rate
r, we can infer the sending time of p (p.time). In re-
verse, to ensure that our inferred sending time of p falls
in the range of [p.time � th, p.time + th], we must ensure
our recorded packet rate r falls in the range of p_range =
[p.index�s.index

p.time+th�s.time ,
p.index�s.index

p.time�th�s.time] (Line 2). Thus, we compare
the recorded rate range rec_range and p_range. If they
overlap, it means we can find a rate, in the intersection of
rec_range and p_range, that can be used to infer a bounded
sending time for both p and all the previous packets between s
and p. Thus, we do not need to sample p (Line 4). Otherwise,
if the two ranges do not overlap, we sample p, record a rate
in rec_range, and reset rec_range (Line 6-7).

DETER can generate the full packet trace for each connec-
tion, by combining the recorded (inferred) sending times with
the packets generated by the replay of TCP execution.

Algorithm 1 DETER Sampling sending time. p.index is its index
within its 5-tuple flow, and p.time is its sending time.

1: procedure SAMPLE(p: a new packet)
2: p_range = [p.index�s.index

p.time+th�s.time ,
p.index�s.index

p.time�th�s.time]
3: if p_range\ rec_range 6= /0 then
4: rec_range = p_range\ rec_range
5: else
6: record(s.index, s.time, rec_range.mid)
7: s = p; rec_range = [�•,•]

3.4 Replaying Switch Queues
Because we can get all the packets, their sizes, and sending
times for each connection in the network (§3.2 and §3.3),
we can use them to replay switch queues in simulators (e.g.,
ns3 [15]) by pushing all the packets at the right time into the
network. Replaying switch queues can help us understand
the interaction between different connections at the switches
(e.g., which flows contend for the queues).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 441

The simulator needs the same topology and switch data
plane (e.g., forwarding tables, buffer sharing policies, switch-
ing delay, and link propagation delay) as the runtime. Today,
many vendors build high-fidelity simulators for their own
devices [5, 21, 11]. One can also choose to replay switch
queues in a physical network if available. Replaying switch
queues also requires that the hosts during the runtime have
microsecond-level synchronization, so that the relative packet
sending time error across hosts are small. Clock synchroniza-
tion in data centers is moving towards sub-microseconds level
[2, 22, 34].

Replaying the exact queueing behavior is both impractical
and unnecessary. It requires recording the exact order of
enqueue and dequeue, which is too heavy for the runtime. On
the other hand, it is often good enough to show the contending
flows and their occupancies with high accuracy.

Thus, we opt for a simple design that can achieve high
accuracy. We simply push all the packets into the network
at the right time. It can achieve high accuracy because the
switch queue occupancy is a continuous function with respect
to packet sending times. Since the difference in packet send-
ing times between the runtime and the replay is bounded,
the difference of switch queue occupancy is also bounded.
Specifically, suppose a packet’s arrival time at a port differs
by k packets transmission time, and the fan-in of that port is
f , the queue difference is at most (f �1)k. k is small because
our sampling bounds the sending time error to 5 us, and there
are limited hops to amplify it. f is also small because the
destinations of flows traversing a switch are random4. Even if
f is large, such as during incast, the queue occupancy is also
large, so the difference is a small fraction of the queue.

However, one exception is packet drops. Because drop-
ping packets or not is a binary decision (not a continuous
function), even if a microsecond level difference can cause
different drops. Specifically, a runtime dropped packet may
get through, which we call a false-accept. It also occupies
some free space in the queue, leaving less space for later
packets that should be in the queue, so one of the later packets
may get mistakenly dropped, which we call a false-drop.

We propose to reduce the probability of false-accepts and
false-drops by letting the hosts tag should-be-dropped packets.
In this way, we ensure that the switches only drop packets
with tags (for eliminating false-accept) and always deliver
packets without tags (for eliminating false-drop).

The key challenge is how to know which switch to drop
the tagged packets. Since the switch queue occupancy is a
continuous function, it has bounded differences with respect
to the sending time difference. We propose to decide whether
to drop packets at a switch based on the switch’s queue oc-
cupancy upon packet arrivals. That is, when a should-be-
dropped packet arrives at a switch, and the queue occupancy
is above a threshold (e.g., > queue max length - 5 MTU), the

4In theory, the fan-in is within 4 for 99.7% of the time for a 64-port switch
with random traffic.

Type Data recorded
Interaction w/ network losses, ECN, reordering
Interaction w/ applications socket calls
Handler call from kernel Timeout handler, resume transmission han-

dler, packet receive handler

Kernel variables Infrequently updated variables, e.g., jiffies,
memory pressure indicator
Influence of frequently updated variables
e.g., RACK loss detection

Order of lock acquisitions sequence number of lock acquisitions for
diff. threads

Timestamp samples Sampled packet sending time (time, index,
rate)

Table 1: Runtime recorded data.

switch drops the packet.
When a packet only experiences one congested switch on

its path, which is the most common case, our solution works
well. In the rare case when there are multiple congestion
spots on the path, DETER may drop the packet at a wrong
location. Our evaluation shows that this heuristic reduces the
error of dropping packets5 from 58.3% to 2.87%.

4 Implementation

In this section, we discuss the implementation details of DE-
TER. We just need 139 extra lines of code in the Linux kernel.
Then we accomplish the record and replay with two kernel
modules and two userspace programs (3000 lines of C and
C++ code in total).
Runtime recording. For each connection, we first record
its configurations, and then record the data listed in Table 1
during its runtime. We note that the configurations of con-
nections on the same server are mostly the same, so we only
record the parameters that differ from the default values. Our
current prototype starts the recording after the connection is
successfully built6. We now discuss the runtime recording.
Interaction with the network: This includes packet drops,
ECN, and packet reordering. In our design, we use the IP_ID
field to detect packet drops: Linux sends packets of each
connection with consecutive IP_ID values, so the receiver
can check if there are gaps in the series of incoming packets
to detect drops (Similarly, the sender can detect drops in the
incoming ACKs)7. On other platforms that do not have the
consecutive IP_ID feature, we use LossRadar[44] to detect
drops, which only takes O(#loss) space. The host also checks
the ECN of the IP header of each incoming packet, and record

5Percentage of false-accept, false-drop, and drop at wrong location in all
drops.

6Record and replay for connection setup is not very different. The only
difference is detecting the drop of the first packet (SYN and SYN-ACK).
This can be solved by recording the IP_ID of all SYN packets at both sender
and receiver, which just adds 8 bytes for each connection.

7This is different from TCP’s drop detection: TCP sender does not
distinguish drop of a data packet or its ACK. We must distinguish them
because both the sender and the receiver must replay accurately.

442 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 bit (CE) for it. Sometimes there may be packet reordering,
which we can detect also using the IP_ID field.

Recording the interactions with the network is lightweight.
In data centers, the packet drop rate is just 10�5 to 10�4

[51, 36]. For ECN we just need 1 bit per packet. Reordering
is rare, so it does not cost much. We instrument the TCP
receive packet handler to record them.
Socket calls from the application: We hook the TCP socket
call handler functions to record the #bytes and flag, so that
we do not need to change the application.

We can reduce the storage overhead of socket calls a lot.
We find that there are often identical socket calls. For exam-
ple, distributed files systems break large files into fixed-size
chunks, so most of the send and receive sizes are the same.
Thus, we store all the common patterns of socket calls (the
common #bytes and flag pairs) for different applications, and
only record the pattern numbers in the runtime. DETER asso-
ciates connections to applications via their TCP port numbers.
Other TCP handler calls from the kernel: We hook the
timeout handlers and the resume transmission handler, and
record them when they get called.
Kernel variables read by TCP: We record the memory pres-
sure indicator and jiffies with low overhead because their
values change infrequently. The memory pressure indicator is
very rarely set, and the jiffies increments by 1 every 4 ms. So
we just maintain the values of the last read and only record
the reads that return a new value.

The mstamp and the send queue byte count are updated
frequently. We reduce the overhead by recording their in-
fluences instead of their values. Specifically, the variables
influence the TCP executions by serving as the metrics of
if-conditions in TCP. For example, TCP uses the mstamp to
detect losses (RACK [16]). We just need to record the loss
detection result, rather than the actual value of the clock. We
identify and record all the if-conditions they affect (1 bit for
each), which relates to loss detection, cwnd reset, TCP seg-
mentation offload, and TCP small queue. Moreover, most of
the if-conditions have a dominant result (e.g., loss detection
mostly return false), so we reduce the overhead further by
only recording when they have the uncommon result.

We use a special reader function to record these values.
For example, in the TCP code, we replace a=jiffies with
a=reader(jiffies) to record the value of jiffies and re-
place if (mstamp>b) with if (reader(mstamp>b)) to
record the influence of mstamp. The reader function simply
records the value passed to it and returns this value.
Lock acquisition: We instrument TCP’s lock acquisition
function to record which thread calls this function, so we
know the order of lock acquisition by different threads. We
also optimize the overhead. Specifically, one thread may
acquire the lock many times consecutively. For example,
NIC interrupt acquires one lock for each incoming packet, so
there are often tens of lock acquisition by NIC interrupt in
a row. Therefore, we record the number of consecutive lock

Host 1

TCP

TCP handler caller

Kernel
User Socket call generator

Handler
functions

NIC

Host 2

NIC

Sequencer

R/W to DETER variables
Func callLegend xx DETER replay modules
Cable

Packet corrector

acquire_lock

Figure 6: Replay implementation in DETER

acquisitions, instead of recording them individually.
Sampled sending times: To get the most accurate timestamps,
we sample and record the sending times in the NIC driver,
just before TCP pushes packets into the NIC ring buffer.
Replay. We now discuss the replay.
Replay TCP stacks. Figure 6 shows the replay setup. We
implement the packet corrector with NetFilter [7]. It injects
drops and CE bits to the incoming packets8. We also enforce
the reordering here.

To replay the socket calls, we implement a socket call
generator in the user space to inject socket calls from the
applications according to the log.

We also implement a TCP handler caller, which is a kernel
thread that calls TCP handler functions according to the log.
The handler functions include the packet receive handler, the
timeout handler, and the resume transmission handler. When
calling the packet receive handler, it gets a packet from the
packet corrector as an argument to the handler.

To enforce the order of different threads acquiring the lock,
we implement a sequencer. It knows the order of different
threads acquiring the lock based on the log. We instrument
the lock acquisition function to check with the sequencer
before it actually acquires the lock. If the current thread is
not the next to acquire the lock, it waits for other threads until
itself is the next to acquire the lock.

We reuse the reader function that we introduced before to
feed the recorded kernel variables or their influences. During
the replay, the reader function reads the log and return the
corresponding value.
Replay sending and receiving timestamps. We only record
packet sending times for replay. We then infer receiving times
from sending times: for the received packet which triggers
a new packet to send, we can estimate its receiving time
as the sending time of the new packet minus the average
packet processing time, which is measured separately. For the
received packet that does not trigger a new packet, its gap with
the previous received packet is close to their sending time gap,

8We require no packet drops before packets entering the packet corrector,
so we must make sure no packets get unexpectedly dropped in the queues on
the hosts (e.g., NIC ring buffer, softirq queue, qdisc) during the replay. We
can set the sizes of these queues large enough to avoid unexpected drops.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 443

because they experience similar network conditions. Note
that only the sending times affect the switch queue replay, but
not the receiving times.
Switch queue replay. We run Precision Time Protocol [2]
in our testbed. We implement the switch queue replay in
both testbed and simulation. For the testbed, we implement
a DPDK packet generator that reads the packet trace, tags
packets, and sends packets to the NIC at the right time. We
use a NetFPGA-based switch to implement the drop accuracy
improvement (§3.4). It is also implementable in P4 [23].
We also implement the replay in a packet-level simulation in
ns3 [15], with the same topology, link delay and bandwidth,
switch queueing algorithm, and routing state as the testbed.

5 Evaluation

In this section, we demonstrate the benefits of deterministic
replay in DETER by showing how we diagnose TCP perfor-
mance problems in a Spark application with 6.2K connections,
the tail latency problem in an empirical web search workload
with incasts, and example problems in a local testbed.

We also measure the CPU and storage overhead of DETER
recording and the accuracy of DETER replay. Our evaluation
shows that DETER only uses 2.1~3.1% compared to fully
compressed packet traces and requires 0.094%-1.49% of CPU
overhead. DETER also fully replays the sequences of packets
at hosts and replays switch queues with lower than 1 MTU
differences on average.

5.1 Diagnosis in Spark
Evaluation setting. We run a TeraSort job in Spark [24]
that sorts 200 GB data on 20 servers connected with 10Gbps
network in Amazon EC2 [20]. We use 4 executors (i.e., 4
cores) and 20GB memory on each server. The NIC MTU
is 1500B. We enable TCP segmentation offload, and disable
generic receive offload9. We run DETER on all servers to
record data for all connections during the runtime and also run
Tcpdump [18] to collect the packet traces as the groundtruth.
Replay accuracy. We use DETER to replay each connection
and run Tcpdump during the replay. We compare the packet
traces we collected during runtime and replay. The sequence
of packets are exactly the same (we have a one-to-one map-
ping of TCP headers). The sending time differences between
packets are lower than 5 us.
Diagnosis. We can use DETER to identify and diagnose
tail latency problem in Spark. We define each flow as all
the packets belonging to the same Spark message. Spark
usually sends one large message with multiple socket calls.
So if a socket call starts after all the previous packets are
acknowledged, we treat the socket call as a new message.
Otherwise, we treat it as part of the previous message.

9We have not implemented replay for it, but it is not hard (§7).

We find that the tail latency of flows from HDFS are mostly
caused by receiver limit, because their receive windows fre-
quently reach zero.

The 99.9 percentile latency for flows between Spark work-
ers experience a variety of problems as summarized in Table
2. For flows shorter than 1MB, their tail latency are mostly
caused by packet drops (RTO or fast retransmission (FR)). For
flows longer than 10MB, their tail latency are mostly caused
by receive window frequently reaching zero (Rwnd=0).

The flows in the range [100KB,1MB] are of particular
interests, because most of their tail latencies (18 out of 24)
are caused by multiple delayed ACKs. We show the sender
side packet trace for one of them in Figure 7; others have
similar patterns. The sender frequently gets blocked after
sending a burst of packets, until around 40 ms later when
the ACK comes back. Such burst-40ms-ACK pattern repeats
multiple times and causes excessive delay. This is out of our
expectation, because the receiver should acknowledge every
two data packets.

So we use DETER to replay again, and use TCP Probe
to print the variables that decide whether to delay the ACK.
We find that TCP explicitly delays the ACK because the free
space in the receive buffer is shrinking. This suggests that
the root cause is the application not reading the data in the
receive buffer in time. So we replay again and confirms that
the receiver application is slow in issuing receive socket calls.
Our guess is that the application is busy with processing data,
so the CPU is the bottleneck in this case.

DETER helps us to effectively diagnose the problems
caused by the network (e.g., RTO, fast retransmission). In
addition, it also helps us identify problems caused by applica-
tions. This is helpful because in data centers it is often unclear
where the performance bottleneck is, and blaming the net-
work is often the first reaction [28]. Unlike previous systems
that infer the bottleneck [58, 28], DETER helps us quantify
the duration of different bottlenecks without instrumenting
the applications.
Overhead. DETER records a total of 200.6 MB data in the
runtime. For comparison, Tcpdump uses 22.4 GB to record
only the IP and TCP headers and timestamps and 6.5 GB
after applying the state-of-the-art compression solution [38].
DETER storage is only 3.1% of compressed packet traces.

If we keep using DETER to monitor a data center that
continuously runs such Spark jobs, DETER storage overhead
translates to 2.8 GB/host/day. We can delete the data every
day if we do not see performance problems.

We also use Linux perf [8] to evaluate the CPU overhead
of DETER recording. DETER uses 0.094% of total CPU time.

5.2 Diagnosis in Data Center Workload
Evaluation setting. We now generate TCP tail latency prob-
lems using empirical workloads modeled after traffic patterns
that have been observed in production datacenters. We run

444 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Flow size (MB) <0.1 [0.1, 1] [1, 10] >10
RTO 8 3 4 0
FR 74 0 0 0

Delayed ACK 0 0 18 0
Rwnd=0 0 0 1 1

Slow start 0 0 1 0

Table 2: Reasons for 99.9-th percentile latency
for flows of different sizes in Spark.

0
500000
1x106
1.5x106
2x106
2.5x106
3x106
3.5x106
4x106

0 200 400 600 800

Se
q/
A
ck
#

Time (ms)

Seq
Ack

Burst 40ms

ACK for the burst

Figure 7: A flow with delayed ACKs.

Flow size (MB) <0.1 [0.1,1] [1,10] >10
Congestion 149 35 25 2

Late FR 29 27 0 0
ACK drops 0 2 0 0
Tail drops 4 1 0 0

RTO 2 1 2 0

Table 3: Reasons for 99.9-th percentile latency
for flows of different sizes in data center workload.

a client-server RPC call software [6] in the same 20-node
Amazon EC2 testbed. The clients set up a persistent TCP
connection to each server, and request flows according to
Poisson process from a random server. We set the flow sizes
following the distribution observed in a production data cen-
ter running web search applications [26]. We also add incast
traffic pattern, by having the client simultaneously request
10 random servers, so the 10 servers respond synchronously
causing incast. We set the average request rate to have an 80%
network load, and 20% of the load is incast traffic. We gener-
ate a total of 280K requests over 380 persistent connections.
All 20 nodes run both client and server.

Similar to the Spark program, we use Tcpdump to collect
traces at both the runtime and the replay and show that DETER
can provide deterministic replay for all the connections.
Diagnosing tail latency. In Table 3, we classifies the root
causes into five categories: congestion (i.e., low throughput),
the fast retransmission happens very late (late FR), ACK
drops (so the sender gets stuck), tail drops (so the packets at
the end of a flow get dropped), and RTO.

We analyze the short flows (100KB-1MB) with latency
above 99.9-th percentile as an example. At the 99.9-th per-
centile, flows experience 173.8 slow down of completion time
compared to the case of running the flow alone. We make the
following interesting observations:
RTO is not the main root cause of tail latency. A widely
discussed reason for tail latency is RTO [29, 54]. But actually
RTO is rare in this experiment. The reason is that when there
are multiple requests in the same connection, later requests
can help recover the packet losses of previous requests, so
TCP loss recovery is effective in this scenario.
Fast retransmission (FR) is delayed for 10s of milliseconds.

When these flows experience loss, the senders start FR after
10s of duplicate ACKs (dupACKs). This is unexpected be-
cause the normal threshold for FR is 3 dupACKs. And this
is bad because short flows usually do not have so many du-
pACKs. In fact, most (22 out of 27) of these flows do not have
enough dupACKs on their own; their FR starts 10s of mil-
liseconds later when another request in the same connection
starts and triggers more dupACKs.

With DETER, we can replay repeatedly and gain more
insight into the problem. To understand why it requires so
many dupACKs for FR, we replay the connection of the flow
that experiences late FR with the highest slow down. We
use TCP Probe [13] to print out the threshold for dupACKs
(tp->reordering) on every ACK’s arrival during the replay.

We find that this threshold starts at 3, but later increases (and
never decreases), so when the flow that experience late FR
arrive, the threshold is 45. We search in the TCP code, and
find the threshold only increases when TCP detects reordering.
So we replay again and print out the ACKs when the threshold
increases, and find that they do reflect reordering.

A quick fix is to set the upper bound of this threshold
(net.ipv4.tcp_max_reordering) lower, but it risks spurious
retransmission in the presence of reordering. A potential
optimization to TCP may be regularly reducing the threshold.
Overhead DETER records a total of 103.8 MB, which is
2.1% of compressed packet traces. (Tcpdump records 16.8
GB, or 4.9 GB with compression.)

The CPU overhead is 1.49%. The overhead is higher than
in Spark, because the client-server software only uses CPU
to send and receive data, without any data processing. In
fact, it spends 99.78% of its CPU time in the networking
stack (including DETER). So 1.49% is very close to the lower
bound of DETER CPU overhead.

5.3 Diagnosing RTO in a Testbed
RTO usually has a large impact on the latency. However,
there are many different causes of RTO, and often involves
different parameters. In §2.1 we have shown one case. Here
we show two other causes for RTO that we see in our testbed.
In all cases, TCP counters can only be the first step–knowing
that timeouts and packet losses happen. But it is very hard to
realize the relationship between the timeout and other events.
With DETER, we can replay the connection to get the packet
traces and trace the TCP execution to dig out the root cause.
Evaluation setting. We use 3 hosts connected through a
single switch via 10 Gbps links. We pick two of the hosts as
senders and the rest one as the receiver. Each of the senders
sends one long flow (10 MB) to the receiver. One of the
senders also sends a short flow (10 KB) to the receiver.
Root cause 1: Not enough dupACKs. In this case, the
short flow experiences RTO. We use DETER to replay the
connections and capture the packet trace. The trace shows
that the short flow sends 7 packets in the first round, and the
5-th packet gets dropped. Thus, although the 6-th and the
7-th packets trigger dupACKs, the number of dupACKs is not
enough to trigger fast retransmission.
Root cause 2: Setting large TCP receive buffer size. The
receive buffer size is a frequently tuned parameter for net-
works with different bandwidth-delay products. For example,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 445

an inter-data center connection with 100ms RTT and 1Gbps
bandwidth need 12.5MB buffer size. Unfortunately, a large
receive buffer can cause RTO issues. Here we show the diag-
nosis in an example with 10MB receive buffer.

We first replay and capture the packet trace. However, the
time series of data packets and ACK packets shows a very
different scenario. After a packet loss, there are more than
3 dupACKs, but the sender does not fast retransmits the lost
packet. This is unexpected because just 3 dupACKs should
trigger fast retransmission.

We first suspect that this may be the late FR case that
we show in §5.2, so we replay again and print out dupACK
threshold. But it shows that the threshold is 3.

To dig out the root cause, we replay again, and use Ftrace
to get the function call graph of handling each ACK. Surpris-
ingly, We find that TCP does not go to the dupACK branch.
This means TCP even does not treat them as dupACKs. With
the surprise in mind, we replay again and use TCP Probe to
print the variables that are used to classify ACKs as dupli-
cates. The flag variable reveals the reason: TCP does not
treat the ACKs as duplicate because the flag’s WIN_UPDATE
bit is set [9]. This means each of these ACKs carries a differ-
ent window size. We confirm this in the packet trace: each
ACK carries a larger window size.

The direct cause for this problem is that the receive buffer
size is very large. The receive window starts with a small
size, and increases two MSS per received data packet until
reaching configured receive buffer size. Thus, the window
size keeps growing throughout the lifetime of this connection.
However, this also suggests a potential optimization to TCP
that it should have a smarter classification for dupACKs.

5.4 Evaluating Switch Queue Replay
Now we evaluate the accuracy of replaying switch queues
in our testbed and simulation. We first run traffic in our
testbed, and replay the queue to evaluate the accuracy. Then
to understand how the switch queue replay works under more
switches and more congestions, we run empirical traffic in a
large scale simulation, and replay the queues.

5.4.1 Evaluation with Testbed
Evaluation setting: The testbed comprises 3 hosts. To get
the groundtruth of the queue content, we use a NetFPGA
switch and program it to send out the queue content through
the unused port. The switch has a total of 393 KB buffer
shared across 3 ports10. The MTU is 1500 B. The host clocks
are synchronized with 100s of nanoseconds precision by Pre-
cision Time Protocol [2].

Because congestion is the most challenging scenario to
replay, we set traffic to have severe congestion. We use 2
hosts as senders and the rest one as a receiver. Each of the
two senders generates 2 long flows (10 MB each) to the

10We use the commonly used dynamic threshold [31] with a = 4.

receiver simultaneously. Each sender also generates 4 short
flows (10 KB each) to the receiver, one every 5 ms. So there
are a total of 4 long flows and 8 short flows.

During the runtime, we use DETER to collect data, and
also collect the content of the congested queue. Then we first
replay each connection to get the packet trace, and replay the
queue. We replay the queue in both the original testbed, and
in a simulation. The simulation has the same topology, and
simulates the same link throughput, latency, and buffer setting
as the NetFPGA switch.
Accuracy: The metric we use is queue content difference:
the difference between the runtime queue qrun and the re-
play queue qrep that each packet sees. Formally, we define
qdi f f = Â f2qrun[qrep | f .sizerun � f .sizerep|, where f .sizerun
means the bytes of flow f in the queue during the runtime
and f .sizerep is for the replay.

On average the queue content difference is 0.57 MTU in
the testbed, and 1.0 MTU in the simulation. On the 99-th
percentile, the difference is 4.83 MTU in the testbed, and
3.85 MTU in the simulation, both of which are very low com-
pared to the buffer size. Replay in the testbed has a slightly
higher tail difference because timing variations (e.g., thread
scheduling) exist in the testbed, but not in the simulation.

5.4.2 Evaluation in Large Scale Simulation
Our testbed evaluation shows that the replay is effective for
one switch. In production, there are more hosts, multiple
layers of switches, and more congestions across the switches.
So we use simulation to evaluate a larger scale network.
Evaluation setting: We run the simulation in ns3 [15], with
320 switches and 1024 hosts connected through a K=16 Fat-
Tree with 10 Gbps links. Each switch has 2 MB buffer, shared
by all its 16 ports11. To simulate the clock synchronization
error, we add a delta to each host’s clock, with a uniform
distribution between 0 and 5 us12.

The traffic includes both empirical background traffic that
follows the flow size distribution of a web search workload
[26], and incast traffic. The source and the destination of each
background flow are chosen uniformly random. The flow
arrival rate follows a Poisson process, and we vary the flow
arrival rate to achieve different levels of traffic load, from
10% to 80%. We also generate the incast traffic by having
the client simultaneously requests 40 servers, each of which
sends back 250 KB response (10 MB total response size). We
generate 2400 incast per-second.

To understand how the sampling affects the accuracy, we
sample the sending times with different threshold of error: 2
us, 5 us, and 10 us. We then replay the queues.
Accuracy: Figure 8 shows the queue content difference of
all queues in the network. The difference increases mildly

11For the buffer sharing policy, we use the commonly used dynamic
threshold [31] with a = 4.

12PTP in LAN can achieve sub-microsecond accuracy, and under 3.2 us in
WAN most of the time [12]. More advanced clock synchronizations [41, 34]
guarantee sub-microsecond accuracy. We choose 5 us to be conservative.

446 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

�

�

��

��

��

��

� �� �� �� �� �� �� �� ��

�
��
��
�
��
��
��
�
���
��
�
�
�

������ ���� ���

���� ���
���� �����
��� ���
��� �����
��� ���
��� �����

Figure 8: The queue content differences of replay in simulation.

with higher load, both on average and at the 99-th percentile.
For example, with 5 us threshold of error, at 30% load, the
maximum load of most data centers in practice [50, 14], the
differences are 0.78 MTU on average and 5.7 MTU at 99 per-
centile. At 80% load, an extremely high load, the differences
are 1.7 MTU on average and 9.7 MTU at the tail. It also
shows that a 5 us threshold achieves relatively good accuracy:
it only increases less than 0.3 MTU (on average) and less than
1.8 MTU (at tail) difference compared to 2 us.

We also compare the packet drop error with and with-
out the drop accuracy improvement. The drop error is
f alse_accept+# f alse_drop+#drop_wrong_location

#packets_dropped_in_either_runtime_or_replay . Our evaluation
shows that the drop error reduces significantly. For example,
for 5 us sampling threshold at 30% load, the error reduces
from 58.3% to 2.87%.

The drop error is low under various loads, from 2.52% at
the 10% load, to 3.81% at the 80% load. There is no false-
drop, as the simulation can avoid this (§3.4). Most errors
are false-accepts. Only less than 0.37% of the drops show
up at wrong locations, which means we can trust the drops
in the replay with high confidence, because only 0.37% of
them give wrong locations. Since 80% load is extremely high
and we also added incast traffic, we believe most data centers
would not stress the network at this level, so we believe the
drop error rate is low in general.

5.4.3 Diagnosing RTO Using Queue Information
Sometimes RTO can be caused by the queuing mechanisms
of switches. We run the traffic in a 4 host (A, B, C, D)
testbed. B and C respectively send 5 long flows (500MB
each) to A. In the middle of the long flow transmission, A,
C and D respectively send 5 short flows (100KB each) to B
simultaneously. Two of the long flows from C to A experience
RTO. Using DETER to replay them, we find that they both
drop a whole window of packets, at the same time. But this
time we cannot find any problem in the TCP stack. So we
use the packet traces for all the connections to replay switch
queues in an ns3 simulator.

During the replay, we collect all the enqueue and drop
events at the switch. The packets are dropped at queue 0 of
the switch. Figure 9 shows the length and the cumulative drop
count of queue 0. At around 10 ms, there is a sudden increase

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

Q
ue

ue
 le

ng
th

 (
KB

)

Cu
m

ul
at

iv
e

dr
op

 c
ou

nt

Time (ms)

queue 0 len
queue 0 drop

queue 1 len

Figure 9: The lengths of two queues that share the buffer.

in drops. Unexpectedly, the queue length is decreasing at
the same time. We suspect that the switch buffer sharing
[31] causes this problem, because the threshold of a queue
decreases when the total buffer utilization of the switch grows.

So we replay again and monitor other queues of the switch.
We find that a burst of packets builds up queue 1 at the time
of queue 0 drops packets. This confirms our hypothesis.

This problem could also happen in data centers because
most data center switches use shared memory across dif-
ferent queues. The threshold of any queue is proportional
to the total free buffer size. If the switch buffer utilization
suddenly increases, the threshold shrinks, which causes tem-
porary blackhole at the almost-full queues (e.g., queue 0 in
Figure 9). The sudden increase in switch buffer utilization can
happen because of incast, which is common in data centers.

6 Related Work

Replay systems. There are many replay systems for kernel,
multicore applications and distributed systems [52, 40, 33,
49, 27, 37, 17]. They record the input and interaction of
the target of replay (a subset of components of the entire
system) with the rest of the system to isolate the target, and
then make sure the target itself replays accurately. There
are two ways to directly adopt such replay techniques for
TCP: (1) Replay each host’s TCP stack separately. This
means we should record every packet as they are the input
to the stack, which is a significant overhead. (2) Replay
the whole network altogether, including all connections and
switches, which is very expensive and hard to get right as
shown in §2.2. DETER customizes replay techniques for
TCP: we replay each connection (a pair of TCP stacks), and
only record the mutations to the packet stream in between
(drop/ECN) to reduce the overhead of recording every packet,
while avoiding replay the whole network together. We also
introduce customized solutions to reduce the overhead of
recording non-deterministic variables inside the TCP stack.
Monitoring tools in data centers. Per-packet monitoring
tools [18, 10, 38] and TCP execution tracing tools [13] pro-
vide detailed information for diagnosis, but running them
continuously is too expensive. To reduce overhead, people

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 447

collect coarser-grained information such as TCP counters
[58, 28] or per-flow stats on the host [53] or switches [4, 43].
There are also query systems (e.g., Everflow [59], Trumpet
[46], Marple [47]) that allow operators to specify the packets
and events to capture in a network. DETER is complementary
to these works in that it enables deterministic replay for de-
bugging the same performance problem iteratively. DETER
requires low recording overhead at runtime and allow opera-
tors to use all kinds of monitoring tools during the replay.
Other network-related replay. OFRewind [57] replays
the switch control plane, while DETER replays TCP and the
switch data plane. Monkey [30] and Swing [55] are tools that
synthesize testing traffic based on the runtime recorded traffic
pattern, while DETER focus on replay for diagnosis.

7 Discussion

Extension to other network transport features: Here are
a few examples of transport features that may affect the replay.
Generic receive offload (GRO): If GRO [3] is enabled, we
also need to record the way it merges packets. It just requires
recording the number of packets being merged into one seg-
ment, which is available in the skb metadata and just costs 6
bits per merge. Usually each merging contains 10s of packets,
so the overhead is low. During the replay, the packet corrector
should also merge the incoming packets as recorded.
Delay-based congestion control (CC): Our current prototype
is based on loss-based CC. To extend our solution to delayed-
based CC, we need to record the timestamps that used for
updating CC states. We can compress them a lot, because
consecutive timestamps differ by a few microseconds most of
the time, so we just need a few bits to record the delta.
RED in switch: RED randomly drop packets. Replaying
the queues and drops may have a large error in this case, but
replaying TCP connections is not affected. This shows the
benefit of our design decision: decoupling the replay of each
individual connection, so that it does not depend on switches.
Use cases of DETER. DETER is designed for ease of use.
The only requirement is that the user turns on DETER on
both endpoints of the connection, which is often the case for
network operators and cloud tenants. Internet application
developers can also use DETER for performance testing. Data
center network operators may also benefit from replaying the
switch queues, because they may have the network topology
and switch data plane simulators.
Host stack changes. If the host stack changes, DETER may
need to change accordingly, but it is not hard. First, Linux
already abstracts CC out of basic TCP framework, so changes
to CC does not need to recode DETER in the basic framework,
which contains most of the recording. Besides, we have
principles for what to record and replay (Table 1 and §4), so
it would be easy to identify the required changes to DETER.

We expect the recording overhead would not change much
with stack changes, because most of the overhead comes

from socket calls and lock acquisitions, both of which are
not sensitive to stack changes: socket call is determined by
the applications, and most lock acquisitions are for receiving
packets whose amount is determined by traffic volumes. The
overhead associated with kernel variables is very small with
our technique of recording their updates or influences, and
we believe this benefit remains in the future.
Generality to other transport protocols. We believe the
replay technique is general across different protocols. Basi-
cally, what other transport protocols do are not very different
from TCP: reads from/writes to applications, sends/receives
packets, and possibly controls sending rate based on packet
measurement. Similar to TCP, we just need to record the
interaction with the application and the network, and then
make sure we handle the concurrency inside the protocol.
Network failures. Network failures (e.g., routing fluctuations
or blackholes) do not affect DETER replaying the connections,
but do affect DETER replaying the switch queues which as-
sumes that the routing states are stable. However, network
failures are themselves bigger problems than the problems
related to switch queueing, and there are many other works fo-
cus on addressing such issues [59, 36, 45, 56, 43]. DETER is
complementary to these works, because it helps to understand
how TCP reacts to such conditions.
Storage overhead of socket calls. Usually the number of
socket calls is much smaller than the number of packets. Pro-
duction data center survey [26, 35] shows that most network
bytes are from large flows (>1 MB), which usually mean large
send/receive sizes. Moreover, even if an application has many
short messages, the developers tend to batch them into a large
one to reduce the CPU overhead. If some network does only
have applications that generate small socket calls, recording
every socket calls may be high overhead.

8 Conclusion

DETER enables deterministic TCP replay, which can repro-
duce performance problems, provide packet traces and sup-
port tracing of TCP executions. DETER eliminates the butter-
fly effect by replaying individual TCP connections separately
and capture all the interactions between a TCP connection
with the application and the network in a lightweight fash-
ion. We demonstrate that DETER is effective in diagnosing a
variety of TCP performance problems.

9 Acknowledgement

We thank our shepherd Alex C. Snoeren and NSDI reviewers
for their helpful feedback. We thank Wei Bai for providing
diagnosis cases. We also thank Danyang Zhuo, Yurong Jiang,
Sivaramakrishnan Ramanathan and Bradley McDanel for pro-
viding feedback. This paper is supported by the NSF grants
CNS-1834263.

448 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] ftrace, 2008. https://www.kernel.org/doc/
Documentation/trace/ftrace.txt.

[2] IEEE Standard 1588-2008, 2008. http://ieeexplore.ieee.
org/document/4579760/.

[3] Generic receive offload, 2009. https://lwn.net/Articles/
358910/.

[4] NetFlow, 2009. http://www.cisco.com/go/netflow/.

[5] Broadcom moves from simulation to
emulation with Mentor, 2014. https:
//www.electronicsweekly.com/uncategorised/
broadcom-moves-from-simulation-to-emulation-with-mentor-2014-01/.

[6] Empirical Traffic Generator, 2014. https://github.com/
datacenter/empirical-traffic-gen.

[7] NetFilter, 2014. http://www.netfilter.org/.

[8] Linux perf, 2015. https://perf.wiki.kernel.org/index.php/
Main_Page.

[9] TCP window updates combined with dup acks sent in
response to packet loss, 2015. https://www.ietf.org/
mail-archive/web/tcpm/current/msg09480.html.

[10] In-band Network Telemetry, 2016. http://p4.org/p4/
inband-network-telemetry.

[11] Cisco Packet Tracer, 2016. https://learningnetwork.
cisco.com/docs/DOC-29644.

[12] IEEE 1588 PTP clock synchronization over a
WAN backbone, 2016. https://www.endace.com/
ptp-timing-whitepaper.pdf.

[13] TCP Probe, 2016. https://wiki.linuxfoundation.org/
networking/tcpprobe.

[14] Microsoft Keynote at SIGCOMM 2017, 2017.
http://conferences.sigcomm.org/sigcomm/2017/files/
program-kbnets/keynote-2.pdf.

[15] Network Simulator 3, 2017. https://www.nsnam.org/.

[16] RACK: a time-based fast loss detection algo-
rithm for TCP, 2017. https://tools.ietf.org/html/
draft-ietf-tcpm-rack-02.

[17] Mozilla RR, 2017. https://rr-project.org/.

[18] Tcpdump, 2017. http://www.tcpdump.org/tcpdump_
man.html.

[19] DCTCP Bug, 2018. https://
github.com/torvalds/linux/commit/
27cde44a259c380a3c09066fc4b42de7dde9b1ad.

[20] Amazon EC2, 2018. https://aws.amazon.com/ec2/.

[21] Boson NetSim, 2018. http://www.boson.com/
netsim-cisco-network-simulator.

[22] Time Split to the Nanosecond Is Precisely What Wall
Street Wants, 2018. https://www.nytimes.com/2018/
06/29/technology/computer-networks-speed-nasdaq.
html.

[23] P4 language, 2018. https://p4.org/.

[24] Spark TeraSort, 2018. https://github.com/ehiggs/
spark-terasort.

[25] Linux TCP Github, 2019. https://github.com/torvalds/
linux/tree/master/net/ipv4.

[26] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In SIGCOMM, 2010.

[27] Gautam Altekar and Ion Stoica. Odr: Output-
deterministic replay for multicore debugging. In Pro-
ceedings of the ACM SIGOPS 22Nd Symposium on Op-
erating Systems Principles, 2009.

[28] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf
Schuster, and Geoff Outhred. Taking the blame game
out of data centers operations with netpoirot. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, 2016.

[29] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz,
and Anthony D. Joseph. Understanding tcp incast
throughput collapse in datacenter networks. In Pro-
ceedings of the 1st ACM Workshop on Research on
Enterprise Networking, 2009.

[30] Yu-Chung Cheng, Urs Holzle, Neal Cardwell, Stefan
Savage, and Geoffrey M. Voelker. Monkey see, monkey
do: A tool for tcp tracing and replaying. In Usenix,
2004.

[31] Abhijit K. Choudhury and Ellen L. Hahne. Dynamic
queue length thresholds for shared-memory packet
switches. IEEE/ACM Trans. Netw., 1998.

[32] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communication of the ACM, 2013.

[33] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion
Stoica. Replay debugging for distributed applications.
In Proceedings of the Annual Conference on USENIX

’06 Annual Technical Conference, 2006.

[34] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 449

Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), 2018.

[35] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, 2009.

[36] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center network
latency measurement and analysis. In Proceedings of
the 2015 ACM SIGCOMM Conference, 2015.

[37] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei
Xu, Ming Wu, M. Frans Kaashoek, and Zheng Zhang.
R2: An application-level kernel for record and replay.
In Proceedings of the 8th USENIX Conference on Oper-
ating Systems Design and Implementation, 2008.

[38] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, David Mazières, and Nick McKeown. I know
what your packet did last hop: Using packet histories to
troubleshoot networks. In NSDI, 2014.

[39] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai
Menache, Mikhail Rybalkin, and Chenyu Yan. Speed-
ing up distributed request-response workflows. In Pro-
ceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, 2013.

[40] Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging operating systems with time-traveling virtual
machines. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, 2005.

[41] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. Globally synchronized time via dat-
acenter networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, 2016.

[42] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and
Steven D. Gribble. Tales of the tail: Hardware, os, and
application-level sources of tail latency. In Proceedings
of the ACM Symposium on Cloud Computing, 2014.

[43] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Flowradar: A better netflow for data centers. In NSDI,
2016.

[44] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Lossradar: Fast detection of lost packets in data center
networks. In Proceedings of the 12th International on

Conference on Emerging Networking EXperiments and
Technologies, 2016.

[45] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P. Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. Crystalnet:
Faithfully emulating large production networks. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, 2017.

[46] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers
in data centers. In Proceedings of the 2016 ACM SIG-
COMM Conference, 2016.

[47] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, 2017.

[48] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. In Presented as part of the
10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), 2013.

[49] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning
Yin, Rini Kaushik, Kyu H. Lee, and Shan Lu. Pres:
Probabilistic replay with execution sketching on multi-
processors. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, 2009.

[50] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s (data-
center) network. In SIGCOMM, 2015.

[51] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim
Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vah-
dat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In
Proceedings of the 2015 ACM SIGCOMM Conference,
2015.

[52] Sudarshan M. Srinivasan, Srikanth Kandula, Christo-
pher R. Andrews, and Yuanyuan Zhou. Flashback: A
lightweight extension for rollback and deterministic re-
play for software debugging. In USENIX Annual Tech-
nical Conference, General Track, 2004.

450 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[53] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with path-
dump. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation,
2016.

[54] Vijay Vasudevan, Amar Phanishayee, Hiral Shah,
Elie Krevat, David G. Andersen, Gregory R. Ganger,
Garth A. Gibson, and Brian Mueller. Safe and effective
fine-grained tcp retransmissions for datacenter commu-
nication. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, 2009.

[55] Kashi Venkatesh Vishwanath and Amin Vahdat. Re-
alistic and responsive network traffic generation. In
Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communications, 2006.

[56] Xin Wu, Daniel Turner, George Chen, Dave Maltz, Xi-
aowei Yang, Lihua Yuan, and Ming Zhang. Netpilot:
Automating datacenter network failure mitigation. In
Proceedings of the 2012 ACM SIGCOMM Conference,
2012.

[57] Andreas Wundsam, Dan Levin, Srini Seetharaman, and
Anja Feldmann. Ofrewind: Enabling record and replay
troubleshooting for networks. In Proceedings of the
2011 USENIX Conference on USENIX Annual Technical
Conference, 2011.

[58] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rex-
ford, Lihua Yuan, Srikanth Kandula, and Changhoon
Kim. Profiling network performance for multi-tier data
center applications. In NSDI, 2011.

[59] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-
level telemetry in large datacenter networks. In SIG-
COMM, 2015.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 451

JANUS: Fast and Flexible Deep Learning
via Symbolic Graph Execution of Imperative Programs

Eunji Jeong
Seoul National University

Sungwoo Cho
Seoul National University

Gyeong-In Yu
Seoul National University

Joo Seong Jeong
Seoul National University

Dong-Jin Shin
Seoul National University

Byung-Gon Chun†
Seoul National University

Abstract
The rapid evolution of deep neural networks is demand-

ing deep learning (DL) frameworks not only to satisfy the
requirement of quickly executing large computations, but
also to support straightforward programming models for
quickly implementing and experimenting with complex
network structures. However, existing frameworks fail to
excel in both departments simultaneously, leading to di-
verged efforts for optimizing performance and improving
usability.
This paper presents JANUS, a system that combines

the advantages from both sides by transparently convert-
ing an imperative DL program written in Python, the
de-facto scripting language for DL, into an efficiently ex-
ecutable symbolic dataflow graph. JANUS can convert
various dynamic features of Python, including dynamic
control flow, dynamic types, and impure functions, into
elements of a symbolic dataflow graph. Our experiments
show that JANUS can achieve fast DL training by exploit-
ing the techniques imposed by symbolic graph-based DL
frameworks, while maintaining the simple and flexible
programmability of imperative DL frameworks at the
same time.
1 Introduction
In recent years, deep neural networks have been widely
used in various application domains such as computer
vision, speech, and natural language processing for their
powerful capabilities of extracting abstract features from
data. Scientists have created deep learning (DL) frame-
works – TensorFlow [1], PyTorch [31], Caffe2 [11],
MXNet [6], and many more [2,12,27,29,40,42,46,49] –
to improve the performance of deep neural networks in
various jobs and promote the use of deep neural networks
in both production and research.
Such DL frameworks can be classified into two dis-

tinct families depending on their execution models. One
† Corresponding author.

family comprises frameworks that base their execution
on symbolic graphs constructed from DL programs. The
other family consists of frameworks that directly execute
DL programs in an imperative manner.
Symbolic graph execution. Frameworks such as Ten-
sorFlow [1], Caffe2 [11], andMXNet [6] formulate neural
networks as symbolic dataflow graphs. Graph vertices de-
note the states and operations of a neural network, while
graph edges indicate the flow of data between vertices.
Operations in the graph are executed as their dependen-
cies are solved, similar to how most dataflow systems
process dataflow graphs [9,17]. The graph representation
allows the framework to identify which operations can be
run in parallel, and apply various compiler optimization
techniques such as common subexpression elimination or
constant folding to generate optimized versions of graphs.
Moreover, it is easy to process dataflow graphs on accel-
erator devices or deploy graphs across multiple machines
by assigning an operation to the appropriate device or
machine [24].

However, the separation of building a symbolic graph
and executing it complicates user experience, because
users are not actually running any numerical computa-
tions when defining neural networks through the frame-
work interface. Rather, they are constructing graphs that
will be executed later through separate functions.
Imperative program execution. In contrast, frame-
works including PyTorch [31], TensorFlow Eager [40],
and MXNet Imperative [26] have adopted the execution
model of running operations imperatively, without going
through a separate graph construction phase. Stemming
from popular Python libraries for scientific, numerical
computation such as NumPy [48] and Scikit-learn [4], this
imperative approach is useful for rapidly experimenting
and working with new neural network models, particu-
larly those with complex structures. The native control
flow statements of Python can be exploited to build mod-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 453

els of interest. Unfortunately, skipping the formation of
a dataflow graph means that such frameworks lose the
chance to apply the many optimizations that were pos-
sible in the symbolic graph execution model, leading to
significant performance differences for certain models.

The different characteristics of DL frameworks suggest
that we cannot achieve high performance and good usabil-
ity at the same time. To reach high performance, we must
sacrifice framework usability to a certain extent, and vice
versa. Otherwise, users are forced to resort to an awkward
approach of learning how to use several frameworks and
switching between them according to the current task in
hand.
From imperative programs to symbolic graphs. In
this paper, we propose to transparently convert impera-
tive Python DL programs into symbolic dataflow graphs
before execution. By not altering the user-facing interface
for building neural networks, we maintain the flexible pro-
grammability of frameworks with imperative execution
models. At the same time, behind the scenes, we execute
the symbolic graph versions of the imperative programs
to enjoy the performance optimizations done by symbolic
graph execution models.
However, this approach introduces a technical chal-

lenge of capturing the dynamic semantics of an impera-
tive Python program in a symbolic dataflow graph. The
dynamic aspects of Python, including dynamic control
flow, dynamic typing, and impure functions, must be em-
bedded in a symbolic graph correctly while providing the
performance of symbolic graph execution frameworks.
To this end, we present JANUS, a DL framework that

achieves the best of both worlds by receiving an impera-
tive DL program as input and creating symbolic graphs
of the program accordingly with speculative program
context assumptions. JANUS makes environment assump-
tions on the program context (e.g., constant variables and
branches) based on past iterations to simplify the dynamic
nature of the program and transform the program into
a symbolic graph. These assumptions are speculative,
because the context may change during execution; an in-
correct assumption results in an invalidation of a symbolic
graph, in which case JANUS falls back to imperative execu-
tion to guarantee correctness. For design (Section 4.3.1)
and implementation (Section 4.3.2) reasons, JANUS con-
verts only the subset of Python programs into the efficient
symbolic graphs, but the rest of them still can be executed
imperatively, ensuring the full Python coverage.

We have implemented JANUS on TensorFlow 1.8.0 [1].
To demonstrate the performance of JANUS, we evaluated
JANUSwith 11 imperative DL programs in five categories:
convolutional, recurrent, and recursive neural networks,

1 class RNNModel(object):
2 def __call__(self, sequence):
3 state = self.state
4 outputs = []

5 for item in sequence:
6 state = rnn_cell(state, item)

7 outputs += [state]

8 self.state = state
9 return compute_loss(outputs)
10
11 for sequence in sequences:
12 optimize(lambda: model(sequence))

Figure 1: A Python program that implements training
process of a recurrent neural network (RNN) in an imper-
ative manner. For each item in the sequence, rnn_cell
function is called to produce the next state required for the
next rnn_cell invocation. After finishing up processing
the whole sequence, the model holds the final state by
replacing self.state attribute for processing the next
sequence.
generative adversarial networks, and deep reinforcement
learning models that extensively use the dynamic features
of Python. JANUS converted the programs into symbolic
dataflow graphs successfully, trained the models to reach
target accuracy with up to 18.7 times higher throughput
compared to TensorFlow Eager, while executing the iden-
tical imperative programs.
2 Challenges and Proposed Solution
2.1 Challenges
Converting an imperative program written in Python
into a DL dataflow graph brings on many challenges,
because dataflow graphs consist of a restrictive set of op-
erations, lacking the dynamic semantics of the program-
ming language. More specifically, various characteristics
of a Python program, such as the execution count and
execution order of statements, the types of expressions,
or the global program execution state, can only be de-
termined after the program is actually executed. For the
rest of this paper, we will refer to these characteristics as
the dynamic features of Python. In contrast, DL dataflow
graphs are expected to be defined before the computa-
tion starts, to apply aggressive graph optimizations and
efficiently schedule the graph operations by viewing the
entire graph. In this sense, DL dataflow graphs are usu-
ally considered to be static [23, 29, 31]. The difference
in characteristics makes it difficult to embed dynamic
Python features in static dataflow graphs.
Figure 1 depicts a DL program written in Python, of

which semantics are difficult to be captured in a dataflow

454 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Frameworks Imp.
pgm

Sym.
exec

Correctness Optimization
w/ runtime info Language

DCF DT IF
Symbolic: TensorFlow (TF), Caffe2, MXNet × ○ – – – – Python
Imperative: PyTorch (PTH), TF Eager, DyNet ○ × – – – – Python
Imperative to Symbolic

Tracing: TF defun, PTH JIT trace,MXNetGluon ○ ○ × △ × ○ (unsafe) Python
JAX ○ ○ ○ △ × ○ (unsafe) Python subset
Swift for TensorFlow (S4TF) ○ ○ ○ – ○ × Swift
TF AutoGraph ○ ○ △ △ △ ○ (unsafe) Python subset
PTH JIT script ○ ○ ○ △ △ × Python subset
JANUS ○ ○ ○ ○ ○ ○ Python

Table 1: Comparison of DL frameworks with respect to correctly supported features for converting imperative programs
into symbolic graphs ("Correctness") and the ability to optimize the generated graphs with the information given only at
program runtime ("Optimization w/ runtime info"). Optimizations can be incorrect in some frameworks ("○ (unsafe)"),
not preserving the original semantics of Python. The host language is also specified.
graph correctly due to the following representative dy-
namic features of Python.
• Dynamic control flow (DCF) Conditional branches
and iterative loop constructs have different execution
paths depending on intermediate values. Lines 5-7 of
Figure 1 show an example of an iterative loop construct
used in a DL program. Such control flow statements are
intensively used in Python and must be correctly repre-
sented in the dataflow graph.
• Dynamic types (DT) Python is a dynamically-typed
language, i.e., the type of a Python expression can only
be determined at program execution time. The example
program in Figure 1 does not have any type annotations
(e.g. int or float), which makes it difficult to statically
decide the type of target dataflow graph operations. Fur-
thermore, various non-numerical types of Python, such as
lists, dictionaries, and arbitrary class instances, are even
harder to be converted into elements of a dataflow graph,
of which vertices usually output numerical arrays.
• Impure1 functions (IF) Another useful feature for us-
ing Python is the ease of accessing and mutating global
states within functions. In Figure 1, the function __call__
reads from and writes to an object attribute2 at Lines 3
and 8, to pass the final state of a sequence to the next
sequence. Since the modified global states can make the
following function call behave differently, such reads and
writes of global states must be handled correctly while
generating dataflow graphs.

Moreover, correctness is not the only issue when con-
verting an imperative program; achieving the high per-
1A pure function is a function whose return value is determined only
by its parameters, and has no side effects.
2"class members" in C++ terminology, except that the attributes are
stored in dictionaries, without fixed data layout.

formance of state-of-the-art symbolic graph execution
DL frameworks is also a challenge on its own. State-
of-the-art frameworks require additional information on
dynamic types and control flow in order to optimize graph
execution. However, a naïve, one-shot converter would
be unable to extract this information from an imperative
program before execution, and thus is incapable of supply-
ing frameworks with such hints. For instance, if the input
sequence at Line 2 in Figure 1 is expected to always have
a fixed length, then that information can be exploited to
unroll the following loop at Line 5 when generating the
corresponding dataflow graph. It is unclear how a naïve
converter would do this without actually executing the
program to check the loop length.
2.2 Related Works
Previous works that try to translate a Python DL program
into a dataflow graph either fail to capture the important
dynamic semantics of Python, or run in slower perfor-
mance due to the lack of sufficient information at graph
build time. Table 1 summarizes state-of-the-art DL frame-
works alongside their execution models and their status
regarding the coverage and efficiency of graph conversion
support.

Tracing-based graph generation approaches such as Py-
Torch’s JIT compiler (torch.jit.trace) [31], MXNet
Gluon [27], and the defun [43] functionality of Tensor-
Flow Eager [40] execute the imperative program once,
and convert the single execution trace directly into a
dataflow graph. Though this approach enables generating
optimized symbolic graphs with sufficient information
gathered from a specific execution trace, it fails to capture
dynamic semantics of the Python interpreter correctly,
leading to incorrect computation results for dynamically

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 455

changing execution paths, dynamic types of non-tensor
or non-input expressions, or impure functions of Python
at runtime. Moreover, these approaches currently do not
give any feedback about incorrectly-converted control
flows to users, making the problem even worse.
On the other hand, there exist other approaches that

select a less-dynamic host language and therefore suc-
ceed in capturing the wider semantics of source pro-
grams. JAX [12] limits the Python syntax and supports
converting only pure-and-statically-composed functions.
S4TF [42] supports Swift, losing the merit of supporting
Python, the de-facto standard programming language for
DL programming, and introduces new programmingmod-
els that most DL researchers are unfamiliar with. More-
over, since the graph conversion occurs before actually
executing the program, these approaches can miss the
opportunity to further optimize the graph with the infor-
mation only obtainable during the program execution. For
example, always converting a Python loop into control
flow operations can be sub-optimal if the loop iteration
count is known to be fixed.

Concurrent works including AutoGraph-enabled Ten-
sorFlow defun functionality [45] and the "scripting"
mode of PyTorch JIT (torch.jit.script) [31] also have
limitations. AutoGraph makes users to explicitly provide
the necessary information, or generates incorrect or sub-
optimal graph in some cases, all ofwhich could be avoided
if sufficient information existed. For example, users must
explicitly specify the types of Python lists, prohibiting
the dynamic typed or heterogeneous elements. For an-
other example, for dynamic control flow statements, the
statements with non-tensor predicates are always unrolled,
which is error-prone, and the statements with tensor-typed
predicates are always converted to control flow opera-
tions, which can be sub-optimal. In the "scripting" mode
of PyTorch JIT, users must use TorchScript, a subset of
Python which does not allow variables to have dynamic
types. Further graph optimizations based on the runtime
information are also not possible.
2.3 Proposed Solution: Speculative

Graph Generation and Execution
Existing optimizers and compilers for dynamic languages
suggest a useful technique for performing such conver-
sions from imperative programs to symbolic dataflow
graphs: speculative optimization. Managed language run-
times have succeeded in exploiting the inherent static
nature of dynamic programs which rarely changes during
the execution to convert them into static, low-level repre-
sentations while maintaining correctness. For example,
JavaScript just-in-time (JIT) compilers convert dynamic

JavaScript programs into efficient machine code, and this
conversion is done speculatively assuming that the pro-
gram inherently maintains some statically fixed structures
over repeated executions. In case this assumption breaks,
the program falls back to the interpreter and attempts to
compile the program again with different assumptions.
We propose to adopt this concept of speculative opti-

mization when converting imperative DL programs into
symbolic dataflow graphs. Converting various dynamic
features like dynamic control flow and impure functions
correctly may impose some inevitable overheads if we
generate dataflow graphs in a conservative manner. To
overcome this challenge, JANUSmakes assumptions about
the program’s behavior based on the runtime profiling
information, and generates a symbolic graph tailored for
the assumptions. This speculatively constructed dataflow
graph can show much better performance compared to
the conservative counterpart due to specializations. If the
assumptions do not hold, JANUS builds a new dataflow
graph based on different assumptions. Since a DL pro-
gram comprises a number of iterations of an optimization
procedure, the speculative approach is a good fit since
the interpreter is likely to execute specific code blocks of
the program repeatedly.
Unlike the JIT compilers of managed language run-

times, however, the goal of JANUS is not to optimize the
host language execution itself. In fact, when running im-
perative DL programs, the execution time of the language
runtime is usually much shorter compared to the execu-
tion time of the mathematical operations for DL, such
as convolution or matrix multiplication. However, since
these mathematical operations are usually implemented
in separate low-level language like C++, existing JIT
compilers of managed language runtimes would execute
them just as separated function invocations. Under such
an execution model, it is impossible to see the multi-
ple mathematical operations at once and apply compiler
optimizations or execute them in parallel. On the other
hand, JANUS understands the function invocations for
such mathematical operations, and converts them into ap-
propriate target graph operations, which can be optimized
and be executed efficiently by symbolic graph executors.
3 JANUS System Design
In this section, we introduce JANUS, a DL framework that
receives an imperative DL program and either executes
it as is directly, or generates a symbolic graph version of
the program and executes the graph instead.

The input program for JANUS is assumed to be written
using the API and the programming model of existing
imperative DL frameworks like TensorFlow Eager [40].

456 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Imperative

Executor

Runtime Information

Imperative

DL Program

Python

Interpreter

Speculative Graph Executor

Graph Executor

Speculative Graph Generator

Assumption

Fails

(D) Execute Graph

Graph

Cache

P
ro

fi
le

r

(A) Profile

(E) Fallback
cache
miss

cache
hit

runtime
assertion

1

2

(C) Do Not Generate (B) Generate Graph

Common Case Rare Case

Figure 2: An illustration of the execution model of JANUS,
showing how a DL program is processed by several com-
ponents. Profiler observes imperative program execution
and collects information tomake the realistic assumptions.
Speculative Graph Generator generates dataflow graphs
from the program and hands the optimized graphs over
to Speculative Graph Executor. The Speculative Graph
Executor actually runs the generated graph and handles
assumption failures.
Given an input program, JANUS extracts the main neu-
ral network computation part, over which the automatic
differentiation is performed, and starts the speculative
graph generation and execution process. From the user’s
point of view, the whole graph conversion and execution
process is done transparently; in other words, the given
DL program is automatically transformed into a corre-
sponding graph representation without any interactions.

Figure 2 depicts the system components and the overall
execution model of JANUS. The common case in which
an efficient dataflow graph is utilized is depicted as solid
lines in the figure, while the rare case where the graph
representation is not available is depicted as dotted lines.
3.1 Fast Path for Common Cases
Runtime profiling. Once JANUS receives a DL pro-
gram, the program is first executed imperatively, while
the Profiler gathers runtime information required for mak-
ing reasonable assumptions (Figure 2 (A)). Various in-
formation is collected, including control flow decisions
on conditional branches, loop iteration counts for itera-
tive loop constructs, variable type information, non-local
variables, object attributes, and so on.
Symbolic graph generation. After a sufficient amount
of information has been collected, the Speculative Graph
Generator tries to convert the program into a symbolic
dataflow graph with the assumptions based on the run-
time information (Figure 2 (B)). To avoid making any

hasty generalizations, JANUS does not begin graph gen-
eration until the executor has profiled the program for a
certain amount of iterations.3 First, JANUS traverses the
abstract syntax tree (AST) of the DL program and gen-
erates the corresponding graph elements for each AST
node, along with assertion operations that can validate
the context assumption at runtime. Since JANUS targets
DL programs, operations for automatic differentiation
and model parameter updates are also automatically in-
serted if necessary. Next, the generated graph is further
optimized by the post-processor, of which optimizations
were not applicable to the original imperative DL pro-
gram. Finally, the optimized graph and the assumption
that were used to generate the graph are saved into the
graph cache.
Graph execution. If a graph representation with cor-
rect assumptions regarding the program context is avail-
able, the Speculative Graph Executor executes the sym-
bolic graph (Figure 2 (D)). Note that the same graph can
be reused multiple times, given that the runtime context
assumption holds for future invocations.
3.2 Accurate Path for Rare Cases
Assumption failure. Handling the assumptions is im-
portant to guarantee the correctness of the converted
graph. If an assumption is proven to be wrong, the associ-
ated graph cannot be executed for the current runtime as it
may produce incorrect results. Instead, JANUS falls back
to the imperative executor (Figure 2 (E)) and resumes
runtime profiling to make more relaxed assumptions for
subsequent executions.

Assumptions that can be validated before actually exe-
cuting the associated graph, such as type assumptions on
input arguments, are checked when retrieving the graph
from the graph cache (Figure 2 1). In the unfortunate
case where such an assumption is wrong, JANUS regards
this as a cache miss and falls back to imperative execution.
On the other hand, for assumptions that can only be

validated during graph execution (Figure 2 2), it can be
erroneous to simply abort the current execution to fall
back to the imperative executor, because the global state
may have been changed during the current execution. To
solve this issue, JANUS defers state update operations
until every assumption is validated (Section 4.2.3). This
way, even if an assumption turns out to be wrong during
computation, no state update operation has been triggered
yet and thus no state has been mutated. Knowing this,
the system can safely stop the current execution. In other
words, states are updated in an all-or-nothing manner.
3We found that 3 iterations were enough to come up with a decent
program context assumption, for our experimental workloads.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 457

In order to validate an assumption, a runtime assertion
is encoded into the symbolic graph as an operation called
AssertOp. The AssertOp aborts the graph execution if the
given condition fails. It also reports which assumption
has been broken, and this information is used to give up
further optimizations that rely on the assumptions that
repeatedly break.
Imperatively executed programs. With Turing-
complete graph representations, any Python program can
be represented as a symbolic graph, in theory. However,
the Speculative Graph Generator does not convert
every single Python feature into a symbolic graph
operation (Figure 2 (C)). For example, to ensure the
all-or-nothing characteristic of state updates, programs
that include invisible state mutations are not converted
into symbolic graphs. Some complicated Python features
such as coroutines and generators are also not converted,
since they do not have any clear graph representations.
Section 4.3 describes the design choices and current
limitations of the Speculative Graph Generator in terms
of Python coverage. In spite of such limitations of the
Speculative Graph Generator, however, it is worth noting
that JANUS users can still freely use the all features of
Python on the imperative executor.
4 Symbolic Graph Generation
In this section, we describe in detail how JANUS con-
verts an imperative DL program into a symbolic dataflow
graph. We start the section by showing the conversion
process of a basic DL program free of dynamic features
(Section 4.1). Next, we explain how JANUS converts dy-
namic features of Python, including dynamic control flow,
dynamic types, and impure functions, into symbolic graph
operations (Section 4.2). JANUS uses the runtime infor-
mation to simplify the dynamic program and treat it as a
program of only static aspects, which is then easily trans-
formed into a static graph. Finally, we discuss the Python
coverage limitations of the Symbolic Graph Generator
(Section 4.3). More thorough discussion about the Python
coverage of JANUS is in Appendix A.
For simplicity, we describe our design using various

operations of TensorFlow [1], a widely-used DL frame-
work. However, our design is not necessarily coupledwith
TensorFlow and can be applied to other DL frameworks.
4.1 Graph Generation Basics
Figure 3(a) is a simple, imperative Python program that
calculates a linear model, written as a pure function with-
out any dynamic control flow or arbitrary Python objects.
We use this program as an example to show the basic
graph conversion process.

1 def loss_fn(x, y):
2 y_ = 0.5 ∗ x + 1.5
3 return (y_ − y) ∗∗ 2
(a) Source code of a DL program calculating a linear model

=

y_

*

+

1.5

0.5 x

Ret

**

y_ y

2-

Body

(b) AST ofloss_fn

MultOp

AddOp

1.5

0.5

x

loss

PowOp

y

2SubOp

(c) Generated graph from loss_fn
Figure 3: The Python source code, AST, and symbolic
graph of a simple linear model that receives several exter-
nal inputs. The static features of the program are repre-
sented as nodes in the AST, which in turn are converted
to vertices of the symbolic graph.

Input parameters (x and y) are converted into graph in-
put objects that require external inputs in order to execute
the graph. In the case of TensorFlow, this corresponds
to PlaceholderOp4s. At runtime, they are filled with the
actual argument values. The return value of the return
statement is marked as the computation target of the graph,
so that we can retrieve the value after executing the graph.
Python literals such as 0.5, 1.5 and 2 are simply

converted into operations that output constant values –
ConstantOp for TensorFlow. The conversion of mathe-
matical operators is done by finding the corresponding
mathematical graph operations and replacing them one-
to-one. For standard Python operators such as + and **,
JANUS places the appropriate primitive calculation opera-
tions in the graph, like AddOp and PowOp for TensorFlow.
An assignment to a Python local variable and a value

retrieval from the same variable is converted into a con-
nection between two operations, just as in Pydron [28].
Figures 3(b) and 3(c) illustrate how such a connection is
made for the variable y_ in Figure 3(a), along with the
rest of the program.
4.2 Dynamic Features
In addition to the basic features, JANUS converts the dy-
namic features of Python into the elements of the sym-
bolic DL graph as well to provide the performance of
dataflow graphs while maintaining the same programma-
bility of imperative DL frameworks. Moreover, JANUS
4PlaceholderOps are unique operations that generate errors unless
they are provided with external inputs before graph execution. Ten-
sorFlow expects users to feed a dictionary {ph1: v1, ph2: v2,
...} to a PlaceHolderOp.

458 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

exploits the fact that the dynamism in Python DL pro-
grams can often be simplified to static dataflow, treating
a dynamic program as a program of only static aspects
with appropriate program context assumptions. Context
assumptions are generated based on the profile informa-
tion JANUS gathers at runtime.
4.2.1 Dynamic Control Flow

Basic translation rules. Among various dynamic con-
trol flow statements, JANUS focuses on conditional
branches, loop constructs, and function calls, similar to
Pydron [28]. As shown in Pydron, these three constructs
are enough to express most complex dynamic control
flows in Python. Furthermore, they can all be expressed
using special control flow graph operations proposed in
recent works [19, 50] as follows.
Python’s conditional statement, the if statement, can

be obtained by combining switch and merge primitives.
The switch and merge primitives, originating from classic
dataflow architectures [8, 10, 30], act as demultiplexers
and multiplexers, respectively, selecting a single path to
pass their inputs or outputs. In TensorFlow, the SwitchOp
and MergeOp [50] serve as symbolic dataflow graph coun-
terparts for these primitives, allowing JANUS to plant
conditional branches in graphs.

The iterative statements of Python, while and for, are
handled by using the switch andmerge primitives together
with loop context primitives that hold iteration frames.
TensorFlow conveniently provides EnterOp, ExitOp, and
NextIterationOp [50] for creating iteration frames and
passing values over them.
Finally, for function calls, a separate graph is gener-

ated for the callee function, and a function invocation
operation that points to the generated graph is inserted in
the position of the function calls. Recent work proposes
a TensorFlow implementation of this operation called
InvokeOp [19], which can represent an invocation of a
recursive function with automatic differentiation support.
Speculative graph generation: unrolling and inlining.
If JANUS detects that only a single particular path is
taken for a certain control flow statement during pro-
filing, JANUS presumes that the control flow decision is
actually fixed. The system replaces the control flow oper-
ation with an assertion operation that double-checks the
assumption for this control flow decision, and proceeds
with graph generation as if the control flow statement
were unrolled. This allows JANUS to remove control flow
operation overheads and apply graph optimizations such
as common subexpression elimination or constant folding
in broader portions of the graph. If the assertion operation
fails, JANUS falls back to imperative execution.

To be more specific, for conditional branches, if the
program takes only one side of the branch during profiling,
JANUS generates that particular side of the branch in the
final graph without any switch or merge primitives and
adds an assertion operation that can detect a jump to the
other side of the branch. For iterative statements, if the
number of iterations of a loop is discovered to be fixed,
JANUS unrolls the loop with this fixed iteration count, and
adds an assertion operation to check that the number of
iterations is indeed correct.

For function calls, if the callee is expected to be fixed
for a function call at a certain position, JANUS inlines the
callee function body inside the caller unless that func-
tion call is identified as a recursive one. In addition, for
callee functions whose implementation is already known
for JANUS, e.g., the functions provided by the framework
such as matmul() or conv2d(), or Python built-in func-
tions like print() or len(), JANUS adds the correspond-
ing graph operations which behave the same as the origi-
nal callee functions, based on the prior knowledge about
their behaviors. Section 4.3.1 includes more details and
limitations about such function calls.
4.2.2 Dynamic Type

Basic translation rules. The types of all expressions
within a Python program must be known before JANUS
can convert the program into a symbolic graph, because
graph operations require operands to have fixed types.
This is a challenging task for Python programs because we
cannot determine the type of an arbitrary Python expres-
sion before actually executing the expression. Fortunately,
it is possible to infer the types of some expressions, given
the types of other expressions; for example, it is clear that
the variable c in c = a + b is an integer if a and b are
integers.

As a basic rule, JANUS converts numerical Python val-
ues such as scalars, list of numbers, and NumPy [48]
arrays into corresponding tensors, and converts non-
numerical values, including arbitrary class instances, into
integer-typed scalar tensors which hold pointers to the cor-
responding Python values. Next, JANUS infers the types
of other expressions that are derived from expressions
covered by the basic rule.
Speculative graph generation: specialization. Ex-
pressions whose types cannot be inferred from other ex-
pressions require a different measure. For instance, it is
impossible to identify the types of input parameters for
functions, or Python object attribute accesses (obj.attr)
without any external clues. Similarly, inferring the return
types of recursive function calls is also challenging due to
the circular dependencies. To make proper assumptions

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 459

float,
(4,?)

float,
(4, 7)

float,
(4, 8)

float,
(?, 8)

float,
(3, 8)

[[1.0, …],
[…], …]

float,
Unknown

Abstract

Concrete
[[2.0, …],
[…], …]

[[6.0, …],
[…], …]

1 2

1

2

1 2

1 2

Sequence of
observed
tensor shapes

Sequence of
shape

assumptions

Figure 4: Type, shape, and value specialization hierarchy
for an example tensor.
about the types of such expressions, Profiler observes the
types of the expressions during imperative executions.
Given these context assumptions, JANUS can finish infer-
ring the types of remaining expressions, and construct a
specialized dataflow graph accordingly.
In addition, JANUS makes further assumptions about

the expressions to apply more aggressive optimizations.
For numerical expressions, we can try to specialize the
shape of tensors before constructing the graph. Further-
more, if a Python expression always evaluates to the same
value while profiling, JANUS converts it into a constant
node in the dataflow graph. With statically determined
shapes or values, the graph can be further optimized, or
even be compiled to the efficient machine code [44].
Figure 4 shows an example hierarchy of shapes and

values that a certain tensor may have. After profiling the
first few runs, JANUS finds out that even though the values
of the tensor are different every time, they all have the
same shape, for example (4, 8), as in the figure. JANUS
exploits this information to generate a dataflowgraphwith
an assumption that the shape of this tensor is (4, 8). When
the assumption fails, JANUS tries to relax the assumption.
For instance, in case the tensor has a shape (3, 8) for the
next iteration to process a different size of mini-batch,
JANUS modifies the assumption to suit both shapes (4, 8)
and (3, 8), resulting in another dataflow graphwith a shape
assumption of (?, 8). The system does not have to repeat
the graph generation process for a possible future case
in which the example tensor has yet another unpredicted
shape of (2, 8) or (6, 8).
4.2.3 Impure Functions

Naïve translation rules. It is common for a Python
function to access global variables to calculate return val-
ues and have side-effects, mutating its enclosing Python
context during execution. Likewise, it is common for a
PythonDL program to read from andwrite to global states
such as global or nonlocal variables and heap objects.
JANUS respects this characteristic and handles global state
accesses alongside symbolic graph execution.
A trivial solution is to use TensorFlow’s PyFuncOps,

Deferred
Writeback

Copy on
Write

Read
& Write

Gradient Model
Updateloss Python

Heap

PyGetAttrOp

0xb84c

“state”

PySetAttrOp
RNN Loop

Local
Copy

Read
Only

seq

1

3

42

Figure 5: Symbolic dataflow graph generated graph from
Figure 1 and the global states.
which can execute arbitrary Python functions as graph
operations. A function for reading and updating a certain
global state can be created and inserted in the appropriate
position within the graph. However, this trivial approach
has clear limitations. First, since only one Python func-
tion can be executed at a time due to the global interpreter
lock (GIL), the overall performance can be reduced when
multiple operations should be executed in parallel. It also
complicates the fallback mechanism of JANUS. If a global
state has already been mutated before the fallback occurs,
instead of starting the imperative executor from the func-
tion entrance at fallback, execution must start from the
middle of the function to be correct, by mapping the state
update operation with corresponding Python bytecode.
Optimized graph generation: deferred state update.
To make things simpler and also faster, JANUS does not
mutate global states in place on the fly. JANUS instead
creates local copies of global states, and mutates only the
local copies during symbolic graph execution.
Figure 5 shows the symbolic dataflow graph version

of the program in Figure 1, which includes the object
attribute expressions (self.state) that access and mu-
tate the global states. We add new graph operations
PyGetAttrOp and PySetAttrOp to represent Python at-
tribute read and write. Each of them receives an object
pointer (0xb84c) and a name of the attribute ("state")
as inputs, and behaves as follows: 1 The PyGetAttrOp
can access the Python heap to read the state unless a cor-
responding local copy exists. 2 When the PySetAttrOp
wants to update the attribute, a new value is inserted to
the local copy instead of directly updating the Python
heap. 3 Further read and write operations are redirected
to the local copies. Note that JANUS inserts appropriate
dependencies between PyGetAttrOps and PySetAttrOps
if necessary to prevent any data hazards. 4 After the
graph executor finishes this run, the local copies are writ-
ten back to the Python heap. Global or nonlocal variables
can also be regarded as the object attributes, where the
global variables are the attributes of the global object, and
the nonlocal variables are the attributes of the function’s
closure objects. Subscript expressions (obj[subscr]) are

460 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

similarly implemented with equivalent custom operations,
PyGetSubscrOp and PySetSubscrOp.
By not mutating the Python heap directly, JANUS can

always bypass the Python GIL to execute more read and
write operations in parallel. In addition, the fallbackmech-
anism of JANUS can be simplified thanks to the all-or-
nothing based state update mechanism.
4.3 Imperative-Only Features
Albeit being able to support a wide range of imperative
DL programs, the current JANUS graph generator does not
convert some particular features of Python into dataflow
graph elements. Programs with such features are executed
only on the imperative executor.
4.3.1 Coverage Limitations from Design
Alignment with the design principles. To be aligned
with the design of JANUS in previous sections, the JANUS
graph generator does not convert some features of Python.
For example, to keep the implementation of local copies
of global state simple (Section 4.2.3), Python objects with
custom accessor functions (e.g., __setattr__) are not
supported by the JANUS graph generator. Also, a function
should always return the same type of value, to infer the
type of call expressions (Section 4.2.2).
External function calls. JANUS must understand the
behavior of the external functions, i.e., the framework-
provided functions or foreign functions5, to convert them
into corresponding graph operations. The JANUS graph
generator converts the external functions into the graph
operations based on a separate whitelist. Most of the
framework-provided functions such as matmul or conv2d,
and many commonly-used Python built-in functions such
as print or len are included in this whitelist. We plan to
cover more functions in the Python standard library.

JANUS handles such external functions with extra cau-
tion to ensure correctness. First, since the underlying
assumption here is that the implementation of external
functions never changes, JANUS prohibits the modifica-
tion of the functions included in the whitelist. Also, if an
external function includes state mutation (e.g., assign()
in TensorFlow), the execution of the corresponding graph
operation is deferred until all the other assumptions are
validated, under the same principle about the deferred
state update in Section 4.2.3.
4.3.2 Coverage Limitations from Implementation
Currently, JANUS does not cover a few features from
Python that do not have clear graph representations. Such
Python features include coroutines, generators, in-line
5functions written in the languages other than Python

class definitions and in-line import statements. We plan
to support these features as future work.
5 Implementation
We implemented JANUS on top of TensorFlow [1] 1.8.0
and CPython [32] 3.5.2. JANUS exploits the existing Ten-
sorFlow graph executor and TensorFlow Eager imperative
executor as its components. In this section, we explain
the modifications to existing systems, and then describe
how JANUS supports data-parallel training.
Modifications to existing systems. TensorFlow has
been modified for several reasons. First, to transparently
separate out the neural network computation from the rest
of the Python program without extra user intervention,
the automatic differentiation functionality of TensorFlow
Eager is modified to trigger JANUS graph conversion. Sec-
ond, to share the model parameters between eager mode
and graph mode, JANUS slightly modifies the parame-
ter storing mechanism of TensorFlow Eager. Third, sev-
eral custom operations had been added, including the
InvokeOp and PyAttrOp as described in earlier sections.

CPython has also been modified to have bytecode-level
instrumentation functionality for non-intrusive profiling.
Without modifying the interpreter, instrumentation for
the profiling should exist at the Python source-code level,
which would significantly affect the performance and the
debuggability of the imperative execution.
Data-parallelization on JANUS. Using multiple ma-
chines equipped with multiple GPUs is a common ap-
proach for accelerating DL jobs. We integrate JANUS
with Horovod [35], a distributed training module for Ten-
sorFlow that encapsulates the MPI collective communica-
tion [14] (e.g. AllReduce and AllGather) as an operation
inside the symbolic graph. After converting an imperative
program into a dataflow graph, JANUS inserts appropriate
communication operations to the graph in order to get
the average of gradients generated by multiple workers.
Since the generated dataflow graph contains both commu-
nication and computation operations, we can parallelize
their execution and therefore achieve higher throughput.
6 Evaluation
We present experimental results that show how impera-
tive DL programs can be executed both correctly and effi-
ciently when converted into symbolic graphs on JANUS.
6.1 Experimental Setup
Frameworks. As baseline frameworks representing
symbolic graph execution frameworks and imperative ex-
ecution frameworks respectively, we use TensorFlow [1]
and TensorFlow Eager [40]. We could run the same DL

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 461

program on JANUS as on TensorFlow Eager, thanks to
the transparent graph conversion feature of JANUS. In
addition, to demonstrate the correctness of graph conver-
sion of JANUS, we also compare JANUS with TensorFlow
defun [43], which implements a trace-based graph con-
version mechanism. TensorFlow-based frameworks have
been chosen to avoid implementation-dependent perfor-
mance differences.
Applications. We have evaluated JANUS with 11 mod-
els in five major neural network types, covering three
convolutional neural networks (CNN; LeNet [21],
ResNet50 [15], Inception-v3 [38]), two recurrent neu-
ral networks (RNN; LSTM [51], LM [20]), two recur-
sive neural networks (TreeNN; TreeRNN [36], Tree-
LSTM [39]), two deep reinforcement learning models
(DRL; A3C [25], PPO [34]), and two generative adversar-
ial networks (GAN; AN [13], pix2pix [18]) as shown in
Table 2. The datasets and the mini-batch sizes used for
evaluation are also specified in the table.
These models are implemented in an imperative pro-

gramming style, using a number of dynamic features in
Python as shown in Table 2. First, large CNN models
such as ResNet50 and Inception-v3 have conditional state-
ments for handling batch normalization [16], which make
them behave differently under particular conditions when
training and evaluating the model. Next, RNNs include
Python for loops, and they also include global state mu-
tation statements to retain hidden states inside the mod-
els. Next, TreeNNs6 require all three kinds of dynamic
features. They include recursive function calls, and con-
ditional statements to separate recursion base cases and
inductive cases. They also include values with undecided
type; the return type of a recursive function is unknown
until the function returns certain values. In addition, they
include the Python object access to fetch the informa-
tion of the current subtree. For DRL models7, Python
for loops are used for handling an arbitrary length of the
states of an episode, and global state mutation statements
are used for storing the intermediate computation results
to monitor the progress of the training. GAN models also
use global state mutation statements for the same reason.
All models use Python function calls, including Python
class methods of high-level DL programming APIs such
as Keras [7]. Training data instances fed into each neural
network have different shapes over different training iter-
ations, when the length of the dataset cannot be divided
by the batch size.
6The implementation of TreeNN models on TensorFlow follows the
recursion-based implementation with InvokeOp [19], and JANUS con-
verts an imperative Python program into similar recursion-based graphs.
7The DL framework only handles model training and policy evaluation,
and the environment simulation is handled by an external library [3].

Category Model DataSet BS DCF DT IF

CNN
LeNet MNIST [22] 50 × ○ ×
ResNet50 ImageNet [33] 64 ○ ○ ×
Inception-v3 ImageNet [33] 64 ○ ○ ×

RNN LSTM PTB [51] 20 ○ ○ ○
LM 1B [5] 256 ○ ○ ○

TreeNN TreeRNN SST [37] 25 ○ ○ ○
TreeLSTM SST [37] 25 ○ ○ ○

DRL A3C CartPole [3] 20 ○ ○ ○
PPO Pong [3] 256 × ○ ○

GAN AN MNIST [22] 128 × ○ ○
pix2pix Facades [47] 1 × ○ ○

Table 2: Categories, models, datasets, batch sizes ("BS"),
and the dynamic features of the applications used for
evaluation.
Environments. A homogeneous GPU cluster of 6 ma-
chines, connected via Mellanox ConnectX-4 cards with
100Gbps InfiniBand is used for evaluation. Each machine
is equipped with two 18-core Intel Xeon E5-2695 @ 2.10
GHz, and 6 NVIDIA TITAN Xp GPU cards. Ubuntu
16.04, Horovod 0.12.1, CUDA 9.0, cuDNN 7, OpenMPI
v3.0.0, and NCCL v2.1 are installed for each machine.

LeNet, LSTM, AN, and pix2pix models are evaluated
on a single GPU, since these models and the datasets
are regarded to be too small to amortize the communica-
tion cost of parallel execution. Similarly, TreeRNN, Tree-
LSTM, and A3C models are evaluated on CPUs on a sin-
gle machine, since these models and datasets are regarded
to be too small to amortize the communication between
CPU and GPU. The other models are evaluated using
multiple GPUs. ResNet50 and Inception-v3 models are
evaluated using up to 36 GPUs, and LM is evaluated on up
to 12 GPUs. The network bandwidthmade the throughput
of LM saturated on more than 2 machines with MPI col-
lective communication, due to the huge parameter size of
LM (0.83 billion parameters). Therefore, model conver-
gence of LM is experimented with 6 GPUs. We evaluated
the model convergence of PPO using 4 GPUs on a single
machine, since the number of parallel actors used in the
original paper was only 8.
6.2 Model Convergence
Figure 6 shows how the neural networks converge on
various underlying frameworks, with ResNet50 with the
ImageNet dataset, LM with the 1B dataset, TreeLSTM
with the SST dataset, PPO with the Pong-v4 environment,
and AN with the Facades dataset on four frameworks.
For all evaluated models, JANUS, TensorFlow, and Ten-
sorFlow Eager succeeded to make the neural networks
converge correctly as reported in literatures: 23.7% top-
1 error for ResNet50 after 90 epochs, perplexity 47.5

462 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10000 20000 (s)

50%

100%

(a) ResNet50
(Top-1 Test Error)

104 105 (s)

50

60

(b) LM
(Test Perplexity)

102 103 (s)

60%

80%

(c) TreeLSTM
(Test Accuracy)

103 104 (s)
−20

0

20

(d) PPO
(Episode Reward)

0 200 400(s)

3.5

4.0

(e) AN
(Discriminator Loss)

JANUS Symbolic Imperative Tracing

Figure 6: (a) The test error of ResNet50, (b) validation perplexity of LM, (c) test accuracy of TreeLSTM, (d) episode
reward of PPO, and (e) discriminator loss of AN measured on JANUS, TensorFlow (Symbolic), TensorFlow Eager
(Imperative), and TensorFlow defun (Tracing) according to the elapsed time in seconds. Each marker in (b) represents
each training epoch, describing that per-epoch convergence is slower on TensorFlow defun compared to other frameworks.
for LM after 5 epochs, 82.0% binary accuracy for Tree-
LSTM after 4 epochs, 20.7 mean final score for PPO after
40M game frames, and 3.52 discriminator loss for AN
after 30 epochs.8 Also, JANUS could make the model to
converge up to 18.7 times faster than TensorFlow Eager,
while executing the identical imperative program. The
performance difference between JANUS and TensorFlow
was within 4.0%.

On the other hand, trace-based TensorFlow defun
failed to make the models to converge correctly. The
ResNet50 model includes the conditional statement to
distinguish the behavior of the batch-normalization [16]
layer on model training and evaluation. If a user evalu-
ates the initial accuracy before training the model by ma-
nipulating the model object attribute, TensorFlow defun
converts the first execution trace into graph operations,
which silently leads to an inaccurate result. Similarly, the
LM model does not converge properly with TensorFlow
defun, since it failed to capture state passing across se-
quences, due to its trace-based conversion mechanism.
The TreeLSTM model could not be converted into the
symbolic graph at all with TensorFlow defun, since it
does not support recursive function call. We could not
get the convergence metrics for PPO model with Tensor-
Flow defun, as it does not support global state update
statements. TensorFlow Eager converges slowly, since its
training throughput is much lower than TensorFlow and
JANUS. We next analyze the training throughput of the
frameworks, excluding TensorFlow defun, which fails to
make models converge correctly.
6.3 Training Throughput
6.3.1 Single-machine Throughput
Table 3 presents the training throughput of all models
executed with JANUS, TensorFlow Eager, and TensorFlow
on a single machine with a single GPU. As shown in the
8We measured the training loss with the official implementation in
Tensorflow Eager [41].

Model (A)
Imp.

(B)
JANUS

(C)
Sym.

(B)
(A)

(B)
(C)–1

LeNet 7.94k 25.84k 26.82k 3.25x -3.6%
ResNet50 188.46 200.37 207.39 1.06x -3.4%
Inception-v3 108.36 119.32 124.33 1.10x -4.0%
LSTM 2.75k 22.06k 22.58k 8.03x -2.3%
LM 19.02k 40.18k 40.45k 2.11x -0.7%
TreeRNN 20.76 988.72 928.66 47.6x +6.5%
TreeLSTM 7.51 138.12 141.71 18.4x -2.5%
A3C 220.66 1132.9 1178.6 5.13x -3.9%
PPO 596.80 1301.0 1306.4 2.18x -0.4%
AN 4.34k 11.33k 11.56k 2.61x -2.1%
pix2pix 4.04 8.69 8.88 2.15x -2.1%

Table 3: Training throughput of all models evaluated on a
single machine with a single GPU in JANUS, TensorFlow
(Sym.), and TensorFlow Eager (Imp.). The numbers rep-
resent processed images/s for CNN andGANmodels, pro-
cessedwords/s forRNNmodels, processed sentences/s for
TreeNNmodels, and processed frames/s for DRLmodels.

table, JANUS outperforms TensorFlow Eager (imperative
execution) by up to 47.6 times, and shows throughput
similar to TensorFlow (symbolic graph execution) by up
to 4.0% performance degradation. JANUS even performs
slightly better (+6.5%) for TreeRNN, since there is no
need to pre-process the input sentences, which are the
tree-structured Python objects.
JANUS achieves bigger performance gains on RNNs,

TreeNNs, DRLs, and GANs than on CNNs, since those
networks have many concurrently executable operations.
In addition, the performance gain of JANUS on a single
machine is larger on models with fine-grained graph op-
erations such as LeNet, LSTM, TreeRNN, A3C, and AN,
compared to the models with coarse-grained operations
such as ResNet50, Inception-v3, LM, PPO, and pix2pix,
since the gain from bypassing the Python interpreter and
applying compiler optimizations is bigger when the com-
putation time of each operation is short.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 463

13 6 12 24 36
Number of GPUs

0
2K
4K
6K

im
ag

es
/s

(a) ResNet50

13 6 12 24 36
Number of GPUs

0
1K
2K
3K
4K

im
ag

es
/s

(b) Inception-V3

1 2 3 6 12
Number of GPUs

0
25K
50K
75K

100K

w
or

ds
/s

(c) LM

1 2 3 4 5 6
Number of GPUs

0
2K
4K
6K

fr
am

es
/s

(d) PPO
JANUS Symbolic Imperative

Figure 8: Training throughput for the ResNet50, Inception-v3, LM, and PPO models on JANUS, TensorFlow (Symbolic),
TensorFlow Eager (Imperative), using varying numbers of GPUs.

Imp. 2x 3x 4x 5x 6x 7x 8x

LeNet
ResNet50

Inception-V3
LSTM

LM
TreeRNN

TreeLSTM
A3C
PPO
AN

pix2pix

18.4x 47.6x

 IMP BASE +UNRL +SPCN +PARL

Figure 7: The contribution of optimizations to im-
prove training throughput. Optimizations are cumulative.
+PARL is the default configuration of JANUS.

For large CNNmodels such as ResNet50 and Inception-
v3, optimized GPU kernel computation accounts for most
of the computation time, which makes the performance
difference among JANUS, TensorFlow, and TensorFlow
Eager relatively small.
Optimization effect. Figure 7 analyzes the cause of the
performance improvement of JANUS in detail. Converting
the imperative program into the symbolic graph without
any following optimizations (BASE) enabled up to 4.9x
performance improvement compared to the imperative
execution (IMP). It removes the Python interpreter and
framework code overhead, which has the bigger effect
when each graph operation is relatively smaller. Con-
trol flow unrolling (+UNRL) and type specialization
(+SPCN) enable more aggressive compiler optimiza-
tions. On RNNs, +UNRL improved the performance
of LSTM and LM by 2.09x and 1.04x, respectively. The
control flow statements in CNNs, TreeNNs and DRLs
could not be unrolled due to their dynamicity. +SPCN
enabled some compiler optimizations and improved the
throughput up to 18.3% in small neural networks. Finally,
executing multiple operations in parallel (+PARL) im-
proved the throughput up to 9.81x. Especially higher gain
could be achieved for TreeNNs, since there exist many
operations that could be executed in parallel in multiple

independent tree nodes.
We have also measured the effect of assumption vali-

dation, but the effect was negligible (in the error range),
since the AssertOps can be executed with the main neural
network in parallel.
6.3.2 Scalability
Figure 8 shows the scalability of ResNet50, Inception-
v3, LM, and PPO models on JANUS, TensorFlow, and
TensorFlow Eager on the cluster with 36 GPUs (12 GPUs
for LM, 6 GPUs for PPO). We measured the scale factor,
which is defined as Multi-GPU Throughput / (Single-
GPU Throughput × Number of GPUs). JANUS achieves
similar scalability (scale factor 0.77, 0.81, 0.18 each) as
TensorFlow (0.81, 0.80, 0.18 each), but TensorFlow Eager
does not scale well (0.24, 0.24, 0.14 each), due its inability
to overlap computation and communication.
The performance difference between JANUS and Ten-

sorFlow becomes smaller when the synthetic dataset is
used, since the input processing of TensorFlow is highly
optimized. The slight difference in the scalability of
ResNet50 comes from the under-optimized input pipeline
of TensorFlow Eager, which JANUS also uses. Optimiz-
ing the input processing pipeline for JANUS will further
reduce the performance difference between JANUS and
TensorFlow. We leave this optimization as future work.
7 Conclusion
In this paper,we introduced JANUS, a system that achieves
the performance of symbolic DL frameworks while main-
taining the programmability of imperative DL frame-
works. To achieve the performance of symbolic DL frame-
works, JANUS converts imperative DL programs into
static dataflow graphs by assuming that DL programs
inherently have the static nature. To preserve the dynamic
semantics of Python, JANUS generates and executes the
graph speculatively, verifying the correctness of such
assumptions at runtime. Our experiments showed that
JANUS can execute various deep neural networks effi-
ciently while retaining programmability of imperative
programming.

464 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We thank our shepherd Srikanth Kandula and the anony-
mous reviewers for their insightful comments. This work
was supported by Samsung Advanced Institute of Tech-
nology, the AWS Machine Learning Research Awards
program, and Institute for Information & communications
Technology Promotion(IITP) grant funded by the Korea
government(MSIT) (No.2015-0-00221, Development of
a Unified High-Performance Stack for Diverse Big Data
Analytics).
References
[1] Martín Abadi et al. TensorFlow: A system for large-

scale machine learning. In OSDI, 2016.
[2] Jeff Bezanson,Alan Edelman, Stefan Karpinski, and

Viral B. Shah. Julia: A Fresh Approach to Numeri-
cal Computing, 2017.

[3] Greg Brockman et al. Openai gym. CoRR,
abs/1606.01540, 2016.

[4] Lars Buitinck et al. API design for machine learning
software: experiences from the scikit-learn project.
In LMLWorkshop at ECML PKDD, pages 108–122,
2013.

[5] Ciprian Chelba. 1-billion-word-
language-modeling-benchmark.
https://github.com/ciprian-chelba/
1-billion-word-language-modeling
-benchmark.

[6] Tianqi Chen et al. MXNet: A flexible and effi-
cientmachine learning library for heterogeneous dis-
tributed systems. InWorkshop on Machine Learn-
ing Systems in NIPS, 2015.

[7] François Chollet et al. Keras: The Python Deep
Learning library, 2015. https://keras.io/.

[8] David E Culler. Dataflow architectures. Annual
review of computer science, 1(1):225–253, 1986.

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. Com-
munications of the ACM, 51(1):107–113, 2008.

[10] Jack B Dennis and David P Misunas. A preliminary
architecture for a basic data-flow processor. In ACM
SIGARCH Computer Architecture News, volume 3,
pages 126–132. ACM, 1975.

[11] Facebook. Caffe2, 2017. https://caffe2.ai.
[12] Roy Frostig, Matthew James Johnson, and Chris

Leary. Compiling machine learning programs via
high-level tracing. In SysML, 2018.

[13] Ian J. Goodfellow et al. Generative adversarial nets.
In NIPS, 2014.

[14] WilliamGropp,Ewing Lusk, andAnthony Skjellum.
UsingMPI: portable parallel programming with the
message-passing interface, volume 1. MIT press,
1999.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recogni-
tion. In CVPR, 2016.

[16] Sergey Ioffe and Christian Szegedy. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[17] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Bir-
rell, and Dennis Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks.
In EuroSys, 2007.

[18] P. Isola et al. Image-to-image translation with con-
ditional adversarial networks. In CVPR, 2017.

[19] Eunji Jeong, Joo Seong Jeong, Soojeong Kim,
Gyeong-In Yu, and Byeong-Gon Chun. Improv-
ing the expressiveness of deep learning frameworks
with recursion. In EuroSys, 2018.

[20] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster,
Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. 2016.

[21] Yann LeCun, Leon Buttou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE,
1998.

[22] Yann LeCun and Corinna Cortes. The MNIST
Database of handwritten digits, 2010. http://
yann.lecun.com/exdb/mnist/.

[23] Moshe Looks, Marcello Herreshoff, DeLesley
Hutchins, and Peter Norvig. Deep learning with
dynamic computation graphs. In ICLR, 2017.

[24] Azalia Mirhoseini, Hieu Pham, Quoc Le, Moham-
mad Norouzi, Samy Bengio, Benoit Steiner, Yue-
feng Zhou, Naveen Kumar, Rasmus Larsen, and Jeff
Dean. Device placement optimization with rein-
forcement learning. 2017.

[25] Volodymyr Mnih et al. Asynchronous methods for
deep reinforcement learning. In ICML, 2016.

[26] MXNet. Deep Learning Programming Style,
2018. https://mxnet.incubator.apache.
org/architecture/program_model.html.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 465

https://keras.io/
https://caffe2.ai
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://mxnet.incubator.apache.org/architecture/program_model.html
https://mxnet.incubator.apache.org/architecture/program_model.html

[27] MXNet Developers. Gluon, 2018. http://gluon.
mxnet.io/.

[28] Stefan C. Müller, Gustavo Alonso, and Adam
Amara André Csillaghy. Pydron: Semi-automatic
parallelization for multi-core and the cloud. In
OSDI, 2014.

[29] Graham Neubig et al. DyNet: The Dynamic
Neural Network Toolkit, 2017. arxiv preprint
arXiv:1701.03980.

[30] RishiyurS Nikhil et al. Executing a program on
the mit tagged-token dataflow architecture. IEEE
Transactions on computers, 39(3):300–318, 1990.

[31] Adam Paszke et al. Automatic differentiation in
pytorch. In Autodiff Workshop in NIPS, 2017.

[32] Python Software Foundation. Python programming
language. https://www.python.org/.

[33] Olga Russakovsky et al. Imagenet large scale vi-
sual recognition challenge. International Journal
of Computer Vision, 115(3):211–252, 2015.

[34] John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. Proximal pol-
icy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[35] Alexander Sergeev and Mike Del Balso. Horovod:
fast and easy distributed deep learning in tensorflow.
arXiv preprint arXiv:1802.05799, 2018.

[36] Richard Socher et al. Parsing natural scenes and
natural language with recursive neural networks. In
ICML, 2011.

[37] Richard Socher et al. Recursive deep models for se-
mantic compositionality over a sentiment treebank.
In EMNLP, 2013.

[38] Christian Szegedy, Vincent Vanhoucke, Sergey
Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In
CVPR, 2016.

[39] Kai Sheng Tai et al. Improved semantic representa-
tions from tree-structured long short-term memory
networks. In ACL, 2015.

[40] TensorFlow. Eager Execution, 2018.
https://www.tensorflow.org/programmers_
guide/eager.

[41] TensorFlow. Gan with tensorflow eager execution.
2018.

[42] TensorFlow. Swift for TensorFlow, 2018. https:
//github.com/tensorflow/swift.

[43] TensorFlow. tf.contrib.eager.defun, 2018. https:
//www.tensorflow.org/versions/master/
api_docs/python/tf/contrib/eager/defun.

[44] TensorFlow. XLA Overview, 2018. https://www.
tensorflow.org/performance/xla/.

[45] TensorFlow. AutoGraph: Easy control flow for
graphs, 2019. https://www.tensorflow.org/
guide/autograph.

[46] Theano Development Team. Theano: A Python
Framework for Fast Computation of Mathe-
matical Expressions, 2016. arXiv preprint
arXiv:1605.02688.

[47] Radim Tyleček and Radim Šára. Spatial pattern
templates for recognition of objects with regular
structure. In GCPR, 2013.

[48] Stéfan Van Der Walt, S. Chris Colbert, and Gael
Varoquaux. The NumPy Array: a Structure for Effi-
cient Numerical Computation, 2011. Computing in
Science & Engineering, 13, 2, 22-30.

[49] Dong Yu et al. An introduction to computational
networks and the computational network toolkit.Mi-
crosoft Technical Report MSR-TR-2014–112, 2014.

[50] Yuan Yu et al. Dynamic control flow in large-scale
machine learning. In EuroSys, 2018.

[51] Wojciech Zaremba, Ilya Sutskever, and Oriol
Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

Appendix
A Python Syntax Coverage
Table 4 describes the entire set of opcode in the
CPython [32] 3.5.2 interpreter, and maps them to
the sections which describe the corresponding graph
generation rules. Python programs whose opcodes are
mapped to Section 4.3 can only be executed on the
imperative executor, and the others can be executed on
the graph executor. Python features that are not covered
in previous sections are briefly discussed in the rest of
this section.
Exceptions. A Python raise statement can be
represented as an AssertOp in the dataflow graph. When
the AssertOp for an exception aborts the graph execution,

466 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://gluon.mxnet.io/
http://gluon.mxnet.io/
https://www.python.org/
https://www.tensorflow.org/programmers_guide/eager
https://www.tensorflow.org/programmers_guide/eager
https://github.com/tensorflow/swift
https://github.com/tensorflow/swift
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/eager/defun
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/eager/defun
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/eager/defun
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/guide/autograph
https://www.tensorflow.org/guide/autograph

Opcode Num Description Section Ref.
POP_TOP, ROT_TWO, ROT_THREE, DUP_TOP, DUP_TOP_TWO, NOP,
EXTENDED_ARG

7 stack
manipulation

No conversion is
necessary

LOAD_CONST 1 constant Section 4.1
UNARY_INVERT, UNARY_NEGATIVE, UNARY_NOT, UNARY_POSITIVE, BINARY_ADD,
BINARY_AND, BINARY_FLOOR_DIVIDE, BINARY_LSHIFT, BINARY_MATRIX_MULTIPLY,
BINARY_MODULO, BINARY_MULTIPLY, BINARY_OR, BINARY_POWER,
BINARY_RSHIFT, BINARY_SUBTRACT, BINARY_TRUE_DIVIDE, BINARY_XOR,
INPLACE_ADD, INPLACE_AND, INPLACE_FLOOR_DIVIDE, INPLACE_LSHIFT,
INPLACE_MATRIX_MULTIPLY, INPLACE_MODULO, INPLACE_MULTIPLY, INPLACE_OR,
INPLACE_POWER, INPLACE_RSHIFT, INPLACE_SUBTRACT, INPLACE_TRUE_DIVIDE,
INPLACE_XOR, COMPARE_OP

31 mathematical
operators Section 4.1

LOAD_FAST, STORE_FAST, DELETE_FAST, UNPACK_SEQUENCE, UNPACK_EX 5 local variables Section 4.1
JUMP_ABSOLUTE, JUMP_FORWARD, JUMP_IF_FALSE_OR_POP,
JUMP_IF_TRUE_OR_POP, POP_JUMP_IF_FALSE, POP_JUMP_IF_TRUE, POP_BLOCK,
GET_ITER, FOR_ITER, BREAK_LOOP, CONTINUE_LOOP, SETUP_LOOP

12 dynamic control
flow Section 4.2.1

CALL_FUNCTION, CALL_FUNCTION_KW, CALL_FUNCTION_VAR,
CALL_FUNCTION_VAR_KW, RETURN_VALUE, MAKE_FUNCTION

6 function call Section 4.2.1,
Section 4.3.1

LOAD_ATTR, STORE_ATTR, DELETE_ATTR 3 arbitrary object Section 4.2.2,
Section 4.2.3

BUILD_LIST, BUILD_LIST_UNPACK, LIST_APPEND, BUILD_MAP,
BUILD_MAP_UNPACK, BUILD_MAP_UNPACK_WITH_CALL, MAP_ADD, BUILD_SET,
BUILD_SET_UNPACK, SET_ADD, BUILD_SLICE, BUILD_TUPLE,
BUILD_TUPLE_UNPACK, BINARY_SUBSCR, STORE_SUBSCR, DELETE_SUBSCR

16 list, set, map Section 4.2.2,
Section 4.2.3

LOAD_GLOBAL, LOAD_DEREF, LOAD_NAME, STORE_GLOBAL, STORE_DEREF,
STORE_NAME, DELETE_GLOBAL, DELETE_DEREF, DELETE_NAME,
LOAD_CLOSURE, MAKE_CLOSURE

11 non-local
variables Section 4.2.3

POP_EXCEPT, SETUP_EXCEPT, SETUP_FINALLY, RAISE_VARARGS, END_FINALLY 5 exception
handling Appendix A

SETUP_WITH, WITH_CLEANUP_FINISH, WITH_CLEANUP_START 3 with Appendix A
YIELD_FROM, YIELD_VALUE, GET_YIELD_FROM_ITER 3 yield Section 4.3.2
IMPORT_FROM, IMPORT_NAME, IMPORT_STAR 3 in-line import Section 4.3.2
LOAD_BUILD_CLASS, LOAD_CLASSDEREF 2 in-line class

definition Section 4.3.2
GET_AITER, GET_ANEXT, GET_AWAITABLE, BEFORE_ASYNC_WITH,
SETUP_ASYNC_WITH

5 coroutine Section 4.3.2
Total 113

Table 4: The mapping of the full list of CPython opcode and the corresponding sections.

the fallback occurs, and the actual, Python-style exception
can be safely raised on the imperative executor. Under
the same principle, for try-except-finally statements,
only the try-finally part is converted into the graph
elements, and the except part is simply not converted,
since the exception will never be caught by the symbolic
graph. By avoiding exception handling inside the
symbolic graph, we can protect users from having

to debug through symbolic graph execution traces,
which are relatively more complicated than imperative
execution traces.
Context manager. Since exception handling always
occurs on the imperative executor as described in the
previous paragraph, the with statement can be converted
into the simple function calls to __enter__ and __exit__
of the corresponding context manager object.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 467

BLAS-on-flash : An Efficient Alternative for Large Scale ML Training and
Inference?

Suhas Jayaram Subramanya
Microsoft Research India
t-sujs@microsoft.com

Harsha Vardhan Simhadri
Microsoft Research India
harshasi@microsoft.com

Srajan Garg
IIT Bombay

srajan.garg@gmail.com

Anil Kag
Microsoft Research India
t-anik@microsoft.com

Venkatesh Balasubramanian
Microsoft Research India
t-venkb@microsoft.com

Abstract

Many large scale machine learning training and inference
tasks are memory-bound rather than compute-bound.
That is, on large data sets, the working set of these al-
gorithms does not fit in memory for jobs that could run
overnight on a few multi-core processors. This often
forces an expensive redesign of the algorithm for dis-
tributed platforms such as parameter servers and Spark.

We propose an inexpensive and efficient alternative
based on the observation that many ML tasks admit al-
gorithms that can be programmed with linear algebra
subroutines. A library that supports BLAS and sparse-
BLAS interface on large SSD-resident matrices can en-
able multi-threaded code to scale to industrial scale
datasets on a single workstation.

We demonstrate that not only can such a library pro-
vide near in-memory performance for BLAS, but can
also be used to write implementations of complex algo-
rithms such as eigensolvers that outperform in-memory
(ARPACK) and distributed (Spark) counterparts.

Existing multi-threaded in-memory code can link to
our library with minor changes and scale to hundreds of
gigabytes of training or inference data at near in-memory
processing speeds. We demonstrate this with two in-
dustrial scale use cases arising in ranking and relevance
pipelines: training large scale topic models and inference
for extreme multi-label learning.

This suggests that our approach could be an efficient
alternative to expensive distributed big-data systems for
scaling up structurally complex machine learning tasks.

1 Introduction

Data analysis pipelines in scientific computing as well
as ranking and relevance often work on datasets that are
hundreds of gigabytes to a few terabytes in size. Many
algorithms in these pipelines, such as topic modeling [6],
matrix factorizations [33], spectral clustering [32], ex-

treme multi-label learning [47], are memory limited as
opposed to being limited by compute. That is, on large
datasets, a training algorithm that requires a few hours
of compute on a multi-core workstation would run out of
DRAM for its working set.

This forces users to move the algorithm to distributed
big-data platforms such as Apache Spark [63, 64] or sys-
tems based on Parameter Servers [18, 37, 60], which in-
curs three costs: (1) the cost of rewriting code in a dis-
tributed framework, (2) the cost of a cluster of nodes or
non-availability in production environments, and (3) in-
efficiencies of the platform in using the hardware. Train-
ing on these platforms can require dozens of nodes for
moderate speedups over single threaded code for non-
trivial algorithms [22, 39]. This could be due to plat-
form overheads as well as mismatch between the struc-
ture of the algorithm and the platform’s programming
model [9, 17, 58], resulting in low processor utilization.

Several light-weight frameworks for single node
workstations demonstrate that this inefficiency is unnec-
essary for many classes of algorithms that admit multi-
threaded implementations that are orders of magnitude
more efficient [16, 34, 52, 53]. It is also widely ob-
served that many machine learning problems admit al-
gorithms that are essentially compositions of linear alge-
bra operations on sparse and dense matrices. High per-
formance implementations of these algorithms typically
invoke linear-algebra operations through standard APIs
such as BLAS [10] and sparseBLAS [20]. High perfor-
mance implementations for these standard APIs are pro-
vided by hardware vendors [26, 27, 43, 44].

Linear algebra kernels offer plenty of locality, so much
so that the bandwidth required to run them on high-end
multiprocessors can be provided by a non-volatile mem-
ory over PCIe or SATA bus [5, 13, 56]. Non-volatile
memory is already widely deployed in cloud and de-
velopments in hardware and software eco-system posi-
tion non-volatile memory as an inexpensive alternative
to DRAM [4, 19, 49, 50]. Hardware technology and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 469

interfaces for non-volatile memories have increasingly
lower end-to-end latency (few µs) [25] and higher band-
width: from 8 GT/s in PCIe3.0 to 16GT/s in PCIe4.0 [45]
and 32GT/s in PCIe5.0. Hardware manufactures are also
packaging non-volatile memory with processing units,
e.g. Radeon PRO SSG [2] to increase available memory.

These observations point to a cost-effective solution
for scaling linear algebra based algorithms to large
datasets in many scenarios – use inexpensive PCIe-
connected SSDs to store large matrices corresponding to
the data and the model, and exploit the locality of linear
algebra to develop a library of routines that can operate
on these matrices with a limited amount of DRAM. By
conforming to the standard APIs, such a library could be
a replacement for code that would have linked to BLAS
libraries such as Intel MKL or OpenBLAS [59].

We present empirical evidence that this approach can
be practical, easy, and fast, by developing a library which
provides near in-memory speeds on NVM-resident data
for subroutines on dense matrices and sparse matrices.

Performance of our BLAS-on-flash library is compa-
rable to that of in-memory Intel MKL implementations
for level-3 BLAS and sparseBLAS kernels such as gemm
(dense-dense matrix multiplication) and csrmm (sparse-
dense matrix multiplication) on multiprocessor machines
with SSDs. The key to this performance is using the
knowledge of data-access patterns arising in linear alge-
bra kernels to effectively pipeline IO with computation.
Using these kernels, we can implement algorithms such
as k-means clustering that run at near in-memory speeds.

To illustrate that this approach is not limited to sim-
ple kernels, we consider one of the most structurally
complex numerical algorithms – eigensolvers. Using the
BLAS-on-flash library, we built a general purpose sym-
metric eigensolver, which is critical to dimensionality
reduction (e.g. PCA) and spectral methods. Specifi-
cally, we adapted the restarted block Krylov-Schur [67]
algorithm to compute thousands of eigenvectors on SSD-
resident data faster than standard in-memory solvers
based on the IRAM algorithm [54] (e.g., Spectra [48],
ARPACK [35]). On large bag of words text datasets
running into hundreds of gigabytes, our implementation
running on one multi-core workstation with under 50GB
DRAM outperforms Spark MLlib’s computeSVD [40]
deployed on hundreds of executors, representing an or-
der of magnitude efficiency gain in hardware utilization.
Further, our solver can compute thousands of eigenval-
ues, while computeSVD is limited to 500 or fewer.

We present two use cases of the library for algorithms
used in ranking and relevance pipelines that process hun-
dreds of gigabytes of data: training topic models, and
inference in Extreme Multi-Label learning.

Topic modeling [11] summarizes a corpus of docu-
ments, where each document is a collection of words

from a fixed vocabulary, as a set of topics that are prob-
ability distributions over the vocabulary. Although most
large scale algorithms are based on approximating and
scaling an intractable probabilistic model on parameter
servers [14, 61, 62], recent research [6] has shown that
linear algebra based approaches can be just as good qual-
itatively. We take a highly optimized version of the algo-
rithm in [6] that already outperforms prior art on single
node workstations, and link to the eigensolvers and clus-
tering algorithms written using our framework. This al-
lows the algorithm to train a 2000 topic model on a 60
billion token corpus (500GB on disk) in under 4 hours.

Extreme Multi-Label Learning (XML) is the problem
of learning to automatically annotate a data point with
the most relevant subset of labels from an extremely large
label set (often many millions of labels). This is an im-
portant task with many applications in tagging, ranking,
and recommendation [8]. Models in extreme multi-label
learning tasks are often ensembles of deep trees with
small classifier(s) at each node. e.g. PfastreXML [47],
Parabel [46]. In production, models that exceed DRAM
in size need to score (i.e. infer) several hundreds of mil-
lions sparse data points from a space with million+ di-
mensions every week on a platform that provides ma-
chines with moderate sized DRAM. As datasets grow in
size, XML algorithms need to scale 10x along multiple
axes: model size, number of points scored and dimen-
sionality of the data.

In this work, we start with PfastreXML and Parabel
models and a dataset that needed 440 and 900 compute
hours respectively on a VM with large RAM. We opti-
mized this code to reduce in-memory run time by a factor
of six. When the optimized code is linked to our library,
it runs at about 90% of in-memory speed with a much
smaller memory footprint.

These results suggest that, for complex numerical al-
gorithms, our approach is capable of running at near in-
memory speeds on large datasets while providing sig-
nificant benefits in hardware utilization as compared to
general-purpose big-data systems. Further, we envi-
sion our library being useful in the following scenar-
ios: (1) Environments without multi-node support for
MPI, Spark etc., (2) Laptops and workstations or VMs
in cloud with limited RAM but large non-volatile memo-
ries, (3) Batch mode periodic retraining and inference of
large scale models in production data analysis pipelines,
(4) Extending the capabilities of legacy single-node ML
training code.

Roadmap. Sections 2, 3 and 4 provide an overview of
the interface, design, and the architecture of the library.
Section 5 presents an evaluation of the performance of
our library and algorithms written using the library.

Source code for our library has been released at
github.com/Microsoft/BLAS-on-flash.

470 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 BLAS-on-flash : Overview and Interface
The BLAS-on-flash library provides an easy way to write
external memory parallel algorithms, especially numeri-
cal algorithms processing large matrices, that run at near
in-memory speed on SSD-resident data. At its core, it
pipelines calls to an existing math library (like Intel MKL
or OpenBLAS) on in-memory data blocks. Coupled with
prefetching and intelligent scheduling, BLAS-on-flash al-
lows the programmer to define computation on inputs
that are limited only by the size of storage.

Our library is intended for programmers who already
write multi-threaded code in C++ using shared memory
pointers. BLAS-on-flash provides a rich interface utiliz-
ing C++ templates and inheritance to allow easy integra-
tions with existing code with minimal modifications.

Typically, programmers writing high-performance na-
tive code track data objects with pointers and manipu-
late these objects by passing their pointers to functions
or linked libraries that perform operations such as matrix
multiplication.

The BLAS-on-flash library provides a custom pointer
type, flash ptr<T>, to track large SSD-resident ob-
jects, and replaces the standard T* pointer type. A pro-
grammer can either invoke BLAS-on-flash library func-
tions operating on flash ptr<T> types or define new
functions that operate on flash ptr<T> types by spe-
cializing the Task class. The Task class allows a pro-
grammer to define inputs, outputs, and a compute func-
tion mapping inputs to outputs. A directed acyclic graph
(DAG) of tasks defines a higher-level kernel (e.g. block
matrix multiplication). In this section, we show how to
use each of these functionalities.

2.1 The flash ptr<T> type
The flash ptr<T> is a replacement for standard
T* pointers that allows programmers to handle large
blocks of SSD-resident data. An object of type
flash ptr<T> can be created by one of two methods.
Allocation - Using an allocator provided by the library
to allocate a large block on the disk. Akin to
int *mat=(int *)malloc(len);

the library allows creation of a scratch space on SSD:
flash ptr<int> mat=flash malloc<int>(len);

Mapping - Using a mapper provided by the library,
one can create a flash ptr<T> backed by an existing
file. For example, flash ptr<float> mat fptr =

map file<float>(matfile, READWRITE); allows
read/write access to the float matrix in matfile.
Using flash ptr<T>, programmers can read and
write to the backing file through our library calls. For
example, one can write N elements to the file mapped
to mat fptr from an in-memory mat ptr as follows:
flash::write sync(mat fptr, mat ptr, N);

The flash ptr<T> type supports pointer arithmetic
and can be cast and used as a normal pointer through
memory mapping for functionality not supported by the
library (albeit with worse performance).
float* mmap mat ptr = mat fptr.ptr;

2.2 Library Kernels

BLAS-on-flash kernels are functions that operate on
flash ptr<T> types, designed to be drop-in replace-
ments for in-memory calls operating on T* types. Ker-
nels we have implemented include:

• gemm: Takes two input matrices A, B of type
flash ptr<float|double> and outputs
C := α · op(A) * op(B) + β · C,
where α and β are scalars, and op(X)=X or XT. The
library allows striding and all layout choices a standard
BLAS gemm call would offer.

• csrmm : Performs same computation as gemm, but
on a sparse A in Compressed Sparse Row (CSR)
format and allows for op(·) only on B. In addi-
tion to the version where all matrices are of type
flash ptr<float>, we also provide a variant
where B and C are in memory pointers. The CSR for-
mat stores three arrays: the non-zeros values ordered
first by row and then columns, the column index of
each non-zero value, and the offsets into the two pre-
vious arrays where each row starts.

• csrgemv : Takes a sparse matrix A on disk and
computes c := op(A)∗ b, where b and c are in-
memory vectors and op(X)=X or XT.

• csrcsc : Converts a sparse matrix in CSR form into
its Compressed Sparse Column (CSC) form with both
inputs and outputs as flash ptr<T> types. This is
equivalent to transposing the input matrix.

In addition to basic kernels, we also implemented some
higher-level algorithms like:

• kmeans : Given seed centers and input data points,
all as flash ptr<float> types, the kernel runs a
specified number of Lloyd’s iterations and overwrites
the seeds with final cluster centroids.

• sort : Parallel sample sort on a flash ptr<T> ar-
ray using a user-defined comparator.

Using BLAS-on-flash kernels, programmers can elimi-
nate memory limitations of their in-memory variants. For
example, using csrmm and csrgemv, one could imple-
ment an eigensolver for flash-resident matrices. In a later
section, we describe complex algorithms using these and
other custom kernels to process large amounts of flash-
resident data.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 471

Figure 1: The gemm kernel, its DAG using the Task interface, and sector-sharing among adjacent output blocks in C.

Figure 2: 〈b, {l, s, n}〉 is an access specifier for block b
of a flash-resident matrix B stored in Row-Major layout.

2.3 Tasks and Computation Graphs
A BLAS-on-flash kernel operating on large inputs is com-
posed of smaller units of computation called tasks. New
tasks are defined using the Task interface of the library.
The Task interface allows users to define in-memory
computations on smaller portions of the input. It also
provides a mechanism to compose a computation graph
by allowing parent-child relationships between tasks to
encode dependencies.

Task inputs and outputs are uniquely described using
an access specifier: 〈flash_ptr<T>, StrideInfo〉.
Here, flash ptr<T> points to the start of the data
and StrideInfo describes an access pattern starting
at flash ptr<T>. An access pattern could be a:

• Strided access to retrieve a matrix block that touches
a small strip – i.e. a subset – of each row/column of
a dense matrix. This is specified using 3 parameters -
number of strides, access length per stride (strip size)
and the stride length before next access. For the matrix
block b in Figure 2, these are n, l, and s respectively.

• Single contiguous access to a chunk of data, equivalent
to a strided access with only one strip.

In addition to specifying the inputs and outputs, the
user must implement the execute function that com-
putes outputs using the inputs. The BLAS-on-flash run-
time maps a flash_ptr<T> to an in-memory T* and
makes this mapping available in execute. With inputs

and outputs available as T* types, the programmer must
detail operations on inputs using only in-memory func-
tion calls to produce outputs.

Figure 1a illustrates a task Gk
i,j , its inputs

(Ai,k, Bk,j , Ci,j) and the computation in its execute
as a block-matrix multiplication on its inputs using an
in-memory gemm call.

A user can create a new kernel by specifying a directed
acyclic graph (DAG) with a task at each node and di-
rected edges from parent tasks to their child tasks. Once a
task’s parents are specified, the user injects it through the
BLAS-on-flash Scheduler interface. By allowing tasks to
be injected into the scheduler at runtime, the user can
specify data-dependent computation graphs required for
certain algorithms like eigensolvers.

Figures 1a and 1b illustrate the gemm kernel and the
DAG associated with its implementation using the Block
Matrix Multiplication algorithm. For inputs A,B, and
C, shown with 16 blocks for each matrix, an output block
Ci,j is given byCi,j := β·Ci,j+α·

∑k=3
k=0Ai,k·Bk,j . The

inner summation is converted into an accumulate chain
by using a taskGk

i,j in Figure 1a, for each k. Gi,j depicts
the dependence between successive tasks in the accumu-
late chain using arrows from a parent task to its child
task. Figure 1a illustrates the composition of the gemm
kernel using accumulate chains and Figure 1b gives the
complete DAG for A,B, and C as the inputs and C as
the output. The parallel composition operator X||Y al-
lows both X and Y to execute in parallel while the serial
composition operator X → Y allows Y to execute only
after X .

The task injection and logic required for creating a
DAG corresponding to a kernel are then packaged into
a single function call. This method of packaging allows
programmers to replace in-memory calls with BLAS-
on-flash variants with minimal modifications to existing
pipelines. We demonstrate this by replacing memory-
intensive kernels in the ISLE topic modeling algorithm,
with a BLAS-on-flash variant, one kernel at a time.

472 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Library Design
BLAS-on-flash supports online scheduling of tasks from
a user-defined dynamic graph using a limited DRAM
budget with the aim of executing it at near in-memory
performance. This requires addressing two resource
management problems: (1) effective utilization of the
limited DRAM budget by avoiding redundant copies of
data shared between tasks, and (2) realizing effective
pipelining of computation and IO by better utilization
of the limited disk bandwidth offered by PCIe-based
SSDs. The library addresses these problems by improv-
ing buffer reuse, and determining a task schedule likely
to minimize disk reads and writes.

We use the gemm kernel operating on single preci-
sion floating point matrices as an example. The follow-
ing calculation illustrates the gap between the running
times of an in-memory and an SSD-based version on a
machine, test, with 32 cores capable of 1TFLOPs, and
an NVMe SSD with sustained read and write bandwidths
of 3GB/s and 0.5GB/s, respectively. Assume that the in-
put and output matrices are of size 32768× 32768 each,
blocked as in Figure 1. Assume that the matrix block
size is 8192 × 8192. Each task in the gemm kernel re-
quires 1TFLOP of compute on 768MB of input to pro-
duce 256MB output. On the test system, each such
task requires 0.75s of IO time for 1s of compute, when
using all 32 threads for one task. Since every task has
the same IO and compute requirements, a gemm kernel
with 64 tasks would take 112s to execute out of memory
without pipelining, instead of 64s if executed completely
in memory. It is to be noted that, in reality, mixing reads
and writes results in reduced read throughput [3]. We do
not address this issue here. We instead focus on solving
the two problems stated above within the constraints set
by the hardware and OS. We are specifically interested in
buffer management policies that optimize performance
for DAGs arising from linear algebra kernels and algo-
rithms involving matrix operations.

3.1 Buffer Reuse
A task scheduler executing the DAG in Figure 1b might
execute tasks G1

0,0 and G0
1,0 concurrently. If the sched-

uler is naive, it might prefetch block B0,0 twice, thus
replicating it in memory. In addition to wasting limited
DRAM, this would waste the limited disk bandwidth.
Redundant reads can be eliminated, where possible, by
enforcing uniqueness of data in memory. The BLAS-on-
flash runtime ensures such uniqueness by using reference
counters for in-memory buffers (described Section 4), al-
lowing data reuse, where possible.

3.2 Prioritized Scheduling
Although Buffer Reuse reduces disk reads, the program-
mer still needs to carefully manage the order of task in-

File Handle

OS Kernel I/O

I/O Executor

Program Cache Prioritizer

Scheduler

Kernels

Figure 3: The BLAS-on-flash software stack.

jection to maximize data reuse between tasks active in
memory. To avoid the programmer this burden, and al-
low the scheduler to takeover this task, we propose a
heuristic to select a task for prefetching, based on data
currently buffered into memory and the IO requirements
of the tasks in the ready list. Our heuristic selects the
task that requires the minimum number of bytes to be
prefetched given the current contents of the memory
buffer. For kernels like gemm and csrmm, this heuris-
tic minimizes the number of input matrix blocks read by
scheduling tasks with high input and output locality. If
all matrix blocks are uniform in size, this also reduces
the number of write-back operations.

Suppose that, at some point, in an execution of the
gemm DAG in Figure 1, M = {A0,0, A1,0, A1,1, B0,0,
B1,0, B1,1, C0,0, C1,0, C1,1} is the set of blocks in mem-
ory, and the following tasks are executing concurrently.

G1
0,0 := gemm(A0,1, B1,0, C0,0, α, 1)

G0
1,0 := gemm(A1,0, B0,0, C1,0, α, β)

G1
1,1 := gemm(A1,1, B1,1, C1,1, α, 1)

G1
1,0 := gemm(A1,1, B1,0, C1,0, α, 1)

If G1
0,0, G

0
1,0, and G1

1,1 are the latest 3 tasks to com-
plete execution, G0

1,0’s child task, G1
1,0, is now ready for

execution. By scheduling G1
1,0 instead of the next-in-

queue task, G1
1,0 can immediately start execution with-

out requiring any IO. Since outputs from the accumulate
chains G0,0, G0,1, G1,0, and G1,1 exhibit high locality,
our heuristic schedules tasks from such nearby accumu-
late chains to reduce disk operations.

4 Architecture
The BLAS-on-flash library implementation consists of
the software stack in Figure 3. We describe the role of
each of the 5 layers:

File Handle provides a read-write interface using ac-
cess specifiers for all library calls. Implementations
can be specialized for hardware interfaces (e.g. NVMe,
SATA, or network) as required. We implement this in-
terface for SSDs using the Linux kernel asynchronous

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 473

IO syscall interface – io_submit to submit IO jobs
and io_getevents to reap job completions. Com-
pared to user-space NVMe drivers like SPDK [24] and
unvme [41], the io_submit syscall interface provides
a simpler interface for sector-level unbuffered asyn-
chronous IO with minimal performance penalties.

IO Executor maintains a thread-pool to service IO re-
quests generated by Program Cache. To exploit paral-
lelism and ensure correctness, IO Executor executes only
non-overlapping requests in parallel. A pair of requests
are overlapping if they modify at least one common sec-
tor on the disk. For example, consider Figure 1c. When
the leading dimension of a matrix block is aligned to
the device sector size, C2,2 and C2,3 can be operated
on concurrently. Otherwise, writes to common sectors
must be ordered to avoid data corruption. To detect over-
laps between requests, each write request is advertised to
other threads. A request is added to a thread-local back-
log queue if it overlaps with an advertised request. Each
thread in the thread-pool services its backlog queue with
a higher priority in its next cycle.

Program Cache is the memory subsystem for BLAS-
on-flash . It manages allocation, deallocation, prefetch,
and eviction of in-memory buffers. Program Cache al-
lows for buffer re-use by mapping access specifiers to
reference-counted in-memory buffers. Each map entry
is in one of four states - Active(A), Prefetch(P), Write-
Back(W), or Zero-Reference(Z). An entry in state A
indicates an active reference, i.e, at least one task has a
reference to the buffer. An entry in P is a prefetch in
progress, W is a write-back in progress, and Z is an en-
try with zero active references. Entries are one of 3 types
- R-only, W-only and RW, corresponding to read-only,
write-only and read-write entries. It uses this information
to serve four types of requests.

• COMMIT - commits a task to memory by ensuring all
inputs and outputs are mapped to in-memory buffers.
If some inputs/outputs are not already mapped, it
evicts some in-memory buffers to free up memory, al-
locates memory, and queues up prefetches to IO Ex-
ecutor. It also increases reference counts for mapped
buffers. State is unchanged if the request fails because
no entries were eligible for eviction.

• RELEASE - returns a task’s inputs and outputs; also
decreases reference counts for returned buffers.

• UPDATE - Checks and updates status of pending IO
operations.

• Batch HIT/MISS - Typical HIT/MISS queries on a
cache to aid prioritization during scheduling.

Program Cache entries transition states according to
Figure 4. R-Only, W-only and RW are transitions cor-
responding to read-only, write-only, and read-write en-
tries, respectively. If a COMMIT request is successful

Figure 4: State transition diagram for Program Cache
entries.

and a new entry is created, memory is allocated using
malloc. If the entry requires data on disk to be read
(R-only, RW), a prefetch is queued. Since entries in Z
already contain prefetched data, COMMIT requests tran-
sition them directly to A, avoiding a redundant read. En-
tries enter state A with exactly one active reference. Ad-
ditional COMMIT requests for entries inA only increase
reference counts, and RELEASE requests decrease the
same. Entries with zero active references in A transition
toZ, making them available for eviction. Evicting a dirty
entry (RW, W-only) queues a write-back and transitions
the entry from Z to W . Entries in P transition into A,
and those in W get de-allocated once their IO operations
are complete

Prioritizer uses Batch HIT/MISS queries on Program
Cache to rank the list of ready tasks in increasing order
of their prefetch sizes given the current cache state.

Scheduler provides an interface to inject tasks at run-
time. Once injected, tasks are executed using a 5-stage
pipeline — Wait, Ready, Prefetch, Compute, and Com-
plete. All tasks start out in Wait stage, and advance to
Ready stage when all its parents have finished Compute
stage. In each scheduling round, Scheduler tries a COM-
MIT request to Program Cache with the highest priority
task obtained from Prioritizer. If successful, this task
advances to Prefetch stage. When all its inputs and out-
puts are mapped to in-memory buffers, the task moves
to Compute stage. Tasks in Compute stage are executed
using a thread-pool maintained by Scheduler. Tasks fin-
ishing Compute stage are recorded as Complete, and
Scheduler issues a RELEASE request to Program Cache
with these completed tasks. Once all tasks in a kernel are
complete, Scheduler allows the programmer to flush any
outputs in Program Cache to persist results to disk.

5 Algorithms and Evaluation
We now discuss the implementation of the kernels pro-
vided by the library and complex algorithms built us-
ing these kernels, and compare the running times and
memory requirements of in-memory and SSD-based ver-
sions. We implemented an eigensolver, an SVD-based

474 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.6

0.8

1

1.2

1.4

1.6

1.8

16384 32768 65536 131072 262144

Reduction Dimension (d) ⟶

z840 L32s VM sandbox

0.6

0.8

1

1.2

1.4

1.6

1.8

15000 31000 63000 127000 255000

Reduction Dimension (d) ⟶

z840 L32s VM sandbox

Figure 5: Ratio of in-memory MKL gemm to BLAS-on-flash gemm running times for 512-aligned (left) and unaligned
(right) instances for various values of reduction dimension (d). The matrix dimensions are 215× d× 215 and 31000×
d × 31000 for the aligned and unaligned plots. BLAS-on-flash library has a 8GB Program Cache. gemm tasks in
BLAS-on-flash library use 4 threads each. Program Cache budget determines the number of simultaneous tasks.

algorithm for topic modeling, and two inference algo-
rithms for XML models. This choice of algorithms rep-
resents the state-of-the-art for a subset of non-deep learn-
ing problems used in ranking and relevance pipelines.
Where available, we compare our implementations of
these algorithms with prior implementations.

5.1 Experimental setup
The library allows the user to control the number of
threads per task (T) and the maximum number of tasks
that can be simultaneously executed (K). On a machine
with N cores, one would typically choose T ×K = N .
Within this constraint, the optimal values of T andK are
determined by the compute-communication ratio of the
task and the parallelism within the task. For the pipeline
to execute K tasks in parallel in steady state, the Sched-
uler needs to hold 3K tasks in memory to account for K
tasks each in Prefetch, Compute and Complete stages of
the pipeline. Therefore, in the case of gemm and csrmm
kernels, setting T=1 and K=N increases pressure on
disk and Program Cache. On the other hand, when K=1
with T=N , MKL does not realize T -fold parallelism
with small block sizes. We find T=4, K=N/4 to be a
good tradeoff, empirically.

Table 1 lists the configurations of machines used to
evaluate our library. sandbox is a high-end bare-metal
server with enterprise class Samsung PM1725a SSD ca-
pable of sustained read speeds of up to 4GB/s and write
speeds of up to 1GB/s. z840 is chosen to represent a
typical bare-metal workstation machine configured with
two Samsung 960EVO SSDs in RAID0 configuration,
providing sustained read speed of about 3GB/s and write
speed of about 2.2GB/s. L32s VM is a virtual machine
on Azure configured for heavy IO with I/O throttled to a
sustained 1.6GB/s or 160K IO ops/second. M64-32ms
VM is a virtual machine on Azure with 1.7TB RAM
that we’ll use for running experiments with large mem-

Name Processor Cores RAM SSD

sandbox Gold 6140 36 512GB 3.2TB
z840 E5-2620v4 16 32GB 2TB

L32s VM E5-2698Bv3 32 256GB 6TB
M64-32ms VM E7-8890v3 32 1.7TB –
DS14v2 VM E5-2673v3 16 112GB –

Table 1: Intel Xeon-based machines used in experiments.

ory requirements. We use Intel MKL 2018 and Ubuntu
16.04LTS on all the machines listed above. Apache
Spark instances run Apache Spark MLlib 2.1 on a cluster
of Azure DS14v2 VM instances.

5.2 Matrix kernels
General Matrix Multiply (gemm) and Sparse (CSR) Ma-
trix Multiply (csrmm) are perhaps the most used kernels
in math libraries. Therefore, it is important to optimize
their performance with careful selection of tiling patterns
and prefetch and execution orders in order to minimize
IO. For this, we build on well-established results on ex-
ploiting locality in matrix multiplications [5, 28, 30]. We
also use the fact that BLAS and sparseBLAS computa-
tions can be tiled so that they write the output to disk just
once [12, 13], thus saving on write bandwidth.
gemm. The block matrix multiplication algorithm in
Figure 1 requires O(n3) floating point operations for
n × n matrices. With block size b, it reads O(n3/b)
bytes from disk and writes O(n2) bytes back. It is ideal
for the library to increase the block size b as much as its
in-memory buffer allows so as to decrease the amount of
IO required. Figure 5 presents the ratio of running times
of the in-memory MKL gemm call to that of our library
for various reduction dimension sizes in two cases:
• 512-aligned. A matrix is 512-aligned if the size

of its leading dimension is a multiple of 512. e.g., a
1000x1024 floatmatrix in row-major layout, that
would require 4096 bytes for each row.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 475

• unaligned. A matrix is unaligned if it is not 512-
aligned, e.g., a 500x500 float matrix in row-
major form, that would require 2000 bytes per row.

The distinction between 512-aligned and unaligned
matrices is important as the two cases generate a different
number of disk access when a block of the matrix is to be
fetched or written to. Flushing an unaligned matrix block
to disk requires two reads and one write per row – read
the start and end sectors of each row in the block, and
write-back the overwritten values. A 512-aligned block
requires only one write per row.

We define the reduction dimension (RD) to be the di-
mension along which summation happens during matrix
multiplication. Using notation from Figure 1, if A,B,
and C are all stored in row-major form, the RD is the
number of columns in A. Given a block size, increas-
ing the RD increases the length of the accumulate chain,
resulting in fewer disk writes per chain. Pipelining effi-
ciency increases with longer accumulate chains, due to
lower write-back operations per chain, as demonstrated
by Figure 5. In fact, due to careful pipelining, our library
outperforms in-memory MKL calls in many instances.

We also evaluated the performance of gemm when
DRAM overflow is serviced by OS paging mechanisms.
We timed a problem of dimension 49K × 49K × 49K
(30GB size) on the z840 machine with 32GB and 16GB
of RAM. For runs with 16GB RAM, we pin a 128GB
swap partition to the SSD. The OS-paged version with
16GB RAM ran 1.6× slower than the in-memory ver-
sion with 32GB RAM. On a larger problem size (64K ×
64K×64K, 48GB size) and 16GB RAM, OS paging re-
sults in a more substantial slowdown – about 13x slower
than what in-memory version would have taken.
csrmm. The csrmm kernel performs O(n3s) float-
ing point operations on n × n size input matrices with
sparsity s, representing inputs of size O(n2(1 + s)) and
output of n2 size. For a matrix whose sparsity is uni-
form across rows and columns, with a block size of b,
the compute to IO ratio is only O(bs) as opposed to
O(b) for gemm. For sparse matrices such as those in
Table 2 arising from text data (e.g. bag-of-words repre-
sentation), sparsity can be as low as s = 10−4. There-
fore, although the execution of in-memory csrmm tasks
is slower (sparse operations are 10 − 100× slower than
dense operations), the low locality (bs as opposed to b)
makes it hard to always obtain near in-memory perfor-
mance. Figure 6 demonstrates the effect of sparsity on
csrmm by fixing the problem dimensions at 220× 217×
212 and measuring the ratio of in-memory to BLAS-on-
flash running times for s ∈ {10−4, 10−3, 10−2}. It is ev-
ident that the efficiency of the csrmm kernel decreases
with sparsity.

We also benchmark the csrmm call required to project
the sparse bag-of-words datasets listed in Table 2 into

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01

Sparsity ⟶

z840

L32s VM

sandbox

Figure 6: Ratio of in-memory MKL csrmm to BLAS-
on-flash csrmm running times for (220 × 217 × 212)
sized instances and various values of sparsity. BLAS-on-
flash uses a 8GB Program Cache. Each csrmm task uses
4 threads and the number of simultaneous tasks is deter-
mined by number of cores in the system.

Dataset #Cols #Rows NNZs Tokens Size

Small 8.15M 140K 428M 650M 10.3GB
Medium 22M 1.56M 6.3B 15.6B 151GB

Large 81.7M 2.27M 22.2B 65B 533GB

Table 2: Sparse matrices bag-of-words text data sets.
Columns and rows of the matrix represent the documents
and words in the vocabulary of a text corpora. The (i, j)-
th entry of the matrix represents the number of times the
j-th word in the vocabulary occurs in the i-th document.

a 1024-dimensional space (say, obtained from Principal
Component Analysis). The dense input and output ma-
trices are 512-aligned and in row-major format. A per-
formance drop is expected in the unaligned case.

Table 3 compares the performance of the csrmm in
BLAS-on-flash to the in-memory version provided by
MKL on z840 , L32s VM and sandbox machines.
z840 is too small to run the in-memory version for
all three data sets because it has only 32GB RAM.
Since projecting the Large dataset into 1024 dimen-
sions requires 559GB of RAM, both L32s VM and
sandbox are unable to do it in memory. As an ap-
proximation to the speed of an in-memory call on L32s
VM we ran it on M64-32ms VM which has 1.7TB RAM.

Despite a sparsity of 2×10−4, the csrmm in BLAS-on-
flash is about 50% as fast as its in-memory counterpart on
the Medium dataset (when the dense matrices are in row-
major layout). We picked row-major order for dense ma-
trices because our library was able to outperform MKL’s
csrmm implementation for column-major order by a fac-
tor of > 2× on Small and Medium datasets. We attribute
this to poor multi-threading in MKL’s implementation.

5.3 Eigensolver
Eigen-decomposition is widely used in data analytics,
e.g., dimensionality reduction. Given a symmetric ma-
trix A, a symmetric eigensolver attempts to find k

476 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Dataset z840 L32s VM sandbox
flash in-mem flash in-mem flash

Small 34.7 8.2 24.5 6.9 35.2
Medium 135.75 58.5 101.3 49.5 98.0

Large 636.2 512.3* 390.6 – 354.9

Table 3: Running times in seconds for csrmm operations
that project datasets in Table 2 into 1024-dimensions.
BLAS-on-flash has a 16GB Program Cache. *This is run
on M64-32ms VM as an approximation to L32s VM .

eigenvalue-eigenvector pairs (λi,vi) such that
Avi = λivi ∀i

vT
i vj = 0, ‖vi‖2 = 1 ∀i 6= j, |λ1| ≥ |λ2| . . . ≥ |λk|
Popular dimensionality reduction techniques like Prin-

cipal Component Analysis (PCA) and Singular Value
Decomposition (SVD) use the symmetric eigenvalue de-
composition (syevd) to compute the projection matri-
ces required for dimensionality reduction. The SVD of
a matrix M can be formulated as a symmetric eigen-
decomposition problem as follows:

Mui = σivi, ‖vi‖2 = ‖ui‖2 = 1∀i
uT
i uj = 0, vT

i vj = 0∀i 6= j, |σ1| ≥ |σ2| ≥ . . . ≥ |σk|
MMTui = σ2

i ui, M
TMvi = σ2

i vi

svd(M) = syevd(MMT) = syevd(MTM)

To showcase the versatility of our library, we imple-
ment a symmetric eigensolver and time it on large sparse
matrices (in CSR format) obtained from text corpora in
Table 2. Among the many flavors of eigensolvers, we
picked the Krylov-subspace class of algorithms as they
have been shown to be stable for a wide variety of matri-
ces. These algorithms use iterated Sparse Matrix-Vector
(csrgemv) products to converge on eigen-pairs.

Since csrgemv is bandwidth-bound, it is not suitable
for an eigensolver operating on SSD-resident matrices.
To overcome this limitation, we implement the Restarted
Block Krylov-Schur (Block KS) algorithm [67]. The
Block KS algorithm can potentially use fewer matrix ac-
cesses to achieve the same tolerance by using a csrmm
kernel in place of csrgemv. Although the Block KS
algorithm performs extra computation compared to its
non-block variants, this extra work is highly parallel and
the IO savings offset the extra compute.

Analysis of eigenvalues of our sparse matrices reveals
a large gap between successive eigenvalues. Since time
to convergence is inversely correlated with this gap, the
Block KS algorithm converges quickly, to the desired tol-
erance, on our test datasets.

Evaluation. We benchmark both our in-memory and
SSD-based single node implementations of the Block
KS algorithm against single node and distributed imple-
mentations of the Implicitly Restarted Arnoldi Method

(IRAM) algorithm. The single node version is pro-
vided by Spectra [48], a C++ header-only implemen-
tation of ARPACK [35], while the distributed version
(computeSVD) is provided by Apache Spark MLlib li-
brary v2.1. The Spark job was deployed on both a shared
and a dedicated Hadoop cluster through YARN [55] to
workers with 1 core and 8GB memory each and a driver
node with 96GB memory. The shared cluster runs Xeon
E5-2450L processors with 10Gb Ethernet, while the
dedicated cluster uses DS14v2 VM nodes. Other dis-
tributed SVD solvers, such as those provided by ScaLA-
PACK and Spark KeystoneML, do not adequately sup-
port sparse matrices, and are omitted from this compari-
son.

Table 4 compares the time taken to solve for the top
singular values of sparse matrices in Table 2 to a toler-
ance of 10−4 (this is sufficient for the SVD-based topic
modeling algorithm described in Section 5.4). It must be
noted that computeSVD uses double precision floating
point numbers while our algorithm uses single precision.
We solve for 200 singular values on the large data set and
500 on the Medium data set because the Spark solver was
unable to solve for more. Our implementation, on the
other hand, easily scales to thousands of singular values
on a single node.

The flash version of Block KS runs almost as fast
as the in-memory version on datasets with sparsity up
to 10−3; the gap widens as sparsity decreases below
10−4. Further, both Block KS implementations outper-
form Spectra and Spark jobs in time to convergence.
Spark does not see any benefit from adding more work-
ers beyond a point; in fact it becomes slower. These
results demonstrate that our flash-based eigensolver uti-
lizes hardware order(s) of magnitudes more efficiently
than distributed methods.

5.4 SVD-based Topic Modeling
Topic modeling involves the recovery of underlying top-
ics from a text corpus where each document is repre-
sented by the frequency of words that occur in it. Mathe-
matically, the problem posits the existence of a topic ma-
trix M whose columns M.l are probability distributions
over the vocabulary of the corpus. The observed data
is assumed to be generated by (1) picking a matrix W ,
whose columns sum to one and represent linear combina-
tions of topic columns in M , (2) calculating P = MW ,
where the j-th column P.j represents the probability of
words in the document j, and (3) sampling the observed
documentsA.j using a multinomial distribution based on
the p.d.f. P.j . The computational problem is to recover
the underlying topic matrixM , given the observationsA.

ISLE, or Importance Sampling for Learning Edge top-
ics, is a direct adaption of the TSVD algorithm [6] for
recovering topic models [42]. Unlike the LDA class

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 477

Dataset Block Krylov-Schur Spectra computeSVD (shared) computeSVD (dedicated)
(#eigenvalues) L32s VM sandbox Number of Spark Executors Number of Spark Executors

in-mem flash in-mem flash 64 128 256 512 64 128 256 512

Medium(500) 76 182 63 95 934 320 275 365 450 460 225 228 226
Large (200) 154∗ 429 – 153 – – – 169 230 236 126 104 164

Table 4: Time, in minutes, to compute eigenvalues. For both Medium and Large datasets, Block KS is run with
block=25. For Medium, nev=500 and ncv=2500 and for Large, nev=200 and ncv=1500. We run Block KS in-memory
on M64-32ms VM as an approximation to L32s VM . Spark MLlib’s computeSVD was timed with 64, 128, 256,
512 workers with 8GB memory on both a shared and a dedicated cluster. The Large dataset needs at least 256 workers
to run on the shared cluster. On stand alone cluster with 64 works, the Large dataset needed 10GB memory per worker.

of algorithms (based on MCMC techniques), ISLE uses
linear-algebraic techniques to provably recover the un-
derlying topic matrix under reasonable assumptions on
the observed data. Empirically, it has been shown to
yield qualitatively better topics on real world data. The
open source implementation [42] is faster than other
single node implementations of any topic modeling al-
gorithms. It takes as input bag-of-words representation
for documents in CSR or CSC format, and does the fol-
lowing steps: (1) threshold to denoise the data, (2) use
SVD to compute a lower dimensional space to project the
documents into, (3) cluster documents using k-means++
initialization and the k-means algorithm in the projected
space, (4) use the resultant clusters to seed clustering in
the original space using the k-means algorithm, and fi-
nally (5) construct the topic model. For large datasets,
sampling techniques can be used to pick a subset of data
for the expensive steps (2), (3), and (4). We adapt ISLE
to use the BLAS-on-flash framework by leveraging our
flash-based Block KS eigensolver and the clustering al-
gorithms built using our framework.

Evaluation. Table 5 compares the running times of
the in-memory version and a flash-based version us-
ing the BLAS-on-flash library. Using this redesigned
pipeline, we were able to train a 5000-topic model with
a DRAM requirement of 1.5TB on both L32s VM and
sandbox machines with only 32GB allocated to Pro-
gram Cache. We note that the number of tokens in this
dataset (about 65 billion) is in the same ballpark as the
number of tokens processed by LDA-based topic mod-
eling algorithms in Parameter Server based systems that
use multiple nodes [37].

On the Medium dataset, where it is possible to run
an in-memory version, notice that the code linked to
BLAS-on-flash achieved about 65−80% in-memory per-
formance using less than 128GB RAM. On the Large
dataset, the flash version run on sandbox is faster than
the in-memory version on M64-32ms VM . We attribute
this to newer hardware on sandbox , and near in-
memory performance of eigensolver and kmeans kernels
written with BLAS-on-flash .

Dataset Sample
Rate

sandbox L32s VM
(# Topics) in-mem flash in-mem flash

Small(1K) 1.0 15 27 18 37
Medium(1K) 0.1 46 66 63 72
Medium(2K) 0.1 119 144 158 212

Large(1K) 0.1 – 149 163* 172
Large(2K) 0.1 – 228 285* 279
Large(5K) 0.1 – 522 980* 664
Large(2K) 0.4 – 532 684* 869

Table 5: Running time of the ISLE algorithm in minutes.
*We use M64-32ms VM as an approximation to L32s
VM for the Large dataset.

5.5 Extreme Multi-Label Learning
Extreme multi-label learning (XML) addresses the prob-
lem of automatically annotating a data point with the
most relevant subset of labels from an extremely large
label set. It has many applications in tagging, ranking
and recommendation. Many popular XML algorithms
use tree based methods due to their low training and pre-
diction complexity. In this subsection, we present exper-
iments with two such algorithms that use ensembles of
trees: PfastreXML [29] and Parabel [46].

In a current deployment, both algorithms train an en-
semble of trees (50 trees for PfastreXML, 3 for Parabel)
using 40 million data points, each of which is a sparse
vector in 4.5M dimensions. Once trained, each tree in the
ensemble predicts label probabilities for 250M test data
points. Both training and inference are difficult to scale –
training requires weeks on a machine with few terabytes
of RAM, and inference currently requires dozens of ma-
chines. As XML algorithms are applied to larger prob-
lems (e.g. web search), they need to scale to datasets with
billions of points and hundreds of millions of labels, and
train trees that are hundreds of gigabytes in size.

Because of the memory limitations of the platforms on
which these algorithms are deployed, orchestrating data
and models out of SSDs becomes critical. We demon-
strate the capabilities of our library in such cases. We
focus on inference since it is run more frequently than
training. Similar techniques can be applied for training.

478 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 PfastreXML Inference
1: function CLASSIFY(N , v)
2: if N is leaf then
3: return N.prob
4: else
5: if 〈N.w, v〉+N.b > 0 then
6: return CLASSIFY(N.right, v)
7: else
8: return CLASSIFY(N.left, v)

Algorithm 2 Parabel Inference
1: function SCORE(T , v, α, k)
2: L← [(T, 0.0)]
3: for each level in T from root to leaves do
4: L′ ← []
5: for (N, s) in L do
6: sl ← 〈N.wl, v〉+N.bl
7: sr ← 〈N.wr, v〉+N.br
8: sl ← α · s−max(0, 1− sl)2
9: sr ← α · s−max(0, 1− sr)2

10: Append [(N.left, sl), (N.right, sr)] to L′

11: L← topk(L
′, k)

return L

PfastreXML: During training, trees are grown by re-
cursively partitioning nodes starting at the root until each
tree is fully grown. A node N is split by learning a hy-
perplane N.w and bias N.b to partition training points
between its left and right children, N.left and N.right.
Node partitioning terminates when a node contains fewer
points than a threshold. Leaf nodes contain a probability
distribution over the label set (N.prob). During infer-
ence, a tree with root R assigns the probability vector
over labels for a point v dictated by CLASSIFY(R, v).

Parabel: During training, a tree T is grown by recur-
sively partitioning its nodes to distribute the labels. La-
bels assigned to a node N are partitioned in equal num-
bers to its two children, N.left and N.right. A node
N containing fewer labels than a threshold is split into
multiple leaf nodes with one label per leaf node. Each
tree node N contains two probabilistic linear classifiers,
with weights and biases (N.wl, N.bl) and (N.wr, N.br),
that decide whether the data point has relevant labels in
its left and right subtrees. These classifiers are trained
to maximize the a-posteriori probability distribution over
the training data. The Parabel inference algorithm is de-
scribed in Algorithm 2. α is a discount factor and k is
the beam width for beam search on tree T . topk(L, k)
returns the top k entries in list L, ordered by their scores
in descending order. Given a point, v, and the root node,
R, likely labels and their associated scores for v are con-
tained in the return value of SCORE(R, v, α, k).

The inference code downloaded for both algorithms
from the XML repository [8] is single-threaded and

takes about 440 hours and 900 hours for PfastreXML and
Parabel inference, respectively, on Azure D14v2 nodes
with 112GB RAM and 16 cores. The orchestration re-
quired to complete the inference in under two days is
complex and increases the likelihood of failures.

PfastreXML inference involves a depth-first traversal
of a non-balanced binary tree while Parabel inference
requires breadth-first beam search on a balanced binary
tree. In both cases, we noticed that the baseline code was
inefficient and modified the code to take a batch of test
data points (about 2-4 million per batch) and perform a
level-by-level, or breadth-first, traversal of the tree. With
this transformation, the new inference code was about
6× faster on nodes with a large amount of RAM. We
think this is close to the limit of how fast this inference
can run with DDR3 memory.

We use the BLAS-on-flash library to orchestrate the
level-by-level traversal of each tree for a batch of points.
For both algorithms, we construct one task for each
(level, batch) pair. For PfastreXML inference,
the DAG is data-dependent, while for Parabel, it is de-
pendent only on the tree height. Since inference is
data parallel, BLAS-on-flash can run tasks correspond-
ing to multiple batches concurrently. It also orders the
prefetches of tree levels and data to maximize re-use.

Evaluation. We compare the in-memory and BLAS-
on-flash variants of the inference code on models in two
regimes – Medium and Large. The Medium-sized mod-
els consist of 20GB trees containing about 25 million
nodes each, while the Large Parabel model consists of
122GB trees. The Medium-sized models fit in the mem-
ory of the largest machines used in the inference plat-
form, while the Large-sized model does not fit in the
memory of any machine in the platform. We use a to-
tal of 50 trees for PfastreXML and 3 for Parabel infer-
ence. Our test data consists of 250 million points, each a
sparse vector in 4.3M dimensions and taking up 500GB
of storage when stored in a compressed sparse format.

We benchmark both inference algorithms on z840 ,
L32s VM , and sandbox and use 221 points/batch
for z840 and 222 points/batch for L32s VM and
sandbox . The size of Program Cache for BLAS-
on-flash is set at 20GB for z840 and 40GB for L32s
VM and sandbox . We use 32 compute threads on
z840 and L32s VM and 64 threads on sandbox .

Table 6 presents the running times and memory re-
quirements of our code on the Medium and Large-sized
models. Inference code written with BLAS-on-flash runs
at over 90% of in-memory speed using only a third of the
required memory. The memory requirement can be fur-
ther reduced by decreasing the test batch size or by split-
ting each (level, batch) task into multiple tasks in
an accumulate chain. This reduction in working set, with
practically no impact on performance, critically enables

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 479

PfastreXML (50 trees) Parabel (3 trees)
in-mem flash in-mem flash

sandbox 45 (155) 51.0 (42) 27.3 (125) 25.3 (47.6)
L32s VM 69.2 (149) 67.0 (42) 44.3 (123) 45.8 (48)

z840 – 118 (26.2) – 71.5 (30.5)

Time (hours) RAM (GB)
in-mem flash in-mem flash

sandbox 51.7 57.0 241.3 80.1
L32s VM 108.4 118.2 235.5 80.9

Table 6: Running time in hours and peak DRAM usage in GB (inside parenthesis) for XML inference on 250 × 106

data points using an ensemble of medium-sized trees (left) and large Parabel trees (right). We used 64 threads on
sandbox and 32 threads on L32s VM and z840 . Inference with large Parabel tree uses 70GB Program Cache.

us to execute inference on larger models, that can provide
greater accuracy for ranking and relevance tasks.

6 Conclusion
We have demonstrated that (a) dense and sparse linear al-
gebra kernels can be designed to run at near in-memory
speeds on large SSD-resident datasets, (b) memory-
intensive algorithms built using the library can match
in-memory implementations, and (c) for complex nu-
merical algorithms like eigensolvers, careful co-design
of algorithm and software stack can offer large gains in
hardware utilization and keep the costs of data analytics
pipelines low.

Our results suggest that operating on data stored in
fast non-volatile memory on a single node could pro-
vide an efficient alternative to distributed big-data sys-
tems for training and inference of industrial scale ma-
chine learning models for algorithms with large memory
requirements. We do not make such claims about com-
putationally intensive workloads such as training CNNs
using GPUs. Further, our library provides a higher value
proposition for the large quantity of NVM storage al-
ready deployed as storage in data centers. Our library
can also be adapted to support GPU and other PCIe stor-
age devices like Optane with minor changes.

7 Other Related Work
Recent work [7, 12, 13] has studied parallel and se-
quential external memory algorithms in the setting where
writes to non-volatile memories are much more expen-
sive than reads. They conclude that for kernels like sort-
ing and FFTs, decreasing writes to non-volatile external
memory is possible at the price of more reads. However,
this is not the case in the case of linear algebra. Simple
reordering of the matrix tiles on which the in-memory
computation is performed can achieve asymptotic reduc-
tion in the amount of writes for gemm and csrmm calls
without increase in reads. We use this observation exten-
sively in our work.

FlashEigen [65] implements the Block KS eigensolver
for large-scale graph analysis using a custom filesys-
tem on an array of SSDs. While FlashEigen supports
only a limited set of matrix operations, our library al-
lows execution of user-defined computation graphs on

user-defined data structures. Our library uses separate
IO threads to effectively pipeline IO with computation
resulting in a narrow-gap with in-memory performance,
while FlashEigen worker threads perform IO and then
computation on matrix blocks assigned to them.

Partitioned Global Address Space systems such as
FaRM [19] and UPC [15, 21, 31, 66] that present an uni-
fied view of the entire memory available in a distributed
system present an alternative for programs considered
here to scale to larger data and model sizes. However,
the network bandwidth available presents a barrier to the
scalability of sparse kernels just as in the case of Spark.
Further, with careful co-design, we feel that a large range
of workloads (of up to a few terabytes in size) can be
processed on a single node without the cost overhead of
a cluster of RDMA-enabled nodes. Scaling our library to
such systems remains future work.

The problem of smart buffer-cache management for
SSDs and other non-volatile memories has been studied
in the database community. For example, Ma et al. [38]
evaluate design choices such as paging policies that arise
when one tries to extend in-memory database to hard-
drives, SSDs, 3D XPoint, etc. LeanStore [36] proposes
a new storage management system to extend in-memory
databases to SSDs with little overhead. In contrast, our
library relies on a task scheduler designed to better utilize
the buffer-cache for access patterns that typically arise in
linear algebra.

While our system uses existing processing and mem-
ory hardware, new hardware and accelerators that move
computation to the memory have been proposed. For ex-
ample, [1] proposes how expensive access patterns such
as shuffle, transpose, pack/unpack might be performed in
accelerator co-located with DRAM, and analyzes poten-
tial energy gains for math kernels from such accelerators.
Further, systems that proposes moving entire workloads
to memory systems have been proposed [23, 51, 57].

8 Acknowledgments
The authors would like to thank Anirudh Badam, Ravi
Kannan, Muthian Sivathanu, and Manik Varma for their
useful comments and advice.

480 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] AKIN, B., FRANCHETTI, F., AND HOE, J. C. Data reorganiza-

tion in memory using 3D-stacked DRAM. In Proceedings of the
42nd Annual International Symposium on Computer Architecture
(2015), ISCA ’15, ACM, pp. 131–143.

[2] AMD. RadeonTM Pro SSG. https://pro.radeon.com/
en/product/pro-series/radeon-pro-ssg/, 2018.

[3] ANANDTECH. Mixed Random Read/Write Per-
formance - Samsung 960 EVO (1TB) Review.
https://www.anandtech.com/show/10833/
the-samsung-960-evo-1tb-review/8, 2016.

[4] ARULRAJ, J., AND PAVLO, A. How to Build a Non-Volatile
Memory Database Management System. In Proceedings of the
2017 ACM International Conference on Management of Data
(2017), SIGMOD ’17, ACM, pp. 1753–1758.

[5] BALLARD, G., DEMMEL, J., HOLTZ, O., AND SCHWARTZ, O.
Minimizing Communication in Linear Algebra. SIAM Journal on
Matrix Analysis and Applications 32, 3 (2011), 866–901.

[6] BANSAL, T., BHATTACHARYYA, C., AND KANNAN, R. A prov-
able SVD-based algorithm for learning topics in dominant ad-
mixture corpus. In Proceedings of the 27th International Con-
ference on Neural Information Processing Systems - Volume 2
(Cambridge, MA, USA, 2014), NIPS’14, MIT Press, pp. 1997–
2005.

[7] BEN-DAVID, N., BLELLOCH, G. E., FINEMAN, J. T., GIB-
BONS, P. B., GU, Y., MCGUFFEY, C., AND SHUN, J. Parallel
Algorithms for Asymmetric Read-Write Costs. In Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures (2016), SPAA ’16, ACM, pp. 145–156.

[8] BHATIA, K., DAHIYA, K., JAIN, H., PRABHU, Y., AND
VARMA, M. The extreme classification repository: Multi-
label datasets and code. http://manikvarma.org/
downloads/XC/XMLRepository.html.

[9] BILENKO, M., FINLEY, T., KATZENBERGER, S., KOCHMAN,
S., MAHAJAN, D., NARAYANAMURTHY, S., WANG, J., WANG,
S., AND WEIMER, M. Salmon: Towards Production-Grade,
Platform-Independent Distributed ML. In The ML Systems Work-
shop at ICML (2016).

[10] BLACKFORD, L. S., DEMMEL, J., DONGARRA, J., DUFF, I.,
HAMMARLING, S., HENRY, G., HEROUX, M., KAUFMAN, L.,
LUMSDAINE, A., PETIET, A., POZO, R., REMINGTON, K.,
AND WHALEY, R. C. An Updated Set of Basic Linear Alge-
bra Subprograms (BLAS). ACM Trans. Math. Softw. 28, 2 (June
2002), 135–151.

[11] BLEI, D. M., NG, A. Y., AND JORDAN, M. I. Latent Dirichlet
Allocation. J. Mach. Learn. Res. 3 (Mar. 2003), 993–1022.

[12] BLELLOCH, G. E., FINEMAN, J. T., GIBBONS, P. B., GU, Y.,
AND SHUN, J. Sorting with Asymmetric Read and Write Costs.
In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (2015), SPAA ’15, ACM, pp. 1–12.

[13] CARSON, E., DEMMEL, J., GRIGORI, L., KNIGHT, N.,
KOANANTAKOOL, P., SCHWARTZ, O., AND SIMHADRI, H. V.
Write-Avoiding Algorithms. In 2016 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS) (May 2016),
pp. 648–658.

[14] CHEN, J., LI, K., ZHU, J., AND CHEN, W. WarpLDA: a Cache
Efficient O(1) Algorithm for Latent Dirichlet Allocation. Proc.
VLDB Endow. 9, 10 (June 2016), 744–755.

[15] CHEN, W.-Y., BONACHEA, D., DUELL, J., HUSBANDS, P.,
IANCU, C., AND YELICK, K. A Performance Analysis of the
Berkeley UPC Compiler. In Proceedings of the 17th Annual
International Conference on Supercomputing (2003), ICS ’03,
ACM, pp. 63–73.

[16] DHULIPALA, L., BLELLOCH, G., AND SHUN, J. Julienne: A
Framework for Parallel Graph Algorithms using Work-efficient
Bucketing. In Proceedings of the 29th ACM Symposium on Paral-
lelism in Algorithms and Architectures (2017), SPAA ’17, ACM,
pp. 293–304.

[17] DINH, D., SIMHADRI, H. V., AND TANG, Y. Extending the
Nested Parallel Model to the Nested Dataflow Model with Prov-
ably Efficient Schedulers. In Proceedings of the 28th ACM Sym-
posium on Parallelism in Algorithms and Architectures (2016),
SPAA ’16, ACM, pp. 49–60.

[18] DMTK. Multiverso: Parameter Server for Distributed Ma-
chine Learning. https://github.com/Microsoft/
Multiverso, 2015.

[19] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. FaRM: Fast Remote Memory. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
2014) (April 2014).

[20] DUFF, I. S., HEROUX, M. A., AND POZO, R. An Overview of
the Sparse Basic Linear Algebra Subprograms: The New Stan-
dard from the BLAS Technical Forum. ACM Trans. Math. Softw.
28, 2 (June 2002), 239–267.

[21] EL-GHAZAWI, T., AND SMITH, L. UPC: Unified Parallel C. In
Proceedings of the 2006 ACM/IEEE Conference on Supercom-
puting (2006), SC ’06, ACM.

[22] GITTENS, A., DEVARAKONDA, A., RACAH, E., RINGEN-
BURG, M., GERHARDT, L., KOTTALAM, J., LIU, J.,
MASCHHOFF, K., CANON, S., CHHUGANI, J., SHARMA, P.,
YANG, J., DEMMEL, J., HARRELL, J., KRISHNAMURTHY, V.,
MAHONEY, M. W., AND PRABHAT. Matrix Factorizations at
Scale: a Comparison of Scientific Data Analytics in Spark and
C+MPI Using Three Case Studies. ArXiv e-prints (July 2016).

[23] GUO, Q., GUO, X., BAI, Y., AND İPEK, E. A Resistive TCAM
Accelerator for Data-Intensive Computing. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microar-
chitecture (2011), MICRO-44, ACM, pp. 339–350.

[24] INTEL. Storage Performance Development Kit (SPDK), 2016.

[25] INTEL R©. OptaneTM memory. https:
//www.intel.com/content/www/us/en/
architecture-and-technology/optane-memory.
html, 2017.

[26] INTEL R©. Math Kernel Library. https://software.
intel.com/en-us/mkl, 2018.

[27] INTEL R©. Math Kernel Library Sparse BLAS level 2
and 3 routines. https://software.intel.com/
en-us/mkl-developer-reference-c-sparse-\
blas-level-2-and-level-3-routines, 2018.

[28] IRONY, D., TOLEDO, S., AND TISKIN, A. Communication
lower bounds for distributed-memory matrix multiplication. J.
Parallel Distrib. Comput. 64, 9 (Sept. 2004), 1017–1026.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 481

[29] JAIN, H., PRABHU, Y., AND VARMA, M. Extreme Multi-
label Loss Functions for Recommendation, Tagging, Ranking and
Other Missing Label Applications. In Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining
(August 2016).

[30] JIA-WEI, H., AND KUNG, H. T. I/O Complexity: The Red-
Blue Pebble Game. In Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing (1981), STOC ’81, ACM,
pp. 326–333.

[31] KAMIL, A., ZHENG, Y., AND YELICK, K. A local-view array li-
brary for partitioned global address space C++ programs. In Pro-
ceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming (2014), AR-
RAY’14, ACM, pp. 26:26–26:31.

[32] KANNAN, R., VEMPALA, S., AND VETTA, A. On Clusterings:
Good, Bad and Spectral. J. ACM 51, 3 (May 2004), 497–515.

[33] KUMAR, A., SINDHWANI, V., AND KAMBADUR, P. Fast Coni-
cal Hull Algorithms for Near-separable Non-negative Matrix Fac-
torization. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28
(2013), ICML’13, JMLR.org, pp. I–231–I–239.

[34] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C. GraphChi:
Large-Scale Graph Computation on Just a PC. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2012), OSDI’12, USENIX
Association, pp. 31–46.

[35] LEHOUCQ, R., MASCHHOFF, K., SORENSEN, D., AND YANG,
C. ARPACK Software. http://www.caam.rice.edu/
software/ARPACK/, 2009.

[36] LEIS, V., HAUBENSCHILD, M., KEMPER, A., AND NEUMANN,
T. LeanStore: In-Memory Data Management Beyond Main
Memory. In Proceedings of the 34th IEEE International Con-
ference on Data Engineering (2018).

[37] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J.,
AHMED, A., JOSIFOVSKI, V., LONG, J., SHEKITA, E. J., AND
SU, B.-Y. Scaling Distributed Machine Learning with the Param-
eter Server. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (Berkeley, CA,
USA, 2014), OSDI’14, USENIX Association, pp. 583–598.

[38] MA, L., ARULRAJ, J., ZHAO, S., PAVLO, A., DULLOOR, S. R.,
GIARDINO, M. J., PARKHURST, J., GARDNER, J. L., DOSHI,
K., AND ZDONIK, S. Larger-than-Memory Data Management
on Modern Storage Hardware for In-Memory OLTP Database
Systems. In Proceedings of the 12th International Workshop on
Data Management on New Hardware (2016), DaMoN ’16, ACM,
pp. 9:1–9:7.

[39] MCSHERRY, F., ISARD, M., AND MURRAY, D. G. Scalability!
But at what COST? In Proceedings of the 15th USENIX Confer-
ence on Hot Topics in Operating Systems (Berkeley, CA, USA,
2015), HOTOS’15, USENIX Association, pp. 14–14.

[40] MENG, X., BRADLEY, J., YAVUZ, B., SPARKS, E.,
VENKATARAMAN, S., LIU, D., FREEMAN, J., TSAI, D.,
AMDE, M., OWEN, S., XIN, D., XIN, R., FRANKLIN, M. J.,
ZADEH, R., ZAHARIA, M., AND TALWALKAR, A. MLlib: Ma-
chine Learning in Apache Spark. J. Mach. Learn. Res. 17, 1 (Jan.
2016), 1235–1241.

[41] MICRONSSD. UNVMe - A User Space NVMe Driver, 2016.
https://github.com/MicronSSD/unvme.

[42] MICROSOFT. ISLE: Importance sampling-based algorithms
for large scale topic modeling. https://github.com/
Microsoft/ISLE, 2018.

[43] NICKOLLS, J., BUCK, I., GARLAND, M., AND SKADRON, K.
Scalable Parallel Programming with CUDA. Queue 6, 2 (Mar.
2008), 40–53.

[44] NVIDIA. cuSPARSE library. http://docs.nvidia.com/
cuda/cusparse/index.html, 2017.

[45] PCI-SIG. PCI Express Base Specification Revision 4.0, Version
1.0. https://members.pcisig.com/wg/PCI-SIG/
document/10912?downloadRevision=active, Octo-
ber 2017.

[46] PRABHU, Y., KAG, A., HARSOLA, S., AGRAWAL, R., AND
VARMA, M. Parabel: Partitioned Label Trees for Extreme Classi-
fication with Application to Dynamic Search Advertising. In Pro-
ceedings of the International World Wide Web Conference (April
2018).

[47] PRABHU, Y., AND VARMA, M. FastXML: A Fast, Accurate and
Stable Tree-classifier for eXtreme Multi-label Learning. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2014), KDD ’14, ACM,
pp. 263–272.

[48] QIU, Y. Spectra - Sparse Eigenvalue Computation Toolkit as a
Redesigned ARPACK, 2015. https://spectralib.org.

[49] ROCKLIN, M. Dask: Parallel computation with blocked algo-
rithms and task scheduling. In Proceedings of the 14th Python in
Science Conference (2015), pp. 130–136.

[50] SCALEMPTM . vSMP Foundation Flash Expansion. http://
www.scalemp.com/products/flx/, 2018.

[51] SHAFIEE, A., NAG, A., MURALIMANOHAR, N., BALASUBRA-
MONIAN, R., STRACHAN, J. P., HU, M., WILLIAMS, R. S.,
AND SRIKUMAR, V. ISAAC: A Convolutional Neural Network
Accelerator with In-situ Analog Arithmetic in Crossbars. In Pro-
ceedings of the 43rd International Symposium on Computer Ar-
chitecture (Piscataway, NJ, USA, 2016), ISCA ’16, IEEE Press,
pp. 14–26.

[52] SHUN, J., AND BLELLOCH, G. E. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In Proceedings of
the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (2013), PPoPP ’13, ACM, pp. 135–146.

[53] SHUN, J., ROOSTA-KHORASANI, F., FOUNTOULAKIS, K.,
AND MAHONEY, M. W. Parallel Local Graph Clustering. Proc.
VLDB Endow. 9, 12 (Aug. 2016), 1041–1052.

[54] SORENSEN, D. C. Implicit Application of Polynomial Filters in
a k-Step Arnoldi Method. SIAM Journal on Matrix Analysis and
Applications 13, 1 (1992), 357–385.

[55] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGAR-
WAL, S., KONAR, M., EVANS, R., GRAVES, T., LOWE, J.,
SHAH, H., SETH, S., ET AL. Apache Hadoop YARN: Yet An-
other Resource Negotiator. In Proceedings of the 4th annual Sym-
posium on Cloud Computing (2013), ACM, p. 5.

[56] VITTER, J. S. External Memory Algorithms and Data Structures:
Dealing with MASSIVE Data. ACM Comput. Surv. 33, 2 (June
2001), 209–271.

482 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[57] WANG, K., ANGSTADT, K., BO, C., BRUNELLE, N., SADRE-
DINI, E., TRACY, II, T., WADDEN, J., STAN, M., AND
SKADRON, K. An Overview of Micron’s Automata Processor. In
Proceedings of the Eleventh IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis
(2016), CODES ’16, ACM, pp. 14:1–14:3.

[58] WEIMER, M., CHEN, Y., CHUN, B.-G., CONDIE, T., CURINO,
C., DOUGLAS, C., LEE, Y., MAJESTRO, T., MALKHI, D.,
MATUSEVYCH, S., ET AL. REEF: Retainable Evaluator Exe-
cution Framework. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (2015), ACM,
pp. 1343–1355.

[59] XIANYI, Z. OpenBLAS. http://www.openblas.net/,
2017.

[60] XING, E. P., HO, Q., DAI, W., KIM, J.-K., WEI, J., LEE, S.,
ZHENG, X., XIE, P., KUMAR, A., AND YU, Y. Petuum: A New
Platform for Distributed Machine Learning on Big Data. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2015), KDD ’15, ACM,
pp. 1335–1344.

[61] YUAN, J., GAO, F., HO, Q., DAI, W., WEI, J., ZHENG, X.,
XING, E. P., LIU, T.-Y., AND MA, W.-Y. LightLDA: Big Topic
Models on Modest Computer Clusters. In Proceedings of the
24th International Conference on World Wide Web (Republic and
Canton of Geneva, Switzerland, 2015), WWW ’15, International
World Wide Web Conferences Steering Committee, pp. 1351–
1361.

[62] YUT, L., ZHANG, C., SHAO, Y., AND CUI, B. LDA*: A robust
and large-scale topic modeling system. Proc. VLDB Endow. 10,
11 (Aug. 2017), 1406–1417.

[63] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J.,
MCCAULY, M., FRANKLIN, M. J., SHENKER, S., AND STO-
ICA, I. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12) (San Jose, CA, 2012), USENIX, pp. 15–28.

[64] ZAHARIA, M., XIN, R. S., WENDELL, P., DAS, T., ARM-
BRUST, M., DAVE, A., MENG, X., ROSEN, J., VENKATARA-
MAN, S., FRANKLIN, M. J., GHODSI, A., GONZALEZ, J.,
SHENKER, S., AND STOICA, I. Apache spark: A unified en-
gine for big data processing. Commun. ACM 59, 11 (Oct. 2016),
56–65.

[65] ZHENG, D., BURNS, R., VOGELSTEIN, J., PRIEBE, C. E., AND
SZALAY, A. S. An SSD-based eigensolver for spectral analysis
on billion-node graphs. arXiv preprint arXiv:1602.01421 (2016).

[66] ZHENG, Y., KAMIL, A., DRISCOLL, M. B., SHAN, H., AND
YELICK, K. UPC++: A PGAS extension for C++. In Proceed-
ings of the 2014 IEEE 28th International Parallel and Distributed
Processing Symposium (Washington, DC, USA, 2014), IPDPS
’14, IEEE Computer Society, pp. 1105–1114.

[67] ZHOU, Y., AND SAAD, Y. Block Krylov–Schur method for large
symmetric eigenvalue problems. Numerical Algorithms 47, 4
(Apr 2008), 341–359.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 483

Tiresias: A GPU Cluster Manager for Distributed Deep Learning
Juncheng Gu1, Mosharaf Chowdhury1, Kang G. Shin1, Yibo Zhu2,3

Myeongjae Jeon2,4, Junjie Qian2, Hongqiang Liu5, Chuanxiong Guo3

1University of Michigan, 2Microsoft, 3Bytedance, 4UNIST, 5Alibaba

Abstract
Deep learning (DL) training jobs bring some unique chal-
lenges to existing cluster managers, such as unpredictable
training times, an all-or-nothing execution model, and inflex-
ibility in GPU sharing. Our analysis of a large GPU cluster in
production shows that existing big data schedulers cause long
queueing delays and low overall performance.

We present Tiresias, a GPU cluster manager tailored for
distributed DL training jobs, which efficiently schedules and
places DL jobs to reduce their job completion times (JCTs).
Given that a DL job’s execution time is often unpredictable,
we propose two scheduling algorithms – Discretized Two-
Dimensional Gittins index relies on partial information and
Discretized Two-Dimensional LAS is information-agnostic –
that aim to minimize the average JCT. Additionally, we de-
scribe when the consolidated placement constraint can be re-
laxed, and present a placement algorithm to leverage these
observations without any user input. Experiments on the
Michigan ConFlux cluster with 60 P100 GPUs and large-
scale trace-driven simulations show that Tiresias improves the
average JCT by up to 5.5× over an Apache YARN-based re-
source manager used in production. More importantly, Tire-
sias’s performance is comparable to that of solutions assum-
ing perfect knowledge.

1 Introduction
Deep learning (DL) is gaining rapid popularity in various do-
mains, such as computer vision, speech recognition, etc. DL
training is typically compute-intensive and requires power-
ful and expensive GPUs. To deal with ever-growing train-
ing datasets, it is common to perform distributed DL (DDL)
training to leverage multiple GPUs in parallel. Many platform
providers have built GPU clusters to be shared among many
users to satisfy the rising number of DDL jobs [1, 3, 4, 9]. In-
deed, our analysis of Microsoft traces shows a 10.5× year-by-
year increase in the number of DL jobs since 2016. Efficient
job scheduling and smart GPU allocation (i.e., job placement)
are the keys to minimizing the cluster-wide average JCT and
maximizing resource (GPU) utilization.

Due to the unique constraints of DDL training, we observe
two primary limitations in current cluster manager designs.

1. Naı̈ve scheduling due to unpredictable training time.
Although shortest-job-first (SJF) and shortest-remaining-
time-first (SRTF) algorithms are known to minimize the av-
erage JCT [23, 24], they require a job’s (remaining) execu-
tion time, which is often unknown for DL training jobs. Opti-
mus [34] can predict a DL training job’s remaining execution

time by relying on its repetitive execution pattern and assum-
ing that its loss curve will converge. However, such proposals
make over-simplified assumptions about jobs having smooth
loss curves and running to completion; neither is always true
in production systems (§2.2).

Because of this, state-of-the-art resource managers in pro-
duction are rather naı̈ve. For example, the internal solution of
Microsoft is extended from Apache YARN’s Capacity Sched-
uler that was originally built for big data jobs. It only per-
forms basic orchestration, i.e., non-preemptive scheduling of
jobs as they arrive. Consequently, users often experience long
queuing delays when the cluster is over-subscribed – up to
several hours even for small jobs (Appendix A).

2. Over-aggressive consolidation during placement. Ex-
isting cluster managers also attempt to consolidate a DDL job
onto the minimum number of servers that have enough GPUs.
For example, a job with 16 GPUs requires at least four servers
in a 4-GPUs-per-server cluster, and the job may be blocked if
it cannot find four completely free servers. The underlying
assumption is that the network should be avoided as much as
possible because it can become a bottleneck and waste GPU
cycles [31]. However, we find that this assumption is only
partially valid.

In this paper, we propose Tiresias, a shared GPU cluster
manager that aims to address the aforementioned challenges
regarding DDL job scheduling and placement (§3). To ensure
that Tiresias is practical and readily deployable, we rely on
the analysis of production job traces, detailed measurements
of training various DL models, and two simple yet effective
ideas. In addition, we intentionally keep Tiresias transparent
to users, i.e., all existing jobs can run without any additional
user-specified configurations.

Our first idea is a new scheduling framework (2DAS) that
aims to minimize the JCT when a DL job’s execution time
is unpredictable. We propose two scheduling algorithms un-
der this framework: Discretized 2D-LAS and Discretized 2D-
Gittins index. The Gittins index policy [8, 21] is known to be
the optimal in the single-server scenario in minimizing the av-
erage JCT when JCT distributions are known. Similarly, the
classic LAS (Least-Attained Service) algorithm [33] has been
widely applied in many information-agnostic scenarios, such
as network scheduling in datacenters [13, 17]. Both assign
each job a priority – the former uses the Gittins index while
the latter directly applies the service that job has received so
far – that changes over time, and jobs are scheduled in order
of their current priorities.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 485

Adapting these approaches to the DDL scheduling problem
faces two challenges. First, one must consider both the spatial
(how many GPUs) and temporal (for how long) dimensions
of a job when calculating its priorities. We show that sim-
ply considering one is not enough. Specifically, a job’s total
attained service in our algorithms jointly considers both its
spatial and temporal dimensions.

More importantly, because relative priorities continuously
change as some jobs receive service, jobs are continuously
preempted. Although this may be tolerable in networking sce-
narios where starting and stopping a flow is simpler, preempt-
ing a DDL job from its GPUs can be expensive because data
and model must be copied back and forth between the main
memory and GPU memory. To avoid aggressive job preemp-
tions, we apply priority discretization atop the two classic al-
gorithms – a job’s priority changes after fixed intervals.

Overall, when the cluster manager has the distribution of
previous job execution times that may still be valid in the near
future, our scheduling framework chooses the Discretized
2D-Gittins index. If no prior knowledge is available, Dis-
cretized 2D-LAS will be applied.

Our second idea is to use model structure to loosen the
consolidated placement constraint whenever possible. We ob-
serve that only certain types of DL models are sensitive to
whether they are consolidated or not, and their sensitivity is
due to skew in tensor size distributions in their models. We
use this insight to separate jobs into two categories: jobs that
are sensitive to consolidation (high skew) and the rest. We
implement an RDMA network profiling library in Tiresias
that can determine the model structure of DDL jobs through
network-level activities. By leveraging the profiling library
and the iterative nature of DDL training, Tiresias can trans-
parently and intelligently place jobs. Tiresias first runs the
job in a trial environment for a few iterations, and then de-
termines the best placement strategy according to the criteria
summarized from previous measurements.

We have implemented Tiresias1 and evaluated using un-
modified TensorFlow DDL jobs on a 15-server GPU cluster
(each server with four P100 GPUs with NVlink) using traces
derived from a Microsoft production cluster. We further eval-
uate Tiresias using large-scale trace-driven simulations. Our
results show that Tiresias improves the average JCT by up to
5.5× w.r.t. current production solutions and 2× w.r.t. Gan-
diva [41], a state-of-the-art DDL cluster scheduler. Moreover,
it performs comparably to solutions using perfect knowledge
of all job characteristics.

In summary, we make the following contributions:
• Tiresias is the first information-agnostic resource man-

ager for GPU clusters. Also, it is the first that applies
two-dimensional extension and priority discretization into
DDL job scheduling. It can efficiently schedule and place
unmodified DDL jobs without any additional information

1https://github.com/SymbioticLab/Tiresias

Global Model

Push

Pull

Worker1 Worker2 Worker3

Training Data

Local Model

PS1 PS2

Figure 1: Data parallelism & parameter server architecture. This
DDL job has two parameter servers (PS) and three workers.

from the users. When available, Tiresias can leverage par-
tial knowledge about jobs as well.

• Tiresias leverages a simple, externally-observable, model-
specific criteria to determine when to relax worker GPU
collocation constraints.

• Our design is practical and readily deployable, with sig-
nificate performance improvements.

2 Background and Motivation
2.1 Distributed Deep Learning (DDL)
As DL models become more sophisticated and are trained on
larger datasets, distributed training is becoming more preva-
lent (see Appendix A). Here, we focus on data parallelism,
which is the most common option for DDL training in popu-
lar DDL frameworks.2 As Figure 1 shows, each worker occu-
pies a GPU and works on its local copy of the DL model. The
training dataset is divided into equal-sized parts to feed the
workers. All jobs are trained in the synchronous mode which
has been observed often to achieve faster convergence than
asynchronous distributed training over GPUs [19].

Periodic iterations. DL training works in an iterative
fashion. In each iteration, workers first perform forward-
backward computation with one chunk of its training data
(minibatch). Workers then aggregate local results to update
the DL model with each other, which is referred to as model
aggregation. Since the computation load and the communica-
tion volume are exactly the same across iterations, the itera-
tion time of a DDL job is highly predictable.

Parameter server architecture. The parameter server (PS)
architecture [30] (Figure 1) is the most popular method for
model aggregation. The parameter server hosts the master
copy of the DL model. It is in charge of updating the model
using the local results from all workers. The workers pull
back the updated model from the parameter server at the be-
ginning of each iteration. There can be multiple parameter
servers in a single DDL job.

Trial-and-error exploration. Training a DL model is not
an one-time effort and often works in a trial-and-error

2There are other parallelization architectures, like model parallelism, which is job-
specific and much less popular.

486 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0
0.2
0.4
0.6
0.8

1

1 51 101 151 201 251N
or

m
. L

os
s V

al
ue

Epoch

0
0.2
0.4
0.6
0.8

1

1 6 11 16 21 26N
or

m
. L

os
s V

al
ue

Epoch

Figure 2: The training loss of two production jobs from Microsoft.

manner. DL model exposes many hyperparameters that ex-
press the high-level properties of the model. To get a high-
quality model, the combinations of hyperparameters need to
be explored in a very large search space; this is known as
hyperparameter-tuning [41, 44]. Users can use AutoML [2]
to perform this exploration efficiently and automatically by
using some searching tools [14]. In AutoML, many DL jobs
with different hyperparameter configurations are generated to
train the same job. Most of those jobs will be killed because
of random errors, or low quality of improvement. With the
feedbacks from early trials, AutoML can search new config-
urations and spawn new jobs. Only a very small portion of
those jobs with good qualities can run to completion.

2.2 Challenges
We highlight three primary challenges faced by DDL cluster
managers in production. These challenges originate from the
nature of DDL training and are not specific to the Microsoft
cluster. See Appendix A for more details about the Microsoft
cluster and its workload.

Unpredictable job duration. Current solutions that predict
DL job training times [34] all assume DL jobs to (1) have
smooth loss curves and (2) reach their training targets and
complete. However, for many poor models during a trial-and-
error exploration, their loss curves are not as smooth as the
curves of the best model ultimately picked at the end of explo-
ration. We show two representative examples from Microsoft
in Figure 2. The spikes in the first example and the non-
decreasing curve in the second example make it challenging
to predict when the target will be hit. In addition to these pro-
prietary models, popular public models sometimes also show
non-smooth curves [25]. Additionally, the termination condi-
tions of DL jobs are non-deterministic. In AutoML, most of
the trials are killed because of quality issues which are deter-
mined by the searching mechanism. Usually, users also spec-
ify a maximum epoch number to train for cases when the job
cannot achieve the training target. Therefore, a practical re-
source manager design should not rely on the accuracy/loss
curve for predicting eventual job completion time.

Over-aggressive job consolidation. Trying to minimize
network communication during model aggregation is a com-
mon optimization in distributed training because the network
can be a performance bottleneck and waste GPU cycles [31].
Hence, many existing GPU cluster managers blindly follow
a consolidation constraint when placing DDL jobs – specif-

0.4

0.6

0.8

1.0

1.2

VGG19

VGG16

VGG11

Alex
Net

ResN
et1

52

ResN
et1

01

ResN
et5

0

Incep
tio

n4

Incep
tio

n3

Goo
gle

Net

N
or

m
. P

er
fo

rm
an

ce
w.

r.t
. C

on
so

lid
at

io
n

8-worker normalized performance

Random Consolidation

Figure 3: 4 concurrent 8-worker jobs with different placement
schemes. The performance values are normalized by the value of
the consolidation scheme. We use the median value from 10 (20)
runs for consolidation (random) scheme.

ically, they assign all components (parameter servers and
workers) of the job to the same or the minimum number of
servers. A DDL job will often wait when it cannot be con-
solidated, even if there are enough spare resources elsewhere
in the cluster. Although this constraint was originally set for
good performance, it often leads to longer queuing delays and
resource under-utilization in practice.

To understand the importance of this constraint, we run
four concurrent 8-GPU jobs using different placement (ran-
dom and always-consolidate) strategies on eight 4-GPU
servers. Similar to [45], each job uses eight parameter servers
– the same as the number of workers. Figure 3 shows that
the locality of workers mainly impacts the VGG family and
AlexNet. Nevertheless, neither the cluster operator nor the
users can tell which category a job belongs to.

Time overhead of preemption. The current production
cluster does not preempt jobs because of large time over-
head. To show this, we manually test pausing and resuming a
DDL job on our local testbed. Upon pausing, the chief worker
checkpoints the most recent model on a shared storage. The
checkpointed model file will be loaded by all workers when
the job is resumed. Figures 4 and 5 show the detailed num-
bers. Whenever Tiresias preempts a job, we must take this
overhead into account.

2.3 Potential for Benefits
We can achieve large gains by mitigating two common myths.

Myth I: jobs cannot be scheduled well without exact job
duration. Despite the fact that DDL job durations are often
unpredictable, their overall distribution can be learned from
history logs. The Gittins index policy [21], which is widely
used for solving the classic multi-armed bandit problem [21],
can decrease the average JCT as long as the job duration dis-
tribution is given. Even without that information, the LAS al-
gorithm can efficiently schedule jobs based on their attained
service.

Myth II: DDL jobs should always be consolidated.
While it is true that consolidated placement of a job may min-
imize its commuication time, we find that some DDL jobs are
insensitive to placement. We identify that the core factor is the
model structure (§3.3).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 487

2.7 2.3 1.9 1.3

26.3

17.8

9.4

22.2

14.1

5.7

0
5

10
15
20
25
30

VGG19

VGG16

VGG11

Alex
Net

ResN
et1

52

ResN
et1

01

ResN
et5

0

Incep
tio

n4

Incep
tio

n3

Goo
gle

Net

C
he

ck
po

in
t t

im
e

(s
ec

on
d)

Figure 4: Time overhead of pausing a DDL
job in Tensorflow. Only the chief worker check-
points the most updated model.

0
10
20
30
40
50
60
70

1-
w

or
ke

r
2-

w
or

ke
r

8-
w

or
ke

r
1-

w
or

ke
r

2-
w

or
ke

r
8-

w
or

ke
r

1-
w

or
ke

r
2-

w
or

ke
r

8-
w

or
ke

r
1-

w
or

ke
r

2-
w

or
ke

r
8-

w
or

ke
r

1-
w

or
ke

r
2-

w
or

ke
r

8-
w

or
ke

r
1-

w
or

ke
r

2-
w

or
ke

r
8-

w
or

ke
r

1-
w

or
ke

r
2-

w
or

ke
r

8-
w

or
ke

r
1-

w
or

ke
r

2-
w

or
ke

r
8-

w
or

ke
r

1-
w

or
ke

r
2-

w
or

ke
r

8-
w

or
ke

r
1-

w
or

ke
r

2-
w

or
ke

r
8-

w
or

ke
r

VGG19 VGG16 VGG11 AlexNet ResNet152 ResNet101 ResNet50 Inception4 Inception3 GoogleNet

Ti
m

e (
se

co
nd

)

Time overhead of resuming a Tensorflow job

build model
load checkpoint
warm up

Figure 5: Time overhead of resuming a DDL job in Tensorflow. Each model is tested with
different number of workers.

Placement

Profiler

Scheduler

3 4
1

2a

2b

GPU Cluster

Figure 6: Tiresias components and their interactions. Job lifecycle
under Tiresias is described in Section 3.1. In this figure, each ma-
chine has four GPUs; shaded ones represent GPUs in use.

In the rest of this paper, we demonstrate that Tiresias –
using smarter job placement and scheduling strategies – can
improve the average total job completion time by more than
5× when running the same set of jobs.

3 Tiresias Design
This section describes Tiresias’s architecture, followed by de-
scriptions of its two key components – scheduler and place-
ment manager – and the profiler that learns the job character-
istics during runtime.

3.1 Overall Architecture
Tiresias is a bespoke resource manager for GPU clusters,
where the primary workload is DL training. It deals with both
allocating GPUs to individual jobs (i.e., job placement) and
scheduling multiple jobs over time. So, it has two primary
objectives: one user-centric and the other operator-centric.
1. Minimizing the average JCT: Jobs should complete as fast

as possible regardless of their requirements.
2. High GPU utilization: All the GPUs in the cluster should

be utilized as much as possible.
Tiresias has an additional goal to balance between

operator- and user-centric objectives.
3. Starvation freedom: Jobs should not starve for arbitrarily

long periods.

Constraints and assumptions: Tiresias must achieve the
aforementioned objectives under realistic assumptions high-
lighted in prior sections:

1. Online job arrival: Jobs are submitted by users (trial-and-
error exploration mechanisms such as AutoML) in an on-
line fashion. The resource requirements of a job J (i.e.,
the number of parameter servers PSJ and workers WJ) are
given but unknown prior to its arrival. Model and data
partitions are determined by the DL framework and/or the
user [9, 16, 42]. Tiresias only deals with resource alloca-
tion and scheduling.

2. Unknown job durations: Because of non-smooth loss
curves and non-deterministic termination in practice, a
DL job’s duration cannot be predicted. However, the over-
all distribution of job duration may sometimes be avail-
able via history logs.

3. Unknown job-specific characteristics: A user does not
know and cannot control how the underlying DL frame-
work(s) will assign tensors to parameter servers and the
extent of the corresponding skew.

4. All-or-nothing resource allocation: Unlike traditional big
data jobs where tasks can be scheduled over time [11], DL
training jobs require all parameter servers and workers to
be simultaneously active; i.e., all required resources must
be allocated together.

Job lifecycle: Tiresias is designed to optimize the afore-
mentioned objectives without making any assumptions about
a job’s resource requirements, duration, or its internal charac-
teristics under a specific DL framework.

Figure 6 presents Tiresias’s architecture along with the se-
quence of actions that take place during a job’s lifecycle. As
soon as a job is submitted, its GPU requirements become
known, and it is appended to a WAITQUEUE (1). The sched-
uler (§3.2) periodically schedules jobs from the WAITQUEUE
and preempts running jobs from the cluster to the WAIT-
QUEUE (2a and 2b) on events such as job arrival, job com-
pletion, and changes in resource availability. When starting a
job for the first time or resuming a previously preempted job,
the scheduler relies on the placement module (§3.3) to allo-
cate its GPUs (3). If a job is starting for the first time, the
placement module first profiles it – the profiler identifies job-
specific characteristics such as skew in tensor distribution –
to determine whether to consolidate the job or not (4).

488 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.2 Scheduling
The core of Tiresias lies in its scheduling algorithm that must
(1) minimize the average JCT and (2) increase cluster utiliza-
tion while (3) avoiding starvation.

We observe that preemptive scheduling is necessary to sat-
isfy these objectives. One must employ preemption to avoid
head-of-line (HOL) blocking of smaller/shorter jobs by the
larger/longer ones – HOL blocking is a known problem of
FIFO scheduling currently used in production [41]. Examples
of preemptive scheduling algorithms include time-sharing,3

SJF, and SRTF. For example, DL jobs in Gandiva [41] are
scheduled by time-sharing. However, time-sharing based al-
gorithms are designed for isolation via fair sharing, not mini-
mizing the average JCT. SJF and SRTF are also inapplicable
because of an even bigger uncertainty: it is difficult, if not im-
possible, to predict how long a DL training job will run. At
the same time, size-based heuristics (i.e., how many GPUs a
job needs) are not sufficient either, because they ignore job
durations.

3.2.1 Why Two-Dimensional Scheduling?

By reviewing the time- or sized-based heuristics, we believe
that considering only one aspect (spatial or temporal) is not
enough when scheduling DDL jobs on a cluster with lim-
ited GPU resources. In an SRTF scheduler, large jobs with
short remaining time can occupy many GPUs, causing non-
negligible queuing delays for many small but newly submit-
ted jobs. If the scheduler is smallest-first (w.r.t. the number of
GPUs), then large jobs may be blocked by a stream of small
jobs even if they are close to completion.

To quantify the approaches, we ran trace-driven simula-
tions on three different schedulers using the Microsoft pro-
duction trace: (1) smallest-first (SF); (2) SRTF; and (3)
shortest-remaining-service-first (SRSF). Of them, the first
two are single-dimensional schedulers; the last one consid-
ers both spatial and temporal aspects. The remaining service
in SRSF is the multiplication of a job’s remaining time and
the number of GPUs. For this simulation, we assume that job
durations are given when needed.

Table 1 shows that SRSF outperforms the rest in minimiz-
ing the average JCT. SRSF has a much smaller tail JCT than
the single-dimensional counterparts as well. Altogether, we
move forward in building a DDL scheduler that considers
both spatial and temporal aspects of resource usage.

Note that, among the three, SF is not a time-based algo-
rithm; hence, it does not actively attempt to minimize the av-
erage JCT. As for the rest, SRTF is not always worse than
SRSF, either. For example, large-and-short jobs that have
many GPUs but short service time can mislead the SRSF
scheduler and block many smaller jobs. However, in DL
training, multiple GPUs are typically allocated to the jobs
that have well-tuned hyperparameters and run to completion.

3Also known as processor-sharing.

Table 1: Normalized performance of single-dimensional schedulers
w.r.t. SRSF.

Avg. JCT Med. JCT 95th JCT

Smallest-First (SF) 1.52 1.20 3.45
SRTF 1.03 1.01 1.55

Therefore, the fraction of large-and-short jobs is often small
in practice.

3.2.2 Two-Dimensional Attained Service-Based
Scheduler (2DAS)

We address the aforementioned challenges with the 2DAS
scheduler, which schedules DL jobs without relying on their
exact durations while taking their GPU requirements into
consideration. 2DAS generalizes the classic least-attained
service (LAS) scheduling discipline [33] as well as the Gittins
index policy [21] to DL job scheduling by considering both
the spatial and temporal aspects of such jobs as well as their
all-or-nothing characteristic. At a high-level, 2DAS assigns
each job a priority based on its attained service. The attained
service of a job is calculated based on the number of GPUs it
uses (WJ) and the amount of time it has been running so far
(tJ). The former becomes known upon the job arrival, while
the latter continuously increases.

The priority function in 2DAS can be changed based on
different prior knowledge. When no job duration information
is provided, the priority function applies the LAS algorithm
where a job’s priority is inverse to its attained service. If the
cluster operator provides the distribution of job duration from
previous experience, then a job’s priority equals its Gittins
index value (Pseudocode 1). In the Gittins index-based algo-
rithm, the ratio (Line 11) is between (1) the probability that
the job will complete within the service quantum of ∆ (i.e.,
the possibility of reward when adding up to ∆ overhead on all
subsequent jobs) and (2) the expected service that Job J will
require for completion.

Both LAS and Gittins index take job’s attained service as
their inputs. LAS prefers jobs that received less service. All
jobs start with the highest priority, and their priorities de-
crease as they receive more service. The Gittins index value
of job represents how likely the job that has received some
amount of service can complete within the next service quan-
tum. Higher Gittins index value means higher priority.

Example: Let us consider an example that illustrates both
the algorithms and compares them against SRSF that has
complete information (Figure 7). Three DL jobs arrive at a
two-GPU machine at the same time. The resource require-
ment of each job is represented using (number of GPUs, du-
ration) pairs. Only SRSF has prior knowledge of job duration.
2D-Gittins index knows the distribution, while 2D-LAS has
no related information. The average JCTs in this example are
9.3, 10 and 11.7 units of time for SRSF, 2D-Gittins index,
and 2D-LAS, respectively. In general, algorithms with more
information perform better in minimizing the average JCT.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 489

Pseudocode 1 Priority function in 2DAS
1: procedure PRIORITY(Job J, Distribution D)
2: if D is ∅ then . w/o distribution, apply LAS
3: RJ = −WJ× tJ
4: else . w/ distribution, apply Gittins index
5: RJ = Gittins Index(J,D)
6: return RJ
7: end procedure
8:

9: procedure GITTINS INIDEX(Job J, Distribution D)
10: aJ = WJ× tJ
11: GJ = sup

∆>0

P(S−aJ≤∆|S>aJ)
E[min{S−aJ ,∆}|S>aJ]

12: . P is the probability and E is the mean, both of which are
calculated from D. ∆ is the service quantum.

13: return GJ
14: end procedure

1 Time2 3 10 11 12 13 14 15 160 4 5 6 7 8 9

Size

1

2

2D
-L

A
S

Time

Size

2

1

2D
-G

itt
in

s I
nd

ex

Time

Size

2

1SR
SF

Figure 7: Time sequence of three jobs with three different two-
dimensional scheduling algorithms. Job 1 (black) is (2,2), job 2 (or-
ange) is (1,8), and job 3 (blue) is (2,6). The first value in each tuple
is the number of GPUs while the second is duration. The schedul-
ing interval is one unit of time. The 2D-Gittins index values for this
example are shown in Appendix C. Job index is used to break ties.

3.2.3 Priority Discretization

As observed in prior work [17], using continuous priorities
can lead to a sequence of preemptions and subsequent re-
sumptions for all jobs. Unlike preempting a network flow or a
CPU process, preempting and resuming a DL job on GPU(s)
can be time-consuming and expensive (§2.2). The excessive
cost can make 2DAS infeasible. Furthermore, continuous pre-
emption degenerates 2DAS to fair sharing by time-division
multiplexing, which increases the average JCT.

We address these challenges by adopting the priority dis-
cretization framework based on the classic Multi-Level Feed-
back Queue (MLFQ) algorithm [12, 17, 18].

Discretized 2DAS: Instead of using a continuous priority
spectrum, we maintain K logical queues (Q1,Q2, . . . ,QK),
with queue priorities decreasing from Q1 to QK (Figure 8).
The i-th queue contains jobs of attained service (WJtJ) val-
ues within [Qlo

i ,Qhi
i). Note that Qlo

1 = 0, Qhi
K = ∞, and

Qlo
i+1 = Qhi

i .

Q1

Q2

QK

…
Starved

Highest-Priority
Queue

Lowest-Priority
Queue

Promoted

Figure 8: Discretized 2DAS with K queues. Starving jobs are peri-
odically promoted to the highest priority queue.

WAITING RUNNING

Enough
Resources

YesNo

Submit Job

Preempted

Scheduled

STARVING

Timeout Scheduled

COMPLETED

Figure 9: State transition diagram of a job in Tiresias.

Actions taken during four lifecycle events determine a
job’s priority (Figure 9).
• Arrival: If there are available resources, a new job enters

the highest priority queue Q1 when it starts.
• Activity: A job is demoted to Qi+1 from Qi, when its

(WJtJ) value crosses queue threshold Qhi
i .

• Starvation: A job’s priority is reset if it had been pre-
empted for too long.

• Completion: A job is removed from its current queue
upon completion.

The overall structure ensures that jobs with similar (WJtJ)
values are kept in the same queue. Jobs with highly different
(WJtJ) values are kept in different priority levels.

When LAS is used, jobs in the same queue are scheduled
in a FIFO order of their start time (i.e., when they were first
scheduled) without any risk of HOL blocking. Because of the
all-or-nothing nature of DDL jobs, high-priority jobs without
enough GPUs must be skipped over to increase utilization; as
such, FIFO ordering on submission time instead of start time
can lead to unnecessary preemptions.

The service quantum ∆ in Gittins index is also discretized.
For jobs in Qi, ∆i equals Qhi

i which is the upper limit of Qi.
When a job consumes all its service quantum, it will be de-
moted to the lower priority queue. For Gittins index, jobs in
the same queue are scheduled according to their Gittins index
values. In the last queue, QK , ∆K is set to ∞. In this extreme
case, Gittins index performs similar to that of LAS, and jobs
in the last queue are scheduled in the FIFO order.

Determining K and queue thresholds: While the dis-
cretization framework gives us the flexibility to pick K and

490 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

corresponding thresholds, optimally picking them is an open
problem [13, 17]. Instead of frequently solving an integer lin-
ear programming (ILP) [13] formulation or using a heavy-
weight deep learning mechanism [15], we leverage the classic
foreground-background queueing idea [33], which has been
shown to perform well for heavy-tailed distributions. There
are only two queues (K = 2) and only one threshold. Our
sensitivity analysis shows that using K = 2 performs close
to that of larger K values, ignoring preemption overheads. In
practice, K = 2 limits the number of times a job can be pre-
empted, which reduces job completion time.

Avoiding starvation: Using Discretized 2DAS, some jobs
can starve if a continuous stream of small-and-short jobs keep
arriving. This is because jobs in the same queue may be
skipped over due to the lack of free GPUs. Similarly, jobs in
lower priority queues may not receive sufficient GPUs either.

To avoid starvation, we promote a job to the highest-
priority Q1 if it has been WAITING for longer than a thresh-
old: STARVELIMIT (Line 6).

This poses a tradeoff: while promotion can mitigate star-
vation, promoting too often can nullify the benefits of dis-
cretization altogether. To this end, we provide a single knob
(PROMOTEKNOB) for the cluster operator to promote a job if
its WAITING time so far (δJ) is PROMOTEKNOB times larger
than its execution time so far (tJ); i.e.,

δJ ≥ PROMOTEKNOB ∗ tJ

Setting PROMOTEKNOB =∞ disables promotion and focuses
on minimizing the average JCT. As PROMOTEKNOB be-
comes smaller, 2DAS becomes more fair, sacrificing the av-
erage JCT for tail JCT.

Note that both tJ and δJ are reset to zero to ensure that a
promoted job is not demoted right away.

3.3 Placement
Given a job J that needs PSJ parameter servers and WJ work-
ers, if there are enough resources in the cluster, Tiresias must
determine how to allocate them. More specifically, it must
determine whether to consolidate the job’s GPUs in as few
machines as possible or to distribute them. The former is cur-
rently enforced in Microsoft production clusters; as a result, a
job may be placed in the WAITQUEUE even if there are GPUs
available across the cluster.

Taking this viewpoint to its logical extreme, we created an
ILP formulation to optimally allocate resources in the cluster
to minimize and balance network transfers among machines
(see Appendix D). The high-level takeaways from such a so-
lution are as follows. First and foremost, it is extremely slow
to solve the ILP for a large-scale cluster with many DDL jobs.
Second, from small-scale experiments, we found that explic-
itly minimizing and balancing the load of the network does
not necessarily improve DL training performance.

Pseudocode 2 2DAS Scheduler
1: procedure 2D-LAS(Jobs J, Queues Q1 . . .QK , Distribution

D) . §3.2
2: P = {} . Tracks jobs to preempt
3: for all Job J ∈ J do
4: if J is RUNNING then
5: rJ = PRIORITY(J, D) . calculate job’s priority
6: if J is WAITING longer than STARVELIMIT then
7: Reset tJ
8: Enqueue J to Q1 . Promote if J is STARVING
9: while Cluster has available GPUs do

10: for all i ∈ [1,K] do . Prioritize across queues
11: if D is not ∅ and i ∈ [1,K−1] then
12: Sort Gittins Index(Qi) . Sort jobs in Qi

13: for all Job J ∈ Qi do . From the first J in Qi to the end
14: if Available GPUs ≥WJ then . J can run
15: Mark WJ GPUs as unavailable
16: else . J cannot run
17: P = P∪ J
18: Preempt J if it is already RUNNING
19: for all Job J ∈ J and J /∈ P do
20: if J is not already RUNNING then
21: if J was not profiled before then
22: Profile J . §3.3.1
23: Store J’s start time . Used for FIFO in Discretized 2D-LAS
24: Assign GPUs by comparing SJ to PACKLIMIT . §3.3
25: end procedure

How important is consolidation? Given the infeasibility
of an ILP-based formulation, we focused on developing a
faster solution by asking a simple question: which jobs benefit
from consolidation?

We found that the skew of the model structure (SJ) can
be a good predictor. The DL models whose performance are
sensitive to consolidated placement (Figure 3) have huge ten-
sor(s); their largest tensor size dominates the whole model
(Table 6). This is because messages sizes in model aggre-
gation are closely related to the structure of the model. For
example, a model in TensorFlow consists of many tensors.
Each tensor is wrapped as a single communication message.4

Therefore, the message size distribution in DDL depends on
the tensor size distribution of the model. The tensor sizes are
often unevenly distributed; sometimes there is a huge tensor
which holds most of the parameters in those models. Hence,
aggregating larger tensors suffers from network contention
more severely, while transmissions of smaller tensors tend to
interleave better with each other.

Leveraging this insight, we design Tiresias profiler that
finds out the skew level of each model, which is then used
by the Tiresias placement algorithm.

3.3.1 Profiler

For a given job J, Tiresias’s profiler identifies the amount
of skew in tensor distributions across parameter servers (SJ)

4Other frameworks may split each tensor into multiple messages, but still, these
messages are sent out in clear batches for each tensor.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 491

Table 2: Comparison of DL cluster managers.

YARN-CS Gandiva [41] Optimus [34] Tiresias(Gittins index) Tiresias(LAS)

Prior Knowledge None None JCT prediction JCT distribution None
Scheduling Algorithm FIFO Time-sharing Remaining-time-driven Gittins index LAS
Scheduling Input Arrival time N/A Remaining time Attained service Attained service
Schedule Dimensions Temporal None Temporal Spatial & temporal Spatial & temporal
Job Priority Continuous Continuous Continuous Discretized queues Discretized queues
Job Preemption N/A Context switch Model checkpoint Model checkpoint Model checkpoint
Minimizing Average JCT No No Yes Yes Yes
Starvation Avoidance N/A N/A Dynamic resource Promote to Q1 Promote to Q1
Job Placement Consolidation Trial-and-error Capacity-based Profile-based Profile-based

without user input and in a framework-agnostic manner. The
skew is a function of the tensor size distribution of the DL job
and tensor-to-parameter server mapping of the DL framework
(e.g., TensorFlow assigns tensors in a round-robin fashion).
Instead of forcing users to design DL models with equal-sized
tensors or making assumptions about the tensor assignment
algorithm of a given DL framework, we aim to automatically
identify the skew via profiling.

Because each parameter server periodically sends out its
portion of the updated model to each worker (§2.1), observ-
ing these network communications can inform us of the skew.
Given that most production DL jobs use RDMA (e.g., Infini-
Band in Microsoft) for parameter server-worker communica-
tion, and to the best of our knowledge, there exists no RDMA-
level traffic monitoring tool, we have built one for Tiresias.

Tiresias’s profiler intercepts communication APIs – includ-
ing the low-level networking APIs like RDMA ibverbs – in
each machine to collect process-level communication traces.
Whether a DDL job uses RDMA directly or through GPUDi-
rect, Tiresias can capture detailed meta-data (e.g., message
sizes) about all RDMA communications.

During the profiling run of a job, Tiresias aggregates infor-
mation across all relevant machines to determine SJ for job J.
Because each iteration is exactly the same from a communi-
cation perspective, we do not have to profile for too many
iterations. This predictability also enables us to identify a
job’s iteration boundaries, model size, and skew character-
istics. Tiresias’s placement algorithm uses this information to
determine whether the GPU allocation of a job should be con-
solidated or not.

3.3.2 The Placement Algorithm

Tiresias’s placement algorithm compares SJ with a threshold
(PACKLIMIT); if SJ is larger than PACKLIMIT, Tiresias at-
tempts to consolidate the job in as few machines as possible.
As explained above, a job with a large skew performs worse
due to a skewed communication pattern if it is not consol-
idated. For the rest, Tiresias allocates GPUs in machines to
decrease fragmentation. Albeit simple, this algorithm is very
effective in practice (§5). It performs even better than the pre-

vious ILP-based design because the ILP cannot capture the
different effects of consolidation on different models.

Determining PACKLIMIT: We rely on job history to peri-
odically update PACKLIMIT. Currently, we use a simple lin-
ear classifier to periodically determine the PACKLIMIT value
using a job’s placement and corresponding performance as
features. More sophisticated mechanism to dynamically de-
termine PACKLIMIT can be an interesting future work.

3.4 Summary
Compared to Apache YARN’s Capacity Scheduler (YARN-
CS) and Gandiva, Tiresias aims to minimize the average JCT.
Unlike Optimus, Tiresias can efficiently schedule jobs with-
out or with partial prior knowledge (Table 2). Additionally,
Tiresias can smartly place DDL jobs based on the model
structure automatically captured by the Tiresias profiler.

4 Implementation
We have implemented Tiresias as a centralized resource man-
ager. The Discretized 2DAS scheduler, the placement algo-
rithm, and the profiler are integrated into the central master,
and they work together to appropriately schedule and place
DDL jobs. Similar to using current DDL clusters, users sub-
mit their DDL jobs with the resource requirements, primar-
ily the number of parameter servers (PSJ) and the number
of GPUs/workers (WJ). The resource manager then handles
everything, from resource allocation when a job starts to re-
source reclamation when it completes.

As mentioned earlier, Tiresias makes job placement de-
cisions based on profiling via a network monitoring library.
This library is present in every server of the cluster and com-
municates with the central profiler so that Tiresias can deter-
mine the skew of each new DDL job.

Central master: In addition to starting new jobs and com-
pleting existing ones, a major function of the master is to pre-
empt running jobs when their (GPU) resources are assigned to
other jobs by the scheduler. Because of the iterative nature of
DL jobs, we do not need to save all the data in GPU and main
memory for job preemption. Currently, we use the checkpoint
function provided by almost every DL framework and just

492 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 3: DL jobs are put into bins by their number of GPUs (Small
and Large) and their training time (Short and Long)

Bin 1 (SS) 2 (SL) 3 (LS) 4 (LL)

% of Jobs 63.5% 12.5% 16.5% 7.5%

save the most updated model for the preempted job. When a
preemption is triggered, the job is first paused; then its chief
worker checkpoints its model to a cluster-wide shared file sys-
tem. When a paused job is resumed again by the scheduler, its
most recent checkpoint will be loaded before it is restarted.
The central master also determines a job’s placement using
the placement algorithm and the profiler.

Distributed RDMA monitoring: Because RDMA is
widely used in GPU clusters for DDL jobs, we implement the
profiler as a loadable library that intercepts RDMA ibverbs
APIs. Therefore, it can record all the RDMA activities on
each server, such as building connections, sending and receiv-
ing data. The RDMA-level information of all relevant work-
ers and parameter servers are then aggregated at the central
profiler. Based on the aggregated information (e.g., message
size and the total amount of traffic), Tiresias can resolve the
detailed model information of a given DDL job, including its
skew. Though implemented for RDMA networks, the profiler
can easily be extended to support TCP/IP networks by inter-
cepting socket APIs.

5 Evaluation
We have deployed Tiresias on a 60-GPU cluster and evalu-
ated it using experiments and large-scale simulations using
production traces from Microsoft. The highlights are:
• In testbed experiments, Tiresias improves the average

JCT by up to 5.5× and the makespan by 1.21× com-
pared to YARN-CS. It also performs comparably to
SRTF, which uses complete prior information (§5.2).
Tiresias’s benefits are due to job placement benefits for
skewed DDL jobs and reduction in queueing delays dur-
ing scheduling.

• Tiresias’s benefits hold for large-scale simulation of the
production trace from Microsoft (§5.3).

• Tiresias is robust to various configuration parameters and
workload variations (§5.4).

In this section, Tiresias-G (Tiresias-L) represents Tiresias
using the Discretized 2D-Gittins index (Discretized 2D-LAS).

5.1 Experimental Setup
Testbed. Our testbed consists of 15 4-GPU PowerNV
8335-GTB machines from IBM in the Michigan ConFlux
cluster. Each machine has 4 NVIDIA Tesla P100 GPUs
with 16 GB GPU memory, two 10-core (8 threads per core)
POWER8 CPUs, 256 GB DDR4 memory, and a 100 Gbps
EDR Mellanox InfiniBand adapter. There is also a high-
performance cluster file system, GPFS [35], shared among
those machines. In Tiresias, the checkpoint files used in job

preemptions are written to and read from GPFS. The read and
write throughput of GPFS from each machine is 1.2 GB/s.

Simulator. We developed a discrete-time simulator to eval-
uate Tiresias at large scale using a real job trace from Mi-
crosoft. It simulates all job events in Tiresias, including job
arrival, completion, demotion, promotion, and preemption.
However, it cannot determine job training time with the dy-
namic cluster environment; instead, it uses actual job comple-
tion times.

Workload. Given the scale of our GPU cluster, we gener-
ate our experimental workload of 480 DL/DDL jobs by scal-
ing down the original job trace. Job requirements (number of
GPUs, and training time) in our workload follow the distribu-
tions of the real trace. Half of these jobs are single-GPU DL
jobs; the rest are DDL ones (40 2-GPU jobs, 80 4-GPU jobs,
90 8-GPU jobs, 25 16-GPU jobs, and 5 32-GPU jobs). The
number of parameter servers in each DDL job is the same as
its GPU number. Each model in Table 6 has 48 jobs. Each
job has a fixed number of iterations to run. The training time
of jobs varies from 2 mins to 2 hours. Jobs arrive follow-
ing a Poisson process with an average inter-arrival time of
30 seconds. We run the jobs in synchronous data parallelism
mode using TensorFlow 1.3.1 with RDMA extension and us-
ing model files from the TensorFlow benchmark [5].

Job Bins. We category our jobs based on both their spatial
(number of GPUs) and temporal (job training time) character-
istics (Table 3). For the original trace, we consider a job to be
small if it does not need more than 8 GPUs (Microsoft uses
8-GPU machines) and short if its training time is less than 4
hours. After scaling down, we consider a job to be small if it
needs at most 4 GPUs (we are using 4-GPU machines) and
short if it trains for less than 800 seconds.

Baselines. We compare Tiresias to an Apache YARNs ca-
pacity scheduler (YARN-CS) used in Microsoft (Appendix
A). For comparison, we also implement an SRTF scheduler
that has complete information, i.e., the eventual training time
that in practice, cannot be obtained before running the job.
Note that job durations are unknown to both Tiresias and
YARN-CS. SRTF uses Tiresias’s placement mechanism. We
also comapre Tiresias with the time-sharing scheduler in Gan-
diva [41] in the large-scale simulation.

Metric. Our key metric is the improvement in the average
JCT (i.e., time from submission to completion):

Factor of Improvement =
Duration of an Approach

Duration of Tiresias-L

To clearly present the performance of Tiresias, unless
otherwise specified, the results of all schedulers (including
Tiresias-G) are normalized by that of Tiresias-L. Factor of
improvement (FOI) greater than 1 means Tiresias-L is per-
forming better, and vice versa.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 493

0.0
0.2
0.4
0.6
0.8
1.0

10 100 1000 10000 100000Fr
ac

tio
n

of
 Jo

bs

JCT (second)

YARN-CS
SRTF
Tiresias-G
Tiresias-L

(a) Individual job completion times

27.7 23.4

0
1
2
3
4
5
6
7
8

Avg. 95th Avg. 95th Avg. 95th Avg. 95th Avg. 95th
Bin 1 Bin 2 Bin 3 Bin 4 ALLFa

ct
or

 o
f I

m
pr

ov
m

en
t YARN-CS SRTF Tiresias-G

(b) Summarized results

Figure 10: Improvements in the average JCT using Tiresias w.r.t. YARN-CS and SRTF.

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100Fr
ac

tio
n

of
 T

im
e

10s-averaged GPU utilization (%)

YARN-CS
SRTF
Tiresias-G
Tiresias-L

Figure 11: Cluster-wide GPU utilization.

5.2 Tiresias in Testbed Experiments
In testbed experiments, we compare the performance of
YARN-CS, SRTF, Tiresias-G and Tiresias-L. For Tiresias,
there are two priority queues with a threshold of 3200 GPU
seconds. The PROMOTEKNOB for avoiding starvation is dis-
abled in Testbed experiments.

5.2.1 JCT Improvements

Tiresias-L achieves 5.5× improvement in terms of the aver-
age JCT w.r.t. to YARN-CS (Figure 10). If we look at the
median JCT, then Tiresias-L is 27× better than YARN-CS.
Tiresias-G has almost the same performance as Tiresias-L
(1.06× in average, 1.05× in median). Its negligible perfor-
mance loss is due to more job preemptions (§5.2.4). Half of
all jobs avoid severe queueing delays using Tiresias. More-
over, Tiresias is not far from SRTF either.

The key idea of Tiresias’s scheduler is avoiding queueing
delays to small or short jobs, thus saving them from large or
long jobs. When using Tiresias-L (Tiresias-G), the average
JCT of jobs in Bin1 (SS) is just 300 (330) seconds, which is
27.6× (25.2×) better than that using YARN-CS. On the other
hand, jobs in Bin4 (LL) have almost the same average JCT in
both Tiresias and YARN-CS.

5.2.2 Cluster-Wide GPU Utilization

Figure 11 shows the averaged GPU utilizations of our cluster
over time. While there are some small variations, overall uti-
lizations across solutions look similar. However, Tiresias re-
duces the makespan compared to YARN-CS. The makespan
of Tiresias-L (27400 seconds) was 1.21× smaller than that of
YARN-CS (33270 seconds), and it was similar to Tiresias-G
(27510 seconds) and SRTF (28070 seconds).

5.2.3 Sources of Improvements

Smaller queueing delays. Tiresias’s scheduler can reduce
the average queueing delay of all jobs (Table 4), especially
for small and short jobs. The average queueing delay is re-
duced from over 8000 seconds to around 1000 seconds when
comparing YARN-CS and Tiresias. More importantly, half of
the jobs are just delayed for less than or equal to 13 (39) sec-
onds in Tiresias-L (Tiresias-G), which is negligible compared
to the median delay in YARN-CS. Note that while Tiresias’s
average queueing delay is higher than SRTF, smaller jobs ac-
tually experience similar or shorter delays.

0.0
0.2
0.4
0.6
0.8
1.0

0.8 1 1.2 1.4 1.6 1.8

Fr
ac

tio
n

of

D
D

L
Jo

bs

Ratio of Job Training Time
Figure 12: Performance improvement from job placement in
Tiresias-L. We pick all the DDL jobs and compare their training
times when Tiresias-L is running with and without placement.

Table 4: Queueing delays for DDL jobs for different solutions.

Average Median 95th

YARN-CS 8146s 7464s 15327s
SRTF 593s 32s 3133s
Tiresias-G 1005s 39s 7933s
Tiresias-L 963s 13s 7755s

Faster training. Albeit smaller, another source of perfor-
mance improvement is Tiresias’s job placement algorithm. To
illustrate this, we rerun the experiment using Tiresias-L but
without its profiler; i.e., jobs are randomly placed on the clus-
ter. We compare the training time of DDL jobs in Tiresias-L
without job profiling versus in the original Tiresias-L. We use
the ratio of training time in random placement to Tiresias-
L as the factor of improvement. In Figure 12, large ratio
means random placement slows down the training, and vice
versa; single-GPU jobs are excluded from the figure. Tiresias-
L achieves up to 1.67× improvement w.r.t. random place-
ment, because it can identify sensitive jobs and place them on
minimal number of machines for better performance. Fewer
than 30% of DDL jobs experience limited performance loss.

Because of the highly-skewed job distribution and the va-
riety of model types, the major improvement comes from the
job scheduling by avoiding HOL blocking of small/short jobs
by the large/long ones.

5.2.4 Overheads

Because Tiresias uses preemption in its scheduling algorithm,
its major overhead comes from preempting DDL jobs. The
Discretized 2DAS scheduler in Tiresias provides discretized
priority levels to jobs. Hence, two cases trigger job pre-
emptions in Tiresias: job arrivals/promotions and demotions
that change the priority queue of a job. In our experiments,

494 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0

0.2

0.4

0.6

0.8

1.0

100 1000 10000 100000 1000000 10000000

Fr
ac

tio
n

of
 Jo

bs

JCT(second)

YARN-CS
Best-effort
SRTF
Gandiva
Tiresias-G
Tiresias-L
tt

Figure 13: JCT distributions using different solutions in the trace-
driven simulation. The x-axis is in logarithmic scale.

Table 5: Improvements in JCT using Tiresias in simulation. Num-
bers are normalized by that of Tiresias-L.

Average Median 95th

YARN-CS 2.41× 30.85× 1.25×
Best-effort 1.50× 9.03× 1.08×
SRTF 1.00× 1.00× 0.84×
Gandiva 2.00× 2.59× 2.08×
Tiresias-G 0.97× 1.00× 0.85×

Tiresias-L spent 13724 seconds performing 221 preemptions;
Tiresias-G triggered 297 preemptions with 17425 seconds
overhead in total. There are more preemptions in Tiresias-
G because jobs in the same queue are sorted based on their
Gittins index value at every event. In Tiresias-L, jobs will not
be re-sorted because of FIFO ordering.

In contrast, job priorities in SRTF are continuous. When-
ever short jobs come in, jobs that with longer remaining time
(lower priorities) may be preempted due to lack of resources.
Overall, SRTF spent 18057 seconds for 316 preemptions.

Note that the exact overhead of each preemption depends
on the specific job and cluster conditions.

5.3 Tiresias in Trace-Driven Simulations
Here we evaluate Tiresias’s performance on the Microsoft
job trace. We compare it against YARN-CS, SRTF, and Best-
effort, where Best-effort is defined as YARN-CS but without
HOL blocking – i.e., it allows small jobs to jump in front of
large jobs that do not have enough available GPUs.

5.3.1 Simulator Fidelity

We replayed the workload used in our testbed experiments
in the simulator to verify the fidelity of our simulator. We
found the simulation results to be similar to that of our testbed
results – 5.11× (1.50×) average (95th percentile) improve-
ment w.r.t. YARN-CS, 0.74× (0.55×) w.r.t. SRTF, and 1.01×
(1.13×) w.r.t. Tiresias-G. Because the simulator cannot cap-
ture overheads of preemption, the impact of placement, or
cluster dynamics, the results are slightly different.

5.3.2 JCT Improvements

We then simulated the job trace from Microsoft to identify
large-scale benefits of Tiresias. Tiresias-L improves the aver-
age JCT by 2.4×, 1.5×, and 2× over YARN-CS, Best-effort,
and Gandiva, respectively (Table 5). In addition, Tiresias-

L reduces the median JCT by 30.8× (9×) w.r.t. YARN-CS
(Best-effort). This means half of the Microsoft jobs would ex-
perience significantly shorter queueing delays using Tiresias.
Compared to Tiresias-L, Tiresias-G has almost the same (me-
dian JCT) or slightly better (average and 95th percentile JCT)
performance. More importantly, Tiresias performs similar to
SRTF that uses complete knowledge.

5.4 Sensitivity Analysis
Here we explore Tiresias’s sensitivity to K (number of pri-
ority queues), queue thresholds (server quantum ∆), and
PROMOTEKNOB. By applying the Discretized 2D-LAS al-
gorithm, Tiresias relies on K and corresponding thresholds
to differentiate between jobs. In this section, we use (K,
threshold1, threshold2, ...) to represent different settings in
Tiresias. For example, (2, 1h) means Tiresias has 2 priority
queues and the threshold between them is 1 hour GPU time.

5.4.1 Impact of Queue Thresholds

We use Tiresias with K=2 and increase the threshold between
the two priority queues (Figure 14a and 15a). We observe that
(2, 0.5h) is slightly worse than others who have larger thresh-
olds in terms of the average JCT in Tiresias-L. When the
threshold is larger than or equal to 1 hour, Tiresias-L’s per-
formance almost does not change. For Tiresias-G, different ∆

values have almost the same performance. These are because
1h GPU time can cover more than 60% of all the jobs.

5.4.2 Impact of K (number of priority queues)

Next, we examine Tiresias’s sensitivity to K. We evaluate
Tiresias with K set to 2, 3 and 4, and pick the best thresh-
olds in each of them. The number of priority queues does not
significantly affect Tiresias (Figure 14b and 15b). The 3- and
4-queue Tiresias only improves the average JCT by 1% in
comparison to the 2-queue Tiresias-L.

5.4.3 Impact of PROMOTEKNOB

This simulation is based on (2, 1h). We pick the initial
PROMOTEKNOB as 1, and increase it by the power of 2.
When PROMOTEKNOB is infinite, Tiresias does not promote.
Smaller PROMOTEKNOB means more frequent promotions
of long-delayed jobs back to the highest priority queue. For
Tiresias-G, the maximal JCT is cut down by PROMOTEKNOB
(Figure 15c). However this trace is not sensitive to the differ-
ent value of PROMOTEKNOB. In Figure 14c, the 95th JCT
minutely changes when we use smaller PROMOTEKNOB in
Tiresias-L – the key reason PROMOTEKNOB has little impact
for this trace is due to its heavy-tailed nature [33].

6 Discussion and Future Work
Formal analysis. Although Discretized 2DAS has advan-
tages in minimizing the average JCT of DL jobs, formal anal-
yses are still needed to precisely present its applicable bound-
aries (in terms of cluster resources and DL jobs’ require-
ments). This will simplify Tiresias configuration in practice.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 495

1.03 1.00 1.00 1.00

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.5h 1h 2h 4hN
or

m
. A

vg
. J

C
T

w
.r.

t.
(2

, 1
h)

 T
ire

sia
s-

L

Threshold

(a)

1.00 0.99 0.99

0.0
0.2
0.4
0.6
0.8
1.0
1.2

2 3 4N
or

m
.

A
vg

. J
C

T
w

.r.
t.

(2
, 1

h)
 T

ire
sia

s-
L

Number of queues

(b)

1.000 0.952 0.947 0.943 0.936

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Inf 8 4 2 1N
or

m
. 9

5t
h

JC
T

w
.r.

t
Pr

om
ot

eK
no

b
=

In
f

PromoteKnob

(c)
Figure 14: Sensitivity analysis of Tiresias-L. The queue settings in (b)
are (2, 1h), (3, 1h, 2h), and (4, 1h, 2h, 4h) for each bar.

1.00 1.00 1.00 1.00

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.5h 1h 2h 4hN
or

m
.

A
vg

. J
C

T
w

.r.
t.

(2
, 1

h)
 T

ire
sia

s-
G

Service quantum Δ

(a)

1.00 1.00 1.00

0.0
0.2
0.4
0.6
0.8
1.0
1.2

2 3 4N
or

m
.

A
vg

. J
C

T
w

.r.
t.

(2
, 1

h)
 T

ire
sia

s-
G

Number of queues

(b)

1.00

0.65 0.65 0.65 0.65

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Inf 8 4 2 1N
or

m
.

M
ax

 J
C

T
w

.r.
t.

Pr
om

ot
eK

no
b

=
In

f

PromoteKnob

(c)
Figure 15: Sensitivity analysis of Tiresias-G. The queue settings in (b)
are (2, 1h), (3, 1h, 2h), and (4, 1h, 2h, 4h) for each bar.

Lightweight preepmption. Existing preemption primitives
for DL jobs are time-consuming. To reduce the number
of preemptions, Tiresias adopts priority discretization using
MLFQ (§3.2.3). A better way of preempting DL jobs has been
proposed in Gandiva [41]. However, that approach requires
DL framework modifications. At the same time, its overhead
is still non-negligible. With lightweight preemption mecha-
nisms, many classic and efficient algorithms in network flow
and CPU scheduling can be applied for DDL scheduling.

Fine-grained job placement. Tiresias’s profile-based
placement scheme coarsely tries to avoid network transfers
when necessary. However, there can be interferences within
the server (e.g., on the PCIe bus) when too many workers
and parameter servers are collocated. Further investigations
on how placement can affect job performance are required.
To this end, possible approaches include topology-aware
schemes [10] and fine-grained placement of computational
graphs in DL jobs [32].

7 Related Work
Cluster Managers and Schedulers. There are numerous
existing resource managers and schedulers for CPU-based
clusters for heterogenous workloads [20, 22–24, 26, 29, 38–
40, 46] or for traditional machine learning jobs [27, 37, 44].
As explained in Section 1, these frameworks are not designed
to handle the unique characteristics of DDL jobs – e.g., all-or-
nothing task scheduling, and unpredictable job duration and
resource requirements – running on GPU clusters.

Resource Management in DDL Clusters. Optimus [34] is
an online resource scheduler for DDL jobs on GPU clusters.
It builds resource-performance model on the fly and dynam-
ically adjusts resource allocation and job placement for min-
imizing the JCT. It is complementary to Tiresias in terms of
job placement, because the latter focuses on the efficiency of
the initial job placement based on job characteristics, while
the former performs online adjustment according to a job’s
realtime status. However, Optimus assumes that the remain-
ing time of a DL job is predictable, which is not always true in
practice (§2.2). Tiresias can schedule jobs without any or with
partial prior knowledge, and it does not rely on such assump-
tions. Gandiva [41] is a resource manager for GPU clusters
that gets rid of the HOL blocking via GPU time sharing. How-
ever, the time-slicing scheduling approach in Gandiva brings
limited improvement in terms of the average JCT.

Resource Management with Partial or No Information.
To the best of our knowledge, Tiresias is the first cluster
scheduler for DDL training jobs that minimizes the average
JCT with partial or no information. While similar ideas exist
in networking [13, 17] and CPU scheduling [12, 18], GPU
clusters and DDL jobs provide unique challenges with high
preemption overheads and all-or-nothing scheduling. There
exist all-or-nothing gang schedulers for CPU, but they are not
information-agnostic. While fair schedulers do not require
prior knowledge [6, 7, 43], they cannot minimize the average
JCT. Similar to the Gittins index policy, shortest-expected-
remaining-processing-time (SERPT) [36] just needs partial
knowledge of job durations. However, the Gittins index pol-
icy is proven to be better because it prioritizes a larger number
of potentially shorter jobs [36].

8 Conclusion
Tiresias is a GPU cluster resource manager that minimizes
distributed deep learning (DDL) jobs’ completion times with
partial or no a priori knowledge. It does not rely on any in-
termediate DL algorithm states (e.g., training loss values) or
framework specifics (e.g., tensors-to-parameter server map-
ping). The key idea in Tiresias is the 2DAS scheduling frame-
work that has two scheduling algorithms (Discretized 2D-
LAS and Discretized 2D-Gittins index). They can respec-
tively minimize the average JCT with no and partial prior
knowledge. Additionally, Tiresias’s profile-based job place-
ment scheme can maintain the resource (GPU) utilization of
cluster without hurting job performance. Compared to a pro-
duction solution (Apache YARN’s Capacity Scheduler) and
a state-of-the-art DDL cluster scheduler (Gandiva), Tiresias
shows significant improvements in the average JCT.

Acknowledgments
Special thanks go to the ConFlux team from the University of
Michigan, especially Karthik Duraisamy and Todd Raeker,
for reserving enough GPU servers to make Tiresias experi-
ments possible. We would also like to thank the anonymous
NSDI reviewers, our shepherd, KyoungSoo Park, and Sym-
bioticLab members, especially Yiwen Zhang, for their con-
structive comments and feedback that helped improve the pa-
per. This work was supported in part by NSF grants CCF-
1629397, CNS-1563095, and CNS-1617773. Computing re-
sources were provided by the NSF via OAC-1531752.

496 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Amazon EC2 Elastic GPUs. https://aws.amazon.
com/ec2/elastic-gpus/.

[2] AutoML. http://www.ml4aad.org/automl/.

[3] GPU-Accelerated Microsoft Azure. https:

//www.nvidia.com/en-us/data-center/

gpu-cloud-computing/microsoft-azure/.

[4] GPU on Google Cloud. https://cloud.google.

com/gpu/.

[5] TensorFlow Benchmark Code. https://github.

com/tensorflow/benchmarks.

[6] YARN Capacity Scheduler. http://goo.gl/cqwcp5.

[7] YARN Fair Scheduler. http://goo.gl/w5edEQ.

[8] S. Aalto, U. Ayesta, and R. Righter. On the gittins in-
dex in the m/g/1 queue. Queueing Systems, 63(1-4):437,
2009.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system
for large-scale machine learning. In OSDI, 2016.

[10] M. Amaral, J. Polo, D. Carrera, S. Seelam, and M. Stein-
der. Topology-aware gpu scheduling for learning work-
loads in cloud environments. In SC, 2017.

[11] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Sto-
ica. PACMan: Coordinated memory caching for
parallel jobs. In NSDI, 2012.

[12] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau.
Scheduling: The multi-level feedback queue. In Oper-
ating Systems: Three Easy Pieces. 2014.

[13] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and
H. Wang. Information-agnostic flow scheduling for
commodity data centers. In NSDI, 2015.

[14] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and
D. D. Cox. Hyperopt: a python library for model selec-
tion and hyperparameter optimization. Computational
Science & Discovery, 8(1):014008, 2015.

[15] L. Chen, J. Lingys, K. Chen, and F. Liu. Auto: scaling
deep reinforcement learning for datacenter-scale auto-
matic traffic optimization. In SIGCOMM, 2018.

[16] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet:
A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[17] M. Chowdhury and I. Stoica. Efficient coflow schedul-
ing without prior knowledge. In SIGCOMM, 2015.

[18] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley. An
experimental time-sharing system. In Spring Joint Com-
puter Conference, pages 335–344, 1962.

[19] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P.
Xing. Geeps: Scalable deep learning on distributed gpus
with a gpu-specialized parameter server. In EuroSys,
2016.

[20] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant Resource Fairness:
Fair allocation of multiple resource types. In NSDI,
2011.

[21] J. Gittins, K. Glazebrook, and R. Weber. Multi-armed
bandit allocation indices. John Wiley & Sons, 2011.

[22] I. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and
S. Hand. Firmament: Fast, centralized cluster schedul-
ing at scale. In OSDI, 2016.

[23] R. Grandl, M. Chowdhury, A. Akella, and G. Anantha-
narayanan. Altruistic scheduling in multi-resource clus-
ters. In OSDI, 2016.

[24] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulka-
rni. Graphene: Packing and dependency-aware schedul-
ing for data-parallel clusters. In OSDI, 2016.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In IEEE CVPR, 2016.

[26] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos:
A platform for fine-grained resource sharing in the data
center. In NSDI, 2011.

[27] B. Huang, M. Boehm, Y. Tian, B. Reinwald,
S. Tatikonda, and F. R. Reiss. Resource elasticity for
large-scale machine learning. In SIGMOD, 2015.

[28] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang. Analysis of large-scale multi-
tenant gpu clusters for dnn training workloads. arXiv
preprint arXiv:1901.05758, 2019.

[29] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayana-
murthy, A. Tumanov, J. Yaniv, R. Mavlyutov, I. Goiri,
S. Krishnan, J. Kulkarni, and S. Rao. Morpheus: To-
wards automated slos for enterprise clusters. In OSDI,
2016.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 497

https://aws.amazon.com/ec2/elastic-gpus/
https://aws.amazon.com/ec2/elastic-gpus/
http://www.ml4aad.org/automl/
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/microsoft-azure/
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/microsoft-azure/
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/microsoft-azure/
https://cloud.google.com/gpu/
https://cloud.google.com/gpu/
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks
http://goo.gl/cqwcp5
http://goo.gl/w5edEQ

[30] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-
Y. Su. Scaling distributed machine learning with the
parameter server. In OSDI, 2014.

[31] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Kr-
ishnamurthy. Parameter hub: a rack-scale parame-
ter server for distributed deep neural network training.
arXiv preprint arXiv:1805.07891, 2018.

[32] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen,
Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, and
J. Dean. Device placement optimization with reinforce-
ment learning. arXiv preprint arXiv:1706.04972, 2017.

[33] M. Nuyens and A. Wierman. The Foreground–
Background queue: A survey. Performance Evaluation,
65(3):286–307, 2008.

[34] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Opti-
mus: An efficient dynamic resource scheduler for deep
learning clusters. In EuroSys, 2018.

[35] F. B. Schmuck and R. L. Haskin. GPFS: A shared-disk
file system for large computing clusters. In FAST, 2002.

[36] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf.
Soap: One clean analysis of all age-based scheduling
policies. In SIGMETRICS, 2014.

[37] P. Sun, Y. Wen, N. B. D. Ta, and S. Yan. To-
wards distributed machine learning in shared clusters: A
dynamically-partitioned approach. In IEEE Smart Com-
puting (SMARTCOMP), 2017.

[38] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch,
M. Harchol-Balter, and G. R. Ganger. Tetrisched:
Global rescheduling with adaptive plan-ahead in dy-
namic heterogeneous clusters. In EuroSys, 2016.

[39] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-
wal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,
S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler. Apache Hadoop
YARN: Yet another resource negotiator. In SoCC, 2013.

[40] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management
at Google with Borg. In EuroSys, 2015.

[41] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao,
Q. Zhang, F. Yang, and L. Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In OSDI, 2018.

[42] D. Yu, A. Eversole, M. Seltzer, K. Yao, O. Kuchaiev,
Y. Zhang, F. Seide, Z. Huang, B. Guenter, H. Wang,

J. Droppo, G. Zweig, C. Rossbach, J. Gao, A. Stol-
cke, J. Currey, M. Slaney, G. Chen, A. Agarwal, C. Ba-
soglu, M. Padmilac, A. Kamenev, V. Ivanov, S. Cypher,
H. Parthasarathi, B. Mitra, B. Peng, and X. Huang. An
introduction to computational networks and the compu-
tational network toolkit. Technical report, Microsoft Re-
search, October 2014.

[43] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in het-
erogeneous environments. In OSDI, 2008.

[44] H. Zhang, L. Stafman, A. Or, and M. J. Freedman. Slaq:
quality-driven scheduling for distributed machine learn-
ing. In ACM SoCC, 2017.

[45] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,
Z. Hu, J. Wei, P. Xie, and E. P. Xing. Poseidon: An ef-
ficient communication architecture for distributed deep
learning on gpu clusters. In USENIX ATC, 2017.

[46] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu.
Fuxi: A fault-tolerant resource management and job
scheduling system at internet scale. In VLDB, 2014.

A Characteristics of Production Cluster
We describe Project Philly [28], the cluster manager in one
of Microsoft internal production clusters, referred as P. P is
shared by several production teams that work on projects re-
lated to a search engine. It is managed by an Apache YARN-
like resource manager, which places and schedules DDL
jobs submitted by users via a website/REST API front end.
P supports various framework jobs, including TensorFlow,
Caffe and CNTK. In 2016, P consisted of around 100 4-GPU
servers. In 2017, due to the surging demand of running DDL,
P is expanded by more than 250 8-GPU servers. So, the total
number of GPUs has grown by 5×. Servers in P are intercon-
nected using a 100-Gbps RDMA (InfiniBand) network.

We collect traces from P over a 10-week period from Oct.
2017 to Dec. 2017. This cluster runs Ganglia monitoring sys-
tem, which collects per-minute statistics of hardware usage
on every server. Since some jobs are quickly terminated be-
cause of bugs in user’s job configuration, we only show the
data of jobs that run for at least one minute. Also, we collect
the per-job logs output by the DL framework which include
the time for each iteration and the model accuracy along the
running time. The network-level activities are monitored by
Tiresias profiler which is explained in Section 3.3.1, that logs
every RDMA network operation, e.g., the send and receive
of every message,and their timestamps. In addition, we add
hooks that intercept the important function calls in a DDL
framework, e.g., the start of an iteration or aggregation, and
log their timestamps.

Although we cannot disclose the details of proprietary DL
models in P, we present the results of several public and pop-
ular models, some of which are also run in P.

498 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Model Size (MBytes)

All
>8 GPUs

Figure 16: The CDF of DL model
sizes being trained.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Iteration Time (Seconds)

All Jobs
>8 GPUs Jobs

Figure 17: The CDF of average
iteration time per job.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F

Jobs Arrival Interval (Seconds)

Figure 18: The CDF of DDL job
arrival intervals.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
D

F

Job Duration (Hours)

All Jobs
>8 GPUs Jobs

Figure 19: The CDF of DDL job
duration.

Large and different DL model sizes. As shown in Fig-
ure 16, production DL models range from a few hundreds of
megabytes to a few gigabytes. The model size distribution
is rather independent from the number of GPUs used. Ac-
cording to the cluster users, the number of GPUs used often
depends more on the training data volume and the urgency
of jobs, and less on model sizes. Larger model sizes mean
heavier communication overhead per iteration in distributed
training. The largest one is 7.5GB. It may cause network con-
gestion even with 100 Gbps network and greatly hurt the job-
level performance. 5 To minimize this overhead, existing job
placement strategy intuitively consolidates DDL jobs as much
as possible.

A staggering increase in the number DDL jobs. We com-
pare the number of DDL jobs (with at least two GPUs) dur-
ing ten weeks from Oct. 2017 to Dec. 2017, and the number
of DDL jobs during the same ten weeks in 2016. The total
number of DDL jobs has grown by 10.5× year over year. We
refer to jobs using more than 8 GPUs as “large jobs,” since
such jobs have to run on multiple servers (8 GPUs per server
in P). Large jobs have grown by 9.4×. The largest job run on
128 GPUs in 2017, while the number was 32 GPUs in 2016.
We expect this trend to continue as DL jobs are trained on
ever larger data sets.

Long job queuing time in production clusters. We also
observe that the number of DDL jobs is increasing faster than
the speed of cluster expansion. As a result, some jobs have to
wait in a queue when the cluster is overloaded. From the trace,
we see the average queuing delay of all jobs is 4102 seconds!
A brute-force solution is to add GPUs as fast as the demand.
However, this poses significant monetary costs – each 8-GPU
server in P costs around 100K US Dollars based on public
available GPU price. Thus, the DDL cluster service providers
are seeking ways to improve job completion time (including
the queuing time) given limited GPU resources.

Unpredictable job arrivals. Since the cluster is shared by
multiple teams and jobs are submitted on demand, the job
arrival intervals are naturally unpredictable. Figure 18 shows
that the job arrival interval is mostly less than one hour. Many

5Section 3.3 shows that in fact it mostly depends on the model structure.

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12

2D
-G

itt
in

s I
nd

ex
 V

al
ue

Attained service

Figure 20: 2D-Gittins index value in §3.2.2. Jobs have required ser-
vice 4, 8, and 12, each with probability 1/3.

arrival intervals are less than one second, suggesting that they
are generated by AutoML to sweeping hyperparameters.

Various aggregation frequency depending on algorithm
demands. The communication overhead also depends on
how frequently aggregations are performed, which depends
on the minibatch sizes. The size of minibatches is determined
by the model developers – the larger the minibatches, the
larger the learning step, which may help the learning process
avoid local optimas but risk final convergence due to too-large
steps. Thus, it is usually chosen by the users based on the re-
quirements of specific models.

Figure 17 shows that the per iteration time varies signifi-
cantly across jobs. However, the distribution of large jobs is
very close to all jobs. This means that users probably do not
choose minibatch sizes based on how many GPUs are used in
each job.

B Characteristics of Popular DNN models
In Table 6, we pick 10 popular DNN models and present the
details of their model structures for their TensorFlow imple-
mentations [5]. For the VGG family and AlexNet, the size of
each model is dominated by its largest tensor. For the rest,
their tensor size distributions are less skewed.

C 2D-Gittins Index Value in Section 3.2.2
When using 2D-Gittins index scheduling algorithm, the pri-
orities of the jobs is determined by their corresponding 2D-
Gittins index value mapped to their attained service. The three
jobs in Figure 7 follow the same 2D-Gittins index in Fig-
ure 20.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 499

Table 6: Characteristics of 10 popular DNN models in TensorFlow

Model Model size (MB) #Tensors #Large tensors (≥ 1MB) Largest tensor size (MB) Largest tensor ratio

VGG19 548.1 39 15 392.0 71.5%
VGG16 527.8 33 12 392.0 74.3%
VGG11 506.8 23 9 392.0 77.3%
AlexNet 235.9 17 7 144.0 61.0%

ResNet152 230.2 778 48 9.0 3.9%
ResNet101 170.4 523 35 9.0 5.3%
ResNet50 97.7 268 18 9.0 9.2%

Inception4 162.9 599 81 5.9 3.6%
Inception3 91.0 397 21 7.8 8.6%
GoogleNet 26.7 117 7 3.9 14.6%

D ILP Formula for DDL Placement
When placing a DDL job on to a shared GPU cluster, the
network traffic generated by that job affects not only itself,
but also all the jobs that share the same machines or network
links. The existing network status can affect the newly-placed
DDL job as well. Therefore, the objective of placing a DDL
job is to maximize the overall performance of the entire clus-
ter. To achieve this, we have to minimize the total network
traffic and also balance the network load on individual ma-
chines in the cluster. In our ILP formulation, the objective
function is to minimize the maximal network load of ma-
chines when placing a new DDL job onto the cluster.

By default, we assume all DDL jobs have the same number
of parameter servers (PS) and GPU worker, which is a com-
mon practice [45]. Actually, changing number of parameter
servers does not affect the total amount of data in aggregation
in the parameter server architecture. There are N GPU nodes
in the cluster. Ni is the i-th node whose network traffic from
existing DDL jobs is ti. And Ni has gi free GPUs before plac-
ing any new jobs. We assume a new DDL job J with model
size M is going to be placed. There are W GPU workers and
K parameter servers in it. The total size of tensors hosted by
the j-th parameter server is s j. For J, wi is the number of GPU
workers placed on Ni. p ji is a binary variable. It will be 1 if
the j-th parameter server is placed on Ni, and vice versa.

The total network traffic of Ni comes from three parts: (1)
existing traffic, (2) traffic from the workers of J on it, and (3)
traffic from the parameter servers of J on it. For collocated
parameter servers and workers, the traffic between them has
to be deducted. Therefore, the total network traffic Ti is:

Ti = ti +wi · (M−∑
j∈K

p ji · s j)+ ∑
j∈K

p ji · s j · (W −wi)

The overall objective can then be expressed as:

minimize max
i∈N
{Ti}

The corresponding constraints are the following:

∀i∈Nwi ≤ gi (1)

∑
i∈N

wi =W (2)

∀ j∈K ∑
i∈N

p ji = 1 (3)

The first one is GPU resource constraints on all nodes. The
second one requires the consistency of total number of GPU
workers in J. The last one means every parameter server must
have exactly one host machine. Of course, more constraints,
such as CPU and host memory limitations, can be added into
this ILP formulation.

500 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Correctness and Performance for Stateful Chained Network Functions

Junaid Khalid Aditya Akella
University of Wisconsin - Madison

Abstract: Network functions virtualization (NFV) allows
operators to employ NF chains to realize custom poli-
cies, and dynamically add instances to meet demand or for
failover. NFs maintain detailed per- and cross-flow state
which needs careful management, especially during dynamic
actions. Crucially, state management must: (1) ensure NF
chain-wide correctness and (2) have good performance. To
this end, we built CHC, an NFV framework that leverages
an external state store coupled with state management al-
gorithms and metadata maintenance for correct operation
even under a range of failures. Our evaluation shows that
CHC can support ⇠10Gbps per-NF throughput and < 0.6µs
increase in median per-NF packet processing latency, and
chain-wide correctness at little additional cost.

1 Introduction

NFV vastly improves network management. It allows oper-
ators to implement rich security and access control policies
using NF chains [5, 14, 10, 6, 1]. Operators can overcome
NF failure and performance issues by spinning up additional
instances, and dynamically redistributing traffic [15, 29].

To be applicable to enforcing policies correctly, NFV must
provide chain output equivalence (COE): given an input
packet stream, at any point in time, the collective action
taken by all NF instances in an NFV chain (Figure 1a) must
match that taken by an hypothetical equivalent chain with in-
finite capacity always available single NFs (Figure 1b). COE
must hold under dynamics: under NF instance failures/slow-
downs, traffic reallocation for load balancing/elastic scaling,
etc. Given that NFV is targeted for cloud and ISP deploy-
ments, COE should not come at the cost of performance.

These goals are made challenging by NFs’ statefulness.
Most NFs maintain detailed internal state that could be up-
dated as often as per packet. Some of the state may be shared
across instances. For example, the IDS instances in Figure 1a
may share cross-flow state, e.g., per port counters. They may
also maintain per-flow state, e.g., bytes per flow, which is
confined to within an instance.

IDS 2

copy of suspicious

DPI

IDS 1
Rate

All traffic
All traffic

traffic

IDS 3

Limiter 1

Rate
Limiter 2

(a)

DPI

IDS Rate
Limiter

All traffic

All traffic
copy of suspicious

traffic

(b)
Figure 1: (a) Example NFV chain with many instances per NF (b) logical
view with infinite capacity NFs/links for COE.

Ensuring COE under statefulness requires that, as traffic
is being processed by many instances, or being reassigned
across instances, updates to state at various NFs must happen
in a “correct” fashion. For example, shared state updates due
to packets arriving at IDS1 must be reflected at IDS2; like-
wise, when reallocating a flow, say f1, from IDS1 to 2, f1’s
state should be updated due to in-flight f1 packets arriving
at both IDSes 1 and 2. Finally, how the state is updated can
determine an NF’s action. For example, the off-path Trojan
detector [12] in Figure 2 relies on knowing the exact order
in which connection attempts were made. When there is a
discrepancy in the order observed w.r.t. the true order – e.g.,
due to intervening NFs running slow or failing – the Trojan
detector can arrive at incorrect decisions, violating COE.

Many NFV frameworks exist today [29, 25, 26, 20, 11,
17, 32]. Several of them focus on managing NF state mi-
gration or updates upon traffic reallocation during scaling or
failover [29, 25, 26, 16, 32]. However, they either violate
COE, or suffer from poor performance (or both).

First, most systems ignore shared state [29, 25, 26, 20].
They assume that NFs do not use cross-flow state, or that
traffic can be split across NF instances such that sharing is
completely avoided. Unfortunately, neither assumption is
valid; many NFs [21, 30, 8, 22] have cross-flow state, and
the need for fine-grained traffic partitioning for load balanc-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 501

ing can easily force cross-flow state sharing across instances.
Because shared state is critical to NF processing, ignoring
how it is updated can lead to inconsistent NF actions under
dynamics, violating COE (§2.2).

Second, existing approaches cannot support chain-level
consistency. They cannot ensure that the order of updates
made to an NF’s state (e.g., at the Trojan detector [12] in Fig-
ure 2) are consistent with the input packet stream. This in-
ability can lead to NFs arriving at incorrect decisions, e.g.,
missing out on detecting attacks (as is the case in Figure 2),
violating COE. Similar issues arise in the inability to cor-
rectly suppress spurious duplicate updates observed at an NF
due to recovery actions at upstream NFs (§2.1).

Finally, existing frameworks impose high overhead on
state maintenance, e.g., 100s of milliseconds to move per-
flow state across instances when traffic is reallocated (§2.2).

We present a new NFV framework, CHC (“correct, high-
performance chains”), which overcomes these drawbacks.
For COE, CHC uses three building blocks. CHC stores NF
state in an in-memory external state store. This ensures
that state continues to be available after NF instances’ re-
cover from failure, which is necessary for COE. Second, it
maintains simple metadata. It adds a “root” at the entry
of a chain that: (1) applies a unique logical clock to every
packet, and (2) logs packets whose processing is still ongo-
ing in the chain. At the store and NFs, CHC tracks packet
clocks along with update operations each NF issues. Clocks
help NFs to reason about relative packet ordering irrespec-
tive of intervening NFs’ actions, and, together with datastore
logs, help suppress duplicates. We develop failure recovery
protocols which leverage clocks and logs to ensure correct
recovery from the failure. In the extended version of our
paper [18], we prove their correctness by showing that the
recovered state is same as if no failure has occurred, thereby
ensuring COE.

State externalization can potentially slow down perfor-
mance of state reads/writes. Thus, for performance, CHC
introduces NF-aware algorithms for shared state manage-
ment. It uses scope-awareness of state objects to partition
traffic so as to minimize cross-instance shared state coordi-
nation. It leverages awareness of the state access patterns of
NFs to implement strategies for shared state caching. Be-
cause most NFs today perform a simple set of state update
operations, CHC offloads operations to the state store, which
commits them in the background. This speeds up shared
state updates – all coordination is handled by the store which
serializes the operations issued by multiple NF instances.

We built a multi-threaded C++ prototype of CHC along
with four NFs. We evaluate this prototype using two campus-
to-EC2 packet traces. We find that CHC’s state management
optimizations reduce latency overhead to 0.02µs - 0.54µs
per packet compared to traditional NFs (no state external-
ization). CHC failover offers 6X better 75%-ile per packet
latency than [29]. CHC is 99% faster in updating strongly

consistent shared state, compared to [16]. CHC obtains
per-instance throughput of 9.42Gbps – same as maximum
achievable with standalone NFs. CHC’s support for chain-
wide guarantees adds little overhead, but eliminates false
positives/negatives seen when using certain security NFs in
existing NFV frameworks. Thus, CHC is the only frame-
work to support COE, and it does so at state-of-the-art per-
formance.

2 Motivation

NFV allows operators to connect NFs together in chains,
where each type of NF can use multiple instances to process
input traffic demand. Use of software NFs and SDN [24]
means that when incoming traffic load spikes, or process-
ing is unbalanced across instances, operators can scale up
by adding NF instances and/or reallocate flow processing
across instances. Furthermore, hot-standby NFs can be used
to continue packet processing when an instance crashes. Due
to these benefits, cloud providers and ISPs are increasingly
considering deploying NFV in their networks [4].

2.1 Key Requirements for COE
NFV chains are central to security and compliance poli-
cies, they must always operate correctly, i.e., ensure COE
(§1). Ensuring COE is challenging: (1) NFs are stateful;
they maintain state objects for individual and group of flows.
These state objects may be updated on every packet and the
value of these state objects may be used to determine the ac-
tion on the packet. This requires support for fine gained NF
state management. (2) In addition to this, COE also require
that the per-NF and chain-wide state updates are consistent
with the input packet stream. (3) Since chaining may create a
dependency between the action taken in upstream instances
and its downstream instances, it is important that the impact
of a local action taken for failure recovery should be isolated
from the rest of the chain. These challenges naturally map to
three classes of requirements for supporting COE:

State Access: The processing of each packet requires access
to up-to-date state; thus, the following requirement are nec-
essary to ensure COE under dynamics:
• (R1) State availability: When an NF instance fails, all

state it has built up internally disappears. For a failover in-
stance to take over packet processing it needs access to the
state that the failed instance maintained just prior to crashing.
• (R2) Safe cross-instance state transfers: When traf-

fic is reallocated across NF instances to rebalance load, the
state corresponding to the reallocated traffic (which exists at
the old instance where traffic was being processed) must be
made available at the reallocated traffic’s new location.

Consistency: Action taken by a given NF instance may de-
pend on shared-state updates made by other instances of the

502 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Firewall 1. IRC
2.SSH
3.FTP

Trojan
detector

1.SSH

3. IRC
2. FTP Scrubber

Scrubber

Firewall

Firewall

Figure 2: Illustrating violation of chain-wide ordering.

same NF, or state actions at upstream NFs in the chain. En-
suring that said NF instances’ actions adhere to COE boils
down to following requirements:

• (R3) Consistent shared state: Depending on the nature
of an NF’s state, it may not be possible to completely avoid
sharing a subset of it across instances, no matter how traffic is
partitioned (e.g., port counts at the IDSes in Figure 1a). Such
state needs to be kept consistent across the instances that
are sharing; that is, writes/updates made locally to shared
state by different instances should be executed at all other
instances sharing the state in the same global order. Other-
wise, instances may end up with different views of shared
state leading to inconsistent and hence incorrect actions.

• (R4) Chain-wide ordering: Some NFs rely on knowing
the order in which traffic entered the network. Consider Fig-
ure 2. The off-path Trojan detector [12] works on a copy of
traffic and identifies a Trojan by looking for this sequence
of steps: (1) open an SSH connection; (2) download HTML,
ZIP, and EXE files over an FTP connection; (3) generate IRC
activity. When a Trojan is detected, the network blocks the
relevant external host. A different order does not necessarily
indicate a Trojan. It is crucial that the Trojan detector be able
to reason about the true arrival order as seen at traffic input.

In Figure 2, either due to one of the scrubbers being
slowed down due to resource contention or recovering from
failure [29], the order of connections seen at the Trojan de-
tector may differ from that in the traffic arriving at the input
switch. Thus, the Trojan detector can either incorrectly mark
Trojan traffic as benign, or vice versa. When multiple in-
stances of the Trojan detector are used, the problem is com-
pounded because it might not be possible to partition traffic
such that all three flows are processed at one instance.

• (R5) Duplicate suppression: In order to manage strag-
gler NFs, NFV frameworks can adopt the following ap-
proach: (a) deploy clones initialized with the state of a slow
NF instance; (b) use packet replay to bring the clone up to
speed with the straggler’s state since state initialization; and
(c) replicate packets to the straggler and clone (§5.3). De-
pending on when the clone’s state was initialized, replay can
lead to duplicate state updates at the straggler. Also, the
original and clone instances will then both generate dupli-
cate output traffic. Unless such duplicate updates and traf-
fic are suppressed, the actions of the straggler and of down-
stream NFs can be impacted (spurious duplicates may trigger
an anomaly). The need for duplicate suppression also arises
during fault recovery (§5.4).

Isolation: NFs in a chain should not be impacted by failure
recovery of other NFs. Specifically:

• (R6) Safe chain-wide recovery: When NF failures occur
and recovery takes place, it is important that the state at each
NF in the chain subsequent to recovery have the same value
as in the no-failure case. In other words, actions taken during
recovery should not impact the processing, state, or decisions
of NFs upstream or downstream from the recovering NF —
we will exemplify this shortly when we describe failings of
existing systems in meeting this requirement.

The network today already reorders or drops packets. Our
goal is to ensure that NF replication, chaining, and traffic re-
allocation together do not induce artificial ordering or loss
on top of network-induced issues. This is particularly cru-
cial for many important off-path NFs (e.g., DPI engines and
exfiltration checkers) which can be thwarted by artificially
induced reordering or loss.

2.2 Related work, and Our Contributions
A variety of NFV frameworks exist today [29, 16, 17, 25, 26,
20, 23, 11, 9, 28, 14, 32]. We review their drawbacks below.

Incomplete support for correctness requirements:
Most existing frameworks focus on handling requirements
R1 and/or R2. Split/Merge [26], OpenNF [16] and S6 [32]
support cross-instance state transfers (R2). FTMB [29] and
Pico Replication [25] focus on state availability (R1).

More fundamentally, Split/Merge, Pico Replication and
FTMB focus on availability of the state contained entirely
within an NF instance. They either ignore state shared across
instances, or focus on the small class of NFs where such state
is not used. Thus, these frameworks cannot handle R3.

Among existing frameworks, only OpenNF and S6 can
support consistency for shared state (R3), but this comes
at high performance cost. For example, OpenNF imposes
a 166µs per packet overhead to ensure strong consistency!
(§7). Similarly, S6 cannot support frequent updates to
strongly consistent shared state.

Equally crucially, all of the above frameworks focus on a
single NF; they cannot handle chains. Thus, none of them
support chain-wide ordering (R4).

Support for R5 is also missing. StatelessNF [17] and
S6 [32] update shared state in an external store or remote
NF, respectively, but they do not support atomic updates to
all state objects an instance can access. Thus, when a clone
is created to mitigate a straggler off-path NF (as outlined
above), the straggler may have updated other state objects
that are not reflected in the clone’s initialized state. Upon
replay, the straggler can make duplicate state updates (like-
wise, duplicate packets can also arise). For the same reason,
R6 is also violated: when an NF fails over, replaying packets
to bring the recovery NF up to speed can result in duplicate
processing in downstream NFs.

State management performance is poor: FTMB’s peri-
odic checkpointing significantly inflates NF packet process-
ing latency (§7). As mentioned above, OpenNF imposes per-
formance overhead for shared state. The overhead is high

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 503

Scopeware
partitioning

Root

Logged packets w/

logical clock (Pkti , Ci)

datastore

manager

Pkti

Pkti

datastore

Buffered pkts

Obj

state

metadata

Ops buffer

Obj

keykey

7

1

2

8

C
i
, value

NF1 instance

NF1 instance
NF2 instance3

delete (Ci) 5
4

cached state

metadata

Ops logs
6

9

(a)

Root

Limiter
DPI

IDS

Sp
litte

r

Rate

(b)
Figure 3: (a) CHC architecture; (b) Physical chain that CHC runs.

even for cross-instance transfers of per-flow state: this is
because such transfers require extracting state from an in-
stance and installing it in another while ensuring that incom-
ing packets are directed to the state’s new location.

Our contributions: How do we support requirements
R1-R6 while ensuring good state management performance?
Some NFs or operating scenarios may just need a subset of
R1-R6. However, we seek a single framework that meets all
requirements/scenarios because, with NFV becoming main-
stream, we believe we can no longer trade-off general cor-
rectness requirements for performance or functionality (spe-
cific NFs). Thus, we identify basic building blocks and study
how to synthesize them into one framework. We have set
ourselves the ambitious goal of designing a single generic
NFV framework to support all of these requirements, though
some NFs may only need support for a subset of these re-
quirements. Building such a framework is especially chal-
lenging because we must carefully deal with shared state and
NF chaining.

Our system, CHC, has three building blocks (Figure 3a):
We maintain NF state in an in-memory state store external
to NFs (1 ; §4). NFs access the store to read/write relevant
state objects. This ensures state availability (R1). The store’s
state object metadata simplifies reasoning about state own-
ership and concurrency control across instances (2 ; §4.3).
This makes state transfer safety (R2) and shared state consis-
tency (R3) simple and efficient (§5.1).

We propose NF state-aware algorithms for good state
read/write performance which is a key concern with state ex-
ternalization. These include (§4.3): automatic state scope-
aware traffic partitioning to minimize shared-state coordina-
tion (3); asynchronous state updates for state that is up-
dated often but read infrequently; this allows packet process-
ing to progress unimpeded (4); NFs sending update opera-
tions, as opposed to updated state, to the store, which simpli-
fies synchronization and serialization of shared-state updates
(5); scope- and access pattern-aware state caching strate-
gies, which balances caching benefits against making cache
updates immediately visible to other instances (6).

Finally, we maintain a small amount of metadata – clocks
and logs. We insert per packet logical clocks (7 ; §5) which
directly supports cross-instance ordering (R4). We couple
clocks with logs to support duplicate suppression (R5; §5.3)
and COE under failover of NFs and framework components

(R6; §5.4). We log every packet that is currently being pro-
cessed at some NF in the chain (8). Logged packets are
replayed across the entire chain during failover. At the state
store, we store logical clocks of packets along with the state
updates they resulted in, which aids duplicate suppression.
At each NF, we store packet clocks along with the update op-
erations issued and the most recently read state value (9).
Together with state store snapshots, these NF-side logs sup-
port COE under datastore recovery.

Though StatelessNF [17] first advocated for externalizing
state, but it has serious issues. Aside from a lack of support
for R4–R6, it lacks atomic state updates: when a single NF
fails after updating some but not all state objects, a failover
NF can boot up with incorrect state! It requires locks for
shared state updates, which degrades performance. Also, it
assumes Infiniband networks for performance.

3 Framework: Operator View

In CHC, operators define “logical” NF chains (such as Fig-
ure 1b) using a DAG API. We elide low level details of the
API, such as how policies are specified, and focus on aspects
related to correctness and performance. Each “vertex” of the
DAG is an NF and consists of operator supplied NF code, in-
put/output, configuration, and state objects. Edges represent
the flow of data (packets and/or contextual output).

The CHC framework compiles the logical DAG into a
physical DAG with logical vertex mapped to one or more
instances (Figure 3b). For example, the IDS in Figure 1b is
mapped to three instances in Figure 3b. The operator can
provide default parallelism per vertex, or this can be deter-
mined at run time using operator-supplied logic (see below).
CHC deploys the instances across a cluster. Each instance
processes a partition of the traffic input to the logical vertex;
CHC automatically determines the traffic split to ensure even
load distribution (§4).

The CHC framework supports chain elastic scaling and
straggler mitigation. Note that the logic, e.g., when to scale
is not our focus; we are interested in high performance state
management and COE during such actions. Nevertheless,
we outline the operator-side view for completeness: opera-
tors must supply relevant logic for each vertex (i.e., scaling1;
identifying stragglers2). CHC executes the logic with input
from a “vertex manager”, a logical entity is responsible for
collecting statistics from each vertex’s instances, aggregating
them, and providing them periodically to the logic.

Based on user-supplied logic, CHC redirects traffic to
(from) scaled up (down) NF instances or clones of strag-
gler NFs. CHC manages state under such dynamic actions
to ensure COE. CHC also ensures system-wide fault toler-
ance. It automatically recovers from failures of NFs or of

1e.g., “when input traffic volume increased by a certain q”
2when an instance processing q% slower than other instances

504 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CHC framework components while always preserving COE.

4 Traffic and State Management

We discuss how CHC processes traffic and manages state.
The framework automatically partitions traffic among NF
instances (§4.1) and manages delivery of packets to down-
stream NFs (§4.2). As packets flow, different NFs process
them and update state in an external store; CHC leverages
several algorithms for fast state I/O; the main challenge here
is dealing with shared state (§4.3).

4.1 Traffic partitioning

CHC performs scope-aware partitioning: traffic from an up-
stream instance is partitioned across downstream instances
such that: (1) each flow is processed at a single instance, (2)
groups of flows are allocated to instances such that most state
an instance updates for the allocated flows is not updated by
other instances, and (3) load is balanced. #1 and #2 reduce
the need for cross-instance coordination for shared state.

In CHC, state scope is a first-class entity. A function
.scope() associated with a vertex program returns a list of
scopes i.e., the set of packet header fields which are used
to key into the objects that store the states for an NF; i.e.,
these are the different granularities at which states can be
queried/updated. CHC orders the list from the most to least
fine grained scope. Suppose the DPI vertex in Figure 1b has
two state objects: one corresponding to records of whether
a connection is successful or not; and another corresponding
to the number of connections per host. The scope for the for-
mer is the 5-tuple (src IP, dst IP, src port, dst port, protocol);
the scope for the latter is src IP.

CHC first attempts to partition traffic at instances imme-
diately upstream (which, for the DPI in Figure 1b would
be the IDSes) based on the most coarse-grained state scope
(for the DPI this is src IP); such splitting results in no state
sharing at the downstream (DPI) instances. However, being
coarse grained, it may result in uneven load across instances.
The framework gathers this information via the (DPI) vertex
manager. It then considers progressively finer grained scopes
and repeats the above process until load is even.

The final scope to partition on is provided in common to
the splitters upstream. The framework inserts a splitter after
every NF instance (Figure 3b). The splitter partitions the
output traffic of the NF instance to instances downstream.

The root of a physical DAG is a special splitter that re-
ceives and splits input traffic. Roots can use multiple in-
stances to handle traffic; in CHC, we fix root parallelism to
some constant R. Network operators are required to statically
partition traffic among the R roots such that the traffic pro-
cessed by a root instance has no overlap in any of the 5-tuple
dimensions with that processed by another instance.

Scope Any Per-flow Cross-flow Cross-flow
Access
pattern

Write mostly,
read rarely

Any Write rarely
(read heavy)

Write/read
often

Non-blocking
ops. No
caching

Caching \w
periodic non-
blocking flush

Caching \w
callbacks

Depends upon
traffic split.
Cache, if split
allows; flush
periodically

Table 1: Strategies for state management performance

4.2 Communication

Inter-NF communication is asynchronous and non-blocking.
Each NF’s outputs are received by the CHC framework
which is responsible for routing the output to downstream
instances via the splitter. The framework stores all the out-
puts received from upstream instances in a queue per down-
stream instance; downstream instances poll the queue for in-
put. This approach offers three benefits: (a) upstream in-
stances can produce output independent of the consumption
rate of downstream instances, (b) the framework can operate
on queue contents (e.g., delete messages before they are pro-
cessed downstream), which is useful for certain correctness
properties, e.g., duplicate suppression (§5), (c) user logic can
use persistent queues to identify stragglers/uneven load.

4.3 State Maintenance

CHC externalizes NF state and stores it in an external
distributed key-value datastore. Thus, state survives NF
crashes, improving availability and satisfying requirement
R1 (§2). All state operations are managed by the datastore
(Figure 3a). As described below, CHC incorporates novel
algorithms and metadata to improve performance (Table 1).

State metadata: The datastore’s client-side library ap-
pends metadata to the key of the state that an NF instance
stores. This contains vertex ID and instance ID, which are
immutable and are assigned by the framework. In CHC, the
key for a per-flow (5 tuple) state object is: vertex ID + in-
stance ID + obj key, where obj key is a unique ID for the
state object. The instance ID ensures that only the instance
to which the flow is assigned can update the corresponding
state object. Thus, this metadata simplifies reasoning about
ownership and concurrency control. Likewise, the key for
shared objects, e.g., pkt count, is: vertex ID + obj key. All
the instances of a logical vertex can update such objects.
When two logical vertices use the same key to store their
state, vertex ID prevents any conflicts.

Offloading operations: Most NFs today perform sim-
ple operations on state. Table 2 shows common examples.
In CHC, an instance can offload operations and instruct the
datastore to perform them on state on its behalf (developed
contemporarily with [32]). Developers can also load custom
operations. The benefit of this approach is that NF instances
do not have to contend for shared state. The datastore seri-
alizes operations issued by different instances for the same
shared state object and applies them in the background (In

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 505

Operation Description
Increment/ decre-
ment a value

Increment or decrement the value stored
at key by the given value.

Push/pop a value
to/from list

Push or pop the value in/from the list
stored at the given key.

Compare and update Update the value, if the condition is true.
Table 2: Basic operations offloaded to datastore manager

[18], we prove that updates will always result in consistent
state.). This offers vastly better performance than the natural
approach of acquiring a lock on state, reading it, updating,
writing it back, and releasing the lock (§7).

Non-blocking updates: In many cases, upon receiving a
packet, an NF updates state, but does not use (read) the up-
dated value; e.g., typical packet counters (e.g., [21, 22, 30])
are updated every input packet, but the updated value is only
read infrequently. For such state that is written mostly and
read rarely, we offer non-blocking updates (Table 1): the
datastore immediately sends the requesting instance an ACK
for the operation, and applies the update in the background.
As a further optimization, NFs do not even wait for the ACK
of a non-blocking operation; the framework handles opera-
tion retransmission if an ACK is not received before a time-
out. If an instance wishes to read a value, the datastore ap-
plies all previous outstanding updates to the value, in the or-
der NFs issued them, before serving the read.

Caching: For all the objects which are not amenable to
non-blocking updates, we improve state access performance
using novel caching strategies that leverage state objects’
scope and access patterns (ready-heavy vs. not).

Per-flow state: CHC’s scope-aware partitioning ensures
that flows that update per-flow state objects are processed
by a single instance; thus, these objects do not have cross-
instance consistency requirements. The datastore’s client-
side library caches them at the relevant instance, which im-
proves state update latency and throughput. However, for
fault tolerance, we require local updates made to cached ob-
jects to be flushed to the store; to improve performance, these
flush operations have non-blocking semantics (Table 1).

Cross-flow state: Cross-flow state objects can be updated
by multiple instances simultaneously. Unlike prior works
that largely ignore such state, CHC supports high perfor-
mance shared state management. Some shared objects are
rarely updated; developers can identify such objects as read-
heavy. CHC (1) caches such an object at the instances need-
ing them; and (2) the client-side library at each of these in-
stances registers a callback with the store, which is invoked
whenever the store updates the object on behalf of another in-
stance. The NF developer does not need to provide callbacks
to update state; they are handled by the client-side library.

The cached objects only serve read requests. Whenever
an (rare) update is issued by an instance - operation is im-
mediately sent to the store, The store applies the operation
and sends back the updated object to the update initiator. At
the same time, the client-side library of other instances re-

ceives callback from the store and updates the locally cached
value (Table 1). We prove this approach results in consistent
updates to shared state in [18]

For other cross-flow objects (not rarely-updated), the data-
store allows them to be cached at an instance only as long
as no other instance is accessing them (Table 1); otherwise,
the objects are flushed. CHC notifies the client-side library
when to cache or flush the state based on (changes to) the
traffic partitioning at the immediate upstream splitter.

For scale and fault tolerance we use multiple datastore
instances, each handling state for a subset of NF instances.
Each datastore instance is multi-threaded. A thread can han-
dle multiple state objects; however, each state object is only
handled by a single thread to avoid locking overhead.

5 Correctness

So far, we focused on state management and its performance.
We also showed how CHC supports requirement R1 (state
availability) by design. We now show how it supports the re-
quirements R2–R6. This is made challenging both by shared
state and by chaining. To support R2-R6, CHC maintain-
s/adds metadata at the datastore, NFs and to packets. We first
describe how the most basic of the metadata – logical packet
clocks and packet logs – are maintained. We describe other
metadata along with the requirements they most pertain to.

Logical clocks, logging: The root (§4.1) attaches with ev-
ery input packet a unique logical clock that is incremented
per packet. The root also logs in the datastore each packet,
the packet clock, and to which immediate downstream in-
stance the packet was forwarded. When the last NF in a chain
is done processing a packet, updating state and generating
relevant output, it informs the CHC framework. CHC sends
a “delete” request with the packet’s clock to the root which
then removes the packet from the log. Thus, at any time, the
root logs all packets that are being processed by one or more
chain instances. When any NF in the chain cannot handle the
traffic rate, the root log builds in size; CHC drops packets at
the root when this size crosses a threshold to avoid buffer
bloat. When multiple root instances are in use (§4.1), we en-
code the identifier of the root instance into the higher order
bits of the logical clock inserted by it to help the framework
deliver “delete” requests to the appropriate root instance.

5.1 R2, R3: Elastic scaling

In some situations, we may need to reallocate ongoing pro-
cessing of traffic across instances. This arises, e.g., in elas-
tic scaling, where a flow may be processed at an “old” in-
stance and reallocated to a “new” scaled up instance. We
must ensure here that the old and new instances operate on
the correct values of per- and cross-flow state even as traffic
is reassigned (requirements R2 and R3).

506 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Registers callback

Old
instance

New
instance

Splitter

Datastore
manager

Marks the last pkt

Marks the first pkt

Waits for the pkt marked last

Waits for state handover

Flushes &
releases state

Handover notificationFlushes buffered pkts

2

1 8

4
67

instance

5

3

Figure 4: State handover.

Specifically, for cross-flow shared state, we require that:
updates made to the shared state by every incoming packet
are reflected in a globally consistent order irrespective of
which NF instance processed the corresponding packet.

Existing systems achieve this at high overhead:
OpenNF [16] copies shared internal state from/to the
instances sharing it, each time it is updated by an incoming
packet! In contrast, ensuring this property in CHC is
straightforward due to externalization and operation offload-
ing (§4.3): when multiple instances issue update operations
for shared state, the datastore serializes the operations and
applies in the background. All subsequent accesses to the
shared state then read a consistent state value.

Per-flow state’s handling must be correctly reallocated
across instances, too (R2). One approach is to disassociate
the old instance from the state object (by having the instance
remove its instance ID from the object’s metadata) and asso-
ciate the new instance (by adding its instance ID). But, this
does not ensure correct handover when there are in-transit
packets that update the state: even if the upstream splitter im-
mediately updates the partitioning rules and the traffic starts
reaching the new instance, there might be packets in-transit
to, or buffered within, the old instance. If the new instance
starts processing incoming packets right away then state up-
dates due to in-flight/buffered packets may be disallowed by
the datastore (as a new instance is now associated with the
state object) and hence the updates will be lost.

Thus, to satisfy R2, we require: Loss-freeness, i.e., the
state update due to every incoming packet must be reflected
in the state object. Furthermore, some NFs may also need
order-preservation: updates must happen in the order of
packet arrivals into the network.

These properties are crucial for off-path NFs, e.g., IDS.
Such NFs cannot rely on end-to-end retransmissions to re-
cover from lost updates induced by traffic reallocation [16].
Similarly, they may have to process packets in the order in
which they are exchanged across two directions of a flow,
and may be thwarted by a reordering induced by reallocation
(resulting in false positives/negatives).

Figure 4 shows the sequence of steps CHC takes for R2:
1 The splitter marks the “last” packet sent to the old in-

stance to inform the old instance that the flow has been
moved. This mark indicates to the old instance that it should
flush any cached state associated with the particular flow(s)
to the datastore and disassociate its ID from the per flow
state, once it has processed the “last” packet. 2 The splitter

also marks the “first” packet from the traffic being moved
to the new instance. 3 When the new instance receives
the “first” packet, it tries to access the per flow state from
the datastore. If the state is still associated with the old in-
stance ID, it registers a callback with the datastore to be noti-
fied of metadata updates. 4 The new instance starts buffer-
ing all the packets associated with the flow which is being
moved. 5 After processing the packet marked as “last”, the
old instance flushes the cached state and updates the meta-
data to disassociate itself from the state. 6 The datastore
notifies the new instance about the state handover. 7 The
new instance associates its ID with the state, and flushes its
buffered packets.

The above ensure that updates are not lost and that they
happen in the order in which packets arrived at the upstream
splitter. In contrast, OpenNF provides separate algorithms
for loss-freeness and order-preservation; an NF author has
the arduous task of choosing from them!

Note also that packets may arrive out of order at a down-
stream instance, causing it to make out-of-order state up-
dates. To prevent this: 8 The framework ensures that pack-
ets of the moved flow emitted by the new instance are not en-
queued at the downstream instance, but instead are buffered
internally within the framework until the packet marked as
“last” from the old instance is enqueued at the new instance.

5.2 R4: Chain-wide ordering
To support R4, we require that: Any NF in a chain should be
able to process packets, potentially spread across flows, in
the order in which they entered the NF chain. CHC’s logical
clocks naturally allow NFs to reason about cross-flow chain-
wide ordering and satisfy R4. E.g., the Trojan detector from
§2.1 can use packets’ logical clocks to determine the arrival
order of SSH, FTP and IRC connections.

5.3 R5: Straggler mitigation
R5 calls for the following: All duplicate outputs, duplicate
state updates, and duplicate processing are suppressed.

A key scenario in which duplicate suppression is needed is
straggler mitigation. A straggler is a slow NF that causes the
entire NF chain’s performance to suffer. We first describe
CHC’s mechanism for straggler mitigation (which kicks in
once user-provided logic identifies stragglers; §3), followed
by duplicate suppression.

Clone and replay: To mitigate stragglers CHC deploys
clones. A clone instance processes the same input as the
original in parallel. CHC retains the faster instance, killing
the other. CHC initializes the clone with the straggler’s latest
state from the datastore. It then replicates incoming traffic
from the upstream splitter to the straggler and the clone.

This in itself is not enough, because we need to satisfy R2,
i.e., ensure that the state updates due to packets that were

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 507

logical clock, pkt_count++

clone
initialized

rtn value

rtn value

pkt_count = 2, con<key> = 1

task
Datastore
manager

pkt_count = 0, con<key> = 0

processing
replayed
packet

pkt_count = 2

con<key> = 1

pkt_count = 1

(a) Naive reprocessing

logical clock, pkt_count++

clone
initialized

rtn value

rtn value

pkt_count = 1, con<key> = 1

task
Datastore
manager

pkt_count = 0, con<key> = 0

processing
replayed

packet
pkt_count = 1

con<key> = 1

pkt_count = 1

emulating
state update

(b) Reprocessing with emulation
Figure 5: Duplicate update suppression

in-transit to the straggler at the time the clone’s state was
initialized are reflected in the state that the clone accesses. To
address this, we replay all logged packets from the root. The
root continues to forward new incoming packets alongside
replayed ones. The clone processes replayed traffic first, and
the framework buffers replicated traffic. To indicate end of
replay traffic, the root marks the “last” replayed packet (this
is the most recent logged packet at the time the root started
replaying). When replay ends (i.e., the packet marked “last”
was processed by the clone), the framework hands buffered
packets to the clone for processing.

Given the above approach for straggler mitigation, there
are three forms of duplicates that can arise. CHC suppresses
them by maintaining suitable metadata.

1. Duplicate outputs: Replicating input to the clone re-
sults in duplicate outputs. Here, the framework suppresses
duplicate outputs associated with the same logical clock at
message queue(s) of immediate downstream instance(s).

2. Duplicate state updates: Some of the replayed pack-
ets may have already updated some of the stragglers’ state
objects. For example, an IDS updates both the total packet
count and the number of active connections per host. A clone
IDS may have been initialized after the straggler updated the
former but not the latter. In such cases, processing a replayed
packet can incorrectly update the same state (total packet
count) multiple times at the straggler (Figure 5a). To address
this, the datastore logs the state value corresponding to each
state update request issued by any instance, as well as the
logical clock of the corresponding packet. This is only done
for packets that are currently being processed by some NF in
the chain. During replay, when the straggler or clone sends
an update for a state object, the datastore checks if an update
corresponding to the logical clock of the replayed packet has
already been applied; if so, the datastore emulates the execu-
tion of the update by returning the value corresponding to the
update (Figure 5b). In [18], we describe how CHC handles
non-deterministic state update operations.

3. Duplicate upstream processing: NFs upstream from
the clone/straggler would have already processed some of
the in-transit packets. In such cases, reprocessing replayed
packets leads to incorrect actions at upstream NFs (e.g., an
IDS may raise false alarms). To address this, each replayed
packet is marked and it carries the ID of the clone where it
will be processed. Such packets need special handling: the

intervening instances recognize that they are not suspicious
duplicates; if necessary, the instances read the store for state
corresponding to the replayed packet, make any needed mod-
ifications to the packet’s headers, and produce relevant out-
put; the instances can issue updates to state, too, but in such
cases the datastore emulates updates as before. The clone’s
ID is cleared once it processed the packet.

5.4 R6: Safe Fault Recovery
Our description of R6 in §2 focused on NF failures; however,
since CHC introduces framework components, we general-
ize R6 to cover other failures as well. Specifically, we require
the following general guarantee:

Safe recovery Guarantee: When an NF instance or a
framework component fails and a recovery occurs, we must
ensure that the state at each NF in the chain has the same
value as under no failure.

We assume the standard fail-stop model, that a machine/n-
ode can crash at any time and that the other machines/nodes
in the system can immediately detect the failure.

First, we show how CHC leverages metadata to handle the
failure of individual components. Then, we discuss scenarios
involving simultaneous failure of multiple components.

NF Failover: When an NF fails, a failover instance takes
over the failed instance’s processing. The datastore man-
ager associates the failover instance’s ID with relevant state.
Packet replay brings state up-to-speed (from updates due to
in-transit packets). Similar to cloning (§5.3), we suppress
duplicate state updates and upstream processing.

Since “delete” requests are generated after the last NF is
done processing a packet, failure of such an NF needs spe-
cial handling: consider such an instance T failing after gen-
erating an output packet for some input packet P, but before
the framework sends a “delete” request for P. When P is re-
played, T’s failover instance produces output again, result-
ing in duplicate packets at the receiving end host. To pre-
vent this, for the last NF in the chain, our framework sends
the “delete” request for P before the NF generates the output
packet. If the NF fails before the “delete” request, then P will
be replayed, but this does not result in duplicate downstream
processing since the NF did not generate output. If the NF
fails after the “delete” request but before generating output,
then P is not replayed, and hence the end host will not receive
any output packet corresponding to P. To the host, this will
appear as a packet being dropped by the network, causing P
to be retransmitted from the source and resulting in correct
overall behavior. In [18], we show that using this protocol
an NF instance recovers with state similar to that under no
failure.

Non-blocking operations: Non-blocking updates, where
NF instances don’t wait for ACKs, instead relying on the
framework to handle reliable delivery, can introduce the fol-
lowing failure mode: a instance may fail after issuing state

508 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Statestore

Root

NFN

NFM

𝑈𝑁,𝑜𝑏𝑗𝑌
𝑖

𝑑𝑒𝑙(𝑖), 𝑣𝑖

𝑃𝑖, 𝑣𝑖

𝑣𝑖′ = 0 𝑣𝑖′⨁𝑣𝑖≠ 0 ⇒ wait(i)
𝑣𝑖′⨁𝑣𝑖== 0 ⇒ 𝑑𝑒𝑙 (𝑖)

𝑣𝑖= 0

𝑖, 𝑀 ||𝑜𝑏𝑗𝑍

(𝑏𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟) 𝑣𝑖 = 𝑣𝑖 ⨁ (𝑁 || 𝑜𝑏𝑗𝑌)

𝑈𝑀,𝑜𝑏𝑗𝑍
𝑖

𝑖, 𝑁 || 𝑜𝑏𝑗𝑌

𝑣𝑖′ = 𝑣𝑖′ ⨁ (𝑀 || 𝑜𝑏𝑗𝑍) 𝑣𝑖′ = 𝑣𝑖′ ⨁ (𝑁 || 𝑜𝑏𝑗𝑌)

𝑣𝑖 = 𝑣𝑖 ⨁ (𝑀 || 𝑜𝑏𝑗𝑍)

time

𝑑𝑜𝑛′𝑡 𝑑𝑒𝑙𝑒𝑡𝑒 4
2

1

3

Figure 6: Recovery under non-blocking operations. Consider a packet Pi

which is processed by NFN, followed by NFM, the last NF in the chain. NFN
and NFM update objects ob jY and ob jZ , respectively.

update but before the update is committed and an ACK was
received. In such cases, to ensure R6, we need that the frame-
work must re-execute the incomplete update operation.

Suppose an instance N fails after processing packet Pi (i
is the logical clock) but before the corresponding state up-
date operation Ui

N,ob j (ob j is the state object ID) completes.
Pi may have induced such operations at a subset of NF in-
stances {N} along the chain. A natural idea to ensure the
above property is to replay packets from the root to repro-
duce Ui

N,ob j at various N’s. For this, however, Pi must be
logged and should not have been deleted. If Pi is deleted it
can’t be replayed.

We need to ensure Pi continues to be logged as long as
there is some N for which Ui

N,ob j is not committed. Our ap-
proach for this is shown in Figure 6: 1 Each packet carries
a 32-bit vector vi (object ID and instance ID; 16b each) that
is initialized to zero. Each NF instance where processing
the packet resulted in a state update XORs the concatena-
tion of its ID and the corresponding state objects’ IDs into
the bit vector. 2 When committing a given NF’s state up-
date, the state store signals to the root the clock value of the
packet that induced the update as well as the concatenated
IDs. 3 The last instance sends the final vector along with
its “delete” request to the root. 4 When a delete request and
the final vector are received, the root XORs the concatenated
IDs with the concatenated IDs reported by each signal from
the state store in step 2. If the result is zero, this implies that
updates induced by the packet at all NF instances {N} were
committed to the store; the root then proceeds to delete the
packet from the log. Otherwise, the packet updated state at
some NF, but the NF has not yet reported that the state was
committed; here, the root does not delete the packet.

Root: To ensure R6 under root failover, we need that a
new root must start with the logical clock value and current
flow allocation at the time of root failure. This is so that the
new root processes subsequent packets correctly. To ensure
this, the failover root reads the last updated value of the log-
ical clock from the datastore, and retrieves how to partition
traffic by querying downstream instances’ flow allocation.
The framework buffers incoming packets during root recov-
ery. We prove this approach ensures recovery with a state
similar to that under no failure in [18].

Datastore instance: Recall that different NFs can store
their states in different storage instances (§4.3). This ensures

I1

I2

I3

I4

State operations and TSupdate logs at the instance

Order of state update at the datastore Datastore crashed

𝑈9 𝑈8 𝑈13 𝑈20 𝑈11 𝑅19 𝑈22 𝑈17 𝑈25 𝑈15 𝑅27 𝑈30 𝑈31 𝑅18 𝑈23 𝑈32 𝑈35

𝑈9 𝑈20 𝑈15 𝑈35
𝑈11 𝑈22 𝑈25 𝑅27 𝑈30

𝑈8 𝑈17 𝑅18 𝑈23

𝑈13 𝑅19 𝑈31 𝑈32
𝑇𝑆

𝑢𝑝𝑑𝑎𝑡𝑒
19 {20, 11, 8, 13} 𝑇𝑆

𝑢𝑝𝑑𝑎𝑡𝑒
27 {15, 25, 17, 13} 𝑇𝑆

𝑢𝑝𝑑𝑎𝑡𝑒
18 {15, 30, 17, 31}

time: t time: t + δ

Figure 7: Recovering shared state at the datastore. Ik are instances.
Ulogical clock and Rlogical clock represent “update” and “read”.

that store failures impact availability of only a portion of the
overall state being tracked. Now, to ensure R6 under the
failure of a datastore instance, we need that the recovered
state in the new store instance must represent the value which
would have resulted if there was no failure. The recovered
state must also be consistent with the NF instances’ view of
packet processing thus far (i.e., until failure).

To support this property we distinguish between per-flow
and shared state. For the former, we leverage the insight that
all the NFs already maintain an updated cached copy of per-
flow state. If a datastore instance fails, we can simply query
the last updated value of the cached per-flow state from all
NF instances that were using the store.

Recovering shared state is nuanced. For this, we use
checkpointing with write-ahead logging [19]. The datastore
periodically checkpoints shared state along with the meta-
data, “T S”, which is the set of logical clocks of the pack-
ets corresponding to the last state operation executed by the
store on behalf of each NF instance. Each instance locally
writes shared-state update operations in a write-ahead log.
Say the latest checkpoint was at time t and failure happens at
t +d . A failover datastore instance boots with state from the
checkpoint at t. This state now needs to be “rolled forward”
to t +d and made consistent with the NF instances’ view of
packet processing at t +d . Two cases arise:

(Case 1) If NF instances that were using the store instance
don’t read shared state in the d time interval, then to recover
shared state, the framework re-executes state update opera-
tions from the local write-ahead log on behalf of each NF,
starting from the logical clocks included in the metadata T S
in the checkpoint. Recall that in our design the store applies
updates in the background, and this update order is unknown
to NF instances. Thus, our approach ensures that the state
updates upon re-execution match that produced by a plau-
sible sequence of updates that the store may have enforced
prior to failure. This consistency property suffices because,
in Case 1, NFs are not reading shared state in the d interval.

(Case 2) Say an NF instance issues a read between t and
t + d ; e.g., I3 in Figure 7 issues R18. Following the above
approach may lead to an order of re-execution such that the
actual state I3 read in R18 is different from the state in the
store after recovery. To ensure that the store’s state is consis-
tent with all Ik’s current view, the framework must re-execute
operations in such an order that the datastore would have pro-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 509

NF instance Root
Store instance 3⇤ 3⇤

NF instance 3 3

Table 3: Handling of correlated failures (⇤Cannot recover if component and
the store instance storing its state fail together).

duced the same value for each read in [t, t +d].
To ensure this, on every read operation, the datastore re-

turns T S along with the latest value of the shared state (e.g.,
T S19 is returned with I4’s R19). The instance then logs
the value of the shared state along with the corresponding
T S. Re-execution upon failure then needs to select, among
all T S’s at different instances, the one corresponding to the
most recent read from the store prior to the crash (i.e., T S18,
since R18 in the most recent read; most recent clock does
not correspond to most recent read). How selection is done
is explained shortly; but note that when the framework re-
executes updates starting from the clock values indicated by
this selected T S that would bring the store in sync with all
NFs. In our example, T S18 is the selected T S; we initial-
ize the store state with the value in the corresponding read
(R18). From the write-ahead log of each NF, the framework
re-executes update operations that come after their corre-
sponding logical clocks in T S18. At instance I1, this is the
update after U15, i.e., U35. At I3 and I4 these are U23 and
U32, respectively. Shared state is now in sync with all NFs.

T S selection works as follows: first we form a set of all the
T S’s at each instance, i.e., Set = {T S18,T S19,T S27

}. Since
the log of operations at an instance follows a strict clock or-
der we traverse it in the reverse order to find the latest update
operation whose corresponding logical clock value is in Set.
For example, if we traverse the log of I1, we find that the log-
ical clock of U15 exists in Set. After identifying such a log-
ical clock value, we remove all the entries from Set which
do not contain the particular logical clock value (such T Ss
cannot have the most recent read); e.g., we remove T S19 as
it does not contain logical clock 15. Similarly, we remove
T S27, after traversing I2’s log. Upon doing this for all in-
stances we end up selecting T S18 for recovery. In [18], we
prove that using this protocol the store recovers with state
similar to that under no failure.

Correlated failures: Using the above approaches, CHC
can also handle correlated failures (Table 3) of multiple NF
instances, root, and storage instances. However, CHC cannot
withstand correlated failure of a store instance with any other
component that has stored its state in that particular instance.
Replication of store instances can help recover from such
correlated failures, but that comes at the cost of increasing
the per packet processing latency.

6 Implementation

Our prototype consists of an execution framework and a
datastore, implemented in C++. NFs runs in LXC contain-
ers [3] as multithreaded processes. NFs are implemented

NF Description of state object Scope; access pattern
Available ports Cross-flow; write/read often

NAT Total TCP packets Cross-flow; write mostly, read rarely
Total packets Cross-flow; write mostly, read rarely
Per conn. port mapping Per-flow; write rarely, read mostly

Trojan
detector

Arrival time of IRC, FTP and
SSH flows for each host

Cross-flow; write/read often

Portscan
detector

Likelihood of being mali-
cious (per host)

Cross-flow; write/read often

Pending conn. initiation req.
along with its timestamp

Per-flow; write/read often

Load Per server active # of conn. Cross-flow; write/read often
balancer Per server byte counter Cross-flow; write mostly, read rarely

Conn. to server mapping Per-flow; write rarely, read mostly

Table 4: NFs and description of their state objects

using our CHC library that provides support for input mes-
sage queues, client side datastore handling, retransmissions
of un-ACK’d state updates (§4.3), statistics monitoring and
state handling. Packet reception, transmission, processing
and datastore connection are handled by different threads.

For low latency, we leverage Mellanox messaging ac-
celerator (VMA) [31] which enables user-space network-
ing with kernel bypass similar to DPDK [13]. In addition
to this, VMA also supports TCP/UDP/IP networking proto-
cols and does not require any application modification. Even
though we use VMA, we expect similar performance with
other standard kernel bypass techniques. Protobuf-c [7] is
used to encode and decode messages between a NF instance
and the datastore. Each NF instance is configured to con-
nect to a “framework manager” to receive information about
it’s downstream instances (to which it connects via tunnels),
datastore instances and other control information.

The framework manager can dynamically change the NF
chain by instantiating new types of NFs or NF instances and
updating partitioning information in upstream splitters3. Our
datastore implements an in-memory key-value store and sup-
ports the operations in Table 2. We reimplemented four NFs
atop CHC. Table 4 shows their state objects, along with the
state’s scope and access patterns.

NAT: maintains the dynamic list of available ports in the
datastore. When a new connection arrives, it obtains an avail-
able port from the datastore (The datastore pops an entry
from the list of available ports on behalf of the NF). It then
updates: 1) per-connection port mapping (only once) and, 2)
(every packet) L3/L4 packet counters.

Portscan detector [27]: detects infected port scanner
hosts. It tracks new connection initiation for each host and
whether it was successful or not. On each connection at-
tempt, it updates the likelihood of a host being malicious,
and blocks a host when the likelihood crosses a threshold.

Trojan detector: implementation here follows [12].
Load balancer: maintains the load on each backend

server. Upon a new connection, it obtains the IP of the least
loaded server from the datastore and increments load. It
then updates: 1) connection-to-server mapping 2) per server
#connections and, 3) (every packet) per server byte counter .

3based on statistics from vertex managers

510 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: 5%ile, 25%ile, median, 75%ile and 95%ile pkt processing times.
(T = Traditional NF, EO = Externalized state operations, C = with caching,
NA = without waiting for the ACK)

7 Evaluation

We use two packet traces (Trace{1,2}) collected on the link
between our institution and AWS EC2 for trace-driven eval-
uation of our prototype. Trace1 has 3.8M packets with 1.7K
connections and Trace2 has 6.4M packets with 199K con-
nections. The median packet sizes are 368B and 1434B. We
conducted all experiments with both traces and found the re-
sults to be similar; for brevity, we only show results from
Trace2. We use six CloudLab [2] servers each with 8-core
Intel Xeon-D1548 CPUs and a dual-port 10G NIC. One port
is used to forward traffic, and the other for datastore com-
munication and control messages. To process at 10Gbps,
each NF instance runs multiple processing threads. CHC
performs scope-aware partitioning of input traffic between
these threads. Our datastore runs on a dedicated server.

7.1 State Management Performance
Externalization: We study three models which reflect the
state access optimizations discussed in (§4.3): #1) All state
is externalized and non-blocking operations are used. #2)
Further, NFs cache relevant state objects. #3) Further, NFs
do not wait for ACKs of non-blocking operations to state ob-
jects; the framework is responsible for retransmission (§4.3).
The state objects per NF that benefit from #2 and #3 can
be inferred from Table 1 and Table 4; e.g., for NAT, per-
connection port mapping is cached in #2, and the two packet
counters benefit from non-blocking updates in #3. We com-
pare these models with a “traditional” NF where all state is
NF-local. We study each NF type in isolation first.

Figure 8 shows the per packet processing times. The me-
dian times for traditional NAT and load balancer are 2.07µs
and 2.25µs, respectively. In model #1, this increases by
190.67µs and 109.87µs, respectively, with network RTT
contributing to most of this (e.g., NAT needs three RTTs on
average per packet: one for reading the port mapping and
other two for updating the two counters). We don’t see a
noticeable impact for scan and Trojan detectors (they don’t
update state on every packet).

Relative to #1, caching (#2) further lowers median pro-
cessing times by 111.98µs and 55.94µs for NAT4 and load
balancer. For portscan and Trojan detector, reduces it by
0.54µs and 0.1µs (overhead becomes +0.1µs as compared to

4NAT needs 2 RTTs to update counters as port mapping is cached.

Figure 9: Per packet processing latency with cross-flow state caching

traditional NFs) as CHC caches the cross-flow state. Later,
we evaluate the benefits of cross-flow caching in detail. Fi-
nally, #3 results in median packet processing times of 2.61µs
for NAT (which now needs 0 RTTs on average) and 2.27µs
for load balancer. These represent small overheads compared
to traditional NFs: +0.54µs for NAT, and +0.02µs for the
load balancer (at the median). Note that for portscan and
Trojan detector the performance of #3 is comparable to #2 as
they don’t have any blocking operations.

We constructed a simple chain consisting of one instance
each of NAT, portscan detector and load balancer in se-
quence, and the Trojan detector operating off-path attached
to the NAT. With model #3, the median end-to-end overhead
was 11.3µsec compared to using traditional NFs.

Operation offloading: We compare CHC’s operation of-
floading against a naive approach where an NF first reads
state from the datastore, updates it, and then writes it back.
We turn off caching optimizations. We now use two NAT
instances updating shared state (available ports and coun-
ters). We find that the median packet processing latency of
the naive approach is 2.17X worse (64.6µs vs 29.7µs), be-
cause it not only requires 2 RTTs to update state (one for
reading the state and the other for writing it back), but it
may also have NFs wait to acquire locks. CHC’s aggregate
throughput across the two instances is >2X better.

Cross-flow state caching: To show the performance of
our cross-flow state caching schemes (Table 1; Col 5), we run
the following experiment: we start with a single portscan de-
tector. After it has processed around 212K packets, we add a
second instance and split traffic such that for particular hosts,
captured by the set H , processing happens at both instances.
At around 213K packets, we revert to using a single instance
for all processing. Figure 9 shows the benefits of caching
the shared state. At 212K packets, when the second instance
is added, the upstream splitter signals the original instance
to flush shared state corresponding to hosts 2 H (Table 4).
From this point on, both instances make blocking state up-
date operations to update the likelihood of hosts 2 H being
malicious on every successful/unsuccessful connection ini-
tiation. Thus, we see an increase in per packet processing
latency for every SYN-ACK/RST packet. At packet num-
ber 213K, all processing for H happens at a single instance
which can start caching state again. Thus, the processing la-
tency for SYN-ACK/RST packets drops again, because now
state update operations are applied locally and updates are
flushed in a non-blocking fashion to the store.

Throughput: We measure degradation in per NF through-
put for models #1 and #3 above compared to traditional NFs.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 511

Figure 10: Per instance throughput. (T = Traditional NF, EO = Externalized
state operations, C = with caching, NA = without waiting for the ACK)

Figure 10 shows that the max. per NF throughput for tra-
ditional NFs is around 9.5Gbps. Under model #1, load bal-
ancer and NAT throughput drops to 0.5Gbps. The former
needs to update a byte counter (which takes 1 RTT) on every
packet; likewise, the NAT needs three RTTs per packet. The
port scan and Trojan detectors do not experience throughput
degradation because they don’t update state on every packet.
Model #3 increases throughput to 9.43Gbps, matching tradi-
tional load balancer and NAT. We repeated our experiment
with the aforementioned single-instance NF chain and ob-
served similar maximal performance (9.25Gbps with both
CHC and traditional NFs) in Model #3.

Datastore performance We benchmarked the datastore
using the workload imposed by our state operations. We
used 128bits key and 64bits value to benchmark the datas-
tore. The datastore was running four threads. Each thread
handled 100k unique entries. As discussed in §4.3, state is
not shared between these threads. We found that a single in-
stance of our datastore supports ⇠5.1M ops/s (increment at
5.1M ops/s, get at 5.2M ops/s, set at 5.1M ops/s; Table 2).
The datastore can be easily scaled to support a greater rate of
operations by simply adding multiple instances; each state
object is stored at exactly one store node and hence no cross-
store node coordination is needed.

7.2 Metadata Overhead

Clocks: The root writes packet clocks to the datastore for
fault tolerance. This adds a 29µs latency per packet (domi-
nated by RTT). We optimize further by writing the clock to
the store after every nth packet.5 The average overhead per
packet reduces to 3.5µs and 0.4µs for n = 10,100.

Packet logging: We evaluated two models of logging: 1)
locally at the root, 2) in the datastore. The former offers bet-
ter performance, adding 1µs latency per packet, whereas the
latter adds 34.2µs but is more fault tolerant (for simultaneous
root and NF failures). We also studied the overhead imposed
by the framework logging clocks and operations at NFs, the
datastore logging clocks and state, and the XOR-ing of iden-
tifiers (§5.4); the performance impact for our chain (latency
and throughput overhead) was negligible (< 1%).

XOR check and delete request: (§5.4) XOR checks of
bit vectors are performed asynchronously in the background
and do not introduce any latency overhead. However, ensur-

5After a crash, this may lead the root to assign to a packet an already
assigned clock value. To overcome this issue, the root starts with n + last
update so that clock values assigned to packets represent their arrival order.

Figure 11: State sharing. Figure 12: Fault recovery.

ing the successful delivery of “delete” request to root before
forwarding the packet introduces a median latency overhead
of 7.9µsec. Asynchronous “delete” request operation elimi-
nates this overhead but failure of the last NF in a chain may
result in duplicate packets at the receiver end host.

7.3 Correctness Requirements: R1–R6

R1: State availability: Using our NAT, we compare
FTMB’s [29] checkpointing approach with CHC writing all
state to a store. We could not obtain access to FTMB’s code;
thus, we emulate its checkpointing overhead using a queu-
ing delay of 5000µs after every 200ms (from Figure 6 in
[29]). Figure 12 (with 50% load level) shows that check-
pointing in FTMB has a significant impact: the 75th%-ile la-
tency is 25.5µsec – which is 6X worse than that under CHC
(median is 2.7X worse). FTMB’s checkpointing causes in-
coming packets to be buffered. Because of externalization in
CHC, there is no need for such checkpointing. Also, FTMB
does not support recovery of the packet logger [29]. CHC
intrinsically supports this (§5.4), and we evaluate it in §7.3.

R2: Cross-instance state transfers: We elastically scale
up NAT as follows: we replay our trace for 30s through a
single instance; midway through replay, we reallocate 4000
flows to a new instance, forcing a move of the state corre-
sponding to these flows. We compare CHC with OpenNF’s
loss-free move; recall that CHC provides both loss-freeness
and order preservation. CHC’s move operation takes 97% or
35X less time (0.071ms vs 2.5ms), because, unlike OpenNF,
CHC does not need to transfer state. It notifies the datastore
manager to update the relevant instance IDs. However, when
instances are caching state, they are required to flush cached
state operations before updating instance IDs. Even then,
CHC is 89% better because it flushes only operations.

R3: Cross-instance state sharing: We compare CHC
against OpenNF w.r.t. the performance of strongly consis-
tent shared state updates across NAT instances, i.e., updates
are serialized according to some global order. Figure 11
(with 50% load level) shows that CHC’s median per-packet
latency is 99% lower than OpenNF’s (1.8µs vs 0.166ms).
The OpenNF controller receives all packets from NFs; each
is forwarded to every instance; the next packet is released
only after all instances ACK. CHC’s store simply serializes
all instances’ offloaded operations.

R4: Chain-wide ordering: We revisit the chain in Fig-
ure 2. Each scrubber instance processes either FTP, SSH, or

512 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

30%load 50%load
Duplicate packets 13768 34351
Duplicate state updates 233 545

Table 5: Duplicate packet and state update at the downstream portscan
detector without duplicate suppression.

IRC flows. To measure the accuracy of the Trojan detector,
we added the signature of a Trojan at 11 different points in
our trace. We use three different workloads with varying up-
stream NF processing speed: W1) One of the upstream NFs
adds a random delay between 50-100µs to each packet. W2)
Two of the upstreams add the random delay. W3) All three
add random delays. We observed that CHC’s use of chain-
wide logical clocks helps the Trojan detector identify all 11
signatures. We compare against OpenNF which does not of-
fer any chain-wide guarantees; we find that OpenNF misses
7, 10, and 11 signatures across W1–W3.

R5: Duplicate suppression: Here, we emulated a strag-
gler NAT by adding a random per packet delay between be-
tween 3-10µs. A portscan detector is immediately down-
stream from the NAT. CHC launches a clone NAT instance
according to §5.3. We vary the input traffic load. Table 5
shows the number of duplicate packets generated by the NAT
instances under different loads, as well as the number of du-
plicate state updates at the portscan detector – which happen
whenever a duplicate packet triggers the scan detector to spu-
riously log a connection setup/teardown attempt. Duplicate
updates create both false positives/negatives and their inci-
dence worsens with load. No existing framework can detect
such duplicate updates; CHC simply suppresses them.

R6: Fault Tolerance: We study CHC failure recovery.
NF Failure: We fail a single NAT instance and measure

the recovery and per packet processing times. Our NAT per-
forms non-blocking updates without waiting for the frame-
work ACK; here, we use the 32bit vector (§5.4) to enable re-
covery of packets whose non-blocked operations are not yet
committed to the store. To focus on CHC’s state recovery,
we assume the failover container is launched immediately.
Figure 13 shows the average processing time of packets that
arrive at the new instance at two different loads. The average
is calculated over 500µs windows. Latency during recovery
spikes to over 4ms, but it only takes 4.5ms and 5.6ms at 30%
and 50% loads, respectively, for it to return to normal.

Root failure: Recovering a root requires just reading the
last updated logical clock from the datastore and flow map-
ping from downstream NFs. This takes < 41.2µs.

Datastore instance failure: Recovering a datastore in-
stance failure requires reading per-flow state from NFs using
it, and replaying update operations to rebuild shared state.
Reading the latest values of per-flow state is fast. Recov-
ering shared state however is more time-consuming. Fig-
ure 14 shows the time to rebuild shared state with 5 and 10
NAT instances updating the same state objects at a single
store instance. We replayed the state update operation logs
generated by these instances. The instances were processing

Figure 13: Packet proc time. Figure 14: Store recovery.

9.4Gbps of traffic; periodic checkpoints occurred at intervals
of 30ms, 75ms, and 150ms. The recovery time is 388.2ms
for 10 NATs with checkpoints at 150ms intervals. In other
words, a storage instance can be quickly recovered.

8 Conclusion

We presented a ground-up NFV framework called CHC to
support COE and high performance for NFV chains. CHC
relies on managing state external to NFs, but couples that
with several caching and state update algorithms to ensure
low latency and high throughput. In addition, it leverage
simple metadata to ensure various correctness properties are
maintained even under traffic reallocation, NF failures, as
well as failures of key CHC framework components.

Acknowledgements We thank the reviewers and our
shepherd Katerina Argyraki. This research is supported by
NSF grants CNS-1302041 and CNS-1717039. Aditya is
supported by a H. I. Romnes Faculty Fellowship, and gifts
from Google and Huawei.

References

[1] Cisco Network Service Header: draft-quinn-sfc-
nsh-03.txt. https://tools.ietf.org/html/

draft-quinn-sfc-nsh-03.

[2] Cloud lab. http://cloudlab.us/.

[3] LXC - Linux containers . https:

//linuxcontainers.org/lxc/

introduction/.

[4] Network functions virtualisation – update white pa-
per. https://portal.etsi.org/nfv/nfv_

white_paper2.pdf.

[5] Network functions virtualisation: Introductory white
paper. http://www.tid.es/es/Documents/

NFV_White_PaperV2.pdf.

[6] NFV Management and Orchestration: An Overview.
https://www.ietf.org/proceedings/88/

slides/slides-88-opsawg-6.pdf.

[7] Protobuf-c. https://github.com/

protobuf-c/protobuf-c.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 513

[8] A. Anand, V. Sekar, and A. Akella. Smartre: an archi-
tecture for coordinated network-wide redundancy elim-
ination. In ACM SIGCOMM Computer Communication
Review, volume 39, pages 87–98. ACM, 2009.

[9] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and
A. Vahdat. xOMB: Extensible open middleboxes with
commodity servers. In Proceedings of the Eighth
ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems, ANCS ’12, pages
49–60, 2012.

[10] M. Boucadair, C. Jacquenet, R. Parker, D. Lopez,
P. Yegani, J. Guichard, and P. Quinn. Differentiated
Network-Located Function Chaining Framework.
Internet-Draft draft-boucadair-network-function-
chaining-02, IETF Secretariat, July 2013.

[11] A. Bremler-Barr, Y. Harchol, and D. Hay. Openbox:
A software-defined framework for developing, deploy-
ing, and managing network functions. In Proceedings
of the 2016 conference on ACM SIGCOMM 2016 Con-
ference, pages 511–524. ACM, 2016.

[12] L. De Carli, R. Sommer, and S. Jha. Beyond pat-
tern matching: A concurrency model for stateful deep
packet inspection. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 1378–1390. ACM, 2014.

[13] Intel. Data Plane Development Kit. http://dpdk.
org/.

[14] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and
J. C. Mogul. Enforcing network-wide policies in the
presence of dynamic middlebox actions using flowtags.
In 11th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 14), pages 543–546,
2014.

[15] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,
X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar.
Stratos: A network-aware orchestration layer for mid-
dleboxes in the cloud. Technical report, Technical Re-
port, 2013.

[16] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. Opennf:
Enabling innovation in network function control. In
Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14, pages 163–174. ACM, 2014.

[17] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and
E. Keller. Stateless network functions: Breaking the
tight coupling of state and processing. In NSDI, 2017.

[18] J. Khalid and A. Akella. Correctness and performance
for stateful chained network functions. https://

arxiv.org/abs/1612.01497, 2018.

[19] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, Mar. 1992.

[20] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-
nasamy, L. Rizzo, and S. Shenker. E2: a framework for
nfv applications. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, pages 121–136.
ACM, 2015.

[21] V. Paxson. Bro: A system for detecting network in-
truders in real-time. In Proceedings of the 7th Con-
ference on USENIX Security Symposium - Volume 7,
SSYM’98, pages 3–3, 1998.

[22] PRADS. https://gamelinux.github.io/

prads/.

[23] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella,
S. Banerjee, C. Clark, Y. Ma, P. Sharma, and Y. Zhang.
Pga: Using graphs to express and automatically recon-
cile network policies. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Commu-
nication, SIGCOMM ’15, pages 29–42. ACM, 2015.

[24] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu. SIMPLE-fying middlebox policy enforcement
using sdn. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 27–
38. ACM, 2013.

[25] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico
replication: A high availability framework for middle-
boxes. In Proceedings of the 4th annual Symposium on
Cloud Computing, page 1. ACM, 2013.

[26] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In Presented as part
of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages 227–240,
2013.

[27] S. Schechter, J. Jung, and A. Berger. Fast detection
of scanning worm infections. In Recent Advances in
Intrusion Detection, pages 59–81. Springer, 2004.

[28] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and
G. Shi. Design and implementation of a consoli-
dated middlebox architecture. In Proceedings of the
9th USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 24–24, 2012.

514 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[29] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishna-
murthy, C. Maciocco, M. Manesh, J. Martins, S. Rat-
nasamy, L. Rizzo, et al. Rollback-recovery for middle-
boxes. In ACM SIGCOMM Computer Communication
Review, pages 227–240. ACM, 2015.

[30] Squid. http://www.squid-cache.org/.

[31] Mellanox. Messaging Accelerator (VMA). http://
www.mellanox.com/page/software_vma.

[32] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and
S. Shenker. Elastic scaling of stateful network func-
tions. In 15th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI’18, 2018.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 515

Performance Contracts for Software Network Functions

Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli,
Katerina Argyraki, and George Candea

EPFL, Switzerland

Abstract
Software network functions (NFs), or milddleboxes,

promise flexibility and easy deployment of network services,
but face the serious challenge of unexpected performance
behaviour. We propose the notion of a performance con-
tract, a construct formulated in terms of performance criti-
cal variables, that provides a precise description of NF per-
formance. Performance contracts enable fine-grained predic-
tion and scrutiny of NF performance for arbitrary workloads,
without having to run the NF itself.

We describe BOLT, a technique and tool for computing
such performance contracts for the entire software stack of
NFs written in C, including the core NF logic, DPDK packet
processing framework, and NIC driver. BOLT takes as input
the NF implementation code and outputs the corresponding
contract. Under the covers, it combines pre-analysis of a
library of stateful NF data structures with automated sym-
bolic execution of the NF’s code. We evaluate BOLT on four
NFs—a Maglev-like load balancer, a NAT, an LPM router,
and a MAC bridge—and show that its performance contracts
predict the dynamic instruction count and memory access
count with a maximum gap of 7% between the real execution
and the conservatively predicted upper bound. With further
engineering, this gap can be reduced.

1 Introduction

The goal of our work is to enable network operators and de-
velopers to predict and scrutinise the performance of soft-
ware network functions without having to run them. A net-
work function (NF) performs packet processing inside the
network, such as packet forwarding, load balancing, or net-
work address translation (NAT). NF development has been
moving away from custom hardware toward software run-
ning on commodity hardware. This change increases flexi-
bility and reduces development costs and time-to-market [22,
37, 38], but arguably makes it harder to predict the NF’s per-
formance. Unexpected NF performance behaviour makes it

harder for network operators to provision their networks and
exposes a new attack surface for adversaries seeking to de-
grade network performance.

We propose the construct of a performance contract for
NFs. A contract CU

N (i) answers the question of what the per-
formance of the NF N is like when processing packets from
an arbitrary input packet class i, with performance measured
in units of U . To illustrate, N could be a particular imple-
mentation of a router, U — the number of x86 instructions
it executes per packet, and i1 (respectively i2) — the class
of valid (respectively invalid) packets arriving at the router.
The contract predicts performance in terms of human read-
able expressions. These expressions are functions of what
we call performance critical variables (PCVs), which sum-
marise the impact of input history and configuration on the
given NF’s state and execution. In our example, the contract
could return functions p1(l) (respectively p2(l)) for valid (re-
spectively invalid) packets, where l is the length of the IP
prefix that matches the input packet’s destination IP address.
l is a PCV. For a NAT, a PCV could be the occupancy rate of
the NAT’s flow table. In this paper, we consider three perfor-
mance metrics: number of executed instructions, number of
memory accesses, and number of execution cycles. In gen-
eral, we consider an NF implementation to be the software
stack plus the hardware architecture it runs on.

Our work draws upon ideas from earlier work on
analysing/predicting performance and worst-case execution
time (WCET), either of software in general [26, 24, 45] or of
NFs in particular [15, 32]. The way performance contracts
differ from classic performance prediction and WCET analy-
sis is that, rather than producing a performance number, they
express performance as a function of critical parameters—
the PCVs. This enables contracts to expose the entire range
of values of the NF’s performance, not just a worst-case
bound, as well as explain how these values relate to differ-
ent workloads. Performance contracts also strike a favorable
balance between accuracy, utility, and human legibility.

We present BOLT, a technique and tool that analyses NF
code, without actually running it, to generate NF perfor-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 517

mance contracts. We draw inspiration from Vigor [47], a
technique for verifying that NFs written in C satisfy seman-
tic properties and are memory-safe. Vigor assumes a clear
separation of NF code into (a) a library of commonly used
NF data structures, which is written and formally verified by
experts, and (b) stateless NF logic that uses the library, is
written by NF developers, and is verified automatically by
Vigor using symbolic execution. In the same spirit, BOLT
starts from manually pre-computed performance contracts
for basic common data structures as a base case, and then au-
tomatically generates performance contracts for the NF code
that uses these data structures. Contracts can be computed
recursively for chains of NFs as well.

To help operators and developers handle the PCVs in con-
tracts, BOLT comes with a tool we call the Distiller, which
takes as input a packet trace and computes the PCV values
that result from that trace being processed by the target NF.

We evaluate the accuracy and utility of BOLT-generated
performance contracts for four NFs written in C using
DPDK: a NAT, a Maglev[17]-like load balancer, an LPM
router, and a MAC bridge. The contracts for these NFs pre-
dict the dynamic instruction count and memory access count
with a maximum gap of 7% between real executions and the
conservatively predicted upper bound. We explain the origin
of this gap and argue that it can be reduced to 0 with further
engineering. BOLT also generates contracts for the number
of execution cycles, in which case it relies on a hardware
model; the result is as accurate as the model allows. We close
our evaluation with example use cases where BOLT uncovers
performance issues and helps understand how to fix them.

In summary, we make two contributions in this paper:

• We propose the concept of a performance contract for
NFs, which expresses NF performance as a function of
performance critical variables.

• We demonstrate, using our BOLT prototype, that it is
possible to compute performance contracts that are ac-
curate, useful, and human-legible.

The BOLT source code is available as open source [1].

In the rest of the paper we define the performance con-
tract construct (§2), then describe how BOLT generates per-
formance contracts (§3) and how the BOLT Distiller helps
obtain a concrete performance number from a performance
contract given a particular packet trace (§4). Finally, we
present BOLT’s evaluation (§5), discuss its limitations (§6),
present related work (§7), and conclude (§8).

2 Performance Contracts

In this section, we define the performance contract construct,
and we use a running example to illustrate this definition.

2.1 Running Example: LPM Router
Algorithm 1 shows pseudocode for a simplified longest pre-
fix match (LPM) IPv4 router that stores the forwarding table
in a Patricia trie. The router first classifies packets based on
whether they are IPv4 or not (line 2). Invalid packets are im-
mediately dropped (line 6), thus incurring a constant perfor-
mance cost. Valid packets lead to a lookup in the LPM data
structure (line 3), which has a more complex performance
profile (lines 10–17), with the number of loop iterations be-
ing data-dependent (see lines 12 and 15).

Algorithm 1: Simple LPM Router

1 function processPacket (packet pkt)
2 if pkt.etherType == IPv4 then
3 dst_port = lpmGet (pkt.ipv4.dst_addr)
4 FORWARD (pkt, dst_port)
5 else
6 DROP (pkt)
7 end

8 function lpmGet (bit ip[32])
9 node = lpmRoot

10 for i in 0..31 do
11 b = ip[i]
12 if exists node.children[b] then
13 node = node.children[b]
14 else
15 break
16 end
17 end
18 return node.port

For clarity of exposition, the running example assumes
that the packet processing framework and every layer below
has zero impact on performance.

2.2 Definition
A performance contract describes the performance of NF
software running on a particular hardware configuration.

Contract CU
N : I → F is a map from input classes to

functions, i.e., CU
N maps input class i ∈ I to a function

pi(v1,v2, ...) ∈ F . Input class i is a specification that de-
scribes which inputs (e.g., packets) belong to that class, such
as a symbolic expression for “all valid IPv4 packets with-
out IP options.” The contract’s domain I spans the entire
input space of the program N. Function pi expresses the
performance exhibited by N when processing an arbitrary
input that belongs to class i. pi is a function of performance-
critical variables v1,v2, ..., and its value is measured in units
of U . pi can be as simple as a constant function.

In general, a performance contract can be formulated for
any program/procedure P, not just an NF. The performance

518 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of P is determined by its input and its state at the time of
processing the input. P’s state, in turn, is determined by the
inputs it has processed in the past, its configuration parame-
ters, and its environment.

Performance-critical variables (PCVs) capture the influ-
ence on performance of anything other than P’s input.

Performance is expressed through metrics, such as number
of memory accesses or number of execution cycles. Perfor-
mance contracts are metric-specific. An essential property
of a performance contract is that, for any real execution that
satisfies the contract’s assumptions (configuration, input his-
tory, etc.), the measured performance is guaranteed to be no
more than the metric value predicted by the contract.

A performance contract for P is a recursive composition
of the performance contracts for its constitutive parts. P as
used above could be a chain of NFs, one individual NF, a
part of an NF, or—in the base case—a data structure method
whose contract has been derived manually by an expert.

Table 1 shows two performance contracts for our exam-
ple LPM router, corresponding to two performance metrics:
instruction count and memory accesses. There are two in-
put classes that emerge naturally from this NF’s code struc-
ture: invalid and valid packets. To process any packet in the
first class, the NF executes 2 instructions and 1 memory ac-
cess. For the second class, it executes 4 · l + 5 instructions
and l + 3 memory accesses, where l is the matched prefix
length. This example ignores all layers below the NF code,
so the matched prefix length l fully captures how anything
other than the input packet (in particular, the configuration
of the LPM table) influences performance. Hence it is the
sole PCV used by both contracts.

Input Class Instructions Memory Accesses
Invalid packets 2 1
Valid packets 4 · l +5 l +3

Table 1: Two stylised performance contracts for an example
LPM router. PCV l is the matched prefix length.

2.3 Rationale Behind PCVs in Contracts
Designing a performance contract involves a trade-off be-
tween the level of detail that the contract exposes about the
code and the contract’s legibility (i.e., how easy it is for a
human to parse and draw useful conclusions from).

Different users may need different balances between detail
and legibility. For instance, an NF developer who uses per-
formance contracts to debug and optimise the performance
of their own code will likely want more detail than a network
operator who has no access to NF implementations and uses
performance contracts solely to provision their network.

We chose to express performance as a function of PCVs,
because this enables one to navigate fluidly this trade-

off, i.e., to generate contracts that achieve different de-
tail/legibility balance. For example, consider a hypotheti-
cal NF whose only operation is to update, for every observed
packet, per-flow state stored in a hash map. The performance
of this NF is determined, in a straightforward manner, by the
collision rate of the hash map, which is itself determined, in
a complicated manner, by the workload and hash map con-
figuration. So, one can express the performance of this NF
as a complicated function of workload and configuration, or
as a simple function of the hash map’s collision rate. The
former arguably provides all the detail that any user of a per-
formance contract would ever care for, but may be too much
for a human to digest and draw conclusions from; the latter
hides some of this detail but still provides insight into what
determines NF performance and how, just at a different level.
So, it is possible to generate performance contracts that favor
detail or legibility by choosing the proper level of PCVs.

We are concerned about exposing, in a performance con-
tract, implementation-specific notions like collision rates or
matched prefix lengths. This may be fine for the developer
who chose or implemented the NF’s data structures, but awk-
ward for an operator who knows nothing about the NF’s im-
plementation. Still, we do not think that it is possible to de-
sign meaningful performance contracts that do not leak non-
trivial information about implementation. In the end, when
a network operator is debugging an unexpectedly slow net-
work device, they do end up digging into the device’s imple-
mentation and trying to understand how that interacts with
the given workload. A performance contract that distills how
implementation affects performance into a simple expression
would arguably be welcome in such cases.

If desired, operators and developers can bind the PCVs in
the performance expressions to values chosen by themselves
or by the BOLT Distiller. The latter, given a packet trace,
computes the concrete values of the PCVs at the end of the
NF’s processing of that trace.

3 Generating Performance Contracts

In this section, we describe BOLT, a technique and tool
that generates performance contracts. Our current prototype
works with three performance metrics: number of executed
instructions, memory accesses, and execution cycles.

We first provide background on the techniques BOLT em-
ploys (§3.1), then describe how to obtain contracts for data
structures (§3.2), entire NFs (§3.3), and chains of NFs (§3.4).
We close with a few implementation details (§3.5).

3.1 Background
The conceptually simplest way to explore all possible be-
haviours of a program is to execute it with every possible
input. As this does not typically scale to real-world pro-
grams, a more efficient approach is to group inputs in non-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 519

overlapping classes, such that all inputs in the same class
follow the same execution path through the program (hence
induce the same behaviour); then we can explore induced
behaviour once per input class. For example, a program that
takes as input a 64-bit number and takes one of two possi-
ble actions depending on whether the number is positive or
negative has 264 possible inputs but only 2 input classes that
induce different behaviours.

Symbolic execution (SE) [8, 21] is a commonly used tech-
nique for exploring feasible execution paths of a program
and identifying the input class that triggers each one. SE re-
lies on a special program interpreter called a symbolic exe-
cution engine (SEE), which uses symbols to represent inputs
and propagates these symbols through the program. For in-
stance, if a program takes as input an integer x, the engine
associates with x a symbol α; if the program assigns to a
variable y the value x+ 1, the engine associates with y the
expression α + 1. If the program branches on a symbolic
value, the engine explores both paths, and keeps track of the
constraints that led down each path, such as α < 0. The en-
gine uses a constraint solver [13, 20] to ensure that it explores
only feasible paths and to identify the input class that triggers
each one. However, it can typically not identify all the feasi-
ble paths of a program due to path explosion [6]: the number
of paths is generally exponential in the number of branches
in the code, and symbolic pointers make things worse, as the
engine sometimes needs to concretise them, i.e., fork a new
path for each possible address that a symbolic pointer may
reference.

Vigor [47] leverages SE to verify semantic properties and
memory safety of a stateful NF. It assumes a clear separa-
tion of NF code into: a library of common NF data struc-
tures that is written and verified by experts; and stateless
NF code that uses the library and is written by NF devel-
opers. The experts that verify the library produce a semantic
contract for each library method, which specifies pre- and
post-conditions for the method; this is a tedious process that
requires time and expertise, but it needs to be done only once
per library method, hence its cost is amortised when multiple
NFs use the library.

Vigor uses SE to automatically explore all the feasible
paths through the stateless NF code. The Vigor toolchain in-
cludes an SEE tailored to the domain of NFs so that SE of the
stateless NF code does not suffer from path explosion. Vigor
automatically combines this analysis with the semantic con-
tracts for the library methods used by the NF, and generates
a proof that the NF as a whole satisfies the target semantic
properties and is memory-safe. Note that Vigor’s semantic
contracts are unrelated to our performance contracts and do
not provide any performance-related information.

BOLT reuses Vigor’s toolchain and adopts a similar NF
development process: A team of experts writes the library of
common NF data structures and their performance contracts
and symbolic models. NF developers write stateless NF code

Input Class Instructions Memory Accesses
Unconstrained 4 · l +2 l +1

Table 2: Performance contract for lpmGet.
PCV l is the matched prefix length.

that uses this library, and use BOLT to generate performance
contracts for the NF.

3.2 Base Case: Contracts for Data Structures

The first step is to manually generate performance contracts
for the parts of the code that BOLT does not analyse automat-
ically; for our current prototype, these are all the methods
for accessing data structures that keep NF state. In the same
spirit as Vigor, we rely on a library of common data struc-
tures that are analysed once and then reused across multiple
NFs. Table 2 shows manually generated performance con-
tracts for the lpmGet method used by our LPM router. Like
the performance contracts for the entire router, the ones for
its data structure express performance as a function of the
length of the matched prefix l, which is the only PCV.

Part of this process—perhaps the hardest one—is picking
a set of PCVs so as to achieve a target balance between pre-
cision and legibility. For example, the lpmGet method uses
pointer arithmetic (line 12), which the compiler unfolds into
a series of conditional jumps; as a result, the performance of
the method varies slightly, depending on whether each bit in
the matched IP prefix is 0 or 1. One option is to expose each
bit in the matched IP prefix as a PCV, in which case the con-
tract precisely predicts the performance of any real execu-
tions. Another option is to assume that each bit has the value
that results in the worst-case performance (essentially coa-
lesce multiple execution paths into the one among them with
the worst performance) and expose only the length of the
matched prefix as a PCV; in this case, the contract predicts
performance conservatively, i.e., overestimates the number
of execution cycles and memory accesses. This is an exam-
ple of how a higher-level PCV sacrifices a small amount of
precision for a more concise, hence legible contract.

3.3 Contracts for NFs

BOLT (Algorithm 2) takes as input the NF code (line 1) and
generates a special build where all calls to stateful methods
are replaced at link time with calls to corresponding sym-
bolic models (line 2). For example, in our LPM router, the
call to lpmGet is replaced with a call to the symbolic model
shown as Algorithm 3. Next, BOLT symbolically executes
this special build exhaustively and obtains all feasible exe-
cution paths through the stateless NF code (line 3). For our
LPM router, this results in 2 paths, one for valid IPv4 pack-
ets and one for invalid packets. For each execution path,

520 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2: GetPerformanceContract

1 function GetPerformanceContract
Input : function Fn,

<opt> map <function, model> Models
<opt> map <function, perfContract> Contracts

Output: perfContract Perf _Contract
2 stubbedFn := SubstituteModels(Fn, Models)
3 paths := GetAllPaths(stubbedFn)
4 Perf _Contract := φ

5 foreach path in paths do
6 inputs := GetInputsForPath(path)
7 traceInstr := GetInstrTrace(stubbedFn, inputs)
8 perf := φ

9 foreach instr in traceInstr do
10 if instr is a call to a stateful function fn then
11 perf += Perf(Contracts[fn],

path.constraints)
12 else
13 perf += Perf(instr)
14 end
15 end
16 Perf _Contract.append(path, perf)
17 end
18 return Perf _Contract

Algorithm 3: lpmGet function model.

1 function lpmGet (bit ip[32]);
2 return <new symbol>

BOLT also obtains symbolic path constraints, which consist
of two categories of constraints: (1) constraints on NF inputs
that cause it to go down the particular execution path and (2)
constraints on the abstract state of each data structure, before
and after each call to a stateful method. The second category
of constraints tells BOLT how stateless and stateful code in-
teract along the execution path.

Once it has obtained all feasible execution paths and their
path constraints, BOLT analyses each path: First, it passes
the path’s constraints to a solver to obtain concrete inputs
that exercise the path (line 6); these inputs include a packet,
as well as values for any symbols generated by the symbolic
models of the stateful methods. For our LPM router, one
path will yield a concrete invalid IPv4 packet, while the other
will yield a concrete valid IPv4 packet and a concrete port
that would result from the LPM lookup (e.g., port 0). Next,
for each of these concrete inputs, BOLT replays the NF ex-
ecution and obtains a unique trace of machine instructions
(line 7).

Finally, BOLT characterises the performance of each fea-
sible execution path by stepping through the corresponding
instruction trace: it traverses the trace, adding up the cost of

each instruction (line 13), until it hits a call to a modelled
method; when this occurs, it picks the right branch of the
method’s performance contract based on the constraints on
the abstract state of the data structure (line 11). In the case
of lpmGet, the performance contract has no branches. This
will typically not be the case for more complex data struc-
tures and methods, e.g., the performance contract of a flow
table get method will have different formulae depending on
whether the flow is present or absent in the flow table. In
such a scenario, BOLT uses the path constraints to pick the
right formula.

3.4 Contracts for NF chains
We summarise how BOLT can be extended to generate con-
tracts for chains of NFs. This can be useful in scenarios
where one NF’s worst-case performance is masked by an-
other NF on the same chain. For example, consider the sce-
nario where, in front of our LPM router, an operator deploys
a firewall that drops all packets matching prefixes that exceed
a given length. In this scenario, we will get a more accu-
rate performance prediction by using a performance contract
generated for the NF chain as a whole, than by using two
separate contracts generated for each NF and adding their
predictions.

We can extend BOLT for joint analysis of multiple chained
NFs as follows: First, generate a performance contract for
each individual NF as before. Next, pair together execu-
tion paths from two connected NFs; for each such path
pair, AND together their respective path constraints and add
equality constraints connecting the symbolic expression for
the packet sent by the first NF to the symbol representing the
packet received by the second NF. Next, use a solver to check
if the paths are compatible. Finally, generate a global perfor-
mance contract for the NF pair that sums up the performance
for each compatible path pair, while ignoring incompatible
ones.

For longer chains, rather than fully enumerating the en-
tire combinatorial explosion of all path tuples, BOLT could
piece together compatible paths across the chained NFs one
at a time in sequence, following a procedure similar to joint
symbolic execution [31]. This process further generalises to
more complex networks, so long as the topology forms a di-
rected acyclic graph (DAG).

3.5 Implementation Details

Instruction Replay. While replaying each execution path,
we use an instruction tracer based on Intel’s pin dynamic
binary instrumentation tool [25] to log the x86 instructions
along with memory locations touched along that path. Dur-
ing replay, we ensure that despite the difference between
the analysed code (linked against models) and production
code (linked against actual data structures), BOLT remains

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 521

conservative. This is done by compiling the stateless NF
code separately from the models and disabling any link-time-
optimisations when linking them together. While this leads
to slight over-estimations, it ensures that BOLT never under-
approximates performance.

Hardware model employed. For metrics that rely on the
underlying hardware (e.g., cycles), the BOLT prototype em-
ploys a simple, conservative hardware model that does not
model CPU components that are either too complex or con-
stitute trade secrets. For compute instructions, BOLT con-
servatively assumes the worst case performance cost of each
instruction as reported in the Intel manual [2] due to the pro-
prietary nature of out-of-order (OoO) instruction schedul-
ing within the processor. For memory instructions, we
only model the private L1 Data Caches. We do not model
proprietary features such as the slice selection algorithm
in the L3 cache, memory-level parallelism (MLP), or pre-
fetching. Consequently, BOLT conservatively assumes that
every memory access is serviced from main memory unless
it can definitively prove otherwise (by tracking spatial and
temporal locality of memory accesses in the L1D cache).

These proprietary features significantly improve NF per-
formance, given that an NF repeatedly performs the same
tasks (e.g., flow expiration, hash-ring traversal) in a tight
loop. Consequently, our hardware model causes BOLT to
over-estimate performance and in our experimental evalu-
ation §5, we find that BOLT comes within 4× for typical
workloads and 9× for pathological workloads. However, we
show that it should be possible to improve the accuracy of
BOLT’s contracts by plugging in a better hardware model.

Including DPDK and NIC driver code. BOLT allows anal-
ysis of the NF code at two different levels of abstraction: 1)
Only the NF code sitting atop DPDK or 2) the entire software
stack including the NF logic, DPDK and the NIC driver.

Doing this at the level of just the NF is relatively simple.
We stub out the DPDK send and receive calls and replace
them with models that inject the packet symbols. We then
filter the stateless instruction traces to include only the in-
structions between these two calls.

Building on recent work [34] that applied Vigor to the en-
tire NF software stack, BOLT can also include DPDK and the
NIC drivers in its performance predictions. The insight be-
hind this work is that while such frameworks as a whole may
be complex, simple NFs require only a small subset that pri-
marily reads and writes to device registers. This subset has
simple control flow and so can be symbexed along with the
stateless NF code. In this case, we include in the trace in-
structions from the beginning of the driver receive function
until the end of the corresponding send/drop function.

4 The BOLT Distiller

Once BOLT has built a performance contract, users can pre-
dict the performance of the NF under varying assumptions.
However, performance contracts can have several hundred to
a few thousand execution paths each, with their own unique
assumptions. Often, it is not obvious which assumptions are
reasonable or typical in the real world. To reason about this,
BOLT provides an additional tool called the Distiller.

The Distiller takes as input the NF code and a sample of
real-world traffic (as PCAP files). It feeds the traffic through
the NF code and logs the values that are induced in each
model parameter. For our running example, this would mean
linking the stateless code with a slightly modified version of
the data structure that traces the number of loop iterations
that occur, logging the matched prefix length. With these
traces, the Distiller computes a detailed breakdown of which
assumptions hold for each packet, and how that relates to
predicted performance. Note, the distiller does not affect the
generated performance contract in any way; it merely tells
the user which assumptions held for each packet in the given
trace allowing the user to then extrapolate and identify exe-
cution paths of interest in the performance contract.

The distiller also enables users to perform a sensitivity
analysis. For our example LPM, the user could, for instance,
see that most packets match prefixes that are 16 to 24 bits
long. Longer prefixes lead to 32% worse performance (133
vs 101 instructions) but may (hypothetically) account for
only 1% of traffic.

An operator can leverage the Distiller to balance risk with
resource utilisation to decide how to provision the network.
A developer can understand how any assumptions that they
have made regarding which scenarios are more common may
be wrong, guiding further optimisation efforts. We illustrate
further, the utility of the distiller in §5.2 and §5.3.

5 Evaluation

We now examine whether BOLT works, i.e., whether it pro-
duces correct performance contracts for software NFs (§5.1),
and illustrate, through example use cases, how BOLT can
help network operators (§5.2) and NF developers (§5.3).

5.1 Does BOLT work?

We experiment with a MAC bridge (Br), an LPM router im-
plemented with DPDK’s LPM data structure [3] (LPM), the
NAT from [47] (NAT), and a Maglev-like [17] Load Balancer
(LB).

Testbed. We use two directly connected servers: a de-
vice under test (DUT) and a traffic generator and sink (TG).
Both servers have Intel Xeon E5-2667v2 3.3GHz CPUs with
32GB of RAM; they are connected over Intel 82599ES 10Gb

522 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NICs. The DUT runs one of the NFs, while the TG uses
MoonGen [18] to replay a PCAP file, one packet at a time,
to avoid any queuing or pipelining effects.

Methodology. First, Bolt generates performance contracts
for each of the 4 NFs for three different metrics — number
of executed instructions, number of memory accesses and
number of execution cycles. Each such contract subsumes
from several hundred to a few thousand unique execution
paths.

We compare the performance predicted by each contract
for various input packet classes to actual measurements. We
use broad input packet classes (e.g., “unconstrained traffic”
or “broadcast traffic”), each of them covering thousands to
millions of possible packets and exercising hundreds to thou-
sands of execution paths in the NFs. Given these broad in-
put classes, BOLT being conservative reports the predicted
performance value of the execution path with the worst pre-
dicted performance. Said differently, BOLT predicts the
worst performance that an input packet from this class could
encounter.

For most packet classes, we programmatically produced a
PCAP file that samples the packet class, i.e., contains a large
number of packets from that packet class, and obtained mea-
surements from our testbed. For one specific packet class
(discussed below), we could not produce a representative
PCAP file; in this case, to obtain ground truth, we modi-
fied the NF to synthesise the expected state (so that it did not
need to be built from actual packet history). For each NF
and input packet class, we measure the performance met-
rics predicted by BOLT: instruction count (IC), number of
memory accesses (MA), and latency (cycles); IC and MA are
measured using the binary instrumentation described in §3.5,
while latency is measured using high precision CPU clocks
(TSC) during separate non-instrumented runs.

Input packet classes. For each NF, we first consider un-
constrained traffic (scenarios Br1, LPM1, NAT1, and LB1).
Given this input packet class, the performance contract gen-
erated by BOLT predicts the absolute worst-case perfor-
mance of the NF. For Br, NAT, and LB, which maintain
and expire per-flow state, BOLT determines that the worst-
case performance happens when the NF’s MAC/flow table
is full, all the entries have collided with each other, and all
the entries are sufficiently aged so as to induce a mass ex-
piry event that completely clears the table when the current
input packet arrives. We were unable to produce a PCAP
file that led to this pathological scenario, but still wanted to
verify that, if this scenario did occur, the NF’s performance
would indeed be the one predicted by BOLT. This is why we
modified the NF to synthesise the necessary state (as stated
above). To generate unconstrained traffic for the LPM, we
used the CASTAN framework [32] which specialises in gen-
erating adversarial workloads for NFs.

For the NFs that maintain per-flow state, we also consider

0

500

1,000

1,500

100e9

300e9

NAT1 NAT2 NAT3 NAT4 Br1 Br2 Br3 LB1 LB2 LB3 LB4 LB5 LPM1 LPM2

V
a
lu

e
 o

f
m

e
tr

ic

NF,Packet Class

Predicted IC
Measured IC

Predicted MA
Measured MA

Figure 1: Accuracy of Performance contracts for multiple
NFs and packet classes in terms of "Instruction Count"(IC)
and "Number of Memory Accesses"(MA).

a few representative classes of input packets that do not en-
counter hash collisions or entry expirations. For the Bridge:
broadcast (Br2) and unicast (Br3) packets. For the NAT:
packets arriving from the internal network that belong to new
(NAT2) and established (NAT3) connections, and packets ar-
riving from the external network that do not belong to an es-
tablished connection and are dropped (NAT4). For the Load
Balancer: packets arriving from the external network that
belong to new flows (LB2), existing flows with unresponsive
(LB3) and live (LB4) backend servers and heartbeat packets
from backend servers (LB5).

The LPM uses DPDK’s two-tiered lookup table, which is
structured such that any packet with a matched prefix of ≤
24 bits incurs exactly one lookup and all other packets incur
exactly two lookups. Hence, any input packet class where
the packets are constrained to matched prefixes of > 24 bits
can incur the same performance as unconstrained traffic. In
addition, we consider input packets that are constrained to
matched prefixes of ≤ 24bits (LPM2).

Results for hardware-independent metrics. Figure 1
shows the results for the metrics IC and MA, and we see
that BOLT predicts them accurately, with a maximum over-
estimation of 7.5% and 7.6%, respectively. It is possible that
our generated test traffic may not have incurred the actual
worst case performance, hence the above numbers represent
an upper bound on Bolt’s over-estimation. In the patholog-
ical scenarios that correspond to unconstrained traffic (Br1,
NAT1, LB1) for NFs that maintain and expire per-flow state,
both the predicted and the actual performance is 8 orders of
magnitude worse than in the other scenarios (in these ex-
treme scenarios, a packet could take over a minute to be
processed). Even so, BOLT’s IC and MA predictions are
accurate (and conservative) with maximum over-estimation
2.36% and 3.03%, respectively. The over-estimation in IC
and MA predictions comes from two sources: (1) impreci-
sion introduced when we coalesce execution paths within the

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 523

NF+Class Predicted Bound Measured Cycles Ratio
NAT1 591,948,908,371 65,217,699,390 9.08
NAT2 7,401 2,376 3.11
NAT3 5,142 1,789 2.87
NAT4 2,956 884 3.34
Br1 295,984,939,878 32,383,472,634 9.14
Br2 7,329 2,013 3.64
Br3 7,383 1,808 4.08
LB1 591,969,879,756 66,062,284,173 8.96
LB2 5,299 2,386 2.22
LB3 8,108 2,541 3.19
LB4 4,300 2,310 1.86
LB5 4,837 2,079 2.33
LPM1 1,419 967 1.46
LPM2 1,015 545 1.86

Table 3: Accuracy of execution cycle performance contracts
for multiple NFs and packet classes.

stateful performance contract, and (2) small differences be-
tween the analysed code (linked against models) and the pro-
duction build (linked against real data structure implementa-
tions).

Results for our hardware-dependent metric. Table 3
shows the results for the number of execution cycles; BOLT
predicts them conservatively, within a factor of 4.08× for
typical workloads and 9.26× for the pathological (uncon-
strained) workloads. This is not surprising, given our sim-
plistic, conservative hardware model.

If we had a more accurate hardware model, we would ex-
pect BOLT’s results to be more accurate too. To validate this
hypothesis without investing significant time in a sophisti-
cated model, we performed a simple experiment.

We used three simple programs that traverse a non-
contiguously allocated linked list (P1), a linked list allocated
in a contiguous chunk of memory (P2), and an array (P3),
respectively, and had BOLT compute their performance con-
tracts. P1 lacks opportunities for MLP or prefetching, and
BOLT’s latency prediction was within 5% of the measured
value. P2 benefits from prefetching but not MLP, and BOLT’s
prediction was 6× higher than measured. P3 has ample op-
portunity for both prefetching and MLP, and BOLT’s pre-
dicted latency was 9× greater than measured latency. These
measurements indicate that the more the hardware behaves
like the model, the more accurate BOLT becomes. In future
work, we plan to bring the model closer to real hardware.

5.2 NF operator use-cases

In this subsection, we illustrate the utility of performance
contracts for NF operators and answer the following ques-
tions: Can performance contracts enable NF operators to 1)
Understand the NF’s performance for a variety of workloads,
in particular, when the NF is under attack? 2) Reason about

0.001

0.01

0.1

1

 1 2 3 4 5 6 7 8

103

104

105

106

C
C

D
F

P
re

d
ic

te
d
 I
C

Number of bucket traversals

CCDF
Predicted IC

Figure 2: Predicted latency as a function of hashring bucket
traversals, alongside the CCDF of traversals for a uniform
random workload. The Distiller allows the operator to make
an informed choice regarding where to position the thresh-
old.

the performance of a sequence of NFs, in order to design and
configure NF chains that meet their performance targets?

Understanding the performance of the NF under attack.
Performance contracts that detail the performance of every
feasible execution path through the NF code can be of partic-
ular utility to network operators for reasoning about the per-
formance of their NF, when under attack. We use the MAC
bridge as a motivating example to illustrate this use-case.

The bridge uses a MAC learning hash-table that defends
itself from collision attacks by incorporating a random key in
the hash algorithm. If the number of buckets traversed in the
hash-table during a put operation exceeds a certain thresh-
old, the key is renewed and the table re-hashed accordingly.
This rehashing is designed to be a defence from attackers that
know the hashing algorithm, but not the random key. How-
ever, this rehashing is particularly expensive and results in a
performance cliff (Table 4).

Given its performance cost, the rehashing mechanism
should be used only when a deliberate attack is suspected.
The threshold that triggers the re-hashing should be carefully
picked to avoid it occurring under normal circumstances. In
such a scenario, the contracts and the Distiller enable the op-
erator to easily understand the risks and trade-offs involved.

Figure 2 shows the analysis generated by the Distiller. The
CCDF shows that less than 0.2% packets incur more than 6
traversals under a uniform random test workload. Setting the
threshold to 6 results in the performance prediction shown in
the overlaying line. The instruction count is predicted to al-
ways be less than 1939 = (144×5+50×6+918) for typical
traffic.

Ability to reason about the performance of a network.
Typically, operators deploy NFs in chains with packets be-
ing processed by each NF in a sequence. In these scenarios,
the worst-case for one NF can often be masked by another,

524 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Traffic Type Instructions
Known Source MAC 245 · e+144 · c+36 · t +82 · e · c+19 · e · t +882
Unknown Source MAC; No Rehashing 245 · e+144 · c+50 · t +82 · e · c+19 · e · t +918
Unknown Source MAC; Rehashing 245 · e+144 · c+50 · t +124 ·o+82 · e · c+19 · e · t +14 · t ·o+984069

Table 4: Bridge performance contract. Instructions are described as a function of the number of expired MAC entries (e), the
number of hash collisions (c) and bucket traversals (t) incurred in the hash table, and its occupancy (o).

0

200

400

600

800

1000

1200

1400

Firewall Router Naive-Add Composite-Bolt

V
a
lu

e
 o

f
m

e
tr

ic

NF

Predicted IC
Measured IC

Predicted MA
Measured MA

Figure 3: Composite NF of firewall + IP router. Naive-
Add represents the predictions obtained from trivial addition
of the individual contracts, while Composite-Bolt represents
the contract for the chain produced by Bolt. Bolt’s predic-
tions are more accurate, since it correctly takes into account
the inter-NF dependencies.

resulting in tighter bounds for the aggregate than the sum of
the parts (§3.4).

To evaluate BOLT’s ability to reason about such chains,
we sequence together a firewall and a static IP router. Un-
like our example LPM, this router can process IP options
(particularly the timestamp option [36]), but doing so can be
expensive, as can be seen in the contract in Table 5b. We
set up the firewall (contract shown in Table 5a) to drop any
packets with any IP options included.

The combined contract for the sequence, shown in Ta-
ble 5c, accurately reflects the best of both NFs. Packets with
IP options are quickly dropped, incurring no further cost, and
the remaining packets go through the fast path on the router.

The composition gap is further illustrated in Figure 3, the
worst-case performance prediction for the composite NF is
more accurate than that which would be obtained by naïvely
adding their individual performance contracts.

5.3 NF developer use-cases
We now illustrate the utility of performance contracts for NF
developers and answer the following questions: Can perfor-
mance contracts enable NF developers to 1) Identify design
flaws that lead to the NF performing poorly for certain work-
loads/packet traces? and 2) Pick appropriate data structure

implementations when multiple implementations exist?

Debugging configuration bottlenecks. The performance
contracts generated by BOLT provide the developer insight
into possible performance bottlenecks. We illustrate this util-
ity with a performance bug we found in VigNAT [4].

When dealing with traffic with high churn, VigNAT con-
sistently incurred significant latency (> 3µs) but only for
around 1.5% of packets, as can be seen in the latency CCDF
in Figure 4. Building the performance contract for VigNAT
(Table 6) allowed us to realise that such long tails were likely
an artifact of a large number of flows expiring at once since
the PCV "e" is dominant (by an order of magnitude) in the
performance contract. This is further corroborated by the
Distiller (Table 7), as the number of expired flows follows
a similar distribution and coincides with the worse perfor-
mance predictions.

As it turns out, VigNAT was inadvertently batching flow
expiry. This was due to VigNAT time-stamping flows only at
the granularity of a second. As a result, any packet arriving
at the change of the second on the clock would induce the
expiry of all of the flows that were supposed to expire during
the entire previous second.

After we increased the granularity of the timestamp, en-
suring a more uniform expiry of flows, VigNAT no longer
exhibited such a long tail. The resulting change can be seen
both in the latency CCDF (Figure 4) and Table 8 . The me-
dian per-packet latency rises since more packets are affected
by flow expiry; however, the long tail has been eliminated.

Picking the appropriate data structure implementation.
Often, developers need to make a choice between multiple
implementations of a data structure that can deliver varying
performance depending on the characteristics of the incom-
ing traffic. In such scenarios, the predictive power of BOLT
greatly simplifies this decision and lessens the need for more
elaborate A/B testing.

We illustrate this utility using two implementations of the
port allocator for a NAT (Allocator A & Allocator B) which
differ in subtle ways. Note, that the difference in perfor-
mance cannot always be captured in the big-O performance
specification: both allocators are O(1) in the common case
but have different constant factors in different scenarios. Al-
locator A, implemented as a doubly-linked list has similar
constants for allocating & de-allocating a new port, regard-
less of churn or flow-table occupancy. Allocator B, imple-
mented using an array and a singly linked list, has a similar

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 525

Traffic Type Instructions
No IP options 477
IP Options 298

(a) Firewall.

Traffic Type Instructions
No IP options 603
IP Options 79 ·n+646

(b) Static Router.

Traffic Type Instructions
No IP options 1053
IP Options 298

(c) Firewall+Router chain.

Table 5: NF performance contracts for the Firewall, the Static Router, and a combination of the two in a chain. Instructions are
described as a function of the number of IP options in the packet (n).

Traffic Type Instructions
Invalid packets (dropped) 359 · e+80 · e · c+38 · e · t +425
Known flows (forwarded) 359 · e+30 · c+18 · t +80 · e · c+38 · e · t +1030
New external flows (dropped) 359 · e+30 · c+18 · t +80 · e · c+38 · e · t +528
New internal flows; table full (dropped) 359 · e+30 · c+18 · t +80 · e · c+38 · e · t +639
New internal flows; table not full (forwarded) 359 · e+30 · c+44 · t +80 · e · c+38 · e · t +1316

Table 6: VigNAT performance contract. Instructions are described as a function of the number of expired flows (e) and the
number of hash collisions (c) and bucket traversals (t) incurred in the hash table.

 0.001

 0.01

 0.1

 1

0 1000 2000 3000 4000 5000 6000 7000 8000

C
C

D
F

Latency(ns)

Second Granularity (Original)
Millisecond Granularity (Fixed)

Figure 4: CCDF of packet latencies. Second granularity
refers to the NF from [47]. Millisecond Granularity is the
NF after the timestamp granularity was increased.

constant to allocator A for de-allocation but trades off a faster
allocation at low flow-table occupancies for a much slower
allocation at high flow-table occupancies.

The performance contracts capture this trade-off precisely.
By specifying the characteristics of the expected traffic, the
developer gains complete insight into the expected perfor-
mance of the NF for each data structure under consideration.
Figure 5 shows how the performance contracts precisely en-
capsulate the performance difference between the two imple-
mentations. Figures 6 & 7, show that the performance pre-
dicted by the contract is reflected in the performance of the
NAT, for each scenario. In scenarios with a large number of
long-lived flows (low churn), Allocator A outperforms Allo-
cator B by approximately 33%, while in high churn scenarios
with few, short-lived flows, Allocator B outperforms Alloca-
tor A by approximately 10%. BOLT predicts a performance
difference of 30% and 8% in the two scenarios, respectively.

Number of Expired Flows Probability Density(%)
0 98.459
1−63 0.0066
64 0.93
65 0.6
66+ 0.0044

Table 7: Distiller report for expired flows for VigNAT for
uniform random traffic, clearly indicating batching.

Number of Expired Flows Probability Density(%)
0 16.1
1 83.6
2 0.28
3+ 0.02

Table 8: Distiller report for expired flows for VigNAT for
uniform random traffic after the timestamp granularity was
increased. Clearly flows are expired more uniformly

6 Limitations

In this section we describe limitations of our current BOLT
prototype.

Since BOLT builds upon Vigor [47], it requires NFs to be
written with a clean stateless/stateful separation and to use a
library of pre-analysed data structures. An NF that does not
follow this design cannot be analysed accurately by BOLT.

The current BOLT prototype does not extend to multi-
threaded NFs with shared state. We expect the biggest chal-
lenge here to be the generation of performance summaries
for concurrent data structures that properly account for the
effects of cross-core interference.

The current BOLT prototype works for NFs that are im-

526 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

2000

4000

6000

8000

10000

12000

Low Churn High Churn

30%

8%

P
re

d
ic

te
d
 e

x
e
c
u
ti

o
n
 c

y
c
le

s

Scenarios

Allocator A
Allocator B

Figure 5: NAT latency predictions with
both allocators in different scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F

Latency(ns)

Allocator A
Allocator B

Figure 6: Allocator A outperforms Al-
locator B in scenarios with low churn.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 80 85 90 95 100 105 110 115 120

C
D

F

Latency(ns)

Allocator A
Allocator B

Figure 7: Allocator B outperforms Al-
locator A in scenarios with high churn.

plemented using the DPDK [16] framework, using a single
processor core. Since DPDK is a kernel bypass framework,
BOLT does not concern itself with the Linux kernel. With
DPDK, best practices dictate pinning the NF to a core guar-
anteeing exclusive access to the L1 cache. An NF that per-
forms Linux system calls during packet processing or that
does not have exclusive non-preemptible use of a CPU core
cannot be analysed accurately by BOLT.

As mentioned previously, BOLT is accurate for metrics
that are independent of the underlying hardware. The slight
over-estimation (7% error) arises from two sources: 1) co-
alescing two or more execution paths into the most ex-
pensive of them all in stateful performance summaries and
2) disabling link-time optimisations to ensure no under-
approximation of performance due to differences between
the analysed and production code. From our experience,
the first factor is dominant and can be reduced to 0 if we
choose to expose additional PCVs that are less intuitive. For
hardware dependent metrics, BOLT is only as accurate as the
hardware model it employs. The simple, conservative hard-
ware model described in §3.5 leads to a 4× over-estimation
for typical workloads and 9× over-estimation for pathologi-
cal workloads. Additionally, it does not account for scenar-
ios in which multiple co-located NFs contend for resources
such as memory controllers [42] since it assumes a constant
performance cost for memory accesses. We plan to improve
the hardware model in future work.

The performance summaries for the stateful data struc-
tures were generated manually, by studying the assembly
code. While the effort can be amortised across all NFs that
use the data structure, the approach is laborious and poten-
tially error-prone. In future work, we plan to automate this.

BOLT currently requires access to the NF source code,
though we argue that this is not fundamental and merely
an artifact of our current research prototype. Having ac-
cess to the source significantly simplifies the manual anal-
ysis of the stateful code and allows us to attach semantic
meaning to PCVs. That said, much of the needed informa-
tion could also potentially be gleaned from debug informa-
tion that compilers optionally include in binaries or other-
wise deduced via reverse engineering. Likewise, access to
the source facilitates attaching semantic meaning to differ-
ent traffic classes in the stateless code and also gives us more

freedom in preparing analysis builds for the SEE. While our
current SEE analyses LLVM bit-code, which requires a spe-
cial build process, other engines [11] can directly analyse
X86 binaries and our stateful/stateless separation could be
rendered as separate object files. We leave redesigning our
system around such considerations to future work.

BOLT currently quantifies performance in terms of three
metrics (IC, MA, cycles) that provide a concrete first step
into understanding NF performance. Nevertheless, we plan
to extend BOLT to reason about more commonly used met-
rics such as throughput and end-to-end latency. We expect
the major challenge to arise from modelling of the PCIe bus,
the NIC and queueing delays (for latency) and modelling in-
struction and memory level parallelism (for throughput).

7 Related Work

Performance evaluation and diagnosis. There exists a
large body of work that focuses on generating and analysing
adversarial workloads that attack software performance. [12,
5, 39] describe manually generated, adversarial attacks on
specific data structures and network applications (e.g., IDS).
Others generate these workloads automatically: [41, 33, 35]
use fuzzing to find bottlenecks in individual methods and
data structures, [29] automatically detects certain complex-
ity attacks in web services and [32] automatically generates
adversarial inputs for NFs. All of these systems, focus only
on adversarial workloads, while performance contracts char-
acterise performance in the face of any arbitrary workload,
whether typical, ideal or adversarial.

Others focus on deriving formal upper bounds on perfor-
mance: Worst-Case Execution Time (WCET) Analysis [45].
Again, as with adversarial workloads, this only looks at one
aspect of the performance profile: the absolute worst-case.
These techniques are popular in the real-time systems do-
main where performance guarantees are a part of functional
correctness. However, because of this requirement, real-time
systems tend to avoid dynamic data structures and input-
dependent memory accesses, aspects that are commonplace
in NFs. Though not primarily designed as a WCET analy-
sis tool, BOLT can also be used to deduce worst-case bounds
(when generating contracts without any assumptions).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 527

Performance side-channel attacks have also been analysed
using static analysis techniques. [7] uses symbolic analysis
to identify cost differentials between execution paths, rather
than to predict absolute performance.

Another large body of work predicts performance for
large-scale data analytics applications [43, 30]. This work
solves a different problem from Bolt and operates on a dif-
ferent scale with different challenges and effects to account
for. Rather than predicting performance for varying work-
loads on a given hardware platform, this work focuses on
predicting performance for a given workload but on varying
hardware configurations.

Other instances of previous work address the same prob-
lem as Bolt, but operate under different assumptions and thus
tackle different challenges. Like Bolt, [28] makes paramet-
ric performance predictions, but for probabilistic programs
that implement randomised algorithms where the challenge
lies in the probabilistic reasoning, rather than cache-effects
and other low-level details. TiML [44] also similarly predicts
performance but requires applications to be implemented in
the TiML functional language which uses type annotations to
enable more rigorous reasoning about performance bounds.
While Bolt assumes that NFs use a pre-analysed data struc-
ture library, it permits developers to continue to use low-level
languages like C, as is the norm for NFs. Bolt also reasons
about low-level hardware behaviour, such as cache effects.

Runtime performance analysis monitors systems during
execution to identify performance issues; we focus here on
work related to NFs. NFVPerf [27] passively monitors traf-
fic to find hardware and software bottlenecks in software
NFs. PerfSight [46] extracts low-level performance informa-
tion from software data planes and allows operators to find
which network functions are responsible for performance is-
sues. FlowTags [19] modifies middleboxes to tag sent pack-
ets and use tags from received packets to enforce network-
wide policies, including performance.

Program Analysis Applied to NFs. Several instances of
prior work have proposed using static analysis to help under-
stand, debug, and verify software NFs. StateAlyzr [23] stati-
cally analyses NFs to identify their per-flow and global state
to enable efficient state migration and redistribution. Other
approaches, use symbolic execution to find bugs or formally
verify correctness. [48, 9, 10] leverage this technique to au-
tomate bug finding and test-case generation. [40] symboli-
cally executes NF models to reason about network properties
like reachability and loops. [47, 14] use exhaustive symbolic
execution to formally verify functional correctness.

8 Conclusion

In this work, we propose the notion of performance contracts
for NFs. Performance contracts precisely characterise NF
performance for any arbitrary incoming workload, whether

typical, ideal or adversarial. We express performance con-
tracts in terms of Performance Critical Variables (PCVs)
which succinctly characterise how NF state and configu-
ration parameters affect the performance of the incoming
packet. Additionally, we present and evaluate BOLT, a tool
that automatically derives performance contracts with accu-
rate performance predictions from the NF code. Finally, we
walk through a series of use-case scenarios that illustrate
how network operators and NF developers can use BOLT to
understand and mitigate NF performance unpredictability.

References

[1] Bolt Project Repository. https://github.com/
bolt-perf-contracts/bolt.

[2] Intel®64 and IA-32 Architectures Optimiza-
tion Reference Manual. https://www.
intel.com/content/dam/www/public/
us/en/documents/manuals/64-ia-
32-architectures-optimization-
manual.pdf.

[3] LPM library - data plane development kit 18.08.0 doc-
umentation. https://doc.dpdk.org/guides/
prog_guide/lpm_lib.html.

[4] VigNAT source code repository. https://github.
com/vignat/vignat.

[5] Y. Afek, A. Bremler-Barr, Y. Harchol, D. Hay, and
Y. Koral. Making DPI engines resilient to algorithmic
complexity attacks. IEEE/ACM Trans. on Networking,
2016.

[6] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset:
Attacking path explosion in constraint-based test gen-
eration. In Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[7] T. Brennan, S. Saha, T. Bultan, and C. S. Păsăreanu.
Symbolic path cost analysis for side-channel detection.
In Intl. Symp. on Software Testing and Analysis, 2018.

[8] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage tests
for complex systems programs. In Symp. on Operating
Sys. Design and Implem., 2008.

[9] M. Canini, D. Kostic, J. Rexford, and D. Venzano. Au-
tomating the testing of OpenFlow applications. Intl.
Workshop on Rigorous Protocol Engineering, 2011.

[10] M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE way to test openflow applications.
In Symp. on Networked Systems Design and Implem.,
2012.

528 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[11] V. Chipounov, V. Georgescu, C. Zamfir, and G. Can-
dea. Selective symbolic execution. In Workshop on
Hot Topics in Dependable Systems, 2009.

[12] S. A. Crosby and D. S. Wallach. Denial of service via
algorithmic complexity attacks. In USENIX Security
Symp., 2003.

[13] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[14] M. Dobrescu and K. Argyraki. Software dataplane ver-
ification. In Symp. on Networked Systems Design and
Implem., 2014.

[15] M. Dobrescu, K. Argyraki, and S. Ratnasamy. Toward
predictable performance in software packet-processing
platforms. In Symp. on Networked Systems Design and
Implem., 2012.

[16] DPDK: Data plane development kit. https://dpdk.org.

[17] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev:
A fast and reliable software network load balancer.
In Symp. on Networked Systems Design and Implem.,
2016.

[18] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohl-
fart, and G. Carle. MoonGen: A scriptable high-speed
packet generator. In Internet Measurement Conf., 2015.

[19] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and
J. C. Mogul. Enforcing network-wide policies in the
presence of dynamic middlebox actions using flowtags.
In Symp. on Networked Systems Design and Implem.,
2014.

[20] V. Ganesh and D. L. Dill. A decision procedure for bit-
vectors and arrays. In Intl. Conf. on Computer Aided
Verification, 2007.

[21] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Intl. Conf. on Program-
ming Language Design and Implem., 2005.

[22] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Net-
work function virtualization: Challenges and opportu-
nities for innovations. IEEE Communications Maga-
zine, 2015.

[23] J. Khalid, A. Gember-Jacobson, R. Michael, A. Ab-
hashkumar, and A. Akella. Paving the way for NFV:
Simplifying middlebox modifications using StateAlyzr.
In Symp. on Networked Systems Design and Implem.,
2016.

[24] M. Kuhnemann, T. Rauber, and G. Runger. A source
code analyzer for performance prediction. In 18th In-
ternational Parallel and Distributed Processing Sym-
posium, 2004. Proceedings., 2004.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
PIN: building customized program analysis tools with
dynamic instrumentation. In Intl. Conf. on Program-
ming Language Design and Implem., 2005.

[26] K. Meng and B. Norris. Mira: A framework for static
performance analysis. In 2017 IEEE International
Conference on Cluster Computing, 2017.

[27] P. Naik, D. K. Shaw, and M. Vutukuru. NFVPerf: On-
line performance monitoring and bottleneck detection
for NFV. In IEEE Conf. on Network Function Virtual-
ization and Software Defined Networks, 2016.

[28] V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. Bounded
expectations: Resource analysis for probabilistic pro-
grams. In Intl. Conf. on Programming Language De-
sign and Implem., 2018.

[29] O. Olivo, I. Dillig, and C. Lin. Detecting and exploiting
second order denial-of-service vulnerabilities in web
applications. In Conf. on Computer and Communica-
tion Security, 2015.

[30] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker.
Monotasks: Architecting for performance clarity in
data analytics frameworks. In Symp. on Operating Sys-
tems Principles, 2017.

[31] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Ma-
hajan, and T. Millstein. Analyzing protocol implemen-
tations for interoperability. In Symp. on Networked Sys-
tems Design and Implem., 2015.

[32] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and
K. Argyraki. Automated synthesis of adversarial work-
loads for network functions. In ACM SIGCOMM Conf.,
2018.

[33] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. Slow-
fuzz: Automated domain-independent detection of al-
gorithmic complexity vulnerabilities. In Conf. on Com-
puter and Communication Security, 2017.

[34] S. Pirelli, A. Zaostrovnykh, and G. Candea. A formally
verified NAT stack. In ACM SIGCOMM Workshop on
Kernel-Bypass Networks, 2018.

[35] P. Puschner and R. Nossal. Testing the results of static
worst-case execution-time analysis. In Real-Time Sys-
tems Symp., 1998.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 529

[36] RFC 781. https://tools.ietf.org/html/
rfc781, 1981.

[37] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and
G. Shi. Design and implementation of a consolidated
middlebox architecture. In Symp. on Networked Sys-
tems Design and Implem., 2012.

[38] V. Sekar and P. Maniatis. Verifiable resource account-
ing for cloud computing services. In Cloud Computing
Security Workshop, 2011.

[39] R. Smith, C. Estan, and S. Jha. Backtracking algo-
rithmic complexity attacks against a NIDS. In Annual
Computer Security Applications Conf., 2006.

[40] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu.
Symnet: Scalable symbolic execution for modern net-
works. In ACM SIGCOMM Conf., 2016.

[41] L. D. Toffola, M. Pradel, and T. R. Gross. Synthesizing
programs that expose performance bottlenecks. In Intl.
Symp. on Code Generation and Optimization, 2018.

[42] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. J. Ar-
gyraki, S. Ratnasamy, and S. Shenker. Resq: Enabling
slos in network function virtualization. In Symp. on
Networked Systems Design and Implem., 2018.

[43] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and
I. Stoica. Ernest: Efficient performance prediction for
large-scale advanced analytics. In Symp. on Networked
Systems Design and Implem., 2016.

[44] P. Wang, D. Wang, and A. Chlipala. Timl: A functional
language for practical complexity analysis with invari-
ants. 2017.

[45] R. Wilhelm, J. Engblom, A. Ermedahl, N. Hol-
sti, S. Thesing, D. Whalley, G. Bernat, C. Ferdi-
nand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-
case execution-time problem — overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst.,
2008.

[46] W. Wu, K. He, and A. Akella. PerfSight: Performance
diagnosis for software dataplanes. In Internet Measure-
ment Conf., 2015.

[47] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki,
and G. Candea. A formally verified NAT. In ACM
SIGCOMM Conf., 2017.

[48] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic test packet generation. In Intl. Conf. on
Emerging Networking Experiments and Technologies,
2012.

530 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FlowBlaze: Stateful Packet Processing in Hardware

Salvatore Pontarelli1,2, Roberto Bifulco3, Marco Bonola1,2, Carmelo Cascone4,
Marco Spaziani2,5, Valerio Bruschi2,5, Davide Sanvito6, Giuseppe Siracusano3,

Antonio Capone6, Michio Honda3, Felipe Huici3 and Giuseppe Bianchi2,5

1Axbryd, 2CNIT, 3NEC Laboratories Europe, 4Open Networking Foundation,
5University of Rome Tor Vergata, 6Politecnico di Milano

Abstract

While programmable NICs allow for better scalability to
handle growing network workloads, providing an expressive
yet simple abstraction to program stateful network functions
in hardware remains a research challenge. We address the
problem with FlowBlaze, an open abstraction for building
stateful packet processing functions in hardware. The ab-
straction is based on Extended Finite State Machines and in-
troduces the explicit definition of flow state, allowing Flow-
Blaze to leverage flow-level parallelism. FlowBlaze is ex-
pressive, supporting a wide range of complex network func-
tions, and easy to use, hiding low-level hardware implemen-
tation issues from the programmer. Our implementation of
FlowBlaze on a NetFPGA SmartNIC achieves very low la-
tency (in the order of a few microseconds), consumes rela-
tively little power, can hold per-flow state for hundreds of
thousands of flows, and yields speeds of 40 Gb/s, allowing
for even higher speeds on newer FPGA models. Both hard-
ware and software implementations of FlowBlaze are pub-
licly available.

1 Introduction
Network infrastructures need a continuously evolving set of
network functions to be operated reliably [45, 35]; NAT, path
and server load balancing, traffic shaping, security functions
such as access control, and DoS protection are just a few
examples. Given the flexibility of modern networks and
the need to continuously support new applications, opera-
tors have turned to pure software implementations for such
functions, which have a number of benefits, including pro-
grammability and ease of management [8].

However, while essential to network operations, network
functions introduce overheads. Most notably, they increase
network packets’ end-to-end delay, since they are on the path
of network flows, and increase the overall cost of running
the infrastructure, needing additional computation resources,
i.e., CPU cores. These overheads become particularly criti-
cal in low latency fabrics such as those of modern datacen-

ters [50]. For instance, server-to-server communication de-
lays are expected to be in the order of a few tens of µs in a
cloud datacenter [29]. For comparison, it could take tens of
µs for packets to go from a NIC, over the PCIe bus, to a CPU
that executes a network function and back to the NIC.

To address this issue, past years have seen the introduction
of efficient programmable network devices that can offload
network packets processing from the CPU. For example, Mi-
crosoft deployed FPGA-based SmartNICs in their datacen-
ters [24]. These devices save CPU usage and reduce the
amount of traffic on a server’s PCIe bus, improving a net-
work function’s packet processing latency by more than an
order of magnitude. As a downside, programming a Smart-
NIC to support a new network function requires hardware
design expertise. While a tech giant can build and assign a
dedicated team to the task [24], this is usually not the case for
a large majority of companies, e.g., smaller cloud or network
operators. As a result, recent network programming abstrac-
tions, such as P4 [13] have the explicity goal of simplifying
the programming of FPGA-based network devices [60, 2].
However, they have limitations in describing network func-
tions that need to keep per-flow state [24, 58], a common
requirement in the world of network functions.

In this paper we address these shortcomings by introduc-
ing FlowBlaze, an abstraction that extends match-action lan-
guages such as P4 or Microsoft’s GFT [24] to simplify the
description of a large set of L2-L4 stateful functions, while
making them amenable to (line-rate) implementations on
FPGA-based SmartNICs. To benefit the community at large,
we build FlowBlaze on open SmartNIC technology (NetF-
PGA [65]), and provide our hardware and software imple-
mentations as open source. Our contributions are:

• The FlowBlaze abstraction. FlowBlaze adapts match-
action tables to describe the evolution of a network flow’s
state using Extended Finite State Machines (EFSM).

• A hardware implementation of FlowBlaze on the NetF-
PGA SUME card that can forward packets at 40Gb/s
line rate while keeping state for hundreds of thousands
of flows, consuming relatively little power, and providing

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 531

packet processing latency of less than 1 µs.
• A comprehensive analysis of FlowBlaze’ expresiveness

through the implementation of over 10 different use cases
including stateful firewalls, load balancers, NATs, traffic
policers and SYN flood detection and mitigation.

• Two different high performance software implementations
(for mSwitch [31] and the Linux kernel) of FlowBlaze.
Such implementations can be used to handle VM-to-VM
communications; to help implement fail-over in software
scenarios, e.g., during hardware maintenance; to support
end systems that do not have a SmartNIC available; or
to implement network functions that are deployed in less
performance-demanding scenarios.

FlowBlaze implementations, documentation and additional
results are available at [25].

2 Requirements and state-of-the-art
Our goal is to provide a system that allows a programmer
with little hardware design expertise to quickly implement,
or update, stateless and stateful packet processing functions
at high speed, on FPGA-based SmartNICs. It should be
noted that our focus is on functions that operate on packet
headers, generally at L2-L4 of the network stack, such as
firewalls, L4 load balancers and NATs. These are common
building blocks for many other functions, and can often be
completely executed within a NIC. Functions that operate on
packet payloads such as DPIs and L7 firewalls are out of the
scope of this work. More formally, we target the following
requirements:

• R1: High Performance: support of network functions
that achieve throughput in the range of 40-100Gb/s while
providing per-packet processing latency of at most a few
µs.

• R2: State Scalability: support for functions that operate
on fine-grained per-flow state and the ability to store per-
flow state for large numbers of network flows (e.g., up to
several 100Ks). The number of flows should not affect the
processing latency.

• R3: Easy to Use: allow a programmer to focus solely on
implementing the functionality needed and not get bogged
down in tricky, time-consuming hardware performance op-
timizations. Further, hardware constraints should have rea-
sonably little impact on application design, and the pro-
grammer should need little to no hardware design expertise
to implement a function.

• R4: Expressiveness: the system’s programming abstrac-
tion should allow users to describe a large range of po-
tentially stateful functions, including complex ones (e.g.,
anomaly detection, connection tracking, etc.).

2.1 Existing systems
Taking these requirements into account, we review the state
of the art and find that existing systems only meet these re-

High Perf State Scal Ease Expresiv
General programming frameworks

HDL
√ √

×
√

HLS [52] ×
√ √ √

ClickNP [42] -
√

-
√

Match-action abstractions
P4 [13] - -

√
-

Domino [58]
√ √

- -
OpenState [11]

√ √ √
×

FAST [51] ×
√ √

×

Table 1: Qualitative comparison of stateful abstractions. A
dash means a requirement is only partly met.

quirements partially, for an FPGA target (See Table 1). In
effect, we can split previous approaches in two categories:
General programming frameworks are solutions that rely
entirely on FPGA re-programmability features to implement
new functions and therefore focus on languages and frame-
works to simplify FPGA programming. Here we include
Hardware Description Languages (HDLs) and High Level
Synthesis (HLS) systems.

HDLs such as Verilog are a low-level programming
method for FPGAs, requiring extensive hardware design ex-
pertise. HLS systems like those based on OpenCL, can im-
prove ease of use (R3) by adopting high-level languages.
However, hardware expertise is still needed since the code
has to be properly designed and annotated to ensure the syn-
thesis process succeeds in providing a high-performance im-
plementation [52]. For example, ClickNP [42] may require
the programmer of a functional element to apply specific
hardware-related optimizations, when the compiler fails to
apply its automated optimization [42]. Further, updating a
function requires a new synthesis and flashing of the FPGA
design, a process that takes hours.
Match-action abstractions are based on the match-action
tables (MATs) model. MATs are an effective and widely ap-
plied tool to describe network functions as a pipeline com-
posed of a parser and a variable number of match and action
blocks. The parser and the actions logic are generally rather
stable and are therefore programmed at configuration time,
while the match table’s entries are inserted at runtime and
can be used to change the implementation of functions on-
the-fly.

MATs are a good tool to describe L2-L4 network func-
tions [47], but currently available MAT abstractions only
support stateless functions so that a programmer cannot
specify functions where the processing of a packet should
depend on a previously received packet. Older versions of
the P4 language, which targets a MAT model, left the im-
plementation of state-related constructs such as registers,
to platform-specific features, which reduces portability and
complicates the work of a programmer. As a matter of fact,
solutions that use P4 to implement FPGA-based network
functions require the programmer to provide stateful func-

532 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tions using HDLs [2, 60].
A step forward in this direction was first provided by

Domino [58], which extends the match-action model to in-
clude, in the action blocks, small and fast registers that can
keep state. These registers can be accessed during the pro-
cessing of any packet handled by the action block, thus pro-
viding a global state access model. A similar solution is
also supported by the @atomic construct in the latest P4
language version, i.e., P4-16 [20] (the previous version was
P4-14 [19]). Unfortunately, the global state model provides
little information for hardware implementations to optimize
state operations. Thus, Domino-like solutions are designed
to address a worst-case access pattern, which leads to very
constrained state update functionality (R4).
Do we meet all four requirements at once? The wide-
spread application of MATs suggests that they could be a
good starting point for providing an effective abstraction to
describe network functions, and works like Domino already
point towards a direction that extends MATs to support state-
ful functions. Thus, our problem boils down to supporting
per-flow states in a match-action abstraction.

Here, we begin by making the observation that many net-
work functions already partition their state on a per-flow ba-
sis [54]. This means that programmers are familiar with the
concept of flow state, and that this inherent, per-flow par-
allelism can be leveraged to optimize state operations and
memory accesses in a hardware implementation.
Can flow state become a first class citizen? Admit-
tedly, FAST [51] and OpenState [11] follow this direction
to provide stateful packet processing abstractions, explic-
itly defining flow state. In both cases, packets are grouped
in programmer-defined network flows (like in MATs), and
flows are associated with a Finite State Machine (FSM). Pro-
grammers then define the FSMs’ transition tables which are
used to update the corresponding FSMs’ states as packets are
processed. Following this line of reasoning, it would seem
that FSMs would be a good choice to transform a stateless
MAT into a stateful element. Related work has shown FSMs
to be programmer-friendly, allowing for the definition of a
host of packet forwarding behavior [40, 62] (R3, R4). Fur-
ther, a FSM can be efficiently represented by its transitions
table, which can be implemented in a straightforward way in
hardware since it is functionally equivalent to a MAT (R1).

Unfortunately, FSMs are not scalable (R2). Briefly, an
FSM is described by the set of states S, inputs I, outputs
O and by the transition relation T : S× I → S×O. Since
FSMs need to explicitly define all the possible states si ∈ S
the system can be in, this may lead to a phenomenon known
as state explosion [34]; the next section explains how Flow-
Blaze solves this issue.

3 FlowBlaze Design
To keep most of the good properties of FSMs while provid-
ing a scalable abstraction, we resort to Extended Finite State

Machines (EFSMs) [4]. An EFSM extends the FSM model
by introducing: (i) variables D to describe the state; (ii) en-
abling functions F on such variables to trigger transitions
(fi : D← {0,1}, fi ∈ F); and (iii) update functions for the
variable values (ui : D← D,ui ∈U). The transition relation
of an EFSM is expressed as T : S×F× I→ S×U×O.
Example. Figure 1 shows the EFSM representation of an ap-
plication that identifies whether a single flow f1 (e.g., iden-
tified by IP destination) is large by marking all packets after
the 100th one. Using a conventional graph representation,
the nodes of Figure 1 are states, while edges represent tran-
sitions. Each node is named using the corresponding state
label. Transitions are marked with the quadruple {enabling
functions, event, update functions, output}. Enabling and
update functions operate on the variable D(f1), which is the
variable of D we selected to store a flow’s number of pack-
ets. The event pkt(f1) represents the reception of any packet
belonging to a flow f1. Finally, the outputs mark and fwd
are high-level descriptions of a packet header rewriting ac-
tion and a generic forwarding action. The dashed line shows
a transition triggered by a timeout event (e.g., an idle time-
out), which brings the EFSM back to its starting state.

3.1 The FlowBlaze Abstraction
While adopting EFSMs partly helps in dealing with state ex-
plosion, we still need to adapt them to ensure an efficient
hardware implementation. We need to address two issues:

• State scalability: standard EFSMs would require a sepa-
rate transition table (i.e., the EFSM’s description), for each
flow in the system.

• Flow parallelism: an EFSM state definition does not in-
clude the concept of flow state, which we need in order to
leverage flow-level parallelism.

To address the above issues FlowBlaze uses EFSM defini-
tions to describe the behavior of a group of flows. Here, the
observation is that often many flows share the same forward-
ing behavior [39], even if each flow, at any given point in
time, may be in a different state of such EFSM. For exam-
ple, in Figure 1 we specify an EFSM for a single flow, but
we usually want to apply the same EFSM to all the other
flows seen by our function, so to mark any flow with more
than 100 packets. In other words, the forwarding logic is
the same for all flows, but they are actually associated with
different EFSM instances.

State types The introduction of such instances has an imme-
diate side-effect: there is no way for two different instances
to read or write each other’s states. For example, we would
be unable to extend the EFSM of Fig. 1 to also count the total
number of flows that sent more than 100 packets.

We address the issue by introducing the notion of global
state, which can be read and modified by all the EFSM in-
stances generated from the same EFSM definition. Formally,
the FlowBlaze abstraction divides the EFSM variable space

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 533

Figure 1: EFSM description of an application that identifies
flows generating more than 100 packets

Figure 2: Description of the application of Fig. 1 using a
generic flow definition.

D in two parts: the global registers gi ∈ G that are part of
the global state; and the flow registers ri ∈ R, which, together
with the state label, constitute the flow state. The global state
exists for the entire lifetime of the system and accesses to the
global state are serialized, similar to [58]. Flow state, on the
other hand, only exists while its corresponding flow does,
and accesses to it are serialized for packets within a flow,
i.e., when processing packets belonging to different flows it
is possible modify their respective flow states in parallel.

To illustrate, Figure 2 extends the example of Figure 1 to
describe the same application but this time using an EFSM to
identify all large flows, with a flow defined as a set of pack-
ets with the same destination IP address. In this case, each
flow is associated with an EFSM instance that has its own
current state (”small” or ”big”) and a variable r1. Notice that
in Figure 2 variables are no longer accessed using a flow id
(in Fig. 1 we used D(f1)), since each packet is now asso-
ciated with its corresponding flow’s EFSM instance. Sim-
ilarly, the packet reception event does not specify the flow
the packet belongs to anymore, since that information is cap-
tured already by the generic flow definition associated with
the EFSM. Table 2 shows the transition table needed to im-
plement this function; we will give a full explanation of it
and of how to program FlowBlaze later in this section.

Composition In a match-action abstraction there is usually
a pipeline of MATs. Similarly, FlowBlaze allows for the
pipelining of EFSMs, which is equivalent to their sequen-
tial composition [40]. That is, in the most general case a
network function is described by an ordered list of EFSM
definitions, where the output of the EFSM i can be used as
input for EFSM i+ 1. Each EFSM definition has its own
scope for the flow and global states: an EFSM definition’s
global state is only accessible by that EFSM’s instances.

To move information between two sequential EFSMs,
FlowBlaze associates packet state, i.e., metadata, with each
packet. Such state is created when a packet is received, and
deleted once its processing is completed. For example, after

Cond. Event S Nxt S Update Pkt act.
1 r1 <= 100 pkt sml sml r1 = r1 +1 fwd
2 r1 > 100 pkt sml big r1 = r1 +1 mrk, fwd
3 * pkt big big r1 = r1 +1 mrk, fwd

Table 2: Transition table for the example of Fig. 2.

Figure 3: FlowBlaze machine model

the EFSM of Figure 2 one could add another EFSM which
uses metadata tagged by the first EFSM to classify packets
differently, based on whether they belong to a large or a small
flow.

3.2 Machine Model
Having described the FlowBlaze abstraction, we now pro-
ceed to show how this abstraction is formalized to a machine
model that can be implemented in hardware.

More specifically, FlowBlaze’s machine model (see Fig-
ure 3) extends the MATs pipeline model described by
RMT [14]. Like in RMT, FlowBlaze packet headers (includ-
ing packet metadata) are processed through the pipeline’s el-
ements to define the forwarding actions. Each element can
be either stateless or stateful. A stateless element is a MAT,
similar to the ones employed in RMT1. Unlike RMT, a state-
ful element implements an EFSM definition. As a result, a
pipeline can combine both stateless and stateful elements.

The architecture of a stateful element has two notable dif-
ferences from a MAT: (1) such an element has a Flow Con-
text Table before the usual match part, and (2) the element
splits the actions into (state) update functions and packet ac-
tions. In greater detail, as shown in Figure 3 (the box labeled
”Stateful Element”), packet processing involves the follow-
ing sequential steps:
1. Flow Context Table. When a packet header enters the
element, it is associated with a corresponding flow context.
The context is extracted from the Flow Context Table using,
as search key, a list of header fields (e.g., the TCP/UDP 4-
tuple, optionally in conjunction with the packet’s metadata).
The search key is specified at configuration time and corre-
sponds to FlowBlaze’s EFSM flow definition. The context,
i.e., a table’s entry, includes a state label s and an array of

1FlowBlaze assumes packets headers are already parsed when passed
to the pipeline, taking advantage of RMT-like programmable packet pars-
ing [28] and reconfigurable match tables [14].

534 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

registers ~R = {r0,r1, ...,r(k−1)}. Flow contexts are also asso-
ciated with hard and idle timeouts. If no context is found for
a given key, a default context is used (i.e., with all values set
to 0). A single flow context identifies an EFSM instance.
2. EFSM Table. The packet’s header and metadata, plus the
extracted flow context, are passed to the EFSM table. Such
table is an extension of a traditional MAT, which in addition
to supporting matching on the packer header fields, can also
match on the state label s and evaluate enabling functions.
An enabling function can be specified as a logical AND of up
to m arithmetic comparisons (~C = {c0,c1, ...,c(m−1)}). The
comparisons’ operands can be selected among any combina-
tion of flow registers and packet header fields. For each entry
in the table, a programmer can specify (i) packet modifica-
tion and forwarding operations, (ii) the next state label s, and
(iii) a list of instructions to update the flow context registers
~R and the global registers ~G = {G0,G1, ...,G(h−1)}. In short,
the EFSM table acts as the state machine’s transition table.
3. Update Functions. The header and metadata, the update
instructions, and the new value of the state label are passed
to the update functions block. The block performs the re-
quired update instructions to update the values stored in both
the flow context registers ~R and global registers ~G. Such in-
structions can range from simple integer sums, for instance
to update the value of a register representing a packet or byte
counter, to more complex ones, e.g., multiplications, depend-
ing on the specific implementation and target performance.
4. Action. Like in a MAT, this block applies actions on the
packet header. In contrast to a MAT, the values of the flow
context registers as well as those of the global registers can
also be used (e.g., to rewrite some packet header fields).

3.3 FlowBlaze Programming
FlowBlaze is deployed bump-in-the-wire, in the NIC, and its
programming is similar to programming a P4 device. At con-
figuration time, the programmer has to define the parser, the
match fields for MATs and EFSM transition tables, and the
actions, which now include also the state update functions.
Like in [2], changing these components requires a new syn-
thesis of the FPGA design. Luckily, these are the parts of a
function that change less frequently [23].

At runtime, the programmer defines the logic of her net-
work functions by configuring the flow definition for the
stateful elements, selecting a subset of the parsed header
fields, and writing the required entries in the MATs and
EFSM transition tables. This is analogous to the runtime pro-
gramming of P4 and OpenFlow devices. In fact, we extend
the OpenFlow protocol to write such entries from a python-
based RYU OpenFlow controller [25].

One thing worth highlighting is that the programmer can
quickly experiment and update her functions logic on-the-fly,
since programming the network functions logic is as quick
as writing entries to tables, unlike other solutions that need a
new synthesis and flashing of the FPGA design [42].

Use case Entries Reg.
Server Load Balancer 2,2 0+1, 1
UDP Stateful Firewall 5 0

Port Knocking Firewall 6 0
Flowlet load balancer 2, 4, 9 1, 0+2, 0+4

Traffic Policer 4 2+2
Big Flow Detector 3 1

SYN flood Detection and Mitigation 4 1
TCP optimistic ACK detection 8 3
TCP super spreader detection 8 1

Dynamic NAT 3, 4 1+1, 2
vEPC subscriber’s quota verification 9 1

Switch Paxos Coordinator 1 0+1
Switch Paxos Acceptor 3 3+1
In-network KVS cache 6 2

Table 3: Implemented use cases. The entries column re-
ports the number of EFSM table entries needed by a stateful
element, with each comma-separated number representing
a different element. The registers column lists the number
of flow+global registers for each element. More in the Ap-
pendix.

3.4 Expressiveness: A Case Study
To demonstrate FlowBlaze’s expressiveness we have imple-
mented a large set of network functions ranging from NATs
to load balancers and anomaly detection, to name a few (full
listings in Table 3). For each we state the number of stateful
elements, and the respective number of entries and registers
required by FlowBlaze to support them. The different use
cases can be combined to provide more complex functions.

Beyond these applications, and to provide a better under-
standing of the level of complexity that our system can sup-
port, we now show an example of a FlowBlaze configuration
that implements a TCP connection tracking function (Fig-
ure 4). Connection tracking is required by network operators
to protect their networks from a number of attacks [33], but
its implementation is fairly complex and challenging (e.g.,
it requires per-packet flow state updates to check TCP se-
quence numbers, and we cannot know, at least not right away,
whether a packet we see is actually delivered or lost).

Assuming a parser can extract the relevant TCP header
fields [28], FlowBlaze allows us to implement the function
using two stateful elements. The first element has 7 transi-
tions and tracks the TCP connection establishment, i.e., the
three-way handshake, and computes receive window (RCW)
boundaries. A connection is identified with a bi-directional
4-tuple network flow. In particular, the flow key specifica-
tion is defined as biflow, meaning that both directions of the
flow will be associated with the same flow context. The flow
context contains the IP address of the initiator of the connec-
tion (r0), the last acknowledged sequence numbers (SEQs)
(r1, r2), the last seen SEQs (r3, r4), and the RCW for each
direction (r5, r6). A packet is sent to the second element
when a connection is in the estbl state, in which case the left
and right boundaries of the RCW are computed and copied

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 535

Figure 4: A complex, TCP connection tracking use case to show FlowBlaze’s expressiveness. All of element 2’s states can
transition to the rst state. Transitions triggered by timeouts are omitted for clarity.

into the packet’s metadata. The second element has 29 tran-
sitions and checks if the packet’s SEQ is within the RCW
boundaries and handles connection termination. The flow
context contains the IP source of the connection termination
initiator (r0) and the last expected ACK number for each di-
rection (r1, r2). Since connection terminations do not happen
at packet processing speed, and since it is safe to keep state
for terminated connections for a short time, we leave it to
software (e.g., running on a CPU), to clean up the state of
terminated connections: the software reads the terminated
connections from element 2 and clears the state for those
connections from element 1.

It is worth pointing out that making a few assumptions
about the implemented network functions can seriously re-
duce the required FlowBlaze resources. For instance, we
can reduce the number of registers from 7 to 4 in element
1 by assuming that one side of the connection is trusted [30],
e.g., because we control the TCP stacks of those machines.
Likewise, we could simplify the implementation assuming
a fixed size for the receive window, as done in some hard-
ware firewall implementations [55]. Finally, we could easily
change the implementation behavior for SEQ checking from
window shifting to window advancing by simply introducing
an additional condition (i.e., newSEQ > storedSEQ) to the
transitions that update the stored SEQ in element 1.

4 Hardware Design and Implementation
In this section we present FlowBlaze’s hardware design,
mapping the abstraction and machine model described in the
previous section to an actual hardware implementation. Note
that we focus mainly on the architecture of a stateful ele-
ment, since that is where most of the research contribution

in this section lies (we leave out details about packet header
parsing). We begin by giving an overview of the stateful el-
ement’s architecture, and follow that by a description of the
issues we encountered and how we addressed them.

4.1 Stateful Element Architecture
FlowBlaze’s hardware design extends a state-of-the-art
packet processing pipeline by introducing stateful elements.
As mentioned in Section 2, one of the advantages of select-
ing an EFSM-based abstraction is that the EFSM’s transi-
tion table can be directly mapped to a MAT, which consti-
tutes the starting point for our stateful element architecture
(see Fig. 5): the TCAM, instruction RAM and packet header
action blocks are components of a regular MAT implemen-
tation; the remaining blocks are required to implement the
FlowBlaze abstraction.

In greater detail, the stateful element works as a pipeline.
A packet header is received and hashed by the key extractor,
which is configured to generate a flow key according to the
provided EFSM’s flow definition, and first handled by the
scheduler block. This block uses the hash to place the header
in one of its queues, guaranteeing no per-flow re-ordering,
and then serves headers from the queues with a scheduling
policy that provides per-flow state access consistency.

A scheduled header is then used to look up the correspond-
ing flow state in the Flow Context Table. The state includes
the state label s and the registers~r, values which are then fed
as input to the conditions evaluation block. This block se-
lects the operands for the conditions from the registers, the
header fields and/or a constant value using a crossbar, and
outputs the result to a vector~c, which, together with the state
label s and the header fields, is used to perform a look-up
in the EFSM table. The result of the look-up is the instruc-

536 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: FlowBlaze’s stateful element architecture.

tions that should be executed by the update function’s ALUs
and the packet header action block. These two blocks per-
form their operations in parallel: the former updates the flow
state in the Flow Context Table and the value of the global
registers, while the latter modifies the header fields.

Having given an overview of the architecture, we dedicate
the rest of the section to describing how we solve issues to
do with the scalability of the Flow Context Table and with
guaranteeing consistency.

4.2 Scalability of Flow Context Tables
In order to implement the flow-oriented addressing required
by the forwarding tables and by FlowBlaze’s Flow Con-
text Table we need to rely on optimized hash tables. A
typical solution in this space is to use cuckoo hash ta-
bles [63] which support higher load factors, thereby improv-
ing SRAM usage efficiency. However, an entry insertion in
a cuckoo hash table may actually need multiple operations
when there is a hash collision; this makes insertion times
variable and potentially long for a loaded table, severely im-
pacting performance. While current designs usually perform
entry insertion and collision handling in the device’s control
plane [24, 49], in FlowBlaze we need to handle entry inser-
tions in the data plane while guaranteeing quick and constant
insertion times2. FlowBlaze solves the issue by implement-
ing the cuckoo insertion logic completely in hardware and
extending the hash table with a small stash memory to hold
entries waiting for insertion. The stash allows FlowBlaze to
hide the variable insertion time of a cuckoo hash. We imple-
ment a four-choices cuckoo hash table that offers a 97% load
factor [22, 26], using a dual port (read-after-write) SRAM to
support two accesses in the same clock cycle for concurrent
read and write operations.

The key extractor of Figure 5 generates the four hash keys

2For reference, the device’s control plane can insert/modify entries at a
speed that is usually 1000-10000x slower than the packet processing rate.
Even in cases where such a slow update rate is tolerable, consistency prob-
lems for the state and scalability concerns for the control plane arise [49].

required to address the table, and the table itself is coupled
with a stash memory that can host 8 entries [41]. In con-
trast to a typical cuckoo with stash, a new entry is always
inserted first in the stash, which guarantees constant inser-
tion time (1 cycle). In parallel, the insertion logic moves
entries from the stash to the hash table and operates as a reg-
ular cuckoo+stash implementation. The insertion logic can
execute an entry insertion or a movement (needed to resolve
collisions) per cycle, in about 6.4ns in our implementation.
It is worth noting that while a very loaded table can cause the
number of movements to grow by as much as 100x [26], in
section 5 we empirically show that our 8-entry stash memory
is enough to avoid packet losses for the rather large network
traces we test against. The observations here is that unlike
state write operations which happen for each packet arrival,
an insertion happens only when a new network flow starts, a
smaller and thus manageable rate.
Handling Corner Cases Despite these mechanisms, a Flow
Context Table (and its stash) may exceptionally become full.
At this stage, the right strategy is dependent on the network
function being run (e.g., for a stateful firewall the right ap-
proach might be to reject any new connections).

FlowBlaze provides a programmer with the ability to im-
plement the logic to handle such cases. When a packet be-
longing to a new flow is received, FlowBlaze checks, in ad-
dition to the look-up in the Flow Context Table, the table’s
occupancy level. If the table is full, a flag is set in the packet
metadata, essentially indicating that there is no more space
to save flow state for this flow. This flag can then be matched
in the EFSM table, allowing the programmer to program the
state machine to handle the case, e.g., by dropping the packet
(and the flow) or by sending the packet out for further pro-
cessing, e.g., in software. Further, when a table is full, Flow-
Blaze provides the option to install a new flow state entry
by replacing an existing one. This is handled with a config-
urable eviction policy: the insertion logic can be configured
to read the entries’ flow register R0 and to select for eviction
the entry with the highest (or lowest) value. That is, a net-
work function’s FSM can use R0 to enforce a custom eviction
logic. For example, R0 can be used to store the timestamp of
the last seen packet in order to implement a logic that evicts
the least active flows; alternatively, R0 could store a packet
counter to evict the smallest (or biggest) flow.

4.3 Guaranteeing Flow State Consistency
Flow-oriented memory addressing implies that a memory lo-
cation is accessed only when a given flow’s packet is pro-
cessed. As a result, a given memory location is accessed at a
rate that may be just a fraction of the overall packet process-
ing rate (i.e., one access per cycle), and enables read/modi-
fy/write operations that span multiple clock cycles. This fea-
ture, however, introduces a state consistency problem, since
a memory location’s access times may vary depending on the
traffic pattern, potentially leading to a concurrent read/write

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 537

Figure 6: Stateful element scheduling scenarios. P1 (Packet
1) and P2 belong to the same flow and use the same flow
context. P3, P4 and P5 belong to different flows and can
concurrently access memory.

of the same location. For example, when two packet headers
that access the same flow context entry are processed in short
sequence, the second packet’s flow state read may happen be-
fore the first packet’s flow state update has been written back
to memory (see top table in Figure 6). Stalling the pipeline
while waiting for the state to be updated would guarantee
consistency at the cost of performance (middle table).

To resolve the issue, [58] uses read/modify/write state op-
erations that are performed in a single clock cycle, but at the
cost of very constrained update operations. FlowBlaze, on
the other hand, leverages the inherent parallelism given by
the presence of different flows that access different flow con-
text entries, hence, memory areas. In particular, the sched-
uler (recall Figure 5) guarantees flow context consistency by
conservatively locking the pipeline only when two packets
need to access the same flow context. To achieve this, the
scheduler recognizes the flow a packet belongs to by using
one of the hash keys (FK1) generated by the key extrac-
tor. When a new packet arrives, the scheduler feeds it to the
pipeline if no other packets with the same hash key are being
processed. Otherwise, the scheduler stalls the pipeline.

To mitigate any potential head-of-line blocking issues, in
our design we arrange the state update ALUs in a parallel
fashion. This effectively reduces the number of stalled cycles
at the cost of constraining the complexity of state updates.
That is, we limit state updates to one single operation per
operand, which is anyway sufficient to implement the use
cases described in Sec. 3.4. By doing so, as we will see in
Sec. 5, a single queue in the scheduling block is enough to
achieve the target performance.

Here, notice that this design decision may be changed with
relatively minor modifications, e.g., arranging ALUs in a se-
rial fashion, thereby providing richer state update semantics.
However, in such a case, the number of stalled cycles would
increase, and so would the risk of having head-of-line block-

Param. Value Descr.
k 4x32b Flow context’s registers
m 8 Maximum number of conditions.
z 64b Size of metadata moved between elements
h 8x32b Global registers

ALUs 5 The maximum number of ALUs dictates the
maximum number of update functions that
can be performed for a given transition.

mqs 20 max queue size, in number of packets
nq 1 number of queues

Table 4: Parameters of a FlowBlaze stateful element in our
hardware implementation.

Resource type Reference switch FlowBlaze
Slice LUTs 49436 (11%) 71712 (16%)

Block RAMs 194 (13%) 393 (26%)

Table 5: NetFPGA’s resource requirements for FlowBlaze
with a single stateful element compared to those of a refer-
ence, single-stage Ethernet switch.

ing issues. Thus, our general architecture includes the op-
tion of using multiple waiting queues for packets belonging
to different flows.

The scheduling block uses FK1 to assign packets to Q
different queues, guaranteeing that packets belonging to the
same flow are always enqueued in the same queue, thus keep-
ing the original ordering for packets belonging to the same
flow (cf. Figure 6). The scheduler serves the queues in a
round-robin fashion. When a queue is selected, it verifies if
a packet with the same hash FK1 is already in the pipeline.
If that is the case, the scheduler examines the next queue,
until it finds a queue whose first packet has a different hash.
If no other queues are available, the pipeline is stalled. Oth-
erwise, the scheduler extracts the current queue’s first packet
and feeds it to the pipeline.

4.4 Hardware Implementation
Our implementation is based on the NetFPGA SUME [65]
SmartNIC, an x8 Gen3 PCIe adapter card containing a Xil-
inx Virtex-7 690T FPGA [3] and four SFP+ transceivers
providing four 10G Ethernet links. The system is clocked
at 156.25MHz and designed to forward 64B minimum-size
packets at line rate. We synthesized FlowBlaze using the
standard Xilinx design flow.

Our prototype fixes the machine model’s parameters as in
Table 4 and uses a non-programmable packet parser, a con-
figurable size flow context table, and a fixed-size EFSM ta-
ble. The Flow Context Table is implemented with BRAM
blocks. Each entry has 128b for the flow key and 146b for
the value (16b of state label plus 4 registers of 32b and 2b
acting as internal flags). The EFSM table is implemented by
a small TCAM of 32 entries of 160 bits. The limited size
is due to the technical challenges of implementing a TCAM
on FPGAs, which is still an open research issue [36, 59, 37].
Nonetheless, Table 3 shows that such number of entries is al-

538 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ready sufficient for a large range of use cases. As described
earlier, the scheduler block has a single queue, for up to 20
packets, which is enough to provide the required throughput
and forwarding latency for the tested workloads. We stud-
ied the implications of different queue sizes and scheduler
configurations in [17].

Table 5 lists the logic and memory resources (in terms
of absolute numbers and fraction of available FPGA re-
sources) used by a FlowBlaze implementation with a single
stateful element and a Flow Context Table with 16k entries.
For reference, we also list those required for the NetFPGA
SUME single-stage reference switch, i.e., a simple Ethernet
switch. The reported resources include the overhead of sev-
eral blocks, such as the microcontroller for the FlowBlaze
configuration, the input/output FIFO for the 10G interfaces,
etc., which are required to operate the FPGA and do not need
to be replicated for each element. We successfully imple-
mented on the NetFPGA SUME up to 6 stateful elements for
a total of about 200k flow context entries, using around 57%
of LUTs and 85% of BRAM blocks.

4.5 Software Implementation
We implemented FlowBlaze’s pipeline design as a software
data plane to enable any network functions written using
the FlowBlaze abstraction to run in software. Briefly, we
provide two implementations: a FlowBlaze module on the
mSwitch [31] platform in native C (open source [25]); and
for the Linux kernel network stack using eBPF/XDP [1]. We
evaluate these implementations in the next section.

5 Evaluation
Methodology We experimentally measure FlowBlaze’s per-
formance with end-to-end tests and microbenchmarks, re-
sorting to simulations to test corner cases scenarios or to
unveil details that would not be visible with black-box test-
ing. To test the workload-dependent behavior of FlowBlaze
we used a number of traffic traces collected at various op-
erational networks. Here we report the results for publicly
available traces (see Table 6) selected from carrier networks
(CHI15 [16], MW15 [46]) and from university datacenters
(UNI1, UNI2) [10, 9]. For the hardware implementation
tests, the achieved performance is independent of the par-
ticular tested application and only influenced by the num-
ber of pipeline elements, thus we report tests only for a
UDP Stateful Firewall application (NetFPGA-FW-FB). For
the software implementations we show the performance of
the UDP Stateful Firewall (XDP-FW-FB) and Big Flow De-
tector applications (mSw.-FB), to compare them with cus-
tom implementations of the same functions and evaluate
the overhead of the FlowBlaze abstraction. Here, we use
as comparison plain mSwitch [31], Linux’s XDP [1] and
VPP [27] on DPDK. The VPP functions are from the official
project repository (VPP-FW), while XDP-FW is a function-
ally equivalent implementation of the UDP Stateful Firewall

Max # active flows Max # new flows/ms Mean Pkt
Size (B)Trace IP s IP s,d 5 tpl IP s IP s,d 5 tpl

UNI1 575 997 4k 13 19 39 697
UNI2 948 3k 7k 20 42 42 751

MW15 12k 130k 152k 38 112 114 540
CHI15 92k 147k 178k 135 144 144 778

Table 6: Max number of active flows for 10s time windows
and max number of new flows/ms in the examined traces.

V
P
P

m
S
w
.

X
D
P

X
D
P
-F

W

X
D
P
-F

W
(2

)

X
D
P
-F

W
(3

)

V
P
P
-L

2

V
P
P
-F

W

V
P
P
-F

W
(2

)

V
P
P
-F

W
(3

)

m
S
w
.-
F
B

m
S
w
.-
F
B
(2

)

X
D
P
-F

W
-F

B

X
D
P
-F

W
-F

B
(2

)

X
D
P
-F

W
-F

B
(3

)

N
et

F
P
G
A
-F

W
-F

B
0

2

4

6

8

10

12

14

T
h
ro

u
g
h
p
u
t

[M
p
/
s]

Figure 7: Packet forwarding rates of bare packet I/O engines
(white), stateful packet processing w/o FlowBlaze (light
gray) and that with FlowBlaze (dark gray): Numbers in () in-
dicate the number of CPU cores if not 1. FlowBlaze does not
add overhead (XDP-FW vs XDP-FW-FB) and it scales well
(XDP-FW-FB vs XDP-FW-FB(2) and mSw.-FB vs mSw.-
FB(2)). The NetFPGA implementation can always forward
at line rate while saving up to 3 CPU cores.

function implemented by FlowBlaze.
Testbed For NetFPGA experiments, we use a single machine
equipped with Xeon X3470 CPU clocked at 2.93 Ghz, the
quad-port NetFPGA board (cf. Sec. 4) and a single dual-
port Intel 82599 10 GbE NIC. Each 10 GbE port is con-
nected to each of two active NetFPGA ports. For experi-
menting with software implementations, we use two servers
connected back-to-back with Ethernet cables: each has an
Intel Xeon E3-1231 v3 CPU (3.4GHz) and a single dual-port
Intel 82599 10 GbE NIC. One server is used to generate and
terminate test traffic; the other is used to forward packets.

5.1 Throughput
End-to-end tests We measure the end-to-end FlowBlaze
throughput when running different applications using both
our hardware and software implementations. The mSwitch
and XDP implementations are configured with the Big Flow
Detector and UDP Stateful Firewall, respectively, both iden-
tifying flows by the 5-tuple. The same application is config-
ured also on the NetFPGA implementation.

Figure 7 summarizes the measured packet forwarding
rates of minimum-sized (64B) packets with various systems.
All the bare packet I/O frameworks (white bars) achieve line
rate (14.88 Mp/s) as they do not touch packet headers. When
implementing packet processing logic on top of them, rates
decrease (gray bars) and we need more CPU cores to reach
line rate. Implementing network functions with FlowBlaze

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 539

Figure 8: Drop rate of FlowBlaze when clocked at differ-
ent frequencies and forwarding the traffic traces of Table 6,
at 40Gb/s line rate. The 1-flow label shows the case of a
pipeline without the scheduler block. With more granular
flow definitions, e.g., 5-tuple, there is a higher degree of
flow-level parallelism, which reduces the need to stall the
pipeline. This can be seen looking at the change of drop
rates for different flow definitions in the 156.25MHz case.

(black bars) does not add much overhead, as we see in the
comparison between XDP-FW and XDP-FW-FB. Further,
FlowBlaze scales to multiple CPU cores well (see XDP-FW-
FB and mSw.-FB). Notice that the software implementations
are forwarding only 4 flows, and thus we are showing a best
case scenario for the achieved forwarding rate. The NetF-
PGA implementation can forward packets at 10Gbps line
rate, and the performance is independent of the number of
flows being forwarded. These results show that, even for a
relatively simple use case, FlowBlaze can free several CPU’s
cores from network processing tasks.
Hardware A clock-cycle detailed simulation of the hard-
ware design shows that our prototype could in princi-
ple forward 40 Gb/s for all packet sizes when clocked at
156.25MHz. However, the introduction of pipeline stalls
to guarantee flow state consistency may actually lower the
achieved throughput for some traffic mixes. Thus, in order to
have a better understanding of FlowBlaze performance, we
use the traces described earlier to test it with different work-
loads. The traces show a largely bi-modal distribution, with
at least 30% (or more) of the packets being minimum size.
Furthermore, we try different versions of the design, clocked
at 133, 156.25, 166 and 180MHz. This helps to highlight the
effect of the packet scheduler, with respect to the option of
running the system with a higher frequency.

We use the moongen packet generator on a dedicated
server to replay the traffic traces, connecting the server’s 4
10GbE ports back-to-back with the NetFPGA. The traces are
replayed while removing any inter-packet gap, i.e., we gen-
erate traffic at 40Gb/s line rate. We consider 4 different flow
definitions: 1-flow, i.e., no distinction of network flows and
thus no scheduler block, IP src, IP src/dst and 5-tuple. Fig. 8
reports the results.

For a frequency of 133MHz the FlowBlaze pipeline is un-

64 512 1518

20

40

60

80

100

120

140

L
a
te

n
c
y

[µ
s]

NetFPGA-FW-FB
NetFPGA
Cable

64 512 1518
Packet Size [Byte]

mSw.-FB
mSw.
Cable

64 512 1518

XDP-FW-FB
XDP
VPP

Figure 9: End-to-end RTT: offloading NFs to hardware re-
duces latency by avoiding PCIe and CPU overheads (dark
gray plots). FlowBlaze adds almost no latency to the hard-
ware and software baselines (comparison between light and
dark gray plots within each graph).

able to sustain line rate: the roughly 15% packet drop is in-
dependent of the stalling and of flow definitions. Our proto-
type’s selected clock frequency, i.e., 156.25MHz, is the min-
imum one that sustains 40Gb/s with our design, but stalling
reduces the actual throughput: this is visible in the 1-flow
case, which results in a 4.6-10.20% packet drop rate, de-
pending on the trace. The introduction of the scheduler
block allows FlowBlaze to reduce (or completely remove)
packet drops to 0-1.8% when using a 5-tuple flow definition.
Slightly rising the frequency to 166MHz allows FlowBlaze
to completely remove packet drops for all the traces and all
flow definitions. In contrast, in the 1-flow case, even further
increasing the frequency to 180MHz does not achieve that,
with 0.7% of drops with the UNI2 trace.

5.2 Latency
In terms of latency, offloading stateful processing to an I/O
peripheral can significantly reduce end-to-end latency by
avoiding transfers over PCIe. Recall that end-to-end RTTs
between a pair of client and server machines over Ethernet,
TCP, a socket API and using a simple HTTP parser are a
few tens of µs [32]; RTTs over datacenter fabrics, thanks
to sophisticated congestion control algorithms [5, 6, 61] and
RDMA deployment [64, 50], can be lower than 100 µs [29].

We connect two 10G NIC regular ports to two NetF-
PGA ports to measure the end-to-end latency; we then run
a netmap pkt-gen program on one regular port to send and
receive packets while instrumenting another pkt-gen on
the other regular port to echo back received packets. The
measured latency includes two passes through the NetFPGA
and the latency of the pkt-gen (including overheads of
moving packets through the PCIe bus 4 times).

Figure 9 plots the RTT measured at the pkt-gen genera-
tor. In the left graph the NetFPGA implementation adds only
2–9 µs to cable, and up to 1 µs to plain FPGA forwarding (no
FlowBlaze). This is because packets are avoiding PCIe bus
transfers and FlowBlaze is optimized to process a packet in
just 8 clock cycles. Here, notice that multiple pipelined ele-
ments may slightly increase the processing latency of Flow-

540 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Blaze, with each element adding about 50ns. Also, a full
queue in the scheduler block may add up to 384ns of waiting
time. In any case, even with these additional delays, Flow-
Blaze packet processing latency is well below one µs.

The middle and right graphs show the RTTs when using
mSwitch and XDP implementations. Since software packet
processing requires moving packets over the PCIe bus (4
times for round trip), in this case the RTT increases by 38–
46 µs with mSwitch (mSw.-FB over Cable) and by 41–127
µs with XDP (XDP-FW-FB over Cable). However, this addi-
tional latency does not come from the FlowBlaze abstraction
but from packet I/O frameworks; we can see that by com-
paring them against mSw and XDP, respectively. While not
visible in the graphs, we note that FlowBlaze adds up to 1 µs
in both the mSwitch and XDP implementations.

In summary, offloading stateful functions to SmartNICs
is important for low latency end-to-end services. Further-
more, since FlowBlaze does not add latency to base packet
I/O frameworks, operators can start deploying it in soft-
ware, allowing for incremental deployment of FlowBlaze-
enabled SmartNICs that implement performance critical net-
work functions.

5.3 Power Consumption
The NetFPGA consumes 16W when idle and configured
with a no-op bitstream. When the FlowBlaze bitstream is
loaded, the consumption grows to 22W and is independent
of the packet rate and of the network function programmed
on FlowBlaze. This consumption has to be considered in
addition to the overall system’s power consumption, which
is 85W when the CPU is idle (For a total of about 107W).
In contrast, the software implementations mSwitch and FB-
mSwitch consume 124W and 123W of power during oper-
ation, respectively, and 119W when not forwarding pack-
ets; FB-eBPF consumes 123W in operation and 118W oth-
erwise. In all, FlowBlaze provides significant power sav-
ings over software-based implementations, while supporting
much higher packet forwarding rates.

5.4 Flow Scalability
The maximum number of entries a FlowBlaze’s stateful ele-
ment can host depends on the amount of state required by the
application (e.g., number of registers); our NetFPGA imple-
mentation can host about 200k entries, which are enough for
all the traces listed in Table 6. It should be noted that using
a simpler but less efficient hash scheme for the FlowBlaze
design, such as a 4-left hash, would have made the system
unable to deal with CHI15. In fact, a 4-left hash table, with
65-70% maximum load factor could only host about 140k
entries in the NetFPGA’s memory. Further, it is worth noting
that the NetFPGA SUME uses a fairly old FPGA genera-
tion, with less than 10MB of SRAM blocks. Modern FPGAs
could host more than 5x times such number of entries. In any
case, related work such as [24] shows that these numbers are
in line with current datacenter requirements.

Figure 10: (a) Number of moves to insert an entry in the
Flow Context Table. (b) Number of entries in the stash.

5.5 Flow Insertion Performance
Recall that FlowBlaze extends Cuckoo hashing for constant
time insertion in hardware. Since slow insertion could lead
to dropping flows, we are interested in whether FlowBlaze
can handle high flow arrival rates.

To analyze its behaviour, we implement the FlowBlaze in-
sertion algorithm in software, and measure the number of
entry movements required for a new entry insertion while in-
creasing occupancy of the Flow Context Table. We run two
tests. First, for each traffic trace, we first fill the table to the
required occupancy level, e.g., 50%, then we try to insert
the next trace’s flows and measure the required number of
movements for each such insertion. In a second test, we fill
the table with randomly generated keys, and then try to in-
sert new keys that are also randomly generated, performing
10k independent measurements. In all cases, the hash table
is provided with memory to host all the entries when loaded
at 95%. The results are similar for the two tests; for the sake
of brevity, Fig. 10a shows them only for the second test.

For a table 95% full, the median number of movements
is 125 per insertion, with the highest outlier requiring about
300 movements. Recall that a movement takes 6.4ns, thus
300 movements equates to about 1.9us and so FlowBlaze is
able to scale to insertion rates in the order of millions of
entries per second. However, recall that FlowBlaze uses a
stash that can host at most 8 entries waiting for insertion.
If the flow arrival rate is faster than the insertion rate in the
hash table, the stash could become full and flows would be
dropped. We measured the stash occupancy when using the
traffic traces described earlier, simulating a challenging sce-
nario in which each entry insertion in the table takes 450
movements, i.e, 1.5× the worst outlier of Figure 10a. The
results in Figure 10b show that in all the cases, with the most
fine-grained 5-tuple flow definition, the stash has at most 8
entries (meaning no flow is dropped) while being empty for
most of the time.

6 Discussion
Ease of use While we did not run large scale surveys, we can
report our experience in using FlowBlaze to implement net-
work functions. In line with the findings of [40], we found
the EFSM abstraction requires the programmer to adapt to
a model that is different from regular procedural program-
ming, but relatively simple to adopt. Once adopted, the
EFSM model helps in focusing on the required function’s

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 541

state and on how it evolves. We found this particularly help-
ful in designing more complex functions, such as the one of
Fig. 4. Here, we would first focus on the different states the
function could be in, and then describe the inputs that would
make a function evolve from one state to the next, leading to
a very linear design and implementation process.
Security Even if a smart state encoding, such as the one
adopted in [49], could enable handling state for millions of
flows, FlowBlaze will always have some hard memory limit
which could be potentially exploited, for example by DoS
attacks. To deal with this, FlowBlaze provides primitives
that allow a programmer to explicitly handle cases where the
Flow Context Table is full. Still, it is up to the programmer to
define functions that are robust to DoS attacks. For example,
the function in Figure 4 could be preceded by an element that
implements a SYN flooding detection function so that traf-
fic from a host that performs a SYN attack could be dropped,
avoiding the creation of a large number of entries in the Flow
Context Tables for the elements that follow.

7 Related Work
The MAT abstraction is the starting point for FlowBlaze and
was formalized by OpenFlow [48]. RMT [14] extends that
model with programmable packet parsers, re-configurable
forwarding tables to match on different headers and pro-
grammable actions. dRMT [18] is an alternative implemen-
tation of the RMT instruction set for a high-performance
switching ASIC. Languages such as P4 [13] and PX [15] are
used to describe such configurable MATs. Our work extends
RMT to perform stateful packet processing.

SNAP [7] introduces a stateful packet processing abstrac-
tion for the control plane. The network is programmed as if it
was a single big stateful switch, then, a compiler distributes
state variables to the network devices. State is represented by
an array of values that can be indexed by e.g., packet header
fields’ values. SNAP does not focus on the implementation
of stateful operations in the data plane, which is instead the
focus of our work. In fact, FlowBlaze can be used as an
implementation target for SNAP. However, FlowBlaze pro-
vides a predefined per-flow state access model, which may
not suite all the SNAP’s programs. That is, SNAP’s abstrac-
tion is less constrained, therefore there may be programs that
cannot be mapped to a FlowBlaze target.

Perhaps the closest works to FlowBlaze are FAST [51] and
OpenState [11]. Both works define an FSM abstraction, but
(i) do not define a state access model that allows for both
per-flow and global consistency, and (ii) do not deal with is-
sues related to the integration of FSMs in an RMT machine
model. FlowBlaze fills these gaps and provides a hardware
implementation that addresses problems that have to do with
quick per-flow state insertion and state update consistency.
In contrast, FAST provides only a software implementation,
while OpenState can only support much simpler Mealy Ma-

chines.
VFP [23] presents a MAT-like abstraction, GFT, to offload

some network functions to a SmartNIC, and defines concepts
similar to the biflow we use in FlowBlaze. AccelNet[24]
implements GFT in a FPGA-based SmartNIC. Their design
differs from FlowBlaze in several ways. First, AccelNet re-
quires the first packet of a flow to be handled in software.
For short flows this introduces additional delays that may
be critical for real-time applications, thus FlowBlaze allows
for functions to be entirely executed in the FPGA instead.
Second, AccelNet uses a small (2k flows) cache in SRAM
backed by a larger DRAM to host flow entries. This is also
related to Marple, which extends data plane state memory
using off-chip DRAM [53] to support network monitoring
functions in high-performance switching ASICs. In contrast,
FlowBlaze places all the flow entries in a highly optimized
hash-table in SRAM, which guarantees constant delays for
all flows’ state reads and writes. Unlike FlowBlaze, Accel-
Net does not provide an abstraction to program FPGA func-
tions, though it does implement a microcode programmable
action block which allows for reconfiguration of the actions
without requiring a change in the FPGA design; this is com-
plementary to our work.

Examples of functions offloaded to programmable hard-
ware are presented in [49, 57, 43, 21, 44, 56, 38]. FlowBlaze
provides an abstraction to implement such use cases, and ad-
dresses issues in those implementations to do with control
plane scalability and limited state memory. We described the
implementation of a few datacenter use cases with an earlier
software version of FlowBlaze in [12].

8 Conclusion
We presented FlowBlaze, an EFSM-based abstraction able
to describe network functions targeted at high-performance
data plane implementations. FlowBlaze is flexible and can
implement complex network functions while being compat-
ible with the wide-spread MATs pipeline abstraction. Lever-
aging the flow state concept, we provided an efficient hard-
ware implementation that can run, at line-rate, stateful net-
work functions that keep large, per-flow state. FlowBlaze is
built on top of the NetFPGA open platform and both hard-
ware and software sources are publicly available [25].

Acknowledgements
We would like to thank the anonymous NSDI reviewers and
our shepherd Anirudh Sivaraman for their valuable feed-
back. This work has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 761493 (”5GTANGO”) and No.
762057 (”5G-PICTURE”). This paper reflects only the au-
thors’ views and the European Commission is not responsi-
ble for any use that may be made of the information it con-
tains.

542 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Linux socket filtering aka berkeley packet fil-
ter (bpf). https://www.kernel.org/doc/
Documentation/networking/filter.txt.

[2] P4-NetFPGA. https://github.com/
NetFPGA/P4-NetFPGA-public/wiki.

[3] Virtex-7 Family Overview. http://www.xilinx.
com.

[4] V. S. Alagar and K. Periyasamy. Extended Finite State
Machine, pages 105–128. Springer London, London,
2011.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center tcp (dctcp). In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, pages
63–74, New York, NY, USA, 2010. ACM.

[6] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is more: trading a
little bandwidth for ultra-low latency in the data cen-
ter. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pages
19–19. USENIX Association, 2012.

[7] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford,
and D. Walker. Snap: Stateful network-wide abstrac-
tions for packet processing. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, pages
29–43, New York, NY, USA, 2016. ACM.

[8] AT&T, BT, CenturyLink, China Mobile, Colt, Deu-
tusche Telekom, KDDI, NTT, Orange, Telefom Italia,
Telefonica, Telstra, and Verizon. Network function vir-
tualization - white paper. http://www.tid.es/
es/Documents/NFV_White_PaperV2.pdf.

[9] T. Benson. Data set for IMC 2010 data center
measurement. http://pages.cs.wisc.edu/

˜tbenson/IMC10_Data.html.

[10] T. Benson, A. Akella, and D. A. Maltz. Network traf-
fic characteristics of data centers in the wild. In ACM
SIGCOMM IMC, ACM SIGCOMM IMC ’10, 2010.

[11] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
Openstate: Programming platform-independent state-
ful openflow applications inside the switch. ACM SIG-
COMM CCR, 44(2):44–51, 4 2014.

[12] M. Bonola, R. Bifulco, L. Petrucci, S. Pontarelli, A. Tu-
lumello, and G. Bianchi. Implementing advanced net-
work functions with stateful programmable data planes.
In Local and Metropolitan Area Networks (LANMAN),

2017 IEEE International Symposium on, pages 1–2.
IEEE, 2017.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, et al. P4: Programming protocol-
independent packet processors. ACM SIGCOMM CCR,
44(3):87–95, 2014.

[14] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-
eown, M. Izzard, F. Mujica, and M. Horowitz. For-
warding metamorphosis: Fast programmable match-
action processing in hardware for sdn. In ACM SIG-
COMM ’13, ACM SIGCOMM ’13, pages 99–110.
ACM, 2013.

[15] G. Brebner and W. Jiang. High-speed packet pro-
cessing using reconfigurable computing. IEEE Micro,
34(1):8–18, Jan 2014.

[16] CAIDA. The CAIDA UCSD anonymized in-
ternet traces - chicago 2015-02-19. http:
//www.caida.org/data/passive/
passive_2015_dataset.xml.

[17] C. Cascone, R. Bifulco, S. Pontarelli, and A. Capone.
Relaxing state-access constraints in stateful pro-
grammable data planes. ACM SIGCOMM Computer
Communication Review, 48(1):3–9, 2018.

[18] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Var-
gaftik, A. Berger, G. Mendelson, M. Alizadeh, S.-T.
Chuang, I. Keslassy, A. Orda, and T. Edsall. drmt: Dis-
aggregated programmable switching. In Proceedings
of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages 1–14,
New York, NY, USA, 2017. ACM.

[19] T. P. L. Consortium. The p4 language specification -
version 1.0.5, 5 2018.

[20] T. P. L. Consortium. P416 language specification, 5
2018.

[21] H. T. Dang, M. Canini, F. Pedone, and R. Soulé. Paxos
made switch-y. SIGCOMM Comput. Commun. Rev.,
46(2):18–24, May 2016.

[22] U. Erlingsson, M. Manasse, and F. McSherry. A
cool and practical alternative to traditional hash tables.
In 7th Workshop on Distributed Data and Structures
(WDAS’06), Santa Clara, CA, January 2006.

[23] D. Firestone. VFP: A virtual switch platform for host
SDN in the public cloud. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 17), pages 315–328, Boston, MA, 2017.
USENIX Association.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 543

https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
http://www.xilinx.com
http://www.xilinx.com
http://www.tid.es/es/Documents/NFV_White_PaperV2.pdf
http://www.tid.es/es/Documents/NFV_White_PaperV2.pdf
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml

[24] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-
mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Sri-
vastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger,
K. Vaid, D. A. Maltz, and A. Greenberg. Azure accel-
erated networking: Smartnics in the public cloud. In
15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18), pages 51–66, Ren-
ton, WA, 2018. USENIX Association.

[25] FlowBlaze. Repository with FlowBlaze source code
and additional material. http://axbryd.com/
FlowBlaze.html.

[26] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space
efficient hash tables with worst case constant access
time. Theory of Computing Systems, 38(2):229–248,
Feb 2005.

[27] L. Foundation. FD.io. https://fd.io/.

[28] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown.
Design principles for packet parsers. In ACM/IEEE
ANCS ’13.

[29] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye,
and M. Lipshteyn. Rdma over commodity ethernet at
scale. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 202–215. ACM, 2016.

[30] M. Handley, V. Paxson, and C. Kreibich. Network in-
trusion detection: Evasion, traffic normalization, and
end-to-end protocol semantics. In Proc. USENIX Secu-
rity Symposium, volume 2001, 2001.

[31] M. Honda, F. Huici, G. Lettieri, and L. Rizzo. mswitch:
A highly-scalable, modular software switch. In Pro-
ceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, ACM SOSR
’15, pages 1:1–1:13. ACM, 2015.

[32] M. Honda, G. Lettieri, L. Eggert, and D. Santry.
PASTE: A network programming interface for non-
volatile main memory. In Proc. USENIX NSDI, 2018.

[33] H. Hong, H. Choi, D. Kim, H. Kim, B. Hong, J. Noh,
and Y. Kim. When cellular networks met ipv6: Security
problems of middleboxes in ipv6 cellular networks. In
2017 IEEE European Symposium on Security and Pri-
vacy (EuroS P), pages 595–609, April 2017.

[34] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Intro-
duction to Automata Theory, Languages, and Compu-
tation (3rd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2006.

[35] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park.
mos: A reusable networking stack for flow monitor-
ing middleboxes. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), pages 113–129, Boston, MA, 2017. USENIX As-
sociation.

[36] B. Jean-Louis. Using block RAM for high performance
read/write TCAMs, 2012. Xilinx XAPP204.

[37] W. Jiang. Scalable ternary content addressable memory
implementation using fpgas. In Architectures for Net-
working and Communications Systems (ANCS), 2013
ACM/IEEE Symposium on, pages 71–82, Oct 2013.

[38] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica. Netcache: Balancing key-value
stores with fast in-network caching. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 121–136, New York, NY, USA, 2017.
ACM.

[39] P. Kazemian, G. Varghese, and N. McKeown. Header
space analysis: Static checking for networks. In Pre-
sented as part of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
12), pages 113–126, San Jose, CA, 2012. USENIX.

[40] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster,
and R. Clark. Kinetic: Verifiable dynamic network con-
trol. In 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15), pages 59–
72, Oakland, CA, 2015. USENIX Association.

[41] A. Kirsch, M. Mitzenmacher, and U. Wieder. More
robust hashing: Cuckoo hashing with a stash. SIAM J.
Comput., 39(4):1543–1561, Dec. 2009.

[42] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, and P. Cheng. Clicknp: Highly flexible
and high-performance network processing with recon-
figurable hardware. In ACM SIGCOMM ’16.

[43] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and
M. J. Freedman. Be fast, cheap and in control with
switchkv. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
31–44, Santa Clara, CA, 2016. USENIX Association.

[44] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,
and K. Atreya. Incbricks: Toward in-network compu-
tation with an in-network cache. SIGOPS Oper. Syst.
Rev., 51(2):795–809, Apr. 2017.

[45] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. Clickos and the
art of network function virtualization. In Proceedings
of the 11th USENIX Conference on Networked Systems

544 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://axbryd.com/FlowBlaze.html
http://axbryd.com/FlowBlaze.html
https://fd.io/

Design and Implementation, USENIX NSDI’14, pages
459–473. USENIX Association, 2014.

[46] MAWI. MAWILab traffic trace - 2015-07-20.
http://www.fukuda-lab.org/mawilab/
v1.1/2015/07/20/20150720.html.

[47] N. McKeown. Programmable forwarding planes are
here to stay. In ACM SIGCOMM 2017 The Third Work-
shop on Networking and Programming Languages
(NetPL), 2017.

[48] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: Enabling innovation in cam-
pus networks. ACM SIGCOMM CCR, 38(2):69–74, 3
2008.

[49] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:
Making stateful layer-4 load balancing fast and cheap
using switching asics. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’17, pages 15–28, New York,
NY, USA, 2017. ACM.

[50] R. Mittal, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall,
D. Zats, et al. Timely: Rtt-based congestion control for
the datacenter. In ACM SIGCOMM Computer Com-
munication Review, volume 45, pages 537–550. ACM,
2015.

[51] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and
R. Govindan. Flow-level state transition as a new
switch primitive for sdn. In Proceedings of the Third
Workshop on Hot Topics in Software Defined Network-
ing, ACM HotSDN ’14, pages 61–66. ACM, 2014.

[52] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno.
Efficient fpga implementation of opencl high-
performance computing applications via high-level
synthesis. IEEE Access, 5:2747–2762, 2017.

[53] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,
V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim.
Language-directed hardware design for network per-
formance monitoring. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’17, pages 85–98, New York,
NY, USA, 2017. ACM.

[54] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and
S. Shenker. Verifying reachability in networks with
mutable datapaths. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), pages 699–718, Boston, MA, 2017. USENIX As-
sociation.

[55] Z. Qian and Z. M. Mao. Off-path tcp sequence number
inference attack - how firewall middleboxes reduce se-
curity. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, SP ’12, pages 347–361, Wash-
ington, DC, USA, 2012. IEEE Computer Society.

[56] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and
P. Kalnis. In-network computation is a dumb idea
whose time has come. In Proceedings of the 16th ACM
Workshop on Hot Topics in Networks, HotNets-XVI,
pages 150–156, New York, NY, USA, 2017. ACM.

[57] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishna-
murthy, J. Nelson, and S. Peter. Evaluating the power
of flexible packet processing for network resource al-
location. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages
67–82, Boston, MA, 2017. USENIX Association.

[58] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Al-
izadeh, H. Balakrishnan, G. Varghese, N. McKeown,
and S. Licking. Packet transactions: High-level pro-
gramming for line-rate switches. In ACM SIGCOMM
’16, ACM SIGCOMM ’16, pages 15–28. ACM, 2016.

[59] Z. Ullah, M. Jaiswal, Y. Chan, and R. Cheung. FPGA
Implementation of SRAM-based Ternary Content Ad-
dressable Memory. In IEEE 26th International Paral-
lel and Distributed Processing Symposium Workshops
& PhD Forum (IPDPSW), IEEE IPDPSW 2012, 2012.

[60] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivas-
tav, N. Foster, and H. Weatherspoon. P4fpga: A rapid
prototyping framework for p4. In Proceedings of the
Symposium on SDN Research, SOSR ’17, pages 122–
135, New York, NY, USA, 2017. ACM.

[61] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron.
Better never than late: Meeting deadlines in datacenter
networks. ACM SIGCOMM Computer Communication
Review, 41(4):50–61, 2011.

[62] Y. Yuan, D. Lin, R. Alur, and B. T. Loo. Scenario-based
programming for sdn policies. In Proceedings of the
11th ACM Conference on Emerging Networking Exper-
iments and Technologies, CoNEXT ’15, pages 34:1–
34:13, New York, NY, USA, 2015. ACM.

[63] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. An-
dersen. Scalable, High Performance Ethernet Forward-
ing with CuckooSwitch. In Proceedings of the Ninth
ACM Conference on Emerging Networking Experi-
ments and Technologies, ACM CoNEXT ’13, pages
97–108. ACM, 2013.

[64] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 545

http://www.fukuda-lab.org/mawilab/v1.1/2015/07/20/20150720.html
http://www.fukuda-lab.org/mawilab/v1.1/2015/07/20/20150720.html

M. Zhang. Congestion control for large-scale rdma
deployments. In ACM SIGCOMM Computer Com-
munication Review, volume 45, pages 523–536. ACM,
2015.

[65] N. Zilberman, Y. Audzevich, G. A. Covington, and
A. W. Moore. NetFPGA SUME: Toward 100 Gbps as
Research Commodity. IEEE Micro ’14, 34(5):32–41,
2014.

546 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A: ALU Instructions

Type Instructions Description

Logic
NOP do nothing
NOT OUT ← NOT (IN1)

XOR, AND, OR OUT ← IN1opIN2

Arithmetic
ADD, SUB OUT ← IN1opIN2

ADDI, SUBI OUT ← IN1opIMM

Shift/Rotate
LSL (Logical shift left) OUT ← IN1 << IMM

LSR (Logical shift right) OUT ← IN1 >> IMM
ROR (Rotate right) OUT ← IN1rorIMM

Table 7: FlowBlaze ALU-supported instructions.

B: Pipeline Simulations

Figure 11: sim1 (a) throughput and (b) latency.

Figure 12: sim2 (a) throughput and (b) latency.

In order to understand FlowBlaze’s design performance
(when clocked at 156.25MHz) with respect to a worst case
scenario, we implemented a custom FlowBlaze simulator
and used modified versions of the traces described in Sec. 5.
The traces show a largely bi-modal distribution, with at least
30% (or more) of the packets being minimum size. It should
be noted that we used this custom pipeline simulator since
a clock-cycle level hardware simulator would be too slow to
perform trace-based simulations at this scale.

We perform two simulations: sim1 simulates line rate by
removing any time gap between packets; this results are used
to validate the simulator and are comparable to our experi-
mental evaluation results (cf. Fig. 8); sim2 modifies all pack-
ets to be minimum size and so represents a worst-case work-
load. Figures 11 and 12 plot throughput relative to Flow-
Blaze’s line rate, with the scheduler block (cf. Section 4.3)
and without it (global label), as well as the 99th percentile
forwarding latency which is increased by pipeline stalls or
queuing. The former case is tested against three flow def-
initions: IPsrc, IPsrc-IPdst, and 5-tuple. In the global la-
bel case, we force the pipeline to stall for 3 cycles for every
minimum size packet in order to guarantee state consistency
(recall the middle table in Figure 6).

The results show the effects of having the scheduler block
(cf. traces details in Table 6): depending on flow definitions
and traces, it improves the throughput by 50–160% in the
worst case (sim2), and up to 12% in sim1. In this last case,
the scheduler reduces the per-packet latency by 30–70% .

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 547

SIMON: A Simple and Scalable Method for Sensing, Inference and Measurement in
Data Center Networks

Yilong Geng1, Shiyu Liu1, Zi Yin1, Ashish Naik2,
Balaji Prabhakar1, Mendel Rosenblum1, and Amin Vahdat2

1Stanford University
2Google Inc.

Abstract

It is important to perform measurement and monitoring in
order to understand network performance and debug prob-
lems encountered by distributed applications. Despite many
products and much research on these topics, in the context
of data centers, performing accurate measurement at scale in
near real-time has remained elusive. There are two main ap-
proaches to network telemetry–switch-based and end-host-
based–each with its own advantages and drawbacks.

In this paper, we attempt to push the boundary of edge-
based measurement by scalably and accurately reconstruct-
ing the full queueing dynamics in the network with data gath-
ered entirely at the transmit and receive network interface
cards (NICs). We begin with a Signal Processing frame-
work for quantifying a key trade-off: reconstruction accu-
racy versus the amount of data gathered. Based on this,
we propose SIMON, an accurate and scalable measurement
system for data centers that reconstructs key network state
variables like packet queuing times at switches, link utiliza-
tions, and queue and link compositions at the flow-level. We
use two ideas to speed up SIMON: (i) the hierarchical nature
of data center topologies, and (ii) the function approxima-
tion capability of multi-layered neural networks. The for-
mer gives a speedup of 1,000x while the latter implemented
on GPUs gives a speedup of 5,000x to 10,000x, enabling
SIMON to run in real-time. We deployed SIMON in three
testbeds with different link speeds, layers of switching and
number of servers. Evaluations with NetFPGAs and a cross-
validation technique show that SIMON reconstructs queue-
lengths to within 3-5 KBs and link utilizations to less than
1% of actual. The accuracy and speed of SIMON enables
sensitive A/B tests, which greatly aids the real-time develop-
ment of algorithms, protocols, network software and appli-
cations.

1 Introduction

Background and motivation. Measurement and telemetry
are long-standing important problems in Networking; there’s

a lot of research on these topics and there are several prod-
ucts providing these functionalities (e.g., [42, 21, 19, 56, 55,
57, 27, 13, 20, 50, 44, 40, 49, 7, 1, 2, 3, 4]). The primary use
cases are monitoring the health of networks, measuring their
performance, billing, traffic engineering, capacity planning,
troubleshooting in the case of breakdowns or failures, and
for detecting anomalies and security threats. The key chal-
lenges are: (i) accuracy: how to accurately observe and mea-
sure events or phenomena of interest; (ii) scalability: how to
scale the measurement method to large networks, involving
hundreds or thousands of nodes and high line rates, hence
a very large “event frequency”; and (iii) speed: how to per-
form accurate and scalable measurement in near real-time as
opposed to offline. Since these are conflicting requirements,
most solutions seek to make effective trade-offs.

Measurement methods can be classified as “switch-based”
or “edge-based”. Switch-based methods can be approximate
or exact. We survey the literature on this topic in Section 7.
For now, it suffices to say that most early work (and prod-
ucts; e.g., NetFlow [50] and sFlow [44]) consider approxi-
mate measurement since accurate measurement was deemed
prohibitively expensive. These methods only give approxi-
mate counts of packets/bytes passing through a single switch,
requiring a lot of extra processing to stitch together network-
wide, flow-level views. Further, they also require extra
bandwidth to move the measurement data to the network’s
edge for processing. Recent developments in programmable
switches and in-band network telemetry [58, 30, 32, 28] en-
able accurate, per-packet measurement. However, they gen-
erate a lot of data (per-packet, per-switch), whereas we shall
see that network phenomena of interest can be captured with
a lot smaller data. The effectiveness of INT also relies on
all nodes being able to perform it. Finally, because switches
are not adjacent to the end-hosts (in the way that NICs are),
they cannot easily relate network bottlenecks to application
performance.

Edge-based methods record “events” at end-hosts with lit-
tle or no help from the network. The events are used to infer
some network state that is of interest to an application or
to the operator. Since storage is distributed and resources

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 549

in the end-hosts are abundant, these methods are inherently
scalable. The question is how much network state can be in-
ferred and how accurately? Existing work, surveyed in Sec-
tion 7, only obtains a partial or approximate view of the net-
work state from edge observations, such as end-to-end delay
distributions, which link dropped a packet, detecting traffic
spikes, silent packet drops, load imbalance, or routing loops.

By contrast, our work, which is also edge-based, obtains a
near exact reconstruction of network state variables.1 That is,
we obtain key variables like queuing delays, link utilizations
and queue/link compositions over small time intervals and
on a per-packet or per-flow basis. Our approach is based on
network tomography.
Tomography. The goal of network tomography is to use
the “individual records”2 of unicast or multicast probes and
packets collected at the edge of the network and determine
internal network state quantities such as delays and back-
logs at individual links. The general philosophy of network
tomography is this: While each record conveys a limited
amount of information about network conditions, it may be
possible to combine the records of all the probes or packets
to get a detailed picture of internal network state and condi-
tions.

Despite much research (surveyed in Section 7), network
tomography hasn’t proved successful in wide area networks.
As [25] notes, one major impediment is ignorance of the
underlying network topology. This leads tomography algo-
rithms to make unrealistically simple assumptions, which, in
turn, lead to inaccurate inferences. Even if the exact topol-
ogy were known, the end-to-end traversal times in the wide
area setting are at least a few milliseconds and typically a few
tens of milliseconds, much longer than the queuing times at
routers. So two probes whose network dwell times overlap
might encounter quite different queuing times at a common
router buffer on their path. Since the accurate determination
of queuing times is infeasible in the wide area setting, [25]
advocates determining their distributions instead.
Reconstructing data center state variables. We revisit net-
work tomography in the data center context. By restricting
ourselves to data centers, we sidestep the problems plaguing
tomography in wide area networks and obtain the following
advantages. (a) A data center is operated by a single admin-
istrative entity, hence, the network topology is easy to know.
The path followed by a probe or packet is also knowable
(e.g., using traceroute or because the hash functions which
assign packets to paths are known). (b) A modular network
topology of the Clos type provides multiple paths between
any pair of nodes, making congestion and bottlenecks sparse.
(c) As a consequence of (a) and (b), the network traversal
time of a probe or packet is dominated by queueing times at

1“near exact reconstruction” is defined in Section 2.1.
2An individual record, described formally later, consists of the standard

5-tuple, transmit and receive timestamps, and the byte-count.

one or two queues and the wire times are negligible.3

It is important to note that we do not reconstruct the in-
stantaneous values of network state variables, rather we re-
construct a I-average of these quantities, where I is a short
interval (e.g., 0.25 msec–1 msec in 10–40 Gbps networks).
In Section 2.1, we demonstrate that packet queuing times
and backlog processes viewed at the granularity of packet
enqueuing and dequeuing times are very noisy. By analyzing
the queuing process in the frequency domain (specifically, by
looking at its power spectral density), we propose to recon-
struct the I-averaged queuing times and link utilizations and
show that these quantities retain 97.5% of the power of the
corresponding instantaneous quantities, and are practically
the same in value except for the noise. A major benefit is
that the I-averaged network state quantities are obtained with
much less data and processing effort! For example, in a 10
Gbps, 256-server network with 3 tiers of switching operating
at 40% load, going from per-packet to per-millisecond data
capture at the edge reduces total storage by 60x and speeds
up computation by 40x with negligible reduction in accuracy
(see Table 1).

If it works in the data center setting, the advantages of
a tomography-based measurement system are several: (i) it
doesn’t require any modification to the existing switching
infrastructure since it only needs data to be gathered at the
edge, and most current-generation NICs are able to times-
tamp packets at wirespeed, (ii) by injecting extra probes at
roughly 0.3% of the link bandwidth to obtain network state
information, its bandwidth overhead is negligible when com-
pared with switch-centric approaches which need to send
data collected at the switches to the network’s edge, (iii) be-
ing edge-based, it is readily able to relate application-level
performance to network bottlenecks, and (iv) most impor-
tantly, it has the potential to be accurate, scalable and near
real-time.
Our contributions.
We propose SIMON, a sensing, inference and measurement
system for data centers that reconstructs key network state
variables such as queuing times, link utilizations and queue
and link compositions (i.e., breaking down the packets in a
queue according to flow ids). SIMON uses a mesh of probes
to cover all the linearly independent paths in the network,
and the delays of the probes in a reconstruction interval are
processed by the LASSO inference algorithm [53] to obtain
the queue size and other related variables. We present:
(1) A signal processing framework for analyzing the basic
elements of tomography-based measurement methods (Sec-
tion 2.1). The main finding is that queue sizes and wait times
fluctuate noisily when viewed at packet enqueuing and de-
queuing times, but a low-pass filtered version of these pro-
cesses is both easier to reconstruct and carries more than

3For example, the propagation time is 5ns for 1 meter or 0.5 microsecs
for 100 meters which is comparable to the raw switching (zero queuing)
time at a node.

550 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

97.5% of the signal power.
(2) SIMON, a probe-based sensing, inference and measure-
ment system for accurately determining network state vari-
ables (Section 3). In an ns-3 simulation of a 10 Gbps, 256
server DCN, SIMON achieves an RMSE of 4.14KB in recon-
structing queue compositions, and a 1% error in reconstruct-
ing link utilization for each traffic class (see Figure 11). In
a real-world 1 Gbps, 128 server testbed, SIMON achieves an
RMSE of 5.1KB (just over 3 1500B packets) with respect to
ground truth.
(3) Exploiting the hierarchical (Clos or fat-tree type) struc-
ture of modern data center topologies to devise a modular,
fast version of SIMON (Section 4.1). The resulting speedup
is 1,000x.
(4) Using the function approximation capability of multi-
layered neural networks (NNs) [29] to hardware-accelerate
SIMON, more specifically, to hardware-accelerate the
LASSO inference algorithm used by SIMON. We find that
even unoptimized NNs running on standard GPUs, give up
to 5,000–10,000x acceleration (Section 4), enabling SIMON
to run in near real-time.
(5) A verification of the accuracy and scalability of SIMON
on a 128 server, 1 Gbps data center and a 240 server, 40
Gbps testbed. We comment on the deployment experience
from these testbeds as well as a mixed 10G-40G, 288 server
network (Section 6).

As a consequence of the speed and accuracy of SIMON, it
can support sensitive A/B tests in near real-time, hence en-
abling the rapid development of algorithms, protocols, data
center software and high-level applications. It can also be
coupled with edge-based control in “Smart NICs” which are
a recent and major focus of the industry [37, 10, 14].

2 Network reconstruction using tomography

In this section we describe how to use data sensed from the
edge of the network (servers) to reconstruct key performance
measures in a data center network (DCN). Figure 1 shows
a 3-stage Clos (or fat-tree) DCN, with the path taken by a
probe or data packet shown in red. We introduce the follow-
ing concepts and terminology.
Probe. A probe is a 64 byte UDP or TCP packet sent from
one server to another in the DCN. It travels on the same pri-
orities and through the same queues as regular data packets.
Its purpose is to incur the same queuing times as the payload
in its priority and, hence, provide data for reconstruction.
Probe mesh. This is a graph connecting the N servers in
a DCN to one another along whose edges probes are ex-
changed. Each server picks K other servers randomly and
uniformly (without replacement) from the set of all servers.
Suppose server i picked servers j1, ..., jK . Then i sends
probes to each jl (1 ≤ l ≤ K) at a frequency F Hz. Each jl
sends probes back to i at the same frequency. The path in the
DCN followed by probes between any pair of servers is cho-

sen uniformly at random from the set of all available paths
between them, and independently of the choice of paths for
other pairs.4 The paths are chosen once and held fixed. Note
that each server sends a total of 2KF probes per second on
average.
Remark. We shall later demonstrate (Section 3) that with
10 ≤ K ≤ 20 we can sample all the links (hence queues) in
any Clos (fat-tree) DCN; that is, a constant value of K suf-
fices. We shall also comment on F .
Handling Ethernet priorities. There are 8 priorities in Ether-
net, the dominant L2 technology in DCNs. For convenience,
in this paper we assume that the DCN uses only one priority,
although the verification in the 40 Gbps testbed was con-
ducted in a multi-priority setting. In order to handle multiple
priorities, we simply launch a probe mesh in each priority
and perform reconstruction per priority. The probes will use
the same transport protocol (TCP or UDP) as the traffic in the
given priority and encounter the same queuing delays as the
payload. Indeed, the 40 Gbps testbed also employs priority
flow control (IEEE 802.1Qbb), where packets in a priority
may be paused. Reconstruction works in this case as well.
Individual record. The individual record of a probe or a
data packet is captured at the transmitter network interface
card (NIC) and the receiver NIC. It consists of the 5-tuple
header information (source and destination addresses, source
and destination port numbers, protocol port number), the
transmit and receive timestamps at the corresponding NICs,
and the length of the packets.
Remark. We assume that the clocks of all the NICs are accu-
rately synchronized using techniques in [24], [31] or [33].
Note that, even though these techniques can synchronize
clocks up to a 10s of nanoseconds, it suffices for our purposes
that the clocks be synchronized to about 1 microsecond.

Figure 1: Reconstruction from Edge Timestamps
Output-queue assumption. Switches in DCNs can have
queues on both the ingress and egress line cards and packets
can queue at both places. However, switch implementations

4The paths of the probe mesh do not have to be chosen at random; in-
deed, it may sometimes be desirable to choose the path deliberately so as to
cover the DCN’s links more evenly or unevenly, depending on some objec-
tive. Further, probes from i to j can follow a different path in the DCN than
probes from j to i. Whatever the choice, the paths of the probe mesh must
cover all the links in the network uniformly, and cover all the “linearly in-
dependent paths” with an adequate number of probes passing through each
link per unit time so as to enable a good reconstruction of that link. Random
path selection is adequate for these purposes.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 551

Figure 2: The network in ns-3 simulation setup (NS)

employ a fabric speedup [16], ensuring that most queuing
takes place at the egress line cards. Throughout this paper
we assume that queuing takes place in the output queues of
switches, and measurements done in a real testbed in Sec-
tion 6.2 validate this assumption. Hence, each directed link
in the DCN has a queue associated with it; namely, the output
queue that drains into it. 5

2.1 What to reconstruct
Suppose we have a DCN with a total of Nq queues. Under
some traffic load, let Qi(t) be the queue length at time t and
Wi(t) be the waiting (or queuing) time of a packet arriving at
time t to the ith queue. With a single priority Wi(t)=Qi(t)/L,
where L is the line rate in Bytes/sec, so the waiting time and
queue size are related by a constant.6 Consider a preliminary
statement of the reconstruction problem:
Given the individual records of all the probe packets during
some time [0,T], obtain a reconstruction Q̂i(t) of Qi(t) so as
to minimize E

[
Qi(t)− Q̂i(t)

]2
for t ∈ [0,T].

ns-3 simulation (NS) setup. To gain an understanding of
what is involved in solving this problem, let us consider an
ns-3 simulation of a 10 Gpbs, 3-layer, 256-server network.
We shall reuse this simulation set up in the next section as
well; hence, we shall refer to it as the NS setup. This net-
work has 32 ToR switches (8 servers per rack), 32 spine layer
1 switches and 8 spine layer 2 switches, connected as shown
in Figure 2. All switches are output-queued and have 1MB
of buffering per queue. The DCN operates under an incast
traffic7 load of 40%. We have also used a “long flow” work-
load at 40% load, where one file is sent from a server to an-
other randomly chosen one, and the file sizes are uniformly
in [10MB, 1GB] with an average of 505MB.

5Note that the only directed links with which no queues need to be asso-
ciated are those connecting a NIC to a top-of-the-rack (ToR) switch. These
links don’t get oversubscribed.

6Note that the inference equations will be in terms of Wi(t), as in equa-
tion (3). The queue wait times in each priority come from the probes in
that priority. We’re looking at the queue lengths here rather than queue wait
times because the lengths vary directly with packet arrivals and departures.

7The incast traffic pattern is taken from DCTCP [6]. Each server main-
tains a certain level of load by requesting data simultaneously from a random
number (30% 1, 50% 2 and 20% 4) of other servers, referred as the “fanout”
of the request. The gap between adjacent requests are independent expo-
nentials with load-dependent rate. The file sizes are distributed according to
a heavy-tailed distribution in the range [10KB, 30MB] with an average file
size of 2.4MB. We have used incast workload in this paper because it cap-
tures some generic scenarios (long file transfers and short RPC-type traffic)
and causes congestion. In deployments we’ve used map-reduce-type batch
workloads and RDMA-type traffic.

(a) Queue sampled every 1µs (b) The 1ms average

Figure 3: Queue length in a 10Gbps network

Qi(t), measured every microsecond, is plotted in Figure
3a. (Note that packet enqueuing/dequeuing times on a 10G
link are close to 1 microsecond.) The 1 ms-averaged version
of Qi(t), Q̄i(t), in Figure 3b) is obtained by averaging the
1000 consecutive values of Qi(t) in each millisecond. The
two graphs are essentially identical; the Qi(t) is a noisy ver-
sion of Q̄i(t). We shall next show that there is a straight-
forward relationship between Qi(t) and Q̄i(t); indeed, Q̄i(t)
has almost all of the signal power in Qi(t). In Section 3 we
present a method for reconstructing Q̄i(t) using the LASSO
algorithm.
Averaging: empirical evidence. Define the autocorrelation
function of Qi(t) as follows:

RQ(τ) = E [Qi(t + τ)Qi(t)] , for τ ≥ 0. (1)
The autocorrelation function captures the rate of decay of
correlations in Qi(t). The power spectral density (PSD) of
Qi(t) equals8

SQ(f)=
∞

∑
τ=−∞

RQ(τ)e−i2πτ f , for | f τ|< 1/2, or | f |< 0.5 MHz.

(2)
The PSD shows the amount of power in Qi(t) at different
frequencies and is symmetric for positive and negative values
of f in the range over which it is defined (−0.5 MHz < f <
0.5 MHz in this case).

Plotting the PSD as a function of the frequency in Hz for
0 < f ≤ 0.5 MHz, we get the yellow curve in Figure 4a. By
computing the PSD similarly for Q̄i(t) and plotting it, we get
the blue curve in Figure 4a. The blue curve exactly coincides
with the yellow for −500 Hz < f < 500 Hz, which means
that the power at those frequencies in both Qi(t) and Q̄i(t)
are identical. Further, Q̄i(t) has zero power in frequencies
higher than 500 Hz; that is, averaging only removes the high
frequency “noise“ and preserves most of the power, 97.5%
to be precise, of the microsecond-level signal Qi(t).
Remark. It is worth noting that the percentage of preserved
signal power depends on the strength of the signal itself. The
97.5% number is obtained at 40% load with 1 MB switch
buffers. Figure 4b shows the PSD measured with different
network load and switch buffer size combinations. As can
be seen, although the amount of power preserved after aver-
aging (the low frequency signal power) varies, the power of
the removed high frequency component remains constant: at
(12KB)2 over all frequencies higher than 500 Hz.9

8Note that τ represents a 1 us interval; hence 1/τ is 1 MHz.
9At the moment we do not have an explanation about this empirical ob-

552 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) In a network with 1MB
buffer, 40% incast load

(b) In different networks
and with incast and long
flows workload

Figure 4: PSD of queue depths in 10Gbps networks

As empirical evidence from a real deployment, Figure 14
compares the PSD of the queue size process measured us-
ing NetFPGA in a 1 Gbps testbed with shallow-buffered
switches. As discussed below, the averaging interval is a
function of only the line rate and for a 1 Gbps line it is 10
ms. In Figure 14 we again see that at 40% load the PSD of
the averaged queue process coincides with the PSD of the
queue size process. Again the power of the portion that is
filtered out, the “noise”, is (12KB)2.
Averaging: signal processing explanation. Q̄i(t) is ob-
tained precisely by passing Qi(t) through a low-pass filter
with the pass band equal to [−500 Hz, 500 Hz] [41]. This
is easy to understand from Figure 5: Q̄i(t) is obtained by (i)
computing a running average of Qi(t) over a 1 ms window,
and then (ii) down sampling the running average to 1 sample
per ms. The frequency domain transfer functions (H(f) and
X(f)) corresponding to (i) and (ii) are shown in the same fig-
ure. Essentially, (i) and (ii) precisely amount to removing the
frequency components in Qi(t) over 500 Hz and preserving
the rest.

Figure 5: The millisecond-averaging process in time and fre-
quency domains

Upshot. As a result of the above discussion, we shall recon-
struct the averaged queue process Q̄i(t) for each i rather than
the packet-time-sampled queue process Qi(t). It remains to
specify the “reconstruction interval”; we proceed to do this
next.
Determining the reconstruction interval. The proper re-
construction interval for a given DCN turns to depend only
on the highest line rate in the network, even when there are

servation that the removed noise power equals (12KB)2. In the rest of the
paper we use this (12KB)2 to define the acceptable signal power loss caused
by averaging and determine the averaging interval so as to achieve no more
than this loss.

(a) The fraction of queue
size power preserved

(b) The “noise” power or the
power “filtered-out”

Figure 6: Power of queue size and noise processes at differ-
ent reconstruction intervals

mixed link speeds. Intuitively, the faster the link speeds, the
quicker the queues vary (or the higher the noise frequency),
and the smaller is the reconstruction interval.

Figure 6a shows the percentage of power preserved by us-
ing different reconstruction intervals in networks with differ-
ent link speeds at 40% load. As shown, to preserve more than
97.5% of the power, the reconstruction interval is 10 ms for
1Gbps links, 1 ms for 10 Gbps links and 250 µs for 40Gbps
links. In other words, the reconstruction interval is inversely
proportional to the maximum link speed of the network. Fig-
ure 6b shows the square root of the power filtered-out at dif-
ferent reconstruction intervals. Remarkably, as seen in the
figure, this value is a constant at 12KB at all link speeds
when the reconstruction interval equals 10 ms, 1 ms and 0.25
ms for 1G, 10G and 40G links, respectively. In other words,
the “noise” power is (12KB)2.

In summary, we shall aim to reconstruct the average queu-
ing times for the all the queues in the switches for each re-
construction interval, which is determined by the maximum
link speed of the network. The reconstructed average queues
removes the high frequency noise and preserves most of the
relevant information in the original queue signal.

3 The reconstruction algorithm

We now describe SIMON; specifically, we describe
(1) a system that uses the individual records of probes to re-
construct the averaged queue or wait time processes using
LASSO, and
(2) uses the above and the individual records of data pack-
ets to determine link utilizations as well as queue and link
compositions.
Preliminaries. Given a DCN, the first steps are to set up a
probe mesh and to choose a reconstruction interval, I. Con-
sider all the probes sent by all the servers in the reconstruc-
tion interval I (recall that we assume the clocks are all ac-
curately synchronized). Let t p

i , i = 1, ...,N p be the ordered
sequence of transmit timestamps of all the probes (regardless
of source) sent in interval I, where N p is the total number of
probes transmitted in I. Let rp

i be the receive timestamp of
the probe transmitted at t p

i . Note that some rp
i may fall out-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 553

side I; this is fine.10 Set Dp
i = rp

i −t p
i to be the one way delay

of probe i. Let td
j ,r

d
j ,D

d
j and Nd be the corresponding quan-

tities for data packets transmitted in interval I. Denote by Dp

and Dd the N p× 1 and Nd × 1 the vectors of one way de-
lays of all the probe and data packets transmitted in interval
I, respectively.

By the output-queue assumption, preceding each link in
the network we imagine there is a queue in each direction of
the link. Recall that there are a total of Nq queues (counting
both directions at each link). Let qk(I) denote the average
queue size process at queue numbered i in interval I. Since
we’ve fixed I, we abbreviate qk(I) to qk. Similarly let wk be
the waiting time of a packet in queue k in interval I (recall
wk = qk/L, where L is the line rate in Bytes/sec). Let Q and
W denote the Nq×1 vectors of queue sizes and wait times in
interval I, respectively.

Recall that we have assumed that the path taken by a probe
or a data packet is knowable from its header information,
hence each probe or data packet visits a particular sequence
of queues as it traverses the DCN. This gives rise to the fol-
lowing linear equations:[

Dd

Dp

]
=

[
Ad

Ap

]
W +

[
Zd

Zp

]
(3)

where Ad and Ap are, respectively, the Nd × Nq and the
N p×Nq 0-1-valued incidence matrices, identifying the set
of queues visited by each probe and data packet; and Zd and
Zp model noise due to various factors such as (i) faulty NIC
timestamps, (ii) differences in propagation times on cables
of different lengths, (iii) variations in the switching times at
different switches, etc. The queuing times are typically at
least a few microseconds and typically they are 10s or 100s
of microseconds. By comparison, the noise is in the order of
10–100 nanoseconds.

Setting

D =

[
Dd

Dp

]
, A =

[
Ad

Ap

]
, and Z =

[
Zd

Zp

]
,

equation (3) becomes
D = AW +Z. (4)

The Reconstruction. Given the vector (Dd ,Dq), we are in-
terested in getting an estimate, Ŵ , of W . A natural criterion
for the goodness of the estimate would be to minimize the
mean squared error, E

[
(W −Ŵ)2

]
, where the expectation is

over the noise. Typically, in a fat-tree network the number of
queues with a positive delay is quite small even under high
load; that is, W is typically a sparse vector (see [9]; we have
also observed this in all our real-world experiments).

10Of course, probes may be dropped. We choose to ignore such probes
and find that we obtain very good reconstruction results with the remaining
probes, since these latter probes accurately capture large queue sizes and
wait times are accurately captured from the other probes. Moreover, since
probes are only 64 Bytes, they’re much less likely to be dropped than data
packets which are typically in the 500–1500 Bytes range. However, dropped
probes convey valuable information about congestion and it is worthwhile
to treat them specially. Due to a lack of space, we don’t explore this aspect
further in this paper.

It is not hard to show that any DCN with a multi-stage
Clos topology interconnecting the servers has an adjacency
matrix whose rank is less than the number of links, hence
queues. This follows as a generalization of the following
lemma, whose proof is simple and is omitted.

Lemma 1. Consider all equations in the m + n variables
A1, ...,Am and B1, ...,Bn of the type Ai +B j. This system of
equations has a maximum rank equal to m+n−1.

The previous discussion shows that the rank of the matrix
A is less than Nq, hence equation (4) is underdetermined.
The statistical procedure LASSO [53] is naturally suited for
our problem. Thus, we seek

Ŵ = argmin
W
‖D−AW‖2

2 +α‖W‖1, (5)

where α > 0 is a scalar multiplying the regularization term
‖ · ‖p is the standard Lp norm. We motivate the eventual
solution by proceeding through the following simpler and
instructive cases.
Case 1: Consider only the data packet timestamps. Dis-
regard the probe packets and consider the equation Dd =
AdW + Zd . We generate the data using the NS setup de-
scribed in Section 2.1.

We solve
Ŵ = argmin

W
‖Dd−AdW‖2

2 +α‖W‖1

and compare the solution with the actual value of W (ground
truth). The comparison is shown in Figures 7 and 8 below.
The solid blue line is the ground truth and the red filling is
the LASSO solution. Figure 7 shows a fairly accurate re-
construction at one queue. However, Figure 8 shows the
LASSO algorithm has misattributed the queue sizes amongst
the 3 queues shown in the figure. Essentially, what is going
on is that the equations provided by the data packets yield
an underdetermined linear system (not enough equations for
the variables). Therefore, not all queues are correctly recon-
structed.

Figure 7: Reconstruction with data packets: good case

Figure 8: Reconstruction with data packets: bad case

Case 2: Consider only the probe packet timestamps. This
time disregard data packets and consider the noisy linear sys-

554 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tem
Dp = ApW +Zp. (6)

We need to solve the inverse problem:
Ŵ = argmin

W
‖Dp−ApW‖2

2 +α‖W‖1.

The crucial difference between this case and Case 1 is that in
Case 1 we cannot choose Ad but we can certainly choose Ap.
We will say more about how to choose Ap in Section 3.1.
For now, suppose each server probes to 10 (K = 10) other
servers; thus, in every reconstruction interval, an average of
2×2560=5120 probes are sent.

As seen in Figure 9, the algorithm reconstructs all the
queues very precisely with probe packet data. Because the
probe mesh covers all the links fairly uniformly, the system
of linear equations along with the sparsity constraint (cap-
tured in the L1 regularizing term, ‖W‖1) determine the cor-
rect solution. Statistically, when compared with the ground
truth, the algorithm achieves a root-mean-square error across
all the queues of 5.2KB; that is, RMS(Q̂−Q) = 5.2KB.11

Figure 9: Network reconstruction with probe packets

3.1 Specifying the parameters of the probe
mesh

As the previous reconstruction scenario has revealed, using
a random graph for the probe mesh with K = 10 produces
good reconstructions. A natural question is what is the right
value of K to get a good reconstruction quality and does this
depend on the DCN topology. We proceed by refining our
definition of the probe mesh introduced earlier.
Definition: Probe graph. Let G = (V,E) denote a graph
with V equal to the servers in a given DCN, and (i→ j) ∈ E
if i probes j. G is called the probe graph.
Remark. Note that the above definition does not include the
topology of the underlying DCN.
Definition: DCN probe mesh. Given the probe graph G =
(V,E) and a DCN, the DCN probe mesh, GD, is the graph
obtained by assigning DCN paths to probing edges (i, j)∈E.
Note that the adjacency or incidence matrix of GD is exactly
equal to Ap defined by equation (3).
Observation 1. In order to reconstruct the waiting time or
queue size of any queue in the DCN, a necessary condition is
that queue is present on some path of GD or, equally, that the
column in Ap corresponding to that queue is not identically

11Note that we use the standard definition of RMS; i.e., RMS(Q) = ‖Q‖2.
We choose to show the reconstruction plots and report the errors for the
queue size vector Q rather than for the delay vector W since we have found
that the queue sizes are usually in the order of a few 100 KBs regardless of
the line rate whereas the waiting times vary with the line rate.

zero. While this condition is necessary, it is not sufficient
since it doesn’t guarantee solvability of equation (6).
Observation 2. The maximal condition for the solvability of
equation (6) is that the rank of Ap is at its maximum. Then
the LASSO algorithm along with the sparsity constraint en-
forced by the L1 regularizing term will produce a unique so-
lution.

In order to understand conditions on K which give us an
Ap with full rank, we simulate a variety of different DCNs
and vary K to see how that affects the RMS error of queue
size vector, Q. Figure 10 shows that the reconstruction accu-
racy greatly improves with K initially and then it tapers off.
More importantly, the figure suggests that this relationship
holds for several different network topologies and types of
queue (the layer in the DCN the queue is at).

Clearly, even though higher values of K give better re-
construction quality, there is a penalty for setting K large:
servers need to issue more probes, there is the overhead of
timestamping, data collection and storage, and there is the ef-
fort of reconstruction. Quantitatively, a value of K ∈ [10,20]
seems to achieve the best reconstruction quality while repre-
senting a small enough effort.

Figure 10: Reconstruction quality vs K

We provide an intuitive explanation of why a constant
value of K ∈ [10,20] is sufficient to reconstruct the queues
regardless of the size of the network, and give a probabilis-
tic argument on the queue coverage probability in the ap-
pendix. As the size of network grows, the number of servers
grows, hence the total number of probes will grow (for a
fixed K), resulting in a constant sampling rate of each queue.
To quantify the foregoing under a “full bisection bandwidth
assumption” on the DCN, suppose we have N servers in the
DCN. If we cut the network into two sets of servers, S1
and S2, respectively with N1 and N2 servers (WLOG we as-
sume N1 ≤ N2), then the total number of links crossing the
boundary of the two sections is N1 (because of full bisec-
tion bandwidth). Since each server probes K servers chosen
at random, the expected number of probes and echoes pass-
ing these N1 links from S1 to S2 and from S2 to S1 each
equal 2N1N2K

N . Thus, every queue on the boundary is sam-
pled on average by 2N2K

N ≥ K probes. Therefore, as long as
K ≥ 10, we can guarantee each queue is sampled by at least
10 probes.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 555

A final observation about Figure 10: the RMSE appears
to drop like 1√

K
. Under the assumption that each probe only

visits one congested queue (recall that DCN congestion is
sparse), this can be explained as follows. If K probes pass
through a queue with a reconstruction-interval-average size
of Q and make independent noisy observations with vari-
ance σ2 (where σ2 ≈ (12KB)2), then the RMSE roughly
equals σ/

√
K, which for σ = 12KB and K = 10 approxi-

mately equals 4KB, as seen in Figure 10.

3.2 Link utilization and queue/link composi-
tions

We’re now interested in solving for all the performance mea-
sures, not just queue sizes or wait times. In particular, probes
can only detect positive wait times; however, zero wait times
don’t imply absence of traffic! The link utilization may be
too small to cause queueing delays. In order to determine
link utilizations and the composition of queues and links
(i.e., breaking down queue and link occupancies in a recon-
struction interval according to flow ids), we have to use both
the probes and data packets. We explain how to do this algo-
rithmically, following the steps below.
Step 1. Solve Case 2 and obtain the (reconstruction in-
terval average) queuing sizes and wait times, (Q,W) =
(qk,wk),1≤ k ≤ Nq.
Step 2. Use W to determine the position of a probe or data
packet at each instant from transmission to reception. As
an example, consider probe i, transmitted at time t p

i and re-
ceived at time rp

i . Suppose this probe visited queues with
delays wk1 ,wk2 , ...,wkL . Note that rp

i − t p
i ≈ wk1 +wk2 + ...+

wkL +P, where P represents the total time probe i spent on all
the links on the path. At time t ∈ (t p

i +wk1 , t
p
i +wk1 +wk2) we

assert that probe i is either in the second queue on its path or
on the link connecting the first and second queues depending
on how much larger than t p

i +wk1 is t. We can also similarly
determine the position of each data packet. Note that extra
care must be taken to account for the time spent by a data
packet in a queue or on a link since its length can be much
larger than that of the probe packets.

In this manner we can decompose the contents of a queue
into traffic segments of interest and specified by headers. We
can similarly also obtain the link utilizations and link com-
positions.

To see how well the above procedure works, we again look
at the NS simulation setup from Section 2.1. Figure 11 shows
some examples of queue and link utilization compositions,
comparing them to the ground truth taken from ns-3. There
are three sets of plots, left, middle and right. Each set has two
plots: a queue size plot on top and a link utilization plot on
the bottom. The figure on the left shows the utilization of the
link connecting L2-switch 8 to L3-switch 0 on the bottom
and the size of the queue attached to this link on top. We
see the reconstructed queue occupancies of the blue, yellow

Figure 11: Reconstructing queue size and link utilization
compositions

and green packets shown by the filling and the corresponding
ground truth shown by the black lines. Here the blue, yellow
and green packets are destined for servers in racks 0-7, 16-23
and 24-31, respectively. It is worth noting that when the link
utilization nears 100%, the size of the corresponding queue
shoots up; otherwise, when the link utilization is well below
100%, there is no queue buildup. The other two sets of plots
show other links.

As can be seen, the SIMON algorithm does an excellent job
of determining the queue size and link utilization composi-
tions. Statistically, the reconstruction precisions (RMSE) of
the queue size and link utilization composition for each class
of traffic are 4.14KB and 1.01% (i.e. 0.101 Gbps in 10Gbps
net), respectively.

Method RMSE of composition Storage Run
Queue Link util space time12

Per packet 4.14KB 1.01% 2.84MB 4.00ms
100us count 4.12KB 0.98% 172.3KB 0.277ms
250us count 4.08KB 0.94% 98.4KB 0.173ms
500us count 4.19KB 1.01% 69.4KB 0.142ms
1ms count 4.71KB 1.81% 49.5KB 0.107ms

Table 1: Use byte counts to decompose queue and link uti-
lization. Space and time are for 1 reconstruction interval.

The effort—space and computation time—needed for the
link utilization and queue/link compositions can be vastly
simplified if we count the number of Bytes sent by each 5-
tuple in Step 2 of the algorithm rather than take the transmit
timestamps for each data packet. We increase the interval
over which the byte counts are taken from 100 us to 1 ms
while tracking the reconstruction quality. The results are
shown in Table 1. As can be seen in the table, using byte
counts over a 500us interval, the space consumption is re-
duced by 41x and the run time is reduced by 28x with almost
no change to the reconstruction quality.

12C++ single-thread program on an Intel Core i7 processor

556 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 Speeding up the implementation of SIMON

The LASSO algorithm optimizes a convex cost function over
a large number of variables using gradient descent. Because
it is iterative, for large problem instances, LASSO can take
time. Even though reconstruction can be done offline and
still be quite valuable, it is interesting to ask if reconstruction
can be done in near-real time and, if so, how this would be
possible. This would enable rapidly detecting bottlenecks
and anomalies, raising alerts, as well as enabling sensitive
A/B tests in near-real time.
We explore two ideas to accelerate SIMON in large networks.
Section 4.1 decomposes the reconstruction problem to a hi-
erarchy of subnets that can be solved individually and in par-
allel. Section 4.2 uses neural networks to function approx-
imate LASSO and obtain significant speed improvements.
These two methods allow us to scale SIMON to large data
centers with tens of thousands of servers.

4.1 Hierarchical reconstruction

The fat-tree has become the de facto data center network-
ing topology [5, 47]. The hierarchical nature of the fat-
tree topology allows us to propose an algorithm that groups
queues in layers and perform reconstruction from lower lay-
ers to upper layers. The reconstruction for each layer may
contain a number of sub-reconstructions that can run in
parrallel. After queues at lower network layers are recon-
structed, their sizes will be used to reconstruct higher-level
queues.
As an example, we illustrate the hierarchical reconstruction
algorithm using the topology in Figure 2. For notational sim-
plicity, we use Li blocks to denote the forest after truncating
the tree at layer i; that is, the connected components of the
subgraph containing only switches of layer i or lower, and
the servers. In Figure 2, there are 16 L1 blocks, 4 L2 blocks
and 1 L3 block. We also define Li probes to be the probes
whose source and destination are within the same Li block.
The procedure is as follows:
1. We extract the equations given by the L1 probes. Each L1
block (rack) provides a system of linear equations, so there
will be in total 16 of them. By solving the 16 linear systems,
we reconstruct all queues in the L1 blocks (downlink of ToR
switches).
2. We then reconstruct queues in the L2 block—the ToR
uplink queues and the L2 switch downlink queues—using
L2 probes. Each L2 probe passes through 3 queues: one ToR
uplink, one L2 downlink and one ToR downlink. Since the
ToR downlinks have been solved in the previous step, each
L2 probe now provides an linear equation of the other two
remaining queues. There are four linear systems for every
L2 block. The tier 2 queues can then be reconstructed by
solving the 4 linear systems.
3. Lastly, we reconstruct the L3 queues with L3 probes,

where we repeat the previous step. After solving L3 queues,
all queues in the network would have been reconstructed.

#servers #network LASSO Hierarchical LASSO
layers RMSE Run Time RMSE Run Time

256 3 5.22KB 37.34ms 9.47KB 0.59ms
2048 4 5.76KB 532.60ms 10.3KB 1.25ms
4096 4 5.53KB 1147.22ms 10.69KB 1.75ms

Table 2: RMSE and Run Time Comparison
Performance. Table 2 show that LASSO can be sped up by
several orders of magnitude, especially as the network size
increases with a modest sacrifice of accuracy.

4.2 Accelerating reconstruction with neural
networks

In this section we explore using the function approximation
[29] capability of multi-layered neural networks to speed up
LASSO and rapidly estimate the vector of queue sizes, Q̂,
from the vector of end-to-end probe delays, D. The goal is to
function-approximate LASSO and learn the underlying func-
tion mapping D to Q̂ from the training examples.13 Since the
neural network only involves simple arithmetic operations
which can be implemented at high speed on modern hard-
wares such as Graphics Processing Units (GPUs) and Tensor
Processing Units (TPUs), we can potentially get tremendous
speedups.
We take 60 seconds of data at 1 ms intervals from the NS
scenario. The data are 60,000 (D,Q) pairs where each D is a
5120-dimensional vector and each Q is a 1280-dimensional
vector (to be more specific, we consider Dp and not Dd ; for
ease of notation, we shall denote Dp as D). We also use
LASSO’s inferred queue sizes, Q̂, following the reconstruc-
tion procedure in Section 3 and use 60,000 (D, Q̂) pairs to
train the neural network. This allows us to compare two
training methods: one with the ground truth from ns-3 and
the other is the output of LASSO.

Figure 12: Neural network for network reconstruction

We use these two sets of data to train two instances of a
ReLU (Rectified Linear Unit [39]) neural network with just 1
hidden layer, as shown in Figure 12. At the end of the train-
ing period, each neural network has “learned” the matrices

13Note that LASSO is a general statistical procedure; the fact that it may
be function-approximable in this context is not an indication that it would
work in other cases. Our estimation problem is special: we’re solving a
system of noisy linear equations where the noise is additive. It may be
harder to function approximate LASSO in nonlinear systems and/or with
multiplicative noise.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 557

L and M and the bias vectors b and l from their respective
input-output pairs. We then test each neural network with
new values of D to see how well the corresponding output
agrees with the ground truth Q. The results are shown in Ta-
ble 3. As can be seen, both neural networks perform very
well when compared to LASSO; indeed, the neural network
trained with the ground truth does better than LASSO.

RMSE (Bytes) LASSO
Neural Net

(trained w. GT)
Neural Net

(trained w. LASSO)

256 server 5.22KB 4.15KB 5.34KB
2048 server, 4 stage 5.76KB 4.03KB 7.53KB
4096 server, 4 stage 5.53KB 3.95KB 7.08KB

Table 3: RMSE Comparison
Table 4 compares the speed of the neural networks with that
of LASSO. The profiling of LASSO was run with Python
Scikit-learn sparse LASSO package, on a server with 6-core
Intel I7 processor, and the neural network profiling are done
on an Nvidia GTX1080 GPU using Tensorflow14. The neu-
ral network is three magnitudes faster than LASSO during
inference time due to the algebraic-simplicity of its forward
pass and speed-up with hardware accelerators.

Run Time
LASSO

(single core)
LASSO
(6-core) Neural Net

256 server 37.34ms 6.22ms 2.75us
2048 server, 4 stage 532.60ms 96.14ms 76.24us
4096 server, 4 stage 1147.22ms 208.25ms 235.97us

Table 4: Speed Comparison
There are two major points to make about using neural net-
works for data center measurement.
The first is to note that whereas LASSO requires the adja-
cency matrix Aq, the neural networks don’t require it. This
point and the abundance of operational data in modern data
centers strongly suggest that neural networks can play a ma-
jor role as a lightweight, very high speed system for detecting
anomalies and even accurately estimating key performance
measures.
For the second, consider the scenario where the network
topology changes or the ECMP hash functions change (e.g.,
due to link failures) in the network. In modern DCNs that
support software-defined networking (SDN), such changes
can be known when the SDN controller receives correspond-
ing events. In these cases, the D, Q relationship would
change, which could make the already trained neural net-
work obsolete. Thus, it may be required to re-train the neural
network. However, naively employing neural networks for
large data centers implies very long re-training time. Tak-
ing the 4096-server case as an example, even though train-
ing the neural network only requires 288 seconds worth of
timestamp data, it takes 8 hours for the weights in the neural
network to converge.

14We used the best off-the-shelf implementation we can find for both
LASSO and NN. Our effort to speed up LASSO with GPUs using the SHOT-
GUN algorithm did not result in much gain. LASSO iteratively optimizes
a convex cost function using gradient descent, a task better-suited for CPUs
than for GPUs.

In practice, we would use neural networks in combination
with hierarchical reconstruction. This would not only speed
up retraining (because subnets can be retrained in parallel),
but it would also make the whole process more robust to fail-
ures (since only subnets affected by failure need to be re-
trained). For example, retraining a 256-server subnet only
requires ten seconds worth of (D, Q̂) pairs and converges in
2.5 minutes on a Nvidia GTX1080 GPU.

5 Implementation

We implement the LASSO version15 of SIMON for Linux.
This implementation has three components: the prober, the
sensor and the reconstruction engine. The prober is imple-
mented as a user space program. There is one prober sitting
on each of the servers in the network. Each of the probers
repeatedly probes K other random probers and echoes re-
ceived probes. The sensor is implemented in the NIC driver
and is in charge of collecting hardware transmit and receive
timestamps for both data packets and probes. Then, upon re-
construction requests, the sensors will batch the time stamp
data for the requested time range and ship the data to the
reconstruction engine.
The reconstruction engine is a Spark Streaming [48] cluster.
It takes timestamp data over a given time range as input and
outputs the reconstructed queue lengths, link utilizations and
their per-flow break downs for each reconstruction interval in
that time range. The reconstruction engine exploits the fact
that the data processing for different reconstruction intervals
are independent. Upon the arrival of the timestamp data at
the reconstruction engine, the data is originally sharded by
server IDs since individual servers collected the data. Then
the engine will re-shard the data into reconstruction intervals,
and assign each interval to one of the servers in the cluster.
Finally, after the reconstruction for each interval is done, the
results are stitched together and returned to the user.

6 Deployment and Validation

This section uses three very different testbeds to verify that
SIMON works with a wide variety of network configurations
and under real-world complexities. The testbeds have link
speeds ranging from 1 Gbps to 40 Gbps, contain 2 to 5 stages
of switching fabric, and employ switches from different ven-
dors and models. Furthermore, we discuss some pragmatic
experience gained from these deployments, namely, how to
still output meaningful reconstruction results with only par-
tial probing coverage of the network. We use NetFPGAs to
verify the accuracy of SIMON in the 1 Gbps testbed. Finally,
we use cross-validation to verify and evaluate the correct-
ness of the reconstruction results in the absence of ground

15Hierarchical reconstruction and neural networks are planned to be im-
plemented for production environments in the future.

558 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

truth data.
We first specify the configuration of the three testbeds.
Testbed T-40G-3L. This is a 3-stage Clos network, all links
are 40Gbps. It has 20 racks with roughly 12 servers per rack.
There are 32 switches at both spine layers.
Testbed T-10G-40G-5L. This is a 5-stage Clos network con-
taining ∼500 racks, each of which has ∼24 servers. Each
server is connected to a ToR switch with two 10G aggre-
gated links. The rest of the links are all 40G. We had access
to 12 out of the 500 racks.
Testbed T-1G-2L. This is a 2-stage Clos network with all 1
Gbps links. It consists of 8 racks, each rack has 16 servers.
There are 8 spine switches. The switches in the testbed are
Cisco 2960s and Cisco 3560s.

6.1 Deployment experience
SIMON makes minimal assumptions about the network and
only relies on data sensed at the NICs, hence its deployment
has generally been smooth. SIMON needs two things: (i)
hardware timestamping-capable NICs and (ii) the ability to
know the paths taken by the packets. For (i), almost all cur-
rent generation 10G or above NICs can timestamp all ingress
and egress packets. In T-1G-2L, even the on-board 1G NICs
support it. For (ii), since per-flow ECMP is the standard
load-balancing scheme used by the industry, knowing the
paths taken by the packets is not difficult. In T-40G-3L and
T-10G-40G-5L, we ran traceroute [36] periodically to learn
the paths taken by any targeted flows. In T-1G-2L, since we
use 5-tuple-based source routing, we automatically know the
paths taken by any packets basing on their 5-tuples.
Despite the overall smoothness of the deployments, one case
that did require some extra care was when two or more
queues cannot be further disambiguated by the probes. For
example, in our deployment in T-10G-40G-5L, since we only
had access to a small portion of the racks in a big network,
our probes can only reach a subset of all the queues in the
network. Within these reachable queues, some of them are
always bundled together as seen by the probes. That is, a
probe either traverses all of these queues or none of them. In
this case, we treat the sum of these queues as a single vir-
tual queue, and treat this virtual queue as a single variable in
Equation 3.

6.2 Validating accuracy with NetFPGAs
We use NetFPGAs to validate the precision of SIMON in T-
1G-2L. Figure 13 shows the setup. We configure the four
ports in a NetFPGA, P0, P1, P2, P3, as two pass-through
timestampers: P0 and P1 are connected back-to-back via the
FPGA, and packets passing through these two ports will be
timestamped according to a local counter in the FPGA; P2
and P3 are similar except the timestamp is inserted into the
packet at a different offset. We connect the two timestam-

Figure 13: Setup of reconstruction validation in T-1G-2L. F0
and F1 are two NetFPGAs.

(a) PSD (b) Filtered-out power
Figure 14: PSD of queues with NetFPGA ground truth at
40% load

pers to two different ports of the same switch, S0 and S1.
For all packets between S0 and S1, we will know their over-
all switching and queueing delays in the switch from the
NetFPGA timestamps. After subtracting the switching de-
lay which can be measured when the network is idle, the
remaining packet queueing delays can serve as ground truth
for queueing delays of the output queues behind S0 and S1.
An incast load (same as in Section 3) is applied with loads
between ToR switches and spine switches ranging from 10%
to 80%. Each server probes 20 other servers (K = 20). The
10 ms average queue depths are reconstructed using probe
timestamps with LASSO. Separately, we send extra probes
through the queues enclosed by NetFPGAs to collect the
ground truth waiting time. The reconstruction results are
compared to the ground truth.
Figure 14 shows the PSDs of the observed queueing pro-
cesses. It shows that the power of the filtered-out high fre-
quency component is (12KB)2, which matches the results in
Section 3! Figure 15 shows the reconstruction results of SI-
MON verified against ground truth. We can see that SIMON
accurately reconstructs the queue depths for different levels
of switches at various network loads.

6.3 Cross-validation
It was not possible to get accurate ground truth in the testbeds
T-40G-3L and T-10G-40G-5L. Most switches only support
reading counter samples a few tens of times per second, and
these samples are not taken frequently enough and cannot be
otherwise used to get statistical quantities like millisecond-
average queue sizes. We also did not have physical access to
these data centers, hence NetFPGA-based evaluations were
not possible.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 559

(a) Recon at 40% load (b) Errors at different loads
Figure 15: Reconstruction compared with NetFPGA ground
truth

We proceed by using cross-validation to verify the accuracy
of reconstruction. Consider two sets of probes, blue probes
and red probes. No blue probing pair of servers is common to
a red probing pair, nor is any end-to-end DCN path common
to the blue and red probes: the two sets of probes are com-
pletely non-overlapping. Let the delay vectors and the inci-
dence matrices for the blue and red probes be Dblue, Dred ,
Ablue and Ared , respectively. If, using the blue probes, we
can get a reconstruction of the queueing delays Ŵblue, and
use this to accurately “predict“ the delays of the red probes
as D̂red = AredŴblue, then we can get a validation of the ac-
curacy of our reconstruction.

Figure 16: Blue red validation in simulations

Here we present a variant of the above method: instead
of testing the agreement between D̂red and Dred , we test
the agreement between Q̂blue and the reconstruction from
red probes, Q̂red . We use this method because it is bet-
ter for presentation (we get to plot the queue depths) and
it helps bound the quality of the reconstruction: Denote the
reconstruction error of the blue and red probes as Nblue =
Q̂blue−Q and Nred = Q̂red−Q respectively. Assuming Nblue
and Nred have zero mean and are independent, we have
E
[
(Q̂blue− Q̂red)

2
]
= E

[
N2

blue

]
+E

[
N2

red

]
, which means the

difference between the two reconstructions is bigger than the
error of either reconstruction. Figure 16 illustrates this em-
pirically with ns-3 simulations. As can be seen, at different
queue sampling rates (probing rates), the error between the
reconstructions obtained from the blue and red probes upper
bonds their respective reconstruction errors (with respect to
the ground truth).
This verification was performed on all three testbeds; we
consider T-40G-3L. Each server in T-40G-3L blue probes to
10 random destination servers, and sends red probes to 10

Figure 17: Blue-red validation examples in T-40G-3L

other random destination servers. Since the links are all 40G,
the reconstruction interval is 250µs. Figure 17 shows the re-
construction results at two different queues during a 100ms
interval. Each sub-figure shows the blue-red comparison at
one queue, with the upper half showing the blue reconstruc-
tion and the lower half showing the red probe one. There
is excellent agreement between the blue and red reconstruc-
tions.

6.4 Example use cases of SIMON.

SIMON gives network administrators and application devel-
opers detailed visibility into the state and the dynamic evo-
lution of the network. Thus, SIMON has many use cases in
network regression testing, A/B testing, anomaly detection
and bottleneck localization. We share a few of our experi-
ences.
For the scenario in Figure 17, the normal maximum delay
in a single queue is around 500µs in T-40G-3L. However,
during an experiment, SIMON showed that the queueing de-
lays in T-40G-3L suddenly increased to 5 to 10 milliseconds
(shown in Figure 18), which is improbable in a 40G network
as this implies very large buffers. This puzzling behavior
was quickly resolved by observing the delays rose vertically
in Figure 18 and that no packets were dropped. The only
explanation is that the switches were configured to strict pri-
ority scheduling and our traffic was blocked by some higher
priority traffic. This turned out to be the case. Thus, SIMON
not only surfaced and explained the anomaly in the network,
but also helped understand the precise way strict priority af-
fects low-priority traffic.

Figure 18: Reconstruction under strict priority packet
scheduling in T-40G-3L

Another case: In T-1G-2L, SIMON discovered that one of
the 256 1 Gbps ports in the testbed was mistakenly config-
ured to 100 Mbps—a fact that is hard to determine without a

560 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

detailed link utilization plot! Moreover, in the same testbed,
SIMON found that one application’s traffic was frequently
causing other applications’ TCP flows to timeout. Many of
these uses cases are beyond the reach of traditional network
monitoring tools. We believe the visibility provided by SI-
MON can greatly increase the ability to understand and effi-
ciently utilize the network.

7 Literature Survey

Switch-based methods. There are three main threads: (a)
Obtain summaries and sketches of large, high-rate flows
(called “heavy hitters”) as these are easy to identify and
account for most of the bandwidth consumption and queue
backlogs [23, 43, 35, 15]. (b) Capture detailed counts of all
packets and all flows; for example, [46, 45] uses a hybrid
SRAM-DRAM memory architecture and [34] uses Counter-
Braids to “compress while counting”. These methods are
harder to implement compared to those in (a) and entail
offline processing to obtain the exact counts. (c) In-band
network telemetry (INT) [58, 30, 32] uses switches to ap-
pend telemetry data to packet headers as they pass through.
The “postcards” approach [28] gathers telemetry data for all
packets and sends it together with packet headers to servers.
This approach takes advantage of the flexibility in P4 pro-
grammable switches and the storage and computation re-
sources in servers, and is the focus of much current research.
Edge-based methods. Trumpet [38] uses flow event triggers
to detect flow-level traffic spikes and congestion; for every
packet dropped, 007 [8] attempts to identify the link respon-
sible for the drop knowing the path taken by the packet (from
traceroute); Pingmesh [27] uses RTT measurements of TCP
probes to infer end-to-end latency distributions between any
pair of hosts, including “packet black holes”; PathDump [51]
uses switches to tag packets belonging to flows that satisfy a
certain criterion and processes and stores the data at the edge;
and SwitchPointer [52] goes further: it uses switches to store
pointers to telemetry data relevant to that switch but held
in end-hosts. PathDump and SwitchPointer follow the work
of Everflow [59] which makes significant use of switches to
“match” specific packets and “mirror” them to servers which
can then trace the packets across the whole path. This en-
ables Everflow to detect various faults such as silent packet
drops, routing loops and load imbalance.
Tomography. As mentioned in the Introduction, reconstruc-
tion of network state variables in the wide area is not possible
due to the long propagation times, unknown topology, and
path information. Hence, researchers have obtained distribu-
tions of delays and backlogs of [42, 21, 19, 56, 55, 57, 27],
topological relationships [17], or packet loss patterns at
switch buffers [12, 11, 22, 54, 18, 26, 27].
In summary, switch-based methods are not easy to scale and
can’t easily relate network bottlenecks to application perfor-
mance since they lack application context. Current edge-

based methods obtain only a partial view of the network state
and some may require non-trivial assistance from switches.
Tomography results in the wide-area do not obtain near-exact
reconstruction of network variables. To our knowledge, this
is the first application of Network Tomography to data cen-
ters and for obtaining a near-exact reconstruction.

8 Conclusion

We introduced SIMON, a network tomography-based sens-
ing, inference and measurement system for data centers. SI-
MON reconstructs network state variables, such as queueing
times, link utilizations, and queue and link compositions, us-
ing timestamps of data packets and probes taken at NICs. By
doing so, SIMON is able to connect bottlenecks at switches
and network links to individual flows of the applications.
SIMON employed several techniques to simultaneously
achieve precise reconstruction and scalability. First, a sig-
nal processing analysis suggested that reconstruction inter-
vals that vary inversely as link speeds—10 ms for 1 Gbps
links, 1 ms for 10 Gbps links, 250 µs for 40 Gbps links, are
appropriate for reconstructing queue sizes and wait times to
an accuracy of over 97% of the power of the queue size or
wait time process. Secondly, we used a mesh of probes to
obtain extra information about network queue sizes and wait
times, and described guidelines for picking the parameters
of the probe mesh. We then showed that a LASSO-based
reconstruction procedure accurately reconstructed the queue
size, wait time, link utilization and queue/link composition
processes. Two methods of simplifying the implementation
of LASSO were presented: one method exploited the hier-
archical structure of modern data center topologies to get a
1000x speedup of SIMON, and the other method used multi-
layered neural networks and GPUs to accelerate LASSO by
5,000x–10,000x. These methods enable SIMON to run in
near real-time.
We implemented SIMON on three testbeds with link speeds
ranging from 1–40 Gbps and with up to 288 servers. The
accuracy of the reconstruction is validated with NetFPGAs
in the 1 Gbps testbed and by a cross validation technique
in the other two testbeds. These implementations not only
demonstrate the accuracy of SIMON’s reconstruction but also
demonstrated its practicability. Since SIMON is agnostic of
the switches in the network and only requires the timestamp-
ing capability readily available in most current generation
NICs, it can be deployed in production data centers today.

References
[1] Appdynamics, 2017. [Online; accessed 9-October-2017].

[2] New relic, 2017. [Online; accessed 9-October-2017].

[3] Splunk, 2017. [Online; accessed 9-October-2017].

[4] Cisco tetration, 2018. [Online; accessed 14-February-2018].

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 561

[5] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable, com-
modity data center network architecture. In ACM SIGCOMM Com-
puter Communication Review (2008), vol. 38, ACM, pp. 63–74.

[6] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PA-
TEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M.
Data center tcp (dctcp). In ACM SIGCOMM computer communica-
tion review (2010), vol. 40, ACM, pp. 63–74.

[7] ARISTA. Eos cloud networking technology - telemetry and analytics,
2018. [Online; accessed 9-January-2018].

[8] ARZANI, B., CIRACI, S., CHAMON, L., ZHU, Y., LIU, H., PAD-
HYE, J., LOO, B. T., AND OUTHRED, G. 007: Democratically find-
ing the cause of packet drops. In NSDI (2018), USENIX.

[9] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement (2010), ACM,
pp. 267–280.

[10] BROADCOM. High-performance data center soc with integrated netx-
treme ethernet controller, 2018. [Online; accessed 9-October-2017].

[11] BU, T., DUFFIELD, N., PRESTI, F. L., AND TOWSLEY, D. Network
tomography on general topologies. In ACM SIGMETRICS Perfor-
mance Evaluation Review (2002), vol. 30, ACM, pp. 21–30.

[12] CÁCERES, R., DUFFIELD, N. G., HOROWITZ, J., AND TOWSLEY,
D. F. Multicast-based inference of network-internal loss characteris-
tics. IEEE Transactions on Information theory 45, 7 (1999), 2462–
2480.

[13] CASE, J. D., FEDOR, M., SCHOFFSTALL, M. L., AND DAVIN, J.
Simple network management protocol (snmp). Tech. rep., 1990.

[14] CAULFIELD, A. M., CHUNG, E. S., PUTNAM, A., ANGEPAT, H.,
FOWERS, J., HASELMAN, M., HEIL, S., HUMPHREY, M., KAUR,
P., KIM, J.-Y., ET AL. A cloud-scale acceleration architecture. In
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM Interna-
tional Symposium on (2016), IEEE, pp. 1–13.

[15] CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. Finding
frequent items in data streams. In International Colloquium on Au-
tomata, Languages, and Programming (2002), Springer, pp. 693–703.

[16] CHUANG, S.-T., GOEL, A., MCKEOWN, N., AND PRABHAKAR,
B. Matching output queueing with a combined input/output-queued
switch. IEEE Journal on Selected Areas in Communications 17, 6
(1999), 1030–1039.

[17] COATES, M., CASTRO, R., NOWAK, R., GADHIOK, M., KING, R.,
AND TSANG, Y. Maximum likelihood network topology identifica-
tion from edge-based unicast measurements. In ACM SIGMETRICS
Performance Evaluation Review (2002), vol. 30, ACM, pp. 11–20.

[18] COATES, M. J., AND NOWAK, R. D. Network loss inference using
unicast end-to-end measurement. In ITC Conference on IP Traffic,
Modeling and Management (2000), pp. 28–1.

[19] COATES, M. J., AND NOWAK, R. D. Network tomography for in-
ternal delay estimation. In Acoustics, Speech, and Signal Process-
ing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International Con-
ference on (2001), vol. 6, IEEE, pp. 3409–3412.

[20] CONTRIBUTORS, W. Syslog — wikipedia, the free encyclopedia,
2018. [Online; accessed 9-January-2018].

[21] DUFFIELD, N. G., HOROWITZ, J., PRESTI, F. L., AND TOWSLEY,
D. Network delay tomography from end-to-end unicast measure-
ments. In Thyrrhenian Internatinal Workshop on Digital Communi-
cations (2001), Springer, pp. 576–595.

[22] DUFFIELD, N. G., PRESTI, F. L., PAXSON, V., AND TOWSLEY,
D. Inferring link loss using striped unicast probes. In INFOCOM
2001. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE (2001), vol. 2, IEEE,
pp. 915–923.

[23] ESTAN, C., AND VARGHESE, G. New directions in traffic measure-
ment and accounting, vol. 32. ACM, 2002.

[24] GENG, Y., LIU, S., YIN, Z., NAIK, A., PRABHAKAR, B., ROSEN-
BLUM, M., AND VAHDAT, A. Exploiting a natural network effect for
scalable, fine-grained clock synchronization. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18)
(2018), pp. 81–94.

[25] GHITA, D., KARAKUS, C., ARGYRAKI, K., AND THIRAN, P. Shift-
ing network tomography toward a practical goal. In Proceedings of
the Seventh COnference on emerging Networking EXperiments and
Technologies (2011), ACM, p. 24.

[26] GHITA, D., NGUYEN, H., KURANT, M., ARGYRAKI, K., AND THI-
RAN, P. Netscope: Practical network loss tomography. In INFOCOM,
2010 Proceedings IEEE (2010), IEEE, pp. 1–9.

[27] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ,
D., LIU, Z., WANG, V., PANG, B., CHEN, H., ET AL. Pingmesh:
A large-scale system for data center network latency measurement
and analysis. In ACM SIGCOMM Computer Communication Review
(2015), vol. 45, ACM, pp. 139–152.

[28] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES, D.,
AND MCKEOWN, N. I know what your packet did last hop: Using
packet histories to troubleshoot networks. In NSDI (2014), vol. 14,
pp. 71–85.

[29] HAYKIN, S., AND NETWORK, N. A comprehensive foundation. Neu-
ral networks 2, 2004 (2004), 41.

[30] HYUN, J., AND HONG, J. W.-K. Knowledge-defined networking us-
ing in-band network telemetry. In Network Operations and Manage-
ment Symposium (APNOMS), 2017 19th Asia-Pacific (2017), IEEE,
pp. 54–57.

[31] IEEE. IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems. IEEE Standard
1588 (2008).

[32] KIM, C., SIVARAMAN, A., KATTA, N., BAS, A., DIXIT, A., AND
WOBKER, L. J. In-band network telemetry via programmable data-
planes. In ACM SIGCOMM (2015).

[33] LEE, K. S., WANG, H., SHRIVASTAV, V., AND WEATHERSPOON, H.
Globally synchronized time via datacenter networks. In Proceedings
of the 2016 conference on ACM SIGCOMM 2016 Conference (2016),
ACM, pp. 454–467.

[34] LU, Y., MONTANARI, A., PRABHAKAR, B., DHARMAPURIKAR, S.,
AND KABBANI, A. Counter braids: a novel counter architecture for
per-flow measurement. ACM SIGMETRICS Performance Evaluation
Review 36, 1 (2008), 121–132.

[35] LU, Y., PRABHAKAR, B., AND BONOMI, F. Elephanttrap: A low
cost device for identifying large flows. In High-Performance Inter-
connects, 2007. HOTI 2007. 15th Annual IEEE Symposium on (2007),
IEEE, pp. 99–108.

[36] MANUAL, L. traceroute manual page, 2018. [Online; accessed 9-
January-2018].

[37] MELLANOX. Bluefield multicore system on chip, 2017. [Online; ac-
cessed 19-February-2018].

[38] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Trum-
pet: Timely and precise triggers in data centers. In Proceedings of the
2016 ACM SIGCOMM Conference (2016), ACM, pp. 129–143.

[39] NAIR, V., AND HINTON, G. E. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10) (2010), pp. 807–814.

[40] NETWORKS, J. Junos telemetry interface feature guide, 2018. [On-
line; accessed 9-January-2018].

[41] OPPENHEIM, A. V. Discrete-time signal processing. Pearson Educa-
tion India, 1999.

562 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[42] PRESTI, F. L., DUFFIELD, N. G., HOROWITZ, J., AND TOWSLEY,
D. Multicast-based inference of network-internal delay distributions.
IEEE/ACM Transactions On Networking 10, 6 (2002), 761–775.

[43] RAMABHADRAN, S., AND VARGHESE, G. Efficient implementa-
tion of a statistics counter architecture. In ACM SIGMETRICS Perfor-
mance Evaluation Review (2003), vol. 31, ACM, pp. 261–271.

[44] SFLOW.ORG. sflow, 2018. [Online; accessed 9-January-2018].

[45] SHAH, D., IYER, S., PRABHAKAR, B., AND MCKEOWN, N. Anal-
ysis of a statistics counter architecture. In Hot Interconnects 9, 2001.
(2001), IEEE, pp. 107–111.

[46] SHAH, D., IYER, S., PRAHHAKAR, B., AND MCKEOWN, N. Main-
taining statistics counters in router line cards. IEEE Micro 22, 1
(2002), 76–81.

[47] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD,
A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., ET AL. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. ACM SIGCOMM
Computer Communication Review 45, 4 (2015), 183–197.

[48] SPARK. Spark: Lightning-fast cluster computing, 2018. [Online; ac-
cessed 9-January-2018].

[49] SYSTEMS, C. Model-driven telemetry, 2018. [Online; accessed 9-
January-2018].

[50] SYSTEMS, C. Netflow, 2018. [Online; accessed 9-January-2018].

[51] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying datacenter
network debugging with pathdump. In OSDI (2016), USENIX.

[52] TAMMANA, P., AGARWAL, R., AND LEE, M. Distributed network
monitoring and debugging with switchpointer. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18)
(2018), USENIX.

[53] TIBSHIRANI, R. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological)
(1996), 267–288.

[54] TSANG, Y., COATES, M., AND NOWAK, R. Passive network tomog-
raphy using em algorithms. In Acoustics, Speech, and Signal Process-
ing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International Con-
ference on (2001), vol. 3, IEEE, pp. 1469–1472.

[55] TSANG, Y., COATES, M., AND NOWAK, R. Nonparametric internet
tomography. In Acoustics, Speech, and Signal Processing (ICASSP),
2002 IEEE International Conference on (2002), vol. 2, IEEE, pp. II–
2045.

[56] TSANG, Y., COATES, M., AND NOWAK, R. D. Network delay to-
mography. IEEE Transactions on Signal Processing 51, 8 (2003),
2125–2136.

[57] TSANG, Y., YILDIZ, M., BARFORD, P., AND NOWAK, R. Network
radar: tomography from round trip time measurements. In Proceed-
ings of the 4th ACM SIGCOMM conference on Internet measurement
(2004), ACM, pp. 175–180.

[58] VAN TU, N., HYUN, J., AND HONG, J. W.-K. Towards onos-based
sdn monitoring using in-band network telemetry. In Network Op-
erations and Management Symposium (APNOMS), 2017 19th Asia-
Pacific (2017), IEEE, pp. 76–81.

[59] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MA-
HAJAN, R., MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B. Y.,
ET AL. Packet-level telemetry in large datacenter networks. In ACM
SIGCOMM Computer Communication Review (2015), vol. 45, ACM,
pp. 479–491.

9 Appendix

9.1 Queue Coverage Probability

Consider a network with l layers and N servers. Each server
randomly probes K other servers. We show that without
under-subscription, i.e., the number of links at the spine lay-
ers is no greater than the number of servers, the probability
that every queue in the network is covered by at least one
probe packet is greater than 1− (2l− 1)Ne−2K , where l is
the number of layers, N is the number of servers and K is the
number of random probes per server.
Proof:
A lower bound on the probability can be derived using a
union bound. We consider queues at different levels, and
bound the probability of covering all queues at every level.
First, consider the lowest level queues, the queues on the
ToR downlinks to the servers. There are exactly N1 =N such
queues. Because the destinations of the probes are random,
for a specific queue q and a specific probe p, the probability
that p passes through q is

1
N

Since there are 2NK probes in total, the probability that q is
not hit by any of the probes is

(1− 1
N
)2NK

So the probability that there exists a level-1 queue, such that
it is not hit by any probes can be bounded by

P(∃ q not hit by any probe)≤
N

∑
i=1

P(qi not hit by any probe)

= N(1− 1
N
)2NK ≈ Ne−2K

For level-2 queues, namely the ToR uplink and L2 downlink
queues, each has number N2. Conditioning on a probe reach-
ing level 2, which queues it hits is uniformly random. So for
a level-2 queue q and a probe p, we have

P(q hit by p|p traverse to level 2) =
1

N2
Probe p goes to level 2 and above only if it is probing a server
outside its own rack; this event has chance N−R

N where R is
the rack size. Combining with the previous equation we have
P(q not hit by p)

=P(q not hit by p|p traverse to level 2)P(p traverse to level 2)
+P(q not hit by p|p not traverse to level 2)P(p not traverse to level 2)

=(1− 1
N2

)(1− R
N
)+1 · R

N

=1− 1
N2

(1− R
N
)

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 563

So

P(∃ q not hit by any probe)≤
N2

∑
i=1

P(qi not hit by any probe)

= N2

(
1− 1

N2
(1− R

N
)

)2NK

= N2e−2 N−R
N2

K

This argument can be repeated for any level j. Assume the
size of a level- j block is R j, and the queues at level- j is N j.

P(q not hit by any probe)≤
N j

∑
i=1

P(qi not hit by any probe)

= N j

(
1− 1

N j
(1−

R j

N
)

)2NK

= N je
−2

N−R j
N j

K

Remarks:

• All the parameters Ni, Ri are properties of the network
topology. In other words, the probability bounds are
customized for the specific topology.

• The bounds are linear with respect to Ni, the number
of queues, but exponential in K, the number of random
probes per server. As an example, with the topology
fixed, if Knew = K+2.3, then the probability of not cov-
ered will decrease by 10 folds.

• Suppose there is no under-subscription (so Ni ≤ N for
all i) and Ri is negligible compared with N. Then for
any level, the probability of some queue not covered in
that level is bounded by Ne−2K . For a typical network
with 10k servers with K = 10, this probability is roughly
2× 10−5. When there are l network layers, we have
2l−1 levels of queues. Applying a union bound across
all levels give the desired upper bound on the coverage
probability 1− (2l−1)Ne−2K .

• Over-subscription is good from a coverage-point of
view, as there are fewer higher level paths to choose
from. We note in reality, most networks are over-
subscribed. At the same time, link speed sometimes
are higher for upper layer switching. Both contribute to
the fact that there are usually fewer links in the uppers
layers.

564 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Is advance knowledge of flow sizes a plausible assumption?

Vojislav Ðukić1, Sangeetha Abdu Jyothi2, Bojan Karlaš1,
Muhsen Owaida1, Ce Zhang1, Ankit Singla1

1ETH Zurich 2University of Illinois at Urbana–Champaign

Abstract
Recent research has proposed several packet, flow, and

coflow scheduling methods that could substantially improve
data center network performance. Most of this work assumes
advance knowledge of flow sizes. However, the lack of a
clear path to obtaining such knowledge has also prompted
some work on non-clairvoyant scheduling, albeit with more
limited performance benefits.

We thus investigate whether flow sizes can be known in ad-
vance in practice, using both simple heuristics and learning
methods. Our systematic and substantial efforts for estimat-
ing flow sizes indicate, unfortunately, that such knowledge
is likely hard to obtain with high confidence across many
settings of practical interest. Nevertheless, our prognosis is
ultimately more positive: even simple heuristics can help es-
timate flow sizes for many flows, and this partial knowledge
has utility in scheduling.

These results indicate that a presumed lack of advance
knowledge of flow sizes is not necessarily prohibitive for
highly efficient scheduling, and suggest further exploration
in two directions: (a) scheduling under partial knowledge;
and (b) evaluating the practical payoff and expense of ob-
taining more knowledge.

1 Introduction
Advance knowledge of future events in a dynamic system

can often be leveraged to improve the system’s performance
and efficiency. In data center networks, such knowledge
could potentially benefit many problems, including routing
and flow scheduling, circuit switching, packet scheduling in
switch queues, and transport protocols. Indeed, past work on
each of the above topics has explored this, and in some cases,
claimed significant improvements [34, 21, 5, 4, 30].

Nevertheless, little of this work has achieved deployment.
Modern deployments largely use techniques that do not de-
pend on knowing traffic features in advance, such as shortest
path routing with randomization, and first-in-first-out queue-
ing. A significant barrier to the adoption of traffic-aware
scheduling is that in practice, traffic features can be difficult
to ascertain in a timely fashion with adequate accuracy.

We focus on the plausibility and utility of obtaining flow
size information a priori for use in packet, flow, and coflow
scheduling in data centers. We explore this problem in the
context of four scheduling techniques from past work: pFab-
ric [5], pHost [21], FastPass [34], and Sincronia [4]. Each of
these is a clairvoyant scheduler, with advance knowledge of

the size of each flow at its start (but not necessarily the flow
arrival times). For some problems, non-clairvoyant algo-
rithms are also known, e.g., PIAS [7] for packet scheduling,
and Aalo [13] for coflow scheduling. While such techniques
outperform FIFO and fair-sharing baselines, there is still a
substantial performance gap compared to clairvoyant algo-
rithms (§3.2). Further, it is unclear if similar non-clairvoyant
methods can be developed for scheduling problems such as
FastPass [34], where absolute flow sizes are needed, rather
than just the relative priorities leveraged by PIAS and Aalo.

We thus examine a wide array of possibilities for esti-
mating flow sizes in advance, including modifications to the
application-system interface for explicit signaling by the ap-
plication, as well as more broadly applicable application-
agnostic methods, ranging from simple heuristics like read-
ing buffer occupancy and monitoring system calls, to sophis-
ticated machine learning. We analyze the complexity, accu-
racy, and timeliness of different approaches, and the utility of
the (often imprecise) flow size information gleaned by these
methods across our four example scheduling techniques.

We find that even simple heuristics effectively estimate
flow sizes for a large fraction of flows in many settings. But
accurate estimation for all flows is likely intractable: for
many scenarios of practical interest, each of the estimation
approaches under consideration has limitations that prevent
accurate flow size estimation. Superficially, this can be seen
as a negative result for clairvoyant schedulers. However, this
does not necessarily restrict us to non-clairvoyant schedul-
ing — as recent work shows [9, 40], partial knowledge of
flow sizes, coupled with heuristics to tackle the unknown
flow sizes, can often provide an effective compromise. We
pose a novel question by intersecting this past work with our
results on the effectiveness and complexity of different meth-
ods of flow size estimation: how does investment in increas-
ing the coverage of flow size estimation pay off? To the best
of our knowledge, no prior work has tackled this issue —
as we invest greater effort in flow size estimation, how does
scheduling performance change?

We show, empirically and analytically, that for packet
scheduling at switches, a simple approach1 incentivizes
greater efforts in estimating flow sizes. While this may seem
obvious, somewhat surprisingly, we find that adding more
flow size estimates does not always improve performance
— for coflow scheduling, an intuitive scheduling scheme for

1A simplification of Karuna [9] replacing discrete thresholds for priority
queues with continuously degrading flow priority as more bytes are sent.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 565

partial knowledge settings sometimes sees increased coflow
completion times as more flow sizes are made known.

These first results call for more exploration in two direc-
tions: (a) schedulers explicitly designed for partial knowl-
edge settings; and (b) the scheduling efficiency benefits of
greater investments in learning flow sizes.

We believe this to be the first in-depth critical analysis
of assumptions of (non-) clairvoyance in flow, coflow, and
packet scheduling, together with considering the utility of
partial knowledge, and various vectors for increasing this
knowledge. We make the following contributions:

• We design FLUX, a framework for estimating flow sizes
in advance, and tagging packets with this information.

• Using FLUX, we evaluate both simple heuristics using
system calls and buffer sizes, as well as learning meth-
ods; identify which factors are effective in flow size es-
timation; and explain how these depend on applications.

• We implement FLUX in Linux2, and demonstrate that
even the learning method implemented incurs only
small computational and latency overheads, which can
be further reduced using specialized hardware.

• For each method of flow estimation, we also explore its
limitations, concluding that for many practical scenar-
ios, such estimation will remain challenging.

• We evaluate the utility of inferred (often imprecise) flow
sizes across four scheduling techniques, finding signifi-
cant benefits compared to flow-unaware scheduling.

• We analyze settings with some fraction of traffic per-
mitting flow estimation, and show that the impact of
increasing this fraction is not always positive.

• In a simplified model, we prove that for shortest remain-
ing first packet scheduling [5], coupled with a simple
heuristic for handling unknown flows, adding a flow’s
size cannot worsen its completion time.

2 Background & motivation
Many scheduling techniques for data center networks have

been proposed, promising substantial performance gains:

• PDQ [22] and D3 [43] schedule flows across the fabric,
in a “shortest flow first” manner.

• pFabric [5] and EPN [29] schedule packets at switch
queues using “least remaining flow” prioritization.

• pHost [21], Homa [30], and FastPass [34] schedule sets
of packets across the network.

• Orchestra [14], Varys [15], Sincronia [4], and
Baraat [18] schedule coflows (app-level aggregates).

• c-Through [41], Helios [20], and several followup pro-
posals schedule flows along time-varying circuits.

2Code and traces here: https://github.com/vojislavdjukic/flux.

All of these proposals are clairvoyant schedulers, i.e., they
assume that the size of a flow is known when it starts. Some
of this work has made this assumption explicit:

“In many data center applications flow sizes or dead-
lines are known at initiation time and can be conveyed
to the network stack (e.g., through a socket API) ...”

— Alizadeh et al. [5], 2013

“The sender must specify the size of a message when
presenting its first byte to the transport ...”

— Montazeri et al. [30], 2018

There is not, however, consensus on the availability of such
information; work in the years intervening the above two
proposals has argued the opposite. For instance:

“... for many applications, such information is difficult
to obtain, and may even be unavailable.”

— Bai et al. [7], 2015

Thus, we explore this question in depth: Is advance knowl-
edge of flow sizes a plausible assumption? Further, what
happens when only information for some flows is available?
We design a framework for estimating flow size informa-
tion and evaluate its utility for four example scheduling tech-
niques in past work that depend on this information. We in-
clude here brief, simplified background on these techniques:
pFabric [5]: Each packet is tagged with a priority at the
end-host, based on the remaining flow size. Switches then
schedule packets in order of least remaining size. This results
in near-optimal packet scheduling and can improve average
flow completion time (FCT) by as much as 4× for certain
workloads, compared to the oblivious FIFO scheme.
pHost [21]: pHost uses distributed scheduling, with the
source sending to the destination a “Request To Send” mes-
sage carrying the number of pending bytes in the flow. The
destination clears transmission for the flow with the least
bytes. pHost claims an average FCT reduction of 3×.
FastPass [34]: FastPass uses a centralized arbiter to schedule
flows. When a host wants to send data, it asks the arbiter to
assign it a data transmission time slot and path. The arbiter
tries to make a decision based on the traffic demand (flow
size) of all active flows. FastPass claims “near-zero queuing”
on heavily loaded networks, cutting network RTT by 15×.
Sincronia [4]: Sincronia orders coflows using sizes of in-
dividual flows to find network bottlenecks and uses this or-
dering for priority scheduling. It achieves average coflow
completion time (CCT) within 4× of the optimal.

If flow sizes were known a priori, such techniques could
improve various performance metrics of interest by 3-15×
compared to size-unaware ECMP-plus-FIFO scheduling.
For some scheduling problems, where only relative flow pri-
orities matter rather than absolute sizes, prior work has de-
veloped non-clairvoyant schedulers [7, 45, 13] that also beat
the ECMP-FIFO baseline. But as we shall see later, their per-

566 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/vojislavdjukic/flux

formance improvements are often much more modest than
clairvoyant schedulers. Thus, addressing the question of
flow size estimation remains an interesting open problem.

3 Flow size estimation: design space
Before considering flow size estimation, it is necessary to

define a flow. The primary goal of flow size estimation is to
improve application performance using network scheduling.
Where application messages directly translate to individual
TCP connections, using TCP 5-tuples to define flows suf-
fices. However, to avoid the overheads of connection setup
and TCP slow start, it is common practice in many data cen-
ters to use persistent long-lived TCP connections (e.g., be-
tween Web servers and caches) which carry multiple appli-
cation messages over time. In these settings, it may be more
appropriate to consider instead a series of packets between
two hosts that are separated from other packet series by a
suitable time gap. We note that this is an imprecise method,
as system-level variability and workload effects can impair
such identification of flows. For instance, multiple small
cache responses sent out in quick succession could be mis-
takenly identified as one flow. This limitation applies to all
application-oblivious methods — in some scenarios, mecha-
nisms to identify packets that form an application-level mes-
sage are inherently bound to be imprecise.

We next describe several approaches for obtaining flow
sizes, and intuitively reason about their efficacy in various
settings. Experimental evaluations of the quality of estima-
tion and its impact on network scheduling are deferred to §6.

3.1 Exact sizes provided by application
Many applications can assess how much data they want to

send, such as standard Web servers, RPC libraries, and file
servers. Modifying such applications to notify the network
of a message’s size is thus plausible. This would require a
new interface between applications and the network stack,
and is clearly doable, but not trivial. The replacement must
be interruptible, like send in Linux, and it’s unclear how
best to implement this – what happens when it gets inter-
rupted after sending some bytes? When a new call is made
to finish the transfer, how do we decide whether or not this is
the same flow? Thus, this may also require introducing some
notion of flow identifiers. While this can surely be done, we
merely point out that it requires care.

Limitations: As discussed in some depth in prior
work [7], there are several scenarios where the application
itself is unaware of the final flow size when it starts send-
ing out data, such as for chunked HTTP transfers, streaming
applications, and database queries where partial results can
be sent out before completion. Also, apart from introducing
changes to the host network stack (which are not necessarily
prohibitive for private data centers), this approach requires
modifying a large number of applications to use the new API.
In settings like the public cloud, this may not be feasible.

Still, this approach should not be casually dismissed; a few
software packages dominate the vast majority of deployed
applications, e.g., a large fraction of Web servers use one of
the three most popular server software packages, most data
analytics tasks use one of a small number of leading frame-
works, etc. Past work (e.g., FlowProphet [42] and Hadoop-
Watch [33]) has in fact explored the use framework-internals
for gleaning flow sizes. Thus, this approach could make flow
size information accessible to the network for many applica-
tions, provided the right APIs are developed.

3.2 Flow aging
A set of application-agnostic techniques have been pro-

posed around the idea of using the number of bytes a flow
has already sent as an estimator for its pending data. For in-
stance, Least Attained Service [35] gives the highest priority
to new flows and then decreases their priority as they send
more data. Thus, flow priorities “age” over time. PIAS [7]
explores a variant of this approach, coupling it with the use of
a small number of discrete queues to fit commodity switches.
Aalo [13] applies similar ideas to coflow scheduling.

Limitations: The most significant drawback is that this
approach may not benefit scheduling techniques that require
absolute flow sizes (as opposed to only relative priorities),
such as Sincronia3, FastPass and optical circuit scheduling.
Even where applicable, the effectiveness of such methods de-
pends on flow size distribution. For instance, LAS does not
work well when there are a large number of flows of similar
size. In the limiting case, if all flows are the same size, older
flows nearer to completion are deprioritized, which is the op-
posite of the desired scheduling. More sophisticated meth-
ods based on multi-level feedback queues [7] still depend
on estimating a stable underlying flow size distribution4.
Further, even in favorable settings, with stable heavy-tailed
flow size distributions, the performance of such application-
agnostic techniques can be substantially lower than clair-
voyant ones. For instance, recent work [30] reports ∼2×
difference in 99th percentile slowdown between PIAS [7]
and pFabric [5]. Similarly, Sincronia [4], the best-known
clairvoyant coflow scheduler, claims a 2-8× advantage over
Varys, and by extension, over CODA [45], the best-known
non-clairvoyant coflow scheduler. (Note however, that the
scheduling knowledge involved in CODA is not limited to
flow sizes, but also classification of flows into coflows.)

3.3 TCP buffer occupancy
The occupancy of the TCP send buffer at the sending host

can provide approximate information on flow sizes. When
the buffer occupancy is small, the number of packets in the
buffer may be the actual flow size of a small flow. When the

3Sincronia uses only relative priorities in the network, but for assign-
ing these priorities, it computes the bottleneck port using sizes of all flows
destined to each port. It is unclear if aging would be effective here.

4Alternatively, additional effort must be spent in continuously monitor-
ing and following the changes in the underlying distribution [10].

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 567

0KB

50KB

100KB

150KB

200KB

250KB

 1 1.002 1.004 1.006 1.008 1.01

B
u
ff

e
r

o
cc

u
p

a
n
cy

Time (s)

1G network

10G network

Figure 1: Buffer occupancy while transferring a 1GB static file
from the hard disk over 1G and 10G connections. We show a rep-
resentative 10 ms segment of the trace starting at 1 second.

buffer is fully occupied, i.e., its draining rate is less than its
filling rate, the flow may be categorized as a large flow. Ma-
hout [17] and c-Through [41] used roughly this approach.
ADS [31] also suggests (but does not evaluate) a similar
mechanism, although it is unclear whether it uses system
calls, or buffer occupancy, or both.

Limitations: Buffering reflects flow size only when the
sender is network or destination limited. If the bottleneck is
elsewhere, the buffer may not be filled even by a large flow.
Consider a program that reads a large file from the disk and
sends it over the network. The program reads data in chunks
of a certain size (e.g., 100 KB) and sends as follows:

while(...):
read(file_desc, read_buffer, 100KB)
write(socket_desc, read_buffer, 100KB)

Today’s SSDs achieve a read throughput of ∼6 Gbps,
while NIC bandwidths of 10-40 Gbps are common. This
disparity implies that the buffer may remain sparsely popu-
lated most of the time. To illustrate this behavior, we ran a
simple experiment. We transfer a 1GB static file served by a
Web server over 1G and 10G connections (Fig.1). The file is
stored on a regular 7200 RPM hard drive with the maximum
read speed of ∼1 Gbps. We see that for the faster connec-
tion, the buffer is almost empty. For slow connections, the
buffer indicates the lower bound of the flow size, but when
the buffer occupancy starts decreasing, it is unclear if that
means that no additional data will be added. This presents a
serious obstacle for flow size estimation.

3.4 Monitoring system calls
The write/send system calls from an application to the

kernel provide information on the amount of data the appli-
cation wants to send. The flow size is typically greater or
equal to the number of bytes in the first system call of a flow.
It is also interesting to notice that many applications have a
standard system call length. For instance, Apache Tomcat
by default transfers data in chunks of 8 KB. If it wants to
send less than 8 KB, it issues a single system call which re-
flects the exact flow size. For larger flows, multiple calls are,
of course, necessary. Other applications behave similarly;

MySQL uses chunks of 16 KB, Spark Standalone 100 KB,
and YARN 262 KB. Thus, for identifying short flows, this
is a reliable approach, and can directly enable algorithms
like Homa [30]. Further, recent work from Facebook sug-
gests that a substantial portion of flows is extremely small
and most likely transferred over a single system call [46].

To test this approach, we run a simple experiment where
we store 100,000 objects of sizes between 500 B to 1 KB
using MySQL. Further, we execute three types of queries:
fetch an object based on the key, fetch a range of 10 objects
using a date index, and fetch 1000 objects (e.g., to perform a
join operation or backup). Since results for queries fetching
1 and 10 objects fit into the initial system call, we were, in
fact, able to obtain their flow sizes accurately.

Limitations: The flow size information inferred from sys-
tem calls may correspond to only a part of the flow rather
than the whole flow, as in the above example for large
queries. Increasing the size of the initial system call could
work, but larger system calls require more buffer memory per
connection. Thus, Web servers, databases, and other highly
concurrent programs tend to keep system calls small.

3.5 Learning from past traces
We can also apply machine learning to infer flow size in-

formation from system traces. Ultimately, data sent out to
the network trace causality to some data received, read from
disk or memory, or generated through computation. Thus,
traces of these activities may allow learning network flow
sizes. Given that most jobs in data centers today are repeti-
tive, there is a significant opportunity for such learning. For
instance, in [25], the authors observed that more than 60%
jobs in enterprise clusters are periodic with predictable re-
source usage patterns. Analysis of publicly available Google
data center traces also confirms this finding: most of the re-
sources are consumed by long-term workloads [37, 3, 36].

Unlike the simpler approaches above, the effectiveness
and limitations of learning methods are hard to analyze
without a serious attempt at building a learning system.
A key challenge here is the short timescale: while past
work [28, 44] has explored learning workload characteris-
tics at timescales of minutes and hours, can we learn at
the microsecond timescales necessary for flow size estima-
tion? This represents a challenging leap across 8-10 orders
of magnitude in timescales. We next detail our efforts to-
wards building a learning system for flow size prediction.

4 Learning flow sizes
We explore the design of a learning-based approach for

flow size estimation, addressing the following questions:

• Which methods can we use for flow size prediction?
• What prediction accuracy is achievable?

Learning task: We would like to learn flow sizes for out-
going flows in advance, using system traces. When a flow

568 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

f starts, are recent measurements of network, disk, memory
I/O, CPU utilization, etc. predictive of f ’s size?

We first present a superficial “black box” treatment of
this question, going directly from training standard learning
methods over traces we collected to the best accuracy we ob-
tained. §5 shall delve into the details of how we made this
approach work, and give intuition into its success. §6 will
discuss how the accuracy results translate to network perfor-
mance improvements, while §7 discusses its limitations.

4.1 Workloads
To explore what inputs are predictive of flow sizes, it is es-

sential to gather job execution traces with as much detail as
possible, across many instances of jobs with variable inputs
and configurations. Unfortunately, publicly available data
center traces do not contain enough information. Facebook’s
traces [39], by sampling 1 per 30000 packets, provide no
visibility at the flow granularity. Google’s traces [38] com-
pletely omit network data, focusing on CPU, memory uti-
lization, etc. We thus collect traces for (a) a large range of
synthetic workloads; and (b) machine learning applications
running on our university clusters.

Our traces comprise 5 applications: PageRank, K-Means,
and Stochastic Gradient Descent (SGD) implemented on
Spark; training deep neural networks using TensorFlow; and
a Web workload. The SGD and Tensorflow traces are from
instrumented applications running on our university cluster.

Each of SGD, KMeans, and PageRank runs on a Spark
cluster of 8 machines, each machine with 2 CPU sockets (4
cores each) and 24 GB DRAM. For SGD, the input sizes vary
from 2-25 GB, with significant variation across the hyperpa-
rameters. We also impose large input variations for KMeans
and PageRank: for PageRank, we randomly generate new
graphs with 1-15 million nodes; and for KMeans, we gener-
ate datasets with 20-50 million points, while also varying K.
We also vary the number of workers per job from 8 to 64.

The Tensorflow trace consists of one 25 minute long ex-
ecution of distributed training of AlexNet [26] on the Ima-
geNet dataset on 40 GPU machines.

For the synthetic Web workload, we use Apache Tomcat
7.0 to host a full Wikipedia mirror and fetch random pages.

Fig. 2 summarizes these workloads. Fig. 2(a) shows the
job execution times across different executions for each al-
gorithm. Execution times for KMeans, PageRank, and SGD
vary by factors of as much as 2.6×, 1.5×, and 24.5× respec-
tively. Thus, there is substantial variation across executions.
The main source of the variations across traces is the change
in the size of the input data and the number of iterations.
However, for many runs there were more resources in the
cluster than required by the job, leading traces to further in-
corporate the influence of Spark’s scheduling decisions.

We also aggregate flow statistics across all jobs and ex-
ecutions for each application to give a sense of the traffic;
Fig. 2(b) shows the flow size distributions, and Fig. 2(c)

shows the arrival rates (aggregated across the workers). The
TensorFlow workload consists of many short flows with an
average arrival rate of 8273 flows/second.

4.2 Machine learning models
We evaluate several ML models, but with only modest ef-

forts to optimize these, because our goal is not to identify the
best model or hyperparameters, but to show that a variety of
methods could work (as we show with results on improve-
ments in scheduling in §6) with reasonable effort , modulo
the limitations of learning in this context, as discussed in §7.

Recurrent Neural Network with LSTM layers: All our
traces are time series. Given the natural dependency between
data points in the trace, we test a network that can keep state
and learn these dependencies while processing the trace se-
quentially. For this purpose, we use an LSTM model [24].
Using Keras [12] and Tensorflow [2], we test varied LSTM
models with different numbers of layers. The best configu-
ration in our setting uses a single layer with 64 LSTM units.

Gradient Boosting Decision Trees: In many of our traces,
simple conditionals reveal information about the flow size.
For instance, if the first system call size is below a certain
value, that can often reveal the flow’s size. Thus, we train
GBDT models of different sizes (i.e., numbers of trees) and
find that using 50 trees (with maximum depth of 10 per tree)
gives fast yet accurate results.

Feed-Forward Neural Network: The dependency between
flow size and other system-level features should not strictly
depend on the ML model we choose. Thus, we test
a standard FFNN model [23] with various configurations
for the number of layers and neurons, implemented using
Keras [12]. We find that 2 layers (and the ReLU activation
function) with 5 neurons each yield the best performance.

Results: We split the traces into 3 fixed sets – training, val-
idation, and test. Table 1 compares the three tested models.
We use the coefficient of determination (R2) to measure ac-
curacy. R2 is very useful because it can be easily compared
across different models: R2 = 1 if the model produces per-
fect predictions, and R2 = 0 if the model makes a predic-
tion of zero value, always predicting the mean. GBDT and
FFNN achieve comparable accuracy (Table 1), with the high
values of R2 implying highly accurate flow size predictions.
For two workloads, LSTM gave inferior results and did not
seem to capture the dependencies, particularly across traces
where the underlying executions were very different (e.g.,
test-set for SGD). With greater effort, for instance, specializ-
ing the model to these traces, it may be possible to overcome
LSTM’s apparent deficiency. However, we wanted to use the
same training and inference approach across traces.

GBDT’s accuracy, fast convergence, and fast inference
motivate its choice for FLUX. The tradeoff is that the model
updates in batch mode (not online); this should suffice, un-
less applications change at sub-second timescales.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 569

 0

 0.2

 0.4

 0.6

 0.8

 1

102 103 104

CD
F

Time (s)

KMeans
PageRank

SGD

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107 108 109

CD
F

Flow size (B)

KMeans
PageRank

SGD
TensorFlow
Web Server

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Flows per second

KMeans

PageRank

SGD

(c)

Figure 2: Workload diversity: (a) Execution time varies substantially across executions of the same job. We also show the distribution of (b)
flow sizes and (c) flow arrival rate across our workloads.

GBDT FFNN LSTM
Web server 94 | 96 92 | 94 73 | 74
TensorFlow 97 | 97 95 | 95 94 | 94
PageRank 85 | 83 84 | 84 83 | 83
Kmeans 88 | 90 88 | 95 88 | 93
SGD 58 | 79 54 | 72 46 | 0

Table 1: Prediction accuracy (shown for validation-set | test-set)
across models and workloads in terms of R2 percentage.

5 Opening the black box
What explains the high accuracy of our ML approach? We

discuss the predictive power of various system-level mea-
surements, and detail refinements that led from poor initial
results to these high-accuracy predictions.

5.1 The treachery of time
We first tried what we considered a natural model for the

data of our interest: time series. To generate time series data,
during the execution of each workload, we sampled CPU and
memory utilization, and disk and memory I/O, every 20 ms,
and recorded headers of all incoming and outgoing packets.
We then attempted to predict the next few time-steps for net-
work traffic. However, this gave poor results due to low-level
system effects that can have a significant impact on timing.

An alternative representation with a flow-centric view
treats a job as a series of flows, with several attributes
recorded per flow (Table 2). This is effective for flow size
prediction, as it does not suffer from minor timing varia-
tions, and captures the relationship between (for instance)
system calls and the volume of outgoing traffic. In addition,
the measurements themselves serve as a “clock”, one that is
more robust to system scheduling artifacts.

5.2 Why these features?
New flows are created either by reading data from the

disk or memory, processing previously received flows, do-
ing some computation to create data, etc. Thus, features that
characterize each of these causal factors could help estimate
flow size. For each type of system measurement, we track
the total number of operations or bytes from the beginning
of program execution. This enables the learning algorithm

Feature Description
Start time, t f Start time of f relative to job start time
Flow gap Time since the end of the previous flow
First Call Size of the first system call t f

Network In Data received until t f

Network Out Data sent until t f

Network In(d) Data received at flow’s dest. d until t f

Network Out(d) Data sent by this host to d until t f

CPU CPU cycles used until t f

Disk I/O Total disk I/O until t f

Memory I/O Total memory I/O until t f

Previous flows Flow sizes for last k flows

Table 2: Features of a flow f . All network, memory, disk and CPU
activity is cumulative until this flow’s start at t f .

to know how many operations or bytes were processed be-
tween the last and the new flow. In our experiments, when
we predict the flow size, we use features from Table 2 for last
5 flows. Thus, we try to catch dependencies between consec-
utive flows as well as resources that have been consumed.

As expected, the most predictive features vary across ap-
plications. For instance, some applications do not produce a
lot of disk traffic, while others rely completely on the disk.
The GBDT model provides a natural way of assessing fea-
ture importance: it uses a set of decision trees, with each
attribute’s contribution measured in terms of “splits”, i.e., in
what percentage of branch conditions in the decision tree the
attribute appears. Fig. 3 shows these splits for the aggre-
gated flow-centric traces from a Spark environment. Inter-
estingly, for these traces, we find that similar accuracy can
be obtained by a model constrained to not use memory, disk,
and CPU monitoring, relying only on network data and tim-
ing of flows. Web queries, on the other hand, have a different
set of critical features where 66% of all splits use disk I/O.

Finding the best model and feature-set may require man-
ual work, but effective solutions could be obtained automat-
ically by comparing the accuracy of the largest model to the
accuracy of candidate models limited to using only the first
model’s most salient features.

570 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

Complete
 feature set

Pruned
 feature set

C
o
n
tr

ib
u
ti

o
n
 (

%
)

Network Out
Time

Network In
First Call

Figure 3: Feature contributions for 2 models for the Spark work-
loads, measured using GBDT splits. The figure omits labels for the
less important features: memory and CPU utilization, and disk and
memory I/O. Both models provide the same prediction accuracy. If
we exclude any of the top 3 contributors, the accuracy decreases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

Tensorflow
SGD

KMeans
PageRank

Web Server

Figure 4: Prediction accuracy declines for more distant flows. x =
0 is the current flow, for which packets are starting to be sent out,
while x = 1 is the next flow after this one, and so on.

5.3 Model accuracy
The accuracy of predictions obtained using learning de-

pends on three main factors, which we discuss next.

How far the predicted future is: It is critical to make pre-
dictions within a time budget. Since most flows in data cen-
ters are small, this budget is commensurately small: if the
inference takes too long, we might either block on the infer-
ence and slow down the flow, or allow packets to flow with-
out having the result of the inference and without tagging
them appropriately, resulting in sub-optimal performance.

There are two possibilities for overcoming this issue: (a)
when a new flow starts, make a prediction in an extremely
small time budget by engineering down the inference time;
and (b) when a new flow starts, start inference for the next
outgoing flow, or even more generally, for some future flow.
This choice represents a trade-off: we can either get high-
accuracy inference by incorporating the maximum informa-
tion available for inference, but incurring a data path latency
to do so (or use results late, as they become available); or
get lower accuracy due to missing some relevant information
from needing to predict a farther future.

Fig.4 shows the dependence of prediction accuracy on this
“future distance”, starting from trying to predict a flow’s size

immediately when it starts, through predicting the next sev-
eral flows. For TensorFlow, predicting several flows into the
future is possible with high accuracy, because flows are pre-
dictive of future flows. But as expected, for the Web server
workload, it is only possible to accurately predict the flow
starting now, because two consecutive flows share no rela-
tionship (because we are requesting random objects from a
Wikipedia mirror) – in essence, each “job” is of size one.
Model size: Larger models often yield higher accuracy at the
cost of more memory and computation, and consequently,
and more crucially, higher latency for inference.

While details of the impact of model accuracy on schedul-
ing performance are deferred to §6, we use flow completion
times instead of R2 to compare model sizes. For an exam-
ple trace (pFabric scheduling for PageRank), when predict-
ing the current (next) flow’s size, the average FCT using a
smaller model with 20 trees is worse by 9% (10%) than the
larger model with 50 trees. Interestingly, the larger model
achieves better results than the smaller one, even when the
larger model is impaired by having to predict the next flow,
while the smaller model predicts the current flow.
Training dataset size: Obviously, the learning approach de-
pends on having seen enough training data, but this “conver-
gence time” varies across workloads. For the Web workload,
the model only needs to observe ∼50 requests to achieve
R2 > 0.5. To achieve nearly its maximum prediction accu-
racy, the model needs to observe ∼500 requests. For a pop-
ular Web server, this is on the order of a few seconds. (Of
course, our model for a Web server is extremely simple.)

The model for TensorFlow needs to see ∼3000 flows to
reach peak accuracy, but given its flow arrival rate of more
than 8200 flows per second, convergence time is sub-second.
This is negligible compared to the job duration itself (∼25
min). The iterative nature of neural network training, with
similar traffic across iterations, allows accurate prediction
within a few iterations of monitoring a never-seen-before job.
The Spark workloads show the highest variability, and this
is reflected in their convergence time. Here we need traces
from multiple executions of the same job type to achieve
high accuracy; 10 executions suffice for each of our 3 test job
types5. Fortunately, data processing frameworks are often
run repetitively with many instances of the same job [25, 16]
since the workloads often involve tasks like making daily re-
ports, code builds, backups or re-indexing data structures.

Note that good results can be achieved even across repeat
executions with very different underlying data and run con-
figurations — the job instances over which we train and test
exhibit such variations, as discussed in §4.1.

5.4 Fast-enough, deployable learning?
With data center round-trip times on the order of 10 µs,

our objective is to achieve inference in a fraction of this time.

5Each execution yields n traces, when n machines execute the job.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 571

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

C
D

F

Latency (µs)

CPU

FPGA

Figure 5: Inference latency across 100 measurements for GBDT
with 50 trees implemented in-kernel on a CPU and using an FPGA.

CPU implementation: To efficiently implement GBDT, we
use treelite [1], which takes an XGBoost model as input, and
transforms it into a single C function, which is a long se-
quence of simple if-else statements. This approach incurs a
minor slowdown when the model is updated (to generate C
code), but improves inference performance by an order of
magnitude in comparison to the original GBDT implemen-
tation in the XGBoost library [11]. This enables us to make
inferences in 5 µs within the typical case.
Accelerator implementation: The latency caused by the
CPU implementation is small, but still comparable to data
center RTTs. We investigate if offloading inference to spe-
cialized hardware could improve latency. Such logic could
be built into NIC hardware, or deployed on the FPGAs al-
ready in use in some data centers [8].

We extend recent work on deploying GBDT on FPGA [32]
to obtain our hardware implementation. Fig. 5 compares the
inference latency for a 50-tree model on a CPU vs. using an
FPGA. The mean latency is 4.3µs on the CPU, and 1.23µs
on the FPGA. In each case, this includes the end-to-end time
elapsed from when a new flow’s packet arrives in the kernel
to when it has the result for packet tagging. The FPGA also
eliminates the variance in software performance.

Thus, inference latency can be driven down to a fraction
of the typical RTTs. Appendix A provides greater detail on
our implementation for interested readers.

6 Improving network scheduling
Assessing accuracy of ML-based method in terms of mean

error and R2 is useful, but unsatisfactory — we ultimately
want to understand the impact of errors on scheduling that
uses the estimates. We thus quantify the performance of both
flow-level (FastPass, pFabric, and pHost) and coflow-level
(Sincronia) schedulers with varying degrees of inaccuracy
in flow sizes. Throughout this evaluation, we use the same
traces used for our validation and testing results in §4.2.

6.1 Flow-level scheduling
We use the YAPS simulator [27]. We use the leaf-spine

topology used in pFabric [5], with 4 spines, 9 racks, and 144
servers, with all network links being 10 Gbps. To measure
the effect of inaccurate predictions on flow completion times

(FCT), we replay the network traces collected from our clus-
ter in YAPS. Each experiment uses traces6 from one of the
5 job types. We run all our tests at 60% network utilization,
mirroring the original pFabric and pHost papers.

We compare network performance across the following
flow estimators: (0) “Perfect”, an ideal predictor with zero
error. (1) “Mean”, whereby every flow size is predicted to be
the mean. (2) “GBDT”, the gradient-boosting decision tree
learning approach with 50 trees. (3) Specifically for pFab-
ric, we also evaluate the 0-knowledge LAS policy – “Ag-
ing” (§3.2). Today’s commonly deployed approach – FIFO
scheduling at switches and ECMP forwarding – is also eval-
uated as a baseline (“Oblivious”).

Fig. 6 shows the average FCT across all 5 workloads, 3
flow-level scheduling techniques, and these flow estimators.
Note that the Aging result is shown only for pFabric, because
it can be easily modified to use LAS.

Oblivious often results in mean FCT more than 2× that of
Perfect, e.g., compared to FastPass across all workloads, and
compared to pFabric in Fig. 6(a) and 6(c); the largest gap is
as large as 11.1×, vs. FastPass in Fig. 6(a). GBDT achieves
mean FCT close to Perfect across all cases, with the largest
gap being 1.21×, vs. FastPass in Fig. 6(e). Compared to
Oblivious, improvements with GBDT range from 1.1-11.1×
across our experiments.

Understanding the performance of these schemes re-
quires a closer look across the entire flow size distribution.
Fig. 7 (left) shows the distribution for one example – pFabric
scheduling over an SGD trace, i.e., details behind the mean
FCTs for pFabric in Fig. 6(a). Note that the logarithmic x-
axis in Fig. 7 visually suppresses significant differences. Ag-
ing indeed achieves good results for the short flows for the
SGD trace, but for longer flows, which share the same prior-
ity for a long time, its performance is worse than Oblivious,
resulting in a larger mean FCT (Fig. 6(a)). The TensorFlow
workload, with most flows being short, presents a difficult
scenario for Aging – as noted in §3.2, for such workloads,
Aging’s behavior is the opposite of desirable (Fig. 7 (right)).

In contrast to Aging, GBDT’s performance is similar to
Perfect across the flow size spectrum for both workloads.

6.2 Coflow scheduling
We evaluate Sincronia, a recent proposal that leverages

flow size information to provide near-optimal coflow com-
pletion time (CCT), with our imprecise flow size estimates.

We generate coflows from our traces by picking r
consecutive flows grouped together to create a coflow.
For each coflow, r is chosen uniformly at random from
{1,2,3, . . . ,20}. For each of our five traces, we run 200
coflows with Sincronia’s offline simulator at 60% network
load. We execute experiments for Perfect and GBDT,

6Note that, unfortunately, we cannot provide results for flow size distri-
butions often used in data center research because we do not have the traces
to produce the distribution of estimation error for them.

572 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 12

 14

pFabric pHost FastPass

M
e
a
n
 F

C
T
 (

m
s)

(a) SGD

 0

 1

 2

 3

 4

 5

 6

pFabric pHost FastPass

M
e
a
n
 F

C
T
 (

m
s)

(b) PageRank

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

pFabric pHost FastPass

M
e
a
n
 F

C
T
 (

m
s)

(c) TensorFlow

 0

 1

 2

 3

 4

 5

 6

pFabric pHost FastPass

M
e
a
n
 F

C
T
 (

m
s)

(d) KMeans

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

pFabric pHost FastPass

M
e
a
n
 F

C
T
 (

m
s)

(e) Web server
 0

 1

 2

 3

 4

 5

 6

pFabric pHostFastPass

M
ea

n
FC

T
(m

s)

Perfect
GBDT
Mean
Aging

Oblivious

Figure 6: Mean FCT across 4 scheduling techniques, 5 workloads, and several flow size estimators.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

CD
F

FCT (ms)

Perfect
Oblivious

GBDT
Aging

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

CD
F

FCT (ms)

Perfect
Oblivious

GBDT
Aging

Figure 7: FCTs for pFabric for the SGD (left) and TensorFlow (right) workloads.
Due to the log-scale, small visual differences are significant. On the right plot, Per-
fect and GBDT are visually indistinguishable, and so are Aging and Oblivious.

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

PageRank
KMeans SGD

TensorFlow
Web Server

Re
la

tiv
e

pe
rfo

rm
an

ce

de
gr

ad
at

io
n

Figure 8: Relative performance degradation for
Sincronia expressed as the ratio between mean CCT
with imperfect estimates and perfect knowledge.

and record mean CCT. To measure the effect of inaccurate
predictions, we define relative performance degradation as
GBDT-CCT / Perfect-CCT.

Fig. 8 shows that the performance degradation for coflow
scheduling for PageRank, KMeans and SGD, is substantialy
higher than for flow scheduling algorithms. That is because
errors in estimates for individual flow sizes compound with
coflows. This also explains why workloads with very high
accuracy for individual flow sizes, such as Web server and
TensorFlow, are only exposed to modest degradation.

7 Limitations of learning
It should be clear that the learning approach is not a

panacea. There are several scenarios where it falls short.
First and foremost, the prediction context should be clear,
i.e., the learning module has to identify the program that is
responsible for sending a flow and monitor all features of
interest for that flow, as described in §5.2. For Spark, the
prediction context assumes knowing start time of a job as
well as its ID. This is not unreasonable, as noted in §5.4.

However, for Web servers, we would have to tie disk and
memory reads to particular requests. To demonstrate the ef-

fect of missing context, we run Apache Tomcat, serving con-
current clients, so that it is not obvious how to match HTTP
requests with corresponding disk reads and responses. In this
case, disk reads become almost useless as an indicator, and
we can only rely on system calls. The prediction accuracy
can be made arbitrarily bad by tweaking the experiment pa-
rameters, so we omit a concrete accuracy number.

One possibility for obtaining such context is to apply verti-
cal context injection [6], which is deployed in Google’s data
centers; it tags system calls with application information for
easier monitoring and debugging.

Further, for the execution of one-shot jobs without repet-
itive internal structure, there is clearly no learning potential.
Likewise, for jobs where large, non-deterministic data vol-
umes are generated (e.g., computationally) for transmission,
and there is little repetition across executions, it is unlikely
that this approach can succeed.

Thus, for many workloads of practical interest, despite our
best efforts, this approach will also be limited. We next dis-
cuss scenarios where learning or other heuristics can only
estimate flow sizes for some fraction of the traffic.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 573

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 20% 40% 60% 80% 100%

Pe
rf

o
rm

a
n
ce

Percentage of known flows

SGD

PageRank

TensorFlow

(a) pFabric, % of flows known

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1KB 10KB 100KB 1MB 10MB All

Pe
rf

o
rm

a
n
ce

Size of known flows

SGD

PageRank

TensorFlow

(b) pFabric, flows known by size

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 20% 40% 60% 80% 100%

Pe
rf

o
rm

a
n
ce

Percentage of known flows

SGD

PageRank

TensorFlow

(c) Sincronia, % of flows known

Figure 9: As more flow sizes are known, performance generally improves ...

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1KB 10KB 100KB 1MB 10MB All

Pe
rf

o
rm

a
n
ce

Size of known flows

SGD

PageRank

TensorFlow

(d) Sincronia, flows known by size

Figure 9: (continued) ... but for Sincronia, as larger and larger
flows become known, performance sometimes degrades.

8 More knowledge⇒ better performance?
While our exploration across several heuristics and an

ML-based approach is promising, it is also clear that we will
simply not get accurate flow size estimates for all applica-
tions. Thus, we advocate a pragmatic, two-fold approach: (a)
Schedulers should tread a middle-ground – rather than giving
up entirely on flow size estimation and operating in a non-
clairvoyant manner, using estimates when they are available.
(b) We should assess whether it is worth spending effort to
expand the set of flows for which sizes can be estimated. We
explore such pragmatism for flow- and coflow-level schedul-
ing with pFabric and Sincronia.

To the best of our knowledge, past work has only touched
on the first of these ideas. SOAP [40] and Karuna [9] have
explored settings with a fixed proportion of flows of known
and unknown sizes. Karuna combines pFabric’s shortest re-
maining first (SRF) approach for known flows with Aging7

for unknown flows. We refer to this policy as SRF-age, but
consider a version with infinitely many priorities.

Instead of settings where we have size estimates for a fixed
subset of flows, our interest is in examining what happens
when we can invest in estimating a larger fraction of flows.
In the following, we refer to flows with available sizes as
“known” and other flows as “unknown”.
Knowing x% of all flows: If x = 0, SRG-age devolves to
Aging, and if x = 100, it becomes Perfect (pFabric with full
knowledge). We define performance with an arbitrary x% of
flows known as the following normalization, where FCTP is

7We are simplifying here; Karuna actually uses a multi-level feedback
queue, with queue thresholds set based on the flow size distribution.

mean FCT with policy P:

Per f (x) =
FCTSRF−age(x)−FCTAging

FCTPer f ect −FCTAging

Fig. 9(a,b,c) shows the results on this normalized metric
for a sample of workloads from §6. As more flow sizes be-
come known, performance improves.
Knowing all flows of size up to x bytes: Given that some
approaches, like using the initial system call, are more effec-
tive at estimating smaller flows, it is worth asking how much
benefit knowledge of small flows gives. To evaluate this, we
modify SRF-age as follows: We assign priorities to known
flows following standard SRF, but for flows larger than x, we
use max(age,x). This reflects our confidence that any un-
known flow is larger than x bytes.

Fig. 9(b) shows that just knowing small flows will not im-
prove performance drastically in terms of mean flow comple-
tion time, because they finish near the highest priority even
in case of zero knowledge. However, their performance can
improve if other, larger flows are known, and do not compete
with small flows at the same high priority.
Coflow scheduling: Using Sincronia, we also explore the
effects of having partial knowledge on coflow scheduling.
We generate coflows in the same manner as in §6.2. We
run Sincronia offline with 1000 coflows. Unfortunately, not
having a packet-level implementation of Sincronia, coupled
with the lack of a known or intuitive translation of Aging,
limits our analysis. For unknown flows we thus assume that
they are of the mean flow size of the whole trace, and refer
to this policy as Sinc-mean.

We normalize performance with partial knowledge in the
same manner as for pFabric, except using coflow completion
times (CCT). The results with x% of flow sizes known and
all flows smaller than x bytes known are shown in Fig. 9(c)
and Fig. 9(d) respectively.

In some cases, knowing large fractions of flows does not
improve CCT substantially. For instance, for the PageRank
workload, knowing 70% of flows still gives more than 60%
worse results than with perfect knowledge (Fig. 9(c)). This is
due to unknown flows within a coflow acting like stragglers.

Fig. 9(d), oddly, indicates that sometimes adding knowl-
edge decreases performance. We explain this with an exam-

574 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1

Ingress Ports Egress Ports

7

1

2

3

4

1

Figure 10: In this scenario, Sinc-mean scheduling policy leads to
priority inversion and performance degradation when knowledge
about certain flows is added to the system.

ple scenario, following a brief (simplified) overview of Sin-
cronia. Sincronia finds a bottleneck port, i.e., one with the
largest number of bytes accumulative across flows; and then
assigns the lowest priority to the largest coflow on that link.
Flows within a coflow share priority.

Now consider a scenario with two coflows, with all their
flows going from the same ingress port to different egress
ports as shown in Fig. 10. Coflow c1 contains only one flow
with 7 packets, and coflow c2 contains two flows of 1 packet
each. The mean flow size is thus 3 packets. Regardless of
which flows are un/known, with Sinc-mean, the ingress port
would correctly be identified as the bottleneck. If all flows
are unknown, Sinc-mean would consider all of them to be
of the size 3. Sinc-mean would give c1 higher priority, be-
cause its total estimated coflow size is 3 (compared to 6 for
c2), and, thus, finish c1 first, within 7 time units. Now in-
stead, say we had disclosed the size of c1’s single constituent
flow. This leads Sinc-mean to detect c1 as the larger coflow
(with size 7 for c1 vs. an estimated 6 for c2) and give higher
priority to c2. In this case, c1 finishes after c2 with a coflow
completion time of 9 time units. Thus, for c1, making its size
known results in worse performance under Sinc-mean.
When does more knowledge help? Ideally, we would like
the assurance that investing in learning about more flows
only improves performance. Otherwise, there are limited
incentives for data center operators and/or users to change
their applications to expose flow size information or to de-
ploy methods to estimate it.

This property clearly does not hold for Sinc-mean. It is
as yet unclear to us how Aging could be incorporated into
Sincronia, and whether a partial-knowledge variant can be
developed that does not have the quirk of (sometimes) de-
teriorating when given additional knowledge. However, for
the much simpler pFabric/SRF, we can prove a positive result
in this direction, showing that for SRF-age, making a certain
flow’s size known can never deteriorate its performance, at
least when interpreted in a worst-case manner.

Our simplified model assumes that all flows go through
one link with unlimited output queuing. This output buffer
queues packets in flow priority order. This implies that
across different flows, packets leave the queue in priority or-
der, but within flow packets leave in the same order as they
arrive. At every timestep, either a packet leaves the queue,

or a new flow arrives. When flows arrive, all their packets
are immediately added to this priority queue in their respec-
tive positions, with priority ties being broken randomly. To
tackle this randomness, we define worst-case scheduling for
a particular flow fx as the schedule where any and all ties for
fx’s packets break against fx.

For some flows, their flow sizes are known, and for others,
they are not. For flows with unknown sizes, each packet uses
the flow’s age so far as its priority. The first packet of such
a flow has the priority set to zero (highest), with successive
packets seeing increments in priority value (i.e., decreasing
priority with more packets sent). (For brevity, we omit the
distinction between packets and bytes and assume all packets
are the same size.) In line with SRF, for known flows, the
priority value for their last packet is zero (highest). If the
size of a flow f is known, we denote it with f k; otherwise
with f u. We define priorities such that if P(p) and P(q) are
the priorities of packets p and q, then P(p)> P(q) implies p
has higher priority, and is scheduled before q.

Theorem 8.1. All else fixed, with SRF-age, learning the flow
size of a particular flow fx cannot deteriorate its worst-case
completion time, i.e., FCT (f k

x)≤ FCT (f u
x).

Proof. To prove the result, we shall show that every packet
of any other flow that is scheduled before the end of f k

x would
have also been scheduled before the end of f u

x , assuming
worst-case scheduling for either. It is easy to see that this
would imply that the FCT for f k

x in a worst-case schedule
cannot be worse than the FCT of f u

x .
Suppose a packet r of some other flow is scheduled before

a packet pk
x in f k

x , given worst-case scheduling for f k
x . This

scheduling implies r has priority higher than or equal to pk
x,

i.e., P(r)≥ P(pk
x).

Now, say the last packet of f u
x is lu

x . Notice that this last
packet of f u

x must have priority lower than or equal to all
packets of f k

x , including pk
x, i.e., P(lu

x)≤ P(pk
x). This follows

from the definition of SRF-age. If the size of a flow f is | f |
packets, then the last packet of f u (per aging) has priority
value | f |−1. The nth packet of f k has priority value | f |−n.

Putting the above two inequalities together yields P(r) ≥
P(lu

x). Thus, r would also be scheduled before lu
x (which is

the end of f u
x), at least in the worst-case schedule for f u

x .

A few remarks about this result are in order:

• The theorem and the proof specify worst-case tie-
breaking for the flow under consideration. It is easy to
produce counterexamples to the theorem statement with-
out the worst-case addendum.

• The definition of SRF-age is central to the result, and it is
easy to produce counterexamples for an analogous state-
ment for SRF-mean.

• For systems with a limited number of priority queues, like
Karuna or PIAS, the theorem still holds if both known and
unknown flows share the same priority thresholds.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 575

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0% 20% 40% 60% 80% 100%

Pe
rf

o
rm

a
n
ce

Percentage of known flows

Known flows

Unknown flows

All flows

Figure 11: For the TensorFlow workload, with TCP, unknown
flows finish faster under SRF-age.

• The result can appear counter-intuitive; after all, large un-
known flows benefit from high priority in the beginning,
which they wouldn’t if they were known. While this is
true, unknown flows keep slowing down with aging, while
known flows keep speeding up with SRF. The proof for-
malizes this idea.

• Our model, like past work, assumes that scheduling does
not change packet inputs to the queue. This is not true for
TCP flows entering a finite queue.

The impact of the last issue above has not been explored
deeply in prior work on packet scheduling. To illustrate its
impact in practice, we take a closer look at the TensorFlow
trace in Fig. 9(a), separating out the FCTs for known and
unknown flows. As Fig. 11 shows, unknown flows finish
somewhat faster. This apparent deviation from our theo-
rem’s result stems from our simple model which ignores TCP
dynamics, assuming instead that all packets of a flow are
available for scheduling at its arrival time. The TensorFlow
workload comprises nearly 90% flows of sizes smaller than
100 KB. For unknown flows of this type, Aging results in
higher priority in the beginning, allowing TCP’s exponential
slow-start to grow such flows faster than flows with known
sizes. Incorporating TCP dynamics into our model to po-
tentially bound the disadvantage that known flows can suffer
will require substantial additional effort, which is left to fu-
ture work. While this discrepancy and its impact on schedul-
ing results should be examined in greater detail, this does
not take away from our results on incremental benefits from
having greater knowledge with SRF-age scheduling overall.
Mean completion time across all co/flows: Although we
have shown that SRF-age cannot deteriorate the performance
of a particular flow when its size is made known, it is easy to
produce examples where it hurts mean flow completion time
across the set of all flows8. While our empirical results show
improved mean FCT with SRF-age (and an overall trend for
improvement even for mean CCT with Sinc-mean), a fuller
analysis of this issue is left to future work.

8This is also true of Sinc-mean for mean coflow completion time.

9 Related work
We have described relevant past work in context through-

out, discussing past efforts on using various types of heuris-
tics for estimating flow sizes in §3, learning-based efforts
that operate at slower timescales in §3.5, and work on non-
clairvoyant methods that do not use flow sizes in §2 and §3.2.

CODA [45] merits mention as a coflow scheduler that ac-
knowledges imprecision in scheduling inputs, and explicitly
handles such imprecision. However, CODA’s focus is on
clustering flows into coflows, rather than on flow size infor-
mation, for which it also relies on PIAS-like techniques.

We also discussed Karuna [9] and SOAP [40] in §8, but
as the closest prior efforts considering scheduling in a mixed
setting with flow sizes (or deadlines, job sizes, etc.) available
and not available, we highlight our contributions in compar-
ison to these here. Both Karuna and SOAP only explore
scheduling in a mixed setting with a fixed set of known and
unknown flows, while our work (a) systematically exam-
ines ways of expanding the set of flows for which size esti-
mates are available; (b) evaluates the utility of imprecise es-
timates across multiple scheduling approaches; and (c) takes
first steps towards assessing how the incremental addition of
knowledge about flows impacts scheduling, with interesting
results for both flow and coflow scheduling.

10 Conclusion
While clairvoyant scheduling promises large performance

benefits across a variety of network scheduling problems, its
assumption of advance knowledge of flow sizes is, at best,
optimistic. Our analysis of how such information may be
obtained reveals several settings where even our best efforts
are bound to fail. Superficially, this would suggest focus-
ing on non-clairvoyant scheduling, but we argue that such
absolutism is unnecessary – we should be using flow size
information where available, and examining whether esti-
mating it for more flows yields additional improvements in
scheduling. Along these lines, we present several heuristics
and a practically implementable learning-based approach to
expand the scenarios where flow size knowledge is available.
We further show empirically and analytically, that incre-
mentally adding such knowledge is helpful for SRF packet
scheduling. For coflow scheduling, we find that small errors
in flow size estimation get compounded, leaving a sizable
performance gap compared with fully clairvoyant coflow
scheduling. We also find that for at least some intuitive poli-
cies for scheduling with partial information, additional infor-
mation can deteriorate scheduling, thus necessitating deeper
examination of this issue in future work.

Acknowledgments
We are greateful to Kai Chen, Mosharaf Chowdhury, Rachit
Agarwal, and the anonymous NSDI reviewers, for their feed-
back; and to George Porter for shepherding our paper.

576 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Treelite : toolbox for decision tree deployment. http:

//treelite.readthedocs.io/en/latest/,
2017.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. War-
den, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A
system for large-scale machine learning. In USENIX
OSDI, 2016.

[3] O. A. Abdul-Rahman and K. Aida. Towards under-
standing the usage behavior of Google cloud users: the
mice and elephants phenomenon. In IEEE CloudCom,
2014.

[4] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal,
D. Shmoys, and A. Vahdat. Sincronia: near-optimal
network design for coflows. In ACM SIGCOMM, 2018.

[5] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-
own, B. Prabhakar, and S. Shenker. pFabric: Minimal
near-optimal datacenter transport. In ACM SIGCOMM,
2013.

[6] D. Ardelean, A. Diwan, and C. Erdman. Performance
analysis of cloud applications. In USENIX NSDI, 2018.

[7] W. Bai, K. Chen, H. Wang, L. Chen, D. Han, and
C. Tian. Information-agnostic flow scheduling for com-
modity data centers. In USENIX NSDI, 2015.

[8] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey,
P. Kaur, J. Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger. A cloud-scale acceleration architecture. In
IEEE/ACM MICRO, 2016.

[9] L. Chen, K. Chen, W. Bai, and M. Alizadeh. Schedul-
ing mix-flows in commodity datacenters with Karuna.
In ACM SIGCOMM, 2016.

[10] L. Chen, J. Lingys, K. Chen, and F. Liu. Auto: Scaling
deep reinforcement learning for datacenter-scale auto-
matic traffic optimization. In ACM SIGCOMM, 2018.

[11] T. Chen and C. Guestrin. XGBoost: A scalable tree
boosting system. In ACM SIGKDD, 2016.

[12] F. Chollet et al. Keras. https://github.com/
keras-team/keras, 2015.

[13] M. Chowdhury and I. Stoica. Efficient coflow schedul-
ing without prior knowledge. In ACM SIGCOMM,
2015.

[14] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing data transfers in computer clusters
with Orchestra. In ACM SIGCOMM, 2011.

[15] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
coflow scheduling with Varys. In ACM SIGCOMM,
2014.

[16] E. Cortez, A. Bonde, A. Muzio, M. Russinovich,
M. Fontoura, and R. Bianchini. Resource central: Un-
derstanding and predicting workloads for improved re-
source management in large cloud platforms. In ACM
SOSP, 2017.

[17] A. R. Curtis, W. Kim, and P. Yalagandula. Ma-
hout: Low-overhead datacenter traffic management us-
ing end-host-based elephant detection. In IEEE INFO-
COM, 2011.

[18] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Row-
stron. Decentralized task-aware scheduling for data
center networks. In ACM SIGCOMM, 2014.

[19] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan.
High performance network virtualization with SR-IOV.
In IEEE HPCA, 2010.

[20] N. Farrington, G. Porter, S. Radhakrishnan, H. H.
Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and
A. Vahdat. Helios: A hybrid electrical/optical switch
architecture for modular data centers. In ACM SIG-
COMM, 2010.

[21] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Rat-
nasamy, and S. Shenker. pHost: Distributed Near-
optimal Datacenter Transport over Commodity Net-
work Fabric. In ACM CoNEXT, 2015.

[22] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing
flows quickly with preemptive scheduling. In ACM
SIGCOMM, 2012.

[23] K. Hornik, M. Stinchcombe, and H. White. Multi-
layer feedforward networks are universal approxima-
tors. Neural Netw., 2(5), 1989.

[24] L. C. Jain and L. R. Medsker. Recurrent Neural Net-
works: Design and Applications. CRC Press, Inc.,
Boca Raton, FL, USA, 1st edition, 1999.

[25] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayana-
murthy, A. Tumanov, J. Yaniv, R. Mavlyutov, Í. Goiri,
S. Krishnan, J. Kulkarni, et al. Morpheus: Towards
Automated SLOs for Enterprise Clusters. In USENIX
OSDI, 2016.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
genet classification with deep convolutional neural net-
works. In Advances in neural information processing
systems, pages 1097–1105, 2012.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 577

http://treelite.readthedocs.io/en/latest/
http://treelite.readthedocs.io/en/latest/
https://github.com/keras-team/keras
https://github.com/keras-team/keras

[27] G. Kumar, A. Narayan, and P. Gao. YAPS network
simulator. https://github.com/NetSys/
simulator, 2015.

[28] K. LaCurts, J. C. Mogul, H. Balakrishnan, and
Y. Turner. Cicada: Introducing predictive guarantees
for cloud networks. In USENIX HotCloud, 2014.

[29] Y. Lu, G. Chen, L. Luo, K. Tan, Y. Xiong, X. Wang,
and E. Chen. One more queue is enough: Minimizing
flow completion time with explicit priority notification.
In IEEE INFOCOM, 2017.

[30] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A receiver-driven low-latency transport proto-
col using network priorities. In ACM SIGCOMM, 2018.

[31] A. Mushtaq, R. Mittal, J. McCauley, M. Alizadeh,
S. Ratnasamy, and S. Shenker. Datacenter congestion
control: Identifying what is essential and making it
practical. https://people.eecs.berkeley.
edu/~radhika/adsrpt.pdf, 2017.

[32] M. Owaida, H. Zhang, C. Zhang, and G. Alonso. Scal-
able inference of decision tree ensembles: Flexible de-
sign for CPU-FPGA platforms. In FPL, 2017.

[33] Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, and L. Gu.
Hadoopwatch: A first step towards comprehensive traf-
fic forecasting in cloud computing. In IEEE INFO-
COM, 2014.

[34] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A centralized zero-queue datacen-
ter network. In ACM SIGCOMM, 2014.

[35] I. A. Rai, G. Urvoy-Keller, M. K. Vernon, and E. W.
Biersack. Performance analysis of LAS-based schedul-
ing disciplines in a packet switched network. In ACM
SIGMETRICS, 2004.

[36] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In ACM SoCC, 2012.

[37] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google
cluster-usage traces: format + schema. Tech-
nical report, Google Inc., Mountain View, CA,
USA, Nov. 2011. Revised 2014-11-17 for version
2.1. Posted at https://github.com/google/
cluster-data.

[38] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google
cluster-usage traces: format + schema. Google Inc.,
White Paper, pages 1–14, 2011.

[39] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Sno-
eren. Inside the social network’s (datacenter) network.
In ACM SIGCOMM, 2015.

[40] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf.
SOAP: One clean analysis of all age-based scheduling
policies. In ACM SIGMETRICS, 2018.

[41] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagian-
naki, T. E. Ng, M. Kozuch, and M. Ryan. c-through:
Part-time optics in data centers. In ACM SIGCOMM,
2010.

[42] H. Wang, L. Chen, K. Chen, Z. Li, Y. Zhang, H. Guan,
Z. Qi, D. Li, and Y. Geng. FlowProphet: Generic and
accurate traffic prediction for data-parallel cluster com-
puting. In IEEE ICDCS, 2015.

[43] C. Wilson, H. Ballani, T. Karagiannis, and A. Row-
stron. Better never than late: Meeting deadlines in dat-
acenter networks. In ACM SIGCOMM, 2011.

[44] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The
only constant is change: Incorporating time-varying
network reservations in data centers. In ACM SIG-
COMM, 2012.

[45] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and
Y. Geng. CODA: Toward automatically identifying and
scheduling coflows in the dark. In ACM SIGCOMM,
2016.

[46] Q. Zhang, V. Liu, H. Zeng, and A. Krishna-
murthy. High-resolution measurement of data center
microbursts. In ACM IMC, 2017.

578 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/NetSys/simulator
https://github.com/NetSys/simulator
https://people.eecs.berkeley.edu/~radhika/adsrpt.pdf
https://people.eecs.berkeley.edu/~radhika/adsrpt.pdf
https://github.com/google/cluster-data
https://github.com/google/cluster-data

A Deployment architecture
Different deployment options expose different flexibility-

performance tradeoffs. We first discuss FLUX’s placement
in the app-kernel interface in a controlled environment, and
then usage in virtualized environments. For illustration,
without loss of generality, we consider the pFabric use case,
tagging packets with the remaining flow size.

A.1 Where does FLUX operate?
There are three possibilities for partitioning FLUX’s com-

ponents across user- and kernel-space, shown in Fig. 13.
The data collector must have visibility of app I/O calls,

so it must be implemented as either a library to intercepts
these, or within the kernel. The packet tagger must sit in
the kernel to efficiently manipulate packets. Model training
operates off-datapath, and can sit essentially anywhere. The
key question is: where is inference implemented?

Fig. 13(a) – as a separate process: Inference is a standalone
process, serving requests from the syscall interceptor when-
ever a new flow starts. This approach makes changing or
updating the prediction model trivial. Since the model is a
single C function, it can be compiled to a shared library, and
loaded dynamically by the inference module.

When an app issues a send, the data collector requests in-
ference; a response for which is sent to the tagger. The infer-
ence path is much longer than the data path, and packets will
arrive for tagging before the inference. This blocking time
distribution is shown in Fig. 12(a) across 1000 flow starts.
The median (95th percentile) latency is 67.4µs (720µs).

Fig. 13(b) – as an interposed library: To reduce inter-
process communication, inference runs in the same library as
the collector. The send is intercepted and then issued to the
kernel after inference finishes, with the predicted flow size.
The application perceives this process as a long system call.
The median (95th percentile) latency is 4.97µs (16.7µs).

Fig. 13(c) – as a kernel module: All components except
learning can be implemented in the kernel. This kernel mod-
ule itself runs inference for new flows, and communication
with the tagger uses shared kernel memory. The latency
comprises entirely of inference, and is shown in Fig. 12(b)
for different model sizes, with an average of 4.3µs for the
50-tree model. This approach is quite inflexible: given that
different apps could need different inference models, a new
model must be inserted in the kernel for each new app.

A.2 Virtualization and offload
Virtualization: For containers, operation similar to a non-
virtualized environment works. For a guest OS, FLUX must
be interposed in the guest-host interface. Ultimately, the
guest is an “application” on the host, and the network in-
terface is similar, so this does much in terms of performance
and accuracy, except in cases where some networking func-
tionality is additionally offloaded to hardware.

Hardware offload: Parts of the network stack may be im-
plemented in hardware, or VMs may interact directly with
hardware, such as with SR-IOV [19]. Nevertheless, these
environments still must expose a similar send, rcv API to
underlying layers, which FLUX can intercept. However, in
these settings, FLUX must be implemented as part of a smart
NIC. This is fundamental to any method of using such
packet tagging for network scheduling, because the hyper-
visor may not touch individual packets at all.
RDMA stacks: RDMA has a significantly different API
than TCP. However, even for RDMA networking stacks, the
API exposes similar information about sent and received
data, which FLUX can exploit.

A.3 Inference speed
Fig. 12 shows how inference latency depends on the size

of GBDT models on CPU and on FPGA. For the 50-tree
model, with which we obtain reasonable accuracy on our
traces, the FPGA can achieve latency under 1.3µs. Such
low latency is possible because the FPGA is connected to
the CPU through the Intel’s QPI interconnect which guaran-
tees very short FPGA-CPU round trip. On the other hand,
a PCIe-attached FPGA exhibits a slower round trip (on the
order of 2.5µs).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 579

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

C
D

F

Latency (µs)

Inference as a library

Inference as a process

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000
C

D
F

Latency (µs)

20 trees

50 trees

100 trees

500 trees

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

C
D

F

Latency (µs)

20 trees

50 trees

100 trees

500 trees

(c)

Figure 12: Inference latency: (a) 50 tree GBDT implemented in a library vs. in a process; as a function of model size (b) in-kernel on a
CPU; and (c) using an FPGA.

User space

Kernel space

Application

Packet
Tagger

NIC

Prediction

Syscall Interceptor
Flow

PredictorSyscall
Info

Syscall Info

(a) as a process

User space

Kernel space

Application

Flow predictor

Packet
Tagger

NIC

Prediction

(b) as a library

User space

Kernel space

Application

Integrated
FLUX

module

NIC

Prediction

(c) as a kernel module

Figure 13: Three possibilities for partitioning FLUX’s components across user- and kernel-space.

580 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Stable and Practical AS Relationship Inference with ProbLink
Yuchen Jin† Colin Scott‡ Amogh Dhamdhere� Vasileios Giotsas?

Arvind Krishnamurthy† Scott Shenker‡

†University of Washington ‡UC Berkeley and ICSI �CAIDA ?University of Lancaster
Abstract

Knowledge of the business relationships between Au-
tonomous Systems (ASes) is essential to understanding the
behavior of the Internet routing system. Despite signifi-
cant progress in the development of relationship inference
algorithms, the resulting inferences are impractical for many
critical real-world applications, cannot offer adequate pre-
dictability in the configuration of routing policies, and suf-
fer from inference oscillations. To achieve more practical
and stable relationship inference, we first illuminate the root
causes of the contradiction between these shortcomings and
the near-perfect validation results for AS-Rank, the state-of-
the-art relationship inference algorithm. Using a “naive” in-
ference approach as a benchmark, we find that available vali-
dation datasets over-represent AS links with easier inference
requirements. We identify which types of links are harder
to infer and develop appropriate validation subsets to enable
more representative evaluation.

We then develop a probabilistic algorithm, ProbLink, to
overcome the challenges in inferring hard links, such as non-
valley-free routing, limited visibility, and non-conventional
peering practices. ProbLink reveals key AS-interconnection
features derived from stochastically informative signals.
Compared to AS-Rank, our approach reduces the error rate
for all links by 1.6× and, importantly, by up to 6.1× for
various types of hard links. We demonstrate the practical
significance of our improvements by evaluating their impact
on three applications. Compared to the current state-of-the-
art, ProbLink increases the precision and recall of route leak
detection by 4.1× and 3.4× respectively, reveals 27% more
complex relationships, and increases the precision of predict-
ing the impact of selective advertisements by 34%.

1 Introduction
The Internet, often referred to as a “network of networks”,
is composed of more than 60,000 Autonomous Systems
(ASes). These ASes co-operate via the Border Gateway
Protocol (BGP) to exchange routing information and ob-
tain global reachability. The connections between ASes are
shaped by business contracts that determine the economics
and technical aspects of traffic exchange. For over 15 years,
researchers have studied the problem of inferring the differ-
ent types of relationships between ASes from publicly avail-
able BGP routing data. Relationship inferences are used
for a wide range of applications and areas of research, such
as detecting network congestion [13], identifying malicious
ASes [36, 12], deploying incentive-compatible BGP security

mechanisms [23, 11], protecting the integrity of anonymiza-
tion [47, 34], optimizing video streaming [38, 18, 30], and
understanding Internet governance and the ramifications of
public policy proposals [39, 40, 30].

In this paper, we revisit the AS relationship inference
problem. We find, as others have, that available relationship
inference algorithms perform poorly in many critical appli-
cations [44, 6, 47, 43, 57]. We seek to understand why state-
of-the-art algorithms are insufficient, despite extensive vali-
dation that indicates an error rate as low as 1%. In particular,
we consider the sophisticated AS-Rank technique [41] which
is carefully crafted using eleven deterministic heuristics. As
a first step in assessing the performance of AS-Rank, we cre-
ate a baseline benchmark algorithm, CoreToLeaf, that con-
sists of three simple steps and only assumes valley-free paths
through a core set of transit-free ASes. In spite of its simplic-
ity, CoreToLeaf achieves accuracy that is almost as high as
that of AS-Rank. At the same time, we evaluate CoreToLeaf
and AS-Rank in practical applications—detection of route
leaks and the analysis of selective advertisements—which
reveals that the performance of both algorithms falls short
of the needs of those applications.
CoreToLeaf’s high accuracy against the validation

datasets implies that the majority of AS-links in the valida-
tion datasets are relatively easy to infer. Yet the sub-optimal
performance of both algorithms in practical applications in-
dicates that the small minority of AS-links that are difficult
to infer are crucial for those applications. We select subsets
of the validation dataset that contain AS links that we con-
sider hard, and find that both the CoreToLeaf and AS-Rank

techniques have substantially lower accuracy on these val-
idation subsets (confirming where these current algorithms
fall short).

We next examine the challenges in developing a more ac-
curate AS relationship inference algorithm. We observe first
that the attributes of a link (and those of the paths that tra-
verse the link) that might be used by an AS-relationship in-
ference algorithm are noisy and often have only a weak cor-
relation with the link’s relationship type. Second, many links
appear in paths that likely violate the valley-free assumption
made by existing algorithms. Third, existing algorithms are
sensitive to the locations of the vantage points and the order
in which the link relationships are inferred. An AS relation-
ship inference technique must address the above challenges
if it is to achieve higher accuracy for hard links.

We develop a probabilistic AS relationship infer-
ence algorithm, ProbLink, to address the above issues.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 581

ProbLink provides a framework that allows for easy inte-
gration of many noisy but useful attributes into the relation-
ship inference algorithm. ProbLink enables us to identify a
set of link attributes that take into account not only observed
paths but also information gleaned from the fact that certain
paths are not observed. ProbLink allows for links to appear
in paths that violate the valley-free property but attributes a
lower probability to such occurrences. ProbLink uses an it-
erative algorithm that repeatedly infers link types based on
statistical distributions of link attributes until the inferences
reach a fixed point.

Our evaluation of ProbLink show that it achieves an er-
ror rate that is better than that of AS-Rank overall by 1.7×,
and achieves 1.8-6.1× better error rate for various categories
of hard links. We find that even the small improvement in
overall accuracy brought by ProbLink has a significant im-
pact when applied to real-world applications. Compared to
the current state of the art, ProbLink increases the preci-
sion and recall of route leak detection by 4.1× and 3.4×
respectively, reveals 27% more complex relationships, and
increases the precision of predicting the impact of selective
advertisements by 34%.

2 Background and Related Work
The Border Gateway Protocol (BGP) is the mechanism used
by ASes to exchange reachability information. A BGP AS
path is a sequence of ASes denoting the routing path that
the first AS in the path prefers to reach a destination pre-
fix. The last AS in the path is referred to as the “origin AS”
of the prefix. Each AS uses a complex decision process to
select the most preferred path toward each destination pre-
fix [9]. BGP route collection infrastructure is operated by
Routeviews [4] and RIPE NCC [3]. This consists of routers
that peer with ASes that volunteer to provide their BGP rout-
ing advertisement feeds for research or operational reasons.
A route collector is configured to obtain the best paths from
ASes it peers with, the most preferred available path towards
each destination starting from that AS. Route collectors typ-
ically peer with several ASes, and thus obtain multiple best
paths to each destination prefix.

AS relationships fall into two broad categories: customer-
provider (c2p) and settlement-free peering (p2p). In a c2p re-
lationship, the customer AS pays the provider AS for reach-
ability to/from the rest of the Internet. In a p2p relationship,
two networks agree to exchange traffic destined to prefixes
they or their customers own without an associated fee. In
practice, AS relationships can span a spectrum of types be-
tween c2p and p2p. These hybrid or complex relationships
can occur when two ASes have multiple contractual agree-
ments, one for each geographical region where an intercon-
nection exists [27]. Sibling relationships exist between dis-
tinct ASes that are owned by the same organization and can
exchange traffic without any cost or routing restrictions.

The customer cone of an AS X is the set of ASes that X can

reach using only p2c links. The size of the customer cone is
an indication of the market power of an AS. A clique of Tier-
1 ASes at the top of the Internet AS hierarchy are “transit-
free”, meaning that they have routes to all other networks on
the Internet through customer or peering links without the
need to pay for transit.

2.1 AS Relationship Inference Techniques

Beginning with the seminal work by Gao [21], most AS-
relationship inference algorithms are based on the assump-
tion that valid BGP paths are valley-free, i.e., a path consists
of zero or more c2p links, followed by zero or one peering
link, followed by zero or more p2c links. This assumption
captures the economic incentives that (at least partially) de-
termine traffic exchange between ASes: an AS should not
intentionally advertise routes learned from a peer or provider
to another peer or provider, since this ”free transit” increases
infrastructure costs but provides no remuneration.

Another observation made by Gao and others [55, 14, 15,
61] is that providers usually have a higher node degree (i.e.,
the number of ASes to which an AS node directly connects
to) than customers, while peers usually have similar degrees.
Node degree is the number of neighbors an AS directly con-
nects to, irrespective of whether the neighbors are providers,
peers, or customers Willinger et al. have shown that node
degree is significantly biased by the fact that the available
topological data reveals only a subset of the complete In-
ternet topology, due to limited placement of vantage points
adjacent to peer-to-peer AS links [60].

The state-of-the-art AS relationship inference technique,
called the “AS-Rank” algorithm [41], makes three generally
accepted assumptions: 1) there is a clique of large transit
providers at the top of the hierarchy, 2) most customers pur-
chase transit in order to be globally reachable, and 3) there
are no cycles of p2c links. The AS-Rank algorithm takes 11
intricate steps to label each link as customer-provider (ab-
breviated as c2p or p2c depending on the directionality of
the relationship) or peer-to-peer (p2p). An abbreviated ver-
sion of the AS-Rank algorithm is available in Appendix A
for ease of reference.

It is worth noting a few properties of the AS-Rank algo-
rithm. First, AS-Rank uses the transit degree attribute as
one of the main sources of information in determining rela-
tionship labels. Transit degree is the number of ASes that
appear on either side of an AS in adjacent links of BGP
paths, but it does not count neighbors for which the given
AS does not transit traffic. Transit connectivity is easily ob-
servable by Route Collectors (except for backup or partial-
transit links [29]), therefore it provides a more robust metric
to describe an AS’s prominence than node degree. Second,
AS-Rank considers ASes and links in a specific order, using
the transit degree information in certain cases (step 5) and
not in others (step 7).

582 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Input Datasets
3.1 BGP Paths

We collect BGP paths towards IPv4 prefixes from Route-
Views [4] and RIPE RIS [3]. In September 2018, both
projects operated 22 collectors, which in total connect with
more than 1,000 vantage points (VP) worldwide. Each
RouteViews and RIPE RIS collector dumps a snapshot of
their Adj-RIB-out tables every 2 hours and every 8 hours
respectively. For the purpose of evaluating the various algo-
rithms over longitudinal data (as discussed in §4 and §7), we
consider snapshots of BGP paths on the first day of April,
August, and December (i.e., every four months) since 2006.

After collecting BGP paths, we parse them to remove du-
plicated ASes that result from BGP path prepending. We
also filter out paths with AS loops, i.e., when an ASN ap-
pears more than once and is separated by at least one other
ASN. We also sanitize the BGP paths by removing paths
containing reserved ASes [51]. Loops and reserved ASes
showing up in a path are artifacts of route poisoning [8, 35].

3.2 Sibling Relationships

We use CAIDA’s AS-to-organization mapping dataset [10],
which is derived from WHOIS data, to identify sibling links.
This dataset provides quarterly information starting from
2009. We infer links between ASes that are operated by the
same organization as sibling relationships.

3.3 IXP List

ASes often establish p2p relationships over shared switching
fabric provided by IXPs. To facilitate dense peering con-
nectivity, IXPs provide BGP Route Servers over which ASes
establish many-to-many (multilateral) interconnections. To
enable layer-3 connectivity Route Servers typically have
their own ASN, but according to best practices it should be
filtered-out from the AS path since the Route Server does not
participate in the routing decision process [33]. However, for
debugging reasons, some IXP members append the Route
Server ASN in the BGP path. We sanitize BGP paths to re-
move Route Server ASNs since essentially the peering links
are between the IXP members, and not between the IXP and
ASes. To collect a list of AS Numbers (ASNs) used by IXP
Route Servers, we query PeeringDB [2] for networks of type
“Route Server” and extract the ASN. We augment this list by
consulting the Euro-IX IXP Service Matrix [1] and extract-
ing the Peering LAN ASN and Route Server ASN for each
IXP. There were 172 IXP ASes in this list on 12/01/2017.

3.4 Validation Dataset

AS operators frequently encode the relationship type with
their neighbors directly in their prefix advertisements using
BGP Communities, an optional transitive BGP attribute used
to attach metadata on BGP paths. While the use of commu-
nities attribute is not standardized, many ASes publicly doc-
ument the meaning of their BGP communities on websites

Date # links # links Percentage
(MM/DD/YYYY) in validation set in total

04/01/2012 7,833 117,872 6.6%
04/01/2013 11,644 133,459 8.7%
04/01/2014 44,875 159,678 28.1%
04/01/2015 47,036 176,791 26.6%
04/01/2016 52,931 204,309 25.9%
04/01/2017 56,326 213,441 26.4%

Table 1: Size of the validation dataset vs. all links observed
from all VPs.

and in IRR databases, enabling us to assemble a dictionary
of BGP communities that denote relationship type. We used
a dictionary of 1286 community values from 224 different
ASes to construct a set of relationships from BGP data start-
ing quarterly from April 2006 to April 2017. Similar to prior
work [41], we treat this dataset as “best-effort” validation to
evaluate existing inference techniques and our proposed ap-
proaches.

Table 1 shows the size of this validation dataset over the
past 6 years. The coverage of our validation dataset in-
creased from 6.6% in 2012 to about 26% of the observed
links in recent years, due to the increasing popularity of BGP
communities and the deployment of additional VPs that al-
low more communities to propagate to BGP collectors. As
prior work has pointed out, links involving Tier-1 ASes and
VP ASes are over-represented, because public data on BGP
communities mostly comes from large ASes [41], while
communities from non-VP ASes may be stripped out during
the propagation of BGP routes. However, unlike prior work,
we take these biases into consideration during our evaluation.

As noted above, the use of BGP communities has become
increasingly popular [24], raising the question of whether we
can eventually exclusively rely on communities to extract
relationships without the need for an inference algorithm.
Even with prevalent use of BGP communities however, we
would face two important limitations. While communities
are by default a transitive attribute, in practice operators of-
ten strip out community tags before propagating advertise-
ments to neighbors. Indeed, if all the communities in our
dictionary were transitively propagated to our BGP collec-
tors, our validation dataset should have over 58% coverage
of the visible AS links. Instead, as shown in Table 1 our
coverage is less than 30% for the past 6 years. A second
limitation with communities is partial availability of publicly
available documentation of those attributes. Despite our best
efforts to maximize the number of interpretable community
values via automated web scraping and text processing tools,
we are only able to find authoritative documentation on the
meaning of 35% of visible community values.

4 Establishing a Benchmark for Hard Links
As explained in the previous section, the evaluation dataset is
extensive but biased toward specific types of links. It is im-
portant to understand if the links over-represented in the val-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 583

idation dataset are easier to infer correctly, compared to the
under-represented links, which may skew the overall eval-
uation results. To this end we develop CoreToLeaf, a very
simple algorithm that allows us to understand which links are
easy to infer. CoreToLeaf uses only the valley-free assump-
tion and the list of Tier-1 ASes to infer relationships. We
show that the inference accuracy of this algorithm is almost
as high as that of the more sophisticated AS-Rank algorithm
elaborated in §2.1, while the accuracy of both algorithms suf-
fer for certain categories of links. Our findings reveal that
indeed certain types of under-represented links in the evalu-
ation dataset are harder to infer, possibly inflating the overall
accuracy of past work. We address this issue by constructing
distinct validation sub-datasets as benchmarks for hard links.

4.1 The CoreToLeaf Algorithm

CoreToLeaf starts by inferring a clique of Tier-1 ASes using
the same inference method as AS-Rank. For each path that
traverses a Tier-1, we skip the first link after the Tier-1 and
label all succeeding links as p2c. For example, if AS2 is a
clique member in a BGP path “AS1, AS2, AS3, AS4, AS5,
AS6”, we infer links <AS4 - AS5> and <AS5 - AS6> as p2c.
We skip inferring the relationship for <AS2 - AS3> because
it could either be a p2c or a p2p, but all subsequent links
need to be p2c assuming that the path is valley-free. (Note
that if AS1 is a clique member, we would have labeled <AS2
- AS3> also as a p2c link.) Finally, we label all remaining
unclassified links as p2p.

In the step of labeling p2c links, a link could be labeled
more than once if it shows up in multiple paths. In some
cases, a link could be labeled as a p2c in some path and as a
c2p when traversing a different path. We label this link as a
“conflict” link when we encounter such an inconsistency.

Note that CoreToLeaf does not take into account degree
or transit degree information, nor does it use paths that do
not go through Tier-1s. This is in contrast to other traditional
algorithms; for example, Gao’s algorithm [21] considers all
paths, identifies the AS with the highest node degree in each
AS path and treats it as the top provider, and then labels AS
pairs before it as c2p or sibling and AS pairs behind it as
p2c or sibling. The rationale behind CoreToLeaf is simply
that there is greater certainty that it is customer routes that
are being transitively exposed to Tier-1s and that there is less
likelihood of paths being exported to Tier-1s due to complex
peering mechanisms.

4.2 Evaluation

We evaluate this extremely simple algorithm against our val-
idation dataset on 04/01/2017, which contains 23,528 p2p
links and 32,798 p2c links (corresponding to 26.4% of the
visible topology). Table 2 compares the precision (true posi-
tives / (true positives + false positives)) and recall (true posi-
tives / (true positives + false negatives)) of CoreToLeaf and
AS-Rank. Surprisingly, CoreToLeaf achieves high preci-

p2c p2p Conflict
Algorithm Precision Recall Precision Recall

(%) (%) (%) (%) (%)
CoreToLeaf 98.9 95.8 95.0 98.8 0.12
AS-Rank 97.8 97.5 98.8 98.9 0

Table 2: Precision and recall of CoreToLeaf and AS-Rank.

sion and recall for both p2c and p2p links (comparable to
AS-Rank), with higher precision on p2c relationships (98.9%
compared to 97.8%), and a small fraction of links labeled as
‘conflict’.

The 1.1% mistakenly inferred p2c links and the links
which CoreToLeaf labels as ‘conflict’ are due to valley-free
violation, which we quantify later in §5.2. Since the step of
labeling p2c links uses just paths through Tier-1s, it fails to
capture 4.2% (95.8% recall) of the actual p2c links. Conse-
quently, these links are inferred as p2p in the third step and
results in a 5.0% error rate for links labeled as p2p.

The accuracy of CoreToLeaf and AS-Rank seem quite
high, but they perform sub-optimally when applied to real-
world applications. Route leaks constitute a type of prevalent
routing incident that can cause significant disruptions to In-
ternet routing [54, 28]. In §8, we describe how we can use
inferred relationships to detect route leaks and evaluate the
effectiveness of AS-Rank inferences. Only 19% of the route
leaks detected using AS-Rank were real route leaks, and al-
most 80% of the real leaks were missed. We observe rela-
tively poor performance for two more applications we tested,
as discussed in detail in §8. The high application-level er-
ror rates illustrate that a better AS relationship algorithm is
needed for real-world applications.

4.3 Identifying Hard Links

The surprisingly high accuracy obtained by CoreToLeaf has
many implications. First, it indicates that simple techniques
might suffice for inferring the types of many of the links in
the validation dataset. Second, it underscores the need for
more comprehensive validation datasets that would be more
representative of AS links beyond those associated with Tier-
1 and VP ASes. Third, in the absence of more comprehen-
sive validation datasets, one way to make progress on im-
proving and evaluating AS relationship inference algorithms
is to identify specific types of links for which the current
algorithms do not work well. We therefore now attempt to
extract collections of hard links from the overall validation
dataset based on the inference performance of CoreToLeaf
and AS-Rank.

We feed a large set of features of every link in the vali-
dation dataset along with information on whether a link was
labeled as “inferred correctly” and “inferred incorrectly” by
CoreToLeaf and AS-Rank into a gradient boosted decision
tree [20], and calculate the feature importance for accurate
predictions for the two algorithms. The feature importance
calculation and results are presented in Appendix C. We ex-
tract the following five categories of “hard” links suggested

584 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

by the feature importance analysis and the CoreToLeaf al-
gorithm.
1) Links with max node degrees smaller than 100. The
feature importance analysis shows that CoreToLeaf and
AS-Rank do not have high accuracy for links whose endpoint
ASes both have small node degrees.
2) Links observed by more than 50 but less than 100 VPs.
The feature importance analysis also reveals that links ob-
served by at least 50 VPs but not more than 100 VPs are
hard to infer correctly. The reason is that p2p links are often
observed by few VPs and transit links are often observed by
many VPs, so it is hard to distinguish the link types for the
range in the middle.
3) Non-VP and non-Tier1 links. In general, a link that is
directly connected to a VP or a Tier-1 is likely to appear in
many BGP paths, and the AS inference algorithm is likely to
have access to more information regarding the link. More-
over, most of our validation dataset are links that are con-
nected to a VP or Tier-1 AS, so we want to specifically ana-
lyze the performance of inference algorithms on the “under-
represented” links in our validation dataset.
4) Unlabeled stub-clique links in CoreToLeaf. A stub AS
connects with only one other AS through which it gains ac-
cess to the entire Internet. A stub-clique link is a link whose
one endpoint is a stub AS and the other endpoint is in the
Tier-1 clique. In other words, the clique member is the only
AS to which the stub AS connects. These links typically
have very high transit degree difference, which is an impor-
tant feature as shown by the feature importance analysis.

In CoreToLeaf, a stub-clique link <X, Y> (where X is a
stub AS and Y is a clique AS) is inferred as a c2p iff there
is a path containing an AS triplet “Z, Y, X” where Z is also
a clique AS. We call the set of stub-clique links that are not
inferred as c2p in the second step of CoreToLeaf (i.e., they
are inferred as p2p in the later step) as “unlabeled stub-clique
links”.

In step 9 of AS-Rank, stub-clique links are classified as
c2p by default based on the assumption that stub networks
are extremely unlikely to meet the peering requirements of
clique members. We believe this assumption should be re-
visited with the trend of “Internet flattening”, as peering re-
lationships between high-tier ASes and low-tier ASes are be-
coming more prevalent [22].

5) Conflicts in CoreToLeaf. Recall that CoreToLeaf la-
bels some links as “conflicts”. These links appear to behave
as p2c on some paths and c2p on others, and the main rea-
son for this is violations of valley-free routing. We believe
that this set of links is difficult to analyze because the two
endpoints are likely to have unconventional routing policies.

Table 3 shows the error rates of inferences made by
CoreToLeaf and AS-Rank on each category of hard links
on 04/01/2016. We observe both algorithms yield more er-
rors than their inferences on normal links, especially on un-
labeled stub-clique links. Furthermore, the fraction of every

Category CoreToLeaf AS-Rank Fraction Fraction
(%) (%) all links validation

Max node degree <100 13.7 8.6 16.1% 1.7%
Observed by 50-100 VPs 4.7 9.3 9.9% 8.1%

Non-VP & Non-Tier1 5.3 9.0 24.2% 11.6%
Unlabeled Stub-clique 95.5 33.4 0.3% 0.1%

Conflict 100.0 8.1 0.24% 0.16%

Table 3: Error rates of CoreToLeaf and AS-Rank on hard links
on 04/01/2016. The fraction of each category of hard links that
is in overall links vs. in the validation dataset shows that hard
links are underrepresented in the validation dataset.

category of hard links in the validation dataset is less than
that in the overall links, especially for the “Max node degree
< 100” category. This indicates that the validation dataset
is skewed to easy links. In addition to the entire validation
dataset, we will use these more specific datasets for evaluat-
ing the AS inference algorithms in the subsequent sections.

5 Challenges With AS Relationship Inference
In this section, we identify three main challenges with AS re-
lationship inference, and describe how they hamper existing
inference techniques. This analysis helps inform the design
of a probabilistic algorithm for AS relationship inference.

5.1 Degree Inversion

An AS inference algorithm can use any observed attribute
associated with a link, its two endpoint ASes, AS links, and
end-to-end paths that traverse the link in order to determine
the link type. However, most attributes have stochastic infor-
mation value, as we will illustrate below for AS degree.

Many existing techniques for inferring AS relationships
make three assumptions: highest-degree ASes sit at the top
of the routing hierarchy; peering ASes have similar degrees;
and providers have larger degree than customers [21, 41, 16].

Over the past four years, the top two nodes with the largest
transit and node degrees (as observed through BGP feeds
from available VPs) have consistently been AS6939 (Hurri-
cane Electric) and AS174 (Cogent Communications). How-
ever, both of these ASes are not Tier-1 ASes [59], so the
assumption that the ASes with the highest degrees sit on top
of the routing hierarchy is not universally valid. This fact in-
fluences the accuracy of some inference approaches since a
key step in these approaches is identifying a clique of Tier-1
ASes at the top of the hierarchy [21, 41].

Figure 1a plots a CDF of the absolute transit degree dif-
ferences of different link types. Transit degrees of ASes are
computed from BGP paths observed on 04/01/2017, and link
types are derived from the validation dataset on 04/01/2017
as described in §3.4. The validation dataset includes 55,016
links, 30,859 of which are p2c links and 24,157 are p2p links.
We see that even though p2c links usually have larger degree
differences than p2p links, over 14% of the p2p links have
absolute transit degree differences larger than 1000, making
many p2p links indistinguishable from p2c links in terms of
transit/node degree difference.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 585

0 1000 2000 3000 4000
Difference of Links' Transit Degrees

0.00

0.25

0.50

0.75

1.00
CD

F

p2p
p2c

(a) CDF of absolute transit degree differ-
ence.

0 2 4 6 8 10
Number of Valley Paths

0.00

0.25

0.50

0.75

1.00

CD
F

(b) CDF of the number of paths that vio-
late the valley-free property traversing each
link.

0 1 2 3 4 5 6
Error Rate (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(c) CDF of AS-Rank’s error rates on 30 con-
secutive 1-day BGP snapshots from April 1,
2016 to April 30, 2016.

Figure 1: Analysis of transit degree difference, valley-free violations, and error rates of AS-Rank.

According to this observation, the existence of substan-
tial differences in node/transit degrees between peering ASes
is common. This phenomenon is explained in part by the
fact that, during recent years, large content providers such as
Google, Akamai, and Microsoft, which usually have high
degrees, are more willing to peer with large numbers of
lower tier ASes to get free and more efficient traffic ex-
change [56, 31]. This trend is referred to as the “flattening”
of the Internet [22], and it significantly influences the AS re-
lationship inference techniques that differentiate peers from
providers or customers based on transit/node degree differ-
ences, or rank ASes in decreasing order by degrees and label
links based on the order in which ASes are considered (as is
the case with AS-Rank).

5.2 Violation of Valley-Free Property

Next, we study the prevalence of valley-free violations,
which is the culprit behind mistakenly inferred p2c links and
‘conflict’ links in CoreToLeaf.

3% of the BGP paths violate valley-freeness in the
AS-Rank inference on 04/01/2012. We find this level of
valley-free violations is persistent over the various snapshots
in our study. Figure 1b shows a CDF of the number of paths
that violate the valley-free property for the links in BGP
paths on 04/01/2012. 47% of the links in the AS topology are
traversed by paths that violate the valley-free property. This
statistic is consistent with prior work that analyzes the preva-
lence of valley-free violations, and it is a result of the deliber-
ate BGP policies of ASes that use unconventional economic
models [26].

The existence of these violations has certain implications
for AS relationship inference. First, a robust inference al-
gorithm has to take into account the structure of all paths
traversing a given link. Second, it might have to revisit and
update the inference made for a given link after inferring the
types of neighboring links.

5.3 Current Techniques are Sensitive to VP and Snap-
shot Selection

We observe high variation in accuracy when applying the
AS-Rank algorithm to consecutive snapshots of BGP paths.

Figure 1c plots a CDF of AS-Rank’s error rates (1 −
accuracy) on 30 consecutive 1-day BGP snapshots in April,
2016. As shown in Appendix D.1, AS-Ranks accuracy is
also quite sensitive to the VP selections.

The reason for the AS-Rank algorithm’s sensitivity to
snapshot and VP selections lies in the first step of its infer-
ence algorithm that identifies the Tier-1 clique and the sub-
sequent steps that labels links in a particular order starting
with the Tier-1 ASes. AS-Rank first finds the biggest clique
from the AS-links involving the largest ten ASes by transit
degree, then visits the rest of the ASes top-to-bottom, and
adds an AS to the clique if it connects with all the members
in the current clique. It then labels p2c links using path seg-
ments that radiate from the Tier-1 clique. Errors that creep
into the clique determination step have a significant impact
on the order in which AS links are analyzed and labeled. See
Appendix D.2 for detailed discussions.

6 Probabilistic AS Relationship Inference
In this section, we present a new AS relationship inference
algorithm, ProbLink, that is designed to address the chal-
lenges discussed above. First, ProbLink is a probabilistic
algorithm that enables the use of link attributes with stochas-
tic information value. Second, in determining a link’s type,
ProbLink simultaneously takes into account all informa-
tion regarding the links and the paths that traverse it, and
provides a framework for integrating conflicting informa-
tion (e.g., paths that violate the valley-free property). Third,
ProbLink does not prescribe a specific order in which ASes
and links are considered, but rather continually updates the
link type inferences and iterates till it reaches a fixed point in
terms of the underlying stochastic distributions.

Crucially, our algorithm provides a framework for inte-
grating various link attributes that might help infer a link’s
type. We therefore first design a set of link features or at-
tributes that provide noisy but still informative signals re-
garding the AS relationships. In particular, we design fea-
tures that capture routing behavior in terms of both observed
and unobserved routes as well as integrate information re-
garding a link’s endpoints. We note that many of the features
used in our algorithm are distinct from that of prior tech-

586 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

niques, which mostly use only “valley-freeness” or “node/-
transit degree” features. We then describe how we use these
features to build a probabilistic inference model.

6.1 Overview

Our algorithm starts with an initial classification of links
based on the inference result of CoreToLeaf, so each link
has deterministic relationship probabilities at the beginning.
More concretely, if CoreToLeaf labels L as a p2p link,
we will convert it to P(L= p2p) = 1.0, P(L= p2c) = 0.0,
P(L= c2p) = 0.0 and provide that as the input to our algo-
rithm. Note that ProbLink is essentially a meta-inference
algorithm that can be bootstrapped by outcomes of any algo-
rithm. Its performance is independent on the bootstrapping
algorithm we choose, which we evaluate later in §7.1.

For each feature, ProbLink computes the conditional
probability distribution based on observed data and the initial
set of relationship types attributed to links. In each iteration,
we update the probabilities of each link’s types (P(L= p2p),
P(L= p2c), P(L= c2p)) by running our probabilistic algo-
rithm described in §6.4, and recompute the distributions of
features using the updated probability values of each link.
We repeat this process until convergence, i.e., the percent-
age of links that change labels between each iteration drops
below a small threshold.

6.2 Clique Inference

We first attempt to infer the ASes that are at the top of the
hierarchy, namely Tier-1 ASes, because it is used to derive
features employed by ProbLink. Tier-1 ASes should have
the largest customer cones [41], so estimating the customer
cones is the core of doing clique detection.

First, we find top N ASes in terms of transit degree, de-
noted as D.1 These ASes are either Tier-1 or Tier-2 ASes
because of the large number of neighbours to which they
provide transit. Then, we estimate the customer cone size
of each AS in the graph by determining the average num-
ber of destination ASes (last hops) for which an element of
D uses this AS as part of a route. This is an effective way
of estimating the customer cone size because, irrespective of
whether a node d ∈D is a Tier-1 or a Tier-2 AS, if it reaches
a destination t through an AS x ∈ D, then t is likely to be in
x’s customer cone.

Second, we find the maximal clique C with largest esti-
mated customer cone size sum in D. Then, we test every
other AS in order by estimated customer cone size to add
members to C. An AS is added to C if it has links with every
other AS in C. If there are three consecutive members (X-Y-
Z) in C showing up in paths, disconnect the edge between X
and Z even though X and Z are connected in some paths,
because no AS path should have three consecutive clique
ASes. Finally, we find the maximal clique in C as the in-
ferred clique.

1Any value of N between 10–40 does not affect the final result.

(a) p2p as middle link (b) p2c as middle link

(c) c2p as middle link

Figure 2: Conditional probability distribution for the triplet fea-
ture describing P(previous,next | middle). Probability values in
the ranges of > 0.1, [0.01,0.1], and < 0.01, are categorized as high,
medium, and low respectively in the figure.

6.3 Feature Design

An AS link can be characterized by the following three at-
tributes: (A) The structure of paths that use the link; (B) The
structure of paths that do not use the link; (C) Properties of
the ASes on each side of the link. We carefully design six
features that correspond to these three types of attributes.

Triplet feature (Type A). The triplet feature considers
link triplets that appear in paths and attributes probabilistic
values for the relationships of the first and the last links given
the relationship of the middle link. Suppose three consecu-
tive links “L1 - L - L2” show up in a BGP path, where L1, L,
L2 are three links (AS pairs). “L1 - L - L2” is called a link
triplet. We break down each BGP path in a snapshot into link
triplets, and, for the first and the last links in each path, we
insert a “ NULL” link in front of and behind it. For example:
a BGP path “8793 6939 1103 198499” is decomposed into
3 link triplets: “NULL - <8793, 6939> - <6939, 1103>”,
“<8793, 6939> - <6939, 1103> - <1103, 198499>”, and
“<6939, 1103> - <1103, 198499> - NULL”. As a conse-
quence, each link in the BGP paths appears as a middle link
in at least one link triplet. We take into account sibling re-
lationships (described in §3.2) by skipping sibling links, i.e.
treating the two ASes connected by a sibling link as a single
AS, when constructing triplets.

The goal of the triplet feature is to model valley-freeness in
a probabilistic way. For each middle link type, we compute
the probability of the link type of its adjacent previous link
and next link. If we put the link type of the previous link
along the y-axis and the link type of the next link along the
x-axis, we get a matrix view as shown in Figure 2, which
is computed from CoreToLeaf initial labels. Each cube in

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 587

the matrix represents a probability that is categorized as high,
medium, and low depending on it being in the range of > 0.1,
[0.01,0.1], or < 0.01. For example, we can see from Figure
2a that when the middle link is of type p2p, the previous
and next links are most likely to be <NULL, p2c>, <c2p,
NULL> and <c2p, p2c>, but its previous link is unlikely to
be p2c no matter what its next link’s type is.

Non-path feature (Type B). In addition to observed
routes, unobserved routes also provide some information re-
garding AS relationships. The non-path feature describes the
probability of how many adjacent p2p or p2c links a link has,
but none of them appear before this link on any of the paths.
This feature is designed to capture the property that a link
is unlikely to be a p2c link if it has many adjacent p2p/p2c
links and none of them appear as a previous link on any of
the paths containing the link.

Similar to the triplet feature, the non-path feature also
models valley-freeness in a probabilistic way. The non-path
feature is not necessarily applicable to all links. When a link
does follow a p2p or p2c link or if a link does not have any
adjacent p2p or p2c links, the non-path feature does not play
a role in inferring the link’s type.

Distance to clique feature (Type C). The distance to
clique feature can be used to capture the observations that
high-tier ASes are closer in distance (AS hops) to clique
ASes than low-tier ASes, and that ASes in the same tier are
likely to be peers, while high-tier ASes tend to be providers
of low-tier ASes.

We first create an undirected graph by adding AS links
as edges, and then compute the shortest path from each AS
towards each clique member using Dijkstra’s algorithm. For
each AS, we compute its average distance to each member
in the clique set, round it to a multiple of 0.1, and denote this
value as dist(AS). We represent each link <AS1, AS2> in the
graph by a distance to clique tuple “dist(AS1), dist(AS2)”.

Vantage point feature (Type C). The number of VPs ob-
serving a link also suggests the link type. The vantage point
feature captures the likelihood of a certain number of VPs
with at least one path traversing a particular link given its link
type. This feature naturally folds in the following intuition:
p2c links are more likely to be seen by more VPs compared
to p2p and c2p links. This feature considers path directions.
For example, let’s consider a link L (<AS1, AS2>) where
AS1 is the provider of AS2. ProbLink computes probabil-
ities separately for both directions by counting how many
paths traverse L in the direction of <AS1, AS2>, and how
many paths traverse L in the direction of <AS2, AS1>

To evaluate the informational value of this feature, we an-
alyze the number of VPs that observe a given link and cor-
relate that with the link’s type computed by CoreToLeaf.
Figure 3 shows the CDF of the number of VPs that observe
a link for each link type. We observe that 93% of p2p links
and 90% of c2p links are observed by ≤ 10 VPs, while 98%
of p2c links are seen by more than 10 VPs.

0 50 100 150 200 250
Number of VPs to Observe Link

0.00

0.25

0.50

0.75

1.00

CD
F

p2p
p2c
c2p

Figure 3: The visibility of each link type derived from
CoreToLeaf inference results on 04/01/2017 BGP paths.

Co-located IXP and co-located private peering facil-
ity feature (Type C). The co-located IXP and co-located
peering facility facility information is extracted from Peer-
ingDB [2]. These features are based on the intuition that the
more IXPs or facilities two ASes are co-located in, the more
likely they are peering with each other. Based on the vali-
dation data, 90% of transit links do not have any co-located
IXPs or facilities, while more than 70% p2p links have at
least one co-located IXP or facility.

6.4 Inference Algorithm

We begin by reviewing the Naı̈ve Bayes classifier. Given
a link type variable C (which can be p2p, p2c, c2p) and a
feature vector f1 through fn, Bayes’ theorem states the fol-
lowing relationship:

P(C | f1, ..., fn) =
P(C, f1, ..., fn)

P(f1, ..., fn)
(1)

By assuming that each feature fi is conditionally indepen-
dent of every other feature:

P(fi |C, f1, ..., fi−1, fi+1, ..., fn) = P(fi |C) (2)

Using the chain rule to rewrite the numerator of Eq. 1:

P(C, f1, ..., fn) = P(C)
n

∏
i=1

P(fi |C) (3)

So,

P(C | f1, ..., fn) =
P(C)∏

n
i=1 P(fi |C)

P(f1, ..., fn)
(4)

Since the denominator P(f1, ..., fn) does not depend on the
class C, the Naı̈ve Bayes classifier assigns a link being a type
Ĉ by the following function:

Ĉ = argmax
C

P(C)
n

∏
i=1

P(fi |C) (5)

The inputs to ProbLink are BGP paths, link triplets ex-
tracted from these BGP paths, and initial relationship labels
for each link as inferred by a bootstrapping algorithm. Algo-
rithm 1 shows the pseudocode of ProbLink.

588 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: ProbLink: probabilistic AS relationship
inference algorithm based on Naı̈ve Bayes

Input : 1) BGP paths→ link triplets
2) Initial AS relationships R
3) Feature vector f = [Triplet, Non-path, Distance to

clique, VP, Co-located IXP, Co-located facility]
Output: Inferred probabilities of each link being p2p, p2c,

c2p
/* Loop until convergence */

1 while R − last(R) > ε do
/* Compute conditional distribution of each

feature */

2 foreach feature fi in feature vector f do
3 P(fi |C) =

P(fi,C)
P(C)

=
N(fi,C)+α

N(C)+αd

4 foreach link L do
5 all← N(p2p)+N(p2c)+N(c2p)

6 P(L= p2p)← P(p2p) = N(p2p)
N(all)

7 P(L= p2c)← P(p2c) = N(p2c)
N(all)

8 P(L= c2p)← P(c2p) = N(c2p)
N(all)

9 foreach feature fi in feature vector f do
10 P(L= p2p) ∗= P(fi | p2p)
11 P(L= p2c) ∗= P(fi | p2c)
12 P(L= c2p) ∗= P(fi | c2p)

13 sum = P(L= p2p)+P(L= p2c)+P(L= c2p)
14 P(L= p2p)← P(L= p2p)/sum
15 P(L= p2c)← P(L= p2c)/sum
16 P(L= c2p)← P(L= c2p)/sum

/* Update link’s type */

17 R= argmaxC P(L=C)

First, the algorithm calculates probabilities for each fea-
ture, conditional on the link type C (C in {p2p, p2c, c2p}) by
accumulating probability values (line 2-3 in Algorithm 1).
The parameter α is a smoothing parameter, which prevents
a feature with examples in only one class from forcing the
probability estimate to be 0 or 1. In our implementation, we
use Laplace (Add-1) Smoothing [42], which sets the smooth-
ing parameter to 1. The algorithm then assigns probability
that link L is of each type by the prior probability distribu-
tion P(C), which is the proportion of each link type in the
data (line 5-8 in Algorithm 1). Then, it goes through each
feature and multiplies the probability that link L is of each
type by the conditional probability of the feature given each
link type (line 9-12). In the end, the final probability of the
link L of being each type is calculated by the fraction of each
type’s probability over the sum of probabilities of all possible
link types (lines 14-16 in Algorithm 1). We then update L’s
type by picking the link type with the largest probability (line
17). We repeat this process of link type inference and updat-
ing probability distributions of features until convergence,
i.e., the percentage of links that change labels between each
iteration drops below a small threshold. The algorithm usu-
ally converges within four iterations.

Algorithm Design Choice: We considered alternative ap-
proaches for prediction, such as supervised learning based
on a training set of labeled link types from community at-
tributes (say using boosted trees). However, since the size of
the ground truth from community attributes has not increased
in recent years and since our analysis in §4.3 shows that the
validation dataset is skewed and is only partially represen-
tative of the overall Internet, a supervised learning approach
would be affected by the biases in the training set.

We instead adopted an unsupervised approach that uses
EM. In particular, ProbLink falls in the category of tech-
niques that use the expectation maximization algorithm for
parameter estimation in Naı̈ve Bayes classifers [46]. In par-
ticular, Expectation Maximization (EM) is the iterative tech-
nique used to separate out classes from a mixture, and Naı̈ve
Bayes is the classification technique used in each iteration.
EM is suitable when there are hidden classes, and the ob-
served feature distributions are a mixture of the feature dis-
tributions of different classes. In each iteration of EM, the al-
gorithm groups together elements that are classified together
and derives the feature parameters of each class. Recall that
in our setting, the feature parameters are estimates of the
probability of different types of links given a particular topo-
logical feature, namely, the probability of the middle link
type given previous/next link type, the probability of a cer-
tain number of VPs observing a link given each link type,
and so on.

Our approach and the underlying techniques have the fol-
lowing implications. First, there is no ground truth in any
stage of the algorithm. Second, EM does not work when the
classification technique is a black-box or a non-parametric
technique (such as a neural network or a boosted decision
tree) since it is hard for EM to converge to a stable set of
black-box parameters. In fact, in the case of decision trees,
convergence would mean that not only the values in the tree
nodes do not change, but also the structure of the trees re-
mains stable across iterations. This convergence requirement
is hard to satisfy, and hence non-parametric techniques such
as decision trees are ill-suited for EM in spite of their high
classification accuracy. Naı̈ve Bayes, on the other hand, is a
parametric technique that has been shown to work well even
when there is correlation between the features used for pre-
diction. Crucially, when Naı̈ve Bayes is used as the classifi-
cation technique, EM can converge and attribute a stable set
of parameters to be used by Naı̈ve Bayes.

It is worth noting that Naı̈ve Bayes makes the assump-
tion that all features are conditionally independent. This in-
dependence assumption rarely holds in practical situations,
including our own. Nevertheless, despite violating the inde-
pendence assumption, the classification decisions made by
Naı̈ve Bayes are often of high quality [62, 53, 63, 58]. More-
over, in our context, what is needed is a parametric classifi-
cation technique as opposed to a prediction technique that
attributes precise probabilities for the different classes. The

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 589

0 2 4 6 8
Error Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

ProbLink
AS-Rank

Figure 4: CDF of error rates of ProbLink and AS-Rank on the
snapshots of BGP paths in the past 6 years.

0 1 2 3 4 5 6
Error Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ProbLink
AS-Rank

Figure 5: CDF of error rates of ProbLink and AS-Rank on 30
consecutive 1-day snapshots from April 1, 2016 to April 10, 2016.

Naı̈ve Bayes classifier is appropriate for such settings, but
the lack of conditional independence does have the down-
side that we cannot use the derived probability values as a
confidence measure [7].

7 Evaluation
We now evaluate our probabilistic inference algorithm,
ProbLink, from three aspects and show that:

• ProbLink consistently achieves low error rates across
many years, reducing the average error rate of AS-Rank
for all links by 1.7×, and attaining 1.8-6.1× better error
rates for the different categories of hard links.

• ProbLink is not dependent on its bootstrapping algo-
rithm, and it is stable with respect to snapshot and VP
selection.

• Each feature used in ProbLink is meaningful and elimi-
nating any of them harms the overall inference accuracy.

7.1 Accuracy

To evaluate the accuracy of ProbLink, we assemble daily
snapshots of BGP paths on the first five days of April, Au-
gust, and December (i.e., every four months) over the past 6
years. We apply our algorithm against these snapshots and
compare it with the AS-Rank algorithm over this time period.

Figure 4 compares the error rates of inferences made by
ProbLink and those made by AS-Rank. Our probabilis-
tic inference algorithm consistently yields a low error rate
smaller than 2%, reducing the average error rate of AS-Rank

Category AS-Rank(%) ProbLink(%)
Observed by 50-100 VPs 8.8 1.5

Non-VP & non-Tier1 4.4 1.7
Unlabeled Stub-clique 33.6 5.5

Conflict 6.8 3.8

Table 4: Average error rates on hard links. ProbLink achieves
5.9×, 2.6×, 6.1×, and 1.8× better error rate for the links ob-
served by between 50 and 100 VPs, non-VP & non-Tier1 links,
unlabeled stub-clique, and conflict than AS-Rank respectively.

Feature excluded Error rate
None 1.5%

Triplet 2.4%
Non-path 1.7%

Distance to Clique 1.7%
VP 4.3%

Co-located IXP and peering facility 1.8%

Table 5: Error rates of ProbLink with all features turning on
and without each feature in turn against 04/01/2017 BGP paths.

for all links from 2.1% to 1.2%.
Figure 5 shows a comparison between error rates of

ProbLink and AS-Rank on 30 consecutive snapshots of
BGP paths during April 2016. The max and average error
rates across these days for ProbLink are 1.4% and 1.2%,
while the error rate of AS-Rank ranges from 2.6% to 5.6%,
with an average error rate of 3.9%. ProbLink is not sensitive
to the specific set of paths used in a snapshot, and it achieves
uniformly low error rates in spite of clique inference inaccu-
racies that adversely impact AS-Rank.

Figure 6 plots the CDFs of error rates of inferences made
by ProbLink and AS-Rank on the four categories of hard
links identified in §4.3. Not only does our algorithm yield
much smaller error rates, but it also has less variation than
AS-Rank. Table 4 lists the average error rate of our algo-
rithm and AS-Rank for links observed by 50 to 100 VPs,
non-VP and non-Tier1 links, stub-clique links, and conflict
links. Our probabilistic algorithm reduces the error rate on
the four categories by a factor of 5.9, 2.6, 6.1, and 1.8 re-
spectively compared to AS-Rank.
ProbLink is not dependent on the initial labels pro-

vided by the bootstrapping algorithm. Bootstrapping with
CoreToLeaf and AS-Rank only results in 0.15% overall ac-
curacy difference on average. Completely random initial
assignment would not work well because our algorithm at-
tempts to separate mixture distributions with some underly-
ing properties. Our algorithm should, however, be robust to
various types of initial label assignments as long as there is
some weak correlation between the initial labeling and the
actual assignments.

7.2 Feature Importance Analysis

Eliminating any of the features used by ProbLink results in
lower accuracy. We next run ProbLink with each feature
excluded in order to show that each feature adds value. Ta-

590 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 10 15
Error Rate (%)

0.00

0.25

0.50

0.75

1.00

CD
F

ProbLink
AS-Rank

(a) Observed by between 50 and
100 VPs links.

0.0 2.5 5.0 7.5 10.0 12.5
Error Rate (%)

0.00

0.25

0.50

0.75

1.00

CD
F

ProbLink
AS-Rank

(b) Conflict links.

0 20 40 60
Error Rate (%)

0.00

0.25

0.50

0.75

1.00

CD
F

ProbLink
AS-Rank

(c) Unlabeled stub-clique links.

0 10 20
Error Rate (%)

0.00

0.25

0.50

0.75

1.00

CD
F

ProbLink
AS-Rank

(d) Non-VP and Non-Tier1 links.

Figure 6: CDFs of error rates of ProbLink vs. CoreToLeaf on hard links in a period of 30 days in April 2016.

ble 5 lists the error rates of ProbLink after turning off each
feature one-by-one against the 04/01/2017 snapshot of BGP
paths.

Excluding any feature in ProbLink results in a higher er-
ror rate, which suggests that each feature adds some value.
Among all the features, excluding the VP feature harms the
overall accuracy the most, indicating that the visibility of
BGP paths from many vantage points is a crucial attribute
for inferring link types. We believe that integrating more
features can further improve ProbLink’s accuracy.

8 Practical Applications
8.1 Route Leak Detection

Route leaks are a class of common routing incidents that
can cause large Internet service disruptions [54]. They are
caused by violations of the policies among the ASes in-
volved. For instance, on November 5, 2012, a Google peer
Moratel (AS23947) improperly advertised Google routes to
its provider, causing Moratel’s providers to select the leaked
routes as the preferred ones destined to Google. As Moratel
could not handle such large traffic volumes, Google’s ser-
vices went offline in parts of Asia for half an hour [28].

A conventional method for detecting route leaks is through
checking valley-free violations in BGP paths. Mauch built
a routing leak detection system based on this intuition by
searching for valley paths containing three or more major
networks with known relationships [32].

In the same spirit, we build a route leak detection system
by detecting valley-free violations in paths based on the link
relationship inference results of ProbLink. It is worth not-
ing that a large fraction (more than 50%) of the valley-free
violations do not result from route leaks but intended poli-
cies from ASes that are research/educational or IXPs [26].
Such ASes often establish a special type of AS relationship
called indirect peering, where an AS functions as an interme-
diate link between two other ASes who wish to peer but go
through intermediate ASes. Therefore, we ignore a path if
it contains research/educational or IXP ASes when detecting
route leaks.

To evaluate the performance of ProbLink and other AS
relationship inference techniques on route leak detection, we
use only those links for which we have validation data in
BGP paths. For example, suppose a path has link relation-

(a) Precision

(b) Recall

Figure 7: Evaluation of route leak detection across 10 days.

ships “* * p2p * c2p”, where * is unknown in the valida-
tion dataset. Even though a relationship inference algorithm
should have predictions on the unknown links, we just de-
tect route leaks by its predictions on the two known links
in order to compare against the validation dataset. Figure 7
compares the precision and recall of ProbLink, AS-Rank,
and CoreToLeaf, against the real route leaks implied by the
validation dataset across 10 days in April 2016. The aver-
age precision for ProbLink, AS-Rank, and CoreToLeaf is
81.1%, 19.8%, and 8.1%, respectively; and the average recall
for ProbLink, AS-Rank, and CoreToLeaf is 76.2%, 22.1%,
and 5.6%, respectively.

While ProbLink significantly improves the state-of-
the-art in route leak identification, the number of false-
positive inferences is still relatively high (almost 20%)
when used as a stand-alone inference heuristic. That said,
ProbLink shows that valley-free violations are a strong sig-
nal for the occurrence of route leaks. This indicator facili-
tates post processing and can be used as part of a compos-
ite detection mechanism that combines multiple sources of
information, such as the detection of abrupt changes in per-
prefix traffic levels [5].

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 591

(a) Comparison of coverage (COV) and True
Positive Rate (TPR) between ProbLink and
AS-Rank in complex relationship inference.

(b) True positive rate per relationship infer-
ence algorithm for the prediction of the im-
pact of selective advertisement policies.

(c) Disagreements in AS relationships and
ASes in the customer cone of the 200 ASes
with the largest customer cones.

Figure 8: Evaluation of complex relationships inference and the prediction of path changes due to selective prefix advertisements.

8.2 Inference of Complex Relationships

AS relationships may be more complex than the traditional
p2c/p2p model. Such complex agreements may take the
form of a hybrid relationship with different relationship type
for different Points-of-Presence (PoPs) or a partial-transit
relationship, in which a provider offers transit only toward its
peers and customers, but not its providers, or restricts transit
to a specific geographic region [15, 19]. The state-of-the-art
algorithm for inferring complex relationships (CR algorithm)
takes as input a set of conventional relationships and itera-
tively refines them by combining active traceroute measure-
ments with geolocation data to discover the PoP-level prop-
agation patterns of inter-domain paths [25]. Due to the high
measurement cost in terms of traceroute queries required to
infer complex relationships, CR utilizes customer cones to
optimize the allocation of queries to traceroute probes and
maximize the discovery of hybrid relationships within the
limited querying budgets used by platforms such as RIPE At-
las [52]. Therefore, the quality of the p2p/p2c relationships
can affect the precision, accuracy, and coverage of complex
relationship inference.

To test the performance of ProbLink for complex rela-
tionship inference, we implemented the CR algorithm and ex-
ecuted two 2-day measurement campaigns over the RIPE At-
las platform, on 2018/09/06 and 2018/09/08 using ProbLink
and AS-Rank respectively. For each measurement round,
we allocated the maximum permissible number of measure-
ment credits, which resulted in 125,529 traceroute queries
from 7,870 Atlas probes. CR+ProbLink inferred 1,308
hybrid relationships and 3,163 partial transit links, while
CR+AS-Rank inferred 1,029 hybrid relationships and 3,009
partial transit links. We evaluated these inferences against
our validation dataset, which includes 346 hybrid links and
402 partial-transit links. As shown in Figure 8a, combin-
ing CR with ProbLink not only improves the True Positive
Rate (TPR) of the algorithm both for hybrid and partial tran-
sit relationships, but, importantly, we significantly expand its
coverage (COV) by capturing 91% of the hybrid and 95% of
the partial transit relationships, compared to 76% and 90%,
respectively, for CR+AS-Rank. Overall, CR+ProbLink dis-

covers 27% more hybrid relationships than CR+AS-Rank.

8.3 Predicting the Impact of Selective Advertisements

The ability to predict the impact of traffic engineering poli-
cies on the active BGP paths can be valuable to network op-
erators, as it would limit the need for trial-and-error exper-
imentation, allow the configuration of more predictable and
stable routing policies, and minimize the risk of propagating
unintended routes [45]. However, past works have shown
that the existing AS relationship datasets have poor predic-
tive capabilities, making them impractical for such purposes.
In this section, we evaluate the impact of ProbLink’s im-
proved relationship inferences in predicting the outcome of
a selective advertisement. Selective advertisement is a pop-
ular traffic engineering technique used by AS operators to
achieve traffic load balancing, by advertising certain routes
only to a subset of their inter-domain neighbors [48].

To predict the impact of selective advertisement “in the
wild”, we first need to explicitly capture the activation and
the scope of such policies. We detect selectively advertised
prefixes by utilizing route redistribution BGP Communities,
which are increasingly utilized to implement selective prefix
advertisement [49, 17]. In particular, many providers define
an array of Community values that can be set by their cus-
tomers, to allow them to control whether the provider should
propagate or not a route to a specific peer or group of peers.
For instance, if AS9002 (RETN) receives a prefix advertise-
ment from a customer annotated with the BGP Community
9002:65535, then RETN will propagate this route only to
its customers, but not its peers or providers [50]. Redistri-
bution Communities can further limit the scope of the prefix
advertisement by determining a location for which the re-
distribution policy will be applied. For instance, when the
Community 286:49 is applied on a prefix, AS286 (KPN)
will not advertise this prefix to its US peers [37]. By parsing
WHOIS records and NOC websites, we compile a dictionary
of Community values that define one of the following types
of selective route redistribution:

• Do not announce route to neighbors of type R.
• Do not announce route to neighbors of type R at L.

592 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Announce route only to neighbors of type R.
• Announce route only to neighbors of type R at L.

R indicates relationship type (customer, provider, peer) and
L indicates a city-level or country-level location identifier. In
total, we extracted 644 Community values from 152 ASes.

After compiling our Communities dictionary, we moni-
tor the BGP messages of the corresponding ASes to capture
BGP Updates annotated with one of the redistribution Com-
munities. Let us assume we observe a BGP Update for a
destination prefix d annotated with a BGP Community C,
which instructs ASC to propagate p only to its neighbors of
type R. We calculate which ASes will have to change their
paths as follows: We first parse the BGP paths right before
C was applied on the prefix d, and we collect all the paths
PALL to d that traversed ASC. Then, based on the inferred re-
lationships, we find the paths PR′ ⊆ PALL in which ASC adver-
tises the route toward d to a neighbor with relationship type
R′ 6= R. Since the Community C allows the prefix announce-
ment only to neighbors with relationship type R, we infer
that the paths PR′ will be withdrawn, and the corresponding
ASes in these paths will choose a different path. When C
also defines a geographic scope for the prefix advertisement
in addition to the relationship type, we use the techniques
described in [25] to map the city-level location of AS in-
terconnections, and calculate the affected paths in a similar
manner. We validate our inferences by observing the with-
drawn paths after C was applied on the path. We consider as
false positive any AS a ∈ PR′ that did not withdraw its path
15 minutes after we observed the BGP Update with C. We do
not consider false negatives, as an AS may change its path to
d for different reasons, and this change may simply coincide
with the application of the Community C on the same prefix.

Figure 8b shows our validation results after executing the
above experiment for the first week of April 2016. Dur-
ing that period, we found 480 prefixes tagged with redis-
tribution communities defined by 13 ASes. Overall, 83%
of ProbLink’s predictions were correct, compared to 62%
for AS-Rank and 59% for CoreToLeaf. ProbLink outper-
formed AS-Rank for every AS except AS9002, and in some
cases (e.g. AS1273), the true positive rate was 2x higher
compared to the other algorithms. These results are sur-
prising given that less than 4% of the relationship inferences
differ between ProbLink and AS-Rank. To understand the
significant improvement achieved by ProbLink, we inves-
tigate the impact of the relationship disagreements between
the two algorithms on the customer cones obtained using the
Provider/Peer Observed methodology proposed in [41]. We
focus on the ASes with at least 100 ASes in their downstream
path. For each of these ASes we calculate the fraction of
their relationships and the fraction of their customer cones
that disagree between ProbLink and AS-Rank. As shown in
Figure 8c, while less than 10% of the ASes had more than
20% relationship mismatches, over 60% of the ASes had at

least 20% difference in their customer cones. This finding
highlights the fact that even a few incorrect relationship in-
ferences can lead to significant differences in properties of
the resulting downstream paths and substantial deviations in
the predictive capabilities of ProbLink and AS-Rank.

9 Conclusion
We revisit the AS relationship problem and inference tech-
niques. We first develop a simple inference algorithm that
achieves accuracy comparable to that of the state-of-the-art
inference technique, AS-Rank, indicating that the types of
most links in validation datasets are relatively easy to infer.
We then construct different subsets of the validation dataset
that might be considered hard and use these as benchmarks
for evaluating improvements in AS relationship inference.
Further, we observe that many of the features that can be
used by inference techniques are of a stochastic nature, so
we present a probabilistic AS relationship inference algo-
rithm that provides a framework for easy integration of many
noisy but useful attributes into the relationship inference al-
gorithm. We show that this probabilistic algorithm is more
accurate and less sensitive to the locations of vantage points
and BGP paths compared to the state-of-the-art algorithms.

Acknowledgments
We would like to thank the anonymous NSDI reviewers and
our shepherd Andreas Haeberlen for their valuable feed-
back. This research was partially supported by the National
Science Foundation under Grants CNS-1614717 and CNS-
1513847.

References
[1] IXP Service Matrix. https://www.euro-ix.net/

en/tools/ixp-service-matrix/.

[2] PeeringDB. https://www.peeringdb.com/.

[3] RIPE (RIS). http://www.ripe.net/ris/.

[4] U. Oregon Route Views Project. http://www.

routeviews.org/.

[5] B. Al-Musawi, P. Branch, and G. Armitage. BGP
anomaly detection techniques: A survey. IEEE
Communications Surveys Tutorials, 19(1):377–396,
Firstquarter 2017.

[6] R. Anwar, H. Niaz, D. Choffnes, Í. Cunha, P. Gill,
and E. Katz-Bassett. Investigating interdomain routing
policies in the wild. In Proceedings of the 2015 Internet
Measurement Conference, pages 71–77. ACM, 2015.

[7] P. Bennett. Assessing the calibration of Naive Bayes’
posterior estimates. Technical report, September 2000.
Computer Science Department, School of Computer
Science, Carnegie Mellon University.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 593

 https://www.euro-ix.net/en/tools/ixp-service-matrix/
 https://www.euro-ix.net/en/tools/ixp-service-matrix/
 https://www.peeringdb.com/
 http://www.ripe.net/ris/
 http://www.routeviews.org/
 http://www.routeviews.org/

[8] R. Bush, O. Maennel, M. Roughan, and S. Uhlig. Inter-
net optometry: assessing the broken glasses in internet
reachability. IMC ’09.

[9] M. Caesar and J. Rexford. BGP routing policies in
ISP networks. Netwrk. Mag. of Global Internetwkg.,
19(6):5–11, Nov. 2005.

[10] CAIDA. Inferred AS to organization map-
ping dataset. http://www.caida.org/data/

as-organizations/.

[11] A. Cohen, Y. Gilad, A. Herzberg, and M. Schapira.
Jumpstarting BGP security with path-end validation. In
Proceedings of the 2016 ACM SIGCOMM Conference,
pages 342–355. ACM, 2016.

[12] G. Comarela, E. Terzi, and M. Crovella. Detecting
unusually-routed ASes: methods and applications. In
Proceedings of the 2016 Internet Measurement Confer-
ence, IMC ’16, pages 445–459, New York, NY, USA,
2016. ACM.

[13] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido,
M. Luckie, R. K. P. Mok, G. Akiwate, K. Gogia, V. Ba-
jpai, A. C. Snoeren, and K. Claffy. Inferring persis-
tent interdomain congestion. In Proceedings of the
2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’18, pages 1–15,
New York, NY, USA, 2018. ACM.

[14] G. Di Battista, M. Patrignani, and M. Pizzonia. Com-
puting the types of the relationships between au-
tonomous systems. In INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, volume 1, pages
156–165. IEEE, 2003.

[15] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huf-
faker, Y. Hyun, G. Riley, et al. AS relationships: Infer-
ence and validation. SIGCOMM ’07, 2007.

[16] X. Dimitropoulos, D. Krioukov, B. Huffaker, G. Riley,
et al. Inferring AS relationships: Dead end or lively
beginning? In International Workshop on Experimen-
tal and Efficient Algorithms, pages 113–125. Springer,
2005.

[17] B. Donnet and O. Bonaventure. On BGP communi-
ties. ACM SIGCOMM Computer Communication Re-
view, 38(2):55–59, 2008.

[18] Q. Fan, H. Yin, G. Min, P. Yang, Y. Luo, Y. Lyu,
H. Huang, and L. Jiao. Video delivery networks: Chal-
lenges, solutions and future directions. Computers &
Electrical Engineering, 66:332–341, 2018.

[19] P. Faratin, D. D. Clark, S. Bauer, W. Lehr, P. W.
Gilmore, and A. Berger. The growing complexity of in-
ternet interconnection. Communications & Strategies,
(72):51, 2008.

[20] J. H. Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189–1232, 2001.

[21] L. Gao. On inferring autonomous system relationships
in the internet. IEEE/ACM Transactions on Network-
ing, 9(6):733–745, Dec 2001.

[22] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. The flattening
internet topology: Natural evolution, unsightly barna-
cles or contrived collapse? In International Conference
on Passive and Active Network Measurement, pages 1–
10. Springer, 2008.

[23] P. Gill, M. Schapira, and S. Goldberg. Let the market
drive deployment: A strategy for transitioning to BGP
security. In SIGCOMM ’11, volume 41, pages 14–25.
ACM, 2011.

[24] V. Giotsas, C. Dietzel, G. Smaragdakis, A. Feldmann,
A. Berger, and E. Aben. Detecting peering infrastruc-
ture outages in the wild. In SIGCOMM ’17, pages 446–
459, 2017.

[25] V. Giotsas, M. Luckie, B. Huffaker, and k. claffy. In-
ferring complex AS relationships. In Internet Measure-
ment Conference (IMC), pages 23–30, Nov 2014.

[26] V. Giotsas and S. Zhou. Valley-free violation in inter-
net routinganalysis based on BGP community data. In
Communications (ICC), 2012 IEEE International Con-
ference on, pages 1193–1197. IEEE, 2012.

[27] V. Giotsas, S. Zhou, M. Luckie, and k. claffy. In-
ferring multilateral peering. In Proceedings of the
Ninth ACM Conference on Emerging Networking Ex-
periments and Technologies, CoNEXT ’13, pages 247–
258, New York, NY, USA, 2013. ACM.

[28] S. Goldberg. Why is it taking so long to secure Internet
routing? Communications of the ACM, 57(10):56–63,
2014.

[29] Y. He, G. Siganos, M. Faloutsos, and S. Krishnamurthy.
Lord of the links: a framework for discovering missing
links in the Internet topology. IEEE/ACM Transactions
on Networking (ToN), 17(2):391–404, 2009.

[30] G. Huston. The death of transit and the future internet.
Second ITU Workshop on Network 2030, December
2018.

[31] G. Inc. Google peering policy. https://peering.

google.com.

594 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.caida.org/data/as-organizations/
http://www.caida.org/data/as-organizations/
https://peering.google.com
https://peering.google.com

[32] M. Jared. BGP routing leak detection system. https:
//puck.nether.net/bgp/leakinfo.cgi.

[33] E. Jasinska, N. Hilliard, R. Raszuk, and B. N. RFC
7947: Internet exchange BGP route server. https:

//tools.ietf.org/html/rfc7947.

[34] J. Juen, A. Johnson, A. Das, N. Borisov, and M. Caesar.
Defending tor from network adversaries: A case study
of network path prediction. Proceedings on Privacy
Enhancing Technologies, 2015(2):171–187, 2015.

[35] E. Katz-Bassett, D. R. Choffnes, Í. Cunha, C. Scott,
T. Anderson, and A. Krishnamurthy. Machiavellian
routing: improving Internet availability with BGP poi-
soning. In Proceedings of the 10th ACM Workshop on
Hot Topics in Networks, page 11. ACM, 2011.

[36] M. Konte, R. Perdisci, and N. Feamster. Aswatch:
An AS reputation system to expose bulletproof hosting
ases. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 625–638. ACM, 2015.

[37] KPN NOC. BGP Communities For AS286. https:

//as286.net/AS286-communities.html, Septem-
ber 2018.

[38] S. Kuenzer, A. Ivanov, F. Manco, J. Mendes,
Y. Volchkov, F. Schmidt, K. Yasukata, M. Honda, and
F. Huici. Unikernels everywhere: The case for elastic
CDNs. SIGPLAN Not., 52(7):15–29, Apr. 2017.

[39] P. Laskowski and J. Chuang. Network monitors and
contracting systems: Competition and innovation. SIG-
COMM ’06, pages 183–194, 2006.

[40] A. H. Lodhi. The economics of Internet peering inter-
connections. PhD thesis, Georgia Institute of Technol-
ogy, 2014.

[41] M. Luckie, B. Huffaker, A. Dhamdhere, V. Giotsas,
et al. AS relationships, customer cones, and validation.
IMC ’13.

[42] C. D. Manning, P. Raghavan, and H. Schütze. Intro-
duction to information retrieval. Cambridge University
Press, New York, NY, USA, 2008.

[43] R. Mazloum, M.-O. Buob, J. Auge, B. Baynat,
D. Rossi, and T. Friedman. Violation of interdomain
routing assumptions. In International Conference on
Passive and Active Network Measurement, pages 173–
182. Springer, 2014.

[44] A. Mitseva, A. Panchenko, and T. Engel. The state of
affairs in BGP security: A survey of attacks and de-
fenses. Computer Communications, 124:45 – 60, 2018.

[45] W. Mühlbauer, A. Feldmann, O. Maennel,
M. Roughan, and S. Uhlig. Building an AS-topology
model that captures route diversity. SIGCOMM ’06,
pages 195–206, 2006.

[46] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell.
Text classification from labeled and unlabeled docu-
ments using EM. Machine learning, 39(2-3):103–134,
2000.

[47] R. Nithyanand, O. Starov, P. Gill, A. Zair, and
M. Schapira. Measuring and mitigating AS-level ad-
versaries against Tor. In 23rd Annual Network and Dis-
tributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016, 2016.

[48] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure,
and S. Uhlig. Interdomain traffic engineering with
BGP. IEEE Communications Magazine, 41(5):122–
128, May 2003.

[49] B. Quoitin, S. Tandel, S. Uhlig, and O. Bonaven-
ture. Interdomain traffic engineering with redistribution
communities. Computer Communications, 27(4):355–
363, 2004.

[50] RETN NOC. BGP communities For AS9002. http://
retn.net/support/bgp-communities/, Septem-
ber 2018.

[51] RFC. RFC 6996: Autonomous System (AS) reser-
vation for private use. https://tools.ietf.org/

html/rfc6996.

[52] RIPE Atlas. User-defined measurements - rate
limits. https://atlas.ripe.net/docs/udm/

#rate-limits.

[53] I. Rish et al. An empirical study of the Naive Bayes
classifier. In IJCAI 2001 workshop on empirical meth-
ods in artificial intelligence, volume 3, pages 41–46.
IBM New York, 2001.

[54] K. Sriram, D. Montgomery, D. McPherson, E. Oster-
weil, and B. Dickson. Problem definition and classi-
fication of BGP route leaks. https://tools.ietf.

org/html/rfc7908.

[55] L. Subramanian, S. Agarwal, J. Rexford, and R. H.
Katz. Characterizing the Internet hierarchy from mul-
tiple vantage points. IEEE, 2002.

[56] A. Technologies. Akamai Network part-
nerships. https://www.akamai.com/

us/en/products/network-operator/

akamai-network-partnerships.jsp.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 595

https://puck.nether.net/bgp/leakinfo.cgi
https://puck.nether.net/bgp/leakinfo.cgi
https://tools.ietf.org/html/rfc7947
https://tools.ietf.org/html/rfc7947
https://as286.net/AS286-communities.html
https://as286.net/AS286-communities.html
http://retn.net/support/bgp-communities/
http://retn.net/support/bgp-communities/
https://tools.ietf.org/html/rfc6996
https://tools.ietf.org/html/rfc6996
https://atlas.ripe.net/docs/udm/#rate-limits
https://atlas.ripe.net/docs/udm/#rate-limits
https://tools.ietf.org/html/rfc7908
https://tools.ietf.org/html/rfc7908
https://www.akamai.com/us/en/products/network-operator/akamai-network-partnerships.jsp
https://www.akamai.com/us/en/products/network-operator/akamai-network-partnerships.jsp
https://www.akamai.com/us/en/products/network-operator/akamai-network-partnerships.jsp

[57] J. S. Varghese and L. Ruan. Computing customer cones
of peering networks. In Proceedings of the 2016 Ap-
plied Networking Research Workshop, pages 35–37.
ACM, 2016.

[58] Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole.
Naive Bayesian classifier for rapid assignment of rRNA
sequences into the new bacterial taxonomy. Applied
and environmental microbiology, 73(16):5261–5267,
2007.

[59] Wikipedia. List of Tier-2 ASes. https://en.

wikipedia.org/wiki/Tier_2_network.

[60] W. Willinger and M. Roughan. Internet topology re-
search redux. ACM SIGCOMM eBook: Recent Ad-
vances in Networking, 2013.

[61] J. Xia and L. Gao. On the evaluation of AS relationship
inferences. In Global Telecommunications Conference,
2004. GLOBECOM’04. IEEE, volume 3, pages 1373–
1377. IEEE, 2004.

[62] H. Zhang. The optimality of Naive Bayes. In V. Barr
and Z. Markov, editors, Proceedings of the Seventeenth
International Florida Artificial Intelligence Research
Society Conference (FLAIRS 2004). AAAI Press, 2004.

[63] H. Zhang and J. Su. Naive Bayesian classifiers for
ranking. In European conference on machine learning,
pages 501–512. Springer, 2004.

A AS-Rank Algorithm
The AS-Rank algorithm takes the following 11 steps to infer
the relationship of each link.

1. Discard or sanitize paths with artifacts.
2. Sort ASes in decreasing order of computed transit de-

gree, then node degree.
3. Infer a transit-free clique (i.e., Tier-1) ASes at top of

AS hierarchy and label the links between every pair of
ASes in the clique as p2p links.

4. Discard poisoned paths.
5. Visit ASes in order of the ranking in (2), and label a link

as c2p if its previous link in a BGP path is composed of
two clique members, or if its previous link in a BGP
path is already labeled as c2p.

6. Infer c2p relationships from VPs inferred to be an-
nouncing no provider routes.

7. Infer c2p relationships for ASes where the customer has
a larger transit degree.

8. Infer customers for ASes with no providers.
9. Infer c2p relationships between stub ASes and clique

ASes.
10. Infer c2p relationships where adjacent links have no re-

lationship inferred.
11. Infer all other links left as p2p.

Feature label Meaning
f1 Number of VPs which observe a link
f2 Max distance to Tier-1
f3 Min distance to Tier-1
f4 Max node degree
f5 Min node degree
f6 Node degree difference
f7 Max transit degree
f8 Min transit degree
f9 Transit degree difference

Table 6: Features fed into GBDT

B AS-Rank Clique Inference
The clique inference algorithm in AS-Rank works as the fol-
lowing:

1. Find the top 10 ASes by transit degree.
2. If there are three consecutive members (X-Y-Z) in the

top 10 ASes showing up in paths, and there are more
than 5 ASes downstream from X Y Z (to make sure that
the paths containing three consecutive members are not
poisoned), disconnect the edge between X and Z even
though X and Z are connected in some paths.

3. Find the largest clique in terms of transit degree sum
among the top 10 ASes, denoted as C.

4. Visit the rest ASes top to down by transit degree, add an
AS Z to C if Z has links with all members in C.

5. Similar to Step 2: If there are three consecutive mem-
bers (X-Y-Z) in C showing up in paths, and there are
more than 5 ASes downstream from X Y Z, disconnect
the edge between X and Z.

6. Find the largest clique in C in terms of transit degree
sum as the final inferred clique.

C Feature Importance Computation
Gradient boosting [20] is a widely used machine learning
technique for solving classification problems. In gradient
boosting, GBDT (Gradient boosting decision trees) produces
a prediction model in the form of an ensemble of multiple
decision trees. It is straightforward to retrieve importance
scores for features when constructing GBDT. An importance
score (F score) describes the number of times a feature is
used to split the data across all trees. The more a feature is
used to make key decisions with decision trees, the higher its
importance score.

To decide what features can distinguish hard links from
easy links in the Internet, we first split the validation dataset
into two halves. The set of links which CoreToLeaf or
AS-Rank infers incorrectly are labeled as “hard”, while those
which are inferred correctly are labeled with “easy”. Then,
we feed the features listed in Table 6 of links along with their
labels into the GBDT and calculate the importance score cor-
responding to each feature.

Figure 9 plots the importance score of each feature divided
by the sum of all features’ scores. We can tell the features

596 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 https://en.wikipedia.org/wiki/Tier_2_network
 https://en.wikipedia.org/wiki/Tier_2_network

f1 f2 f3 f4 f5 f6 f7 f8 f9
Feature

0

50

100

150
F

sc
or

e

Figure 9: Feature importance scores provided by gradient boosting
tree.

f1, f4, f7, f8, f9 are the most important ones, so we translate
them into the various categories of features to characterize
“hard” links in §4.3.

D AS-Rank Sensitivity Analysis
D.1 Sensitivity to VP Selection

Each vantage point provides its own view of the Internet AS-
level topology and the flow of traffic from the VP to rest of
the Internet. VPs are located in different places, belong to
different tiers, and they themselves have different import and
export policies.

Even though the number of VPs have been growing over
time, VPs are free to join or leave the set of public collectors,
so the selection of VPs we have access to is arbitrary, biased,
and under flux. A good AS relationship inference algorithm
should not be sensitive to the selection of these VPs.

2.5 5.0 7.5 10.0 12.5
Error Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

All links
Non-VP links
Non-VP and non-Tier1 links

Figure 10: CDF of AS-Rank’s error rates on paths seen from 200
different half-VP sets.

We run the AS-Rank algorithm repeatedly, 200 times,
against the 04/01/2017 BGP snapshot. For each of these
200 executions, we choose a random VP subset consisting
of half of all available VPs (which we denote as V below)
and give as input to the AS-Rank algorithm only the BGP
paths visible to the VPs in that subset. Figure 10 plots
CDFs of AS-Rank’s error rates using paths from these VP
subsets. In the plot, we examine all links in the ground-truth
dataset, links in the ground-truth dataset except links that di-
rectly connect with V (i.e., non-VP links), and the links in

the ground-truth dataset except V’s links as well as Tier-1
links (i.e., non-VP and non-Tier1 links). The inference error
rates on overall links range from 1.2% to 6.9%, and the er-
ror rates on non-VP and non-Tier1 links range from 1.8% to
12.3%. AS-Rank’s accuracy is thus quite sensitive to the VP
selections, especially for links which are relatively difficult
to infer (i.e., not VP or Tier1 links).

D.2 Root Cause Analysis of AS-Rank Sensitivity

To illustrate the issue described in §5.3, let’s consider two VP
sets, V1 and V2, drawn from our 200 executions. AS-Rank’s
inference accuracy from V1 is low, while its inference accu-
racy from V2 is high. The largest ten ASes differ for dif-
ferent sets of VPs because the transit degrees of ASes are
determined by paths observed by the VPs. For example, the
9th largest AS (AS2914) observed by V2 is the 12th largest
AS observed by V1, so AS2914, which is a real Tier-1 AS,
shows up in the clique chosen from the top 10 ASes using
V2’s paths, but it does not show up in the clique chosen us-
ing V1’s paths.

For V1, the AS-Rank algorithm determines the maximum
clique with the largest transit degree (from the top 10 ASes)
to be “AS3356, AS6939, AS8220, AS9002, AS43531”.
AS43531 is not considered for V2 due to a relatively lower
measurement of its transit degree, and it is not a high-
tier AS in reality. This affects the subsequent expan-
sion of the clique, wherein ASes are considered in order
by degree and added to the clique if they have connec-
tions to all members of the clique. So, in V1’s execu-
tion, all added members are required to have a direct link
with AS43531, and AS1764, AS8767, AS12389, AS12552,
AS20485, AS25091, AS33891, AS43531, AS57724 are
therefore all added to the clique, even though they are all
low-tier ASes.

In a nutshell, the clique inference of AS-Rank algorithm
is sensitive to the top 10 largest ASes ranked by transit de-
grees, which are determined by the selection of VPs and the
selection of snapshots. Further, the clique membership de-
termines the order in which links are analyzed by AS-Rank,
impacts the computation of customer cones for each clique
member (i.e., the set of ASes that a clique AS can reach us-
ing p2c links), and impacts the overall accuracy of the algo-
rithm.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 597

NetBouncer: Active Device and Link Failure Localization
in Data Center Networks

Cheng Tan1, Ze Jin2, Chuanxiong Guo3, Tianrong Zhang4, Haitao Wu5, Karl Deng4, Dongming Bi4, and Dong Xiang4

1New York University,
2
Cornell University, 3Bytedance, 4Microsoft, 5Google

Abstract
The availability of data center services is jeopardized by vari-
ous network incidents. One of the biggest challenges for net-
work incident handling is to accurately localize the failures,
among millions of servers and tens of thousands of network
devices. In this paper, we propose NetBouncer, a failure local-
ization system that leverages the IP-in-IP technique to actively
probe paths in a data center network. NetBouncer provides a
complete failure localization framework which is capable of
detecting both device and link failures. It further introduces
an algorithm for high accuracy link failure inference that is
resilient to real-world data inconsistency by integrating both
our troubleshooting domain knowledge and machine learning
techniques. NetBouncer has been deployed in Microsoft
Azure’s data centers for three years. And in practice, it pro-
duced no false positives and only a few false negatives so far.

1 Introduction

As many critical services have been hosted on the cloud
(e.g., search, IaaS-based VMs, and databases), enormous
data centers have been built which contain millions of
machines and tens of thousands of network devices. In such
a large-scale data center network, failures and incidents
are inevitable, including routing misconfigurations, link
flaps, network device hardware failures, and network device
software bugs [19, 20, 22, 23, 28, 45]. As the foundation
of network troubleshooting, failure localization becomes
essential for maintaining a highly available data center.

Localizing network failures in a large-scale data center is
challenging. Given that nowadays data centers have highly
duplicated paths between any two end-hosts, it is unclear to
the end-hosts which links or devices should be blamed when
a failure happens (e.g., TCP retransmits). And, because of
the Equal-Cost Multi-Path (ECMP) routing protocol, even
routers are unaware of the whole routing path of a packet.

Moreover, recent research [23, 27, 28] reveals that gray
failures, which are partial or subtle malfunctions, are preva-
lent within data centers. They cause the major availability
breakdowns and performance anomalies in cloud environ-
ments [28]. Different from fail-stop failures, gray failures
drop packets probabilistically, and hence cannot be detected
by simply evaluating connectivity.

In order to localize failures and be readily deployable
in a production data center, a failure localization system

needs to satisfy three key requirements, which previous
systems [1, 16, 18, 23, 37, 44, 46] fail to meet simultaneously.

First, as for detecting gray failures, the failure localization
system needs an end-host’s perspective. Gray failures have
been characterized as “differential observability” [28], mean-
ing that the failures are perceived differently by end-hosts and
other network entities (e.g., switches). Therefore, traditional
monitoring systems, which query switches for packet loss
(e.g., SNMP, NetFlow), are unable to observe gray failures.

Second, to be readily deployable in practice, the monitor-
ing system should be compatible with commodity hardware,
the existing software stack and networking protocols. Pre-
vious systems which need special hardware support [37],
substantial modification on the hypervisor [40] or tweak
standard bits on network packets [46] are unable to be readily
deployed in production data centers.

Third, localizing failures should be precise and accurate, in
terms of pinpointing failures in fine-granularity (i.e., towards
links and devices) and incurring few false positives or nega-
tives. Some prior systems, like Pingmesh [23] and NetNO-
RAD [1], can only pinpoint failures in a region, which needs
extra efforts to discover the actual errors. And others [16, 18,
44] incur numerous false positives and false negatives when
exposed to gray failures and real-world data inconsistency.

In this paper, we introduce NetBouncer, an active probing
system that detects device failures and infers link failures
from end-to-end probing data. NetBouncer satisfies the
previous requirements by actively sending probing packets
from the servers, which doesn’t need any modification in the
network or underlying software stack. In order to localize
failures accurately, NetBouncer provides a complete failure
localization framework targeting data center networks, which
incorporates real-world observations and troubleshooting
domain knowledge. In particular, NetBouncer introduces:

• An efficient and compatible path probing method (§3).
We design a probing method called packet bouncing to
probe a designated path. It is built on top of the IP-in-IP
technique [7, 47], which has been implemented in ASIC
of modern commodity switches. Hence, packet bouncing
is compatible to current data center networks and efficient
without consuming switch CPU cycles.

• A probing plan which is able to distinguish device failures
and is proved to be link-identifiable (§4). A probing
plan is a set of paths which will be probed. Based on
an observation that the vast majority of the network is

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 599

Spine

Leaf

ToR

ServersH5

T2

L1

S2

ControllerNetwork
topology Processor Link/Device

failures

1

2

3

… …

Path	probing	data

……

Probing	plan

Figure 1: NetBouncer’s workflow: 1©, the controller designs
a probing plan and sends it to all the probing servers. 2©, the
servers follow the plan to probe the paths in the network. 3©,
the processor collects the probing data and infers the faulty
devices and links.

healthy, we conceive a probing plan which reveals the
device failures. And, by separating the faulty devices
from the network, we prove that the remaining network is
link-identifiable, meaning that the status of each link can
be uniquely identified from the end-to-end path probing.

• A link failure inference algorithm against real-world data
inconsistency (§5). A link-identifiable probing is not
sufficient for pinpointing failures due to real-world data
inconsistency. We formulate an optimization problem
which incorporates our troubleshooting domain knowl-
edge, and thus is resilient to the data inconsistency. And,
by leveraging the characteristic of the network, we propose
an efficient algorithm to infer link failures by solving this
optimization problem.

NetBouncer has been implemented and deployed (§8) in
Microsoft Azure for three years, and it has detected many net-
work failures overlooked by traditional monitoring systems.

2 NetBouncer overview

NetBouncer is an active probing system which infers the
device and link failures from the path probing data. Net-
Bouncer’s workflow is depicted in Figure 1, which is divided
into three phases as follows.
Probing plan design (1© in Figure 1). NetBouncer has one
central controller which produces a probing plan based on the
network topology. A probing plan is a set of paths that would
be probed within one probing epoch. Usually, the probing
plan remains unchanged. Yet, for cases such as topology
changes or probing frequency adjustments, the controller
would update the probing plan.

An eligible probing plan should be link-identifiable,
meaning that the probing paths should cover all links and

more importantly, provide enough information to determine
the status of every single link. However, the constraints in
developing real-world systems make it challenging to design
a proper probing plan (§4.2).

Based on an observation that the vast majority of the
links in a network is healthy, we prove the sufficient probing
theorem (§4.3) which guarantees that NetBouncer’s probing
plan is link-identifiable in a Clos network when at least one
healthy path crosses each switch.
Efficient path probing via IP-in-IP (2© in Figure 1). Based
on the probing plan, the servers send probing packets through
the network. The packet’s routing path (e.g., H5 → T2 →
L1 → S2 → L1 → T2 → H5 in Figure 1) is designated using
the IP-in-IP technique (§3.1). After each probing epoch, the
servers upload their probing data (i.e., the number of packets
sent and received on each path) to NetBouncer’s processor.

NetBouncer needs a path probing scheme that can explic-
itly identify paths and imposes negligible overheads. Because
the data center network is a performance-sensitive environ-
ment, even a small throughput decrease or latency increase
can be a problem [30]. NetBouncer leverages the hardware
feature in modern switches – the IP-in-IP [7, 47] technique –
to explicitly probe paths with low cost.
Failure inference from path measurements (3© in Fig-
ure 1). The processor collects the probing data and runs
an algorithm to infer the device and link failures (§4.4,
§5.2). The results are then sent to the operators for further
troubleshooting and failure processing.

The main challenge of inferring failures comes from the
data inconsistency in the data center environment (§5.1).
We’ve analyzed some real-world cases and encoded our trou-
bleshooting domain knowledge into a specialized quadratic
regularization term (§5.2). On top of that, we develop an
efficient algorithm based on coordinate descent (CD) [53]
which leverages the sparse characteristic of links in all paths.
And the algorithm is more than one order of magnitude faster
than off-the-shelf SGD solutions.
NetBouncer’s targets and limitations. NetBouncer targets
non-transient (no shorter than the interval between two prob-
ings), packet-loss network incidents. Though its expertise
is on detecting gray failures which would be overlooked by
traditional monitoring systems, any other packet-loss related
incidents are also under its radar.

Admittedly, there are cases where NetBouncer fails to de-
tect (see false negatives in §8). We discuss NetBouncer’s lim-
itations in more details in §9.

3 Path probing via packet bouncing

In a data center environment, the probing scheme of a trou-
bleshooting system needs to satisfy two main requirements:
first, the probing scheme should be able to pinpoint the rout-
ing path of probing packets, because a data center network
provides many duplicated paths between two end-hosts.

600 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Second, the probing scheme should consume little network
resources, in terms of switch CPUs and network bandwidth.
This is especially important under heavy workloads when
failures are more likely to happen.

Conventional probing tools fail to meet both requirements
simultaneously. In short, ping-based probing is unable to pin-
point the routing path; Tracert consumes switch CPUs, which
might adversely impact the reliability and manageability of
the network.

NetBouncer designs and implements an approach called
packet bouncing, which takes advantage of the IP-in-IP tech-
nique to accomplish both requirements. Other source routing
schemes [15, 21, 26, 29] might also be plausible, but require
much more deployment effort. NetBouncer uses probes from
end-hosts. With programmable switches, it is possible to de-
ploy probing agents at switches and probe each link individu-
ally. NetBouncer chooses end-host based approach as most of
the switches in our data centers are still non-programmable.
Nonetheless, NetBouncer’s failure localization algorithm ap-
plies to switch-based approaches as well.

3.1 IP-in-IP basics
IP-in-IP [7, 47] is an IP tunneling protocol that encapsulates
one IP packet in another IP packet. This protocol has been
implemented in the modern commodity switches (in ASIC)
which allows devising a specific probing path without
involving the CPUs of switches.

Server Switch1 Switch2

dst:	Switch1

payload
dst:	Switch2

payload
dst:	Switch2

payload
IP-in-IP
packet

NetBouncer utilizes this IP-in-IP technique to explicitly
probe one path by encapsulating the desired destination in the
nested IP packets. In the above abstract example, NetBouncer
is able to probe a certain path (Server→Switch1→Switch2)
by encapsulating the final destination (Switch2) in the inner
IP header and the intermediate hop (Switch1) in the outer IP
header. The switch that receives the IP-in-IP packets (i.e.,
Switch1) would decapsulate the outer IP header and forward
the packet to its next destination.

Indeed, some legacy or low-end switches might not support
IP-in-IP in hardware. We do consider this challenge and
design NetBouncer as only requiring the top-layer switches
(i.e., core switches) having such support (details in §4.3). We
believe that the core switches in a modern data center would
be high-end with such support.

3.2 Packet bouncing
On top of the IP-in-IP technique, NetBouncer adopts a
path probing strategy called packet bouncing. Namely, the

probing server chooses a switch as its destination and inquires
the switch to bounce the packet back. As an example in
Figure 1, a server (e.g., H5) sends a probing packet to a switch
(e.g., S2). The probing path contains the route from the server
to the switch (H5→ T2→ L1→ S2) and its “bouncing back”
route (S2→L1→T2→H5).

In NetBouncer’s target network, the Clos network [2, 48],
packet bouncing simplifies NetBouncer’s model, design and
implementation, due to the following three reasons.

(1) It minimizes the number of IP-in-IP headers Net-
Bouncer has to prepare. The packet bouncing only needs
to prepare one IP-in-IP header which leads to a simple
implementation. Given a Clos network, only one path exists
from a server to a upper-layer switch (also observed by [46]).
Hence, preparing an IP-in-IP packet (to a upper-layer switch)
only needs one outer IP header (with its destination as that
switch), which remarkably simplifies the implementation.

(2) Links are evaluated bidirectionally which leads to a
simpler model. When packet bouncing is in use, all the links
are evaluated bidirectionally. This simplifies NetBouncer’s
model, allowing the network graph to be undirected (§ 4.1).
Indeed, this bidirectional evaluation cannot differentiate
which direction of a link is dropping packets. However, in
practice, this is not an issue because a link is problematic
whichever direction drops packets.

(3) The sender and receiver are on the same server, which
makes NetBouncer robust against server failures. Because of
bouncing, the probing data for a certain path is preserved by
one server, which is both the sender and the receiver. Thus,
the probing data are “all or nothing”. Otherwise, if the senders
and receivers are different servers, NetBouncer has to con-
sider the failures of senders (fewer sent packets, causing false
negatives) or receivers (fewer received packets, causing false
positives) or both, which makes the failure handling more
complicated, especially in a large-scale distributed system.

4 Probing plan and device failure detection

This section proposes NetBouncer’s failure localization
model (§4.1) and introduces the challenges of probing path
selection (§4.2) which motivates the probing plan design
(§4.3) and device failure detection algorithm (§4.4).

We assume in this section that the success probability for
each link is stable (i.e., remain the same among different
measurements) which will be relaxed in the next section (§5).

4.1 Underlying model
We define a data center network as an undirected graph whose
vertices are devices (e.g., servers, switches and routers) and
edges are physical links. Each link has a success probability,
which is denoted by xi for the ith link (linki).

A path is a finite sequence of links which connect a
sequence of devices. In NetBouncer, a probing path is

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 601

H2 H3

L0

T1

L1

x1 x2

x3 x4

Figure 2: An unsolvable example. Switch T1 cannot bounce
packets. And, x1, x2, x3, x4 represent the success probabilities
of link H2-T1, H3-T1, T1-L0 and T1-L1 respectively.

the sequence of links traversed by a probing packet from
its sender to receiver. A path success probability is the
probability of successfully delivering one packet through
all links within this path. We use y j to indicate the success
probability of the jth path (path j).

NetBouncer’s model assumes that dropping packets on dif-
ferent links are independent events, which has been justified
in earlier work [17, 18, 42] (also see §9 for more discussion).
Thus, the probability of successfully delivering one packet
through a path can be described as

y j = ∏
i: linki∈path j

xi,∀ j, (1)

where the success probability of path j is the product of its
link success probabilities.

In the context of failure localization, the path success
probabilities (y js) can be measured by sending probing
packets through the paths, and our ultimate goal is to pinpoint
the faulty links (whose success probabilities xis are below a
certain threshold) and faulty devices (whose associated links
are faulty).

4.2 Real-world challenges for path selection
In order to localize failures, the first question we need to
answer is: which paths should be probed so that all the links
are identifiable? This link identifiability problem can be
formalized as follows.

Given a network graph G and all its possible paths U , how
to construct a set A ⊆ U , so that the set of equations {y j =

∏linki∈path j
xi | path j∈A} has a unique solution for all xis.

Whether the above equations have a unique solution has
been well-studied in the literature of linear algebra (by taking
logarithm at both sides of Equation 1, it becomes linear).
However, in reality, not all paths can be probed. The probing
path must start and end at servers, since most switches cannot
issue packets (most of the switches are non-programmable).
Moreover, the bouncing scheme further restricts the sender
and receiver to be the same server (§3.2).

Under such constraints, we notice that if any switch cannot
“bounce” packets (i.e., doesn’t support IP-in-IP), there is no

unique solution. As an example, Figure 2 depicts a simple
two-tier Clos network with switch T1 (the shaded switch)
unable to bounce packets. As a result, there doesn’t exist a
unique solution in the circled subgraph, which is illustrated
as follows.

Suppose we probe all the possible paths in the circled
subgraph (i.e., H2-T1-L0, H2-T1-L1, H3-T1-L0 and H3-T1-L1)
and obtain four equations as

y{H2-T1-L0}=x1×x3, y{H2-T1-L1}=x1×x4,

y{H3-T1-L0}=x2×x3, y{H3-T1-L1}=x2×x4.

Intuitively, since one of the four equations is redundant
(y{H2-T1-L0} × y{H3-T1-L1} = y{H2-T1-L1} × yH{H3-T1-L0}), the
number of effective equations is smaller than the number
of variables. Thus, there doesn’t exist a unique solution in
general.

Unfortunately, cases similar to the above example occur
in a data center network for many reasons. On the one hand,
some switches (especially ToR switches) may not support the
IP-in-IP forwarding, so that they cannot bounce packets; On
the other hand, delayed uploading and failures are common in
a large-scale system. Within one epoch, the probing data from
a certain switch may fail to be uploaded. More importantly,
bouncing every single switch is expensive and thus not
favorable in terms of the huge number of probing paths.

4.3 Link-identifiable probing plan
In view of the challenges when choosing the paths, finding a
probing plan that has a unique solution is generally difficult.
However, in the real-world scenario, we observe that the vast
majority of the links in a network are well-behaved and thus
most of the paths are healthy.

Motivated by this observation, we come up with the suffi-
cient probing theorem, which proves that when the network
is healthy (at least one healthy path passes each switch), a
simple probing plan (probing all paths from the servers to the
top-layer switches) is link-identifiable. By link-identifiable,
we mean that this probing plan can guarantee a unique
solution (i.e., a set of xis) to the path selection problem (§4.2)
which is consistent with our measurements (i.e., all the y js).
Therefore, this plan is used as NetBouncer’s probing plan.

Theorem 1. (sufficient probing theorem). In a Clos network
with k layers of switches (k ≥ 1), by probing all paths from
the servers to the top-layer switches, we can uniquely infer
the link success probabilities from the measured path success
probabilities, if and only if at least one path with success prob-
ability 1 passes each switch.

The intuition behind the proof of this theorem (see full
version proof in appendix §A) is that if the success probability
of a path is 1, all the links included by this path should also
have success probabilities 1, considering the constraint
xi∈ [0,1],∀i.

602 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Furthermore, from the proof, we can see that this theorem
can be easily extended to all the layered networks. In fact, the
Clos network is a special case of a general layered network,
where switches on layer n only connect to switches on layers
n−1 and n+1, switches on the same layer do not connect to
each other, and servers connect only to the first-layer switches.

Most of the probing plan designs in the literature [11, 12,
36, 39, 44, 54] target how to minimize the number of probing
paths. Reducing the probing path number, however, is not
a goal of NetBouncer. In fact, redundant paths through one
link can be considered as validations to each other. These
validations in turn increase NetBouncer’s accuracy.

4.4 Device failure detection

Using NetBouncer’s probing plan, Theorem 1 provides a
sufficient and necessary condition (i.e., at least one path with
success probability 1 passes each switch) for the existence of
a unique solution. By checking whether the above condition
holds for each switch, we can split a Clos network into a
solvable part (having a unique solution) and an unsolvable
part (no unique solution).

The unsolvable part would be a collection of switches
which fail to have even one good path across it. Since
NetBouncer probes many paths (usually hundreds to thou-
sands) across each switch, one switch is highly suspicious
if it doesn’t even have one good path through it. Hence,
NetBouncer reports these switches as faulty devices to the
operators.

Theoretically, the reported device can be a false positive
if it happens to be surrounded by bad devices. However, this
case is extremely rare since one switch usually connects to
many devices. Thus, we are highly confident that the reported
devices are faulty.

To sum up, the servers first probe paths based on the
probing plan in §4.3. Then the processor collects all the
probing data from the servers, and extracts the faulty devices
(unsolvable part) from the network. Based on Theorem 1,
the remaining subgraph has a unique solution for each link’s
success probability. Next the processor runs the link failure
inference algorithm described in the next section (§5.2), and
infers the faulty links. Finally, the processor reports the faulty
devices and links to the operators. The algorithm running on
NetBouncer’s processor is depicted in Figure 3.

5 Link failure inference

The previous section describes NetBouncer’s probing plan
and algorithm for localizing device failures. Yet, the last
jigsaw piece of NetBouncer’s algorithm (Figure 3, line 6) is
still missing: how can one infer the link probabilities xis from
the end-to-end path measurements y js?

Define:
devs : all devices
Y : path→ [0,1] // a map from a path to its success probability

1: procedure PROCESSOR()
2: (1) Collect probing data from agents as Y
3: (2) badDev← DETECTBADDEVICES(Y) // line 9
4: // eliminate the unsolvable subgraph
5: (3) Y←Y \{pathr | pathr passes any device in badDev}
6: (4) badLink← DETECTBADLINKS(Y) // in Figure 5, §5.2
7: return badDev,badLink
8:
9: procedure DETECTBADDEVICES(Y)

10: badDev←{}
11: for devp in devs :
12: goodPath← False
13: for all pathq passes devp :
14: If Y [pathq]=1 then goodPath← True; break

15: If not goodPath then badDev+=devp

16: return badDev

Figure 3: Algorithm running on NetBouncer processor.

In practice, the above inference problem cannot be re-
solved simply using linear algebra or least squares, because
of the real-world data inconsistency.

5.1 Data inconsistency

In the real-world data center environment, the measurement
data are usually inconsistent or even conflicting. Such data
inconsistency derives from two main reasons:

• Imperfect measurement. The data center network is huge
and its state changes constantly. Due to its gigantic size, all
the paths cannot be probed simultaneously. Thus, different
path probings may reflect different instantaneous states
of the network. Moreover, as the probing sample size is
limited (hundreds of packets per path), the measurements
on each path are coarse-grained.

• Accidental packet loss. In a large-scale network, accidental
errors are inevitable, which can happen on any layer (e.g.,
hypervisor, OS, TCP/IP library) of the execution stack as
a result of bugs, misconfigurations, and failures.

These two reasons lead to inconsistency in the path probing
data and further to misreporting (mostly false positives, re-
porting a well-behaved link as a faulty one). The reason why
accidental packet loss introduces false positives is straightfor-
ward. As it incurs dropping packets which no link or device
should be responsible for, such packets might be attributed to
the non-lossy links which produces false positives.

As for the imperfect measurement, the reason why it causes
false positives is that the inference results might overfit the
imperfect measurements. We demonstrate this problem by a
real-world example (Figure 4).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 603

x1=?

x3=?

x2=1

x5=1
x4=1

y1=0.43 y2=0.41 y3=0.39 y4=1

1

1

1

2

2

2

3

3

3

4

4

4

Figure 4: A false positive example of the least square solution
overfitting imperfect measurement data. The circled number
on the probing packets indicates which path this packet
passes.

In Figure 4, we have priori knowledge that some links
are good (x2 = x4 = x5 = 1) , and we want to infer the link
success probabilities x1 and x3 from observed path success
probabilities (y1 = 0.43, y2 = 0.41, y3 = 0.39, and y4 = 1).
Using the least squares approach we obtain the estimates
x1 = 0.406 and x3 = 0.965, which indicates that both links
are dropping packets. However, the faulty link with respect
to x3, unfortunately, is a false positive. Such false positive
is caused by the imperfect measurements of y1,y2,y3 as their
observed success probabilities are slightly different. In this
case, the least square results overfit the imperfect data when
minimizing the fitting error.

To mitigate the above false positives, we introduce a
specialized regularization term and propose a regularized
estimator for the latent factor model to resolve the failure
localization problem, which is described in the next section.

5.2 NetBouncer’s latent factor model

We have formulated a latent factor model for the link failure
inference problem. Under the constraint xi ∈ [0,1],∀i, the
objective function to be minimized when estimating the
latent link probabilities xis is the sum of squared errors plus
a regularization term as

minimize ∑
j
(y j− ∏

i:linki∈path j

xi)
2+λ∑

i
xi(1−xi)

subject to 0≤xi≤1,∀i
(2)

Specialized regularization. In the model, we have designed
a specialized regularization term ∑ixi(1−xi) which incorpo-
rates our troubleshooting domain knowledge to reduce false
positives described in §5.1.

There are two desired characteristics of this regularization
term: (a), it has a two-direction penalty; (b), because of the
quadratic term, the closer to 1 the greater the slope.

10 x
(a)

10 x
(b)

The characteristic (a) separates the bad links and the good
links, as it tends to move the link probability toward 0 or 1.
The insight behind this is that the regularization term tends
to “pull” the good links to be better, while “push” the bad
links to be worse, while the product of link probabilities
will stay approximately the same. It helps resolve the false
positive cases (e.g., Figure 4 in §5.1) where the imperfect
measurement involves a bad link (x1) and a good link (x3).

The characteristic (b) mitigates the accidental packet loss
and noisy measurements, which helps endorse most links
(good) and assign the blame to only a small number of links
(bad). The intuition of this characteristic is that (i) most of the
links are good, and (ii) the larger the success probability (xi
closer to 1) the more likely the loss is an accidental loss or an
inaccurate/noisy measurement. In response, when one xi is
closer to 1, the regularization term provides stronger strength
(greater slope) to “pull” this xi to be 1 (i.e., a good link).

As for the standard penalties, some (e.g., L1 and L2)
only promote one-direction shrinkage; Other two-direction
penalties (e.g., entropy) are inefficient in terms of analytical
solution and numerical optimization (our regularization term
leads to a neat analytical solution and an associated efficient
minimization algorithm).
Non-convex representation. In our model (Equation 2), we
use a non-convex representation which, in practice, has better
performance than its corresponding convex representation.

From the theoretical perspective, convexity is a desired
property that guarantees the convergence to the global
optimal solution. The convex representation can be obtained
by applying a logarithm transformation to Equation 2 (similar
model used by Netscope[18]). It converts the multiplication
equations to linear equations and results in a convex problem.

However, our experiments (§6.4) show that the non-convex
representation has better performance. The reason is that
the convex representation suffers from a scale change and
skewed log function (e.g., machine epsilon, no log(0) exists),
and thus does not work well numerically in practice.

5.3 Algorithm for link failure inference

Given the above optimization problem, we adopt coordinate
descent (CD), an optimization method, to solve the link fail-
ure inference problem. This algorithm is depicted in Figure 5
(the pseudocode and complexity analysis are in appendix §B).

Coordinate descent leverages the sparse characteristic of
the real-world network which results in an efficient algorithm.
By sparsity, we mean that, in a data center network, each link
is included by only a few paths comparing to the whole path

604 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Define:
X←all xi, Y←all yi
f (X ,Y)← ∑

j
(y j − ∏

i:linki∈path j

xi)
2+ λ∑

i
xi(1−xi)

1: procedure DETECTBADLINKS(Y)
2: X← INITLINKPROBABILITY(Y) // line 12
3: L0← f (X ,Y) // initial value for target function f
4: for iteration k=1,···, MaxLoop :
5: for each xi in X :
6: xi←argmin

xi

f (X ,Y)

7: project xi to [0,1]
8: Lk← f (X ,Y)
9: If Lk−1−Lk <ε then break the loop

10: return {(i,xi)|xi≤bad link threshold}
11:
12: procedure INITLINKPROBABILITY(Y)
13: X←{}
14: for linki in links :
15: // initialize link success probability
16: xi← avg({y j | linki∈path j})
17: return X

Figure 5: Coordinate Descent for regularized least squares
with constraints. xi is the success probability of linki; y j is the
success probability of path j; ε is the threshold of path error;
λ is the tuning parameter of regularization. X is the set of all
xis which changes when xis are updated.

set. Consequently, for updating the success probability of
a link, it is more efficient to leverage the information of the
paths relevant to this specific link, which is exactly how CD
works.
Why not SGD? Stochastic Gradient Descent (SGD) [52] is a
classical and universal optimization algorithm. Nevertheless,
it fails to meet our throughput requirement due to the huge
amount of data (hundreds GB per hour) generated by the
real-world data centers (we’ve tried to improve SGD to our
best, such as lazy-update optimization [8, 32, 38]). By unable
to meet our requirement, we mean that SGD cannot produce
the failure links within a certain time budget (in practice,
5min for one probing epoch, see §7.2). Our experiments
show that CD converges more than one order of magnitude
faster than SGD (§6.4).

There are two reasons why SGD is much slower. First,
SGD iterates over all the paths, and during each loop for a par-
ticular path, all link probabilities are updated simultaneously
due to the regularization term. Such updating does not take
advantage of the path’s sparse representation (only a few links
are related to one path) and includes all the links no matter
whether they are on the paths or not, and thus is not efficient.

Second, SGD suffers from the boundary constraints. When
the link probability is supposed to cross the boundary 0 or 1
according to its current update, we have to clip it and conse-
quently lose information about its gradient.

6 Simulation studies

We run simulations to demonstrate the following: that Net-
Bouncer’s probing plan is sufficient (§6.2); that NetBouncer’s
device failure detection is effective (§6.3); that NetBouncer’s
design choices are justified (§6.4), and that NetBouncer
performs well comparing with other designs (§6.5).

6.1 Simulation setup
We build our simulation on top of a python trace generator
whose outputs are path probing data consumed by Net-
Bouncer’s processor. The trace generator simulates the path
probings on a standard three-layer Clos network [2, 48]
including 2.8 thousand switches (48-port switches), 27.6
thousand servers and 82.9 thousand links.

We follow the settings from previous work [18, 41], while
change the specific loss rates to fit the data center environ-
ment 1: for faulty links/devices, the packet drop probabilities
are between 0.02 and 1; and for non-lossy links, the packet
drop probabilities are between 0 and 0.001 (to simulate noise).
In addition, we randomly choose 10 devices as faulty devices.

For each probing path, 100 packets are sent. Whether
a packet will be successfully transmitted is determined by
generating a random number uniformly between 0 and 1. Net-
Bouncer considers a link good if its estimated success prob-
ability is greater than 0.999 (because the noise rate is 0.001).
All the experiment results are the averages of 10 executions.

6.2 Probing plan
We perform both NetBouncer’s probing plan (§4.3) and a
hop-by-hop probing plan in this experiment. Hop-by-hop
probing plan is a probing plan that sends packets from every
server to every relevant switch. Because of its exhausted
probing, hop-by-hop probing plan is able to identify all the
links, but with very high cost.

The results of hop-by-hop probing plan and NetBouncer’s
probing plan are listed in columns “Hop-by-hop” and “Net-
Bouncer” of Figure 6 respectively. NetBouncer’s probing
plan achieves the same performance as hop-by-hop probing
(there are minor differences with 10% faulty links, which
come from the randomness of faulty link selection), while it
remarkably reduces the number of paths to be probed.

6.3 Device failure detection
In §4.2, we demonstrate that if all the paths through a specific
device are dropping packets, we cannot uniquely infer the
link success probabilities (no unique solution exists), which
motivates our device failure detection algorithm (§4.4). To

1 We change the packet drop probability of any faulty link from [0.05,1]
to [0.02,1], and that of any non-lossy link from [0,0.002] to [0,0.001], which
makes the failure detection more challenging.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 605

Faulty Hop-by-hop w/o DFD Convex L1 (λ=0.5) L1 (λ=1) L1 (λ=2) NetBouncer (λ=1)
link% #FN #FP #FN #FP #FN #FP #FN #FP Err #FN #FP Err #FN #FP Err #FN #FP Err
0.1% 0 0 135.3 0 0 46.9 0 48.5 0.01 0 0 0.03 0.3 0 0.14 0 0 0.01
1% 0 0 164.0 0 1.9 522.7 0 81.1 0.07 0 0 0.32 1.1 0 1.41 0 0 0.11
10% 0.6 0 123.3 0 257.6 4.1k 0 695.7 0.91 0.1 0.6 3.80 25.6 0 15.88 0.3 0.2 1.43

Figure 6: Simulation experiment results on variants of NetBouncer with setup in §6.1. “Faulty link%” indicates the proportion
of faulty links over all links. “#FN” and “#FP” indicates the number of false negatives and false positives. “Err” is the estimation
error (the smaller the better, see the definition in §6.4). As for the results, “Hop-by-hop” represents the experiment using
hop-by-hop probing (§6.2); “w/o DFD” represents the results without faulty device detection (§6.3); “Convex” indicates the
experiment on convex representation; “L1” represents the experiments using standard regularization with different parameters
(§6.4). And, the final column “NetBouncer” is the performance of NetBouncer.

understand the necessity of device failure detection, we
evaluate NetBouncer without its device failure detection
(DFD) under different faulty link ratios. Column “w/o DFD”
in Figure 6 shows the results.

Without the help of faulty device detection, NetBouncer
produces many false negatives. There are two main reasons:
First, without faulty device detection, the links associated
with the faulty devices have an infinite number of solutions
(§4.2). Hence, NetBouncer may end up with an arbitrary
solution. Second, the regularization in NetBouncer tends
to aggregate the path failures and assign the blames to a
small number of links, which is reasonable for link failure
detection, but not for faulty device cases, because all the links
connected to a faulty device are faulty and should be blamed.

6.4 NetBouncer design choices

To verify NetBouncer’s design choices in §5.2 and §5.3, we
compare NetBouncer to its variants with alternative choices.
Convex vs. non-convex. We implement the convex version
of NetBouncer with similar regularization by applying a
logarithmic transformation to Equation 2, and design an
algorithm similar2 to Figure 5 to solve this convex problem.

From the results in column “Convex” of Figure 6, we can
see that the convex representation has both false positives
and false negatives, which mainly derive from its skewed log
scale and boundary clipping. For example, when x=0, log(x)
is invalid, so we have to assume x=1e-8 as an approximation.
L1 vs. specialized regularization. We now evaluate the
effectiveness of NetBouncer’s specialized regularization
by comparing it with a standard regularization L1. The
L1 regularization term is defined as −∑i xi [18]. In order
to compare the estimation accuracy, we use the squared
estimation error of link probabilities as a metric, which is
defined as ∑i(xi − x′i)

2 (xi is the success probability from
“ground truth” and x′i is its estimate). The smaller the error
metric (“Err” in Figure 6), the more accurate the estimation.

The results using the L1 regularization with different λ s are
presented in Figure 6. From the experiments, we find that the

2There are slight differences for the boundary handling due to the log
scale of the convex model.

OptMethod Learning rate #round Time(s)
CD – 4 14.8

SGD-lazy 0.001 145 513.3
SGD-lazy 0.005 45 157.5
SGD-lazy 0.01 161 569.9

Figure 7: Comparison of CD and SGD. The faulty link% of
the workload is 0.1% and λ is 1. To help SGD converge, we
have relaxed the convergence condition for SGD (ε =0.0001
for CD, ε = 0.001 for SGD). “#round” is the number of
rounds to converge. “Time(s)” is the total time of execution
in seconds.

specialized regularization obtains similar numbers of false
discoveries to L1 under the best tuning parameter λ in terms
of failure diagnosis, while it achieves much lower estimation
error when fitting link probabilities.

SGD vs. CD. Although SGD is broadly used as an off-the-
shelf method, we adopt CD, a more efficient method for
NetBouncer based on the sparse structure of our problem.
To make a fair comparison, we implement an SGD with the
lazy-update optimization [8, 32, 38], which is more efficient
than a naive implementation.

Figure 7 summarizes the performance of CD and SGD. It
shows that CD converges much faster than SGD. The time
spent on each round of CD and SGD are similar, but CD
converges in significantly fewer rounds, which validates our
analysis.

Regularization parameter λ . The results of NetBouncer
are affected by the tuning parameter λ in the regularization
affects. Intuitively, λ balances the fitting error and false
discoveries. A large λ may trigger false negatives, while a
small λ may leave false positives.

To illustrate how the results change as λ varies, we run
NetBouncer with different λ values on the network with 1%
faulty links. The numbers of false discoveries are shown
in Figure 8 where the x-axis is in log-scale. The results
demonstrate the trade-off between false positives and false
negatives from choosing λ .

606 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 5000

 10000

 15000

 20000

 25000

0.
1

0.
15 0.

2
0.

3
0.

5
0.

7 1 2 3 5 10
 0

 40

 80

 120

 160

N
u
m

b
er

 o
f

F
P

N
u
m

b
er

 o
f

F
N

value of lambda (under 1% faulty links)

FN
FP

Figure 8: Number of false positives and false negatives for
different λ .

Faulty link% 0.1% 1% 10%
#FN #FP #FN #FP #FN #FP

NetBouncer 0 0 0 0 0.3 0.2
deTector (0.6) 187.5 6.0k 215.5 7.2k 204.0 22.8k
deTector (0.9) 204.5 0.7 191.5 0.4 208.0 21.7
NetScope (0.1) 0 9.1k 3.0 10.8k 167.5 12.6k
NetScope (1) 0.3 43.7 10.2 395.5 319.5 3.8k
NetScope (10) 28.7 6.3 291.5 86.7 2.4k 1.2k
KDD14 7.8 21.0 76.6 433.2 213.8 3.0k

Figure 9: Compare NetBouncer with existing schemes. The
number in parentheses of “deTector” is a tuning parameter to
filter false positives (hit ratio in paper[44]). The number in
parentheses of “NetScope” is its regularization parameter (ω
in paper[18]).

6.5 Comparison with existing systems
In this section, we compare NetBouncer with three existing
systems: deTector [44], NetScope [18], and KDD14 [25].
Note that we only compare the failure inference part on the
processor (step 3© in Figure 1), that is inferring failures from
the path measurement data. To the best of our knowledge,
deTector is the state-of-the-art heuristic algorithm after a long
line of work [16, 31, 43]. NetScope improves the previous
work [41, 49] and takes data inconsistency into account.
KDD14 applies statistical techniques to data center failure
localization. They are the most relevant network diagnosis
algorithms, and thus the most appropriate benchmarks for
NetBouncer.

The original NetScope is designed for troubleshooting on
Internet which is an underdetermined system, whereas data
center network is an overdetermined system. As a result,
we extend the NetScope algorithm following its core idea
– “L1-norm minimization with non-negativity constraints”
(§III.D in [18]), and apply it to the logarithmic transformation
of Equation 1. For KDD14, we assume that the routing path
of each packet is known, which is an improvement over the
original version.

Using the same setup in §6.1, we run experiments on
NetBouncer as well as deTector, NetScope and KDD14 with
various faulty link ratios, and present the results in Figure 9.

As a greedy algorithm, deTector is designed to blame the
smallest number of links, so that it incurs false negatives

when there are faulty devices. On the other hand, deTector
also incurs false positives due to noise in the data. Lastly, it
uses a tuning parameter (i.e., hit ratio in [44]) to filter false
positives, which may result in false negatives as well. This
is a trade-off requiring domain knowledge and experiences
from the network operators.

Similar to the implementation of NetBouncer’s convex
representation, NetScope encounters numerical problems
mainly due to its logarithmic representation. KDD14 pro-
duces both false positives and false negatives resulting from
its assumption that there is at most one faulty link among
all the paths between two servers, which is unrealistic for a
large-scale data center network.

7 Implementation and evaluation

7.1 Implementation
Controller. The NetBouncer Controller is a central place
to decide how the agents probe the whole network. It takes
the network topology as input and generates a probing plan
for servers. The controller has multiple replicas for fault
tolerance.
Agent. The NetBouncer Agent runs on servers. It fetches its
probing plan from the Controller, which contains the paths to
be probed. For each path, the probing plan contains the re-
lated parameters including the number of packets to send, the
packet size, the UDP source destination port range, the probe
frequency, the TTL and ToS values, etc. For each probed
path, the Agent generates a record which contains the path, the
packet length, the total number of packets sent, the number of
packet drops, the RTTs at different percentiles. The CPU and
traffic overhead of the agents are both negligible in practice.
Processor. The NetBouncer Processor has two parts. A
front-end which is responsible for collecting the records
from the NetBouncer Agents, and a back-end Data processor
which runs the algorithm. The front-end and back-end
run on the same physical server. For load-balance and geo
fault tolerance considerations, we run multiple NetBouncer
Processors. Each Processor is responsible for a set of data
center regions. Within a geolocation, we run four NetBouncer
Processor instances behind a software load-balancer VIP.
One instance acts as the master and runs the NetBouncer
algorithm, the other three are slaves. The VIP is configured in
a way so that only the master receives records from the agents.
Result verification and visualization. After localizing fail-
ures in the network, NetBouncer provides a result verification
tool which the operators can use to issue probing packets
on-demand. These on-demand verification packets are sent
from the same Agents as the NetBouncer service.

This tool also shows the packet drop history of links for
visualization. One failure example is illustrated in Figure 10.
It reveals the packet drop history of a link detected by
NetBouncer. Users can click the “Quick probe” button to

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 607

Figure 10: Result verification and visualization tool.

launch probes on-demand for verification. As the figure
shows, the packet drop rate of the link changed from 60%
to 100% at around 10:00. This is because the NetBouncer
report triggered our network repairing service, which in turn
shutdown this link to mitigate the incident. The link will be
manually inspected, cleaned up, and restored later.

With the help of this verification tool, we gain more con-
fidence in the performance of NetBouncer. For the cases we
have verified, we did not experience any false positives. How-
ever, NetBouncer is not false negative-free, as discussed in §9.
Probing epoch. Probing epoch, the interval that NetBouncer
does one run of failure inference algorithm, is a critical pa-
rameter of the system design. One deceptive intuition is that a
shorter probing epoch always leads to faster failure detection.
However, in reality, too frequent failure inferences may result
in either less confident results or bursts of probing traffic.

From our experiences, determining the probing epoch is
a three-way trade-off among inference accuracy, probing
resource cost, and failure localization speed. On one hand,
with fixed probing frequency, inferring failures too often
ends up with less probing data for each inference, and hence
may harm the accuracy. On the other hand, by increasing the
probing frequency on servers, the accuracy is able to keep
unchanged. Nevertheless, it may cause probing traffic bursts,
which may introduce network congestion, ramping up the
risk of instability of the whole network.

Considering the previous tradeoffs, NetBouncer chooses 5
minutes as one probing epoch. Yet, it is plausible to sacrifice
the other two factors to significantly shorten the probing time.

7.2 Data processor runtime evaluation
In this section, we evaluate the performance of Data Proces-
sor, which is executed on a machine having Intel Xeon E5
2.4GHz CPU with 24 cores (48 logical cores) and 128GB
memory. The operating system is Windows Server 2016.

We have around 30 regions in total. The Data Processor
uses one thread to process the data for one region. Data
processing in the Data Processor is therefore naturally
parallelized.

We run NetBouncer on one-hour real-world data trace
on November 5, 2016, which is 130GB in size and covers
tens of global data centers (other hours have similar results).
In production, NetBouncer detects the faulty links in the

 0

 20

 40

 60

1-5
6-10

11-15

16-20

21-25

26-30

31-35

36-40

41-45

46-50

51-55

56-60

R
u
n
ti

m
e
 (

s)

Time window in minutes

Figure 11: NetBouncer running time on real-world data.

hopping window of every 5 minutes. We follow the same
detection frequency in this experiment.

As we show in Figure 11, the min, average, and max
running times are 30.0s, 37.3s, and 56.0s, respectively. The
max processing time happened at window 21-25, in which
our detection algorithm converged after 9 iterations, whereas
most of the rest windows finished in 4 iterations. We did
the investigation and found that the additional iterations
are caused by a few “hard-to-solve” faulty links, when the
faulty links appear in the same local sub-graph. In that case,
our algorithm needs to go back and forth with several more
iterations to converge. In all the cases, the time-to-detection
(TTD) for failures is within 60 seconds.

We also study the time spent on each of the stages. On
average, NetBouncer’s algorithm with regularization (§5.2)
costs 54.9% of the CPU time; other stages – faulty device
detection (§4.4), data cleaning and data structure setup – take
12.4%, 23.8% and 8.9%, respectively. NetBouncer consumes
about 15-20 GB memory during the processing which is only
a small portion of the 128G memory of the server.

Overall, a single NetBouncer Processor instance can
handle multiple regions with tens of thousands of switches
and more than one million network links, with spare capacity
for future growth.

8 Deployment experiences

NetBouncer has been running in Microsoft Azure for three
years. In this section, we’re going to share our deployment
experiences and some representative failures NetBouncer
detected.
NetBouncer deployment, before vs. after. Before Net-
Bouncer was deployed, gray failures could last hours to days.
Since no clue was provided, operators had to pinpoint the
failure via trial and error in a large region of the network
based on their troubleshooting experiences.

After NetBouncer went online, it has successfully reduced
the detection time from hours to minutes, and further shorten-
ing is also possible (see the probing epoch in §7.1). Moreover,
NetBouncer greatly deepened our understanding of the rea-
sons why packet drops happen, including silent packet drops,
packet blackholes, link congestion, link flapping, BGP rout-
ing flapping, switch unplanned reboot, etc. For example, it

608 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 12: The packet drop probability detected by Net-
Bouncer. This is a silent packet drop case.

once caught a case where a switch was periodically changing
its state between normal and 100% packet drops. It turned
out that the switch was rebooted continuously by a buggy
firmware upgrade procedure.

Next, we present three representative cases in produc-
tion detected by NetBouncer, which otherwise would be
extremely difficult or tricky to locate.
Case 1: spine router gray failure. The first case is one of the
most challenging scenarios that motivated the development of
NetBouncer: gray failures, where switches silently drop pack-
ets without any signals. We had an incident where a spine
switch was dropping packets silently, because of an issue in
one of this switch’s linecard hardware. Many of our customers
experienced packet drops and latency increases. The wide
impact was also detected by our end-to-end latency service
Pingmesh [23]. It was clear that one or more spine switches
were dropping packets. But we could not tell which one.

We obtained the link loss rate history of all the spine links
using NetBouncer. Figure 12 shows the packet drop history of
the lossy link. We found that this link was constantly dropping
packets with around 15% packet drop probability. It dropped
packets without differentiation, as both the “Normal” and
“Scavenger” traffic encountered the same dropping rate (the
two curves in Figure 12 overlap with each other). In our net-
work, Normal traffic is given priority over Scavenger traffic.
Case 2: polarized traffic. In the second case, NetBouncer
caught a network congestion scenario and also helped
identify the root-cause of the incident: a switch firmware bug,
which polarized the traffic load onto a single link. Figure 13
shows the packet drop probability measured by NetBouncer.
Among a huge number of packet drops, we observed that
the packets on Scavenger traffic was dropped at a probability
around 35%, but the Normal traffic was not affected. Since
NetBouncer directly told us the congested link, detection
became trivial. We then mitigated this issue by rekeying the
ECMP hash function and solved the problem.
Case 3: miscounting TTL. Time to live (TTL) in an IP packet
is supposed to be decremented by one through each switch.
However, NetBouncer has discovered that when an IP packet
passes though a certain set of switches, its TTL is decremented
by two. This issue manifests as a “false positive” by misclassi-
fying affected good links as bad links, which is in fact caused

Figure 13: The packet drop probability detected by Net-
Bouncer, caused by link polarization.

by an internal switch fireware bug. Though this miscounting
TTL bug hasn’t caused harmful consequences on the actual
data traffic yet. Nevertheless, such a hidden issue will raise
severe latent risk for service reliability and cause huge confu-
sion for troubleshooting.
False negatives and false positives. In practice, we ran into
several false negative cases. In one case, we once ran into
a DHCP booting failure, in which some servers could send
out the DHCP DISCOVER packets, but could not receive
the responding DHCP OFFER packets from the DHCP
server. NetBouncer did not detect such DHCP packet drops.
Resorting to packet capturing, we could identify that the
switches did not drop the DHCP OFFER packets, and this
problem was caused by the NIC.

In another case, we encountered an incident due to a
misconfigured switch ACL, which resulted in packet drops
for a very limited set of IP addresses. Since NetBouncer
scanned a wide range of IP addresses, so the signal detected
by NetBouncer was weak. Similarly, NetBouncer cannot
help when some firewall rules were (wrongly) applied to
certain applications.

NetBouncer in theory is not false positive-free. However,
NetBouncer did not produce false positives in production
so far, because of our specialized regularization (§5.2) and a
strict criteria (1% packet drops) for reducing false alarms.

9 Discussions

NetBouncer’s limitations. NetBouncer has two major
limitations. First, NetBouncer makes an assumption that the
probing packets experience the same failures as real applica-
tions, which may not hold in all cases (as we shown in §8). Our
future work is to systematically investigate the false negative
conditions and improve the coverage of our probing packets.

Second, theoretically, NetBouncer cannot guarantee zero
false positives or zero false negatives. Nevertheless, this is
ubiquitous to all real-world monitoring systems, since the
measurement data cannot be perfectly accurate. In practice,
NetBouncer has produced no false positives and only a few
false negatives (both confirmed by the network operators) so
far.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 609

Theory vs. practice. Theoretically, NetBouncer’s probing
plan is proved to be link-identifiable (§4.3). However, in
practice, such nice theory property does not guarantee the
results to be false positive free or false negative free, which
drove us to seek help from machine learning approaches
(latent factor model, regularization and CD).

Yet, we argue that the theory result, though not sufficient,
is necessary for solving our problem in reality. Without the
guidance of the sufficient probing theorem, a chosen probing
plan might not be link-identifiable, thus the outputs of the
machine learning approach can be arbitrary.
Does the independent assumption hold? In NetBouncer’s
model (§4.1), we assume that the failures are independent.
Our experiences reveal that this assumption holds for a large
number of scenarios including random packet drops due to
cable/fiber bit errors, infrequently hardware gray failures
e.g., bit flips in hardware memory, and packet drops caused
by software Heisenbugs. Those scenarios share the same
characteristic that they are hard to detect and localize. Once
detected, they are typically easy to mitigate (by shutting
down the problematic links or rebooting the faulty devices).
How does NetBouncer handle congestion packet loss? As
stated in overview (§2), NetBouncer targets non-transient
failures. NetBouncer treats persistent congestion as failure
because persistent congestion affects users. NetBouncer fil-
ters out transient congestion since it uses minute-level failure
detection interval.

10 Related work
Network tomography. Compared with original network
tomography approaches [5, 6, 9, 13, 14, 17, 18, 51] which
target the Internet-like networks, NetBouncer has different
challenges. First, the topology of a data center network is
known, but it requires to design a link-identifiable probing
plan. Second, the standard of a well-behaving link in the In-
ternet (failure probability<2% in [18]) is way lower than that
in a data center network (usually, failure probability <0.1%).

As for the link failure inference algorithm, Tomo [16] and
deTector [44] use heuristic algorithms for failure inference.
However, these approaches may generate false results
due to their heuristic nature. NetScope [18] (as well as
NetQuest [49] and LIA [41]) takes data inconsistency into
account. NetBouncer also uses a similar approach (i.e., reg-
ularization), but in addition we encode our troubleshooting
domain knowledge into the model which results in better
performance.

What differentiates NetBouncer from other tomography
systems is that NetBouncer provides a complete framework
targeting data center networks, including probing plan
design (§4.3), device failure detection (§4.4) and link failure
inference (§5.2) against real-world data inconsistency.
Other failure localization approaches. SNMP and Open-
Flow are widely used in nowadays data centers. However,

recent research [23, 28] shows that these tools cannot detect
gray failures, a type of failure that causes availability break-
downs and performance anomalies in cloud environment.

Herodotou et al. [25] use statistical data mining techniques
for data center failure localization. They propose a prob-
abilistic path model since it does not control the path of a
probing packet. Whereas, NetBouncer controls the routing
paths of the probing packets. Furthermore, they assume there
is only one link failure in a path, which leads to false positives
and false negatives as we have shown in §6.5.

Sherlock [4] assumes that only few failures exist in the
system. It then enumerates all the possible combinations to
find the best match. The running time grows exponentially
along with number of failures, which is unacceptable for a
large-scale network.

Pingmesh [23], NetSonar [55] and NetNORAD [1] use a
TCP or UDP agent for end-to-end reachability and traceroute
variants (Tcptracert or fbtracert) for path probes. However,
the ICMP packets generated from the probes need to be han-
dled by the switch CPUs, hence need to be carefully managed.
In addition, NetSonar uses Sherlock [4] algorithm for failure
detection, which cannot support many simultaneous failures.

Passive probing [46] uses core switches to tag IDs in the
DSCP or TTL field of IP header for path pinpointing. How-
ever, DSCP and TTL fields, which are commonly used for
QoS, might not be available.

NetPoirot [3] and [10] leverage decision trees for failure
diagnosis. The data sources are from end-host application and
TCP logs. These approaches can tell whether the problem is
from the network or not, but they do not work for our scenario
as they do not differentiate ECMP paths.

Network troubleshooting. Several systems [24, 50, 56] have
been proposed for network troubleshooting and debugging.
These systems typically need to capture packets or collect
packet summaries, which are complementary to NetBouncer.

Other troubleshooting systems need either non-trivial
modification on software stack [33, 34, 35, 40], or hardware
support [37], which cannot be transparently applied to current
data centers in production.

11 Conclusion

In this paper, we propose the design and implementation
of NetBouncer, an active probing system which infers the
device and link failures from the path probing data. We
demonstrate that NetBouncer’s probing plan design, device
failure detection, and link failure inference perform well
in practice. NetBouncer has been running in Microsoft
Azure’s data centers for three years, and has helped mitigate
numerous network incidents.

610 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] ADAMS, A., LAPUKHOV, P., AND ZENG, J. H. Net-

norad: Troubleshooting networks via end-to-end probing.
https://code.facebook.com/posts/1534350660228025/

netnorad-troubleshooting-networks-via

-end-to-end-probing/, Febrary 2016.

[2] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable, com-
modity data center network architecture. In ACM SIGCOMM (2008).

[3] ARZANI, B., CIRACI, S., LOO, B. T., SCHUSTER, A., AND
OUTHRED, G. Taking the blame game out of data centers operations
with netpoirot. In ACM SIGCOMM (2016).

[4] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S., MALTZ,
D. A., AND ZHANG, M. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In ACM SIGCOMM
(2007).

[5] BATSAKIS, A., MALIK, T., AND TERZIS, A. Practical passive lossy
link inference. In Passive and Active Measurement Workshop (2005).

[6] CáCERES, R., DUFIELD, N. G., HOROWITZ, J., AND TOWSLEY,
D. Multicast-based inference of network-internal loss characteristics.
IEEE Trans. Inform. Theory 45 (November 1999).

[7] CAO, J., XIA, R., YANG, P., GUO, C., LU, G., YUAN, L., ZHENG,
Y., WU, H., XIONG, Y., AND MALTZ, D. Per-packet load-balanced,
low-latency routing for clos-based data center networks. In ACM
Conference on emerging Networking EXperiments and Technologies
(CoNEXT) (2013).

[8] CARPENTER, B. Lazy sparse stochastic gradient descent for regular-
ized multinomial logistic regression. Alias-i, Inc., Tech. Rep (2008),
1–20.

[9] CASTRO, R., COATES, M., LIANG, G., NOWAK, R., AND YU, B.
Network tomography: Recent developments. Statistical Science 19
(Auguest 2004).

[10] CHEN, M., ZHENG, A. X., LLOYD, J., JORDAN, M. I., AND
BREWER, E. Failure diagnosis using decision trees. In Proceedings
of the First International Conference on Autonomic Computing (2004).

[11] CHEN, Y., BINDEL, D., AND KATZ, R. H. Tomography-based overlay
network monitoring. In ACM IMC (2003).

[12] CHUA, D. B., KOLACZYK, E. D., AND CROVELLA, M. Efficient
monitoring of end-to-end network properties. In IEEE International
Conference on Computer Communications (INFOCOM) (2005).

[13] COATES, M., AND NOWAK, R. Network Loss Inference Using Unicast
End-to-End Measurement. In Proc.ITC Conf IP Traffic, Modeling and
Management (2000).

[14] CUNHA, I., TEIXEIRA, R., FEAMSTER, N., AND DIOT, C. Measure-
ment methods for fast and accurate blackhole identification with binary
tomography. In ACM IMC (2009).

[15] DE GHEIN, L. MPLS fundamentals. Cisco Press, 2016.

[16] DHAMDHERE, A., TEIXEIRA, R., DOVROLIS, C., AND DIOT, C.
Netdiagnoser: Troubleshooting network unreachabilities using end-to-
end probes and routing data. In ACM Conference on emerging Net-
working EXperiments and Technologies (CoNEXT) (2007).

[17] DUFFIELD, N. Network tomography of binary network performance
characteristics. IEEE Transactions on Information Theory 52 (Dec
2006).

[18] GHITA, D., NGUYEN, H., KURANT, M., ARGYRAKI, K., AND THI-
RAN, P. Netscope: Practical network loss tomography. In IEEE In-
ternational Conference on Computer Communications (INFOCOM)
(2010).

[19] GILL, P., JAIN, N., AND NAGAPPAN, N. Understanding network fail-
ures in data centers: Measurement, analysis, and implications. In ACM
SIGCOMM (2011).

[20] GOVINDAN, R., MINEI, I., KALLAHALL, M., KOLEY, B., AND VAH-
DAT, A. Evolve or die: High-availability design principles drawn from
google’s network infrastructure. In ACM SIGCOMM (2016).

[21] GUILBAUD, N., AND CARTLIDGE, R. Localizing packet loss
in a large complex network (ppt). https://www.nanog.org/

meetings/nanog57/presentations/Tuesday/tues.general.

GuilbaudCartlidge.Topology.7.pdf.

[22] GUNAWI, H. S., HAO, M., SUMINTO, R. O., LAKSONO, A., SATRIA,
A. D., ADITYATAMA, J., AND ELIAZAR, K. J. Why does the cloud
stop computing? lessons from hundreds of service outages. In SoCC
(2016).

[23] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ,
D., LIU, Z., WANG, V., PANG, B., CHEN, H., ET AL. Pingmesh:
A large-scale system for data center network latency measurement and
analysis. In ACM SIGCOMM (2015).

[24] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES, D., AND
MCKEOWN, N. I know what your packet did last hop: Using packet
histories to troubleshoot networks. In Symposium on Networked Sys-
tems Design and Implementation (NSDI) (2014).

[25] HERODOTOU, H., DING, B., BALAKRISHNAN, S., OUTHRED, G.,
AND FITTER, P. Scalable near real-time failure localization of data
center networks. In KDD (2014).

[26] HU, S., CHEN, K., WU, H., BAI, W., LAN, C., WANG, H., ZHAO,
H., AND GUO, C. Explicit path control in commodity data centers: De-
sign and applications. IEEE/ACM Transactions on Networking (2016).

[27] HUANG, P., GUO, C., LORCH, J. R., ZHOU, L., AND DANG, Y.
Capturing and enhancing in situ system observability for failure detec-
tion. In Symposium on Operating Systems Design and Implementation
(OSDI) (2018).

[28] HUANG, P., GUO, C., ZHOU, L., LORCH, J. R., DANG, Y., CHIN-
TALAPATI, M., AND YAO, R. Gray failure: The Achilles’ heel of
cloud-scale systems. In Workshop on Hot Topics in Operating Systems
(HotOS) (2017).

[29] JYOTHI, S. A., DONG, M., AND GODFREY, P. Towards a flexible data
center fabric with source routing. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Research (2015).

[30] KOHAVI, R., AND LONGBOTHAM, R. Online experiments: Lessons
learned. IEEE Computer (September 2007).

[31] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN,
A. C. Ip fault localization via risk modeling. In Symposium on Net-
worked Systems Design and Implementation (NSDI) (2005).

[32] LANGFORD, J., LI, L., AND ZHANG, T. Sparse online learning via
truncated gradient. Journal of Machine Learning Research 10, Mar
(2009), 777–801.

[33] LENERS, J. B., GUPTA, T., AGUILERA, M. K., AND WALFISH, M.
Improving availability in distributed systems with failure informers. In
Symposium on Networked Systems Design and Implementation (NSDI)
(2013).

[34] LENERS, J. B., GUPTA, T., AGUILERA, M. K., AND WALFISH, M.
Taming uncertainty in distributed systems with help from the network.
In European Conference on Computer Systems (EuroSys) (2015).

[35] LENERS, J. B., WU, H., HUNG, W.-L., AGUILERA, M. K., AND
WALFISH, M. Detecting failures in distributed systems with the falcon
spy network. In ACM Symposium on Operating Systems Principles
(SOSP) (2011).

[36] LI, H., GAO, Y., DONG, W., AND CHEN, C. Taming both predictable
and unpredictable link failures for network tomography. In Proceedings
of the ACM Turing 50th Celebration Conference-China (2017).

[37] LI, Y., MIAO, R., KIM, C., AND YU, M. Lossradar: Fast detection of
lost packets in data center networks. In ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT) (2016).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 611

https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via
-end-to-end-probing/
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/tues.general.GuilbaudCartlidge.Topology.7.pdf
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/tues.general.GuilbaudCartlidge.Topology.7.pdf
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/tues.general.GuilbaudCartlidge.Topology.7.pdf

[38] LIPTON, Z. C., AND ELKAN, C. Efficient elastic net regularization for
sparse linear models. arXiv preprint arXiv:1505.06449 (2015).

[39] MA, L., HE, T., LEUNG, K. K., SWAMI, A., AND TOWSLEY, D.
Identifiability of link metrics based on end-to-end path measurements.
In Proceedings of the 2013 conference on Internet measurement con-
ference (2013).

[40] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Trumpet:
Timely and precise triggers in data centers. In ACM SIGCOMM (2016).

[41] NGUYEN, H. X., AND THIRAN, P. Network loss inference with second
order statistics of end-to-end flows. In ACM SIGCOMM (2007).

[42] PADMANBHAN, V., QIU, L., AND WANG, H. Server-based inference
of internet performance. In In Proc. of IEEE INFOCOM (2003).

[43] PATI, Y. C., REZAIIFAR, R., AND KRISHNAPRASAD, P. S. Orthog-
onal matching pursuit: Recursive function approximation with appli-
cations to wavelet decomposition. In Signals, Systems and Computers,
1993. 1993 Conference Record of The Twenty-Seventh Asilomar Con-
ference on (1993).

[44] PENG, Y., YANG, J., WU, C., GUO, C., HU, C., AND LI, Z. detec-
tor: a topology-aware monitoring system for data center networks. In
USENIX Annual Technical Conference (2017).

[45] POTHARAJU, R., AND JAIN, N. When the network crumbles: An
empirical study of cloud network failures and their impact on services.
In SoCC (2013).

[46] ROY, A., ZENG, H., BAGGA, J., AND SNOEREN, A. C. Passive re-
altime datacenter fault detection and localization. In Symposium on
Networked Systems Design and Implementation (NSDI) (2017).

[47] SIMPSON, W. IP in IP Tunneling, 1995. RFC 1853.

[48] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD,
A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., ET AL. Jupiter rising: A decade of clos topologies and cen-
tralized control in google’s datacenter network. In ACM SIGCOMM
(2015).

[49] SONG, H. H., QIU, L., AND ZHANG, Y. Netquest: a flexible frame-
work for large-scale network measurement. In ACM SIGMETRICS
Performance Evaluation Review (2006).

[50] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying datacen-
ter network debugging with pathdump. In Symposium on Operating
Systems Design and Implementation (OSDI) (2016).

[51] VARDI, Y. Netowrk tomography: Estimating source-destination traffic
intensities from link data. Journal of the American Statistical Associa-
tion 91 (March 1996).

[52] WIKIPEDIA. Stochastic gradient descent. https://en.wikipedia.
org/wiki/Stochastic_gradient_descent.

[53] WRIGHT, S. J. Coordinate descent algorithms. Mathematical Pro-
gramming 151, 1 (2015), 3–34.

[54] ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N.
Automatic test packet generation. In ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT) (2012).

[55] ZENG, H., MAHAJAN, R., MCKEOWN, N., VARGHESE, G., YUAN,
L., AND ZHANG, M. Measuring and troubleshooting large operational
multipath networks with gray box testing. Tech. Rep. MSR-TR-2015-
55, Microsoft Research, 2015.

[56] ZHU, Y., AND ET AL. Packet-level telemetry in large datacenter net-
works. In ACM SIGCOMM (2015).

A Proof of sufficient probing theorem

Proof. Sufficient condition: For any link with its success
probability x0, we consider the only two possibilities:

(1) If a path with success probability 1 includes this link,
then x0=1.

(2) Otherwise, the condition guarantees that at least one
link with success probability 1 connects the upper (lower)
node of this link to a node in the upper (lower) layer. Accord-
ing to the way we probe, at least one path includes this link
so that all the other links in this path have success probability
1. Thus, we will find an equation x0 = y0 in the path success
probability equations.
Necessary condition: Assume the condition does not hold,
then there exists at least one node so that all of its links have
success probability not 1. Therefore, there exists a subgraph
including this node connected with n nodes in the upper layer
and m nodes in the lower layer, which is separable from the
rest of the whole graph.

Given that the success probabilities of all the other links
in the rest of the whole graph are known, we try to solve this
subgraph and consider the only three possibilities:

(1) If all subpath probabilities are not 0 in this subgraph,
then we can transform the path success probability equations
of this subgraph to the linear equations

logyi,n+ j = logxi+logxn+ j,1≤ i≤n;1≤ j≤m

where the rank of corresponding matrix is n + m − 1, less
than the number of linear equations. As a result, no unique
solution is available.

(2) If some but not all subpath probabilities are 0 in this
subgraph, we only focus on the nonzero equations, which do
not have a unique solution due to the redundancy either.

(3) If all subpath probabilities are 0 in this subgraph, we
simply cannot distinguish the solution where all links are 0 or
just some are 0.

To sum up, the solution is not unique in the subgraph even
when the rest of the whole graph is solved. Therefore, it is
impossible to get a unique solution for the whole graph.

B Failure inference algorithm and complexity
analysis

Algorithm 1 describes the full version of NetBouncer’s fail-
ure inference algorithm, Coordinate Descent for regularized
least squares with constraints.

We analyze the complexity of Algorithm 1 as follows.
Assume that each link is included by C paths on average.
The time complexity is O(CM) for link initialization. In each
iteration, the time complexity is O(CM) for link updating,
and O(N +M) for convergence checking. Suppose there are
K iterations until convergence, the total time complexity is
O(CM +KCM +KN +KM) = O(KCM +KN). The space
complexity is O(N) for all path rates, and O(M) for all link
rates, and O(N) for the mapping from the paths to the links
they include, and O(CM) for the mapping from the links to
the paths including them. Then the total space complexity is
O(N+M+N+CM)=O(N+CM).

612 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Algorithm 1 Coordinate Descent for regularized least
squares with constraints.

Require: N = number of paths, M = number of links, y j =
sample success probability of path j, n j = sample size of
path j, K = maximal number of iterations, ε = threshold
of path error, λ = tuning parameter of regularization.

1: initialize x(0)i = ∑
j:xi∈y j

(n jy j)/ ∑
j:xi∈y j

n j, i∈ [1,M]

2: for iteration k=1,···,K do
3: x(k)i =x(k−1)

i , i∈ [1,M]
4: for link i=1,···,M do
5: R(k)

i =2 ∑
j:xi∈y j

(∏
`: 6̀=i,x`∈y j

x(k)`)2−2λ

6: S(k)i =2 ∑
j:xi∈y j

(y j ∏
`: 6̀=i,x`∈y j

x(k)`)−λ

7: T (k)
i =S(k)i /R(k)

i

8: if R(k)
i =0 then

9: if S(k)i >0 then x(k)i =1
10: else x(k)i =0
11: else if R(k)

i >0 then
12: if T (k)

i >1 then x(k)i =1
13: else if T (k)

i <0 then x(k)i =0
14: else x(k)i =T (k)

i
15: else
16: if T (k)

i >1/2 then x(k)i =0
17: else x(k)i =1
18: L(k)=∑

j
(y j− ∏

i:xi∈y j

x(k)i)2+λ∑
i
x(k)i (1−x(k)i)

19: If L(k−1)−L(k)<ε then break the loop
return {x(k)i |i∈ [1,M]}

C Acknowledgement

We thank Jain Shalabh Jain and Pradeepkumar Mani for their
contributions to the early NetBouncer system.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 613

Riverbed: Enforcing User-defined Privacy Constraints in Distributed Web Services

Frank Wang
MIT CSAIL

Ronny Ko, James Mickens
Harvard University

Abstract
Riverbed is a new framework for building privacy-respecting
web services. Using a simple policy language, users define
restrictions on how a remote service can process and store
sensitive data. A transparent Riverbed proxy sits between a
user’s front-end client (e.g., a web browser) and the back-
end server code. The back-end code remotely attests to the
proxy, demonstrating that the code respects user policies; in
particular, the server code attests that it executes within a
Riverbed-compatible managed runtime that uses IFC to en-
force user policies. If attestation succeeds, the proxy releases
the user’s data, tagging it with the user-defined policies. On
the server-side, the Riverbed runtime places all data with com-
patible policies into the same universe (i.e., the same isolated
instance of the full web service). The universe mechanism
allows Riverbed to work with unmodified, legacy software;
unlike prior IFC systems, Riverbed does not require devel-
opers to reason about security lattices, or manually annotate
code with labels. Riverbed imposes only modest performance
overheads, with worst-case slowdowns of 10% for several
real applications.

1 INTRODUCTION

In a web service, a client like a desktop browser or smart-
phone app interacts with datacenter machines. Although
smartphones and web browsers provide rich platforms for
computation, the core application state typically resides in
cloud storage. This state accrues much of its value from server-
side computations that involve no participation (or explicit
consent) from end-user devices.

By running the bulk of an application atop VMs in a com-
modity cloud, developers receive two benefits. First, develop-
ers shift the burden of server administration to professional
datacenter operators. Second, developers gain access to scale-
out resources that vastly exceed those that are available to
a single user device. Scale-out storage allows developers to
co-locate large amounts of data from multiple users; scale-out
computation allows developers to process the co-located data
for the benefit of users (e.g., by providing tailored search
results) and the benefit of the application (e.g., by providing
targeted advertising).

1.1 A Loss of User Control
Unfortunately, there is a disadvantage to migrating applica-
tion code and user data from a user’s local machine to a
remote datacenter server: the user loses control over where
her data is stored, how it is computed upon, and how the data
(and its derivatives) are shared with other services. Users are
increasingly aware of the risks associated with unauthorized
data leakage [11, 62, 82], and some governments have begun
to mandate that online services provide users with more con-
trol over how their data is processed. For example, in 2016,
the EU passed the General Data Protection Regulation [28].
Articles 6, 7, and 8 of the GDPR state that users must give con-
sent for their data to be accessed. Article 17 defines a user’s
right to request her data to be deleted; Article 32 requires
a company to implement “appropriate” security measures
for data-handling pipelines. Unfortunately, requirements like
these lack strong definitions and enforcement mechanisms at
the systems level. Laws like GDPR provide little technical
guidance to a developer who wants to comply with the laws
while still providing the sophisticated applications that users
enjoy.

The research community has proposed information flow
control (IFC) as a way to constrain how sensitive data spreads
throughout a complex system [35, 42]. IFC assigns labels to
program variables or OS-level resources like processes and
pipes; given a partial ordering which defines the desired secu-
rity relationships between labels, an IFC system can enforce
rich properties involving data secrecy and integrity. Unfortu-
nately, traditional IFC is too burdensome to use in modern,
large-scale web services. The reason is that creating and main-
taining a partial ordering of labels is too difficult—the average
programmer or end-user struggles to reason about data safety
via the abstraction of fine-grained label hierarchies. As a re-
sult, no popular, large-scale web service uses IFC to restrict
how sensitive data is processed and shared.

1.2 Our Solution: Riverbed
In this paper, we introduce Riverbed, a distributed web plat-
form for safeguarding the privacy of user data. Riverbed pro-
vides benefits to both web developers and end users. To web
developers, Riverbed provides a practical IFC system which

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 615

Riverbed
web proxy

Browser

HTTP POST upload.html
<Sensitive user data>

User-defined
Riverbed

Web content

Riverbed managed
runtime (IFC)

IO

Application code

IO devices
HTTP POST upload.html

<Sensitive user data>
+

HTTP

Trusted hardware

x.com
policy

U
n

iverses

response

policies

x.com
policy

y.com
policy

z.com
policy

(x.com)

Figure 1: Riverbed’s architecture. The user’s client device is on the
left, and the web service is on the right. Unmodified components are
white; modified or new components are grey.

allows developers to easily “bolt on” stronger security poli-
cies for complex applications written in standard managed
languages. To end users, Riverbed provides a straightforward
mechanism to verify that server-side code is running within a
privacy-preserving environment.

Figure 1 describes Riverbed’s architecture. For each
Riverbed web service, a user defines an information flow
policy using simple, human-understandable constraints like
“do not save my data to persistent storage” or “my data may
only be sent over the network to x.com.” In the common
case, users employ predefined, templated policy files that are
designed by user advocacy groups like the EFF. When a user
generates an HTTP request, a web proxy on the user’s de-
vice transparently adds the appropriate data flow policy as a
special HTTP header.

Within a datacenter, Riverbed leverages the fact that many
services run atop managed runtimes like Python, .NET, or
the JVM. Riverbed modifies such a runtime to automatically
taint incoming HTTP data with the associated user policies.
As the application derives new data from tainted bytes, the
runtime ensures that the new data is also marked as tainted. If
the application tries to externalize data via the disk or the net-
work, the externalization is only allowed if it is permitted by
user policies. The Riverbed runtime terminates an application
process which attempts a disallowed externalization.

In Riverbed, application code (i.e., the code which the
managed runtime executes) is totally unaware that IFC is
occurring. Application developers have no way to read, write,
create, or destroy taints and data flow policies. The advantage
of this scheme is that it makes Riverbed compatible with
code that has not been explicitly annotated with traditional
IFC labels. However, different end users will likely define
incompatible data flow policies. As a result, policy-agnostic
code would quickly generate a policy violation for some
subset of users; Riverbed would then terminate the application.
To avoid this problem, Riverbed spawns multiple, lightweight
copies of the back-end service, one for each set of users

who share the same data flow policies. We call each copy a
universe. Since users in the same universe allow the same
types of data manipulations, any policy violations indicate
true problems with the application (e.g., the application tried
to transmit sensitive data to a server that was not whitelisted
by the inhabitants of the universe).

Before a user’s Riverbed proxy sends data to a server, the
proxy employs remote attestation [9, 15] to verify that the
server is running an IFC-enforcing Riverbed runtime. Impor-
tantly, a trusted server will perform next-hop attestation—the
server will not transmit sensitive data to another network
endpoint unless that endpoint is an attested Riverbed run-
time whose TLS certificate name is explicitly whitelisted by
the user’s data flow policy. In this manner, Riverbed enables
controlled data sharing between machines that span different
domains.

1.3 Our Contributions
To the best of our knowledge, Riverbed is the first distributed
IFC framework which is practical enough to support large-
scale, feature-rich web services that are written in general-
purpose managed languages. Riverbed preserves the tradi-
tional advantages of cloud-based applications, allowing devel-
opers to offload administrative tasks and leverage scale-out
resources. However, Riverbed’s universe mechanism, coupled
with a simple policy language, provides users with understand-
able, enforceable abstractions for controlling how datacenters
manipulate sensitive data. Riverbed makes it easier for devel-
opers to comply with laws like GDPR—users give explicit
consent for data access via Riverbed policies, with server-side
universes constraining how user data may be processed, and
where its derivatives can be stored.

We have ported several non-trivial applications to Riverbed,
and written data flow policies for those applications. Our
experiments show that Riverbed enforces policies with worst-
case end-to-end overheads of 10%. Riverbed also supports
legacy code with little or no developer intervention, making
it easy for well-intentioned (but average-skill) developers to
write services that respect user privacy.

2 RELATED WORK

In this section, we compare Riverbed to representative in-
stances of prior IFC systems. At a high level, Riverbed’s
innovation is the leveraging of universes and human-
understandable, user-defined policies to enforce data flow con-
straints in IFC-unaware programs. Riverbed enforces these
constraints without requiring developers to add security anno-
tations to source code.

2.1 Explicit Labeling
In a classic IFC system, developers explicitly label program
state, and construct a lattice which defines the ways in which
differently-labeled state can interact. Roughly speaking, a
program is composed of assignment statements; the IFC sys-
tem only allows a particular assignment if all of the policies

616 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

involving righthand objects are compatible with the policies
of the lefthand side.

IFC-visible assignments can be defined at various levels
of granularity. For example, Jif [48], Fabric [45], and similar
frameworks [14, 29, 79, 80] modify the compiler and run-
time for a managed language, tracking information flow at
the granularity of individual program variables. In contrast,
frameworks like Thoth [25], Flume [39], Camflow [50], and
DStar [81] modify the OS, associating labels with processes,
IO channels, and OS-visible objects like files. Taint can be
tracked at even high levels of abstraction, e.g., at the granu-
larity of inputs and outputs to MapReduce tasks [66].

All of these approaches require developers to reason about
a complex security lattice which captures relationships be-
tween a large number of privileges and privilege-using entities
like users and groups. Porting a complex legacy application
to such a framework would be prohibitively expensive, and to
the best of our knowledge, there is no large-scale, deployed
system that was written from scratch using IFC with explicit
labeling. Developer-specified labels are also a poor fit for our
problem domain of user-specified access policies.

Tracking data flows at too-high levels of abstraction can
introduce problems of overtainting—to avoid false negatives,
systems must often use pessimistic assumptions about how
outputs should be tainted. For different reasons, overtainting
is also a challenge for ISA-level taint tracking [27, 65], For ex-
ample, if taint is accidentally assigned to %ebp or %esp, then
taint will rapidly propagate throughout the system, yielding
many false positives [67]. To avoid these problems, Riverbed
taints at the managed runtime level, a level which does not ex-
pose raw pointers, and defines data types with less ambiguous
tainting semantics.

In Jeeves [7, 78], a developer explicitly associates each
sensitive data object with a high-confidentiality value, a low-
confidentiality value, and a policy which describes the con-
texts in which a particular value should be exposed. An ob-
ject’s value is symbolic until the object is passed to an output
sink, at which point Jeeves uses the context of the sink to
assign a concrete value to the object. Riverbed avoids the
need for developers to label objects with policies or concrete
values with different fidelities; via the universe mechanism,
Riverbed applications always compute on high-fidelity data
while satisfying user-defined constraints on data propagation.

2.2 Implicit Labeling
Some IFC systems use predefined taint sources and IFC poli-
cies. For example, TaintDroid [26] uses a modified JVM to
track information flows in Android applications. TaintDroid
predefines a group of sensors and databases that generate sen-
sitive data; examples of these sources include a smartphone’s
GPS unit and SMS database. The only sink of interest is
the network, because TaintDroid’s only goal is to prevent
sensitive information from leaking via the network. Because
TaintDroid uses a fixed, application-agnostic set of IFC rules,

TaintDroid works on unmodified applications. Riverbed also
works on unmodified applications. However, TaintDroid oper-
ates on a single-user device, whereas Riverbed targets a web
service that has many users, each of whom may have unique
preferences for how their data should be used. Thus, Riverbed
requires users (but not developers or applications) to explic-
itly define information flow policies. Riverbed also requires
the universe mechanism (§4.4) to prevent the mingling of data
from users with incompatible flow policies.

2.3 Formal Verification
IronClad [33] servers, like Riverbed servers, use remote attes-
tation to inform clients about the server-side software stack. In
Ironclad, server-side code is written in Dafny [41], a language
that is amenable to static verification of functional correctness.
Nothing prevents Riverbed from executing formally-verified
programs; however, Riverbed’s emphasis on running complex
code in arbitrary managed languages means that Riverbed is
generally unable to provide formal assurances about server-
side code.

3 THREAT MODEL

Riverbed assumes that developers want to enforce user-
defined privacy policies, but are loathe to refactor code to do
so. Thus, Riverbed assumes that server-side code is weakly
adversarial: poorly-designed applications may unintention-
ally try to leak data via explicit flows, but developers will not
intentionally write code that attempts to surreptitiously leak
data, e.g., via implicit flows, or via targeted attacks on the
taint-tracking managed runtime. Riverbed is compatible with
mechanisms for tracking implicit flows [5, 6, 10, 61], but our
Riverbed prototype does not track them for several reasons.
One reason is that the punitive aspects of laws like the GDPR
disincentivize companies from writing code that intentionally
subverts compliance mechanisms like Riverbed. Furthermore,
in many common programming languages, mechanisms for
detecting implicit flows have undesirable properties like flag-
ging some well-behaved programs as malicious [5], or re-
quiring annotations from developers [6]. Riverbed strives for
compatibility with legacy, non-annotated code written in pop-
ular languages.

A datacenter operator has physical access to servers, which
enables direct manipulation of server RAM. So, our current
Riverbed prototype assumes that datacenter operators are
trusted. To ease this assumption, Riverbed could leverage a
hardware-enforced isolation mechanism like SGX [20, 37].
However, SGX places limits on the memory size of secure
applications. SGX also requires the applications to run in ring
3, forcing the code to rely on an untrusted OS in ring 0 to per-
form IO; the result is a large number of context switches for
applications that perform many IOs [8]. Riverbed strives to
be compatible with complex applications that issue frequent
IOs. Thus, our Riverbed prototype eschews mechanisms like
SGX, and must be content with not protecting against actively-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 617

malicious datacenter operators. To implement remote attesta-
tion, Riverbed does rely on tamper-resistant, server-side TPM
hardware (§4.3), but TPMs do not protect against physical
attacks on the rest of the server hardware.

Riverbed assumes that the entire client-side is trusted, with
the exception of the web content in a particular page. Buggy
or malicious content may try to disclose too much informa-
tion to a server. However, Riverbed ensures that whatever
data is sent will be properly tagged. Since Riverbed uses
TLS to authenticate network endpoints, the HTTPS certificate
infrastructure must be trusted.

On a server, Riverbed’s TCB consists of a taint-tracking
managed runtime, a reverse proxy that forwards requests to
the appropriate universes (§4.4), the TPM hardware that pro-
vides the root of trust for attestation, and a daemon which
servers use to attest to clients. We make standard crypto-
graphic assumptions about the strength of the ciphers and
hash functions used by the attestation protocol. Between the
TPM hardware and the managed runtime are a boot loader, a
hypervisor, and other systems software. Each end-user can
choose a different collection of intermediate software to trust.
A user’s preferences are expressed in her policies (§4.2), so
that Riverbed’s client-side proxy can refuse to disclose data
to untrusted server-side systems code.

4 DESIGN

Figure 1 provides a high-level overview of the Riverbed ar-
chitecture. In this section, we provide more details on how
users specify their policies, and how Riverbed enforces those
polices on the server-side.

4.1 Riverbed-amenable Services
Riverbed is best-suited for certain types of web services.

• Services with per-user silos for application state,
and no cross-user sharing: Examples include back-up
services like Ionic [51], and private note-taking apps
like Turtl [47]. Riverbed prevents information leak-
age between per-user silos (although an individual silo
may span multiple server-side hostnames and cloud
providers).

• Services that silo user data according to explicitly-
defined group affinities: For example, a social network-
ing site can create a universe for the state belonging to
a corporation’s private group. The corporation’s users
map to the same Riverbed user (§4.2), with no data flows
between different corporations. Financial analysis sites
and email services can use this decomposition to isolate
data belonging to a particular business or social group.

• Services which aggregate unaffiliated users by
shared polices: For example, in a news site, users can
define policies that impact whether the site may aggre-
gate user data for targeted advertising. Riverbed places
users with equivalent policies into the same universe,
ensuring that the site respects each user’s preferences.

USER-ID: ALICE
AGGREGATION: False
PERSISTENT-STORAGE: True
ALLOW-TO-NETWORK: x.com
ALLOW-TO-NETWORK: y.com
TRUSTED-SERVER-STACK: {

83145c082bbf608989f05e85c3c211f83,
c8cd7ac93cab2b94f65a5b2de5709767f,

...
590f01d8d18b1141988ee1975b3ce3b30

}

Figure 2: An example of a Riverbed policy. For simplicity, we elide
graph-based contextual attestation predicates (§4.3).

Child policies (§4.2) can whitelist communication between
server-side endpoints with otherwise incompatible policies.
However, such whitelisting is easier when the server-side
application consists of small, well-defined components, so
that whitelisting individual components has well-understood
security implications.

4.2 Expressing Policies
Figure 2 provides an example of a Riverbed policy. A policy
consists of several parts, as described below.

The USER-ID field describes the owner of the policy. User
ids only need to be unique within the context of a particular
web service. Riverbed is agnostic about the mechanism that a
service uses to authenticate users and log them into the service.
However, Riverbed’s server-side reverse proxy must know
who owns the policy that is associated with each user request,
so that the proxy can forward the request to the appropriate
universe (§4.4).

Since Riverbed is agnostic about a service’s login mecha-
nism, a USER-ID field could actually be bound to a group of
users. In this scenario, the users in the group would have differ-
ent service-specific usernames, but share the same USER-ID
field in their Riverbed policies. From Riverbed’s perspective,
the sensitive data of each individual user would all belong to
a single logical Riverbed user.

The AGGREGATION flag specifies whether a user’s data
can be involved in server computations that include the data
of other users. For example, suppose that a server wishes to
add two numbers, each of which was derived from the data of
a different user. If both users allow aggregation, Riverbed can
execute the addition in the same universe. If one or both users
disallow aggregation, then Riverbed must create separate uni-
verses for the two users. The AGGREGATION field specifies
a yes/no policy—either arbitrary aggregation is allowed, or
all aggregation is disallowed.

The binary PERSISTENT-STORAGE flag indicates
whether server-side code can write a user’s data to persis-
tent storage. If so, the user expects that when the data is read
again by the server-side application, the application will treat
the data as tainted. A Riverbed managed runtime terminates

618 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

applications that try to write tainted data to persistent storage,
but lack the appropriate permissions.

A policy can optionally include an email address that be-
longs to the policy owner. If a Riverbed managed runtime
must terminate policy-violating code, Riverbed can email the
policy owner, informing the user about the thwarted policy
breach. The user can then complain to the service operator,
or take another corrective action.

The ALLOW-TO-NETWORK field is optional, and allows
a user to whitelist network endpoints to which user data
may flow. Endpoints are represented by hostnames; each
whitelisted hostname is expected to have a valid X.509 cer-
tificate, e.g., as used by HTTPS. Before a Riverbed managed
runtime allows tainted data to externalize via a socket, the run-
time will check whether the remote endpoint is whitelisted by
the tainted data’s policy. If so, the runtime forces the remote
endpoint to attest its software stack. If that stack is whitelisted
by the policy, the runtime allows the transfer to complete.
Otherwise, the runtime terminates the application. Note that
Riverbed allows untainted data to be sent to arbitrary remote
servers.

The final item in a policy is typically one or more
TRUSTED-SERVER-STACK entries. Each trusted stack is
represented by a list of hash values; see Section 4.3 for more
details about how these hash values are generated by servers,
and later consumed by the attestation protocol.

As discussed in Sections 4.3 and 4.6, a client-side proxy
leverages attestation to validate the server-side software
stack up to, but not including, the application-defined man-
aged code. Once the proxy determines that Riverbed’s taint-
tracking managed runtime is executing on the server, the
proxy will trust the runtime to enforce the policies described
earlier in this section. However, the policies from earlier in
this section only enable aggregation at a binary granularity
(i.e., “allowed” or “disallowed”); a universe which disallows
aggregation can never permit data to flow to a universe which
does allow aggregation. This restriction prevents several use-
ful types of selective aggregation. For example, two email
servers in separate no-aggregate universes could ideally send
emails to a trusted spam filter application which trains across
all inboxes, and then returns a filter to each universe. To allow
such aggregation by explicitly trusted components, Riverbed
policies can decorate an ALLOW-TO-NETWORK field with
a child policy. The child policy can override settings in the
parent policy, allowing aggregation to occur at the endpoint.
The child policy must specify a full-stack attestation record,
to allow Riverbed to verify the identity of a particular type of
trusted application-level code (e.g., SpamAssassin [2]). Data
received from a trusted aggregator is marked with the taint
descriptor of the receiving universe.

Riverbed allows a user to define her own policy for each
web service that she uses. However, some policies may be fun-
damentally incompatible with certain services. As a trivial ex-
ample, a Dropbox-like service that provides online storage is

intrinsically incompatible with a PERSISTENT-STORAGE:
False policy.1 In the common case, we expect users to rely
on trusted outside authorities, called policy generators, to
define reasonable policies for sites. For example, consider
a web site that wants to deliver targeted advertising via a
third-party ad network evil-ads.com. A consumer advo-
cacy group can advise users to avoid policies that whitelist
evil-ads.com. Consumer advocacy groups can also pub-
lish suggested policy files for particular sites, based on re-
search about what reasonable permissions for those sites
should be.

Note that modern web browsing is already influenced by a
variety of curated policies. For example, Google maintains a
set of known-malicious URLs; multiple browser types con-
sult this list to prevent accidental user navigation to attacker-
controlled pages [31]. As another example, ad blockers [18]
interpose on a page load, blocking content from sites deemed
objectionable by the creators of the ad blocker. Riverbed
introduces a new kind of web policy, but does not shatter
prior expectations that web browsing must be an unmediated
experience.

4.3 Server Attestation
The client-side proxy shepherds the interactions between the
client and server portions of a Riverbed application. In this
section, we describe the proxy in the context of a traditional
web service whose client/server protocol is HTTP. Proxies
are easily written for other protocols like SMTP (§4.5). We
assume that the reader understands the basics of remote attes-
tation, but readers who lack this knowledge can refer to the
appendix for the necessary background material.

A user configures her browser to use the Riverbed proxy to
connect to the Internet. At start-up time, the proxy searches
a well-known directory for the user’s policy files; the proxy
assumes that each filename corresponds to the hostname in a
server-side X.509 certificate (e.g., x.com). When the proxy
receives an HTTP request that is destined for x.com, the
proxy opens a TLS connection to x.com’s server, and forces
that server to remotely attest its software stack. If the attes-
tation succeeds, the proxy issues the HTTP request that trig-
gered the attestation. Later, upon receiving a response from
the server, the proxy forwards the response to the browser. By
default, the proxy assumes that an attestation is valid for one
day before a new attestation is necessary.

Riverbed strives to be practical, but traditional remote at-
testation [9, 15] has some unfortunate practical limitations.
Consider the following challenges.

Server-side ambiguity: In traditional attestation, servers es-
tablish trust with clients by providing an explicit list of server-
side software components. However, servers may not wish
to share a perfectly-accurate view of their local software en-
vironment. For example, servers might be concerned that a

1. . . unless the service is intentionally exporting a RAM-only storage
abstraction.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 619

malicious client will launch zero-day attacks against vulnera-
ble (and precisely-identified) server components.
Potentially safe code: A server-side component may be in-
trinsically secure, but currently unvetted by the creator of
a user’s Riverbed policies. Alternatively, a server-side exe-
cutable might be intrinsically insecure, but perfectly safe to
run if launched within a sandboxed environment like a virtual
machine. Traditional attestation protocols are ill-suited to han-
dle cases like these, since trust decisions are binary—a hash
value in an attestation message corresponds to a categorically
trusted component, or a categorically untrusted component.
Policy updating: A virtuous server administrator will be
diligent about applying the latest patches to server-side code.
If the user’s policy generator is not as diligent, then users will
reject legitimately trustworthy stacks as suspicious. Similarly,
if users are more aggressive about updating policies than
a server administrator, then out-of-date server-side stacks
will be legitimately rejected as untrustworthy, but the server
administrator will lack an immediate explanation for why.
Traditional attestation protocols focus on the cryptographic
aspects of client-server communication, but cannot resolve
these kinds of policy disputes.

Riverbed uses the Cobweb attestation system [74] to
handle these practical concerns. In traditional attestation, the
attestor sends a TPM-signed PCR[10] value, and a list of
<filename, filehash> tuples representing the objects that are
covered by the cumulative hash in PCR[10]. Cobweb allows
the attestor to augment the traditional attestation report with
a contextual graph that provides additional information about
the attestor’s software stack. For example, a contextual graph
might represent a process tree, where each vertex is a process
and each edge represents a parent/child fork() relationship.
An edge could also represent a dynamic information flow,
e.g., indicating that two processes have communicated via
IPC. Attestation verifiers specify policies as graph predicates
that look for desired structural properties in the contextual
graph or the regular attestation list of <filename, filehash>
tuples.

Riverbed uses contextual graphs, and policy specification
via graph predicates, to eliminate some of the practical diffi-
culties with traditional attestation. For example:

• If attestation fails (i.e., if a client-side Riverbed proxy
discovers that a graph predicate cannot be satisfied), the
proxy sends the failed predicate to the server. The server
can then initiate concrete remediating steps, e.g., by
updating software packages, or removing a blacklisted
application.

• A Riverbed server can also dispute the failure of a graph
predicate. For example, if a user’s proxy believes that
a particular server-side component is out-of-date, the
server can respond with a list of signed, vendor-supplied
updates for which the user’s proxy may be unaware. The
proxy can then ask the user’s policy generator for a new
policy.

USER-ID: Alice
AGGREGATION: True
PERSISTENT-STORAGE: True
ALLOW-TO-NETWORK: x.com
TRUSTED-SERVER-STACK: S0

USER-ID: Bob
AGGREGATION: True
PERSISTENT-STORAGE: True
ALLOW-TO-NETWORK: x.com
TRUSTED-SERVER-STACK: S0

USER-ID: Charlie
AGGREGATION: False
PERSISTENT-STORAGE: True
ALLOW-TO-NETWORK: x.com
TRUSTED-SERVER-STACK: S0

Riverbed managed
runtime (IFC)

IO

Application code

IO devices

Riverbed managed
runtime (IFC)

IO

Application code

IO devices

Universe 0

Universe 1

Physical server

Data policies

Figure 3: Alice and Bob have compatible policies, so Riverbed
maps them to the same universe. Charlie has an incompatible policy
because he disallows aggregation. Thus, Charlie must receive his
own universe.

• A user’s Riverbed policy can tolerate an unknown or nor-
mally untrusted server binary if that binary is launched
within a sandbox that isolates the component from other
components which the user does require to be trusted. To
provide confidence in the sandbox, the server’s contex-
tual graph should contain the fork()/exec() history
for the server, as well as the configuration files for the
sandbox environment. As a concrete example, suppose
that a server needs to run a telnet daemon to commu-
nicate with a legacy internal service. The telnet pro-
tocol is known to be insecure, but a Riverbed proxy can
trust the server’s Apache instance if the server uses a vir-
tual machine or a Docker container to isolate telnetd.

Riverbed also leverages Cobweb’s support for server-side
software ambiguity, but we refer the reader to the Cobweb
paper [74] for a discussion of how Cobweb implements this
feature.

4.4 Universes
Consider Alice, Bob, and Charlie, three Riverbed users whose
policies are shown in Figure 3. The policies of these users
are almost the same—they differ only with respect to the
AGGREGATION token. Alice and Bob allow aggregation, but
Charlie does not. How should Riverbed handle the data of
these users on the server-side?

Riverbed could optimistically assume that the server-side
application code will never try to aggregate Charlie’s data
with that of Alice or Bob. Riverbed executes the code
atop a taint-tracking runtime (§4.5), so Riverbed could syn-

620 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

chronously detect attempted violations of Charlie’s policy. Un-
fortunately, attempted violations are likely, since Riverbed ex-
ecutes unmodified applications that are unaware of Riverbed
policies. If a violation occurs, Riverbed would lack good
options for moving forward. Riverbed could permanently ter-
minate the application, which would prevent the disallowed
aggregation of Charlie’s data. However, all three users would
be locked out of the now-dead service. To avoid this outcome,
Riverbed could try to synchronously clone the application
at policy violation time, creating two different versions: one
for Alice and Bob, and another for Charlie. However, deter-
mining which pieces of in-memory and on-disk state should
belong in which clone is difficult without application-specific
knowledge; a primary goal of Riverbed is to enforce security
in a service-agnostic manner.

Riverbed’s solution emerges from the insight that Riverbed
does not need to run any code to determine whether a set of
policies might conflict. Instead, Riverbed can simply examine
the policies themselves. For example, if a policy does not
allow aggregation, then Riverbed can preemptively spawn a
separate copy of the service for the policy’s owner. Riverbed
can spawn this copy on-demand, upon receiving the first
request from the owner. Now consider a policy P that al-
lows aggregation and a particular set of storage and network
permissions (e.g., PERSISTENT-STORAGE: True and
ALLOW-TO-NETWORK: x.com). All users whose policies
match P can be placed in the same copy of the service.
Riverbed can spawn the copy upon receiving the first request
that is tagged with P.

We call each service copy a universe. To implement the
universe mechanism, Riverbed places a reverse proxy in front
of the actual servers which run application code. Clients send
their requests to the reverse proxy; the reverse proxy exam-
ines the policy in each request, spawns a new universe if
necessary, and then forwards the request to the appropriate
universe. Our Riverbed prototype instantiates each universe
component inside of a Docker [21] instance that contains a
taint-tracking runtime (§4.5) and the component-specific code
and data. Docker containers are much smaller than traditional
virtual machines since Docker virtualizes at the POSIX layer
instead of the hardware layer. As a result, creating, destroy-
ing, and suspending universes is fast (§6.4). Docker runs each
container atop a copy-on-write file system that belongs to the
host [24]. Thus, universes share the storage that is associated
with application code and other user-agnostic files.

Universes provide a final advantage: since all of the sen-
sitive data in a universe has the same policy, a universe’s
taint-tracking runtime only needs to associate a single logical
bit of taint with each object (“tainted” or “untainted”). If data
from all users resided in the same universe, the runtime would
have to associate each object with a value that represented a
specific taint pattern.

The relationship between the number of users and the num-
ber of universes is application-specific. Some web services

will specifically target a 1-1 mapping. For example, in a “pri-
vate Dropbox” service that implements confidential online
storage, users will naturally specify data policies that prevent
aggregation (and thus require a universe per user). In contrast,
social networking applications intrinsically derive their value
from the sharing of raw user data, and the extraction of inter-
esting cross-user patterns. For these applications, users must
allow aggregation (although the scope of aggregation can be
restricted using groups (§4.2)).

4.5 Taint Tracking

A managed language like Python, Go, or Java does not expose
raw pointers to applications, or allow those applications to
directly issue system calls. Instead, the language runtime acts
as a mediation layer, controlling how a program interacts with
the outside world. Like much of the prior work on dynamic
tainting [26, 34, 46, 13], Riverbed enforces information flow
control inside the managed runtime. Our Riverbed prototype
modifies PyPy [53], a state-of-the-art Python interpreter, to
extract Riverbed policies from incoming network data, and
assign taint to derived information.

PyPy translates Python source files to bytecodes. Those
bytecode are then interpreted. Riverbed adds taint-tracking
instrumentation to the interpreter, injecting propagation rules
that are similar to those of TaintDroid [26]. For example, in
a binary operation like ADD, the lefthand side of the assign-
ment receives the union of the taints of the righthand sides.
Assigning a constant value to a variable clears the taint of
the variable. If an array element is used as a righthand side,
the lefthand side receives the taint of both the array and the
index.

We call Riverbed’s modified Python runtime PyRB. If a
Python application tries to send tainted data to remote host
x.com, PyRB first checks whether externalization to x.com
is permitted by the tainted data’s policy. If so, PyRB forces
x.com to remotely attest its software stack; in this scenario,
PyRB acts as the client in the protocol from Section 4.3. If
x.com’s stack is trusted by the tainted data’s policy, PyRB al-
lows the data to flow to x.com. Otherwise, PyRB terminates
the application. Riverbed provides a standalone attestation
daemon that a server can use to respond to attestation requests.

PyRB must also taint incoming network data that was sent
by end-user clients like web browsers. To do so without re-
quiring modifications to legacy application code, PyRB as-
sumes two things. First, clients are assumed to use standard
network protocols like HTTP or SMTP. Second, PyRB as-
sumes that when clients send requests using those protocols,
clients embed Riverbed policies in a known way. Ensuring
the second property is easy if unmodified clients run atop
Riverbed proxies; for example, when an unmodified web
browser sends requests through a client-side Riverbed proxy,
the proxy will automatically embed Riverbed policies using
the Riverbed-policy HTTP header. Similarly, a client-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 621

side SMTP proxy can attach Riverbed policies using a custom
SMTP command.

On the server-side, PyRB assumes that traffic intended for
well-known ports uses the associated well-known protocol.
Upon receiving a connection to such a port, PyRB reads the
initial bytes from the socket before passing those bytes to
the application. If the initial bytes cannot be parsed as the
expected protocol, PyRB forcibly terminates the connection.
Otherwise, if PyRB finds a Riverbed policy, PyRB taints the
socket bytes and then hands the tainted bytes to the higher-
level application code. If there is no policy attached to the
bytes, PyRB hands untainted bytes to the higher-level code.
Importantly, the application code is unaware of the tainting
process, and cannot read or write the taint labels.

If policies allow server-side code to write to persistent stor-
age, PyRB taints the files that the application writes. PyRB
does whole-file tainting, storing taint information in per-file
extended attributes [40]. PyRB prevents application code
from reading or writing those attributes. Whole-file taint-
ing minimizes the storage overhead for taints, but Riverbed is
compatible with taint-aware storage layers (§6.2) that perform
fine-grained tainting, e.g., at the level of individual database
rows; the use of such storage layers will minimize the likeli-
hood of overtainting.

When an application reads data from a tainted file, PyRB
taints the incoming bytes, preventing the application from
laundering taint through the file system. Note that, even
though a policy contains multiple constraints (§4.2), all of
the users within a universe share the same policy; thus, PyRB
only needs to associate a single logical bit with each Python
object (§4.4). PyRB does need to store one copy of the full
policy, so that the policy can be consulted when tainted data
reaches an output sink.

Managed languages sometimes offer “escape hatches” that
allow an application to directly interact with the unman-
aged world. For example, in Java, the JNI mechanism [49]
enables applications to invoke code written in native lan-
guages like C. In Python, interfaces like os.system() and
subprocess.call() allow managed code to spawn na-
tive binaries. A Riverbed runtime can use one of three strate-
gies to handle a particular escape hatch.

• The runtime can disallow the escape hatch by fiat.
• Alternatively, the runtime can whitelist the binaries that

can be launched by the escape hatch. Each whitelisted
binary must have a pre-generated taint model attached to
it [26], such that the runtime can determine whether the
binary is safe to launch given a particular set of tainted
inputs, and if so, how taint should be assigned in the
managed world when the binary terminates.

• The runtime can track instruction-level information
flows in binaries launched by an escape hatch. To do
so, the runtime must execute the native instructions via
emulation [54, 76]. Strictly speaking, the runtime only
needs to emulate instructions that touch sensitive data;

the runtime can use page table permissions to detect
when native code tries to access tainted data [36, 55, 56].
This optimization allows most native code to execute
unemulated, i.e., directly atop the hardware.

PyRB could use any or all of these strategies. Our current
PyRB prototype uses the first two. PyRB disallows C bind-
ings by fiat, and only allows applications to spawn a child
process if that process will be an instance of the PyRB in-
terpreter (with the Python code to run in the child process
specified as an argument to the child process). The parent
and child PyRB interpreters will introspect on cross-process
file descriptor communication, encapsulating the raw bytes
within a custom protocol which ensures that taint is correctly
propagated between the two runtimes.

4.6 Discussion

The necessity of IFC: A Riverbed server attests its systems
software and its Riverbed managed runtime. However, the
server does not attest the contents of higher-level code be-
longing to the web service. At first glance, this approach
might seem odd: why not have the server attest all application
code as well? If clients trust the attested application code,
then server-side IFC might be unnecessary. However, in many
cases, application code is not open source, e.g., because the
code contains proprietary intellectual property that confers a
competitive advantage to the web service owner. Code like
this cannot be audited by a trusted third party, so end-users
would gain little confidence from remote attestations of that
code. Even if the server-side code were open source and pub-
licly auditable, there are many more server applications than
OSes and low-level systems software. Given a finite amount
of resources that can be devoted to auditing, those resources
are best spent inspecting the lowest levels of the stack. Indeed,
if those levels are not secure, then even audited higher-level
code will be untrustworthy. Also note that, even if the web
service code has been audited, Riverbed provides security in
depth, by catching any disallowed information flows that the
audit may have missed.

Universe migration: Due to server-side load balancing or
fail-over, a container belonging to a universe can migrate
across different physical servers. From a user’s perspective,
migration is transparent if a user-facing container is placed on
a server with a trusted stack—attestation involving the new
server and the user’s Riverbed proxy will succeed as expected.
However, before migration occurs, the old server must force
the new server to attest; in this fashion, the old server ensures
that the new server runs a trusted Riverbed stack (and will
therefore respect the data policies associated with the universe
being migrated).

Preventing denial-of-service via spurious universe cre-
ation: Attackers might generate a large number of fake users,
each of which has a policy that requires a separate universe;
the attacker’s goal would be to force the application to exhaust
resources trying to manage all of the universes. Fortunately,

622 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in a given Riverbed application, each universe employs copy-
on-write storage layered atop a base image. As a result, a new
universe consumes essentially zero storage resources until the
universe starts receiving actual client requests that write to
storage. Riverbed also suspends cold universes to disk. Thus,
a maliciously-created universe that is cold will consume no
CPU cycles and no RAM space; storage overhead will be
proportional to the write volume generated by client requests,
but this overhead is no different than in a non-Riverbed ap-
plication. Regardless, a Riverbed application should perform
the same user verification [32, 73, 75] that a traditional web
service performs.
Hostname management: Applications which use a microser-
vice architecture will contain many small pieces of code that
are executed by a potentially large number of hostnames. An
application that uses elastic scaling may also dynamically
bind service state to a large set of hostnames. User policies
can employ wildcarded TLS hostnames [30] to avoid the need
for a priori knowledge of all possible hostnames.
Taint relabeling: Consider a user named Alice. A Riverbed
service assigns Alice to a universe upon receiving the first
request from Alice (§4.4). What happens if Alice later wants
to re-taint her data, i.e., assign a different policy to that data?

Suppose that Alice lives in a singleton universe that only
contains herself. Further suppose that her policy modification
keeps her in a singleton universe. In this scenario, re-tainting
data is straightforward. If storage permissions were enabled
but now are not, Riverbed deletes Alice’s data on persistent
storage. If network permissions changed, then Riverbed will
only allow tainted data to flow to the new set of whitelisted
endpoints. Nothing special must be done to handle tainted
memory in the managed runtime—since Alice still lives in a
singleton universe, there is no way for the service to combine
her in-memory data with the data of others. If Alice later
wants to invoke her “right to be forgetten,” Riverbed just
destroys Alice’s universe.

The preceding discussion assumed that Alice only has uni-
verse state in a single TLS domain (e.g., x.com). However,
Alice’s singleton universe will span multiple domains if Al-
ice’s original policy enabled cross-domain data transfers. In
these scenarios, Riverbed must disseminate a policy modi-
fication request to all relevant domains. Doing so is mostly
straightforward, since the relevant domains are explicitly enu-
merated in Alice’s original policy. Riverbed does need to pay
special attention to wildcarded network sinks like *.x.com;
such domains must expose a directory service that allows
Riverbed to enumerate the concrete hostnames that are cov-
ered by the wildcard.

Now consider a different user Bob who wants to change
his policy. If Bob lives in a universe that is shared with others,
then re-tainting is harder, regardless of whether Bob wishes to
transfer to a shared universe or a singleton one. The challenges
are the same ones faced by a synchronous universe clone at
policy-violation time (§4.4): since Riverbed is application-

agnostic, Riverbed has no easy way to cleanly splice a user’s
data out of one universe and into another. Thus, if Bob lives
in a shared universe and wishes to move to a different one,
Riverbed must first use application-specific mechanisms to
extract his data from his current universe. Then, Riverbed
deletes Bob’s current universe. Finally, Riverbed must re-
inject Bob’s data into the appropriate universe via application-
specific requests. This migration process may be tedious, but
importantly, Riverbed narrows the scope of data finding and
extraction. When re-tainting must occur, the application only
needs to look for Bob’s data within Bob’s original universe,
not the full set of application resources belonging to all users.
Before and after re-tainting, Riverbed ensures that Bob’s IFC
policies are respected.

CDNs: Large-scale web services use CDNs to host static ob-
jects that many users will need to fetch. CDN servers do not
run application logic, but they do see user cookies which
may contain sensitive information. So, by default, client-
side Riverbed proxies force CDN nodes to attest. However, a
proxy can explicitly whitelist CDN domains that should not
be forced to attest.

Policy creep: Traditional end-user license agreements rep-
resent a crude form of data consent. In a EULA, a service
provider employs natural language to describe how a service
will handle user data; a user can then decide whether to opt
into the service. Riverbed tries to empower users by giving
users the ability to define policies for data manipulation. How-
ever, Riverbed cannot force a service to regard a user-defined
policy as acceptable. Furthermore, the history of traditional
EULAs suggests that, in a Riverbed world, services will pre-
fer less restrictive Riverbed policies. For example, a service
may refuse to accept a user if the user’s Riverbed policy will
not allow data flows to a particular advertising network. In
this situation, the service can mandate that a less restrictive
policy is the cost of admission to the service. Riverbed cannot
prevent such behavior. However, Riverbed does force services
to be more transparent about data promiscuity, because any
service-suggested policy must be explicit about how data will
be used. Riverbed also uses IFC to force services to adhere to
policies.

Deployment considerations: Riverbed assumes that datacen-
ter machines have TPM hardware. This assumption is rea-
sonable, since TPMs are already present in many commodity
servers.

In a complex, multi-tier application, components may span
multiple administrative domains. The failure of some domains
to run up-to-date stacks may lead to cascading problems with
the overall application, as trusted stacks refuse to share data
with unpatched ones. This behavior is actually desirable from
the security perspective, and it incentivizes domains to keep
their software up-to-date.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 623

5 IMPLEMENTATION

The core of our Riverbed prototype consists of a client-side
proxy (§4.3), a server-side reverse proxy (§4.4), and a taint-
tracking Python runtime (§4.5). The two proxies, which are
written in Python, share parts of their code bases, and com-
prise 773 lines in total, not counting external libraries to han-
dle HTTP traffic [57] and manipulate Docker instances [23].
PyRB is a derivative of the PyPy interpreter [53], and contains
roughly 500 lines of new or modified source code.

To implement remote attestation, servers used LG’s UEFI
firmware, which implemented the TPM 2.0 specification [70].
At boot time, the firmware extended a PCR with a TPM-
aware version of the GRUB2 bootloader [17]. GRUB2 then
extended the PCR with a TPM-aware version of the Linux 4.8
kernel. The kernel used Linux’s Integrity Management Archi-
tecture [44] to automatically extend the PCR when loading
kernel modules or user-mode binaries. Contextual attesta-
tion graphs were generated by Cobweb [74], with servers
and client-side Riverbed proxies using the Cobweb library to
implement the attestation protocol.

6 EVALUATION

In this section, we demonstrate that Riverbed induces only
modest performance penalties, allowing Riverbed to be a
practical security framework for realistic applications. In all
experiments, server code ran on an Amazon c4 instance
which had a 4-core Intel Xeon E5-2666 processor and 16 GB
of RAM. The client was a 3.1 GHz Intel Core i7 laptop with
16 GB of RAM. The network latency between the client and
the server was 14 ms.

6.1 Attestation Overhead
Before a client-side Riverbed proxy will send data to a server,
the proxy will force the server to attest. We evaluated at-
testation performance under a variety of emulated network
latencies and bandwidths. The client’s policy required the
attesting server to run a trusted version of /sbin/init, as
well as trusted versions of 31 low-level system binaries like
/bin/sh. The policy also used a Cobweb graph predicate
(§4.3) to validate the process tree belonging to the Docker
subsystem, ensuring that the tree contained no extraneous or
missing processes.

Due to space restrictions, we only provide a summary of the
results. Attestations were small (112 KB), so attestation time
was largely governed by network latency, the cost of the slow
TPM quote() operation (which took 215 ms on our server
hardware), and Cobweb overheads for graph serialization,
deserialization, and predicate matching (which required 562
ms of aggregate compute time on the server and the client-
side proxy). On a client/server network link with a 14 ms
RTT, the client-perceived time needed to fetch and validate
an attestation was 846 ms. Proxies cache attestation results
(§4.3), so this attestation penalty is amortized.

6.2 Case Studies
To study Riverbed’s post-attestation overheads, we ported
three Python applications to Riverbed.

• MiniTwit [59] is a Twitter clone that implements core
Twitter features like posting messages and following
users. Application code runs in Flask [58], a popular
server-side web framework. MiniTwit uses a SQLite
database to store persistent information. We defined a
Riverbed policy which allowed user data aggregation,
and allowed tainted data to be written to storage and to
other network servers in our MiniTwit deployment.

• Ionic Backup [51] is a Dropbox clone that provides a
user with online storage. Ionic allows a user to upload,
download, list, and delete files on the storage server. The
Ionic client uses HTTP to communicate with the server.
For this application, we defined a Riverbed policy which
allowed user data to be written to disk, but disallowed
aggregation, and prevented user data from being sent to
other network servers.

• Thrifty P2P [43] implements a peer-to-peer distributed
hash table [60, 68]. The primary client-facing opera-
tions are PUT(key,value) and GET(key). Inter-
nally, Thrifty peers issue their own traffic to detect failed
hosts, route puts and gets to the appropriate peers, and
so on. For this application, we defined a Riverbed policy
which allowed aggregation and storage, but only allowed
tainted data to be written to endpoints that resided in our
test deployment of Thrifty servers.

Ionic required no modifications to run atop Riverbed. Thrifty
peers used a custom network protocol to communicate; so, we
had to build a proxy for the Thrift RPC layer [3] that injected
Riverbed policies into outgoing messages, and tainted in-
coming data appropriately. MiniTwit’s core application logic
required no changes, but, to reduce the likelihood of over-
tainting, we did modify MiniTwit’s Python-based database
engine to be natively taint-aware, e.g., so that each database
row had an associated on-disk taint bit, and so that query
results were tagged with the appropriate union taints, based
on the items that were read and written to satisfy the query.
Our modifications are hidden beneath a narrow abstraction
layer, making it easy to integrate the Python-level MiniTwit
logic with off-the-shelf taint-tracking databases [63, 64, 77].

Figure 4 depicts end-to-end performance results for
MiniTwit, Ionic, and Thrifty. The results demonstrate that
Riverbed imposes small client-perceived overheads (1.01x–
1.10x). Figure 5 isolates Riverbed’s server-side computational
penalties. For each request type, we compare server-side per-
formance when using unmodified PyPy, PyRB in which no
data is tainted, or PyRB in which data is tainted according
to the policies that we described earlier in this section. For
MiniTwit, Riverbed had overheads of 1.02x–1.15x. For Ionic,
Riverbed imposed overheads of 1.04x–1.16x. For Thrifty,
puts and gets had slowdowns of 1.18x and 1.26x respectively.
Riverbed imposed the least overhead for Ionic’s “remove” and

624 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Operation Without
Riverbed

With
Riverbed

MiniTwit view timeline 229 ms 252 ms
Ionic download 82.5 ms 83.1 ms
Ionic ls 14.1 ms 14.2 ms
Thrifty GET request 27.5 ms 28.0 ms

Figure 4: End-to-end response times for processing various user
requests. For MiniTwit, the user viewed her timeline. For Ionic, the
user downloaded a 300 KB file, or asked for a list of the contents of
a server-side directory. For Thrifty, the client fetched a 20 byte value
from a DHT that contained 2 nodes; the DHT was intentionally kept
small to emphasize the computational overheads of Riverbed. The
client/server network latency was 14 ms. Each result is the average
of 50 trials.

Operation Regular
PyPy

PyRB
(no taint)

PyRB
(taint)

MiniTwit post message 14 ms 15 ms 15 ms
MiniTwit view timeline 4.1 ms 4.2 ms 4.2 ms
MiniTwit follow user 13 ms 15 ms 15 ms
Ionic upload 2.3 ms 2.5 ms 2.5 ms
Ionic download 4.8 ms 5.0 ms 5.0 ms
Ionic ls 0.43 ms 0.50 ms 0.50 ms
Thrifty PUT request 0.16 ms 0.17 ms 0.19 ms
Thrifty GET request 0.19 ms 0.24 ms 0.24 ms

Figure 5: Server-side overheads for processing various user requests.
The workloads are a superset of the ones in Figure 4. Each result is
the average of 50 trials.

“delete” operations, since PyRB could handle these operations
merely by issuing file system calls, without handling much
in-memory data that had to be checked for taint. In contrast,
operations that involved reading or writing network data re-
quired PyRB to interpose on data processing code, even if no
data was tainted, and perform extra work at data sources and
sinks.

6.3 PyPy Benchmarks
For a wider perspective on PyRB’s performance, we used
PyRB to run the benchmarking suite from the Performance
project [52]. The suite focuses on real Python applications,
downloading the necessary packages for those applications
and then running the real application code. Figure 6 shows
PyRB’s performance on a representative set of benchmarks.
The benchmarks that are above the thin black line resemble
applications that might run inside of a Riverbed universe;
these benchmarks perform actions that are common to web
services, like parsing HTML, responding to HTTP requests,
and performing database queries. These benchmarks tend
to be IO-heavy, with occasional CPU idling as code waits
for IOs to complete. In contrast, the benchmarks beneath
the thin black line are CPU-intensive. PyRB does not affect
the speed of IOs, but does affect the speed of computation,
so PyRB has slightly higher overhead for the bottom set of
benchmarks. Overall, PyRB is at most 1.19x slower. These
results overestimate PyRB’s overheads because clients and

Benchmark Overhead

Django 1.14x
Render HTML table 1.16x

Code run in PyPy interpreter 1.08x
JSON parsing 1.13x

Python git operations 1.01x
SQL Alchemy 1.05x

Spitfire 1.19x
Twisted 1.17x

Fractal Generation 1.18x
Spectral Norm 1.10x

Raytracing 1.19x

Figure 6: PyRB’s performance on representative benchmarks from
the Performance benchmark suite [52]. PyRB’s performance is nor-
malized with respect to that of regular PyPy. No data was tainted in
these experiments.

No RB 1 8 16 32 64 128
0

1

2

3

4

5

M
em

or
y

Us
ag

e
(G

B)

Figure 7: Physical memory pressure in MiniTwit when run without
Riverbed, or with Riverbed using various numbers of universes.
Note that in MiniTwit, each universe requires only one container.
In each test configuration, we measured memory pressure after
submitting 1000 requests to each MiniTwit instance that existed
in the configuration.

0 128 256 384 512 640 768 896 1024
of universes

0
100
200
300
400
500
600

Re
sp

on
se

 R
at

e
(K

B/
s)

no swapping
swapping

Figure 8: MiniTwit server response rate as a function of (1) the
number of universes, and (2) whether the server had 60 GB of
RAM or 16 GB of RAM. We used the Apache Benchmark tool [1]
to simulate clients that requested MiniTwit timelines which had
100 messages. In each trial, we submitted 1000 requests, with 100
outstanding requests at any given time. For the server with 16 GB of
RAM, swapping began with 256 universes.

servers resided on the same machine (and thus incurred zero
network latency).

6.4 Universe Overhead
The size for a base Riverbed Docker image is 212 MB. The
image contains the state that belongs to the PyRB runtime,
and is similar in size to the official PyPy Docker image [22].
Each Riverbed service adds application-specific code and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 625

data to the base Riverbed image. However, a live Docker
instance uses copy-on-write storage, so multiple Riverbed
universes share disk space (and in-memory page cache space)
for common data.

We believe that for most Riverbed applications, the uni-
verse abstraction will not increase overall storage require-
ments; in other words, the space needed for per-universe data
plus shared-universe data will be similar to the space needed
for the non-Riverbed version of the application. For example,
in MiniTwit, for a given number of timelines with a given
amount of posts, the storage requirements are the same if the
timelines are partitioned across multiple Riverbed universes,
or kept inside a single, regular MiniTwit deployment. How-
ever, Docker’s copy-on-write file system does result in slower
disk IOs. As a concrete example, we measured MiniTwit’s
database throughput when MiniTwit ran directly atop ext4,
and when MiniTwit ran inside a universe that used Docker’s
overlayfs file system [24]. We examined database workloads
with read/write ratios of 95/5 and 50/50, akin to the YCSB
workloads A and B [16]. The targeted database rows were
drawn from a Zipf distribution with β = 0.53, similar to the
distribution observed in real-life web services [4, 72]. We
found that, inside a Riverbed universe, transaction throughput
slowed by 7.7% for the 95/5 workload, and by 17.3% for the
50/50 workload.

For our three sample applications, spawning a new Docker
container required 260–280 ms on our test server. In Riverbed,
the container creation penalty is rarely paid; the reverse proxy
only has to create a new universe upon seeing a request with
a policy that is incompatible with all pre-existing universes.
Subsequent requests which are tagged with that policy will
be routed to the pre-existing universe.

Creating new universes is rare, but pausing and unpausing
old ones may not be. If an application has many universes,
and memory pressure on a particular physical server is high,
then temporarily-quiescent universes can be suspended to
disk. On our test server with 512 live containers, pausing or
unpausing a single Docker instance took roughly 30 ms. How-
ever, recent empirical research has shown that in datacenters,
a tenant’s resource requirements are often predictable [19].
Thus, universes can be assigned to physical servers in ways
that reduce suspension/resumption costs.

Docker virtualizes at the POSIX level, so the processes
inside of a Riverbed universe are just processes inside of
the host OS. As a result, the RAM footprint for a Riverbed
universe is just the memory that is associated with the host
processes for the universe. Our Riverbed prototype was able
to spawn up to 1023 live containers on a single server. This
1023 bound is a well-known limitation of the current Docker
implementation. Docker associates a virtual network card
with each instance, and attaches the virtual card to a Linux
network bridge [69]; a Linux bridge can only accept 1023
interfaces. Regardless, the current bound of 1023 containers
per machine does not imply that a single application can

have at most 1023 universes. The bound just means that,
if an application has more than 1023 universes, then those
universes must be spread across multiple servers. Riverbed’s
reverse proxy (§4.4) considers server load when determining
where to create or resurrect a universe; thus, the per-server
container limit is not a concern in practice.

Figure 7 demonstrates that Riverbed’s memory pressure is
linear in the number of active containers. As shown in Fig-
ure 8, a large number of universes has no impact on server
throughput if all of the hot universes fit in memory. Unsurpris-
ingly, throughput drops if active universes must be swapped
between RAM and disk. However, a Docker container is just
a set of Linux processes that are constrained using names-
paces [38] and cgroups [12]; thus, the memory overhead for
launching a Riverbed universe with N processes is similar
to the memory overhead of scaling out a regular application
by creating N regular processes. That being said, a Riverbed
application does create processes more aggressively than a
normal application. In Riverbed, incompatible policies re-
quire separate universes (and therefore separate processes),
even if aggregate load across all universes is low.

7 CONCLUSION

Riverbed is a platform that simplifies the creation of web ser-
vices that respect user-defined privacy policies. A Riverbed
universe allows a web service to isolate the data that belongs
to users with the same privacy policy; Riverbed’s taint track-
ing ensures that the data cannot flow to disallowed sinks.
Riverbed’s client-side proxy will not divulge sensitive user
data until servers have attested their trustworthiness. Riverbed
is compatible with commodity managed languages, and does
not force developers to annotate their source code or reason
about security lattices. Experiments with real applications
demonstrate that Riverbed imposes no more than a 10% per-
formance degradation, while giving both users and developers
more confidence that sensitive data is being handled correctly.

REFERENCES

[1] Apache Software Foundation. Apache Benchmark.
https://httpd.apache.org/docs/2.4/programs/ab.html.

[2] Apache Software Foundation. Apache SpamAssassin:
Open-source Spam Filter. http://spamassassin.apache.
org/.

[3] Apache Software Foundation. Apache Thrift. https:
//thrift.apache.org/.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-Scale Key-
Value Store. In Proceedings of SIGMETRICS, pages
53–64, 2012.

[5] T. Austin and C. Flanagan. Efficient Purely-dynamic
Information Flow Analysis. ACM SIGPLAN Notices,
44(8):20–31, 2009.

626 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[6] T. Austin and C. Flanagan. Permissive dynamic infor-
mation flow analysis. In Proceedings of PLAS, 2010.

[7] T. Austin, J. Yang, and C. F. A. Solar-Lezama. Faceted
execution of policy-agnostic programs. In Proceedings
of the SIGPLAN Workshop on Programming Languages
and Analysis for Security, pages 15–26, 2013.

[8] A. Baumann, M. Peinado, and G. Hunt. Shielding Ap-
plications from an Untrusted Cloud with Haven. In
Proceedings of OSDI, pages 267–283, 2014.

[9] S. Berger, R. Cáceres, K. A. Goldman, R. Perez,
R. Sailer, and L. van Doorn. vTPM: Virtualizing the
Trusted Platform Module. In Proceedings of USENIX
Security, pages 305–320, 2006.

[10] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Infor-
mation Flow Control in WebKit’s JavaScript Bytecode.
In International Conference on Principles of Security
and Trust, pages 159–178, 2014.

[11] A. Booth. Charities Hit with Fines for Shar-
ing Donors’ Data Without Consent, December
7, 2016. Sophos Naked Security Blog. https:
//nakedsecurity.sophos.com/2016/12/07/charities-hit-
with-fines-for-sharing-donors-data-without-consent/.

[12] N. Brown. Control groups, July 7, 2014. LWN. https:
//lwn.net/Articles/604609/.

[13] D. Chandra and M. Franz. Fine-grained information
flow analysis and enforcement in a java virtual machine.
In Proceedings of the Computer Security Applications
Conference, pages 463–475, 2007.

[14] S. Chong, K. Vikram, and A. Myers. SIF: Enforcing
Confidentiality and Integrity in Web Applications. In
Proceedings of USENIX Security, pages 1–16, 2007.

[15] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen,
B. O’Hanlon, J. Ramsdell, A. Segall, and B. Sniffen.
Principles of Remote Attestation. International Journal
of Information Security, 10(2):63–81, June 2011.

[16] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking Cloud Serving Systems
with YCSB. In Proceedings of SOCC, pages 143–154,
2010.

[17] CoreOS. GRand Unified Bootloader 2.0. https://github.
com/coreos/grub.

[18] J. Corpuz. Best Ad Blockers and Privacy Ex-
tensions: Chrome, Safari, Firefox, and IE. Tom’s
Guide. https://www.tomsguide.com/us/pictures-story/
565-best-adblockers-privacy-extensions.html.

[19] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fon-
toura, and R. Bianchini. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource
Management in Large Cloud Platforms. In Proceedings
of SOSP, pages 153–167, 2017.

[20] V. Costan and S. Devadas. Intel SGX Explained, Febru-
ary 20, 2017. Cryptology ePrint Archive: Version
20170221:054353. https://eprint.iacr.org/2016/086.pdf.

[21] Docker. Docker Home Page. https://docker.com.

[22] Docker. Docker PyPy Images. https://hub.docker.com/
_/pypy/.

[23] Docker. Docker SDK for Python. https://docker-py.
readthedocs.io/en/stable/.

[24] Docker Docs. Using the OverlayFS storage
driver. https://docs.docker.com/storage/storagedriver/
overlayfs-driver/.

[25] E. Elnikety, A. Mehta, A. Vahldiek-Oberwagner,
D. Garg, and P. Druschel. Thoth: Comprehensive Policy
Compliance in Data Retrieval Systems. In Proceedings
of USENIX Security, pages 637–654, 2016.

[26] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun,
L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taint-
Droid: An Information-flow Tracking System for Real-
time Privacy Monitoring on Smartphones. ACM Trans-
actions on Computer Systems (TOCS), 32(2), 2014.

[27] A. Ermolinskiy, S. Katti, S. Shenker, L. Fowler, and
M. McCauley. Towards Practical Taint Tracking. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2010-92, 2010.

[28] EU Parliament. GDPR Portal, 2017. http://www.eugdpr.
org/eugdpr.org.html.

[29] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazieres,
J. C. Mitchell, and A. Russo. Hails: Protecting Data
Privacy in Untrusted Web Applications. In Proceedings
of OSDI, pages 47–60, 2012.

[30] GoDaddy. What is a Wildcard SSL certificate?
https://www.godaddy.com/help/what-is-a-wildcard-
ssl-certificate-567.

[31] Google. What is Safe Browsing? https://developers.
google.com/safe-browsing/.

[32] S. Gurajala, J. White, B. Hudson, and J. Matthews. Fake
Twitter Accounts: Profile Characteristics Obtained Us-
ing an Activity-based Pattern Detection Approach. In
Proceedings of the International Conference on Social
Media and Society, 2015.

[33] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad Apps: End-to-
End Security via Automated Full-System Verification.
In Proceedings of OSDI, pages 165–181, 2014.

[34] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JS-
Flow: Tracking Information Flow in JavaScript and its
APIs. In Proceedings of the ACM Symposium on Ap-
plied Computing, pages 1663–1671, 2014.

[35] D. Hedin and A. Sabelfeld. A Perspective on
Information-Flow Control. In Proceedings of the Mark-
toberdorf Summer School, August 2011.

[36] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical Taint-Based Protection Using Demand Emu-
lation. In Proceedings of EuroSys, pages 29–41, April
2006.

[37] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan:
A Distributed Sandbox for Untrusted Computation on
Secret Data. In Proceedings of OSDI, pages 533–549,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 627

2016.
[38] M. Kerrisk. Namespaces in Operation, Part 1: Names-

paces Overview, January 4, 2013. LWN. https://lwn.net/
Articles/531114/.

[39] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information Flow
Control for Standard OS Abstractions. In Proceedings
of SOSP, 2007.

[40] J. Layton. Extended File Attribute Rock!, June 29, 2011.
http://www.linux-mag.com/id/8741/.

[41] K. Leino. Dafny: An Automatic Program Verifier for
Functional Correctness. In International Conference
on Logic for Programming Artificial Intelligence and
Reasoning, pages 348–370, 2010.

[42] P. Li, Y. Mao, and S. Zdancewic. Information Integrity
Policies. In Proceedings of the Workshop on Formal
Aspects in Security and Trust, September 2003.

[43] A. Lindsay. Thrifty P2P. https://github.com/atl/thrifty-
p2p.

[44] Linux. Integrity Measurement Architecture. https://
sourceforge.net/p/linux-ima/wiki/Home/.

[45] J. Liu, M. George, K. Vikram, X. Qi, L. Waye, and
A. Myers. Fabric: A Platform for Secure Distributed
Computation and Storage. In Proceedings of SOSP,
pages 321–334, October 2009.

[46] B. Livshits. Dynamic taint tracking in managed run-
times. Technical Report MSR-TR-2012-114, Microsoft,
2012.

[47] Lyon Brothers Enterprises. Turtl: Find Your Private
Space. https://turtlapp.com/.

[48] A. Myers and B. Liskov. Protecting Privacy Using
the Decentralized Label Model. ACM Transactions on
Software Engineering and Methodology, 9(4):410–442,
2000.

[49] Oracle Corporation. Java Native Interface. http://docs.
oracle.com/javase/8/docs/technotes/guides/jni/.

[50] T. Pasquier, J. Singh, J. Bacon, and D. Eyers. Informa-
tion Flow Audit for PaaS Clouds. In Proceedings of the
IEEE International Conference on Cloud Engineering,
pages 42–51, 2016.

[51] F. Primerano. Ionic Backup. https://github.com/
Max00355/IonicBackup.

[52] PyPy. PyPy Benchmarks. https://bitbucket.org/pypy/
benchmarks.

[53] PyPy. PyPy Home Page. https://pypy.org/.
[54] C. Qian, X. Luo, Y. Shao, and A. Chan. On Tracking In-

formation Flows Through JNI in Android Applications.
In Proceedings of DSN, pages 180–191, June 2014.

[55] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu.
LIFT: A Low-Overhead Practical Information Flow
Tracking System for Detecting Security Attacks. In Pro-
ceedings of MICRO, pages 135–148, December 2006.

[56] A. Razeen, A. Lebeck, D. Liu, A. Meijer, V. Pistol, and
L. Cox. SandTrap: Tracking Information Flows On

Demand with Parallel Permissions. In Proceedings of
MobiSys, June 2018.

[57] K. Reitz. Requests: HTTP for Humans. http://docs.
python-requests.org/en/master/.

[58] A. Ronacher. Flask. http://flask.pocoo.org/.
[59] A. Ronacher. Minitwit. https://github.com/pallets/flask/

blob/master/examples/minitwit/.
[60] A. Rowstron and P. Druschel. Pastry: Scalable, Decen-

tralized Object Location and Routing for Large-scale
Peer-to-peer Systems. In IFIP/ACM International Con-
ference on Distributed Systems Platforms and Open
Distributed Processing, pages 329–350, 2001.

[61] A. Russo and A. Sabelfeld. Dynamic vs. Static Flow-
Sensitive Security Analysis. In Proceedings of CSF,
pages 186–199, 2010.

[62] P. Sayer. German Consumer Groups Sue What-
sApp Over Privacy Policy Changes, January 30,
2017. PCWorld. http://www.pcworld.com/article/
3163027/private-cloud/german-consumer-groups-sue-
whatsapp-over-privacy-policy-changes.html.

[63] D. Schoepe, D. Hedin, and A. Sabelfeld. SeLINQ:
Tracking Information Across Application-Database
Boundaries. In ACM SIGPLAN Notices, volume 49,
pages 25–38, 2014.

[64] D. Schultz and B. Liskov. IFDB: Decentralized Infor-
mation Flow Control for Databases. In Proceedings of
EuroSys, pages 43–56, 2013.

[65] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You
Ever Wanted to Know About Dynamic Taint Analysis
and Forward Symbolic Execution (but might have been
afraid to ask). In Proceedings of the IEEE Symposium
on Security and Privacy, pages 317–331, 2010.

[66] S. Sen, S. Guha, A. Datta, S. Rajamani, J. Tsai, and
J. Wing. Bootstrapping Privacy Compliance in Big Data
Systems. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 327–342, 2014.

[67] A. Slowinska and H. Bos. Pointless Tainting? Evaluat-
ing the Practicality of Pointer Tainting. In Proceedings
of EuroSys, pages 61–74, 2009.

[68] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. ACM SIGCOMM Com-
puter Communication Review, 31(4):149–160, 2001.

[69] The Linux Foundation. Linux Network Bridge. https:
//wiki.linuxfoundation.org/networking/bridge.

[70] Trusted Computing Group. TPM 2.0 Library Specifi-
cation. https://trustedcomputinggroup.org/tpm-library-
specification/.

[71] Trusted Computing Group. Trusted Platform Module
(TPM) Summary. https://trustedcomputinggroup.org/
trusted-platform-module-tpm-summary/.

[72] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia
Workload Analysis for Decentralized Hosting. Inter-
national Journal of Computer and Telecommunications

628 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Networking, 53(11):1830–1845, 2009.
[73] E. van der Walt and J. Eloff. Using Machine Learning to

Detect Fake Identities: Bots vs Humans. IEEE Access,
6:6540–6549, January 2018.

[74] F. Wang, Y. Joung, and J. Mickens. Cobweb: Practi-
cal Remote Attestation Using Contextual Graphs. In
Proceedings of SysTEX, 2017.

[75] C. Xiao, D. Freeman, and T. Hwa. Detecting Clusters of
Fake Accounts in Online Social Networks. In Proceed-
ings of the ACM Workshop on Artificial Intelligence and
Security, pages 91–101, 2015.

[76] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu. Mal-
ton: Towards On-Device Non-Invasive Mobile Malware
Analysis for ART. In Proceedings of USENIX Security,
pages 289–306, August 2017.

[77] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama,
C. Flanagan, and S. Chong. Precise, Dynamic Infor-
mation Flow for Database-backed Applications. In Pro-
ceedings of PLDI, pages 631–647, 2016.

[78] J. Yang, K. Yessenov, and A. Solar-Lezama. A language
for automatically enforcing privacy policies. In ACM
SIGPLAN Notices, volume 47, pages 85–96, 2012.

[79] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving Application Security with Data Flow Asser-
tions. In Proceedings of SOSP, pages 291–304, 2009.

[80] A. Zdancewic, L. Zheng, N. Nystrom, and A. Myers.
Untrusted Hosts and Confidentiality: Secure Program
Partitioning. In Proceedings of SOSP, pages 1–14, 2001.

[81] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Se-
curing Distributed Systems with Information Flow Con-
trol. In Proceedings of NSDI, pages 293–308, 2008.

[82] K. Zetter. Hackers Finally Post Stolen Ash-
ley Madison Data, August 18, 2015. Wired.
https://www.wired.com/2015/08/happened-hackers-
posted-stolen-ashley-madison-data/.

APPENDIX: OVERVIEW OF ATTESTATION

In this section, we give a slightly simplified description of the
classic attestation protocol. We explain how an attestor (i.e.,
a potentially untrustworthy machine) securely describes its
software stack to a remote verifier machine. For more details,
we refer the interested reader to other work [15, 20, 9].
Setup: The attestor’s trusted hardware (called a TPM
chip [71]) possesses a unique public/private key pair that
is burned into the hardware. The private key is never exposed
to the rest of the machine. The attestor also has a certificate,
signed by the manufacturer of the TPM, that binds the attestor
to its public key. Thus, the hardware manufacturer acts as a
certificate authority (CA). Before the remote attestation pro-
tocol begins, the verifier must download the public key of the
CA.

A TPM contains a small number of platform config-
uration registers (PCRs). Each PCR is made of tamper-
resistant, non-volatile RAM that only the TPM can access.

At boot time, the TPM resets each PCR to a well-known
value. The TPM’s extend(index, value) is the only
way that entities external to the TPM can update a PCR.
An extension sets PCR[index] = SHA1(PCR[index]
|| value). During the boot process, the BIOS automat-
ically extends PCR[10] with a value equal to the SHA1
hash of the BIOS code. The BIOS then reads the bootloader
from the disk, extends PCR[10] with the hash of the boot-
loader, and jumps to the first instruction of the bootloader.
The bootloader reads the kernel binary into RAM, extends
PCR[10] with the hash of the kernel image, and then jumps
to the first instruction of the kernel. These PCR extensions
continue as the OS loads additional kernel modules and user-
level system binaries. Thus, the attestor’s PCR[10] register
will contain a cumulative hash of the local software stack.
Remote attestation: The verifier generates a random nonce
and sends it to the attestor. The attestor asks its local TPM
to generate a signature over the nonce and the value of
PCR[10]; this signature, which is called a “quote” in TPM
parlance, uses the attestor’s unique private key (whose corre-
sponding public key is validated by a certificate from the CA).
The attestor returns the following information to the verifier:

• the attestor’s certificate,
• the quote,
• the value of PCR[10] that is attested by the quote,
• a list of the SHA1 hashes that were used to extend
PCR[10], and

• optionally, a mapping from each hash to the server-side
file name representing the content that was hashed.

The verifier checks the validity of the attestor’s public key
using the certificate. The verifier then checks the validity of
the quote signature, and confirms that cumulatively extending
PCR[10] with the attestor-reported hash list results in the
attestor-reported PCR[10] value. If these checks succeed,
the verifier sees whether the hash list corresponds to a trusted
ordering of trusted system components. If so, the remote
attestation succeeds.
Attesting VMs: The traditional attestation protocol can be
extended to cover the software stack inside of a VM [9]. Dur-
ing the initial boot sequence of a physical server, the physical
PCR[10] will be extended with the bootloader code, the hy-
pervisor binary, and other low-level software. The hypervisor
will then extend PCR[10] using content associated with the
virtual TPM manager; this content includes the binary of the
manager itself, as well as certificates needed to vouch for the
signatures produced by a VM’s virtual TPM. When a VM
launches, the manager initializes the VM’s virtual PCRs using
the values in the physical PCRs. The VM then boots, extend-
ing (virtual) PCRs as usual. In this manner, the attestation
produced by a virtual TPM will be linked to a non-virtualized
root of trust (i.e., the physical TPM of the server).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 629

Hyperscan: A Fast Multi-pattern Regex Matcher for Modern CPUs

Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park∗

Geoff Langdale+, Jiayu Hu, and Heqing Zhu

Intel Corporation ∗KAIST +branchfree.org

Abstract

Regular expression matching serves as a key functionality
of modern network security applications. Unfortunately,
it often becomes the performance bottleneck as it involves
compute-intensive scan of every byte of packet payload.
With trends towards increasing network bandwidth and
a large ruleset of complex patterns, the performance re-
quirement gets ever more demanding.

In this paper, we present Hyperscan, a high perfor-
mance regular expression matcher for commodity server
machines. Hyperscan employs two core techniques for
efficient pattern matching. First, it exploits graph de-
composition that translates regular expression matching
into a series of string and finite automata matching. Un-
like existing solutions, string matching becomes a part of
regular expression matching, eliminating duplicate opera-
tions. Decomposed regular expression components also
increase the chance of fast DFA matching as they tend
to be smaller than the original pattern. Second, Hyper-
scan accelerates both string and finite automata matching
using SIMD operations, which brings substantial through-
put improvement. Our evaluation shows that Hyperscan
improves the performance of Snort by a factor of 8.7 for
a real traffic trace.

1 Introduction
Deep packet inspection (DPI) provides the fundamental
functionality for many middlebox applications that deal
with L7 protocols, such as intrusion detection systems
(IDS) [9, 10, 28], application identification systems [4],
and web application firewalls (WAFs) [3]. Today’s DPI
employs regular expression (regex) as a standard tool
for pattern description as it flexibly represents various
attack signatures in a concise form. Not surprisingly,
numerous research works [16, 18, 32, 38, 39, 41, 42]
have proposed efficient regex matching as its performance
often dominates that of an entire DPI application.

Despite continued efforts, the performance of regex
matching on a commodity server still remains imprac-
tical to directly serve today’s large network bandwidth.
Instead, the de-facto best practice of high-performance
DPI generally employs multi-string pattern matching as
a pre-condition for expensive regex matching. This hy-
brid approach (or prefiltering) is attractive as multi-string
matching is known to outperform multi-regex matching
by two orders of magnitude [21], and most input traffic
is innocent, making it more efficient to defer a rigorous
check. For example, popular IDSes like Snort [9] and
Suricata [10] specify a string pattern per each regex for
prefiltering, and launch the corresponding regex matching
only if the string is found in the input stream.

However, the current prefilter-based matching has a
number of limitations. First, string keywords are often
defined manually by humans 1. Manual choice does not
scale as the ruleset expands over time, and improper key-
words would waste CPU cycles on redundant regex match-
ing. Second, string matching and regex matching are ex-
ecuted as two separate tasks, with the former leveraged
only as a trigger for the latter. This results in duplicate
matching of the string keywords when the corresponding
regex matching is executed. Third, current regex match-
ing typically translates an entire regex into a single finite
automaton (FA). If the number of deterministic finite au-
tomaton (DFA) states becomes too large, one must resort
to a slower non-deterministic finite automaton (NFA) for
matching of the whole regex.

In this paper, we present Hyperscan, a high perfor-
mance regex matching system that exploits regex decom-
position as the first principle. Regex decomposition splits
a regex pattern into a series of disjoint string and FA com-
ponents 2. This translates regex matching into a sequence

1The content option in Snort and Suricata are determined by humans
with domain knowledge.

2We refer to a subregex that contains regex meta-characters or quan-
tifiers, which has to be translated into either a DFA or an NFA for

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 631

of decomposed subregex matching whose execution and
matching order is controlled by fast string matching. This
design brings a number of benefits. First, our regex de-
composition identifies string components automatically
by performing rigorous structural analyses on the NFA
graph of a regex. Our algorithm ensures that the extracted
strings are pre-requisite for the rest of regex matching.
Second, string matching is run as a part of regex match-
ing rather than being employed only as a trigger. Unlike
the prefilter-based design, Hyperscan keeps track of the
state of string matching throughout regex matching and
avoids any redundant operations. Third, FA component
matching is executed only when all relevant string and FA
components are matched. This eliminates unnecessary FA
component matching, which allows efficient CPU utiliza-
tion. Finally, most decomposed FA components tend to be
small, so they are more likely to be able to be converted
to a DFA and benefit from fast DFA matching.

Beyond the benefits of regex decomposition, Hyper-
scan also brings a significant performance boost with
single-instruction-multiple-data (SIMD)-accelerated pat-
tern matching algorithms. For string matching, we extend
the shift-or algorithm [13] to support efficient multi-string
matching with bit-level SIMD operations. For FA match-
ing, we represent a state with a bit position while we
implement state transitions and successor state-set calcu-
lation with SIMD instructions on a large bitmap. We find
that our SIMD-accelerated string matching outperforms
state-of-the-art multi-string matching by a factor of 1.3 to
2.5. We also find that our SIMD-accelerated regex match-
ing achieves 24.8x to 40.1x performance improvement
over PCRE [6] widely adopted by DPI middleboxes such
as Snort and Suricata.

In summary, we make the following contributions:

• We present a novel regex matching strategy that ex-
ploits regex decomposition. Regex decomposition per-
forms rigorous graph analysis algorithms that extract
key strings of a regex for efficient matching, and drives
the order of pattern matching by fast string matching.
This drastically improves the performance.

• We develop SIMD-accelerated pattern matching algo-
rithms for both string matching and FA matching to
leverage CPU’s compute capability on data parallelism.

• Our evaluation shows Hyperscan greatly helps improve
the performance of real-world DPI applications. It
improves the performance of Snort by 8.7x for a real
traffic trace.

• We share our experience with developing Hyperscan
and present lessons learned through commercialization.

matching as an FA component.

1
a

2
b

3
c 7. 8

g
9
h

5
e

6
f

0.
4
d

10
i

Figure 1: Glushkov NFA for (abc|def).*ghi

2 Background and Motivation

DPI is a common functionality in many security middle-
boxes, and its performance has been mainly driven by
that of regex matching [19, 41]. There has been a large
body of research that improves the performance of regex
matching. Due to space constraint, we briefly review only
a few, categorizing them by their approach.
String matching is a subset of regex matching, which re-
quires specialized algorithms [12, 24, 29] to achieve high
performance. The most popular one is the Aho-Corasick
(AC) algorithm [12] that uses a variant of DFA for fast
multi-string matching. It runs in O(n) time complexity
where n is the number of input bytes. Unfortunately, AC
suffers from frequent cache misses due to large memory
footprint and random memory access pattern, which sig-
nificantly impairs the performance. In addition, the model
of processing one byte at a time creates a sequential data
dependency that stalls instruction pipelines of modern
processors. DFC [21] employs a set of small bitmap fil-
ters that quickly pass out innocent traffic by checking the
first few bytes of string patterns against the input stream.
Each matched input moves onto the verification stage
for full pattern comparison. DFC substantially reduces
memory accesses and cache misses by using small and
cache-friendly data structures, which outperforms AC by
2 to 3.6 times. The string matcher of Hyperscan takes the
two-stage matching similar to DFC, but its bucket-based
shift-or algorithm benefits from SIMD instructions, which
further improves the performance beyond that of DFC.
An NFA implements a space-efficient state machine even
for complex regexes. Despite its small memory footprint,
the execution is typically slow as each input character
triggers O(m) memory lookups (m = # of current states).
For this reason, a DFA is preferred to an NFA whenever
a regex can be translated into the former. One place
where NFA might be preferred is a logic-based design that
maps automata to hardware accelerators such as FPGA
[14, 22, 23, 34, 35, 40]. An FPGA-based design can
exploit parallelism by running multiple finite automata
simultaneously and does not suffer from sequential state
transition table lookups. On the down side, it is limited
to a small ruleset due to its hardware constraints. Also, it

632 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

suffers from the DMA overhead of moving data between
the CPU and the FPGA device. This overhead can impose
prohibitive latency, especially when input data is not large
(as would be the case for scanning of small packets).

We use Glushkov NFA [27] for Hyperscan, which is
widely used due to its two useful properties. First, it
does not have epsilon transitions, which simplifies state
transition implementation. Second, all transitions into
a given state are triggered by the same input symbol.
Figure 1 shows an example of a Glushkov NFA. Each
circle represents a state whose id is shown as a number,
and each character represents the input symbol by which
any previous state transitions into this state. For example,
one can transition into state 8 from state 3, 6, or 7 only
for an input symbol, ‘g’. The second property implies
that the total number of states is bounded by the number
of input symbols and a few special states – a start state,
states with ‘.’, etc.
A DFA achieves high performance as it runs in O(1)
per each input character. Its main disadvantage, how-
ever, is a large memory footprint and a potential of
state explosion at transforming an NFA to a DFA. Thus,
most works on DFA focus on memory footprint reduc-
tion [15, 17, 18, 20, 26, 31, 32, 33]. D2FA [32] com-
presses the memory space by sharing multiple transitions
of states with a similar transition table and by establishing
a default transition between them. A-DFA [18] presents
useful features such as alphabet reduction that classifies
alphabets into smaller groups, indirect addressing that
reduces memory bandwidth by translating unique state
identifiers to memory address, and multi-stride structure
that processes multiple characters at a time.
An extended FA is a proposal that restructures the state-
of-the-art FA to address state explosion. XFA [38, 39]
associates update functions with states and transitions
by having a scratch memory that compresses the space.
HFA [16] presents a hybrid-FA that achieves compara-
ble space to that of an NFA by making head DFAs and
trailing NFA or DFAs. The theory behind it is to discover
boundary states so that one can conduct partial conversion
of an NFA to a DFA to avoid exponential state explosion
from a full conversion.
Prefilter-based approaches are the most popular way to
scale performance of regex matching in practice. Both
Snort and Suricata extract string keywords from regex
rules and perform unified multi-string matching with
the Aho-Corasick algorithm. Expensive regex match-
ing is only needed if AC detects literal strings in the
input. SplitScreen [36] applies a similar approach to Cla-
mAV [30], a widely-used anti-malware application, and
achieves a 2x speedup compared to original ClamAV.

SIMD Register XX2 X1 X0X3

Y2 Y1 Y0Y3 SIMD Register Y

X2 OP Y2 X1 OP Y1 X0 OP Y0X3 OP Y3

OP

SIMD Register Z

OP OP OP

Figure 2: Typical two-operand SIMD operation

A SIMD instruction executes the same operation on mul-
tiple data in parallel. As shown in Figure 2, a SIMD
operation is performed on multiple lanes of two SIMD
registers independently, and the results are stored in the
third register. Modern CPU supports a number of SIMD
instructions that can work on specialized vector registers
(SSE, AVX, etc.). The latest AVX512 instructions support
up to 512-bit operations simultaneously.

Despite its great potential, few research works have
exploited SIMD instructions for regex matching. Sitaridi
et al. propose a SIMD-based regex matching design [37]
for database, which uses a gather instruction to traverse
DFA for multiple inputs simultaneously. However, it
cannot be applied to our case as regex matching for DPI
is typically performed on a single input stream.
Summary and our approach. Most prior works on
regex matching attempt to build a special FA that per-
forms as well as a DFA while its memory footprint is as
small as an NFA. However, one common problem in all
these works is that FA restructuring inevitably imposes ex-
tra performance overhead compared to the original DFA.
For example, XFA takes multiple tens to hundreds of
CPU cycles per input byte, which is slower than a nor-
mal DFA by one or two orders of magnitude. In contrast,
the prefilter-based approach looks attractive as it benefits
from multi-string matching most time, which is faster
than multi-regex matching by a few orders of magnitude.
However, it is still suboptimal as it must perform duplicate
string matching during regex matching, and wrong choice
of string patterns would trigger redundant regex matching
(as shown in Section 6.2). To avoid the inefficiency, we
take a fresh approach that divides a regex pattern into mul-
tiple components, and leverages fast string matching to
coordinate the order of component matching. This would
minimize the waste of CPU cycles on redundant match-
ing and thus improves the performance. In addition, we
develop our own multi-string matching and FA matching
algorithms carefully tailored to exploit SIMD operations.

3 Regular Expression Decomposition
In this section, we present the concept of regex decompo-
sition, and explain how Hyperscan matches a sequence of
regex components against the input. Then, we introduce

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 633

graph-based decomposition whose graph analysis tech-
niques reliably identify the strings in regex patterns most
desirable for string matching.

3.1 Matching with Regex Decomposition
The key idea of Hyperscan is to decompose each regex
pattern into a disjoint set of string and subregex (or FA)
components, and to match each component until it finds
a complete match. A string component consists of a
stream of literals (or input symbols). Subregex compo-
nents are the remaining parts of a regex after all string
components are removed. They may include one or more
meta-characters or quantifiers in regex syntax (like ‘ ˆ ’,
‘$’, ‘*’, ‘?’, etc.) that need to be translated into an FA for
matching. Thus, we refer to it as an FA component.
Linear regex. We start with a simple regex where each
component is concatenated without alternation. We call it
a linear regex. Formally, a linear regex pattern that con-
tains at least one string can be represented as the following
production rules:

1. regex → left str FA
2. left → left str FA | FA

where str and FA are both indivisible components, and
FA can be empty. A linear regex without any string is im-
plemented as a single DFA or NFA. In practice, however,
we find that 87% to 94% of the regex rules in IDSes have
at least one extractable string, so a majority of real-world
regexes would benefit from decomposition. The produc-
tion rules imply that if we find the rightmost string in a
linear regex pattern, we can recursively apply the same
algorithm to decompose the rest of the pattern. One com-
plication lies in a subregex with a repetition operator such
as (R)?, (R)∗, (R)+, and (R){m,n}, where R is arbitrar-
ily complex. Hyperscan treats (R)? and (R)∗ as a single
FA since R is optional while it converts (R)+ = (R)(R)∗,
and (R){m,n}= (R)...(R)(R){0,n−m} ((R) appears m
times)). Then, it decomposes their prefixes and treats the
suffix as an FA.

In general, a decomposable linear regex can be ex-
pressed as /FAn strn FAn−1 strn−1 · · · str2 FA1 str1 FA0/.
For any successful match of the original regex, all strings
must be matched in the same order as they appear. Based
on the observation, Hyperscan applies the following three
rules for regex matching.
1. String matching is the first step. It scans the entire

input to find all strs. Each successful match of str may
trigger the execution of its neighbor FA matching.

2. Each FA has its own switch for execution. It is off by
default except for the leftmost FA components.

3. For a generalized form like /left FA str right/ where
"left" or "right" is an arbitrary set of decomposed com-

ponents including an empty character. Only if all com-
ponents of "left" are matched successfully, the switch
of FA is turned on. Only if str is matched successfully
and the FA switch is on, FA matching is executed. Fi-
nally, only if FA is matched successfully, the leftmost
FA of "right" is turned on.
Let’s take one example regex, /.*foo[ˆX]barY+/,

and consider two input cases. The regex pattern
is decomposed into /FA2 str2 FA1 str1 FA0/, where
FA2=".*", str2="foo",FA1="[ˆX]", str1="bar", FA0="Y+".
• Input="XfooZbarY": This is overall a successful

match. First, the string matcher finds str2 ("foo"), and
triggers matching of FA2 (".*") against "X" since the
leftmost FA switch is always on. Then, the switch of
FA1 ("[ˆX]") is turned on. After that, the matcher finds
str1 ("bar"), which triggers matching of FA1 against
"Z", and its success turns on the the switch of FA0
("Y+"). Since FA0 is the rightmost FA, it is executed
against the remaining input, "Y".

• Input="XfoZbarY": This is overall a failed match.
First, the string matcher finds str1 ("bar"), and sees if it
can trigger matching of FA1 ("[ˆX]"). Then, it figures
out that the switch of FA1 is off since str2 ("foo") was
not found, and thus none of FA2 and str2 was a success-
ful match. So, the matching of regex FA1 terminates,
ensuring no waste of CPU resources.
Our implementation tracks of the input offsets of

matched strings and the state of matching individual com-
ponents, which allows invoking appropriate FA matching
with a correct byte range of the input.
Regex with alternation. If a regex includes an alterna-
tion like (A|B), we expand the alternation into two regexes
only if both A and B are decomposed into str and FA
components (decomposable). If not, (A|B) is treated as
a single FA. In case A or B itself has an alternation, we
need to recursively apply the same rule until there is no al-
ternation in their subregexes. Then, each expanded regex
would become a linear regex, which would benefit from
the same rules for decomposition and matching as before.

Pattern matching with regex decomposition presents
its main benefit – it minimizes the waste of CPU cycles
on unnecessary FA matching because FA matching is
executed only when it is needed. Also, it increases the
chance of fast DFA matching as each decomposed FA
is smaller, so it is more likely to be converted into a
DFA. In contrast, the prefiltering approach has to execute
matching of the entire regex even when it is not needed
(e.g., matching "bar" in the example above would trigger
regex matching even if "foo" is not found), and regex
matching must re-match the string already found in string

634 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

matching. Furthermore, conversion of a whole regex into
a single FA is not only more complex, but often ends up
with a slower NFA to avoid state explosion. In terms of
correctness, pattern matching with regex decomposition
produces the same result as the original regex, but we
leave its formal proof as our future work.

3.2 Rationale and Guidelines
In practice, performing regex decomposition on its textual
form is often tricky as some string segments might look
hidden behind special regex syntax. We provide several
such examples below:
• Character class (or character-set). /b[il1]l \ s{0,10}/

includes a character class that can be expanded to three
strings ("bil", "bll" and "b1l") while naïve textual ex-
traction might find only ‘b’ and ‘l’.

• Alternation. The alternation sequence in
/(. ∗ \x2d(h|H)(t|T)(t|T)(p|P))/ makes it harder to
discover "http" sequences from textual extraction.

• Bounded repeats. From the perspective of text, the
strings with a minimum length of 32 are hidden from
bounded repeats in /[\x40\ x90]{32,}/.

To reliably find these strings, we perform regex decom-
position on the Glushkov NFA graph [27], which would
benefit from structural graph analyses. We describe use-
ful guidelines for finding the strings effective for regex
matching.
1. Find the string that would divide the graph into two
subgraphs, with the start state in one subgraph, and the
set of accept states in the other. Matching such a string
is a necessary condition for any successful match on the
entire regex. If the start and accept states happen to be
in the same subgraph, the corresponding FA will always
have to run regardless of a string match.
2. Avoid short strings. Short strings are prone to match
more frequently, and are likely to trigger expensive FA
matching that fails.3

3. Expand small character-sets 4 to multiple strings to
facilitate decomposition. This would not only increase
the chance of successful decomposition but also lead to a
longer string if a character-set intercepts a string sequence
(i.e. "document[\x22\ x27]ob ject").
4. Avoid having too many strings. Having too many
strings for matching would overload the matcher and
degrade the entire performance. So, it is important to find
a small set of "good" strings effective for regex matching.

3Our current limit is 2 to 3 characters.
4Our current implementation treats a character-set that expands to

11 or smaller strings as a small character-set.

1
[^a]

2. 4
[^a]

6
a

7
b

8
c

3
[^a] 5

d
10
f

9
[^e]

11
c

0.

Figure 3: Dominant path analysis

3.3 Graph-based String Extraction
We develop three graph analysis techniques that discover
strings in the critical path for matching. We describe
the key idea of each algorithm below, and provide more
detailed algorithms in an appendix.
Dominant path analysis. A vertex u is called a domina-
tor of vertex v if every path from the start state to vertex
v must go through vertex u. A dominant path of vertex v
is defined as a set of vertices W in a graph, where each
vertex in W is a dominator of v and the vertices form a
trace of a single path. Dominant path analysis finds the
longest common string that exists in all dominant paths of
any accept state. For example, Figure 3 shows the string
on the dominant path of the accept state (vertex 11).

The string selected by the analysis is highly desirable
for matching as it clearly divides start and accept states
into two separate subgraphs, satisfying the first guide-
line. The algorithm calculates the dominant path per each
accept state, and finds the longest common prefix of all
dominant paths. Then, it extracts the string on the chosen
path. If a vertex on the path is a small character-set, we
expand it and obtain multiple strings.
Dominant region analysis. If the dominant path analy-
sis fails to extract a string, we perform dominant region
analysis. It finds a region of vertices that partition the start
state into one graph and all accept states into the other.
More formally, a dominant region is defined as a subset
of vertices in a graph such that (a) the set of all edges that
enter and exit the region constitute a cut-set of the graph,
(b) for every in-edge (u, v) to the region, there exist edges
(u, w) for all w in {w : w is in the region and w has an
in-edge}, where (u, v) refers to an edge from vertex u to
v in the graph, and (c) for every out-edge (u, v) from the
region, there exist edges (w, v) for all w in {w : w in is in
the region and w has an out-edge}.

If a discovered region consists of only string or small
character-set vertices, we transform the region into a set of
strings. Since these strings connect two disjoint subgraphs
of the original graph, any match of the whole regex must
match one of these strings. Figure 4 shows one example of
a dominant region with 9 vertices. Vertices 5, 6, and 7 are
the entry points with the same predecessors and vertices

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 635

1
[^a]

2. 3
[^a]

6
b

9
a

12
r

3
[^a]

4
d

14
[^e]

15
c0.

7
a

10
b

13
c

5
f

8
o

11
o

Figure 4: Dominant region analysis

2[^a]

3. 6[^a]

10
f

13g 16
h

5
[^a] 8.

19
[^c] 22.0.

11
a

14
b

17
c

9
f

12
o

15
o

7
e

4.
20
[^m]

18
[^e] 21

c
1[^a]

23g

Figure 5: Network flow analysis

11, 12, and 13 are the exits with the same successor. We
can extract strings, " f oo", "bar", and "abc", as a result of
dominant region analysis.

The algorithm for dominant region analysis first creates
a directed acyclic graph (DAG) from the origin graph to
avoid any interference from back edges. Then, it performs
topological sort on the DAG, and iterates each vertex
to see if it is added to the current candidate region, its
boundary edges form a valid cut-set. We repeat this to
discover all regions in the graph. Since we only analyze
the DAG, the back edges of the original graph might affect
the correctness. Thus, for each back edge, if its source
and target vertices are in different regions, we merge them
(and all intervening regions) into a single region. Finally,
we extract the strings from the dominant region.
Network flow analysis. Since dominant path and domi-
nant region analyses depend on a special graph structure,
they may not be always successful. Thus, we run network
flow analysis for generic graphs. For each edge, the analy-
sis finds a string (or multiple strings) that ends at the edge.
Then, the edge is assigned a score inversely proportional
to the length of the string(s) ending there. The longer the
string is, the smaller the score gets. With a score per edge,
the analysis runs “max-flow min-cut” algorithm [25] to
find a minimum cut-set that splits the graph into two that
separate the start state from all accept states. Then, the
“max-flow min-cut” algorithm discovers a cut-set of edges
that generate the longest strings from this graph.

Figure 5 shows a result of network flow analysis, ex-
tracting a string set of " f oo", "e f gh", and "abc" that
would divide the whole graph into two parts.
Effectiveness of graph analysis. Our graph analysis ef-
fectively produces "good" strings for most of real-world
rules. Table 1 shows that 97.2% to 99.2% of decompos-
able real-world regex rules benefit from dominant path

Ruleset Total Decomp D-Path D-Reg N-flow
S-V 1,663 1,563 1,551 32 16
S-E 7,564 6,756 6,575 100 203
Suri 7,430 6,501 6,318 94 201

Table 1: Effectiveness of graph analysis on real-world rulesets.
S-V: Snort Talos (May 2015), S-E: Snort ET-Open 2.9.0, Suri:
Suricata rulesets 4.0.4. D-Path, D-Reg, and N-flow refer to
dominant path, dominant region, and network flow analysis,
respectively. Decomp is the total number of decomposable rules.
Note that one regex could benefit from multiple graph analyses,
so the sum of graph analyses is larger than the Decomp fields.

Extended
Shift-or

Matching

Verification
Input

Stream
Exact

Matching

Candidate
Matching

Input

String Pattern

…

Hashing

Figure 6: Two-stage matching with FDR

analysis while remaining patterns exploit dominant re-
gion and network flow analysis. These strings prove to
be highly beneficial for reducing the number of regex
matching invocations, as shown in Section 6.2.

4 SIMD-accelerated Pattern Matching
In this section, we present the design of multi-string and
FA matching algorithms that leverage SIMD operations
of modern CPU.

4.1 Multi-string Pattern Matching
We introduce an efficient multi-string matcher called
FDR. 5 The key idea of FDR is to quickly filter out inno-
cent traffic by fast input scanning. As shown in Figure 6,
FDR performs extended shift-or matching [13] to find can-
didate input strings that are likely to match some string
pattern. Then, it verifies them to confirm an exact match.
Shift-or matching. We first provide a brief background
of shift-or matching that serves as the base algorithm of
FDR. The shift-or algorithm finds all occurrences of a
string pattern in the input bytestream by performing bit-
wise shift and or operations, as shown in Figure 7. It
uses two data structures – a shift-or mask for each charac-
ter c in the symbol set, (sh-mask(‘c’)), and a state mask
(st-mask) for matching operation. sh-mask(‘c’) zeros all
bits whose bit position corresponds to the byte position of
c in the string pattern while all other bits are set to 1. The
bit position in a sh-mask is counted from the rightmost
bit while the byte position in a pattern is counted from the
leftmost byte. For example, for a string pattern, "aphp",

5It is named after the 32nd President of the U.S.

636 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sh-mask(‘h’) =

sh-mask(‘a’) =

sh-mask(‘p’) =

aphp

m4 = (m3 << 1) | sh-mask(‘p’)

m3 = (m2 << 1) | sh-mask(‘h’)

m2 = (m1 << 1) | sh-mask(‘p’)

m1 = (st-state << 1)| sh-mask(‘a’)

lowhigh

Sh
ift-o

r m
asks

string pattern

aphp…

Input

m
at

ch
in

g
w

it
h

 in
p

u
t

st-mask = 11111111

Match!

11111110

11111011

11110101

11111110

11111101

11111011

11110111

Figure 7: Classical shift-or matching

ab sh-mask(‘b’) =

sh-mask(‘a’) =

sh-mask(‘c’) =

lowhigh

Bucket 0

cd

sh-mask(‘d’) =

Padding Bytes

… 11111110 11111110 11111111

… 11111110 11111111 11111110

… 11111110 11111110 11111111

… 11111110 11111111 11111110

Figure 8: Example shift-or masks with two patterns at bucket 0.
No other buckets contain ‘a’, ‘b’, ‘c’, ‘d’ in their patterns.

sh-mask(‘p’) = 11110101 as ‘p’ appears at the second
and the fourth position in the pattern. If a character is
unused in the pattern, all bits of its sh-mask are set to 1.
The algorithm keeps a st-mask whose size is equal to the
length of a sh-mask. Initially, all bits of the st-mask are
set to 1. The algorithm updates the st-mask for each input
character, ‘x’ as st-mask = ((st-mask ≪ 1) | sh-mask(‘x’)).
For each matching input character, 0 is propagated to the
left by one bit. If the zero bit position becomes the length
of the pattern, it indicates that the pattern string is found.

The original shift-or algorithm runs fast with high space
efficiency, but it leaves two limitations. First, it supports
only a single string pattern. Second, although it consists
of bit-level operations, the implementation cannot benefit
from SIMD instructions except for very long patterns. We
tackle these problems as below.
Multi-string shift-or matching. To support multi-string
patterns, we update our data structures. First, we divide
the set of string patterns into n distinct buckets where each
bucket has an id from 0 to n-1. For now, assume that each
string pattern belongs to one of n buckets as we will dis-
cuss how we divide the patterns later (‘pattern grouping’).
Second, we increase the size of sh-mask and st-mask by
n times so that a group of n bits in sh-mask(‘x’) record all
the buckets that have ‘x’ in some of their patterns. More
precisely, the k-th n bits of sh-mask(‘x’) encode the ids
of all buckets that hold at least one pattern which has ‘x’
at the k-th byte position. One difference from the original
algorithm is that the byte position in a pattern is counted
from the rightmost byte. This enables parallel execution
of multiple CPU instructions per cycle as explained later
(‘SIMD acceleration’). For efficient implementation, we

hp

aphp…

sh-mask(‘a’)

OR

aphp

sh-mask(‘p’) << 24

sh-mask(‘h’) << 16

sh-mask(‘p’) << 8

sh-mask(‘a’)

st-mask

lowhigh

Bucket 4

Bucket 0

Input

… 11101110 11111110 11111111 11111111

… 11111110 11111110 11101110 11111111

… 11111110 11101110 11111111 11101110

… 00000000 00000000 00000000 11111111

… 11101110 11111110 11111111 11111111

… 11101110 11111111 11101110 00000000

… 11101110 11111111 00000000 00000000

… 11101110 00000000 00000000 00000000

sh-mask(‘h’)

sh-mask(‘p’)

m
at

ch
in

g
w

it
h

 in
p

u
t

Match! (bucket = 0, position = 3)Match! (bucket = 4, position = 3)

11101110

Figure 9: FDR’s extended shift-or matching

set n to 8 so that the byte position in a sh-mask matches
the same position in a pattern. This implies that the length
of a sh-mask should be no smaller than the longest pattern.

Figure 8 shows an example. Bucket 0 has two string
patterns, "ab" and "cd". Since ‘a’ appears at the second
byte of only "ab" in bucket 0, sh-mask(‘a’) zeros only the
first bit (= bucket 0) of the second byte. The i-th bit within
each byte of a sh-mask indicates the bucket id, i-1. If the
byte position of a sh-mask exceeds the longest pattern
of a certain bucket (called ‘padding byte’), we encode
the bucket id in the padding byte. This ensures matching
correctness by carrying a match at a lower input byte
along in the shift process. Examples of this are shown
in the padding bytes in Figure 8, and in the sh-masks in
Figure 9 that zero the first bit in the third and fourth bytes.

The pattern matching process is similar to the original
algorithm except that sh-masks are shifted left instead
of the st-mask. The st-mask is initially 0 except for the
byte positions smaller than the shortest pattern. This
avoids a false-positive match at a position smaller than
the shortest pattern. Now, we proceed with input char-
acters. The matcher keeps k, the number of characters
processed so far modulo n. For an input character, ‘x’,
st-mask |= (sh-mask(‘x’) ≪ (k bytes)). The matcher re-
peats this for n input characters, and checks if the st-mask
has any zero bits. Zero bits represent a possible match at
the corresponding bucket. For example, Figure 9 shows
that bucket 0 and 4 have a potential match at input byte
position 3. The verification stage illustrated later checks
whether they are a real match or a false positive.
Pattern grouping. The strategy for grouping patterns
into each bucket affects matching performance. A good

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 637

strategy would distribute the patterns well such that most
innocent traffic would pass with a low false positive rate.
Towards the goal, we design our algorithm based on two
guidelines. First, we group the patterns of a similar length
into the same bucket. This is to minimize the information
loss of longer patterns as the input characters match only
up to the length of the shortest pattern in a bucket for
matching correctness. Second, we avoid grouping too
many short patterns into one bucket. In general, shorter
patterns are more likely to increase false positives. To
meet these requirements, we sort the patterns in the as-
cending order of their length, and assign an id of 0 to
(s-1) to each pattern by the sorted order. Then, we run
the following algorithm that calculates the minimum cost
of grouping the patterns into n buckets using dynamic
programming. The algorithm is summarized by the two
equations below:

1. t[i][j] =
s−1
min

k=i+1
(costik + t[k+1][j−1]), where s is the

number of patterns and t[i][j] stores the minimum cost
of grouping the patterns i to (s-1) into (j+1) buckets.

2. costik = (k− i+1)α/lengthβ

i , where costik is the cost
of grouping patterns i to k into one bucket, lengthi is
for pattern i, α and β are constant parameters.

t[i][j] is calculated as the minimum of the sum of the cost
of grouping patterns i to k into one bucket (costik) and the
minimum cost of grouping remaining patterns (k+1) to
(s-1) into j buckets (t[k+1][j-1]). costik gets smaller as the
bucket has a longer pattern, which allows more patterns in
the bucket. It gets larger as the bucket has a shorter pattern,
limiting the number of such patterns. Our implementation
currently uses α = 1.05 and β = 3 towards this goal,
and computes t[0][7] to divide all string patterns into 8
buckets, and records the bucket id per each pattern in the
process. In practice, we find that the algorithm works
well, automatically reaching the sweetspot that minimizes
the total cost.
Super Characters. One problem with the bucket-based
matching is that it produces false positives with patterns
in the same bucket. For example, if a bucket has /ab/ and
/cd/, the algorithm not only matches the correct patterns
but also matches false positives, /ad/ and /cb/. To suppress
them, we use an m-bit (m>8) super character (instead
of an 8-bit ASCII character) to build and index the sh-
masks. An m-bit super character consists of a normal
(8-bit) character in the lower 8 bits and low-order (m-
8) bits of the next character in the upper bits. If it is
the last character of a pattern (or in the input), we use
a null character (0) as the next character. The key idea
is to reflect some information of the next character in a
pattern into building the sh-mask for the current character.

Only if the same two characters appear in the input 6 , we
declare a match at that input byte position. This would
significantly reduce false positives at the cost of a slightly
large memory for sh-masks.

In practice, m should be between 9 and 15. Let’s say
m = 12 bits. For a pattern, /ab/, we see two 12-bit super
characters, α = ((low-order 4 bits of ‘b’ ≪ 8) | ‘a’), and
β = ‘b’. Then, we build sh-masks for α and β , respec-
tively. When the input arrives, we construct a 12-bit super
character based on the current input byte offset, and use
it as an index to fetch its sh-mask. We advance the input
one byte at a time as before. For example, if the input is
‘ad’, it first constructs γ = ((low-order 4 bits of ‘d’ ≪ 8) |
‘a’), fetches sh-mask(‘γ’), and performs "shift" and "or"
operations as before. Then, it advances to the next byte
and constructs δ = ‘d’. So, the input ‘ad’ will not match
even if a bucket contains /ab/ and /cd/.
SIMD acceleration. Our implementation of FDR heav-
ily exploits SIMD operations and instruction-level paral-
lelism. First, it uses 128-bit sh-masks so that it employs
128-bit SIMD instructions (e.g., pslldq for "left shift"
and por for "or" in the Intel x86-64 instruction set) to up-
date the masks. As "shift" and "or" are the most frequent
operations in FDR, it enjoys a substantial performance
boost with the SIMD instructions. Second, it exploits
parallel execution with multiple CPU execution ports. In
the original shift-or matching, the execution of "shift"
and "or" operations is completely serialized as they have
dependency on the previous result. This under-utilizes
modern CPU even if it can issue multiple instructions per
CPU cycle. In contrast, FDR exploits instruction-level
parallelism by pre-shifting the sh-masks with multiple in-
put characters in parallel. Note that this is made possible
as we count the byte position differently from the origi-
nal version. The parallel execution effectively increases
instructions per cycle (IPC) and significantly improves
the performance. To accommodate the parallel shifting,
we limit the length of a pattern to 8 bytes and extract
the lower 8 bytes from any pattern longer than 8 bytes.
Because it requires minimum 8-byte masks and up to 7
bytes of shifting, a 128-bit mask would not lose high bit
information during left shift. In actual matching, FDR
handles 8 bytes of input at a time. To guarantee a contigu-
ous matching across 8-byte input boundaries, the st-mask
of the previous iteration is shifted right by 8 bytes for the
next iteration.
Verification. As our shift-or matching can still generate
false positives, we need to verify if a candidate match is

6Of course, there is still a small chance of a false positive as we use
partial bits of the next character, but the probability becomes fairly small
as the pattern length grows.

638 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 FDR Multi-string Matcher
1: function MATCH
2: n := number o f bits o f a super character
3: R := startMask
4: for each 8–byte V ∈ input do
5: for i ∈ 0...7 do
6: index =V [i∗8..i∗8+n−1]
7: M[i] := shi f tOrMask[index]
8: S[i] := LSHIFT (M[i], i)
9: end for

10: for i ∈ 0...7 do
11: R := OR128(R,S[i])
12: end for
13: for zero bit b in low 8 bytes o f R do
14: j := the byte position containing bit b
15: l := length o f string in bucket b
16: h := HASH(V [j− l +1.. j])
17: if h is valid then
18: Per f orm exact matching f or each
19: string in hash bucket[h]
20: end if
21: end for
22: R := RSHIFT (R,8))
23: end for
24: end function

an exact match. This phase consists of hashing and exact
string comparison. To minimize hash collisions, we build
a separate hash table for each bucket. Then, we leverage
the byte position of a match and compare the input with
each string in the hash bucket to confirm a match. In
practice, we find hashing filters out a large portion of
false positives.

4.2 Finite Automata Pattern Matching
Successful string matching often triggers FA component
matching, which is essentially the same as general regex
matching. Our strategy is to use a DFA whenever is possi-
ble, but if the number of DFA states exceeds a threshold 7,
we fall back to NFA-based matching. As the state-of-the-
art DFA already delivers high performance, we introduce
fast NFA-based matching with SIMD operations here.

In NFA-based matching, there can be multiple current
states (current set) that are active at any time. A state tran-
sition with an input character is performed on every active
state in the current set in parallel, which produces a set of
successor states (successor set). A match is successful if
any state reaches one of the accept states.

We develop bit-based NFA where each bit represents a
state. We choose the bit-based representation as it outper-
forms traditional NFA representations that use byte arrays
to store transitions, and look up a transition table for each
current state in a serialized manner. Also, bit-based NFA
leverages SIMD instructions to perform vectorized bit

7We use 16,384 states as the threshold.

operations to further accelerate the performance. Our
scheme assigns an id to each state (i.e. each vertex in
an n-node NFA graph) from 0 to n-1 by the topological
order, and maintains a current set as a bit mask (called
current-set mask) that sets a bit to 1 if its position matches
a current state id. We define a span of a state transition as
the id difference between the two states of the transition.
Since state ids are sequentially assigned by the topologi-
cal order, the span of a state transition is typically small.
We exploit this fact to compactly represent the transitions
below.

The bit-based NFA implements a state transition with
an input character, ‘c’, in three steps. First, it calculates
the successor set that can be transitioned to, from any
state in the current set with any input character. Second,
it computes the set of all states that can be transitioned
to, from any state with ‘c’ (called reachable states by ‘c’).
Third, it computes the intersection of the two sets. This
produces a correct successor set as a Glushkov NFA graph
guarantees that one can enter a specific state only with
the same character or with the same character-set.

The challenge is to efficiently calculate the successor
set. One can pre-calculate a successor set for every combi-
nation of current states, and look up the successor set for
the current-set mask. While this is fast, it requires storing
2n successor sets, which becomes intractable except for
a small n. An alternative is to keep a successor-set mask
per each individual state, and to combine the successor
set of every state in the current set. This is more space-
efficient but it costs up to n memory lookups and (n−1)
"or" operations. We implement the latter, but optimize it
by minimizing the number of successor-set masks, which
would save memory lookups. To achieve this, we keep a
set of shift-k masks shared by all relevant states. A shift-k
mask records all states with a forward transition of span
k, where a forward transition moves from a smaller state
id to a larger one, and a backward transition does the op-
posite. Figure 10 shows some examples of shift-k masks.
Shift-1 mask sets every bit to 1 except for bit 7 since all
states except state 7 has a forward transition of span 1.

We divide each state transition into two types – typical
or exceptional. A typical transition is the one whose span
is smaller or equal to a pre-defined shift limit. Given a
shift limit, we build shift-k masks for every k (0≤k≤limit)
at initialization. These masks allow us to efficiently com-
pute the successor set from the current set following typ-
ical transitions. If the current-set mask is S, then ((S
& shift-k mask) ≪ k) would represent all possible suc-
cessor states with transitions of span k from S. If we
combine successor sets for all k, we obtain the successor
set reached by all typical transitions.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 639

-3
1
A

4
D

5
A

6
F

7
F

0. 3
C

2
B

-1 -13
5

3

Exception
mask Exceptional transitions

Shift-0 mask

Shift-1 mask

Typical transitions
high low

1 0 0 0 0 0 1

Shift-2 mask
0 0 0 0 0 0 0

1
0
1
0
1
0
0
0

0

1 1 1 1 1 1 10

0

0 0 1 0 1 0 0 0

0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0

Succ mask for state 0

Succ mask for state 2

Succ mask for state 4

high low

Figure 10: NFA representation for (AB|CD)∗AFF∗

We call all other transitions exceptional. These include
forward transitions whose span exceeds the limit and any
backward transitions. 8 Any state that has at least one
exceptional transition keeps its own successor mask. The
successor mask records all states reached by exceptional
transitions of its owner state. All exceptional states are
maintained in an exception mask.

As you can see, the choice of the shift limit affects the
performance. If it is too large, we would have too many
shift-k masks representing rare transitions, and if it is too
small, we would have to handle many exceptional states.
Our current implementation uses 7 after performance tun-
ing with real-world regex patterns.

Figure 10 shows an NFA graph for (AB|CD)∗AFF∗.
We set the shift limit to 2 and mark exceptional edges with
the difference of ids. State 0, 2, and 4 are highlighted as
they have exceptional out-edge transitions. The exception
mask holds all exceptional states, and each state points to
its own successor mask. For example, successor mask for
state 2 sets bits 1 and 5 as its exceptional transitions point
to states 1 and 5.

Algorithm 2 shows our bit-based NFA matching. It
combines the successor masks possibly reached by typi-
cal transitions (SUCC_TY P) and exceptional transitions
(SUCC_EX). Then, it fetches the reachable state set with
the current input character, c, (reach[c]) and perform a bit-
wise "and" operation with the combined successor mask
(SUCC). The result is the final successor set, and we re-
port a match if the successor set includes any accept state.
Otherwise, it proceeds with the next input character. For
each character, it runs in O(l + e) where l is the shift limit,
and e is the number of "exception" states. Our implemen-

8In our implementation, forward transitions that cross the 64-bit
boundary of the state id space (e.g., from an id smaller than 64 to an
id larger than 64) are also treated as exceptional. This is related to a
specific SIMD instruction that we use, so we omit the detail here.

Algorithm 2 Bit-based NFA Matching
1: # SH_MSKS[i] : shift-i masks for typical transitions
2: # SUCC_MSKS[i] : successor mask for state i
3: # EX_MSK : exception mask
4: # reach[k] : reachable state set for character k
5: function RUNNFA(S: current active state set)
6: SUCC_TY P := 0, SUCC_EX := 0
7: for c ∈ input do
8: if any state is active in S then
9: for i := 0 to shi f tlimit do

10: R0 := AND(S,SH_MSKS[i])
11: R1 := LSHIFT (R0, i)
12: SUCC_TY P := OR(SUCC_TY P,R1)
13: end for
14: S_EX := AND(S,EX_MSK)
15: for active state s in S_EX do
16: SUCC_EX :=
17: OR(SUCC_EX ,SUCC_MSKS[s])
18: end for
19: SUCC := OR(SUCC_TY P,SUCC_EX)
20: S := AND(SUCC,reach[c])
21: Report accept states in S
22: end if
23: end for
24: end function

Total Size 1 GBytes
Number of Packets 818,682
Number of TCP Packets 818,520
Percent of TCP Bytes 97.2%
Percent of HTTP Bytes 92.9%
Average Packet Size 1265 Bytes

Table 2: HTTP traffic trace from a cloud service provider.

tation uses a 128-bit mask (and extends it up to a 512-bit
mask with four variables if needed), and employs 128-bit
SIMD instructions for fast bitwise operations. In practice,
we find that 512 states are enough for representing the
NFA graph of most regexes.

5 Implementation
Hyperscan consists of compile and run time functions.
Compile-time functions include regex-to-NFA graph con-
version, graph decomposition, and matching components
generation. The run time executes regex matching on the
input stream. While we cover the core functions in Sec-
tion 3 and 4, Hyperscan has a number of other subsystems
and optimizations:
• Small string-set (<80) matching. This subsystem imple-

ments a shift-or algorithm using the SSSE3 "PSHUFB"
instruction applied over a small number (2-8) of 4-bit
regions in the suffix of each string.

• NFA and DFA cyclic state acceleration. Where a state
(in the case of the DFA) or a set of states (in the case
of the NFA) can be shown to recur until some input is
seen, we consider these cyclic states. In case where

640 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of regexes Prefilter Hyperscan Reduction
500 2,971,652 645,326 4.6x
1000 93,595,304 714,582 131.0x
1500 110,122,972 791,017 139.2x
2000 139,804,519 780,665 179.1x
2500 156,332,187 857,100 182.4x

Table 3: Regex invocations of Snort’s ET-Open ruleset

current states in NFA or DFA are all cyclic states with
a large reachable symbol set, there is a high probability
of staying at current state(s) for many input characters.
We have SIMD acceleration for searching the first ex-
ceptional input sequence (1-2 bytes) that leads to one
or more transitions out of current states or switches off
one of the current states.

• Small-size DFA matching. We design a SIMD-based
algorithm for a small-size DFA (< 16 states) that outper-
forms the state-of-the-art DFA by utilizing the shuffle
instruction for fast state transitions.

• Anchored pattern matching. When an anchored pattern
consists of comparatively short acyclic sequences (i.e.
no loops), the automata corresponding to them are both
simple and short-lived. They are thus cheap to scan
and scale well. We run DFA-based subsystems special-
ized to attempt to discover when anchored patterns are
matched or rejected.

• Suppression of futile FA matching. We design a fast
lookaround approach that peeks at inputs that are near
the triggers for an FA before running it. This often
allows us to discover that the FA either does not need
to run at all or will have reached a dormant state before
the triggers arrive. These checks are implemented as
comparatively simple SIMD checks and can be done in
parallel over a range of input characters and character
classes. For example, in the regex fragment /R \ d \
s{4,5} f oo/, where R is a complex regex, we can first
detect that the digit and space character classes have
matched with SIMD checks, and, if not, avoid or defer
running a potentially expensive FA associated with R.

6 Evaluation
In this section, we evaluate the performance of Hyper-
scan to answer the following questions. (1) Does regex
decomposition extract better strings than those by manual
choice? (2) How well do multi-string matching and regex
matching perform in comparison with the existing state-
of-the-art? (3) How much performance improvement does
Hyperscan bring to a real DPI application?

6.1 Experiment Setup
We use a server machine with Intel Xeon Platinum 8180
CPU @ 2.50GHz and 48 GB of memory, and compile the

of regexes Prefilter Hyperscan Reduction
700 699,622 18,164 38.5x
850 7,516,464 19,214 391.2x
1000 17,063,344 32,533 524.5x
1150 17,737,814 34,075 520.6x
1300 25,143,574 36,040 697.7x

Table 4: Regex invocations for Snort’s Talos ruleset

code with GCC 5.4. To separate the impact by network
I/O, we evaluate the performance with a single CPU core
by feeding the packets from memory. We test with packets
of random content as well as a real-world Web traffic trace
obtained at a cloud service provider as shown in Table 2.
For all evaluation, we use the latest version of Hyperscan
(v5.0) [2].

6.2 Effectiveness of Regex Decomposition
The primary goal of regex decomposition is to mini-
mize unnecessary FA matching by extracting "good"
strings from a set of regexes with rigorous graph anal-
yses. To evaluate this point, we compare the number
of regex matching invocations triggered by a prefilter-
based DPI and by Hyperscan. We extract the content
options and their associated regex from Snort rulesets,
and count the number of regex matching invocations for
a prefilter-based DPI. And then, we measure the same
number for Hyperscan where Hyperscan automatically
extracts the strings from regexes rather than using the
keywords from the content option. For the ruleset, we use
ET-Open 2.9.0 [8] and Talos 2.9.11.1 [11] against the real
traffic trace, and confirm the correctness – both versions
produce the identical output for the traffic.

Tables 3 and 4 show that Hyperscan dramatically re-
duces the number of regex matching invocations by over
two orders of magnitude! As the number of regex rules
increases, the reduction by Hyperscan grows, affirming
that regex decomposition is the key contributor to effi-
cient pattern matching. Close examination reveals that
there are many single-character strings in the content op-
tion of the Snort rulesets, which invokes redundant regex
matching too frequently. In practice, other rule options in
Snort may mitigate the excessive regex invocations, but
frequent string matching alone poses a severe overhead.
In contrast, Hyperscan completely avoids this problem by
triggering regex matching only if it is necessary.

6.3 Microbenchmarks
We evaluate the performance of FDR, our multi-string
matcher, as well as that of regex matching of Hyperscan.
Multi-string pattern matching. We compare the perfor-
mance of FDR with that of DFC and AC. We measure the
performance over different numbers of string patterns ex-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 641

Ruleset PCRE PCRE2 RE2-s Hyperscan-s RE2-m Hyperscan-m
Talos 6,942 394 1,777 173 29 2.15
ET-Open 12,800 913 4,696 516 1,116 133

Table 5: Performance comparison with PCRE, PCRE2, RE2 and Hyperscan for Snort Talos (1,300 regexes) and Suricata (2,800
regexes) rulesets with the real Web traffic trace. Numbers are in seconds.

3.2

1.3 1.2 1.1

0

1

2

3

4

0

3

6

9

12

15

1k 5k 10k 26k

Th
ro

u
gh

p
u

t
(G

b
p

s)

Number of String Patterns

FDR DFC

(a) ET-Open ruleset

2.3

1.5 1.4
1.2

0

1

2

3

0

3

6

9

12

1k 5k 10k 20k

Im
p

ro
ve

m
en

t
o

ve
r

D
FC

Number of String Patterns

AC Improvement

(b) Talos ruleset
Figure 11: String matching performance with random packets

2.5
2.1

1.7 1.5

0

1

2

3

0

2

4

6

8

10

1k 5k 10k 26k

Th
ro

u
gh

p
u

t
(G

b
p

s)

Number of String Patterns

FDR DFC

(a) ET-Open ruleset

2.2

1.6
1.4 1.3

0

1

2

3

0

2

4

6

8

10

1k 5k 10k 20k

Im
p

ro
ve

m
en

t
o

ve
r

D
FC

Number of String Patterns

AC Improvement

(b) Talos ruleset
Figure 12: String matching performance with a real traffic trace

tracted from Snort ET-Open and Talos rulesets. Figure 11
and Figure 12 show that FDR outperforms the state-of-
the-art matcher, DFC, by 1.1x to 3.2x (and AC by 4.2x to
8.8x) for packets of random content and by 1.3x to 2.5x
(and AC by 3.2x to 8.2x) for the real traffic trace. We also
evaluate it with the Suricata ruleset but we omit the result
here since it exhibits the similar performance trend. When
the number of string patterns is small, Hyperscan benefits
from small CPU cache footprint and SIMD acceleration,
but when the number of patterns grows, the performance
becomes compatible with DFC due to increased cache
usage, but it is still much better than AC.
Regex matching. We now evaluate the performance of
regex matching of Hyperscan. We compare the perfor-
mance with PCRE (v8.41) [6] as it is most widely used
in network DPI applications, and PCRE2 (v10.32) [7], a
more recent fork from PCRE with a new API. We en-
able the JIT option for both PCRE and PCRE2. We
also compare with RE2 (v2018-09-01) [1], a fast, small
memory-footprint regex matcher, developed by Google.
Both Hyperscan and RE2 support multi-regex matching
in parallel while PCRE matches one regex at a time. For
fair comparison with PCRE and PCRE2, we measure the
total time for matching all regexes in a serial manner (e.g.,

match against one regex at a time), which would require
passing the entire input for each regex. For Hyperscan and
RE2, we measure two numbers – one for matching one
regex at a time (RE2-s, Hyperscan-s), and the other for
matching all regexes in parallel (RE2-m, Hyperscan-m).
For testing, we use 1,300 regexes from the Snort Talos
ruleset and 2,800 regexes from the Suricata ruleset.

Table 5 shows the result. For the Snort Talos ruleset,
Hyperscan-s outperforms PCRE, RE2-s, and PCRE2 by
40.1x, 10.3x, and 2.3x, respectively. Hyperscan-m is
13.5x faster than RE2-m while it reveals 183.3x perfor-
mance improvement over PCRE2! For the Suricata rule-
set, Hyperscan-s shows 24.8x, 9.1x, and 1.8x speedups
over PCRE, RE2-s, and PCRE2. Hyperscan-m outper-
forms RE2-m and PCRE2 by 8.4x and 6.9x, respectively.
We do not report DFA-based PCRE performance as we
find it much slower than the default operation with NFA-
based matching [5]. RE2-s uses a DFA for regex matching
(and fails on a large regex that requires an NFA), but it
needs to translate the whole regex into a single DFA. In
contrast, Hyperscan splits a regex into strings and FAs,
and benefits from fast string matching as well as smaller
DFA matching of the FA components, which explains the
performance boost.

6.4 Real-world DPI Application
We now evaluate how much performance improvement
Hyperscan brings to a popular IDS like Snort. We
compare the performance of stock Snort (ST-Snort) and
Hyperscan-ported Snort (HS-Snort) that performs pattern
matching with Hyperscan, both with a single CPU core.
ST-Snort employs AC and PCRE for multi-string match-
ing and regex matching, respectively. HS-Snort keeps the
basic design of Snort but it replaces AC and PCRE with
the multi-string and single-regex matchers of Hyperscan.
It also replaces the Boyer-Moore algorithm in Snort with
a fast single-literal matcher of Hyperscan. With the Snort
Talos ruleset, ST-Snort achieves 113 Mbps on our real
Web traffic. In contrast, HS-Snort produces 986 Mbps on
the same traffic, a factor of 8.73 performance improve-
ment. We find that the main contributor for performance
improvement is the highly-efficient multi-string matcher
of Hyperscan as shown in Figure 11. In practice, we
expect a much higher performance improvement if we
restructure Snort to use multi-regex matching in parallel.

642 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Evolution, Experience, and Lessons
Hyperscan has been developed since 2008, and was first
open-sourced in 2013. Hyperscan has been successfully
adopted by over 40 commercial projects globally, and it is
in production use by tens of thousands of cloud servers in
data centers. In addition, Hyperscan has been integrated
into 37 open-source projects, and it supports various op-
erating systems such as Linux, FreeBSD, and Windows.
Hyperscan APIs are initially developed in C, but there
are public projects that provide bindings for other pro-
gramming languages such as Java, Python, Go, Node.js,
Ruby, Lua, and Rust. In this section, we briefly share
our experience with developing Hyperscan and lay out its
future direction.

7.1 Evolution of Hyperscan
Hyperscan was developed at a start-up company, Sen-
sory Networks, after a move away from hardware match-
ing, which was expensive in terms of material costs and
development time. We investigated GPU-based regex
matching, but it imposed unacceptable latency and sys-
tem complexity. As CPU technology advances, we settled
at CPU-based regex matching, which not only became
cost-effective with high performance, but also made it
simple to be employed by applications.
Version 1.0. The initial version was released in 2008,
with the intent of providing a simple block-mode regex
package that could handle large numbers of regexes. Like
other popular solutions at that time, it used string-based
prefiltering to avoid expensive regex matching. How-
ever, the initial version was algorithmically primitive and
lacked streaming capability (e.g., pattern matching over
streamed data). Also, it suffered from quadratic matching
time as it had to re-scan the input from a matched literal
for each match.

Version 1.0 did include a large-scale string matcher
(a hash-based matcher called "hlm", akin to Rabin-Karp
[29] with multiple hash tables for different length strings)
as well as a bit-based implementation of Glushkov NFAs.
The NFA implementation allowed support of a broad
range of regexes that would suffer from combinatorial
explosions if the DFA construction algorithm was used.
The Glushkov construction mapped well to Intel SIMD
instructions, allowing NFA states to be held in one or
more SIMD registers.
Version 2.0. The algorithmic issues and the absence of
a streaming capability led to major changes to version
1.0, which became Hyperscan version 2.0. First, it moved
towards a Glushkov NFA-based internal representation
(the "NFA Graph") that all transformations operated over,
departing from ad-hoc optimizations on the regex syntax

tree. Second, it supported ‘streaming’ – scanning multiple
blocks without retaining old data and with a fixed-at-
pattern-compile-time amount of stream state. Support for
efficient streaming was especially desirable for network
traffic monitoring as patterns may spread over multiple
packets. Third, it scanned patterns that used one or more
strings, detected by a string matching pre-pass, followed
by a series of NFA or DFA engines running over the input
only when the required strings are found. This approach
avoids the high risk of potential quadratic behavior of
version 1.0, with the tradeoff of potentially bypassing
some comparatively lesser optimizations if a regex could
be quickly falsified at each string matching site.

Unfortunately, version 2.0 still had a number of limita-
tions. First, we observed the adverse performance impact
of prefiltering. Prefiltering did not reduce the size of the
NFA or DFA engines even if a string factor completely
separated a pattern into two smaller ones. This exac-
erbated the problem of a large regex that often needed
to be converted into an NFA. As the system had a hard
limit of 512 NFA states (dictated by the practicalities of a
data-parallel SIMD implementation of the Glushkov NFA;
more than 512 states resulted in extremely slow code), it
often did not accommodate user-provided regexes when
they were too large. Further, if prefiltering failed (i.e.,
when the string factors were all present), it ended up con-
suming more CPU cycles than naïvely performing the
NFA engines over all the input.

Another serious limitation was that matches emerged
from the system in an undefined order. Since the NFAs
were run after string matching had finished, the matches
from these NFAs would emerge based on the order of
which NFAs were run first and no rigorous order was de-
fined for when these matches would appear. Further con-
fusing matters, the string matcher was capable of produc-
ing matches of plain strings ahead of the NFA executions.
In fact, due to potential optimizations where NFA graphs
might be split (for example, splitting into connected com-
ponents to allow an unimplementably large NFA to be run
as smaller components), it was even possible to receive
duplicate matches for a given pattern at a given location.
After an NFA is split into connected components and
run in separate engines, no mechanism existed to detect
whether these different components (which would be run-
ning at different times) might be sometimes producing
matches with the same match id and location.

For example, a regex workload consisting of patterns
/ f oo/, /abc[xyz]/ and /abc[xy]. ∗ de f |abc.z. ∗ de[f g]/
might first produce matches for the simple literal / f oo/,
then provide all the matches for the components of the
pattern /abc[xyz]/, then provide matches for the two parts

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 643

of the alternation abc[xy].∗de f and abc.z.∗de[f g] with-
out removing duplicate matches for inputs that happened
to match both parts of the pattern on the same offset (e.g.
the input "abcxxxxzde f ").
Versions 2.1 and 3.0. (The version 2.1 release series of
Hyperscan saw considerable development and in retro-
spect should have merited a full version number incre-
ment) The limitation of prefiltering spurred the develop-
ment of an alternate matching subsystem called ‘Rose’.
‘Rose’ allowed both ordered matching, duplicate match
avoidance, and pattern decomposition. This subsystem
was maintained in parallel to the prefiltering system inher-
ited from the original 2.0 design. Whenever it was possi-
ble to decompose patterns, the patterns were matched with
the ‘Rose’ subsystem, which initially was not capable of
handling all regular expressions.

FDR was developed during in the version 2.1 release
series; it replaced the hash-based literal matcher ("hlm")
with considerably performance improvements and reduc-
tion in memory footprint.

Eventually, by version 3.0, the old prefiltering system
was entirely removed, as the Rose path was made fully
general. Version 3.0 also marked an organizational change
in that Intel Corporation had acquired Sensory Networks.
Version 4.0. Version 4.0 was released in October 2013
under an open-source BSD license to further increase
the usage of Hyperscan, by removing barriers of cost
and allowing customization. Many elements of Hyper-
scan’s design continued to evolve. For example, the initial
Rose subsystem had a host of special-purpose matching
mechanisms that identify the strings separated by various
common regex constructs such as .∗ or X+ for some char-
acter class X . For example, it is frequently the case that
strings in regexes might be separated by the .* construct
(i.e. / f oo. ∗ bar/s). This is usually implementable by
requiring only that " f oo" is seen before "bar" (usually,
but not always: consider the expression / f oo.∗oar/s).
The original version of Rose had many special-purpose
engines to handle these type of subcases; during the evo-
lution of the system, this special-purpose code was almost
entirely replaced with generalized NFA and DFA mecha-
nisms, amenable to analysis and optimization, and were
needed for the general case of regex matching in any case.
Version 5.0. Version 5.0, which is the latest version as
of writing this paper, mainly focused on enhancing the
usability of Hyperscan. Two key added features are sup-
port for logical combinations of patterns and Chimera,
a hybrid regex engine of Hyperscan and PCRE [6]. As
the detection technology of malicious network traffic ma-
tures, it often requires evaluating a logical combination of
a group of patterns beyond matching a single pattern. To

support this, the system now allows user-defined AND,
OR, NOT along their patterns. For example, an AND op-
eration between patterns /foobar/ and /teakettle/ required
that both patterns are matched for input before reporting
a match. Version 5.0 added Chimera, a hybrid matcher of
Hyperscan and PCRE, brings the benefit of both worlds –
support for full PCRE syntax while enjoying the high per-
formance of Hyperscan. Lack of support of Hyperscan for
full PCRE syntax (such as capturing and back-references)
made it difficult to completely replace PCRE in adopted
solutions. Chimera employs Hyperscan as a fast filter for
input, and triggers the PCRE library functions to confirm
a real match only when Hyperscan reports a match on a
pattern that has features not supported by Hyperscan.

7.2 Lessons Learned
We summarize a few lessons that we learned in the course
of development and commercialization of Hyperscan.
Release quickly and iterate, even with partial feature
support. The difficulty of generalized regex matching
often led Hyperscan to focus on the delivery of some
capability in partial form. From a theoretical standpoint,
it is unsatisfactory that Hyperscan still cannot support
all regexes (even from the subset of ’true’ regexes) and
that the support of regexes with the ’start of match’ flag
turned on is even smaller. However, customers can still
find the system practically useful despite these limitations.
Despite the limited pattern support of version 2.0 and
the problems of ordering and duplicated matches, there
was immediate commercial use of the product even in
that early form (use which made subsequent development
possible). This lends support to the idea of releasing a
"Minimal Viable Product" early, rather than developing a
product with a long list of features that customers may or
may not want.
Evolve new features over several versions, at the ex-
pense of maintaining multiple code paths. Academic
systems are usually built for elegance and to illustrate
a particular methodology. However, a commercial sys-
tem must stay viable as a product while a new subsystem
is built. For example, Hyperscan maintained both the
’prefilter’ arrangement and the new ’Rose-based’ decom-
position arrangement in the same code base, resulting in
considerable extra complexity. However, the benefits of
having the new ’ordered’ semantics (with additional pow-
ers of support for large patterns due to decomposition)
outweighed the complexity cost. It was almost impossible
that a small start-up could have managed to transition
from one system to the other in a span of a single release,
or to have simply not meaningfully updated the project for
an extended time while working on a substantial update.

644 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Commercial products may need to emphasize less in-
teresting subcases of a task, or unusual corner cases.
There was also considerable commercial pressure to be
the best option at some comparatively degenerate sub-
set of regex matching, or some relatively ’hard case’.
Customers often wanted Hyperscan to function as a
string matcher - sometimes even a single-string-at-a-time
matcher! Other customers wanted high performance de-
spite very high regex match rates (for example, more than
1 match per character). Such demands often force special
optimizations that lack deep ‘algorithmic interest’, but are
necessary for commercial success.
Be cautious of cross-cutting complexity resulting
from customer API requests. One illuminating expe-
rience in the delivery of a commercially viable regex
matcher was that customer feature requests for new
’modes’ or unusual calls at the API level resulted in cross-
cutting complexity that made the code base considerably
more complicated (due to a combinatorial explosion of in-
teractions between features) while rarely being reused by
other customers. Features added in the 2.0 or 3.0 release
series over time were not carried forward to the 4.0 series;
we found that frequently such features were only used by
a single customer (despite being made available to all).

Examples of two such features were "precise alive"
(the ability to tell at any given stream write boundary
whether a pattern might still be able to match) and an
ad-hoc stream state compression scheme that allowed
some stream states to be discarded if no NFA engines
had started running. These features were complicated and
suppressed potential optimizations as well as interacting
poorly with other parts of the system.

7.3 Future Directions
Hyperscan is performance-oriented; future development
in Hyperscan will still focus on delivering the best possi-
ble performance, especially on upcoming Intel Architec-
ture cores featuring new instruction set extensions such
as Vector Byte Manipulation Instructions (VBMI). Im-
provement of scanning performance as well as reduction
of overheads such as the size of bytecodes, size of stream
states and time to compile the pattern matching bytecode
are obvious next steps.

Beyond this, adding richer functionality, including sup-
port for currently unsupported constructs such as gener-
alized "lookaround" asserts and possible some level of
support for back-references would aid some users. There
is a considerable amount of usage of the ‘capturing’ func-
tionality of regexes, which Hyperscan does not support at
all (an experimental subbranch of Hyperscan, not widely
released, supported capturing functionality for a limited

set of expressions). Hyperscan could be extended to have
enriched semantics to support capturing, which would al-
low portions of the regexes to ‘capture’ parts of the input
that matched particular parts of the regular expression.

8 Conclusion
In this paper, we have presented Hyperscan, a high-
performance regex matching system that suggests a new
strategy for efficient pattern matching. We have shown
that the existing prefilter-based DPI suffers from fre-
quent executions of unnecessary regex matching. Even
though Hyperscan started with the similar approach, it
has evolved to address the limitation over time with novel
regex decomposition based on rigorous graph analyses.
Its performance advantage is further boosted by efficient
multi-string matching and bit-based NFA implementation
that effectively harnesses the capacity of modern CPU.
Hyperscan is open sourced for wider use, and it is gen-
erally recognized as the state-of-the-art regex matcher
adopted by many commercial systems around the world.

Acknowledgment

We appreciate valuable feedback by anonymous reviewers
of USENIX NSDI’19 as well as our shepherd, Vyas Sekar.
We acknowledge the code contributions over the years
by the Sensory Networks team: Matt Barr, Alex Coyte
and Justin Viiret. This work is in part supported by the
ICT Research and Development Program of MSIP/IITP,
South Korea, under projects [2018-0-00693, Development
of an ultra-low latency user-level transfer protocol] and
[2016-0-00563, Research on Adaptive Machine Learn-
ing Technology Development for Intelligent Autonomous
Digital Companion].

References

[1] Google RE2. https://github.com/google/
re2/.

[2] Hyperscan GitHub Repository. https://github.
com/intel/hyperscan.

[3] ModSecurity. https://www.modsecurity.
org/.

[4] nDPI. https://www.ntop.org/products/
deep-packet-inspection/ndpi/.

[5] PCRE Manual Pages. https:/pcre.org/pcre.
txt.

[6] PCRE: Perl Compatible Regular Expressions.
https://www.pcre.org/.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 645

https://github.com/google/re2/
https://github.com/google/re2/
https://github.com/intel/hyperscan
https://github.com/intel/hyperscan
https://www.modsecurity.org/
https://www.modsecurity.org/
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https:/pcre.org/pcre.txt
https:/pcre.org/pcre.txt
https://www.pcre.org/

[7] Perl-compatible Regular Expressions (revised API:
PCRE2). https://www.pcre.org/current/
doc/html/index.html.

[8] Snort Emerging Threats Rules 2.9.0.
https://rules.emergingthreats.net/
open/snort-2.9.0/rules/.

[9] Snort Intrusion Detection System. https://snort.
org.

[10] Suricata: Open Source IDS. http:
//suricata-ids.org/.

[11] Talos Ruleset. https://www.snort.org/talos,.
[12] Aho, Alfred V. and Corasick, Margaret J. Efficient

String Matching: An Aid to Bibliographic Search.
Communications of the ACM, 18(6):333–340, June
1975.

[13] Ricardo A. Baeza-Yates and Gaston H. Gonnet. A
new approach to text searching. Communications of
the ACM (CACM), 35(10):74–82, 1992.

[14] Zachary K. Baker and Viktor K. Prasanna. Time and
Area Efficient Pattern Matching on FPGAs. In Pro-
ceedings of the ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (FPGA),
2004.

[15] M. Becchi and S. Cadambi. Memory-efficient reg-
ular expression search using state merging. In Pro-
ceedings of the IEEE International Conference on
Computer Communications (INFOCOM), 2007.

[16] M. Becchi and P. Crowley. A Hybrid Finite Au-
tomaton for Practical Deep Packet Inspection. In
Proceedings of the ACM International Conference
on Emerging Networking Experiments and Technolo-
gies (CoNEXT), 2007.

[17] M. Becchi and P. Crowley. An improved algorithm
to accelerate regular expression evaluation. In Pro-
ceedings of the ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems
(ANCS), 2007.

[18] M. Becchi and P. Crowley. A-DFA: A Time- and
Space-Efficient DFA Compression Algorithm for
Fast Regular Expression Evaluation. ACM Trans-
actions on Architecture and Code Optimization
(TACO), 10(1), April 2013.

[19] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Ko-
ral. Deep Packet Inspection as a Service. In Pro-
ceedings of the ACM International Conference on
Emerging Networking Experiments and Technolo-
gies (CoNEXT), 2014.

[20] Taylor-D. E. Brodie, B. and R. K. Cytron. A scalable
architecture for high-throughput regular expression
pattern matching. In Proceedings of the Interna-

tional Symposium on Computer Architecture (ISCA),
2006.

[21] B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han.
DFC: Accelerating string pattern matching for net-
work applications. In Proceedings of USENIX Sym-
posium on Networked Systems Design and Imple-
mentation (NSDI), 2016.

[22] Chris Clark, Wenke Lee, David Schimmel, Didier
Contis, Mohamed Koné, and Ashley Thomas. A
Hardware Platform for Network Intrusion Detection
and Prevention. In Proceedings of the Workshop on
Network Processors Applications (NP3), 2004.

[23] Christopher R. Clark and David E. Schimmel. Ef-
ficient Reconfigurable Logic Circuits for Match-
ing Complex Network Intrusion Detection Patterns.
In Proceedings of the International Conference on
Field-Programmable Logic and Applications (FPL),
2003.

[24] Beate Commentz-Walter. A string matching algo-
rithm fast on the average. In Proceedings of the
Colloquium, on Automata, Languages and Program-
ming, 1979.

[25] Jack Edmonds and Richard M Karp. Theoretical
improvements in algorithmic efficiency for network
flow problems. Journal of the ACM, 19(2):248–264,
1972.

[26] Giordano-S. Procissi G. Vitucci F. Antichi G. Ficara,
D. and A. Di Petro. An improved DFA for fast reg-
ular expression matching. ACM SIGCOMM Com-
puter Communication Review (CCR), 38(5), 2008.

[27] V.M. Glushkov. The abstract theory of automata.
Russian Mathematical Surveys, 16(5):1–53, 1961.

[28] Muhammad Asim Jamshed, Jihyung Lee, Sang-
woo Moon, Insu Yun, Deokjin Kim, Sungryoul Lee,
Yung Yi, and KyoungSoo Park. Kargus: a highly-
scalable software-based intrusion detection system.
In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), pages
317–328, 2012.

[29] Richard M Karp and Michael O Rabin. Efficient
randomized pattern-matching algorithms. IBM Jour-
nal of Research and Development, 31(2):249–260,
1987.

[30] T. Kojm. ClamAV. http://www.clamav.net/.
[31] Smith-R. Kong, S. and C. Estan. Efficient signature

matching with multiple alphabet compression tables.
In Proceedings of the International ICST Confer-
ence on Security and Privacy in Communication
Networks (SecureComm), 2008.

[32] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and

646 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.pcre.org/current/doc/html/index.html
https://www.pcre.org/current/doc/html/index.html
https://rules.emergingthreats.net/open/snort-2.9.0/rules/
https://rules.emergingthreats.net/open/snort-2.9.0/rules/
https://snort.org
https://snort.org
http://suricata-ids.org/
http://suricata-ids.org/
https://www.snort.org/talos
http://www.clamav.net/

J. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection.
In Proceedings of the ACM SIGCOMM on Data
communication (SIGCOMM), 2006.

[33] Turner-J. Kumar, S. and J. Williams. Advanced algo-
rithms for fast and scalable deep packet inspection.
In Proceedings of the ACM/IEEE Symposium on
Architecture for Networking and Communications
Systems (ANCS), 2006.

[34] Janghaeng Lee, Sung Ho Hwang, Neungsoo Park,
Seong-Won Lee, Sunglk Jun, and Young Soo Kim.
A High Performance NIDS using FPGA-based Reg-
ular Expression Matching. In Proceedings of the
ACM symposium on Applied computing, 2007.

[35] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan.
Compiling PCRE to FPGA for accelerating Snort
IDS. In Proceedings of the ACM/IEEE Symposium
on Architectures for Networking and Communica-
tions Systems (ANCS), 2007.

[36] J. Jang J. Truelove D. G. Andersen S. K. Cha,
I. Moraru and D. Brumley. SplitScreen: Enabling
efficient, distributed malware detection. In Proceed-
ings of the USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2010.

[37] E. Sitaridi, O. Polychroniou, and K. A. Ross. SIMD-
accelerated regular expression matching. In Pro-
ceedings of the Workshop on Data Management on
New Hardware (DaMoN), 2016.

[38] R. Smith, C. Estan, and S. Jha. XFA: Faster Sig-
nature Matching with Extended Automata. In Pro-
ceedings of the IEEE Symposium on Security and
Privacy, 2008.

[39] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating
the big bang: fast and scalable deep packet inspec-
tion with extended finite automata. In Proceedings
of the ACM SIGCOMM on Data communication
(SIGCOMM), 2008.

[40] Y. E. Yang, W. Jiang, and V. K. Prasanna. Compact
architecture for high-throughput regular expression
matching on fpga. In Proceedings of the ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems (ANCS), 2008.

[41] F. Yu, Z. Chen, Y. Diao, T.V. Lakshman, and R. H.
Kats. Fast and memory-efficient regular expression
matching for deep packet inspection. In Proceedings
of the ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS),
2014.

[42] Xiaodong Yu, Bill Lin, , and Michela Becchi.
Revisiting state blow-up: Automatically building
augmented-fa while preserving functional equiva-

lence. IEEE Journal on Selected Areas in Commu-
nications, 32(10), October 2014.

Appendix

Algorithm 3 Dominant Path Analysis

Require: Graph G=(E,V)
1: function DOMINANTPATHANALYSIS(G)
2: d path := {}
3: for v ∈ accepts do
4: calculate dominant path p[v] for v
5: if d path = {} then
6: d path := p[v]
7: else
8: d path := common_pre f ix(d path, p[v])
9: if d path = {} then

10: return null_string
11: end if
12: end if
13: strings := expand_and_extract(d path)
14: end for
15: return strings
16: end function

The dominant path analysis algorithm finds the dom-
inant path (p[v]) for every accept state (v), and find the
common path of all dominant paths. The function, ex-
pand_and_extract(), expands small character-sets in the
path, and extracts the string on the path.

Algorithm 4 Dominant Region Analysis

Require: Graph G=(E,V)
1: function DOMINANTREGIONANALYSIS(G)
2: acyclic_g := build_acyclic(G)
3: Gt := build_topology_order(acyclic_g)
4: candidate := q0
5: it = begin(Gt)
6: while it != end(Gt) do
7: if isValidCut(candidate) then
8: setRegion(candidate)
9: initializeCandidate(candidate)

10: else
11: addToCandidate(it)
12: it := it +1
13: end if
14: end while
15: setRegion(candidate)
16: Merge regions connected with back edge
17: strings := expand_and_extract(regions)
18: return strings
19: end function

The dominant region analysis builds an acyclic graph
and sorts the vertices by the topological order. Then, it
adds each vertex of the graph into a candidate vertex set,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 647

and sees if the candidate vertex set forms a valid cut. If
so, it creates a region. It continues to create regions by
iterating all vertices. Finally, it merges the regions by
back edges, and extracts strings from the merged region.

Algorithm 5 Network Flow Analysis

Require: Graph G=(E,V)
1: function NETWORKFLOWANALYSIS(G)
2: for edge ∈ E do
3: strings := f ind_strings(edge)
4: scoreEdge(edge,strings)
5: end for
6: cuts := MinCut(G)
7: strings := extract and expand strings f rom cuts
8: return strings
9: end function

The network flow analysis assigns a score to every edge
and runs the "max-flow min-cut" algorithm. An edge is
assigned a score inverse proportional to the length of a
string that ends at the edge. So, the longer the string is,
the smaller the score gets. Then, the max-flow min-cut
algorithm finds a cut whose edge has the longest strings.

648 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Deniable Upload and Download via Passive Participation

David Sommer
ETH Zurich

Aritra Dhar
ETH Zurich

Luka Malisa
ETH Zurich

Esfandiar Mohammadi
ETH Zurich

Daniel Ronzani
Ronzani Schlauri Attorneys

Srdjan Čapkun
ETH Zurich

Abstract

Downloading or uploading controversial information can put
users at risk, making them hesitant to access or share such
information. While anonymous communication networks
(ACNs) are designed to hide communication meta-data, al-
ready connecting to an ACN can raise suspicion. In order
to enable plausible deniability while providing or accessing
controversial information, we design CoverUp: a system that
enables users to asynchronously upload and download data.
The key idea is to involve visitors from a collaborating web-
site. This website serves a JavaScript snippet, which, after
user’s consent produces cover traffic for the controversial
site / content. This cover traffic is indistinguishable from the
traffic of participants interested in the controversial content;
hence, they can deny that they actually up- or downloaded
any data.

CoverUp provides a feed-receiver that achieves a down-
link rate of 10 to 50 Kbit/s. The indistinguishability guaran-
tee of the feed-receiver holds against strong global network-
level attackers who control everything except for the user’s
machine. We extend CoverUp to a full upload and down-
load system with a rate of 10 up to 50 Kbit/s. In this case,
we additionally need the integrity of the JavaScript snippet,
for which we introduce a trusted party. The analysis of our
prototype shows a very small timing leakage, even after half
a year of continual observation. Finally, as passive partici-
pation raises ethical and legal concerns for the collaborating
websites and the visitors of the collaborating website, we dis-
cuss these concerns and describe how they can be addressed.

1 Introduction

Access to and distribution of sensitive and controversial in-
formation often comes at risk for users. Due to the risk of
being observed, users might be reluctant to download or up-
load certain content. Even if the content itself is end-to-end
encrypted, the fact that the user accessed a particular domain
or used an anonymity network might already indicate his in-

terest in the particular content. Since Edward Snowden’s rev-
elations, we know that surveillance is mostly based on meta-
data, such as source and destination IP, timestamps, and the
size of the data [55].

Solutions like anonymous communication networks
(ACN) are designed to hide such meta-data. Despite that,
even the strongest ACNs in literature [73, 71, 40, 63] do
not protect against global network attackers and do not hide
users’ participation in the ACN, except for the brute-force
method of continuously producing artificial traffic [30]. This
participation in an ACN alone can appear suspicious. Par-
ticipation time can be used in long-term statistical disclo-
sure attacks to re-identify the user, thereby downgrading the
anonymity properties of an ACN [43, 44].

In this paper, we aim to solve this issue in the case of asyn-
chronous upload and download and therefore address the
following problem: how to allow users to safely download
and upload content without the fear of their intentions be-
ing identified. This problem is different from the more gen-
eral problem of anonymous communication. Namely, con-
tent upload and download is asynchronous, typically allows
for high latency, and is therefore much less vulnerable to tim-
ing correlations. Additionally, we aim to achieve a stronger
anonymity property: we require that the participation (time)
of users is protected.

Our approach to solving this problem is to draw in visitors
(Passive Participants) of highly accessed websites (the En-
try server) and trigger them via JavaScript to create cover
traffic to a controversial content server. Additionally, we
ensure that the passive participants’ traffic is indistinguish-
able from active participants’, who are genuinely interested
in downloading/uploading the content, thereby enabling de-
niable communication.

While prior work proposed the central idea of using
JavaScript-generated cover traffic for deniable communica-
tion [41, 65], these proposals left three main challenges un-
solved: (i) How to construct a downlink connection (using
the browser) that relays data to an external program with
minimal timing leakage. (ii) How to relay data from an ex-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 649

ternal program to the uplink connection (using the browser)
with minimal timing leakage. (iii) How long can such a sys-
tem be safely used before the timing leakage renders active
participants clearly distinguishable?

We address these three challenges. We design a system
(COVERUP) that asks visitors of an Entry server for their (in-
formed) consent to become passive participants and to pro-
duce cover traffic. We utilize this cover traffic to realize uni-
directional and bi-directional deniable communication chan-
nels. Our uni-directional deniable channel (CU:Feed) re-
trieves a message feed (Challenge (i)) from a content server
(the Feed server) and delivers it to the COVERUP-Tool, a
program that active participants would install. CU:Feed in-
volves an additional party (the COVERUP server) to which
the Entry server forwards active and passive participants.
This COVERUP server sends the participants a piece of
JavaScript code, which retrieves the feed from the Feed
server. Such message feeds are suited for the transmission
of information that a user does not want to be caught read-
ing (e.g., sensitive medical information or leaked documents.
We protect passive participants from potentially incriminat-
ing information by enforcing that a participant’s machine
never contains enough data chunks to reconstruct any incrim-
inating information from the feed. CU:Feed achieves deni-
ability against a global network-level attackers that controls
all parties except the user’s machine.

We extend CU:Feed to a deniable bi-directional channel
CU:Transfer, which enables data download from and data
upload to a content server, called the Transfer server. Ac-
tive participants install for CU:Transfer a browser extension
that implements an interface for bi-directional communica-
tion between the COVERUP-Tool and the Transfer server
(Challenge (ii)). CU:Transfer achieves deniability against
a global network-level attacker that controls all parties ex-
cept for the user’s machine, the COVERUP server, and the
Transfer server.

For both channels, we implemented a prototype that
carefully minimizes the timing leakage (Challenge (iii)).
The prototype includes an entry server, and the COVERUP
server that serves the JavaScript code. For active partici-
pants, we additionally provide the browser extension and the
COVERUP-Tool, which enable participants to interact with
the content servers (the Feed and/or the Transfer server). The
COVERUP down- and up-link rate of our prototype is be-
tween 10 and 50 Kbit/s, depending on bandwidth overhead,
and the expected latency is 60 seconds.

We experimentally evaluate the timing-leakage of our pro-
totypes by measuring the differences in the traffic of active
participants and passive participants (Challenge (iii)). We
show that their traffic is hard to distinguish, and for half a
year of continual observation1, we can bound the attacker’s
advantage of distinguishing these usage patterns with 2 ·

1We assume a usage pattern of at most 50 times a day, and at most 5
hours per day in total.

com com com

surf surf surf

com com com
Leakage w/o 
Passive Part.

Passive session

Active session

Leakage
time

Figure 1: Hiding the participation time via passive participa-
tion. The x-axis is the time, and the y-axis show whether at
that time surfing or protocol-communicating behavior is expected.
Only communicating activity which is not covered by the expected
surfing behavior creates leakage. Active participants that produce
protocol-communication only produce leakage during time where
they would normally not surf.

10−3, i.e., the chance of successfully deciding whether a user
is active or passive is 50.001%.2

Summary of contributions.
• Design of uni-directional and bi-directional deniable

channels to a trusted server utilizing passive participation.
• Fully working prototype.
• Evaluation of the induced timing leakage for the distin-

guishability of active and passive participants.
• Discussion of ethical and selected legal questions w.r.t. the

entry server and the passive participants.

2 Problem description

The goal of this paper is to enable users to safely up- and
download content without the fear of their intentions being
identified. The concrete problem is to enable users to hide
their up- and download activities among traffic that is pro-
duced by other normal web users. This problem is different
from the more general problem of anonymous communica-
tion, as our goal is to utilize the traffic of normal web surfers.

2.1 Passive participation
One approach for utilizing the traffic of normal web surfers
of highly accessed websites (the entry server) is passive par-
ticipation: compel web surfers (passive participants) to cre-
ate cover traffic to the content server in a non-invasive man-
ner and such that their traffic is indistinguishable from active
participants (which are genuinely interested in download-
ing/uploading the content). As a result, active participants
can deny that they up- or downloaded any data during their
normal surfing time on the entry server websites, protecting
their participation time in the file-sharing protocol.

The degree of plausible deniability depends on whether
the active participants manage to let their surfing behavior

2This advantage is very low, since (in contrast to some usages of cryp-
tographic schemes) COVERUP is a system that has limited exposure. Thus,
an attacker cannot get arbitrarily many samples to amplify his or her chance
to guess correctly to a clear decision.

650 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

towards the entry server unchanged. For users that are will-
ing to make a paradigm shift, COVERUP offers strong guar-
antees. Instead of activating COVERUP whenever a deni-
able up- or download channel is needed, COVERUP gives
the highest degree of privacy if users let it run in the back-
ground. For asynchronous up- and downloads, COVERUP
can just up- and download opportunistically, whenever an
active participant is anyway visiting the entry server. More-
over, the wider COVERUP is deployed, the lower is the need
of a user to adapt its behavior to gain more throughput.

Even with imperfect behavior, this approach provides par-
tial cover and delays a potential detection. First, consider
the case where the browsing behavior of the active partici-
pants towards the entry server does not change. There, using
COVERUP can provide deniability for the act of utilization.
In contrast, a slightly altered user behavior leaks its differ-
ence to the unaltered behavior. However, this difference is
smaller than the full leakage without COVERUP, as connect-
ing directly to a service already reveals intention. Figure 1
illustrates this property by focusing on the participation time.

2.2 Challenges
We consider an attacker that controls the network but the
user’s machine and the Transfer server (the file server) are
honest, and a dedicated party (the COVERUP server) that
serves the protocol code for active and passive participants
as a JavaScript snippet is honest but curious. Even in the
presence of such an honest-but-curious COVERUP server and
an honest Transfer server, the browser’s processing time of
active and passive participants can potentially leak informa-
tion. This problem is amplified, since a network-level at-
tacker can change the TCP flag for timestamps and compel
the victim’s operating system to add OS-level timestamps to
the TCP headers [25]; hence, there is no hope of network-
noise blurring the timing leakage. This leads us to three ma-
jor challenges that we study in this work. (i) How to con-
struct a deniable downlink connection that relays data to an
external program with minimal timing leakage? (ii) How
to relay data from an external program to a deniable uplink
connection with minimal timing leakage. (iii) How long can
such a system be safely used before the timing leakage ren-
ders active participants clearly distinguishable?

2.3 Non-goals
In the problem area of passive participation, two challenges
remain that are out of scope of this work.

Behavior-changes towards the entry server. The usage
of COVERUP may unconsciously influence the behavior of
active participants, e.g. if active users spend more time on a
specific entry server in order to use COVERUP. We believe,
however, that these behavior changes do not cause a large
amount of leakage as COVERUP is meant for asynchronous

entry server

.

.

.

passive
participants

Feed Server

CoverUp server

active
participants

(3) connects
clients via JS to

(2) triggers clients
to connect to

(4) sends
messages to

CoverUp Tool

(5) extract feed

browser

(1) connects to

feed feed

feed

CoverUp Tool

(5) extract feed

browser

feed

Figure 2: Main components of COVERUP for CU:Feed. All vis-
itors of an entry server are redirected to the COVERUP server, trig-
gered to send (dummy) requests to the Feed server, and then receive
an encoded piece of a uni-directional message feed (4), which is ex-
tracted (5) by active participants via the COVERUP-Tool.

up- and download of files; hence, it is less prone to timing
correlations (e.g., intersection attacks) than synchronous ap-
plications, such as messaging. As a consequence, the only
source of leakage would be users that keep the tabs longer
open in the background with COVERUP. Recent studies
show that many users keep tabs open in the background any-
way [54]; hence, COVERUP would not cause significant pri-
vacy leakage for these users. Properly understanding these
behavior changes requires a thorough user study, which is
out of scope of this work.

Browsing time of passive participants. Passive par-
ticipants potentially reveal their browsing behavior to the
COVERUP infrastructure, as a malicious server can read
HTTP header’s referrer field. While this leakage exists, we
would like to put it into perspective. Many popular websites
already leak this information to other services, such as adver-
tisement networks or external analytic tools, such as Google
Analytics. A deeper analysis of this leakage is out of scope.

3 COVERUP

Passive participation raises the challenge of utilizing passive
participants to produce cover traffic with unintrusive tech-
nologies while asking for not more than an informed con-
sent3 and while keeping the traffic of active and passive par-

3We discuss the challenges of an informed consent in Section 6.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 651

ticipants indistinguishable. This section details how we over-
come these technical challenges and presents the system de-
sign of COVERUP. We split COVERUP into two parts based
on their features: a uni-directional broadcast-receiver chan-
nel and a fully bi-directional channel. We call them CU:Feed
and CU:Transfer respectively.

3.1 CU:Feed

The uni-directional channel CU:Feed implements a deni-
able feed-receiver for a feed that is broadcast by a dedicated
Feed server. CU:Feed triggers visitors (the passive partici-
pants) of cooperating websites (the entry server) to produce
cover traffic, after they give an informed consent. CU:Feed
leverages unintrusive widely-used JavaScript functionality of
browsers. For active participants, which are interested in
the feed, CU:Feed performs the same steps, but we addition-
ally provide the external application COVERUP-Tool. With
this application, the feed’s content can be extracted from the
browser’s cache. As active users are indistinguishable from
passive ones for all involved parties except their own ma-
chine, they cannot choose the feed they are listening to. In-
stead, the system constantly broadcasts its complete content
piece-wise to everyone. The entry server could be a univer-
sity, a knowledge, or a news site.

As illustrated in Figure 2, CU:Feed performs as follows:
(1) The user connects to the entry server. The entry server

embeds in its HTML-code an iframe to a dedicated
server (the COVERUP server) from a different domain.

(2) The COVERUP server responds with a JS code snippet.
(3) This JS snippet triggers the browser of the entry server’s

visitors to send requests to the Feed server.
(4) The Feed server responds with CU:Feed packets. This

effectively produces cover traffic to and from the Feed
server. The COVERUP JS snippet then stores the most
recent CU:Feed packet in the browser’s localStorage
cache, thereby overwriting the old one.

The passive participants of COVERUP stop here. The rest of
the protocol is only executed by the active participants.
(5) An active participant uses a previously obtained ex-

ternal application (COVERUP-Tool4) to extracts these
CU:Feed packets from the browser’s disk-based cache.

CU:Feed executes the same steps for active and passive
participants except that active participants additionally in-
stall COVERUP-Tool on their computer to extract the feed.
This makes the active and the passive participants indistin-
guishable to a network level adversary who does not compro-
mise a user’s system. As the CU:Feed has no strict latency
requirements, the browser behavior of active participants can

4COVERUP-Tool could be obtained off-the-record or as part of the
CU:Feed. There, a small program including explanation could be distributed
in clear text and without any encoding which could be extracted from the
cache manually. This program assembles the full COVERUP-Tool delivered
by the encoded feed.

be kept exactly the same, thus avoiding timing leakage.
With regard to the privacy of participants, the JS snippet

from the COVERUP server is in an isolated context and thus
can not learn anything from other contexts (including the
page the iframe is embeeded in) due to the SAME-ORIGIN-
POLICY [8]. Hence, the COVERUP server can only learn
when a participant visited the entry server, by the requests.

The content of the Feed could be controversial. To deflect
potential legal harm to the passive participants, we crypto-
graphically protect them from accidentally storing meaning-
ful parts of the CU:Feed on their disc by utilizing an ALL-
OR-NOTHING SCHEME [64] and only storing one CU:Feed
packet in their localStorage. Without actively trying to,
passive participants do not have sufficient packets collected
to potentially reconstruct any content of the feed.

After applying the All-or-Nothing protection, we use
error-correcting FOUNTAIN CODE (see Section 4.1) on the
protected feed content. This splits the content in many pack-
ets and enables COVERUP-Tool to assemble these CU:Feed
packets in an arbitrary order and with potentially missing
packets, as the feed content might be too big for a single re-
quest. Thereby, the Feed server does not need to know which
packet has reached a user and in which order. As there is no
difference in feed packets for an active and passive partici-
pant, CU:Feed does not require TLS. The authenticity of the
feed can be achieved by signing the content, assuming a PKI.

Trust assumptions and attacker capabilities. The
CU:Feed is resistant against a global network-level active
attacker that controls all parts of the system except the ac-
tive participant’s hardware, operating system, and its run-
ning applications, as the only difference between active and
passive participants is COVERUP-Tool that reads browser’s
cache (localStorage). This attacker is active, so he can
modify, drop or delay any number of messages, which in-
cludes the creation of an arbitrary number of participants –
passive or active as individual participants are independent
of each other. As we focus on guaranteed anonymity and
not on integrity, COVERUP is not censorship resistant as it
cannot protect from denial of service.

3.2 CU:Transfer

We extend CU:Feed to CU:Transfer, which enables user to
upload content to and download content from a file server
(Transfer server). Active CU:Transfer participants have to
additionally install the COVERUP browser extension that es-
tablishes a channel to the external COVERUP-Tool, which
can be used to upload and download content.

The protocol of CU:Transfer is almost the same as
CU:Feed, except that users send (dummy) requests to the
transfer server in a predictable pattern. While passive partici-
pants solely transmit dummy data and receive CU:Feed mes-
sages, active participants of CU:Transfer additionally send
content messages whenever the user uses the system (Fig-

652 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Transfer
CoverUp Tool

response8

local
storag

e

request1

7
3 6

5

4

www

Extension

Extensio
n

Browser

active
participant

JavaScript

2

feed

feed

passive
participants

Native
Messaging

and Feed Server

Figure 3: CU:Transfer in combination with CU:Feed. Once
the JS snippet has been received, all participants request
CU:Feed packets. An active CU:Transfer participant can use
the extension to replace these requests to the Transfer server
with custom requests. To render the traffic from passive and ac-
tive users indistinguishable, we use a secure channel at step 4
and 5, and at all connections by passive participants - in contrast
to CU:Feed. For CU:Transfer the dummy messages do not need
to contain feed content; they can also purely contain garbage.

ure 3, Step 1). In those cases, they use native messaging
to connect from the COVERUP-Tool to the browser exten-
sion (Step 2). The browser extension then replaces a dummy
CU:Feed request with a real message (Step 3). All messages
(Step 4) are sent over a secure channel. Hence, messages
of passive participants are indistinguishable from messages
of active participants for a network-level adversary. Upon
receiving the encrypted message (Step 5), the browser ex-
tension records it (Step 6), and sends it via native messaging
(Step 7) to the COVERUP-Tool which decrypts it (Step 8).

As a result, both active and passive participants constantly
send requests to the Transfer server, and the Transfer server
responds with a constant-size data chunk; in particular, larger
files are sent in smaller chunks. In general, the Transfer
server does not need to be a centralized entity. Traffic sharing
solutions (content distribution networks) could be used.

CU:Transfer trust assumptions. CU:Transfer is resis-
tant against global network-level attacker that control all
parts of the system except for the active participant’s ma-
chine, the COVERUP server, and the Transfer server. The
COVERUP server has to be trusted because CU:Transfer re-
lies on the integrity of the JS snippet; otherwise an attacker
can inject malicious JS code that can detect active partici-
pants (e.g., by testing for the existence of the extension5).
To enable the browser extension to check the integrity of the
JavaScript snippet with minimal timing leakage, we trust the
COVERUP server to be honest-but-curious for CU:Transfer
and the browser extension simply checks whether the origin
of the JavaScript code snippet is as expected. If the check
fails, the browser extension does not hijack any packets.

We trust the Transfer server, as it can distinguish active
and passive users based on their access pattern. Hiding ac-
cess patterns is a non-trivial problem. Current solutions ei-
ther require high communication complexity or are unsuit-
able for a bandwidth-limited multi-user setting [30, 69].

Relaxing trust assumptions. In the current implemen-
tation of COVERUP, we assume that the transfer server is
trusted. As a result, the transfer server can distinguish be-
tween active and passive participants. This can be mitigated

5Modern browser claim to prevent any page-loaded JavaScript from
checking for installed WebExtensions unless the extension wants to reveal
itself. Specifically, any content-scripts run undetectable by page-loaded JS
in an isolated context [4] and any access to resources of an extension must
be allowed explicitly by the extension [19].

using private information retrieval (PIR) methods such as the
one used in Pung [30], PIR-tor [60], pynchon gate [66] and
Riffle [53], or ORAMs such as PathORAM [69]. As most of
these techniques, however, are computationally expensive,
they significantly increase COVERUP’s overhead.

Alternatively, COVERUP can be used to strengthen
Anonymous Communication Networks (ACNs) by render-
ing a user’s participation time deniable. In this scenario, the
ACN takes the place of the transfer server. COVERUP only
achieves deniability if the ACN does not leak whether a mes-
sage is a dummy or a real message. As dummy messages do
not have a recipient, the ACN has to make sure that they
produce the same observable behavior as real user messages,
while each user (be it active or passive) receives dummy or
real messages according to a fixed distribution, e.g., a con-
stant sending rate. In particular, COVERUP enforces this
fixed distribution to ensure that the active participants’ traffic
patterns are predictable by the JS code.

The COVERUP server can be untrusted if the extension
checks the integrity of the JavaScript code byte for byte. This
would eliminate any costs associated with running such an
honest-but-curious COVERUP server, but the client-side tim-
ing leakage by such a solution would be significantly higher.

3.3 Timing leakage

Our design conceptually produces a timing leakage of active
participants, compared to passive participants. For assessing
the severity of the leakage, we characterize this timing leak-
age. This section discusses the timing leakage of our design,
i.e., independent of the implementation. Section 4.1 dis-
cusses and Section 5 measures our implementation-specific
timing leakage. As an active network-level attacker can acti-
vate the TCP timestamp-flag, we assume OS-level accuracy
for the timestamps [25].

In CU:Feed active participants need to run COVERUP-
Tool to extract information from the browser. While this ap-
plication is external to the browser and does not directly in-
teract with it, they share system-wide computation resources
and scheduling slots, which influences the browser’s com-
putation time. In CU:Transfer, the client additionally in-
stalls a browser extension and hence directly influences the
browser’s computation time. In both cases, the timing pat-
tern of the issued web requests is influenced (in the or-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 653

𝑐2𝑐1𝑐0

Loading Periodic Periodic

𝑢0

JS execution start 𝑡0 𝑡1 𝑡2 𝑡3

𝑠1 𝑠2 𝑠3𝑢1 𝑢2

Transfer

CoverUp Server

iframe received

time
𝑠0

server

Figure 4: The timeline of an active or passive participant in the browser, starting at a request
to the COVERUP Server for a JavaScript code snippet from an iframe. The code is executed
and makes continuous requests to the Feed/Transfer server. The attacker can measure network
timestamps of the requests (

⊕
). To decrease the leakage si of the system or browser internals, we

add randomly chosen delays ui to the sending times ti. There are two main sources of leakage:
the set-up of the iframe context (Loading) and the interval between the consecutive requests
(Periodic). Any comprehensive computation ci inside the script or by the browser extension (for
active participants) is done between the sending intervals when all components are idle.

ui = artificially added noise
ti = XMLHttpRequest.send() call
si = system noise
ci = computation inside the script

= time-stamp measurement

der of milliseconds) and this is noticeable by a network-
level attacker. While CU:Feed causes minor timing leak-
age, CU:Transfer causes significantly more timing leakage,
even though the processing of the active message is separated
from the critical sending part (ci in Fig. 4).

This timing leakage cannot be countered by introducing
deterministic delays, as a JavaScript program cannot mea-
sure the processing time of the systems outside of its context.
Analogously, a JavaScript program cannot precisely enforce
a delay. Therefore, we introduce random delays and show in
Section 5 that these random delays significantly reduce tim-
ing leakage. To limit the amplification of the leakage, we ad-
ditionally limit the number of requests for which the browser
extension (of an active participant) is active. As we trust the
browser and the extensions operates in a global context, this
limit bounds the risk that malicious entry servers amplify the
leakage by triggering excessive amounts of page-loads.

Figure 4 illustrates all potential observations of a network-
layer attacker and the timeline of how messages are sent,
received, processed in the browser, and when random de-
lays (i.e., noise) are added. The system delay si in this fig-
ure refers to the system’s computation time (including delays
caused by the OS, the browser, and the network card). Any
computation – and for CU:Transfer the communication with
the extension – takes place in ci with minimal interference.

In the rest of the paper, we concentrate on two time mea-
surements that an attacker can perform: i) Loading mea-
surements denote the time between the reception of the
JavaScript snippet from the COVERUP server and the first
outgoing request to the Feed/Transfer server, and ii) Pe-
riodic measurements denote the time between subsequent
COVERUP requests to the Feed/Transfer server. For the
CU:Transfer case, Figure 5 shows distributions of timing de-
lays of active and passive participants for Loading and for
Periodic measurements, without adding delays. It illustrates
the importance of adding random delays; without these de-
lays, already the naked eye can distinguish the distributions.

Loading

time (ms)

D
e

n
s
it
y

5 6 7 8 9 10 11 12

0
.0

0
.2

0
.4

0
.6

0
.8 ●

●

Active Participant

Passive Participant

Periodic

time (ms)

D
e

n
s
it
y

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

0
5

1
0

1
5

2
0

2
5

●

●

Active Participant

Passive Participant

Figure 5: Distribution of timing (without additional noise) of
Loading and Periodic measurements run on Linux. Each of the
graphs overlays the timing distributions of active and passive par-
ticipants. For the Periodic measurements, we substraced the expec-
tation value (it is centered around 0).

4 Prototype & performance

This section describes the COVERUP prototype implementa-
tion (available under http://coverup.tech) and presents
its performance. As the main purpose of the prototype is the
timing leakage evaluation, it solely contains a dummy feed
server and a dummy Transfer server.

4.1 Prototype implementation

Our prototype delivers a feed and the upload and download
system, for which we implemented a high-latency mailbox.

654 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The COVERUP implementation consists of five components:
a COVERUP server, a central server that acts as the Transfer
server (in our prototype the mailbox server), the message re-
lay and the broadcaster, an external application (COVERUP-
Tool), a browser extension, and a short JS code snippet.
The COVERUP server and the Feed/Transfer server is im-
plemented as a Java Servlet running on an Apache Tomcat
web server. The external application is written in Java. The
browser extension is implemented for the Google Chrome
browser using the JS WebExtensions API. The COVERUP-
Tool and the server implementation consists of about 14
KLoC and the browser extension of about 200 LoC.

We make the following three assumptions about the
browser, which are in line with Chrome’s explicitly stated
security policies. 1. iframes are isolated, which we need
for the code integrity of COVERUP’s JS snippet. The parent
page of the iframe cannot modify the iframe if the iframe is
originated (domain) from a source other than the parent [6].
2. A JS code cannot read from or write to another context
of a different domain source without its consent. 3. The
JS code can write a small amount of data to the browser’s
localStorage cache and this cache cannot be accessed by an-
other JS code which originates from a different origin. This
property is known as the “same-origin-policy” [8], and all
modern browsers claim to enforce it.

CU:Feed. The message feed in CU:Feed is encoded
with a fountain code [57]. This encoding ensures that any
out of order threshold amount of broadcast packet can re-
cover the data successfully. Our prototype implementa-
tion uses an XOR based fountain code (for details see Ap-
pendix A.1). The JS snippet served by the COVERUP server
stores the fountain pieces in the cache database file (known
as browser localstorage). To minimize timing leak-
age, the COVERUP-Tool collects and assembles the fountain
pieces from the localstorage. Our implementation also
employs an All-or-Nothing-Encryption scheme (one similar
to [64]) which ensures that one needs threshold-amount of
pieces of the fountain (i.e. the entire source data) to de-
crypt it. The JS snippet only keeps one fountain piece in the
localstorage to ensure that the passive users do not have
any sensitive content on their disk in decipherable form.

CU:Transfer. CU:Feed’s extension CU:Transfer pro-
vides a up- and download channel for arbitrary data. The
secure channel is implemented using TLS. The messages are
of the same size and are transmitted at regular time inter-
vals. Beyond padding (dummy) messages with random data,
our prototype does not take additional measures against TLS
meta-data leakage.6 The Transfer server uniquely identifies
a sender/receiver of an incoming request using the unique
SSL identifier without the overhead of sending an additional
identification token. Uniquely identifying senders/receivers
prevents session-hijacking attacks. For the mailbox protocol

6There is work [61] that can prevent this leakage.

example, we assume a PKI, and we indexed the messages as
POP (post office protocol [26]) using curve25519 [34] public
keys (first 48 bits of the hashed public key). Whenever a new
message arrives from a source address, the Transfer server
assigns the message to the index of the destination address.
When a request arrives for the destination address, the Trans-
fer server delivers the message as the response and removes
the message from the previously kept index location. The
mailbox protocol assumes that an active participant added
all long-term public keys of all his trusted peers.

4.2 COVERUP performance

COVERUP is suitable to real-world scenario, is feasible for
deployment in large scale and does not incur an intolerable
overhead. This section estimates COVERUP’s overhead, la-
tency, and throughput. COVERUP has three adjustable sys-
tem parameters: request payload size, response payload size
and the average request frequency, the average requesting
rate for CU:Feed packets after adding random delays. In-
creasing the payload increases the traffic overhead for pas-
sive participants, and a lower request frequency leaves room
for higher random delays, thereby increasing privacy. Hence,
there is a trade-off between latency, privacy, traffic overhead,
and throughput. For our prototype, we choose system param-
eters (see Section 5 for more) such result in request/response
payload sizes between 75 KB to 375 KB, and in sending a
request every 60 seconds on average.

Computational overhead. The computational overhead
of COVERUP’s JS executed in the Browser is negligible. Our
implementation of the COVERUP-Tool takes around 50 MB
of main memory and less than 1% CPU time. Similarly, the
COVERUP browser extension incurs an almost unnoticeable
amount of memory and CPU consumption.

Traffic overhead. The traffic overhead of CU:Feed and
CU:Transfer is identical, as they are indistinguishable by de-
sign. The entry server’s overhead is minimal: only the size
of the iframe tag in its HTML code. The passive partici-
pants’ traffic overhead depends on the system parameters.
We based our estimation of the system parameters on the
Alexa top 15 news sites, in particular since the privacy im-
provements of COVERUP’s passive-participation-approach
depends on the entry server’s regular number of visitors. The
average main-page load-size of the Alexa Top 15 news sites
is around 2.2 MB and will grow in near future. A few ex-
amples are CNN (5.6MB), NYTimes (2.4MB), Huffington-
Post (6.1MB), TheGuardian (1.8MB), Forbes (5.5MB), BBC
(1.1MB), and Reddit (0.8MB).

COVERUP is parametric in the packet size. Once fixed,
the traffic overhead for the passive users is proportional to
this packet length. We generously assume a passive par-
ticipant that has a daily connected to the entry server for
5 hours each day. This participants would have 22MB (∼
5 ·60 ·60s · 1

60s ·75KB) to 110 MB (∼ 5 ·60 ·60s · 1
60s ·375KB)

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 655

of data overhead per day and 660MB (= 30 · 22 MB) to 3.3
GB (= 30 · 110MB) per month. For landline data flat-rates
(i.e., for non-mobile visitors), 22 MB is not significant, e.g.,
in comparison to the traffic caused by streaming videos. We
envision a deployment of COVERUP not to include mobile
users. It may, however, be possible in the near future due to
the increased bandwidth of the mobile networks.

Latency & throughput. We evaluate the performance of
COVERUP for the duration that a tab is open, as the usage
of COVERUP is bound to the visiting patterns of passive par-
ticipants towards the entry server’s sites. Depending on the
entry-server’s service, it might be common to keep the tab
open (in the background) for a long time, to visit the site
very often, or to switch to another entry server if multiple are
available. COVERUP achieves 10 to 50 Kbits/s of throughput
(for packet size system parameter 75 to 375 KB) and a la-
tency of around 60 seconds on average between consecutive
messages. As the future Internet infrastructure will evolve
and website-size will increase, COVERUP’s packet sizes and
thus the throughput can be increased.

Scalability. For the participants, the workload of the
COVERUP channel itself is independent of the number of
participants, and for the Transfer server the workload lin-
early increases. Hence, for the participants COVERUP scales
well, and for the Transfer server an infrastructure at the scale
of the entry server suffices, rendering COVERUP practical
with current infrastructure.

5 Timing leakage experiments

We have set up an experiment that measured the timing leak-
age. The experiments produced histograms that we use as
models to estimate the privacy leakage under continual ob-
servation. In the technical report [68], we rigorously prove
that it suffices to analyze the timing leakage.

5.1 Experimental set-up
We assume that the dominant part of the timing leakage will
be visible from the Loading and Periodic measurements, as
depicted by the orange arrows in Figure 4. In Loading mea-
surements, we force the iframe to refresh on the entry server
page in the browser. In the corresponding TCP dump, we
measure the timing difference between the response of the
initial iframe HTML source request and its first (“passive”)
request to the Feed/Transfer server. This forces to load the
extension’s content script and thus captures any distinguish-
ing feature (any timing delay added by the existence of the
browser extension) produced by the extension.

The Periodic measurements model the scenario where
the active and passive participants load the iframe once,
followed by JavaScript generated periodic requests to the
Feed/Transfer server and their response. In the network traf-
fic dump, we look for the timing difference for two contigu-

ous CU:Feed/CU:Transfer requests from the browser. Sec-
tion 5.5 discusses the choice to concentrate on these mea-
surements. For both cases, we compare the timing measure-
ments of a passive participant and an active participant.

To simulate realistic scenarios, we set up the passive and
both kinds (CU:Transfer and CU:Feed) of active participants
on 12 identical systems running Windows 10 and Ubuntu
16.04 (both x86-64 and in dual-boot configuration) equipped
with an Intel Core i5-2400 3.1 GHz CPU and 8 GB of main
memory. Additionally, the COVERUP and a dummy imple-
mentation of a Feed/Transfer server run as an Apache Tom-
cat web server instance on a separate machine in the same
sub-net connected by a 10 Gbps switch.

All the communication between the server and the browser
are executed over a local Gigabit Ethernet network. We use
tshark [28] to capture the network traffic on the participant’s
network interface. We captured 3.8 million measurements
in total. The experiments are conducted on these set-ups to
investigate the timing leakage of the browser, produced by
COVERUP’s browser extension and the COVERUP-Tool.

Reflecting the attacker model. Our attacker model (Sec-
tion 3.1), a network-level attacker, is reflected in our experi-
ments by capturing the traffic on the corresponding network
interface. As an active network-level attacker can change
the TCP flag for timestamps and compel the victim’s operat-
ing system to add timestamps to the TCP headers [25], the
attacker does to gain strength by our setup where all partic-
ipants, the COVERUP server, and the Feed/Transfer server
are in the same GigaBit Ethernet switched network. We
measured that the accuracy of the added OS-time-stamps is
4000µs for Linux, and 400µs for Windows, respectively.

Test modes. We emulate three different user scenarios
by using combinations of the browser extension and the
COVERUP-Tool. We use Google-Chrome browser v57.0
to run our extension which exchanges messages with the
COVERUP-Tool. The three test modes include:
1. Passive participant: Google chrome with no extension

and no COVERUP-Tool running.
2. Active CU:Transfer participant: Google Chrome with

the extension installed and the COVERUP-Tool running
which communicates with the aforementioned browser
extension by the native messaging interface.

3. Active CU:Feed participant: Google chrome with
no extension and COVERUP-Tool running assembling
CU:Feed chunk from the browser localStorage.

These are repeated for both Loading and Periodic measure-
ments (they are described in Section 5.3).

Interfering processes. Additionally we constructed one
user profile in Linux to understand how the execution of
other browsing tabs influences the timing leakage. To
demonstrate a simple profile we additionally open another
tab in the Google Chrome which is running a 720p video in
a loop (see Figure 9).

Data sanitization. Our test setup was unstable with fre-

656 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

quently freezing machines (e.g., networkcard stopped work-
ing and power outages). We repeatedly ran the same set-up;
hence, we expect the measurement-chunks generated from
the same machine to be fairly consistent. While we kept sig-
nificantly represented outliers, we measured 150 widely scat-
tered outliers in 3 million measurements. These outliers are
too few to be representatives of real effects. However, such
widely scattered outliers distort our timing leakage analysis,
since in theory real outlier effects that only happen in one
configuration heavily amplify privacy leakage.

We removed these unrepresentative, scarcely scattered
outliers to extract a representative model of the underlying
response-delay distributions. To minimize the bias of the
model, we dismissed entire batches of 6h measurements-
blocks if they contained clear outliers w.r.t. the rest of the
(sub-)histograms for the same scenario, e.g., periodic active
participants. As a result, we dismissed 20% of all measure-
ments, leaving us with 3 million measurements.

5.2 Adding random delays

COVERUP introduces random delays to reduce the tim-
ing leakage. To accelerate testing and increase accu-
racy, our experiments send requests at fixed intervals omit-
ting the random delays. In COVERUP, the delays are
chosen from a Gaussian distribution N[0,2µ](µ, σ) with
mean µ and standard-deviation7 σ = 2

10 µ , restricted to
the interval [0,2µ], and add this delay to the minimum
delay of one second. The expected delay is therefore
E
[
1+N[0,2µ](µ = µ,σ = 2

10 µ)
]
= 1 + µ . We artificially

added delays after the measurements by convolving the re-
sulting histograms with a gaussian distribution.8 We exper-
imentally confirmed that separately adding the delays (see
Appendix B) does not significantly distorts our model.

5.3 Estimating the advantage

Our goal is to provide an upper bound on the advantage
for the task of distinguishing active and passive participants.
This section explains the estimators that we use. We assume
that the dominant part of the timing leakage will be visi-
ble from two kinds of measurements: Loading and Periodic
measurements, as depicted by the orange arrows in Figure 4.

To quantify the timing leakage we use a quantitative vari-
ant of statistical indistinguishability of two distributions. For
a pair of distributions X ,Y and a random sample either from
X or from Y , statistical indistinguishability requires that no
attacker can tell whether the sample was chosen from X or

7There is no specific reason for this σ , but we wanted to prevent hard
noise-distribution cut-offs as they increase δn.

8If we view the histogram as the probability mass function (pmf) for
the timing delays, convolving this pmf with a gaussian distribution the his-
togram corresponds to addition of the corresponding random variables, i.e.,
adding the noise within the experiment.

from Y with more than an advantage δ , which can be rep-
resented as follows: δ (X ,Y) := 1

2 ∑a∈Ω(|pX (a)− pY (a)|).9
Specifically, n collected observations amounts to considering
δn,{X ,Y} := δ (Xn,Y n) for the product distributions Xn,Y n.

The advantage quantifies an attacker’s success in dis-
tinguishing active from passive participants after n ob-
servations, while having perfect knowledge of underlying
response-delay distributions of the active and passive par-
ticipants of type type ∈ {loading, periodic}. Therefore, we
write δn,type for the estimator for the attacker’s advantage.

Our analysis relies on three assumptions. First, all the
measurement samples are independent. Second, Loading
and Periodic measurements are independent. Third, the mea-
sured distributions accurately represent the underlying dis-
tributions. We believe that the first two assumptions hold
in a deployed system because we assume a very high wait-
ing time between requests (around 60s). The third assump-
tion is of theoretical nature. While we conducted extensive
measurements (around 3 million measurements in total) to
render the model more representative, such measurements
can only result in an approximation of the underlying pro-
cesses. Using standard composition results (see Appendix
Lemma 1), these assumptions enable us to bound the advan-
tage of COVERUP with totaln,m := δn,loading + δm,periodic,
after attacker that makes n Loading observations and m Peri-
odic observations for either Linux or Windows.

Under these assumption we use the Privacy-Buckets-
tool [59]10 to compute δn,loading and δn,periodic from δ1,loading
and δ1,periodic (for Linux and Windows, respectively), which
we get from the sanitized measurement-histograms.

5.4 Timing leakage results

This section plots the results of our timing leakage estima-
tion. For our evaluation, we over-approximate the connec-
tion pattern to the entry server with at most 50 site-loads and
at most 5 hours of left-open tabs (in the background) of vis-
ited entry servers per day. We consider an attacker that is
able to continuously collect such data for half a year, i.e., 7
days a week for 26 weeks. We assume that the usage pattern
of an active participant is identical to that of passive partici-
pants (see Section 5.5 for a discussion on visiting behavior).
We stress that the our analysis also applies to a continuous
observation over 2.5 years for users that only make 10 site-
loads at the entry server per day and are connected for at
most 1 hour per day to the entry server.

Latency vs timing leakage. Fixing the observation time
to half a year and the connection pattern as described above,
Figure 6 plots how totaln,m increases with decreasing de-

9This advantage is also known as total variation or statistical distance
and is connected to the classification-accuracy: acc= (δ/2)+0.5.

10A publicly available numerical tool that computes a provable upper
bound for the advantage under continual observation of a given pair of dis-
crete distributions.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 657

2 4 8 16 32 64 128 256

expected delay [s] (log-scale)

10−4

10−3

10−2

10−1

at
ta

ck
er

’s
a
d

va
n
ta

ge Windows Feed

Windows Transfer

Linux Feed

Linux Transfer

Linux Feed

Linux Transfer

Figure 6: Latency versus advantage (upper bounded) for obser-
vation of half a year, with at most 5 hours of visiting the entry
server (Periodic-observations) and at most 50 connecting to the en-
try server (Loading-observations) per day.

lays. Looking at the graph, we recommend 60s expected de-
lay as system parameters to achieve an overall advantage of
less than 2 ·10−3 after 6 months of continual measurements
of the user’s timing patterns with daily 50 Loading observa-
tions and daily 5 hours worth of Periodic observations. We
stress that despite the limits of our evaluation, the bounds
that we present are highly over-approximated: we assume a
global network-level attacker that has very precise informa-
tion about the state of the system such as which processes
are running and how they influence the measurements.

Observation-length vs timing leakage. The next angle
is the length of the observation versus the degree of privacy:
Figure 7. We fix the expected latency to 60s and plot for
an increasing number of observations the functions δn,loading
and δm,periodic. This graph lets us study different usage be-
haviors. E-mail service, such as Google mail or Hotmail, as
an entry server, e.g., would lead to significantly longer ses-
sions than e-commerce entry servers. E-mail services would,
hence, lead to less Loading and more Periodic observations.
This graph shows that the leakage grows at most linearly
with the number of observations. While Loading needs more
time in Linux for the CU:Transfer (presumably because it
invokes the extension each time), it produces less Periodic
leakage while running. The graphs show that in many cases
the Feed produces more timing leakage than Transfer. We
believe this discrepancy to be an artifact of the experiments.
We nevertheless included these measurements in our analy-
sis because we could not confidently exclude them.

Distorting effects of concurrent activities. The experi-
ments of which we saw the results so far do not let any other
program run in the background but doing so alters the his-
togram significantly. For further details see Appendix C.

5.5 Limits of our evaluation
This section discusses the limits of our evaluation of the leak-
age. While we do not claim that our evaluation offers prov-
able bounds for the timing leakage of COVERUP, we believe
that it captures the dominant part of the leakage of COVERUP
and is a good indicator of the privacy that COVERUP offers.

0.0 0.2 0.4 0.6 0.8 1.0

number of observations

0.0

0.2

0.4

0.6

0.8

1.0

a
tt

ac
ke

r’
s

a
d

va
n
ta

g
e

0 1 · 105 2 · 105 3 · 105
0 · 10−4

1 · 10−4

2 · 10−4

3 · 10−4

4 · 10−4

5 · 10−4

Periodic
Windows Feed

Windows Transfer

Linux Feed

Linux Transfer

0 10000 20000 30000 40000 50000
0 · 10−3

2 · 10−3

4 · 10−3

Loading

Figure 7: Leakage over time. The attacker’s advantage (y-axis,
upper bound) over the number of observations (x-axis) for Periodic
and Loading leakage with a 60s expected delay. The right end of
the x-axes correspond to 3 years of observation.

Pairs of requests. We stick to pairs of requests since the
autocorrelation is low and exploring all possible combina-
tions for a higher number of contiguous requests increases
the number of required measurements exponentially. To re-
duce potential effects from longer sequences of contiguous
requests, we incorporate into our recommended delays a
minimum of 1s between pairs of requests.

Unnoised measurements. We accelerated our measure-
ments by not adding any additional noise, as we want to eval-
uate COVERUP with different amounts of noise. During the
analysis phase, we introduce noise by computing the convo-
lution of the resulting histograms with ideal Gaussian noise.
To justify this we additionally construct an experiment with
two scenarios: one with added artificial noise and another
without where we add the artificial noise after the samples
are collected. Figure 8 in Appendix B shows the timing dis-
tributions with total variation 1.8%.

Experimenting with real users. Evaluating our method
against profiling attacks that are designed to detect whether a
particular extension or a specific application is running [38]
are out of scope of this work. Additionally, we do not evalu-
ate COVERUP with real users to evaluate other aspects of the
system such as reaction of passive participants, e.g., usage
time of both the active and the passive users.

Neglecting the sampling error. Our experiments are lim-
ited to 3 million measurements. Hence, the histograms that
we analyze do not exactly represent the underlying distri-
bution. As our timing-leakage-bounds are computed on the
histograms, they are not hard bounds but rather bounds that
hold with high confidence.

658 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Ethical, legal & deployment considerations

“Passive” participation has to be carefully implemented to
avoid ethical and legal issues.We address potential ethical
and legal considerations that stem from triggering visitors of
some webpage into passively participating in a system like
COVERUP. Our work received formal approval of our Insti-
tutional Review Board (IRB).

Even consenting passive participants that have been in-
formed can experience unexpected consequences, e.g., by
misunderstanding the consequences or by accidental con-
sent. We are aware of the difficulties of informing web-
site visitors in a way that they do not ignore the message
and understand the consequences of consenting. Prior re-
search [62, 33] suggests that the risks of misunderstanding
and of agreeing by accident can be minimized, e.g. deny by
default [29] and consenting in two phases, and highlight the
network/battery-activities.

Are computation and bandwidth resources of passive par-
ticipants unwittingly utilized? No, only after an informed
consent does COVERUP turn an entry server visitor to a pas-
sive participant; hence utilizing the computation and band-
width resources. Passive allocation of resources is nothing
unexpected for a visitor of a webpage; it is regularly done
by advertisements or QoS scripts, such as Google Analyt-
ics. Webpages that incorporate COVERUP would, hence, not
cause unexpected behavior on a visitor’s browser. The com-
putational overhead of COVERUP is negligible and the band-
width overhead for a visitor is around 20.25 MB per day (for
a throughput of 10 Kbit/s), which is negligible compared to
the data load of video streaming services.11

Does COVERUP violate a participant’s system-security?
No, COVERUP uses standard browser functionality.

Does COVERUP store potentially incriminating data on
the machine of passive participants? No, we carefully in-
corporated an All-or-Nothing scheme such that passive par-
ticipants never contain any useful information on their ma-
chine, as long as they do not actively extract and collect the
COVERUP data packets from the browser’s local storage.

Does COVERUP trigger passive participants to open po-
tentially suspicious connections or connections that are
detrimental for its reputation? After an informed consent,
COVERUP does trigger a connection to the Feed/Transfer
server (or an ACN), which some parties (e.g., an employer)
could indeed view as suspicious or damage a passive par-
ticipant’s reputation. We propose to mitigate this risk by
only opening the connection after its nature was explicitly
described and an informed consent was received.

Does the COVERUP server collect information about the
browsing behavior of the entry server’s visitors? No, while
each iframe request of every entry server’s visitor includes

11We expect this bandwidth overhead to become an even smaller fraction
of a user’s normal Internet traffic as connectivity improves and commercial
websites continue to increase the amount of data that they sent.

the visitor’s IP address, an uncompromised COVERUP server
does not collect or store this information in any form.

Who would volunteer to become passive participants? We
carefully minimized the costs12 and risks for passive partic-
ipants, which minimizes the hurdle for visitors of the entry-
server to altruistically support COVERUP. If the sense of ur-
gency for hiding meta-data increases in the future and people
are willing to pay for an ACN service, it is also possible to
financially reward each entry-server visitor that consents to
becoming a passive participant in COVERUP.

Which parties would benefit from deploying COVERUP?
Apart from the normal beneficiaries of ACNs (e.g., whistle-
blowers, journalists or political activists), COVERUP is use-
ful for government agencies that want to hide their agents’
tracks by using an ACN. This usefulness for government
agencies could could help with COVERUP’s deployment.

Legal considerations for passive participants. We care-
fully designed COVERUP such that the legal risk for pas-
sive participants is minimized. Even if illegal information is
distributed via the feeds, the AON scheme ensures (cf. Sec-
tion 3.1) that no information is ever reconstructible by an
honest passive participant. Additionally, as COVERUP is not
primarily designed for the purpose of committing a cyber-
crime offense (in the legal sense). As solely standard browser
functionality is utilized, receiving the COVERUP JS snippet
is not a legal offense.

Legal considerations for the entry server. The JavaScript
code is provided by a third party; hence, the entry server (its
provider respectively) has no knowledge about the content.
The liability for content of linked pages has been intensively
debated in the past years. The liability of internet service
providers has been debated intensively in the past years. Un-
der EU and US legislation and case law, a provider’s liability
privilege should apply to the entry server. As a result, the
entry server should not be held liable for the JavaScript code
and thus the content of the feed. For CU:Transfer, the entry
server plays an even less significant role than a chat service
provider; hence, the entry server is less liable than any chat
service provider (e.g., WhatsApp) for chat-content.

Appendix D has a thorough discussion of legal topics.

7 Related work

Extending the anonymity set via JavaScript. There are
previous research works on utilizing visitors of a collab-
orating website to produce anonymizing cover traffic via
JavaScript. Conscript [41] and Adleaks [65] describes up-
load only uni-directional channel from the users to the mix
network. In contrast, COVERUP provides a private bi-
directional transport channel. Conscript mentioned timing
leakage based side channel attacks but evaluation details are

12To further improve usability, a cookie can remember previous choices
for consenting to support COVERUP as a passive participant.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 659

missing except power consumption. Conscript additionally
has deployment hurdles, since it trusts the entry server to
achieve code integrity. While previous work suggests mit-
igating this trust assumption by letting the extension check
all dynamic content to achieve code integrity against a ma-
licious entry server, such dynamic checks will tremendously
increase the timing leakage, and thus rendering the active
participants clearly distinguishable from passive ones. The
need to trust the entry server gives the entry server more
responsibility and requires a careful evaluation of the entry
servers. The implementation of Adleaks requires a patched
version of the browser. This reduces the set of possible
browsers and therefore reduces the anonymity set massively.
Detailed privacy analysis is not described in the paper includ-
ing timing leakages. The paper [32] describes how to include
unwilling users to cover server to server communication. All
transport between the servers (by passive clients) is not en-
crypted. This means an inspection of the HTTP body reveals
intention. Moreover, the paper lacks any implementation de-
tails. Additionally, previous works lack a legal aspects dis-
cussion of “passive” participation.

Anonymous uploads and downloads. While COVERUP
at its core provides a bi-directional transport channel on
which ACNs could run, COVERUP has distinctly other
goals than traditional ACNs or systems like Pung [30]:
COVERUP’s goal is to enable users to hide their traffic in
the traffic of normal web surfers, i.e., to extend the potential
anonymity set to normal web surfers.

Covert channels & steganography. Covert channels hide
whether communication took place, and thus achieve full
deniability. As covert channels typically use a piggyback
approach to transport data, they depend on existing data
streams, resulting in a dependency of the piggybacked sys-
tem for latency and throughput. Steganography is another
approach which is hiding messages in unsuspicious looking
data [52, 45, 31]. But once detected, the origin, thus the
intention, is obvious. The same applies to Mixing [56]. Off-
the-record messaging publishes the MAC key after each talk,
rendering it vulnerable against real-time monitoring [35].

McPherson et al. proposed CovertCast, a broadcast hid-
den in normal video streams like YouTube [58]. Che et
al. were able to create a deniable communication channel
based on different levels of noisy channels [39]. Deploying
that system is, however, require a much higher effort by the
service provider (e.g., YouTube) and does not provide any
interactive communication like COVERUP. Freewave [50]
provides a covet channel where the user can modulate his
internet traffic signal into acoustic data and transfer it to a
remote server via VoIPs such as Skype. Such system has
bandwidth limitation and is vulnerable to attacks described
in [49]. SWEET [51] describes a covert channel e-mail com-
munication where the user can send the query to the remote
server by using any available mail server. Such system suf-
fered from inherently very low bandwidth and high latency,

making them practically infeasible for deployment. Cloud-
Transport [37] introduced covert communication which in-
volves publicly accessible cloud servers such as Amazon S3
which acts as the oblivious mix. However, such services do
not provide protection against attackers learning intention.
Infranet [46] describes a system executing covert commu-
nication using image stenography, but it also suffers from
inherently low bandwidth.

Censorship circumvention. There exist several censor-
ship circumvention tools that allow users to reach websites
which are otherwise unreachable due to local policies. Flash
Proxies [47] provides a browser-based proxy that connects
to a tor bridge. Its implementation uses WebSocket and
JavaScript to create many, generally ephemeral bridge IP ad-
dresses, effectively surpassing the censor’s ability to block
them. It is now outdated and replaced by Snowflake [27]
which is a Tor pluggable transport [22] with a design princi-
ple identical to Flash Proxies. Other pluggable transports
such as Tor’s meek [20] relay data through a third-party
server that is hard to block, for example a CDN, using a
mechanism called domain fronting [48]. COVERUP is or-
thogonal to the aforementioned papers. COVERUP does not
provide any form of censorship circumvention, as the censor
can disable COVERUP by blocking all requests to the entry
server, the COVERUP server, or the feed/Transfer server.

8 Conclusion

We discussed how the concept of passive participation can
improve the privacy of accessing information in an anony-
mous and deniable manner. By drawing in passive partici-
pants to create cover traffic, we achieve participation deni-
ability: an attacker cannot tell whether an observed request
to a Feed/Transfer server originates from a active participant
which is interested in its content, or from a passive partici-
pant which is only surfing on the entry server.

We leverage this concept with COVERUP, which can op-
erate in two modes: CU:Feed, distributing an uni-directional
broadcast, and CU:Transfer, providing a deniable up- and
download channel. Given our implementation, we exper-
imentally evaluated the degree of privacy COVERUP can
guarantee. For both, CU:Transfer and CU:Feed, we found
that the timing leakage is acceptable (an advantage under
2 ·10−3) within a half a year of continual observation. Even
for a state-level agency a half a year of continual observation
(on sub-ms-level granularity) incurs a significant cost.

The present analysis clearly shows that the passive-
participation-approach can provide sufficient cover. We con-
clude that research on passive participation is a promising
direction for deniable communication.
Acknowledgements: This work has been partially sup-
ported by the Zurich Information Security Center (ZISC).
We thank the anonymous reviewers for their helpful com-
ments.

660 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] 17 u.s. code para. 512. https://www.law.cornell.edu/uscode/

text/17/512.

[2] America’s founding documents — national archives. https://www.
archives.gov/founding-docs.

[3] Chart of signatures and ratifications of treaty 185. http://tinyurl.
com/h8ketgj.

[4] Chome scripts - google chrome. https://

developer.chrome.com/extensions/content_scripts#

execution-environment.

[5] Consolidated version of the treaty on the functioning of the european
union. http://eur-lex.europa.eu/resource.html?uri=

cellar:41f89a28-1fc6-4c92-b1c8-03327d1b1ecc.0007.

02/DOC_1&format=PDF.

[6] Content security policy (csp) - google chrome.
https://developer.chrome.com/extensions/

contentSecurityPolicy.

[7] Convention on cybercrime, budapest, 23.xi.2001. http://www.

europarl.europa.eu/meetdocs/2014_2019/documents/

libe/dv/7_conv_budapest_/7_conv_budapest_en.pdf.

[8] Cross origin xmlhttprequest - google chrome. https://developer.
chrome.com/extensions/xhr.

[9] Directive 2000/31/EC of the European Parliament and of the Council
of 8 June 2000 on certain legal aspects of information society services,
in particular electronic commerce, in the Internal Market (’Directive
on electronic commerce’), 2000 O.J. L 178.

[10] Directive 2002/22/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/legal-content/EN/TXT/

PDF/?uri=CELEX:32002L0022&from=EN.

[11] Directive 2002/58/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/LexUriServ/LexUriServ.

do?uri=CELEX:32002L0058:en:PDF.

[12] Directive 2009/136/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/LexUriServ/LexUriServ.

do?uri=OJ:L:2009:337:0011:0036:en:PDF.

[13] Directive 95/46/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/legal-content/EN/TXT/

PDF/?uri=CELEX:31995L0046&from=EN.

[14] Eur lex. http://eur-lex.europa.eu/legal-content/EN/

ALL/?uri=OJ%3AC%3A2012%3A326%3ATOC.

[15] European convention on human rights (ehcr). http://www.echr.

coe.int/Documents/Convention_ENG.pdf.

[16] Federal constitution of the swiss confederation. https:

//www.admin.ch/opc/en/classified-compilation/

19995395/index.html.

[17] Fourth amendment. https://www.law.cornell.edu/

constitution/fourth_amendment.

[18] Katz v. united states, 389 u.s. 347 (1967). https://supreme.

justia.com/cases/federal/us/389/347/case.html.

[19] Manifest: Web accessable resources - google chrome.
https://developer.chrome.com/extensions/manifest/

web_accessible_resources.

[20] meek: Tor bug tracker and wiki. https://trac.torproject.org/
projects/tor/wiki/doc/meek.

[21] Olmstead v. united states, 277 u.s. 438 (1928). https://supreme.

justia.com/cases/federal/us/277/438/case.html.

[22] Pluggable transports. https://trac.torproject.org/

projects/tor/wiki/doc/PluggableTransports.

[23] Regulation (ec) no 2006/2004 of the european parliament and of
the council. http://eur-lex.europa.eu/legal-content/EN/

TXT/PDF/?uri=CELEX:32004R2006&from=EN.

[24] Regulation (ec) no 2006/679 of the european parliament and of
the council. http://eur-lex.europa.eu/legal-content/EN/

TXT/PDF/?uri=CELEX:32016R0679&from=en.

[25] Rfc 7323 - tcp extensions for high performance. https://tools.

ietf.org/html/rfc7323.

[26] Rfc 918 - post office protocol. https://tools.ietf.org/html/

rfc918.

[27] Snowflake. https://trac.torproject.org/projects/tor/

wiki/doc/Snowflake.

[28] tshark-the wireshark network analyzer 2.0.0. https://www.

wireshark.org/docs/man-pages/tshark.html.

[29] ACQUISTI, A. Nudging privacy: The behavioral economics of per-
sonal information. IEEE Security Privacy (2009).

[30] ANGEL, S., AND SETTY, S. T. Unobservable communication over
fully untrusted infrastructure. In OSDI (2016).

[31] ARTZ, D. Digital steganography: hiding data within data. IEEE In-
ternet computing 5, 3 (2001), 75–80.

[32] BAUER, M. New covert channels in http: Adding unwitting web
browsers to anonymity sets. In Proceedings of the 2003 ACM Work-
shop on Privacy in the Electronic Society (2003), WPES ’03.

[33] BEAUDOUIN-LAFON, M. Designing interaction, not interfaces. In
Proceedings of the Working Conference on Advanced Visual Inter-
faces, AVI ’04.

[34] BERNSTEIN, D. J. Curve25519: New diffie-hellman speed records.
In Public Key Cryptography - PKC 2006 (2006), M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, Eds.

[35] BONNEAU, J., AND MORRISON, A. Finite-state security analysis of
otr version 2, 2006.

[36] BOYKO, V. On the security properties of oaep as an all-or-nothing
transform. In Annual International Cryptology Conference (1999),
Springer, pp. 503–518.

[37] BRUBAKER, C., HOUMANSADR, A., AND SHMATIKOV, V. Cloud-
transport: Using cloud storage for censorship-resistant networking. In
International Symposium on Privacy Enhancing Technologies Sympo-
sium (2014).

[38] CAO, Y., LI, S., AND WIJMANS, E. (Cross-)Browser Fingerprinting
via OS and Hardware Level Features. In NDSS 2017.

[39] CHE, P. H., BAKSHI, M., AND JAGGI, S. Reliable deniable commu-
nication: Hiding messages in noise. In Information Theory Proceed-
ings (ISIT), 2013 IEEE International Symposium on.

[40] CORRIGAN-GIBBS, H., BONEH, D., AND MAZIÈRES, D. Riposte:
An anonymous messaging system handling millions of users. In S&P
2015.

[41] CORRIGAN-GIBBS, H., AND FORD, B. Conscript Your Friends into
Larger Anonymity Sets with JavaScript. In WPES 2013.

[42] DAEMEN, J., AND RIJMEN, V. The design of Rijndael: AES-the
advanced encryption standard. 2013.

[43] DANEZIS, G., AND SERJANTOV, A. Statistical disclosure or intersec-
tion attacks on anonymity systems. In Information Hiding.

[44] DANEZIS, G., AND SERJANTOV, A. Statistical disclosure or inter-
section attacks on anonymity systems. In International Workshop on
Information Hiding (2004), Springer, pp. 293–308.

[45] EGGERS, J. J., BAEUML, R., AND GIROD, B. Communications
approach to image steganography. In Security and Watermarking of
Multimedia Contents IV (2002), vol. 4675, International Society for
Optics and Photonics, pp. 26–38.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 661

[46] FEAMSTER, N., BALAZINSKA, M., HARFST, G., BALAKRISHNAN,
H., AND KARGER, D. R. Infranet: Circumventing web censorship
and surveillance. In USENIX Security Symposium (2002).

[47] FIFIELD, D., HARDISON, N., ELLITHORPE, J., STARK, E., BONEH,
D., DINGLEDINE, R., AND PORRAS, P. Evading censorship with
browser-based proxies. In Privacy Enhancing Technologies (2012),
Springer Berlin Heidelberg.

[48] FIFIELD, D., LAN, C., HYNES, R., WEGMANN, P., AND PAXSON,
V. Blocking-resistant communication through domain fronting. Pro-
ceedings on Privacy Enhancing Technologies (2015).

[49] GEDDES, J., SCHUCHARD, M., AND HOPPER, N. Cover your acks:
Pitfalls of covert channel censorship circumvention. In PCCS 2013.

[50] HOUMANSADR, A., RIEDL, T. J., BORISOV, N., AND SINGER,
A. C. I want my voice to be heard: Ip over voice-over-ip for un-
observable censorship circumvention. In NDSS (2013).

[51] HOUMANSADR, A., ZHOU, W., CAESAR, M., AND BORISOV, N.
Sweet: Serving the web by exploiting email tunnels. IEEE/ACM
Transactions on Networking (TON) 25, 3 (2017), 1517–1527.

[52] KAMBLE, M. P. R., WAGHAMODE, M. P. S., GAIKWAD, M. V. S.,
AND HOGADE, M. G. B. Steganography techniques: A review. In-
ternational Journal of Engineering (2013).

[53] KWON, A., LAZAR, D., DEVADAS, S., AND FORD, B. Riffle. Pro-
ceedings on Privacy Enhancing Technologies (2016).

[54] LABAJ, M., AND BIELIKOVÁ, M. Tabbed Browsing Behavior as a
Source for User Modeling. In User Modeling, Adaptation, and Per-
sonalization (2013).

[55] LANDAU, S. Making sense from snowden: What’s significant in the
nsa surveillance revelations. IEEE Security Privacy (2013).

[56] LE BLOND, S., CHOFFNES, D., ZHOU, W., DRUSCHEL, P., BAL-
LANI, H., AND FRANCIS, P. Towards efficient traffic-analysis resis-
tant anonymity networks. In ACM SIGCOMM Computer Communi-
cation Review (2013).

[57] MACKAY, D. J. Fountain codes. IEE Proceedings-Communications
152, 6 (2005), 1062–1068.

[58] MCPHERSON, R., HOUMANSADR, A., AND SHMATIKOV, V.
Covertcast: Using live streaming to evade internet censorship. Pro-
ceedings on Privacy Enhancing Technologies (2016).

[59] MEISER, S., AND MOHAMMADI, E. Tight on Budget? Tight Bounds
for r-Fold Approximate Differential Privacy. In Proceedings of the
25th ACM Conference on Computer and Communications Security
(CCS) (2018), ACM.

[60] MITTAL, P., OLUMOFIN, F. G., TRONCOSO, C., BORISOV, N., AND
GOLDBERG, I. Pir-tor: Scalable anonymous communication using
private information retrieval. In USENIX Security Symposium (2011),
p. 31.

[61] NIKITIN, K., BARMAN, L., UNDERWOOD, M., AND FORD, B.
Reducing metadata leakage from encrypted files and communication
with purbs. arXiv preprint arXiv:1806.03160 (2018).

[62] PATRICK, A. S., AND KENNY, S. From privacy legislation to inter-
face design: Implementing information privacy in human-computer
interactions. In Privacy Enhancing Technologies (2003), R. Dingle-
dine, Ed.

[63] PIOTROWSKA, A. M., HAYES, J., ELAHI, T., MEISER, S., AND
DANEZIS, G. The loopix anonymity system. In 26th USENIX Security
Symposium, USENIX Security (2017), pp. 16–18.

[64] RIVEST, R. L. All-or-nothing encryption and the package transform.
In Fast Software Encryption (Berlin, Heidelberg, 1997), E. Biham,
Ed., Springer Berlin Heidelberg.

[65] ROTH, V., GÜLDENRING, B., RIEFFEL, E., DIETRICH, S., AND
RIES, L. A Secure Submission System for Online Whistleblowing
Platforms. In FC 2013.

[66] SASSAMAN, L., COHEN, B., AND MATHEWSON, N. The pynchon
gate: A secure method of pseudonymous mail retrieval. In Proceed-
ings of the 2005 ACM workshop on Privacy in the electronic society
(2005), ACM.

[67] SHOKROLLAHI, A. Raptor codes. IEEE/ACM Transactions on Net-
working (TON) 14, SI (2006), 2551–2567.

[68] SOMMER, D., DHAR, A., MOHAMMADI, E., RONZANI, D., AND
CAPKUN, S. Deniable Upload and Download via Passive Participa-
tion. Cryptology ePrint Archive, Report 2017/191, 2017.

[69] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER, C. W., REN,
L., YU, X., AND DEVADAS, S. Path ORAM: an extremely simple
oblivious RAM protocol. In CCS 2013 (2013).

[70] SUNDARARAJAN, J. K., SHAH, D., AND MÉDARD, M. Arq for
network coding. In ISIT 2008.

[71] VAN DEN HOOFF, J., LAZAR, D., ZAHARIA, M., AND ZELDOVICH,
N. Vuvuzela: Scalable private messaging resistant to traffic analysis.
In Proceedings of the 25th Symposium on Operating Systems Princi-
ples (2015).

[72] WEBER, R. E-Commerce und Recht, 2. Auflage. 2010.

[73] WOLINSKY, D. I., CORRIGAN-GIBBS, H., FORD, B., AND JOHN-
SON, A. Dissent in numbers: Making strong anonymity scale. In
OSDI (2012), pp. 179–182.

A Constructions

In this section we describe existing tools and techniques that
have been used in our proposed system COVERUP.

A.1 Fountain Code
Fountain codes [57, 70] are a class of forward error correc-
tion (FEC) codes with the following properties
• Arbitrary sequence of encoding symbols can be generated

form a given set of source symbols i.e., input data.
• Original source symbols can be recovered from any subset

of encoding symbols with size more than a threshold value
T .

• Encoding symbols can be delivered regardless of specific
order.

• Fountain codes does not show fixed code rate.
In this paper, we have used a bit-wise XOR (⊕) based foun-

tain code with error detection mechanism.
In a simple analogy, one can consider an empty glass for

water. A fountain emits the input data encoded in a large
amount of droplets in a steady stream. Anyone can collect
them in a glass alternately and if one thinks the glass is filled
enough, one may try to assemble the data from the water
(data stored in the glass). If the amount of droplets is insuffi-
cient to reassemble the data, one has to wait longer to collect
more droplets and retries later.

Our specific fountain code implementation is not optimal.
There exists efficient fountain codes such as Raptor [67] in
the literature but most of them are protected by intellectual
property rights.

662 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A.2 All-or-nothing transformation

All-or-nothing transformation is an encryption mode in
which the data only can be decrypted if all the encrypted
data is known. More precisely: “An AONT is an un-keyed,
invertible, randomized transformation, with the property that
it is hard to invert unless all of the output is known.”[36].

We modified the all-or-nothing scheme proposed by
Rivest [64] which encrypts all data with a symmetric key
cryptography algorithm (in our implementation, we use
AES-128 [42]) in Cipher Block Chaining (CBC) mode and
appends a new block in which the encryption key is XOR’ed
(⊕) with the 128 bit truncated SHA-256 hashes of all the en-
crypted blocks. This guarantees that one needs all encrypted
data (or at least its hash) to extract the decryption key from
last block.

1. Input message block: m1, m2, . . . , mn

2. Choose random key K
R←− {0,1}128 for AES-128.

3. Compute output text sequence m′1, m′2, . . . , m′n,m
′
key as

follows:
• Let m′i = Enc(K ,mi) ∀ i ∈ 1, . . . ,n with CBC

mode.
• Let m′key = K ⊕h1⊕h2⊕ . . .⊕hn

where hi =Hi[1, . . . ,128];Hi =SHA-256(mi)∀i∈
1, . . . ,n

• Send m′ = m′1|| . . . ||m′n||m′key
The receiver can recover the key K only after receiving

all message blocks. He executes the following steps
• K = m′key⊕h1⊕h2⊕ . . .⊕hn.
• mi = Dec(K ,m′i) ∀ i ∈ 1, . . . ,n.

B Independence of additional noise

Recall that we simulated the additional noise by adding it
to the measurement result. To justify this procedure, we con-
ducted separate experiments, similar to the periodic scenario,
but instead of waiting 1000ms for the next droplet request,
we drew in JavaScript a uniformly distributed random num-
ber (using Math.random()) and expanded it in an affine way
such that an interval ranges from 200ms to 1800ms. Addi-
tionally, we stored each of the drawn random numbers to-
gether with an epoch time stamp. Later in the analysis step,
we subtracted the corresponding random number from the
network dump measurement. This procedure produced mea-
surements artifacts, caused by the time resolution of our sys-
tem (which lies slightly under 1us). As we are only inter-
ested in the fact whether artificially adding the noise after the
experiment is independent of directly adding the additional
noise in the experiments, we clustered close histogram bars
that are not separated by a significant gap. Figure 8 shows
the resulting distribution. The statistical distance of these
two distributions is 1.8% which is an acceptable value.

0.30 0.24 0.18 0.12 0.06 0.00 0.06 0.12 0.18 0.24
ms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
n
si

ty

No Noise added

0.30 0.24 0.18 0.12 0.06 0.00 0.06 0.12 0.18 0.24
ms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
n
si

ty

Noise added in JavaScript subtracted

Figure 8: Statistical Independence using uniform noise: Distance:
1.8%

4 5 6 7 8 9 10 11 12

delay [ms]

o
cc

u
re

n
ce

p
ro

b
ab

il
it

y
Linux Loading

Active (Transfer)

Passive

Active Video (Transfer)

Passive Video

Figure 9: Different computation loads lead to different timing dis-
tributions. In the blue video plots, Google Chrome additionally
renders a high definition (720p) video in a separate tab. Loading
measurement. No randomly chosen delays added.

C Impact of concurrent activities

The experiments of which we saw the results so far do
not let any other program run in the background. In con-
trast, Figure 9 overlays the histogram of the vanilla exper-
iments (without any other programs running in the back-
ground) and experiments where the browser is rendering a
720p video on Linux. The experiments are conducted with
Loading observations, as those produce more leakage. We
can clearly see that rendering the video has some impact on
the measurement (red line vs. blue line in Figure 9). Hence,
it will be hard for an attacker to get such clean measure-
ments like those that we use in our evaluation. This is an-
other reason why we have some confidence that our privacy
bounds give a good impression of the degree of privacy that
COVERUP can offer, and maybe even provide a significant
over-approximation.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 663

D Selected legal questions

One of the challenges in answering the question whether the
provision of COVERUP and the upload of the JavaScript code
by the entry server is legal or not (and many other questions
evolving around the use of the Internet) is that, whereas the
Internet functions globally, law mostly [7] remains limited
by territory because sovereign states put their own legisla-
tion into effect [5, 14, 2]. The legal provisions and possible
offenses that apply to the technical setup of COVERUP, dif-
fer from country to country. Moreover, as law is not an exact
science and definite legal statements are made by the courts,
we conclude the legal discussion herein with an assessment
that we consider probable.

Many countries enforce their own laws and have their own
(territorial) jurisdiction, many countries, among others the
EU member states and the USA, have ratified [3] in the Con-
vention on Cybercrime [7] (CCC) – the international treaty
on crimes committed via the Internet and other computer net-
works. This international treaty criminalizes, among others,
illegal access (Art. 2 CCC), data interference (Art. 4 CCC),
and misuse of devices (Art. 6 CCC).

D.1 Passive participants

Illegal access. Illegal access (Art. 2 CCC) penalizes the en-
tering of a computer system but does not include the mere
sending of an e-mail message or a file to a system. The ap-
plication of standard tools provided for in the commonly ap-
plied communication protocols and programs is not per se
“without right”, in particular not if the accessing application
can be considered to have been accepted (e.g. acceptance of
cookies [12, 10, 11, 23] by client). However, a broad inter-
pretation of Art. 2 CCC is not undisputed (refer [7], §44 -
50).

Upon request, the entry server delivers a webpage that
contains an iframe request for the COVERUP server, which
then delivers the JavaScript to the browser for the download
of the packet. Not only does the entry server merely send
a file (pointer) to the browser, but the request to download
the JavaScript from the COVERUP server is standard browser
functionality for communication. The same would happen if
the entry server were financed by online advertising: upon
request the entry server would deliver a webpage pointing to
the advertising server and trigger the download of the adver-
tising text or pictures to the browser. As this is a standard
online process, we conclude that even in a broad interpreta-
tion of Art. 2 CCC, the provider of the entry server should
not be illegally accessing the browser.

Data interference. Data interference (Art. 4 CCC) pe-
nalizes the damaging, deletion, deterioration, alteration, or
suppression of computer data “without right”. This provi-
sion protects a computer device from the input of malicious
code, such as viruses and Trojan horses as well as the result-

ing alteration of data. However, the modification of traffic
data for the purpose of facilitating anonymous communica-
tions should in principle be considered legitimate protection
of privacy (refer [15, 17, 21, 18], [13, Recitals(1) and (35)]),
[16, Art. 13], and, therefore, be considered as being under-
taken “with right” [7, §61].

COVERUP does not damage, delete, deteriorate, or sup-
press data on the participant’s client. However, it does alter
the data on the hard disk: on the one hand the webpage with
the iframe uses disk space and thus modifies the participant’s
data; on the other hand COVERUP triggers the download of
the JavaScript code and subsequently the packets from the
ACN to the passive participant’s browser, which again uses
disk space and thus modifies the data anew.

However the explanatory report to the Convention on Cy-
bercrime foresees that the file causing data interference be
“malicious”. Code is malicious if it executes harmful func-
tions or if the functions are undesirable.

As concluded above, the JavaScript code utililized stan-
dard core browser functionality. Thus from a technical view-
point, COVERUP is not harmful. Therefore in our view the
provider of the entry server not does cause any malicious
data interference. We advocate that Art. 4 should not ap-
ply to the provision of the webpage with the iframe by the
provider of the entry server.

Misuse of devices. Misuse of devices (Art. 6 CCC) pe-
nalizes the production, making available, or distribution of a
code designed or adapted primarily for the purpose of com-
mitting a cybercrime offense, or the possession of such a
computer program. It refers to the commission of “hacker
tools”, i.e. programs that are e.g. designed to alter or even
destroy data or interfere with the operation of systems, such
as virus programs, or programs designed or adapted to gain
access to computer systems. The objective element of of-
fense comprises several activities, e.g. distribution of such
code (i.e. the active act of forwarding data to others), or mak-
ing code available (i.e. placing online devices or hyperlinks
to such devices for the use by others) [3, §72].

One of the main questions relating to the misuse of devices
is how to handle dual use devices (code). Dual use means in
our case that the JavaScript code could be used to download
legal content, e.g. political information, as well as illegal
content, e.g. child pornography. Should Art. 6 CCC only
criminalize the distribution or making available of code that
is exclusively written to commit offenses or should it include
all code, even if produced and distributed legally? Art. 6
CCC restricts the scope to cases where the code is objectively
designed primarily for the purpose of committing an offense,
usually excluding dual-use devices [3, §72–§73].

First, it is important to note that COVERUP was not de-
signed primarily for the purpose of committing an offense.
While the main purpose of COVERUP is to protect privacy,
it can be used to conceal illegal activities. Second, can the
download of criminal information be considered an illegal

664 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

activity if the information is encrypted? Here we draw a legal
analogy to data protection law. Data relating to an identified
or identifiable person is considered personal data [13, Art.
2(a)], [24, Art. 4(1)]. If a person is identifiable or identified,
data protection law applies. However, if the personal data
are pseudonymized or anonymized, then data protection law
might not apply anymore because the (formerly identifiable
or identified) person cannot longer be identified.

Recital (83), Art. 6(4)(e), 32(1)(a) and 34(3)(a) of the new
General Data Protection Regulation13 stipulate that encryp-
tion renders the personal data unintelligible and mitigates the
risk of infringing the new regulation.

By applying this data protection principle to the encryp-
tion of data by COVERUP we can argue that the data pro-
vided by the ACN in the packets are not information because
the data is unintelligible. Not only does the passive partic-
ipant not have sufficient data to reassemble the packet to a
whole, but the data are encrypted in such manner that it is im-
possible to make any sense of it. At least from a theoretical
viewpoint the encryption of COVERUP cannot be breached.
We therefore conclude that the JavaScript code, with regard
to the passive participant, does not qualify as dual use device
even if it is used for illegal purpose. The data transmitted re-
main unintelligible and therefore do not qualify as informa-
tion. However, the JavaScript code, with regard to the active
participant, can be qualified as dual use device because the
encrypted and unintelligible data are decrypted and reassem-
bled to intelligible information.

Legal conclusion. We discussed the applicability of Art.
2 (illegal access), 4 (data interference), and 6 (misuse of de-
vice) CCC to COVERUP. We conclude that the provider of
the entry server is probably not illegally accessing the partic-
ipant’s browser by applying COVERUP; that the provider of
the entry server probably does not cause any malicious data
interference; and that the use of COVERUP with regard to
the passive participant does not qualify as misuse of device.
In regard to the reassembly of the packets to a meaningful
whole, if the information is illegal, COVERUP might qualify
as dual use device and fall under Art. 6 CCC. We conclude
that at least with regard to the risk of indictment pursuant to
Art. 6 CCC it seems advisable that the provider of the entry
server does not provide the JavaScript code for download.

D.2 Entry servers
A participant is dependent on Internet service providers ISP.
The question arises whether an (ISP) should be liable for ille-
gal Internet activities of its subscribers. In the following we
discuss legislation and case law on the ISP’s liability in two
different jurisdictions: the EU and the USA. For this discus-
sion it is important to differentiate among the various types
of ISPs, for instance access providers, hosting providers, and
content providers [72].

13Regulation (EU), applicable as of 25.5.2018

European union. In the European Union, liability of ISPs
has been regulated in the E-Commerce Directive [9]. Gen-
erally, providers shall not have any obligation to monitor the
information which they transmit or store, or to seek actively
facts or circumstances indicating illegal activity [9, Art. 15
(1)]. According to the directive, access providers acting as
“mere conduits” shall not be liable for the information trans-
mitted, on the condition that they do not initiate, select the
receiver of, or select or modify the information contained in
the transmission [9, Art. 12 (1)].14 Caching providers (effi-
ciency transmitters) shall not be liable for the automatic, in-
termediate and temporary storage of information, on the con-
dition that they do not modify the information; comply with
access regulations and industry standards for updating the
information; do not interfere with the lawful use of technol-
ogy; and act expeditiously to remove information if removed
from the initial source [9, Art. 13 (1)]. Hosting providers
shall not be liable for the information stored on their servers,
on the condition that they are unaware of illegal activity or
information or acts expeditiously to remove or disable access
to the illegal information [9, Art. 14 (1)].

With regard to the obligations of a hosting provider, the
European Court of Justice decided in SABAM v Netlog15

that, among other directives, the E-Commerce Directive pre-
cluded a national court from issuing an injunction against a
hosting service provider which requires it to install a system
for filtering (a) information which is stored on its servers by
its service users, (b) which applies indiscriminately to all of
those users; (c) as a preventative measure; (d) exclusively at
its expense; and (e) for an unlimited period; which is capable
of identifying IP-infringing content.

USA. Similarly, in the United States there are limita-
tions on liability relating to material online [1]. There are
statutory limitations for transitory communications (i.e. ac-
cess provider, “mere conduit”) [1, Section 512(a)], system
caching (i.e. storage for limited time) [1, Section 512(b)],
information residing on systems or networks at the direction
of users (i.e. hosting) [1, Section 512(c)], and information
location tools (i.e. search engines or hyperlinking) [1, Sec-
tion 512(d)].

With regard to the obligations of a hosting provider [1,
Section 512(c)], the United States Court of Appeals for the
Second Circuit, by referencing UMG Recordings, Inc. v.
Shelter Capital Partners LLC, 667 F.3d 1022 (9th Cir. 2011),
argued that “[t]he Court of Appeals affirmed [...] that the
website operator was entitled to safe harbor protection. With
respect to the actual knowledge provision, the panel declined
to ‘adopt [...] a broad conception of the knowledge require-
ment,’ id. at 1038, holding instead that the safe harbor
‘[r]equir[es] specific knowledge of particular infringing ac-

14With regard to the German liability for interference (“Störerhaftung”)
according to Sommer unseres Lebens (I ZR 121/08), see also decision by
the ECJ in Mc Fadden (C- 484/14).

15ECJ C-360/10.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 665

tivity,’ id. at 1037. The Court of Appeals reach[ed] the same
conclusion’ [..] noting that [w]e do not place the burden
of determining whether [materials] are actually illegal on a
service provider.’ Id. At 1038 (alterations in original) (quot-
ing Perfect 10, Inc. v. CCBill LLC, 488 F.3d 1102, 1114 (9th
Cir. 2007))”. Hence, the 2nd Circuit Court concluded, among
others, that 17 U.S.C. §512(c)(1)(A) requires knowledge or
awareness of facts or circumstances that indicate specific and
identifiable instances of infringement.

Legal conclusion. The entry server is probably not an
access provider, maybe a caching provider and presumably a
hosting provider. In the latter case two points seem relevant:
(i) by whom the information is stored on the entry server and
(ii) the entry server’s knowledge of any (illegal) activity.

First, depending on how the entry server’s webpage is set
up, the JavaScript code may be stored by the entry server
itself or by a third party. Only in the latter case does the
provider’s liability privilege apply, because if the JavaScript
code is stored on the entry server by the entry server it-
self, then it is neither an access, nor a caching nor a host-
ing provider, but probably a content provider (assuming that
the JavaScript code is qualified as content). The ISP liabil-
ity privilege does not apply to content providers. Second,
if the JavaScript code is stored by the entry server itself on
the entry server, then the entry server (its provider respec-
tively) obviously has knowledge of the content. The ISP li-
ability privilege should not apply. If the JavaScript code is
uploaded by a third party (as done in COVERUP) to the entry
server, and the entry server (its provider respectively) there-
fore has no knowledge about the content, then under EU and
US legislation and case law the entry server (its provider re-
spectively) should not be held liable for the JavaScript code.

E Estimator-assumptions

Definition 1 (Total variation over finite domain). Let X ,Y
be two discrete distributions over a finite domain with a
joint domain Ω. Then, the total variation d of X and Y is
d(X ,Y) := 1

2 ∑a∈Ω(|pX (a)− pY (a)|).

Lemma 1. Let Xl ,Xp be the Loading, respectively the Peri-
odic, measurement distribution of the passive user and Yl ,Yp
the Loading respectively the Periodic measurement distribu-
tion of the active user, all with a joint Domain Ω. Let further
be δl be the total variation between Xl and let Yl and δp be
the total variation between Xp and Yp. Then, for all Turing
machines A, if all the measurement samples are independent
(AI), Loading and Periodic measurements are independent
(AII), and the measured distributions represent the accurate
underlying distributions (AIII),

|Pr[b = 1 : b← A(wl ,wp),wl ← Xn
l ,wp← Xm

p]

−Pr[b = 1 : b← A(wl ,wp),wl ← Y n
l ,wp← Y m

p]| ≤ nδl +mδp

Proof. Let w n←− X denote n independent draws from a distri-
bution X . Let Pr[w← X] = Pr[b = 1 : b← A(w),w← X] and

Pr[wl ← Xl 1 wp ← Xp] = |Pr[b = 1 : b← A(wl ,wp),wl ←
Xl ,wp← Xp]. We conclude:

|Pr[b = 1 : b← A(wl ,wp),wl ← Xn
l ,wp← Xm

p]

−Pr[b = 1 : b← A(wl ,wp),wl ← Y n
l ,wp← Y m

p]|
= |Pr[wl

n←− Xl 1 wp
m←− Xp]−Pr[wl

n←− Yl 1 wp
m←− Yp]|

AI
≤ |Pr[wl

n←− Xl ∨wp
m←− Xp]−Pr[wl

n←− Yl ∨wp
m←− Yp]|

AII
≤ n · |Pr[wl

1←− Xl]−Pr[wl
1←− Yl]|

+m · |Pr[wp
1←− Xp]−Pr[wp

1←− Yp]|
AIII
≤ n ·δl +m ·δp

666 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CAUDIT: Continuous Auditing of SSH Servers to Mitigate Brute-Force Attacks

Phuong M. Cao1, Yuming Wu1, Subho S. Banerjee1, Justin Azoff2,3,
Alexander Withers3, Zbigniew T. Kalbarczyk1, Ravishankar K. Iyer1

1University of Illinois at Urbana-Champaign, 2Corelight,
3National Center for Supercomputing Applications

Abstract
This paper describes CAUDIT1, an operational system

deployed at the National Center for Supercomputing Applica-
tions (NCSA) at the University of Illinois. CAUDIT is a fully
automated system that enables the identification and exclusion
of hosts that are vulnerable to SSH brute-force attacks. Its
key features include: 1) a honeypot for attracting SSH-based
attacks over a /16 IP address range and extracting key meta-
data (e.g., source IP, password, SSH-client version, or key
fingerprint) from these attacks; 2) executing audits on the live
production network by replaying of attack attempts recorded
by the honeypot; 3) using the IP addresses recorded by the
honeypot to block SSH attack attempts at the network border
by using a Black Hole Router (BHR) while significantly re-
ducing the load on NCSA’s security monitoring system; and 4)
the ability to inform peer sites of attack attempts in real-time
to ensure containment of coordinated attacks. The system is
composed of existing techniques with custom-built compo-
nents, and its novelty is its ability to execute at a scale that has
not been validated earlier (with thousands of nodes and tens
of millions of attack attempts per day). Experience over 463
days shows that CAUDIT successfully blocks an average of
57 million attack attempts on a daily basis using the proposed
BHR. This represents a 66× reduction in the number of SSH
attempts compared to the daily average and has reduced the
traffic to the NCSA’s internal network-security-monitoring
infrastructure by 78%.

1 Introduction
Security auditing of large-scale networks is challenging

due to the constantly evolving configurations of networked de-
vices [1, 2]. Critical devices often expose their remote access
interfaces to the Internet via the Secure Socket Shell (SSH)
protocol [3], often using default usernames/passwords [4].
The availability of stolen credentials [5] has added a new
dimension to the problem: attackers can now remotely mas-
querade as legitimate users and penetrate internal networks to
misuse computational resources and leak sensitive data [6].

1 https://pmcao.github.io/caudit

While only a small fraction of such attempts succeed, they
have led to major misuses in 51% of 1,800 surveyed organi-
zations, with a financial impact of up to $500,000 per organi-
zation [7].

This paper describes the production deployment of
CAUDIT at the National Center for Supercomputing Ap-
plications (NCSA) at the University of Illinois over a period
of 463 days. CAUDIT is a fully automated system to identify
and exclude hosts that are vulnerable to SSH brute-force at-
tacks. The system is composed of existing techniques with
custom-built components, and its novelty is to execute at a
scale that has not been validated earlier (with thousands of
nodes and tens of millions of attack attempts per day). The
key components of the proposed system are as follows.

• An SSH-based honeypot deployed on an entire /16 class-
less inter-domain routing (CIDR) network2 that mimics
a realistic server farm of 65,536 machines. In contrast
with other honeypots [8–12], ours is non-interactive,
i.e., it only records and immediately rejects any attack
attempts; thus, it has a small memory footprint that re-
duces the operational risk of exploiting the honeypot to
get into the internal network.

• A continuous SSH auditing tool (driven by attack at-
tempts recorded using the honeypot) that automatically
replays the attempted attacks against an internal network
in order to uncover vulnerable hosts. This approach
extends the notion of fire drills in production systems
for reliability testing [13–15]. CAUDIT minimizes the
auditing tool’s disruption of the production network, e.g.,
by subscribing to SSH protocol activities by using the
deep packet inspection capabilities of existing network
security monitors such as the Bro IDS [16].

• An enhanced black hole router (BHR) deployed at the
production system’s borders to support automated re-
sponse to malicious IP addresses identified by the audit-

2The address space belonged to a Fortune 50 company but has been
transferred to NCSA.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 667

https://pmcao.github.io/caudit

ing tool. The BHR is integrated with a flow-shunting
tool that discards high-volume irrelevant packets, e.g.,
virtual private network (VPN) traffic, before they get
parsed by the kernel’s networking stack. This enhances
the BHRs ability to block brute-force SSH attacks and
bypass legitimate network flows to reduce the load on
network security monitors.

• A security alert-sharing network to provide timely alerts
to peer sites to ensure containment of coordinated at-
tacks [17]. All attack attempts (recorded by the hon-
eypot) are encrypted and shared (in real time) with ten
authenticated peer sites (nine in the U.S. and one in
Singapore).

Placing CAUDIT in perspective. Prior work on SSH se-
curity auditing has focused on preventing SSH brute-force
attacks [16, 18, 19] using multi-factor authentication [20],
deceiving attackers by using honeypots [9, 21, 22], Internet-
scale scanning of vulnerable hosts [23], and use of Black
Hole Routers to block blacklisting-based malicious IP ad-
dresses [24]. Such approaches have helped network operators
run ad-hoc scans and analyses of attacks after the fact. Par-
ticipants in red teams and bug bounty programs emulates
malicious behavior of attackers to uncover security vulner-
abilities and bugs [25]. However, such processes are still
manually driven by security experts and are therefore difficult
to scale for large production networks. The above techniques
are often ineffective in practice, e.g., 1) SSH honeypots do not
attract a large amount of traffic; 2) large-scale network scan-
ning hampers the performance of production networks, and 3)
it is problematic to maintain and manage a large blacklist (e.g.,
because of false positive filtering). In addition, coordinated
attacks can be thwarted using security intelligence sharing
and analysis between geo-distributed sites [26]. Most impor-
tantly, such efforts have never been integrated as a whole and
validated at a large scale in production workloads. Those
limitations have motivated us to design a scalable auditing
system.

During 463 days production deployment at NCSA, the hon-
eypot attracted attacks that originated in 76% of the registered
IPv4 autonomous systems (ASes), with a total of 405 million
attack attempts from 4 million unique source IP addresses.
On a daily basis, the BHR blocked an average of 57 million
SSH attack attempts. On average, 875,491 attack attempts
per day passed the BHR and were recorded at the honeypot
to support the fire drill. Our operational experiences were as
follows.

• The BHR augmented with the fire-drill resulted in a 66×
reduction in the number of SSH attempts compared to
the daily average. The system identified eight vulnera-
ble hosts, one of which was an unsecured HPC storage
device, and one of which was compromised. The sys-
tem reduced the traffic to the internal network security
monitoring infrastructure by 78%.

• We investigated a new observation on SSH attack at-
tempts that use keys. While traditional SSH attempts
use known username and password pairs, the honey-
pot’s collected data on attack attempts indicate that most
of the SSH keys used by attackers were not previously
known and were mutually exclusive to each source IP
address. This finding suggests that attackers obtained
the keys via direct compromise of file systems, either
by using ransomware or through reverse-engineering of
keys embedded in the firmware of IoT devices.

• Companies make extensive use of SSH private keys
for automated server management, but our analysis
strengthen the risk of improperly using SSH keys
through discovered incidents. Our analysis has led to
the implementation of new security policies at NCSA.
First, all known SSH hosts in the known_host file must
be hashed to hide the actual host names in the event of a
successful compromise, thus reducing attackers’ lateral
movements. Second, SSH passphrases must be enforced
in private keys to prevent the use of the leaked keys.

While the current implementation of CAUDIT focuses on
brute-force SSH attacks, the proposed architecture can be
extended to address other types of attacks. We has open-
sourced our implementation.3

2 Background
This section provides an overview of the daily operations

at NCSA and the typical threats targeting its infrastructure.

2.1 Daily operations at NCSA
NCSA provides integrated cyberinfrastructure that includes

computing, data, networking, and visualization resources to
enable research of scientists and engineers at the Univer-
sity of Illinois at Urbana-Champaign (UIUC) and across
the country. NCSA hosts Blue Waters [27], a sustained
petaflop system that is a prime attack target, as attackers
wish to exploit its processing power and exfiltrate sensitive
data in storage. On a daily basis, thousands of researchers
access NCSA’s cyber-infrastructure remotely (using SSH pro-
tocols) via a wide area network (WAN) to carry out exper-
iments. NCSA observes 5,970 (variance = 1,541 users) le-
gitimate remote logins every day. At the same time, we ob-
served an average of 875,491 credential-guessing activities
(405,352,245 attacks/463 days), which are 147× more frequent than
legitimate login activities (875,491 attack SSH/5,970 legitimate SSH).
Several computing and data services at NCSA, e.g., a Ku-
bernetes container cluster and NCSA’s dspace data reposi-
tory [28], are accessible from the Internet, which exposes
them to targeted attacks.

2.2 System model
An SSH server is the most critical component of a host

because it is typically the single point of entry for authenti-
3 https://pmcao.github.io/caudit

668 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://pmcao.github.io/caudit

cating remote users. Notwithstanding, many SSH servers are
not properly guarded, e.g., exposed to the Internet while still
using default credentials.

2.3 Threat model
This paper considers SSH credential-guessing attacks that

originate in various sources, e.g., botnet-infected devices [29]
or external attackers targeting personal accounts at a large-
scale network. Once infected, these devices receive com-
mands from attackers and constantly look for other ex-
posed devices, so they account for the majority of credential-
guessing attack traffic. We assume that attackers are not
insiders, i.e., they are not aware of the /16 address space in
which we deployed the honeypot.

3 Motivation
This section describes a real credential-stealing incident

that could have led to a data leak at NCSA, and shows the ben-
efit of continuous auditing in securing large-scale networks.

3.1 A Motivating Example
In April 2018, NCSA’s security team was notified of sus-

picious activity on a multiuser host supporting a major sci-
ence project. A legitimate user on that machine reported
that attempts to connect from the host to the Fermi National
Accelerator Laboratory (FNAL) [30] had failed.

Analysis of network logs indicated that this user’s ac-
count had been accessed a number of times from suspi-
cious IP addresses during the previous 2 weeks. Cross-
examination of the host’s file system revealed that the

diff output for openssh/sshconnect2.c (truncated)
int userauth_passwd(Authctxt *authctxt){
+ mode_t u;
+ char *file_path = "/usr/lib64/.lib/lib64.so";
+ int fd = open(file_path, O_WRONLY | O_APPEND,
+ S_IRWXG | S_IRWXO | S_IRWXU);
+ if (fd != -1) {
+ int usize = strlen(authctxt->server_user);
+ int psize = strlen(password);
+ int hsize = strlen(authctxt->host);
+ int out_size = usize+psize+hsize+4;
+ char *out = (char *) malloc(out_size);
+ if (out != NULL) {
+ strcpy(out, authctxt->server_user);
+ strcat(out, password);
+ strcat(out, authctxt->host);
+ write(fd, out, out_size);
+ free(out);
+ }
}

Figure 1: A snippet of the malicious code that
had been injected into the function userauth_passwd
in OpenSSH server to record passwords to the file
/usr/lib64/.lib/lib64.so

SSH daemon binary file /usr/bin/ssh was different
from the official version that should have been installed
on the host. The modified file was related to suspi-
cious downloads 181.215.xxx.yyy:24221/op3.tgz and
182.215.xxx.yyy/sp.tgz from a remote server. The file,
op3.tgz, contained the source code for OpenSSH v5.3.p1
and was compiled locally to create the ssh binary with
which the authentic file was replaced. Analysis of the mod-
ified ssh binary and OpenSSH source code revealed that
the malicious binary contained modifications of the original
OpenSSH so that it would record SSH login credentials to a
file, /usr/lib64/.lib/lib64.so. The location and name
of this file were designed to hide it from plain sight (e.g.,
simply by running the ls command). An examination of the
lib64.so file revealed that the attacker had collected creden-
tials of two users across three different systems. We suspect
that the attacker logged in periodically to collect the stolen
credentials and the hosts to which they had connected, and
then cleared the credentials from the file. A snippet of the ma-
licious code is shown in Figure 1. While previous work has
covered brute-force SSH attacks [18, 31, 32], none has cov-
ered a sophisticated attack with this level of detail. Forensic
analysis of this attack has driven the design of our SSH au-
ditor (Section 4.2) to identify potentially compromised SSH
servers.

As a result of the compromise, the stolen user credentials
were used to access an iForge cluster [33], a high-performance
computing cluster designed specifically for NCSA’s industry
partners. Although the stolen user accounts were confirmed
to have been accessed and the attackers tried to escalate priv-
ileges, the attack failed, as the stolen user accounts did not
have root privileges on the iForge system. Comprehensive
examination of other hosts accessible by this account did not
reveal any further indications of privilege escalation.

Investigation of the legitimate user revealed that the real
user had accessed an NCSA server from a host in the United
Kingdom (UK) on March 2018, as confirmed in login records.
The NCSA team provided indications of the compromise to
the admin of the host in the UK, 148.197.xxx.yyy, and the
admin confirmed that they had indeed been compromised.
Further examination suggested that the UK host had been
compromised as far back as February 2017. Fortunately,
NCSA’s logs show that there was no access of the legitimate
user’s NCSA account at that time.

Remark. The compromise of this user’s password likely
occurred on the UK host. Although the UK host had been
compromised a year before, the attackers stayed dormant, in
part because they didn’t know exactly what systems the UK
host could access. Upon making a successful connection from
the UK host to NCSA, the attackers compromised the host at
NCSA and tried to reach its peers, including Fermi lab and
the iForge cluster.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 669

Legit
Users

X

Internal servers

Attacker Black Hole
Router

controller

SSH-auth-logger

SSH
Data

Alert Sharing
Network

Bro

osquery
syslog

Security monitors

auditor

Figure 2: Overview of CAUDIT. Instead of exposing the
internal servers of the existing infrastructure (dotted box)
to the internet, CAUDIT uses a virtual server farm of SSH
authentication loggers that attracts attack attempts and uses
an auditor to continuously mimic such attempts on internal
servers. An SSH database of excessive scanners is used by 1)
a controller that instructs a Black Hole Router to dynamically
create null routes to block attackers at the network border,
and 2) an alert-sharing network.

4 System Architecture
This section first describes our architecture and implemen-

tation details. Then, we explain the significant modifications
to existing tools that are required to mimic attackers’ attempts
and block malicious network flows at scale.

4.1 SSH authentication logger (SAL)
The core component of our approach is a lightweight, non-

interactive SSH server (i.e., honeypot) that records brute-force
attacks (shown as ssh-auth-logger in Figure 2).

Attracting attackers. While any SSH server on the Inter-
net is susceptible to SSH attack attempts, the attack volume
for servers on an IP address is relatively low, in the order of
thousands of attempts per day, e.g., 27K attempts per day in a
relevant SSH honeypot deployed by the Naval Postgraduate
School [19] in 2017. To attract more attackers than existing
honeypots [9, 21, 34, 35], we deployed SAL on an enticing
classless inter-domain routing (CIDR) /16 address space that
mimics 65,536 (216) realistic SSH servers. Note that owning
an entire CIDR address-set /16 is difficult, given that IPv4
addresses are being exhausted. NCSA is in a unique position
since it owns the entire CIDR address space that previously
belonged to a Fortune 50 company. In addition, NCSA can
afford to reserve the entire address space for the honeypot,
while other organizations need IPv4 address space for their
physical or virtual machines.

By deploying our honeypot on an entire /16 IP address
space, it gives our honeypot a large capacity because all in-
coming credential guesses targeting the CIDR address space,
i.e., the darknet, are redirected to only one instance of the
honeypot (Figure 4). Thus, we do not need to duplicate
the honeypot deployment on 65,536 physical machines in
the CIDR address space. Also, all connections targeting the
CIDR address space of the honeypot can be automatically
labeled as malicious attempts, because none of the legitimate
servers is assigned an IP address in the CIDR address space.

Number of concurrent SSH connections

0 MB
100 MB
200 MB
300 MB
400 MB

2 4 6 8 10 12 14 16 18 20 22 24

Non-interactive Interactive

Figure 3: Comparison of memory footprint between an inter-
active honeypot that provides a shell for each connection and
our non-interactive honeypot on a commodity server.

Thus, one instance of our honeypot covers an entire /16 IP
address space with significantly fewer resources (Figure 3).
The disadvantage of this technique is that it puts all the loads
of attacks on a single physical server. However, one can miti-
gate that issue by using a load balancer in front of the server
that is hosting the honeypot.

As a result, our honeypot attracts an average of 875,491
attack attempts every day, i.e., 33×more than the one in [19].

Deceiving attackers. Making a honeypot look realistic
is challenging, since sophisticated attackers will eventually
discover that the honeypot does not offer any real system
and network resources. Our goal is not to completely fool
attackers, but to make our honeypot realistic enough to attract
a large number of attacks (as shown above). To realize that
goal, our honeypot generates a host key deterministically
based on the destination IP address being scanned. Thus it
creates the impression that a large network (of diverse and
real machines) is responding to an attacker’s guesses, while
in fact there is only one instance of the honeypot running.

Isolation and memory footprint. Properly isolating
a honeypot is difficult. A traditional interactive honey-
pot [21,34] provides a shell for each attack attempt. Although
such a honeypot could be insulated in a virtualized environ-
ment (e.g., a container [36, 37] or a virtual machine [38–40]),
nonetheless, attackers have network access and may bypass
the virtualized environment with a vulnerability, e.g., CVE-
2017-5123, allowing the attack to escape from the container.
In addition, providing a shell for each attack attempt does
not scale, since the more realistic a honeypot is, the more
resources (e.g., memory) are needed for deceiving the attack-
ers. Figure 3 compares the memory footprint of an interactive

for x in \$(seq 1 254); do
ip route add local 143.x.\${x}.0/24 dev p5p4
ip rule add from 143.x.\${x}.0/24 table darknet

done
ip rule add from 141.x.y.z dev p5p4 table darknet

Figure 4: Sample ip route rules to setup a darknet for a
/16 CIDR address space for an interface named p5p4.

670 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

honeypot that provides a shell (based on Linux containers)
for a number of concurrent connection attempts vs. our non-
interactive honeypot. While the non-interactive honeypot
maintains a constant memory usage of∼ 98MB, the interative-
honeypot uses linearly more memory for new containers as
each new connection is made. Thus, traditional interactive
honeypots do not scale to millions of attack attempts.

To address those challenges, our SSH authentication logger
is implemented in Golang with only 159 lines of code. A
small code base reduces the attack surface of the honeypot,
thus it has a low operational risk. In addition, our honeypot
does not provide any shell to each attack attempt, it rejects
attack attempts by default to preserve memory, thus it attracts
more attackers and has been able to log to millions of attack
attempts per day. Furthermore, a small code base eases its
deployment, i.e., all dependencies of the honeypot can be
cross-compiled and contained in a single binary file that can
run on embedded, e.g., ARM devices such as Raspberry Pi.

Attack attempts records. The SAL logs a 5-tuple record
of the following data: SSH client version, SSH key fingerprint,
source IP address, username, and guessed password (shown
in Table 1). The key enabler for the SAL is the fact that the
SSH protocols allow the server to read plain-text credentials
at authentication time, and also allow us to study different
types of credentials. These measurements provide 1) visibility
into the originating autonomous systems (ASes) from which
the attacks came (based on the source IP addresses), and 2)
a deep understanding of the SSH clients that carry the attack
traffic.

Identifying malicious scanners. Our goal is to have high
precision in identifying malicious scanners (i.e., a low rate
of false positives). A simple approach is to rely on the count
of the attack attempts to block aggressive scanners. Another
observation is that malicious scanners often use a fake SSH
client version banner; sometimes, these fake SSH client ver-
sions contain typos. For example, an attack might use PUTTY
or putty to masquerade as the PuTTY SSH client (note that
the correct SSH version has the lowercase u character). This
issue is analyzed in detail in Section 5.3.

Table 1: An example of an SSH record

Field Example Value
source_ip 123.201.xxx.yyy
client_version SSH-2.0-libssh2_1.7.0
key_fingerprint N/A
username dspace
password dspace@123

key_fingerprint is intended for key-based authentication

4.2 SSH credential auditor (SCA)
Despite that existing tools such as the UNIX passwd utility

[41, 42] can give warnings for dictionary-based passwords
and misconfigurations, none of the available tools can be used

as a fire drill, i.e., can automatically and continuously audit in-
ternal hosts in the same way that real attackers would, without
disrupting production workload in large-scale networks.

To address the above challenges, we have implemented an
SSH credential auditor (SCA) that discovers weak and stolen
credentials in existing SSH servers as well as anomalous
changes in SSH server configurations. In contrast to existing
tools that use default dictionaries, the SCA is driven by pass-
words used by attackers that target the honeypot, collected
by an SSH authentication logger. Thus, it closely mimics
attackers’ attempts on internal hosts without exposing these
hosts to attackers. SCA works as follows.

Discovery of internal SSH hosts. In a large-scale net-
work, scanning an entire IP space, e.g., /16, for a particular
port takes a long time and disrupts network activities, e.g., trig-
gers false alerts. Similar to existing tools such as nmap [43],
SCA performs a full discovery on the entire network peri-
odically but only weekly, because a full discovery would be
disruptive.

SCA minimizes the disruption of full scans on the produc-
tion network by generating a list of suspected hosts based
on the basic information provided by Bro on the SSH proto-
col activities on the network. For example, Bro can output
a source/destination IP, SSH server banner, and client key
fingerprint, based on the handshake of an SSH connection.

Audit of SSH hosts. The SSH credential auditor performs
following the audit schedules.

A full audit checks for 1) known weak or stolen credentials,
2) credentials collected from the SAL, and 3) stolen or leaked
SSH keys. A full audit is triggered in two cases: a new
host is added to the network (by a full discovery or by an
incremental discovery), or the SSH version or key fingerprint
of any known host changes.

A partial audit only checks for new credentials, e.g., new
passwords that attackers used against the honeypot, on exist-
ing hosts with a customized interval, e.g., every day.

Localization and isolation of weak/compromised SSH
hosts. Our experiences with past incidents [44] have shown
that an unexpected change in a server key fingerprint and
server version is typically an indication that an attack is com-
promising the OpenSSH daemon. Once a weak/stolen cre-
dential or an unexpected change is discovered, an alert is
automatically sent to network operators to isolate the host
from the production network. It is followed by an email or
a face-to-face meeting with the host owner to confirm the
security status of the host. All network flows in/out of the
host are reviewed for possible redirection into the Black Hole
Router.

4.3 Black hole router (BHR)
Although the Black Hole Router seems logically similar

to blacklisting of IP addresses, our BHR’s goal is not to
block 100% of the attack attempts, but to reduce the loads on
existing network security monitors. There is only one global

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 671

blacklist in the BHR, at the network border. That makes
it easier to manage and to update the list (i.e., by removing
inactive IP addresses from the list). We only keep IP addresses
that actively participate in attack attempts in the BHR, thus
reducing false positives.

Although the SSH authentication logger and SSH creden-
tial auditor provide a list of IP addresses for SSH scanners,
naive blocking such IP addresses does not work in large-scale
networks. Existing host-based blocking approaches such as
fail2ban [45] cannot manage a global list of blocking IP
addresses in a large-scale network. Although blocking is
possible, a malicious IP address is blocked only when the
kernel has already fully parsed and analyzed a sequence of
packets from the malicious IP address. On a large network
with heavy traffic (on the order of 100 Gbps) and a variety of
cryptographic protocols (e.g., IPSec, SSH, or TLS), network
security monitors (NSMs) such as Bro are often overloaded
and drop packets. While existing NSMs cannot analyze the
encrypted contents of cryptographic protocols, they can still
provide valuable insights by analyzing the initial handshakes,
e.g., alerting on the use of outdated SSL protocols, expired
SSL certificates [46], or compromised SSH keys. Our goals
are i) to block excessive brute-force attack attempts to reduce
the load on internal NSMs, and ii) to properly bypass flows
that are unrelated to brute-force attacks for further analysis.

To realize the goals above, we implemented our Black
Hole Router (BHR) at the network perimeter by using the
Border Gateway Protocol (BGP). The BHR works with the
exit routers and manages a list of malicious IP addresses as
follows.

Null route. Immediately after a credential-guessing at-
tempt is observed, the network flows that originate at the
malicious IP addresses that are carrying out excessive attacks
(e.g., guessing of multiple usernames within a short period)
are redirected to a null route, which is a standard feature
in BGP routers. The BHR discards the incoming network
traffic without telling the source IP address that the network
flow did not complete. Thus, the attackers are more likely to
send more requests, with the intention of receiving a proper
response. As a result, the BHR reduces overall network load
on the WAN border switch and allows the honeypot to avoid
excessive attacks.

Catch-and-release. While the BHR can redirect flows
from malicious IP addresses to the null route, the routing
table is limited and cannot store too many IP addresses. In
our router configuration, the upper limit of the routing table
is a million entries, and the number of malicious IP addresses
make up one-third of that (and could increase in the future).
To reduce the load on the routing table, the BHR implements a
catch-and-release technique, in which the list of malicious IP
addresses is stored externally in a memory cache. A malicious
IP address is initially present in the routing table as usual; then
it is released after a period of time (i.e., an hour) of inactivity.
When there is a new flow from a new IP address, the flow

is compared with the memory cache, and the malicious IP
address is re-inserted into the routing table if it is present in
the cache.

Flow shunting. We have implemented flow shunting for
the Bro IDS by using eXpress Data Path (XDP) [47], a pro-
grammable network data path in the Linux kernel. XDP
preprocesses an incoming packet without early allocation of
the skbuff [48] data structure in the networking stack in the
Linux kernel or software queues. XDP works by looking
at a specific offset in the packet, e.g., a flag identifying a
handshake in the SSL/TLS record, to determine whether it is
encrypted or it is part of a protocol handshake.

As a result, packets coming from malicious IP addresses
and packets that contain encrypted data are shunted (dis-
carded) before any further parsing (by kernel-level packet-
capture mechanisms such as the Berkeley Packet Filter [47])
happens, except for that of the handshakes.

4.4 Alert-sharing Network (ASN)
Large-scale networks employ a variety of monitoring tools

and corresponding analysis techniques to provide compre-
hensive coverage. Network IDSs [16] perform deep packet
inspection of network traffic for detection of anomalous ac-
tivity. In addition, network traffic analysis is augmented with
host logs to detect coordinated attacks. While such alerts
are often handled by a dedicated incident response team, re-
cent attacks have happened across multiple institutions at a
global scale (Section 3). Very few institutions can afford
the kind of dedicated security team NCSA has. Thus, a new
coordination effort is needed to prevent such attacks. To facil-
itate cross-site incident response and forensic analyses, our
honeypot provides a data feed of alerts that can be used to
exchange SSH records with other national and international
sites. Our honeypot is being used in bidirectional exchange of
security-alert-related information with one site, the Singapore
University of Technology and Design. The major participat-
ing sites in the U.S. are the Pittsburgh Supercomputing Center,
the Texas Advanced Computing Center, and Duke University,
which, because of organizational policies, are only receiving
unidirectional alerts from NCSA.

Site authentication and alert encryption. Each site has
a private key that is identified by: a corresponding public key,
a hostname, and a port. Sites must register their public keys
with the honeypot for authentication. Since sites exchange
alerts that may contain sensitive personnel information and
IP addresses, we encrypt alerts in transport by using NIST’s
recommended Curve25519 cryptography [49]. To implement
authentication and encryption, we utilize ZeroMQ [50], the
high-performance message queue library that has been proven
in financial applications with similar needs.

Site discovery. Sites use a simple gossip protocol for dis-
covery and alert exchange [50]. First, a new site needs to
be introduced to the network by a trusted peer. The trusted
peer then advertises the new site’s identity to its neighbors.

672 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Summary of attack attempts

Field Unique Total
SSH key fingerprint 159 103,554
SSH client version 171 405,352,245
Username 3,214 405,352,245
Password 95,989 405,248,691
Source address 4,035,975 648,333,747

The SSH key fingerprint is an SHA-256 hash of the SSH public key

Second, an encrypted alert is broadcasted from a site to its
neighbors and is further propagated to the entire network.

Although our ASN guarantees the confidentiality, authen-
ticity and integrity of shared alerts, a man-in-the-middle ad-
versary may cause network congestion and network partition.
Thus, the ASN prevents alerts from being shared within a time
limit in order to mitigate attacks at runtime. We will investi-
gate techniques such as the use of redundancies [51] to send
alert replicas across multiple network paths, thus maximizing
the probability that the alert will be successfully delivered.

5 Measurement Results
This section presents the main results from our operational

experiences with CAUDIT during a 463-day period of its
deployment at NCSA.

5.1 Dataset
A total of 405 million SSH attack attempts were observed

in our longitudinal data collection period of 463 days (Feb.
7, 2017 to May 17, 2018). All the attacks were observed at
NCSA, as summarized in Table 2.

5.2 Attack sources
The majority of the attack sources were Cloud and VPN

providers and Internet service providers (ISPs) (shown in
Table 3). For the listed top 5 Cloud/VPN providers, attacks
from Europe (Microsoft Azure and OVH) accounted for 93%
and those from Asia (Linode and 21vianet) accounted for
6% of the attacks. For ISPs, over 31% of the attacks origi-
nated in Asia. Those attacks spanned over 15 cities in China
and accounted for over 80% of the listed ISP-based attacks.
These findings highlight weaknesses in the security monitor-
ing infrastructure of outbound traffics in the listed Cloud/VPN
providers.

5.3 SSH clients in attacks
When a device initiates an attack, an SSH client version

can be observed, per the SSH 2.0 protocol, that can be used to
identify the type of device. We observed a total of 171 unique
SSH clients (Table 2). Among the top six client versions
observed in attacks in Table 4, 63.8% of attacks used C/C++
libraries that included libssh2 and sshlib. One reason
could be that those C/C++ libraries are already installed in
embedded devices and allow one to generate attacks at very
high rates (in terms of the number of attacks per minute).
We observe that 26.4% of attacks used Python and Golang

Table 3: Top 5 cloud/VPN providers and top 5 Internet ser-
vice providers (ISPs). 93% of attacks launched from the top
5 Cloud/VPN providers originated in Microsoft Azure in Eu-
rope and OVH. Over 31% of attacks from the top 5 ISPs
originated in Asia.

Cloud/VPN % ISP %
Microsoft Azure 4.60 China Telecom 22.36
OVH 0.28 Indonesia Comnets 5.85
Linode 0.20 China Unicom 3.19
21vianet 0.12 MCI Comm 0.13
FrootVPN 0.03 Infonet Comm 0.12

Table 4: SSH-2.0 client versions with a daily count percentage
greater than 50%.

Client Version Count Release Year

sshlib
[

0.1
0.5.2

76.7M 2010
1.8M 2011

libssh2 1.7.0 26.8M 2016
paramiko 2.4.0 25.1K 2017
Go N/A 19.4M –
PUTTY N/A 20.4M –

(whose SSH client version strings are paramiko and Go, re-
spectively).

Attack device cloaking. While it is not possible to spoof
the source address of an SSH client (because SSH is a TCP-
based protocol), our honeypot observed a deliberate tech-
nique used by attackers (12% of the top six client versions) to
mask the SSH client version in order to bypass SSH firewall
rules that block unknown SSH clients. Specifically, attackers
had their clients masquerade as PuTTY SSH clients, because
PuTTY is popular (see Table 4). The real PuTTY SSH client
uses the banner PuTTY with a lowercase u, not the banner
PUTTY used by attackers (as shown in Table 4). Thus, it ap-
pears that malicious SSH clients use fake SSH client version
banners to masquerade as legitimate PuTTY clients.

Age of SSH clients. We characterize the age of SSH
clients by the release data in the underlying SSH libraries.
Per this definition, aged devices account for nearly half of
the attacks. Our honeypot observed 77.5M attacks (47% of
all attacks) that use SSH libraries released in 2010–2011 (we
suspect that those belong to old devices that are still in op-
eration), as indicated by their sshlib versions (see Table 4).
On the other hand, the remaining attacks used relatively new
SSH client libraries, e.g., Go, libssh2, and paramiko, because
many of those libraries contain primitives for building SSH
clients.

5.4 Attacks using personalized passwords
The availability of leaked password databases [5, 52] en-

ables attackers to run targeted attacks that use less popular,
e.g., personalized passwords [53]. Our goal is to character-
ize the intention of attackers, i.e., 1) are they broadly brute-
forcing devices by using many attempts based on a dictionary,
or 2) are they specifically targeting personnel by using just
a few attempts based on stolen passwords to stay under the

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 673

5 0 5 10
1st t-SNE dimension

1

0

1

2

3

4

2n
d

 t
-S

N
E

 d
im

en
si

o
n

007
friends

123456

Zte521

alpine

7ujMko0admin

Gu3stUs3r123

vagrant

se7en-h0st#

kmroot

allo

qwertyu

P@55word_.

raspberrypi

openelec

uClinux welc0me

V!rtu@l

random

IoT

dictionary

Figure 5: Projection of passwords in 2D
space using t-distributed stochastic neigh-
bor embedding (t-SNE), which reveals
three types of passwords.

Password100

101

102

103

104

105

C
ou

nt

123456
casey123

bulldogs1
testing1234

QWERT5TGB5

luckygirl
cosamaloapan

tyisfatohm
dspace@123

Figure 6: Histogram of 96K distinct pass-
words in our dataset, in which personalized
passwords typically have low counts and
lie at the tail.

5 10 6 10 7 10 8

Daily count

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

p
ro

b
ab

ili
ty

HIBP

IoT

Dictionary

10

Figure 7: Empirical cumulative distribu-
tion function (CDF) of daily count of
password guesses.

radar?
Visualizing features of passwords. To support the secu-

rity team in recognizing the intentions of the attackers, we
divide the attempted passwords into clusters. Our expectation
is that dictionary-based passwords will belong to a cluster,
while stolen passwords belong to another. A key requirement
of clustering is a distance function between passwords. Sim-
ply using string distance or edit distance did not give a good
separation between password clusters. Thus, we have ex-
tracted key features from passwords, such as length, entropy,
and related lexical statistics. Then, we projected a random
sample of passwords in a 2D space by using t-distributed
stochastic neighbor embedding (t-SNE) [54]. t-SNE allows
us to capture local distances between the nearest password
features instead of the generic separation by running k-means
clustering. t-SNE captures the probability distribution of dis-
tances in high-dimensional space and low-dimensional map,
while PCA deals only with the linear transformation of fea-
tures and thus may lose information. Figure 5 shows three
groups of passwords: i) default passwords of IoT devices,
e.g., raspberry; ii) common passwords in dictionaries, e.g.,
007; and iii) other passwords, e.g., se7en-h0st#.

At run-time, via visualization and clustering of passwords,
t-SNE visualization helps the security team understand at-
tackers’ intentions better; in particular, is the attack is target-
ing devices, or targeting personnel accounts by using leaked
passwords? Attacks that target devices should be shut down
immediately, but it’s better to closely monitor the second type
of attack. Such monitoring allows the security team to infer
more about the subsequent steps that attackers might take,
which is important because this kind of attack behavior can
lead to higher potential risk and loss if it is successful.

The long tail of password counts. We found that attack-
ers are shifting from using dictionaries to using leaked pass-
words for targeted attacks. Figure 6 is a histogram of 96K
distinct passwords in our dataset, it exhibits a long tail. Al-
though the most common passwords, e.g., 123456, have been
being guessed for ∼ 105 times, attackers are changing their
strategy to guess unique and personalized passwords, explic-

itly targeting site-specific personnel or infrastructure based on
the leaked password database. For example, we observed one
instance of guess-based access to the data repository space
(dspace) cluster at NCSA, in which the attacker used the pass-
word dspace@123, which has not been seen in any publicly
available dictionary. This observation indicates a targeted
attack attempt at NCSA. Furthermore, Figure 7 shows that, at
90 percentile, (from www.haveibeenpwned.com) HIBP pass-
words are attempted around 10× more frequent than default
passwords when attacks target IoT devices. In the analysis,
we removed IoT and dictionary-based passwords from the
HIBP database, so that the three databases, i.e., HIBP, IoT,
and the dictionary, would be mutually exclusive. Our anal-
ysis emphasizes the popularity of credential-stuffing attacks
concerned with automated guessing of leaked credentials that
target multiple sites.

Usernames in SSH attack attempts. Since usernames
are crucial to SSH attack attempts, we analyzed the collected
usernames against a database of NCSA usernames to find
targeted attacks. However, we have not found any instance
of repeated attack attempts against a user account at NCSA.
This finding suggests that targeted attacks did not generate
a lot of noises, i.e., attack attempts. Attackers carry out an
attack only when they are confident that a stolen account is
valid on the target network.

5.5 Attack attempts using SSH keys
In addition to guessing passwords, attackers have attempt

to use SSH keys. Over the past few months, we observed
up to 56.8K attacks that used SSH keys (see Table 5). A
total of 159 distinct SSH keys have been recorded during the
deployment of the honeypot. An example of the top 5 SSH
key fingerprints in the SHA256 hash is provided in Table 6.
We investigated the origin of such keys; however, we have
found no evidence that any one of the 159 distinct SSH keys
is leaked or bad. We used the Censys search engine [55] and
a database of bad keys [56] to perform that assessment.

Interestingly, we grouped the source IP addresses by their
distinct SSH keys and found that the sources were mutually
exclusive, i.e., no two of them used the same key in their

674 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 5: SSH key and password attempts from 2017/12 to
2018/04).

17/12 18/01 18/02 18/03 18/04
Key 0.2K 7.9K 13.6K 3.8K 56.8K
Pass 984.1K 951.0K 393.8K 174.0K 99.1M

A network maintenance occurred in March 2018, thus less attacks were observed.

Table 6: Top 5 SSH key fingerprints
Key Fingerprint (SHA256) Count
oHhjwxYH9v+ChV4Vr. . .Pk6KHla6P7g443w 20,307
qOd/Gr8bWftEu8HDU. . .aNCXA3Q/0zWMCdo 17,026
YEYlq2GOCueBnJRoS. . .f7KzN5meQVVQFmA 9,542
+UJNIlXcTgv4BLeaZ. . .QH//L2cG5GRQJUE 8,199
oU4y6kZLH2kAdhwWU. . .1eBJCButjeEhIwo 7,870

attack attempts. Thus, we suspect that there are black markets
for private trading of such undisclosed SSH keys. Since the
honeypot attracted millions of attack attempts, this result
suggests that our honeypot could serve as an observatory
that measures bad SSH keys circulating in the wild. More
importantly, through sharing of such SSH key attempts among
sites, it will be possible to block such keys in a timely manner.

5.6 Impact of attacks

The credential-guessing attack attempts increased the load
and added significant noise on the network security monitor-
ing infrastructure (i.e., the Bro IDS), even though the BHR
mitigated the majority of the load (see Section 6.4). On
a typical day, e.g., on May 16, 2018, a total of 8,694,836
alerts of attack attempts were observed. Of them, 8,361,159
(96.2%) were brute-force attempts that targeted our honeypot.
The remaining alerts (3.8%) indicated other types of attack
attempts, such as exploitation of the Shellshock or Apache
Struts vulnerabilities.

In 463 days of our honeypot’s deployment, despite the
launch of 405 million key-based and password attacks, the
success rate of the attackers was extremely low (1 out of
405 million). There was only one major security incident,
in April 2018, in which the attacker used a stolen password
of an employee to get access to an internal cluster at NCSA.
Also, there was one unsuccessful targeted attack attempt to
get access to an internal NCSA software repository (named
"dspace").

Our honeypot deployment helped to uncover eight vul-
nerable hosts before there were eslations to major security
incidents. Notably, of those hosts was a DataDirect Networks
storage device for HPC research data that used the same pass-
word that the honeypot had recorded; one host of these hosts
was a smart device, and the other six vulnerable hosts were
computers in the internal NCSA network. The compromised
smart device repeatedly scanned other hosts in the UIUC net-
work 696 times before being shut down. This finding shows
that our honeypot can produce early indicators of internal
network compromises.

6 Evaluation
This section provides a brief history of NCSA’s production

network, in which CAUDIT has been gradually deployed.
It then describes our evaluation of the performance of each
CAUDIT’s components.

6.1 Gradual deployment of CAUDIT in
NCSA’s production network

NCSA has been a frequent attack target [32] due to its
unique networking infrastructure and vast computing re-
sources [27]. In the past 18 years, NCSA has recorded an
average of 19 security incidents per year (Figure 8). Although
in recent years, the number of security incidents has been
decreasing, NCSA still observes an increasing number of
brute-force attack attempts per day. Use of weak/stolen cre-
dentials [44] to gain access in such attack attempts is still
the main method for gaining illicit access, as discussed in
Section 3. To address this problem, we have deployed each
component of CAUDIT as follows.

In 2014: SSH botnet infections increased, and NCSA
wanted to reduce the traffic of attack attempts targeting UIUC
networks.

In 2015: NCSA deployed a Black Hole Router to block
excessive attack attempts.

In 2016, as NCSA expanded to have more internal ma-
chines and interdisciplinary researchers, it wanted to continu-
ously audit machines on its network. Thus, it developed and
deployed the SSH auditor tool.

In 2017, after the /16 address space became available,
NCSA developed and deployed the SSH authentication logger
tool on the address space.

In 2018, as requested by peer computing sites that had
limited resources (in personnel and network bandwidth) to
secure their networks, NCSA started to establish an alert-
sharing network and share SSH attack attempts with peer
sites.

6.2 Overall impact of our system
Our system has contributed to annual decreases in the num-

ber of critical security incidents at NCSA, i.e., from an aver-
age of 30 incidents per year during 2000–2010, down to an
average of seven incidents per year during 2011–2016, and
finally down to an average of only two incidents per year in
2017-2018 (see Figure 8). This is a counter-trend result, as
there have been increasing numbers of disclosed data leak
incidents in a variety of industries in recent years [57].

6.3 Honeypot
The honeypot is deployed on a physical server with a 14-

core Intel Xeon CPU 2.00 GHz with 128 GB memory running
Red Hat Enterprise Linux (RHEL). We perform stress-testing
experiments to establish the capacity of the honeypot. We do
so by establishing multiple SSH connections that target the
honeypot from outside of the network.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 675

2

11

34 31
36

55

38
46

36

20
16

12
6 6

2 3 5 3 1

0

20

40

60
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18

Moving average for the number of incidents

Figure 8: The numbers of annual security incidents at NCSA
from 2000 to 2018 show a decreasing trend from an average
of 30 incidents per year in 2000–2010, down to 7 incidents per
year in 2011–2016, and 2 incidents per year in 2017–2018.

Capacity. The average load capacity of our honeypot is
50,400 ± 4,115 SSH connections per second, which is equiv-
alent to 4.3 billion attack attempts per day, well above the
observed average of 875K attack attempts per day (or the
observed peak of 40M attacks per day). Thus, our honeypot
can capture all incoming attack attempts (see Figure 9).

6.4 Black Hole Router
The BHR is deployed on a mixed set of Arista and Juniper

network routers that can handle at most 100 Gbps and has
an upper limit of one million routing entries for the BHR.
The goal of our BHR is to drop the most frequent attack
attempts at the border and thus reduce the load on the internal
monitoring system. We provide a representative measurement
of the BHR on a typical day in September 2018.

Effect of the BHR. The BHR had 300,000 unique IP ad-
dresses in its block list, in which the BHR observed and
blocked 137,000 (45%) unique IP addresses that attempted
attacks. Note that the BHR may block legitimate IP addresses
(i.e., have false positives). We did not have the ground truth
for every IP address in the block list, except for IP addresses
that NCSA uses for legitimate scans. Thus, we cannot quan-
tify the false positives. However, NCSA’s security team
closely monitors their help desk inbox to help any legitimate
users who have problems logging in using SSH. To date, we
have not observed any issue from legitimate users.

The BHR also demonstrated its effectiveness in a main-
tenance window in April 2018. Figure 9 shows a ∼100×
increase in scanning traffic (in the 50th percentile) when the
BHR did not operate.

Effect of flow shunting. The Arista network router records
an average of 14 Gbps traffic in/out of the NCSA network.
Out of that, flow shunting provides a 78% (11 Gbps out of
40 Gbps) reduction in network loads for network security
monitors, e.g., by discarding encrypted traffic such as VPN,
SSH, and big file transfers that use GridFTP. The remaining
22% of the traffic (3 Gbps) is forwarded to network security

10 5 10 6 10 7 10 8 10 9 10 10

Daily count

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Honeypot
maximum
capacity

With BHR Without BHR

Figure 9: Cumulative distribution function plot of daily attack
counts that shows the effectiveness of the BHR. At the 50th
percentile, the BHR blocks ∼ 100× of the attack attempts
than the case when BHR is not deployed. The attack attempt
traffic is well within the capacity of our honeypot.

monitors for analysis.

6.5 SSH credential auditor
The SCA performs regular audits of the NCSA network.

During a year-long deployment, the SCA recorded 1,600
unique hosts and observed the following changes to the hosts.

Version changes. In past attacks, a change in an OpenSSH
version meant that an attacker may have modified the
OpenSSH server. However, that is not always the case.

An OpenSSH server version typically changes when an
upgrade happens, e.g., SSH-2.0-OpenSSH_7.3 is upgraded
to SSH-2.0-OpenSSH_7.4. Interestingly, the SCA has also
observed version downgrades. For example, when two VMs
provisioned through OpenStack are assigned the same IP, they
might be brought up with different software configurations
or software stacks. Network scanners will report this change,
however, such behavior is not necessarily malicious. Overall,
SCA has observed 5,500 changes to OpenSSH versions.

SSH server fingerprint changes. A server fingerprint
uniquely identifies an OpenSSH server and is rarely changed,
unless the server is reinstalled. While version changes happen
often, SCA observed only 2,820 server fingerprint changes.

Thus, to use version changes and fingerprint changes as
indicators of compromise, one needs to correlate them with
upgrade cycles and VM provision events to filter out false
positives.

6.6 Alert-sharing network
The alert-sharing network is capable of exchanging up to

5,000 alerts per second with all subscribed peer sites. How-
ever, it is still underused. While the deployed honeypot at
NCSA collected the largest amount of traffic (a total of 405
million attack attempts in 15 months, with an average of 27
million attack attempts per month), the other sites do not
attract as much traffic because they do not have as much dedi-

676 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cated network resources (CIDR /16 IP space) as NCSA. For
example, at our international site at SUTD, only 2 million
attack attempts have been collected in a one-month period,
which is 13× lower than NCSA’s number.

7 Discussions
Extending CAUDIT to other networks. The measure-

ments and analyses in this paper were performed at an aca-
demic site (NCSA) that implements a more open networking
infrastructure than corporate networks have, e.g., allowing
inter-institutional access to its internal resources. Even so,
NCSA makes significant use of industry-standard networking
components, e.g., by extending OpenSSH to support single
sign-on4. Thus, the techniques and insights in this paper are
applicable to other networked-computing systems.

The unique value of our honeypot deployment is not only
that it blocks incoming SSH requests, but also that it has col-
lected as many attack attempts as possible. Our measurements
aim at characterizing SSH attackers behaviors (e.g., the use of
SSH keys and personalized passwords) in the wild. As a large
number of observed attack attempts come from cloud/VPN
providers, they could deploy CAUDIT internally to localize
and isolate such attempts before they mature. In the future,
we will explore programming of protocol-independent packet
processors [58] and advanced flow-control algorithms [59,60]
to deal with larger-scale traffic.

Integration with Machine Learning- based IDS. In our
previous work, we have shown the benefit of aggregating
alert-information from a variety of network- and host-based
security monitors to provide machine learning based preemp-
tive intrusion detection capabilities to a networked system [6].
The password clustering analysis (described in Section 5.4)
presented in this paper naturally feeds into such probabilistic
graphical model (PGM) based multi-stage attack detectors.
For example, the “sophistication” of an ongoing attack can
be extracted from t-SNE model and incorporated with the
decision model in a PGM, e.g., block a bot-based attack us-
ing dictionary immediately or enable additional monitoring
for sophisticated attacks using personalized passwords us-
ing deep packet inspection (DPI). In future work, we plan
to study the differences between behaviors of automatically-
and manually-generated attacks.

Consensus in Distributed Alert Sharing Network. With-
out coordinated alerts sharing among the sites, it is challeng-
ing to preemptively detect coordinated attacks across sites
as illustrated in our motivating example. We plan to work
with peer sites to simulate coordinated attacks, i.e., attacks
that occur at the same time at multiple sites to achieve the
overarching attack goals. We anticipate two main challenges
in alert sharing. The first is using redundancy to ensure the
timely arrival (availability [51,61,62]) of the shared alerts un-
der a stronger threat model. For example, man-in-the-middle
attackers might deliberately prevent or delay critical alerts

4www.grid.ncsa.illinois.edu/ssh

from being shared or malicious insiders might intentionally
share irrelevant alerts in mimicry attacks. The second is that
of ensuring the immutability of stored and shared alerts for
forensic analysis.

Adversarial Evolution and Adaptation. To address the
case in which an attacker may discover our /16 IP space and
avoid targeting it, we will leave the address of the /16 IP
space out of our public dataset. In the future, we will not
use the /16 IP space exclusively for the honeypot. Instead,
we may start deploying a small number of legitimate servers,
using random IP addresses, in the IP space. These legitimate
computers act as canaries and allow us to assess how they
perform under heavy attack related traffic.

8 Related Work
This section discusses prior work in honeypot design, secu-

rity auditing, black hole router, and alert sharing networks.
Honeypots. HoneyStat has been deployed for local worm

detection. However, 1) it is deployed on local networks
whereas ours is deployed on NCSA’s global peer-to-peer shar-
ing infrastructure; and 2) it only carries out logit analysis
for worm detection, and thus lacks a mechanism for protect-
ing inner network infrastructure from honeypot intrusions,
while NCSA applies auditing tools to preempt compromises
based on honeypot intrusion data [63]. John et al. [64] de-
ployed Web honeypots in a university network, which at-
tracted ∼ 44,000 attacker visits from ∼ 6,000 distinct IPs,
which inspired NCSA’s honeypot deployment in a similar
campus deployment environment. However, NCSA’s hon-
eypot traffic is at least 1,000 times greater. With that rela-
tively limited attack surface, John et al.’s honeypots rely on
other Web pages with high page ranks and dynamic linking
of search engines to attract up-to-date or zero-day attacks.
Therefore, our non-interactive honeypot is scalable: it can
handle an order of magnitude more attack attempts compared
to interactive honeypot such as Kippo [34], which is also
more expensive to maintain and pose an unnecessary risk to
our system. Such interactive honeypots allow attackers to in-
teract with a shell: thus, they require more resources and need
careful network configuration (blocking of new outgoing con-
nections) to isolate attackers. There have also been studies in
VoIP honeypots [65,66]. The main limitation of [65] is a lack
of decisions in reaction to attackers, compared to the NCSA
honeypot’s deployment of real-time decision infrastructure
based on the collected data from the honeypots. [66] has only
been implemented in a preliminary stage; it has not been
deployed on a large scale, and its honeypots do not maintain
interactions with the rest of the security components, leading
to delayed enforcement of security policies in response to
real-time dynamic attacks.

Provos [21] presented a framework that simulates virtual
honeypots and Vrable et al. [22] built a prototype of vir-
tual honeyfarm system, both in opposition to a physical one,
with Varable’s honeyfarm system motivated NCSA’s honey-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 677

pot deployment. Provo’s work was driven by the IP space
limitations placed on traditional physical honeypots, and that
is not an issue for the NCSA honeypot. [67] looked into the
effectiveness of building deceptive honeypots within a virtual
environment that uses Linux containers. However, [11] illus-
trated the limitations of these virtual honeypots from both
attackers, and system architecture’s points of view. 1) From
the attackers’ viewpoint, there is ease of detection without any
privileges; and 2) in the underlying system architecture, there
were fundamental flaws in virtualization. Other honeypots in
the literature have inspired our design decisions. However,
their source codes are typically not available for immediate
use.

Security auditing. In [68], the testbed is embedded in
the production network, while our system runs with the real
production traffic that includes a mixture of attack and benign
traffic in a large-scale deployment: [69] emulated a wider
range of virtual topologies, not just physical hardware but
only to the extent of more than a thousand virtual nodes; the
NCSA honeypot scales well, such that one physical server
takes all the loads of attacks from 65,536 virtualized servers.
It will likely be beneficial to apply the automated network
monitoring tools [70, 71] to prioritize and customize the net-
work flows [72] of the honeypot data; and to extend tech-
niques in [73] to formally verify authentic SSH login flows.

Routing malicious traffic. Yu et al. proposed a precise
network instrumentation framework to mitigate malicious traf-
fic, e.g., by forcing the user to change the default password
of an IoT device [70] instead of redirecting the user to the
null route as it is done in our approach. Wu et al. presented a
packet filter [74] with low filter update latency and high-speed
packet processing. 007 is an application deployed to diagnose,
detect, and trace source causes for TCP connection packet
drops [75]. APUNet integrated GPU in APU platforms to ac-
celerate packet processing in network applications [76], while,
on the other hand, Netmap enables rapid network packet de-
livery without requiring for customized hardware or modified
applications [77]. Sarma et al. broadened the availability
of hardware switches for network resource allocation algo-
rithms, thus making the implementations of network protocols
more flexible [78]. To achieve easier and more efficient net-
work flow processing development in stateful middleboxes,
Jamshed et al. designed and implemented a reusable network
stack [79].

Network auditors or scanners. Compared to ZMap, for
which analyses of new protocols were performed on random
samples [23], NCSA’s honeypot has adopted a more intelli-
gent scanning methodology that subscribes to new protocols
logged by IDS to incrementally discover newly added SSH
servers, therefore lowering the burden of probe traffic on the
production network.

Alert-sharing network. R-cisc is a cybersecurity sharing
center for retail ecosystem [26]. However, unlike NCSA’s
sharing network, that sharing center shares security incident

data among retail sites in a manner that is neither real-time
nor encrypted. The publish of new threats in Facebook Threa-
tExchange [80] is not automated. However, it is promising to
integrate NCSA’s alert-sharing network with Facebook Threa-
tExchange and IBM X-Force to make use of the APIs for
threat intelligence sharing [80, 81].

9 Conclusion
This paper presents the operational experiences with the

proposed framework at the National Center for Supercomput-
ing Applications. Our experience over 463 days shows that
CAUDIT successfully blocks an average of 57 million attack
attempts on a daily basis by using the proposed BHR. This
represents a 66× reduction in the number of SSH attempts
compared to the daily average, and has reduced 78% of the
traffic to the internal network-security-monitoring infrastruc-
ture. We posit that the measurements and insights presented
in this paper can be used to propose new research directions
in IDS systems deployed in adversarial environments.

10 Code and Data Availability
We have open-sourced CAUDIT’s implementation and its

dataset at https://pmcao.github.io/caudit.

Acknowledgement
We thank the NCSA security team, students participated

in the SDAIA project, and the partnering sites for supporting
CAUDIT operational deployment; DEPEND group members,
anonymous reviewers, and our shepherd, Prof. Vyas Sekar,
for providing valuable feedback; and Ms. Jenny Applequist
for proofreading. This material is based upon work sup-
ported by the National Science Foundation under Grant No
1535070,1547249. The opinions, findings, and conclusions
stated herein are those of the authors and do not necessarily
reflect those of the sponsors.

678 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://pmcao.github.io/caudit

References
[1] Theophilus Benson, Aditya Akella, and David A Maltz.

Unraveling the complexity of network management. In
NSDI, pages 335–348, 2009.

[2] Taous Madi, Suryadipta Majumdar, Yushun Wang, Yosr
Jarraya, Makan Pourzandi, and Lingyu Wang. Auditing
security compliance of the virtualized infrastructure in
the cloud: Application to openstack. In Proceedings
of the Sixth ACM Conference on Data and Application
Security and Privacy, pages 195–206. ACM, 2016.

[3] Nicholas DeMarinis, Stefanie Tellex, Vasileios Ke-
merlis, George Konidaris, and Rodrigo Fonseca. Scan-
ning the internet for ros: A view of security in robotics
research. arXiv preprint arXiv:1808.03322, 2018.

[4] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj
Agarwal, and Chenren Xu. Handling a trillion (unfix-
able) flaws on a billion devices: Rethinking network
security for the internet-of-things. In Proceedings of the
14th ACM Workshop on Hot Topics in Networks, page 5.
ACM, 2015.

[5] Have i been pwned, 2018. https://haveibeenpwned.
com/.

[6] Phuong Cao, Eric Badger, Zbigniew Kalbarczyk, Rav-
ishankar Iyer, and Adam Slagell. Preemptive intrusion
detection: Theoretical framework and real-world mea-
surements. In Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security, page 5. ACM,
2015.

[7] You’re already compromised: Exposing ssh as an attack
vector, 2016. https://www.cisco.com/c/en/us/
about/security-center/ssh-honeypot.html.

[8] Drawing the foul: Operation of a ddos honeypot,
2017. https://www.usenix.org/conference/
enigma2017/summit-program/presentation/
drawing-foul-operation-ddos-honeypot.

[9] Ping Wang, Lei Wu, Ryan Cunningham, and Cliff C
Zou. Honeypot detection in advanced botnet attacks.
International Journal of Information and Computer Se-
curity, 4(1):30–51, 2010.

[10] Payas Gupta, Bharat Srinivasan, Vijay Balasubra-
maniyan, and Mustaque Ahamad. Phoneypot: Data-
driven understanding of telephony threats. In NDSS,
2015.

[11] Maximillian Dornseif, Thorsten Holz, and Und Sven
Müller. Honeypots and limitations of deception. 2005.

[12] Vladimir B Oliveira, Zair Abdelouahab, Denivaldo
Lopes, Mario H Santos, and Valéria P Fernandes. Hon-
eypotlabsac: a virtual honeypot framework for android.
International Journal of Computer Networks & Commu-
nications, 5(4):159, 2013.

[13] Todd Hoff. Netflix: Continually test by failing servers
with chaos monkey, 2010.

[14] Yury Izrailevsky and Ariel Tseitlin. The netflix simian
army. The Netflix Tech Blog, July, 2011.

[15] Catello Di Martino, Ugo Giordano, Nishok Mo-
hanasamy, Stefano Russo, and Marina Thottan. In pro-
duction performance testing of sdn control plane for
telecom operators. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), pages 642–653. IEEE, 2018.

[16] The bro network security monitor. 2018. https://
bro.org.

[17] Yu-Ming Ke, Chih-Wei Chen, Hsu-Chun Hsiao, Adrian
Perrig, and Vyas Sekar. Cicadas: congesting the internet
with coordinated and decentralized pulsating attacks. In
Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pages 699–
710. ACM, 2016.

[18] Mobin Javed and Vern Paxson. Detecting stealthy, dis-
tributed ssh brute-forcing. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security, pages 85–96. ACM, 2013.

[19] Ryan J. McCaughey. Deception using an ssh honeypot.

[20] D M’raihi, M Bellare, F Hoornaert, D Naccache, and
O Ranen. Hotp: An hmac-based one-time password
algorithm. Technical report, 2005.

[21] Niels Provos et al. A virtual honeypot framework. In
USENIX Security Symposium, volume 173, pages 1–14,
2004.

[22] Michael Vrable, Justin Ma, Jay Chen, David Moore,
Erik Vandekieft, Alex C Snoeren, Geoffrey M Voelker,
and Stefan Savage. Scalability, fidelity, and containment
in the potemkin virtual honeyfarm. In ACM SIGOPS
Operating Systems Review, volume 39, pages 148–162.
ACM, 2005.

[23] Zakir Durumeric, Eric Wustrow, and J Alex Halderman.
Zmap: Fast internet-wide scanning and its security ap-
plications. In USENIX Security Symposium, volume 8,
pages 47–53, 2013.

[24] Warren Kumari and Danny McPherson. Remote trig-
gered black hole filtering with unicast reverse path for-
warding (urpf). Technical report, 2009.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 679

https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://www.cisco.com/c/en/us/about/security-center/ssh-honeypot.html
https://www.cisco.com/c/en/us/about/security-center/ssh-honeypot.html
https://www.usenix.org/conference/enigma2017/summit-program/presentation/drawing-foul-operation-ddos-honeypot
https://www.usenix.org/conference/enigma2017/summit-program/presentation/drawing-foul-operation-ddos-honeypot
https://www.usenix.org/conference/enigma2017/summit-program/presentation/drawing-foul-operation-ddos-honeypot
https://bro.org
https://bro.org

[25] Andreas Kuehn and Milton Mueller. Analyzing bug
bounty programs: An institutional perspective on the
economics of software vulnerabilities. 2014.

[26] R-cisc, 2018. https://r-cisc.org/
#homeResources.

[27] Catello Di Martino, Zbigniew Kalbarczyk, Ravis-
hankar K Iyer, Fabio Baccanico, Joseph Fullop, and
William Kramer. Lessons learned from the analysis of
system failures at petascale: The case of blue waters. In
Dependable Systems and Networks (DSN), 2014 44th
Annual IEEE/IFIP International Conference on, pages
610–621. IEEE, 2014.

[28] Nds services. 2018. https://wiki.ncsa.illinois.
edu/display/NDS/NDS+Services.

[29] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan,
Kurt Thomas, and Yi Zhou. Understanding the mirai
botnet. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1093–1110, Vancouver, BC, 2017.
USENIX Association.

[30] Fermi national accelerator laboratory, 2018. http://
www.fnal.gov/.

[31] Antonio Pecchia, Aashish Sharma, Zbigniew Kalbar-
czyk, Domenico Cotroneo, and Ravishankar K Iyer.
Identifying compromised users in shared computing in-
frastructures: A data-driven bayesian network approach.
In 2011 30th IEEE International Symposium on Reliable
Distributed Systems, pages 127–136. IEEE, 2011.

[32] Aashish Sharma, Zbigniew Kalbarczyk, James Barlow,
and Ravishankar Iyer. Analysis of security data from a
large computing organization. 2011.

[33] Iforge cluster, 2018. http://www.ncsa.illinois.
edu/industry/iforge.

[34] Kippo - ssh honeypot, 2016. https://github.com/
desaster/kippo.

[35] Cláudia J Barenco Abbas, L Javier García Villalba, and
Victoria López López. Implementation and attacks anal-
ysis of a honeypot. In International Conference on Com-
putational Science and Its Applications, pages 489–502.
Springer, 2007.

[36] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, Bob Lantz, and Nick McKeown. Reproducible
network experiments using container-based emulation.
In Proceedings of the 8th international conference on

Emerging networking experiments and technologies,
pages 253–264. ACM, 2012.

[37] Phuong Cao, Eric C Badger, Zbigniew T Kalbarczyk,
and Ravishankar K Iyer. A framework for generation,
replay, and analysis of real-world attack variants. In
Proceedings of the Symposium and Bootcamp on the
Science of Security, pages 28–37. ACM, 2016.

[38] Cuong Pham, Zachary J Estrada, Phuong Cao, Zbigniew
Kalbarczyk, and Ravishankar K Iyer. Building reliable
and secure virtual machines using architectural invari-
ants. IEEE Security & Privacy, 12(5):82–85, 2014.

[39] Cuong Pham, Zachary Estrada, Phuong Cao, Zbigniew
Kalbarczyk, and Ravishankar K Iyer. Reliability and
security monitoring of virtual machines using hardware
architectural invariants. In Dependable Systems and
Networks (DSN), 2014 44th Annual IEEE/IFIP Interna-
tional Conference on, pages 13–24. IEEE, 2014.

[40] Robert P Goldberg. Architecture of virtual machines.
In Proceedings of the workshop on virtual computer
systems, pages 74–112. ACM, 1973.

[41] man page for passwd, 2018. https://www.unix.com/
man-page/linux/1/passwd/.

[42] Ssh server auditing, 2018. https://github.com/
arthepsy/ssh-audit.

[43] Gordon Fyodor Lyon. Nmap network scanning: The
official Nmap project guide to network discovery and
security scanning. Insecure, 2009.

[44] Aashish Sharma, Zbigniew Kalbarczyk, R Iyer, and
James Barlow. Analysis of credential stealing attacks in
an open networked environment. In Network and System
Security (NSS), 2010 4th International Conference on,
pages 144–151. IEEE, 2010.

[45] fail2ban, 2018. https://www.fail2ban.org/wiki/
index.php/Main_Page.

[46] Liang Zhang, David Choffnes, Dave Levin, Tudor Du-
mitras, Alan Mislove, Aaron Schulman, and Christo
Wilson. Analysis of ssl certificate reissues and revoca-
tions in the wake of heartbleed. In Proceedings of the
2014 Conference on Internet Measurement Conference,
pages 489–502. ACM, 2014.

[47] Bpf and xdp reference guide, 2018. https://cilium.
readthedocs.io/en/latest/bpf/.

[48] Gianluca Insolvibile. Kernel korner: Inside the linux
packet filter. Linux journal, 2002(94):7, 2002.

680 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://r-cisc.org/#homeResources
https://r-cisc.org/#homeResources
https://wiki.ncsa.illinois.edu/display/NDS/NDS+Services
https://wiki.ncsa.illinois.edu/display/NDS/NDS+Services
http://www.fnal.gov/
http://www.fnal.gov/
http://www.ncsa.illinois.edu/industry/iforge
http://www.ncsa.illinois.edu/industry/iforge
https://github.com/desaster/kippo
https://github.com/desaster/kippo
https://www.unix.com/man-page/linux/1/passwd/
https://www.unix.com/man-page/linux/1/passwd/
https://github.com/arthepsy/ssh-audit
https://github.com/arthepsy/ssh-audit
https://www.fail2ban.org/wiki/index.php/Main_Page
https://www.fail2ban.org/wiki/index.php/Main_Page
https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.readthedocs.io/en/latest/bpf/

[49] Recommendation for pair-wise key establish-
ment schemes using discrete logarithm cryp-
tography, 2018. https://csrc.nist.gov/
CSRC/media/Publications/sp/800-56a/rev-
3/draft/documents/sp800-56ar3-draft.pdf.

[50] Pieter Hintjens. ZeroMQ: messaging for many applica-
tions. " O’Reilly Media, Inc.", 2013.

[51] Sushant Jain, Michael Demmer, Rabin Patra, and Kevin
Fall. Using redundancy to cope with failures in a delay
tolerant network. In ACM SIGCOMM Computer Com-
munication Review, volume 35, pages 109–120. ACM,
2005.

[52] Joe DeBlasio, Stefan Savage, Geoffrey M Voelker, and
Alex C Snoeren. Tripwire: Inferring internet site com-
promise. In Proceedings of the 2017 Internet Measure-
ment Conference, pages 341–354. ACM, 2017.

[53] Phuong Cao, Hongyang Li, Klara Nahrstedt, Zbigniew
Kalbarczyk, Ravishankar Iyer, and Adam J Slagell. Per-
sonalized password guessing: a new security threat. In
Proceedings of the 2014 Symposium and Bootcamp on
the Science of Security, page 22. ACM, 2014.

[54] Laurens van der Maaten and Geoffrey Hinton. Visu-
alizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[55] Censys, 2018. https://censys.io/.

[56] Ssh bad keys, 2017. https://github.com/rapid7/
ssh-badkeys.

[57] Verizon RISK Team and R Team. 2018 data breach
investigations report. 2018.

[58] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[59] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 101–114. ACM, 2016.

[60] Seyed Kaveh Fayaz, Yoshiaki Tobioka, Vyas Sekar, and
Michael Bailey. Bohatei: Flexible and elastic ddos
defense.

[61] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan
Ford, Michio Honda, Fabien Duchene, Olivier Bonaven-
ture, and Mark Handley. How hard can it be? de-
signing and implementing a deployable multipath tcp.

In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 29–
29. USENIX Association, 2012.

[62] Cuong Pham, Phuong Cao, Zbigniew Kalbarczyk, and
Ravishankar K Iyer. Toward a high availability cloud:
Techniques and challenges. In Dependable Systems and
Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd
International Conference on, pages 1–6. IEEE, 2012.

[63] David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee, Ju-
lian Grizzard, John Levine, and Henry Owen. Honeystat:
Local worm detection using honeypots. In International
Workshop on Recent Advances in Intrusion Detection,
pages 39–58. Springer, 2004.

[64] John P John, Fang Yu, Yinglian Xie, Arvind Krishna-
murthy, and Martín Abadi. Heat-seeking honeypots:
design and experience. In Proceedings of the 20th inter-
national conference on World wide web, pages 207–216.
ACM, 2011.

[65] Mohamed Nassar, Radu State, and Olivier Festor. Voip
honeypot architecture. In 2007 10th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management,
pages 109–118. IEEE, 2007.

[66] Rodrigo Do Carmo, Mohamed Nassar, and Olivier Fes-
tor. Artemisa: An open-source honeypot back-end to
support security in voip domains. In Integrated Net-
work Management (IM), 2011 IFIP/IEEE International
Symposium on, pages 361–368. IEEE, 2011.

[67] Alexander Kedrowitsch, Danfeng Daphne Yao, Gang
Wang, and Kirk Cameron. A first look: Using linux
containers for deceptive honeypots. In Proceedings of
the 2017 Workshop on Automated Decision Making for
Active Cyber Defense, pages 15–22. ACM, 2017.

[68] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Ap-
penzeller, Martin Casado, Nick McKeown, and Guru M
Parulkar. Can the production network be the testbed?
In OSDI, volume 10, pages 1–6, 2010.

[69] M Hibler R Ricci L Stoller, Jonathon Duerig, Shashi
Guruprasad, Tim Stack, Kirk Webb, and Jay Lepreau.
Large-scale virtualization in the emulab network testbed.
In USENIX Annual Technical Conference, Boston, MA,
2008.

[70] Tianlong Yu, Seyed Kaveh Fayaz, Michael P Collins,
Vyas Sekar, and Srinivasan Seshan. Psi: Precise security
instrumentation for enterprise networks. 2017.

[71] Michael Golightly and Jack Brassil. Automating net-
work monitoring on experimental testbeds. In CSET,
2011.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 681

https://csrc.nist.gov/CSRC/media/Publications/sp/800-56a/rev-3/draft/documents/sp800-56ar3-draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-56a/rev-3/draft/documents/sp800-56ar3-draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-56a/rev-3/draft/documents/sp800-56ar3-draft.pdf
https://censys.io/
https://github.com/rapid7/ssh-badkeys
https://github.com/rapid7/ssh-badkeys

[72] Kimberly C. Claffy, H-W Braun, and George C. Polyzos.
A parameterizable methodology for internet traffic flow
profiling. IEEE Journal on selected areas in communi-
cations, 13(8):1481–1494, 1995.

[73] Shuo Chen, Matt McCutchen, Phuong Cao, Shaz
Qadeer, and Ravishankar K Iyer. Svauth–a single-sign-
on integration solution with runtime verification. In In-
ternational Conference on Runtime Verification, pages
349–358. Springer, 2017.

[74] Zhenyu Wu, Mengjun Xie, and Haining Wang. Swift:
A fast dynamic packet filter. In NSDI, volume 8, pages
279–292, 2008.

[75] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hingqiang Liu, Jitu Padhye, Boon Thau Loo, and Ge-
off Outhred. 007: Democratically finding the cause of
packet drops. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
18). USENIX Association, 2018.

[76] Younghwan Go, Muhammad Asim Jamshed, Young-
Gyoun Moon, Changho Hwang, and KyoungSoo Park.
Apunet: Revitalizing gpu as packet processing accelera-
tor. In NSDI, pages 83–96, 2017.

[77] Luigi Rizzo. Netmap: a novel framework for fast packet
i/o. In 21st USENIX Security Symposium (USENIX
Security 12), pages 101–112, 2012.

[78] Naveen Kr Sharma, Antoine Kaufmann, Thomas E An-
derson, Arvind Krishnamurthy, Jacob Nelson, and Si-
mon Peter. Evaluating the power of flexible packet
processing for network resource allocation. In NSDI,
pages 67–82, 2017.

[79] Muhammad Asim Jamshed, YoungGyoun Moon,
Donghwi Kim, Dongsu Han, and KyoungSoo Park. mos:
A reusable networking stack for flow monitoring mid-
dleboxes. In NSDI, pages 113–129, 2017.

[80] Getting started with threatexchange, 2018. https:
//developers.facebook.com/docs/threat-
exchange/getting-started/v3.1.

[81] Ibm x-force, 2018. https://www.ibm.com/
security/xforce.

682 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://developers.facebook.com/docs/threat-exchange/getting-started/v3.1
https://developers.facebook.com/docs/threat-exchange/getting-started/v3.1
https://developers.facebook.com/docs/threat-exchange/getting-started/v3.1
https://www.ibm.com/security/xforce
https://www.ibm.com/security/xforce

Dataplane equivalence and its applications

Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu and Costin Raiciu
firstname.lastname@cs.pub.ro

University Politehnica of Bucharest

Abstract
We present the design and implementation of netdiff, an
algorithm that uses symbolic execution to check the equiva-
lence of two network dataplanes modeled in SEFL [42]. We
use netdiff to find new bugs in Openstack Neutron, to test
the differences between related P4 programs and to check
the equivalence of FIB updates in a production network. Our
evaluation highlights that equivalence is an easy way to find
bugs, scales well to relatively large programs and uncovers
subtle issues otherwise difficult to find.

1 Introduction

Misconfigured or faulty networks ground airplanes, strand-
ing thousands of passengers and render online services inac-
cessible for hours on end, leading to disgruntled users and
massive losses in revenue. Network verification promises
to fix such rare yet devastating problems by ensuring that
networks always follow their operator’s stated policy. Ver-
ification proposals can uncover faulty dataplane configura-
tions [19, 29, 42, 30, 20], can simulate the effect of control
plane changes (such as configuration changes) before they
are applied [8, 11, 4] or inject these changes into an emulated
clone of the live network to examine their effects [26]. The
key behind the success of network verification in traditional
networks is the simplicity of the policy, a mix of reachabil-
ity and isolation constraints that administrators can readily
specify once and verify recurrently.

As networks become more dynamic and programmable,
both ensuring network correctness and specifying policy are
significantly harder. Virtual networks are instantiated dy-
namically in cloud networks on tenant demand by massive
software stacks, potentially developed by multiple players
(e.g. Openstack); here, the key challenge is to ensure that
tenant demands are implemented correctly and that tenant
traffic is properly isolated from other tenants.

Languages such as P4 [5] or Flowblaze [34] allow the im-
plementation of customized packet processing logic that can
be deployed and run at wire speeds on real switch hardware
(e.g. Barefoot’s Tofino). Specifying the behavior of pro-
grammable dataplanes entails specifying the expected output
packet(s) for every possible input packet; such a specification
relies on formal methods and expert time [38, 35, 46], being
out of reach of network administrators and programmers.

We observe that, in many cases, dataplane correctness
properties can be specified implicitly by equivalence to other
dataplanes. A P4 programmer might need to restructure

or trim his program to meet the target switch constraints
[16, 39] while preserving the functionality. In cloud comput-
ing, the abstract network configuration provided by tenants
(e.g. two VMs connected via a L2 network) is translated by
the cloud management software into an actual configuration
for switches and routers that must offer equivalent function-
ality to the two VMs. Finally, a network administrator that
knows his network behaves correctly1 simply wants the net-
work to behave in the same way in the future.

Checking equivalence could therefore be very useful for
easy-to-use verification of modern dataplanes. Unfortu-
nately, checking equivalence between arbitrary programs is
a well-known undecidable problem. Variants of it, however,
are decidable for domain-specific programming languages;
in the networking field, NetKAT [3], NOD[29] and HSA [19]
support various forms of equivalence checking. These lan-
guages, however, are not expressive or not efficient enough
to check programmable dataplanes such as P4.

In this paper we show that checking equivalence is pos-
sible for programmable dataplanes and that it scales well
enough to uncover many interesting bugs. netdiff, our pro-
posed algorithm, is implemented on top of the Symnet sym-
bolic execution engine and can test the equivalence of two
network dataplanes expressed in the SEFL language [42].
We formally prove netdiff correctly decides if two data-
planes are equivalent when they do not contain infinite loops;
we rely on prior work to detect infinite loops [43].

We have used netdiff to find bugs in Neutron, Open-
Stack’s cloud management software networking driver, by
checking the equivalence of tenant configurations and the
low-level implementation of those configurations. We have
found ten implementation bugs in Neutron, three of which
were unknown, and four configuration bugs. We have also
used netdiff to check that P4 program optimizations pre-
serve correctness, to test different dataplane models of the
same network functionality are equivalent, to detect routing
changes in a university network and to check that a FatTree
instance behaves like a single, big switch. netdiff runs all
these tasks in seconds/minutes. Finally, to enable scalability
to a large Neutron deployment, we rely on a compositional
verification approach where we test equivalence for indepen-
dent components in isolation.

2 Goals
Network dataplane equivalence has many potential applica-
tions, a subset of which we explore in detail in §6. To guide
our exposition, we use as running example the code snippets

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 683

If (TTL>1) TTL--;
Else Fail;

If (dst in 10.10.0.1/32)
Forward("if0");

Else If (dst in 10.10.0.0/16)
Forward("if0");

Else If (dst in 10.0.0.0/8)
Forward("if1");

Else Fail;

dst	 in	 10.10.0.1/32&&TTL>0	 	 	

Path	 2:	 dst	 in	 10.10/16&&TTL>0	
&&	 dst	 not	 in	 10.10.0.1/32	

Path	 3:	 dst	 in	 10/8	 &&	 TTL>0	
dst	 not	 in	 10.10.0.0/16	 &&	
dst	 not	 in	 10.10.0.1/32	 Path	 5:	 dst	 not	 in	 10/8	

dst	 not	 in	 10.10/16	 &&	
dst	 not	 in	 10.10.0.1/32	

X	
X	

TTL-‐-‐	
if0	

if1	

Path	 1:	

Path	 4:TTL==0	 	

(a) Basic router coded with If/Else: code(left) symbex(right)

TTL--;
Constrain(TTL>0);

Fork (
Path1 {
Constrain(dst in 10.10.0.0/16);
Forward("if0");}

Path2 {
Constrain(dst in 10.0.0.0/8);
Forward("if1");})

if0	

if1	

Path	 1:	 dst	 in	 	
10.10/16	 &&	 TTL	 >0	
	

Path	 2:	 dst	 in	 	
10.0.0.0/8	 &&	 TTL>0	

(b) Optimized router: code(l) symbex(r)
Figure 1: Two SEFL programs modeling a router with three entries in its FIB. Are they equivalent?

in Figure 1 that model a router with three FIB entries; the
code is adapted from [42]. Despite its simplicity, the exam-
ple highlights well the difficulty of equivalence checking.

The first program is simple to understand as it relies on a
sequence of If/Else clauses that forward the packet to the
correct output port; there is one If per FIB entry. The second
program is optimized to enable faster dataplane verification:
it does not use If instructions at all, first Forking the packet
(i.e. creating clones of it) and then using the Constrain in-
struction for each clone to restrict the packets that may leave
on each port. Constrain drops all packets that do not match
the constraint and has no effect on packets that do.

The two programs are meant to be equivalent; informally
this means that injecting any packet into equivalent input
ports of the two programs (e.g. in) will result in both
dropping the packet, or both emitting the same packet(s) on
equivalent output ports. Even though the two programs seem
trivial, checking their equivalence is not possible today.

Our goal is to automatically and scalably decide if two dat-
aplane programs are equivalent.

Before we discuss possible solutions, we first give a for-
mal definition of equivalence. Let Prog denote the set of
programs - defined as mappings (functions) between Ports
(function names) and instructions. Let Packet denote the set
of all admissible input packets. Injecting a packet p into
a program prog at port port0 will result in a set of output
packet and port pairs O(prog, p,port0) defined as follows.

Definition 2.1 Let O : Prog×Packet×Ports→ 2Packet×Ports:

O(prog, p, port0) = {(σ1, port1),(σ2, port2), ...,(σn, portn)}

be the set of packet and output port pairs resulting from the
execution of prog given packet p on input port port0.

We define network equivalence as follows:

Definition 2.2 Let p∈Packet an input packet, P1,P2 ∈Prog,
Ports1 and Ports2 the program ports of P1 and P2 respec-
tively. Let I and R be partial injective functions between
Ports1 and Ports2 called input and output port correspon-
dence respectively.
We call programs P1 and P2 equivalent with respect to in-
put packets Q ⊆ Packet, input ports port1 ∈ Ports1 and

port2 ∈ Ports2 s.t. I (port1) = port2 and output rela-
tion ω ⊆ Packet×Packet iff ∀p ∈ Q, ∃χ bijection between
O(P1, p, port1) and O(P2, p, port2) s.t.

χ(σ1i, pc1i) =
(
σ2 j, pc2 j

)
⇐⇒

R(pc1i) = pc2 j ∧ (σ1i,σ2 j) ∈ ω

Definition 2.3 We call P1 and P2 equivalent with respect to
Q⊆Packet and ω ⊆Packet×Packet iff ∀(port1, port2)∈I
P1 and P2 are equivalent w.r.t. Q, port1, port2 and ω .

Intuitively, the above definition goes to say that given the
same input packet, the number of output packets from both
programs coincide and there must be a one-to-one correspon-
dence between packets emitted by both programs. Also,
packets in correspondence must satisfy the output packet
condition ω , which typically requires that the values of se-
lected header fields in the two packets are equal.

It is the verifier who provides I , R and ω . For example,
in Figure 1, R maps i f 0 and i f 1 in a) to ports with the same
name in b) and I maps the input port in a) to that in b).
ω usually identifies a subset of header fields which must be
equal. In our running example, two packets are equivalent
if the ttl and dst fields are equal. In our evaluation, we use
sensible defaults for these functions - L2, L3 and L4 fields.

3 Approaches to checking equivalence

Exhaustive testing for all inputs is one way to test equiva-
lence, but it is not feasible to use in practice for networks:
network headers size are 64B or more, meaning that one
needs to test 2512 possible packets.

Existing work on dataplane verification allows us to scal-
ably explore how packets are processed by a dataplane
[19, 3, 29, 20, 42, 7, 30]. Intuitively, all these works try
to find equivalence classes of packets that are handled in the
same way, and explore their processing in one go; as long
as the number of such classes is small, these tools can fully
characterize dataplane processing without needing to explore
each individual packet. We will take the same approach to
answer whether two dataplanes are equivalent.

To enable scalability, all dataplane analysis tools restrict
the language in which the dataplane can be described, place
additional constraints on possible encapsulations and use op-
timized data structures to track packet equivalence classes.

684 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

All these choices limit the extent to which we can check
equivalence; we will come back to these limitations after we
discuss the equivalence properties we seek to capture.

All dataplane verification tools are able to predict the al-
lowed values of packet header fields as they exit a given net-
work port. The simplest way to check equivalence is to com-
pare which packets can exit any given port by examining the
feasible values for each header field—we call this output
equivalence.

In the example in Figure 1, consider the two if1 ports:
compared to the basic model, the optimized model wrongly
allows more packets to pass (packets in 10.10.0.0/16), so
the two paths are not equivalent, and thus the models are
not equivalent for ports if1. If, however, we consider
the two if0 ports, we find that TTL ∈ (0,255] and dst
∈ 10.10.0.0/16, thus the two paths are equivalent.

The careful reader will have noticed that the two routers
differ in how they treat packets when TTL is 0. The basic
router will drop the packet straightaway. However, the opti-
mized router will decrement the TTL regardless of its value,
and when it is zero it will wrap around to 255 as TTL is un-
signed — thus, the constraint TTL> 0 always holds. The two
models are not equivalent, but checking just output equiva-
lence is not enough to capture this problem.

The next step is to also check the constraints applied on the
original (input) values of the header fields, before any modi-
fications are made; when combined with output equivalence
checking, we are now checking for input and output equiv-
alence. With input/output equivalence, we will find that the
basic model only allows packets to pass when TTL> 1 while
the optimized model allows packets when TTL6= 1; as the two
ranges are not the same, the two models are not equivalent.

Checking for input/output equivalence is necessary to find
bugs, but on its own it is still not sufficient. To see why
this is the case, consider two trivial models where one leaves
the TTL field unchanged, while the other executes the in-
struction T T L = 255−T T L. Both the input values (0-255)
and the possible output values (0-255) of the two models are
the same, yet they are obviously not equivalent. What we
also need is functional equivalence: regardless of the initial
value of the TTL, the two values of the TTL after execut-
ing the two programs should always be equal. In our exam-
ple, functional equivalence is not true because the condition
T T L = 255−T T L never holds.

Note that all three checks are simultaneously needed to
ensure equivalence: removing a single check leads to wrong
results. We have already shown that input/output equivalence
is not sufficient and functional equivalence is needed. Let’s
show that any combinations of two checks is insufficient.

Do functional and output equivalence imply two models
are equivalent? Consider one program that simply sets TTL
= 0, and another that runs Constrain(TTL>100);TTL=0.
The output is always 0, and for any allowed packet we have
both functional and output equivalence. Yet, the first model

Algorithm Equivalence ExpressivenessInput Output Func.
HSA[19], Veriflow[20] 3 3 7 forward,filter
NetKAT [3] 3 3 3 switch,filter
NOD [29] 3 7 7∗ forward,filter,tunnel
Dobrescu[7],Symnet[42]
UC-KLEE[36]

3 7 3 programmable dat-
aplane (e.g. P4)

Table 1: Checking equivalence with existing tools.

allows all packets through, while the second only allows
those with TTL>100; the programs are not equivalent.

Input and functional equivalence are also insufficient.
Compare a NoOp program with one that forks the packet.
These two are equivalent from an input and functional point
of view, however they are not equivalent on output: the first
emits a single packet while the secqond emits two.

3.1 Existing solutions fall short

Existing dataplane verification tools (see Table 1), cannot
check equivalence for programmable dataplanes. Header
Space Analysis [19] and Veriflow [19] optimize for
OpenFlow-like processing by tracking equivalence classes
of packets through the network. Both are fast and their out-
puts can be fed to SMT solvers to check for output and input
equivalence. Unfortunately, they do not track (symbolic) as-
signments and cannot scalably check functional equivalence.

NetKAT [3] offers a strong theoretical foundation to
OpenFlow verification by reducing it to a Kleene algebra
with tests. They show that equivalence is decidable in this
algebra, and offer an efficient equivalence checking algo-
rithm [9]. Compared to HSA and Veriflow, NetKAT sup-
ports assignment but lacks support for arithmetic operations.
As such, it cannot express programmable dataplanes.

Network-optimized datalog [29] uses datalog to express
network processing and policies. NOD is more expressive
than prior tools because it also supports arbitrary tunnels, and
checking equivalence is just another datalog query that can
be fed to Z3 [6]. On the downside, it is very difficult to use
datalog queries to reason about packet multiplicity on vari-
ous ports. Furthermore, NOD’s difference-of-cubes is very
inefficient for arithmetic operations, both space-wise 2 and
computation-wise 3. Thus, NOD does not support neither
output nor functional equivalence.

Symbolic execution for network dataplanes has been pro-
posed by Dobrescu et al.[7] and Symnet [42]; it tracks the
symbolic values of header fields and supports assignment,
encapsulation and arithmetic operations. Symbolic execu-
tion is expressive enough to analyze programmable data-
planes as shown by recent work [40, 10, 32]. While symbolic
execution has traditionally been plagued by poor scalability,
applying it to dataplanes has been shown to scale quite well.

Checking dataplane equivalence via symbolic execution is
not supported by [7, 42, 40, 32, 10], but prior work from pro-
gram symbolic execution can be adopted. UC-KLEE is the

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 685

leading proposal [36]: it can check for all types of equiv-
alence for standard programs, but is not expressive enough
to deal with packet duplication, a common primitive in net-
work processing. We present netdiff, our algorithm that
fixes this shortcoming.

4 Dataplane equivalence with netdiff

netdiff uses symbolic execution to show equivalence of
two dataplanes according to definition 2.2. To enable scal-
ability and expressiveness, we consider network dataplanes
written in the SEFL language that only provides a set of basic
instructions such as if then else, a filter (constrain) in-
struction, variable assignments and jumps to predetermined
locations in the program called ports. The specificity of dat-
aplane processing consists in the existence of an additional
cloning instruction (fork in SEFL) which produces multiple
copies of the same packet and pushes them on different paths
through the network.

The symbolic execution state of a dataplane program is
represented by a set of variables (packet header values and
associated per-flow state) and a program counter which in-
dicates the next instruction to be executed. A path through
such a program is a list of program counters. Symbolic ex-
ecution begins at some initial port, takes a packet as input,
where some or all header fields can have symbolic values,
and produces a set of packets issued on output ports. Sym-
bolic execution is a method to exhaustively infer predicates
on the input variables of a program in order for the execution
to take some path [22]. The outcome of symbolic execution
is a set of pairs comprised of a path condition and the cor-
responding path. The path condition is a logical proposition
required by the inputs to a program such that execution will
follow a certain path through the program.

For concreteness, consider Figure 1 where we inject at
router input a packet with symbolic TTL and IP destination
address (dst) fields, meaning they can take any value al-
lowed in their range. The figure shows the symbolic execu-
tion of the two programs in our running example, the result-
ing paths and path conditions.

When a branch condition depends on a symbolic vari-
able, the symbolic execution engine uses a constraint solver
to check if the condition is satisfiable: if it is, the con-
straint is recorded in the path and the execution continues
on the “then” branch (path). At the same time, the engine
checks whether the negated constraint holds, and if it does
it also continues execution on the “else” branch, recording
the negated constraint that must hold. Both paths are now
explored until they finish, independently. For instance, in
the basic router program, the first If branch results in a path
where the TTL is at least 2, then decrements the TTL and
forwards the packet to the appropriate interface(s). The else
path where the TTL is 0 or 1 is also explored, but it stops
immediately because the packet is dropped.

Algorithm 1 netdiff equivalence algorithm
1: function EQUIVALENCE(M1,M2, i1, i2, p0) . Are M1

and M2 equivalent for input symbolic packet described by predicate p0
injected on ports i1 and i2?

2: Q1← DataplaneSymbex(M1, i1, p0)
3: for all (q1,π1) ∈ Q1 do
4: . for each path π1 and path condition q1
5: Q2← DataplaneSymbex(M2, i2,q1)
6: for all (q2,π2) ∈ Q2 do
7: if ¬EQP(π1,π2,q2) then
8: return false
9: end if

10: end for
11: end for
12: return true
13: end function

netdiff, our proposed algorithm, is shown in Algorithm
1 and uses symbolic execution to check for equivalence be-
tween two SEFL programs. netdiff takes as input SEFL
programs M1 and M2 and injects a set of packets given by
predicate p0 into the user-specified input ports i1 of M1 and i2
of M2. The procedure DataplaneSymbex(M, i, p), described
in detail in subsection 4.1, performs symbolic execution for
program M starting at input port i with a symbolic input
given by predicate p on the set of all possible input Packets.
Each π resulting from symbolic execution represents a path-
set, which is an individual path or a set of paths that have the
same path condition q (the latter captures cloned packets).

netdiff follows a similar approach to UC-KLEE [36]:
it performs symbolic execution of M1 (line 2) and then, for
each resulting pathset (q1,π1), performs symbolic execution
of M2 starting with initial symbolic packet described by the
path condition q1 (line 5). The algorithm then compares each
resulting pathset (π2) to (π1) for the packets in q2 (line 7).

netdiff ensures input equivalence by design because
the union of the sets of packets described by all predicates
q2 ∈ Q2 must be equal to the set described by q1, and all
sets described by q2 predicates are disjoint (see Lemma 1).
The EQP predicate’s job is to check for output and functional
equivalence for each pair of outputs. There are two main dif-
ferences between netdiff and UC-KLEE, both stemming
from packet cloning, that we describe in detail below:

1. The fork instruction can result in multiple paths for
the same set of input packets; for netdiff to work cor-
rectly, the standard symbolic execution is followed by
processing that groups output paths that have overlap-
ping path conditions into pathsets (see §4.1).

2. Finding the right path equivalence predicate EQP to re-
flect Definition 2.1 is also tricky. For sequential impera-
tive languages, this predicate is a simple equality check
for the output values of the two paths being compared.
To cope with packet cloning, we need to compare path-
sets instead of individual paths (see §4.2).

686 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2 Dataplane symbolic execution
1: function DATAPLANESYMBEX(M, i, p0) . Run symbolic execution by

injecting the symbolic packet described by predicate p0 in port i.
2: Q← Symbex(M, i, p0)
3: L← /0 . L holds pathsets with disjoint conditions
4: for all (q,π) ∈ Q do . Sieving algorithm to collapse paths
5: for all (l,s) ∈ L do . with overlapping path conditions.
6: if SAT (q∧ l) then
7: L← L\{(l,s)}
8: L← L∪{(q∧ l,s∪π),(l∧¬q,s)}
9: (q,π)← (q∧¬l,π)

10: end if
11: end for
12: if q 6= /0 then
13: L← L∪{(q,π)}
14: end if
15: end for
16: return L
17: end function

4.1 Dataplane symbolic execution

Algorithm 2 shows our dataplane symbolic execution algo-
rithm. On dataplane code, standard symbolic execution Sym-
bex returns tuples of (path condition, path) in the set Q, but
the path conditions are not guaranteed to be disjoint, as they
would be in a standard program. This can be seen in our run-
ning example (Figure 1.b): symbolic execution yields Path 1
and 2 with overlapping path conditions (dst ∈ 10.10/16).

Dataplane symbolic execution performs sieving to elim-
inate path condition overlaps, returning pathsets with dis-
joint path conditions. To achieve this, the algorithm first runs
standard symbolic execution, and then proceeds to group all
paths that have overlapping path conditions (lines 6-9).

The result is collected into L, which starts as the empty
set and always contains pathsets with disjoint path condi-
tions. Whenever there is a path condition overlap (which we
test with Z3), we remove the existing pathset from L and
insert two new pathsets: one containing the overlapping con-
dition q∧ l and the union of the paths, and one corresponding
to original pathset with updated path condition l ∧¬q. The
iteration then continues with the remaining path predicate
(q∧¬l); note that the newly added entries are not revisited.

In the example from Figure 1.b, L has two pathsets:
(10.10/16,{Path1,Path2}) and (10/8\10.10/16,{Path2)}.

The complexity of this algorithm is O(|Q|2); as symbolic
execution can yield many paths, this cost can quickly become
prohibitive. Changes to the symbolic execution procedure to
reduce this cost to be proportional to the number of fork
instructions are part of our future work. Instead, in our im-
plementation we use a heuristic where we only run the algo-
rithm for broadcast packets and disable it for unicast packets;
the user can override this behavior via a command-line flag.

4.2 Equivalence between pathsets

Given pathsets O1 (from M1) and O2 (from M2) and path con-
dition pc, we need to decide if the two pathsets obey func-

Algorithm 3 EQP predicate between two pathsets
1: function EQP(O1,O2, pc). True if bijection between O1 and O2 found
2: . O1 and O2 are pathsets and pc the path condition
3: if |O1| 6= |O2| then
4: return false . If cardinality different, there is no bijection
5: end if
6: E←ComputeEdges(O1,O2, pc)
7: G = (V = (O1 ∪O2),E)
8: return MaxBipartiteMatching(G)
9: end function

Algorithm 4 Edge computation
1: function COMPUTEEDGES(O1,O2, pc) . Return the adjacency matrix
2: . O1 and O2 are pathsets, pc the current path condition
3: for all (σi, pi) ∈ O1 do
4: for all (σ j, p j) ∈ O2 do
5: E[i][j] = piRp j . output port equivalence
6: if E[i][j] then
7: E[i][j] = ¬SAT (pc∧¬(σiωσ j)) . Func. equiv.
8: end if
9: end for

10: end for
11: return E
12: end function

tional and output equivalence.
First, consider the simple case where the two pathsets have

exactly one path each. Let σ1 and σ2 denote the values of the
header fields for the two paths at the output ports, expressed
as constants or functions of the symbolic header values at
input. To decide equivalence according to Definition 2.1 we
must check whether: (1) the two paths exit on equivalent
output ports and (2) the output packet values satisfy the ω

relation (i.e. the header fields of interest are the same for all
input packets described by pc).
netdiff checks equivalence between two paths as follows:
piRp j∧¬SAT (pc∧¬(σ1ωσ2)). The port check is obvious;
the second check asks the solver for an input packet that sat-
isfies pc and results in output packets that are not equivalent.
If the check is not satisfiable, functional equivalence holds
for all packets allowed by path condition pc. In this case,
there is a single path in each pathset and input and functional
equivalence guarantee output equivalence.

Now, consider the case where the two pathsets have differ-
ent number of paths. This implies the two programs are not
equivalent because there is some input packet which results
in a different number of output packets being emitted.

Finally, consider the remaining case where the two path-
sets have the same cardinality N > 1. To check equivalence
we must find a bijective mapping between the paths in O1
and O2, i.e. each path in O1 must have a path in O2 that
is equivalent, and all paths in O2 must have an equivalent
in O1. If such a mapping exists, then the two pathsets are
equivalent, otherwise they are not.

We now show that finding this bijection can be reduced
to the classical problem of maximum bipartite matching
(MBM). MBM takes as input a bipartite graph G = (V =
(X ∪Y),E) with X ∩Y = /0, where X is the set of workers

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 687

and Y is the set of tasks such that |X |= |Y |. If worker i qual-
ifies for job j, there is an edge from i to j, i.e. E[i][j] = 1.
In MBM, no worker can take more than a job; the algorithm
decides whether all workers can get jobs.

The EQP equivalence algorithm is implemented in Algo-
rithms 3 and 4. O1 and O2 are the pathsets to be compared;
their paths will form the vertices of our bipartite graph. We
have an edge between two paths if the paths are matching:
E[i][j] = 1 iff the output ports are corresponding w.r.t. R and
the output packets are equivalent w.r.t. ω . EQP calls MBM
to find whether all paths in O1 have an equivalent in O2.
If the answer is positive. then is a bijection between these
paths which guarantees both functional equivalence and out-
put equivalence. As input equivalence is ensured by the way
in which we run symbolic execution, netdiff correctly de-
cides whether the two programs are equivalent.

The bottleneck in EQP is the necessity of computing the
output equivalence between all pairs of paths in O1 and O2
in order to derive the graph (Algorithm 4, line 6). Comput-
ing satisfiability of a complex formula is a hard problem and
dominates the entire equivalence decision procedure. That is
why our algorithm first checks for output port equivalence;
when this check fails, the solver call in Line 6 is not made.

4.3 Correctness and complexity
It is worth noting that we can decide the equivalence of
two dataplane programs only if they terminate on all inputs.
netdiff uses an existing loop detection algorithm to detect
infinite loops [43], which leads to the following possibilities:

• Both programs are infinite-loop free. We
can decide on their equivalence with a worst
case complexity of C(DataplaneSymbex1) + n ·(
C(DataplaneSymbex2)+m · p2 ·C(SMT)

)
, where n

and m are the number of M1’s and M2’s pathsets, p is the
maximum number of paths in any pathset and C(SMT) is
the complexity of the SMT solver.

• When only one of the programs contains an infinite loop,
equivalence is decidable - the programs are not equivalent.

• When both programs have infinite loops, we cannot decide

Theorem 4.1 EQUIVALENCE(M1,M2, i1, i2, p0) is true iff
M1, M2 are equivalent w.r.t. Q = {x ∈ Packet|p0(x) = true}
and input ports i1, i2.
Proof: Because of the properties of symbolic execution listed
in Appendix A, all path conditions corresponding to pathsets
resulting after symbolically executing M2 are equivalence
classes of the initial input space w.r.t. the outcomes of M1
and M2. The full proof can be found in Appendix A. �

5 Implementation

Our implementation of netdiff takes as input two SEFL
programs, together with two correspondence maps, one be-

tween their input ports and the other with respect to their out-
put ports. By default, it injects basic Ethernet/IP/{TCP, UDP,
ICMP} packets into the provided input ports and checks for
equivalence between a number of header fields including IP
and Ethernet source and destination, TTL, IP protocol, L4
ports, etc. Note that both the symbolic input packet and the
fields to be checked can be customized by the user if needed.

When equivalence fails, netdiff outputs a series of tu-
ples (Input condition, Offending path in program 1, Offend-
ing path in program 2, reason), where the reason may be
either different number of output packets, unmatched ports,
unmatched output fields. A path in program x is a series of
symbolic output packets together with a list of visited ports
and either the output port or the failure reason.

We ran netdiff on the example shown in Figure 1. It
takes around 200ms to check equivalence and output the re-
sults to file. The tool reports 10 symbolic packets that were
treated differently by our two programs. The first five pack-
ets catch the TTL decrement bug in the optimized model (the
TTL underflows when it is zero). The other five packets
highlight the second problem: there is an overlap between
packets exiting on port if0 in the basic model and if1 in
the optimized model - i.e. a packet in 10.10/16. netdiff’s
output makes it easy to find the bug and then correct it.
Core implementation. The core of netdiff is imple-
mented in just 200 lines of Scala code. We also implemented
a series of additions and changes to Symnet resulting in cca.
2kLOC that ensure netdiff behaves correctly. In detail,
we implemented sieving (Algorithm 2) that takes the out-
puts of Symnet—a list of tuples (Input condition, single path
through network)— and outputs pathsets of the form (path
condition, paths) with non-overlapping path conditions. Fur-
thermore, we changed the internal representation of Sym-
net’s state to allow a clean separation between path condi-
tions and current packet values, in order to make netdiff’s
internals more scalable and easier to test. To aid debugging
and model validation, we also implement an input generator
which produces an example packet from a path condition.

5.1 OpenStack Neutron Integration
netdiff requires two SEFL programs to check equivalence.
To generate SEFL programs for our evaluation, we have
both created new translators (see below) and re-used exist-
ing ones: Vera to translate from P4 programs to SEFL [40]
and existing translators from router FIBs to SEFL [1].

Checking OpenStack Neutron is our most significant use
of equivalence so far; it required 15KLOC of Java, Scala and
ANTLR4 parser grammars to automatically integrate with
Neutron and translate to SEFL. Out of this, only 1KLOC
is OpenStack-specific, while the biggest part consists of re-
usable translators for iptables, OVS, ipsets, which are widely
deployed in numerous scenarios - e.g. Kuberenetes. Further-
more, this work is one-time only and can be further used
for any other verification purpose. We contrast this effort to

688 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

other verification techniques which also require writing and
maintaining correctness specifications. We describe our im-
plementation here.

OpenStack is an open-source cloud management platform.
Similarly to other cloud platforms (e.g. EC2), OpenStack ab-
stracts away the complexity of the provider’s infrastructure,
allowing the tenant to create and manage virtual machines
with ease. Tenants may connect their VMs in rich network
topologies comprised of VLANs connected via routers and
NATs, and also enforce security policies at VM level.

Neutron is the networking service of OpenStack and is
implemented as a distributed middleware application which
takes the tenant network configuration and implements it in
the actual network. Neutron’s operation is complex as it de-
pends on multiple software components, so bugs may oc-
cur anytime during the translation process leading to non-
compliance to the tenant configuration. Neutron’s com-
plexity and its distributed deployment makes manual trou-
bleshooting cumbersome.

To verify whether Neutron correctly implements a given
tenant configuration, we automatically generate two SEFL
models and use netdiff to check their equivalence. The
first model is derived from the tenant configuration. The sec-
ond model is created from a snapshot of the actual Openstack
deployment resulting after the VMs are instantiated and it in-
cludes OVS OpenFlow rules, iptables rules, etc.
Modeling tenant configurations. Our translator uses a
tenant-level snapshot of the configuration (a dump of the
Neutron database in practice) and then generates SEFL code
that implements each user defined resource (e.g. router,
switch, NAT). The simplest abstraction is a virtual network
which forwards packets according to a static CAM table
mapping Ethernet addresses to virtual ports. Virtual routers
perform L3 routing and provide virtual machines with access
to and from the Internet (via NAT). Neutron also defines se-
curity groups which are rules that filter traffic at VM level.
Each abstract object is translated separately to SEFL, and
they are connected using links according to the tenant con-
figuration. For more details, we refer the reader to[41].
Dataplane modeling. A Neutron deployment is usually im-
plemented as interconnected Linux servers running a num-
ber of network processing tools. We implement parsers and
SEFL translators for many of the Linux Kernel packet pro-
cessing primitives - iptables rules, ipsets, OpenVSwitch
(OVS) software switches [33], OpenFlow tables, VXLAN
tunnels, routing tables, Linux Bridges, ARP tables. We then
interconnect the distinct components based on the physical
or virtual links acquired from the topology.

Both iptables and OVS bridges use similar concepts such
as tables and rules which match against packet header fields
or per-packet metadata and apply one or more actions. To
translate such matches we generate simple If/Else con-
structs; provided that all matches in a rule are satisfied, an
action will be fired which will either alter the state of the

packet (e.g. push a tunnel header) or alter the processing
pipeline (e.g. drop or forward to further processing).

Modeling stateful processing in SEFL is straightforward
as long as the state depends only on the given flow (i.e.
it is not global state) [42]. We use a similar technique to
model the connection tracking engine (or conntrack) imple-
mented within the Linux Kernel. Conceptually, conntrack
defines a connection as a 5-tuple and tracks it independently.
To model conntrack we use two sets of metadata variables
called forward and backward expectations. The former rep-
resent packets flowing in the same direction as the initial
SYN packet, while the latter represent reply packets belong-
ing to the same connection. When state is created for a con-
nection (a conntrack commit action), we store it as metadata;
the metadata is then checked when execution arrives at the
conntrack module and the appropriate action is taken.
Dataplane modeling caveats. One of the issues that we en-
countered during our experiments was missing information
from the dataplane snapshot which lacked ARP tables and
switch CAM tables. A possible solution to bypass this issue
is to simply modify the acquisition script to gather ARP ta-
bles for all Linux network namespaces and CAM tables for
all OVS and Linux Bridges in the topology. However, these
entries would only depict a transient state of the network dat-
aplane with incomplete or stale information.

Our solution implies converging the ARP and CAM tables
into a steady, concrete state. Following the observation that
cloud provider middleware implements anti-spoofing tech-
niques, we use the constraint solver’s capabilities to derive
all possible ARP packets which may reach a certain point
in the network. With this information, we infer (IP, MAC)
pairs for all network namespaces in the system. We use a
similar approach to infer all CAM tables on all switches in
the deployment. We implement our approach in a tool called
ARPSim and apply it to our department’s Openstack deploy-
ment containing 87 servers. For this deployment, ARPSim
discovers 885 ARP entries in 4 minutes and infers 28889
CAM entries in L2 switches in 7 minutes.
Mapping ports. As discussed in §2, netdiff provides sen-
sible defaults for mapping ports and deciding what packets
are equivalent. For Neutron, we map virtual ports to corre-
sponding OpenVSwitch tap interfaces (functions R,I).

6 Evaluation
We run our evaluation of netdiff on a server with a Xeon
E5-2650 processor @ 1.7GHZ and 16GB of RAM. Our main
goal is to understand whether netdiff can catch interest-
ing bugs or behaviors in practice, for realistic network data-
planes. We examine a range of applications including Open-
stack Neutron, P4 program equivalence, and the correctness
of FIB updates. Finally, we test netdiff’s scalability and
contrast its performance to NoD [29]. The scenarios de-
scribed below make use of header arithmetics and packet du-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 689

A B

green red

Same MAC

Tenant
expectation

Figure 2: Identical
trunked MACs

	
	
	
	

Tenant	 Configura-on	

A	

isolated	

B	

private	

Network	 isola-on	
assump-on	

	
	
	
	
	

Compute	 Node	

A	 B	

	 	 	 	 	 	 	 OVS	 br-‐int:	
*,	 ac0ons=NORMAL	
…	

OVS	 rule	
matched	

instan0ate	

Figure 3: Network isolation bug

plication primitives and motivate the use of netdiff instead
of systems like HSA, NetKAT or NoD.

6.1 Neutron bugs
To validate netdiff’s capabilities in finding production
bugs, we begin our experiments by first reproducing known
bugs and discovering a number of unknown bugs in Open-
stack Neutron in a small scale deployment in our lab. Our
experiments here focus mostly on functionality.

While Neutron is only one of many cloud networking
drivers, the same method applies to most network virtual-
ization solutions deployed by commercial cloud providers.
Identical MAC Addresses for trunking ports. The first
bug appears in the configuration shown in Fig.2: the tenant
defines a topology with two VMs connected via 2 networks
(red and green). Machine A is connected via a trunk port
to both the red and green networks while machine B is only
connected to the green network. The tenant-level expecta-
tion for this topology is that all packets from B towards A
reach their destination. However, if A uses the same MAC
for both its trunked ports this prevents communication be-
tween A and B. This bug was reported on the OpenStack
Neutron bug tracker 4. netdiff found a number of failed
states which indicated that all packets leaving machine B
were being dropped in the forward path by an anti-spoofing
rule in the br-int bridge connecting the two machines.
Allowed address pairs bug. An allowed address pair is an
extra IPv4, MAC address pair specifically tailored to allow
bridging at VM level. Thus, the expected tenant-level be-
havior is that traffic with destination addresses in the list of
allowed address pairs for a VM be allowed on egress. 5

However, an implementation bug in the firewall module
stops traffic from getting through. Thus, traffic issuing from
VM A towards VM B is correctly forwarded to VM B, but
the reverse traffic from VM B to VM A is dropped. The
issue is correctly traced by netdiff which indicates failed
(non-equivalent) states between the tenant and the provider
perspectives. In the tenant view, A and B have bidirectional
connectivity, whereas in deployment connectivity is broken.
netdiff correctly captures the error in the reverse packet
run and successfully identifies the offending rule.
No firewall enforcement on ICMP Type/Code. Security
group support for ICMP filtering was not implemented for
older versions of Neutron 6. netdiff showed how ICMP
traffic that is meant to be blocked is allowed in the dataplane.

Filtering with security groups. Security groups are collec-
tions of ACL rules that apply to all VMs part of that group.
When specifying connectivity outside the group, tenants can
use prefixes or remote security groups to specify the exter-
nal source of traffic. There was a bug in the implementation
of filtering when remote security groups where used. In our
setup, we had two groups called green and blue and a rule
that all traffic from the green group should reach the blue
group 7. We instantiated three VMs: A in the blue group, B
in the red group, and C in both. At runtime, C could not be
reached by neither A or B, violating the tenant configuration.
Inconsistent connections in the tracker. This bug appears
when connectivity is repeatedly enabled and disabled for the
same host-pair. We ran our test with VMs A and B, and the
tenant allows traffic from A to B. In Neutron, all ACL rules
are directional, and they are implemented using the connec-
tion tracker. In this case, A can initiate connections to B and
B can respond, but B cannot initiate a connection to A.

After instantiation, A starts a connection to B which cre-
ates per-connection state in the conntrack module. Immedi-
ately afterwards, the tenant disallows traffic from A and B,
which marks the connection in the conntracker as “dead” but
does not delete the conntrack entry. When packets of the
same connection reach conntrack, they will be dropped as
expected. The problem appears when the tenant re-enables
traffic from A to B: the flow entry mark is not cleared, and all
subsequent packets are incorrectly dropped. 8 We catch this
bug by using symbolic conntrack state. The incorrect behav-
ior is captured and reported, highlighting the offending rule
and the conntrack conditions which trigger the behaviour.
netdiff captures the bug in less than 2 minutes in our

simple deployment, but larger scale experiments indicate that
using symbolic state variables signficantly increase execu-
tion time. This is why we typically use an initially empty
conntrack state for all servers in the topology.
A network isolation bug was discovered solely using
netdiff and was reported as a Neutron bug 9. In this setup,
we have two machines running on the same host as in Fig-
ure 3, each connected to distinct VLANs. Assume that B is
completely isolated from the rest of the network. Then, the
expected behavior at tenant level is that no traffic from B can
ever reach A. Next, assume host A is part of a permissive
security group whereby ingress HTTP traffic is allowed; fur-
ther assume that B knows A’s MAC and IP addresses. Then,
HTTP traffic from B will reach A, breaking isolation. This
bug exists even when B belongs to a different tenant.
netdiff successfully detects the erroneous behavior, pro-

viding a packet from B that can reach A. To validate the bug,
we successfully reproduced the behavior in the deployment.
We note that the bug is difficult to catch with standard test-
ing because ARP traffic was correctly blocked, and a simple
http-ping from B to A would fail. Because netdiff uses
symbolic packets, it finds a valid packet which will reach B.
Old Linux Kernel. This is a configuration bug that we stum-

690 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bled upon when deploying Openstack in our testbed. Neu-
tron’s OVS adapter needs kernel support to access the Net-
filter’s conntrack module; support exists since version 4.3.

In our deployment, we had a compute node with kernel
version 4.2. We deployed two VMs with security groups to
allow all traffic between them. However, since there is no
kernel support for connection tracking (as required by the
firewall module), the insertion of security rules silently fails,
and all traffic is dropped. netdiff caught this behavior by
reporting successful execution at tenant level while the same
input packet was dropped in the deployed dataplane.
Tunnel endpoint listening on localhost. The issue arises
when Puppet, a provisioning tool, erroneously binds a tunnel
endpoint on a compute node to the localhost address. The ef-
fect is that the VMs hosted on the affected compute node will
not be able to communicate with VMs running on different
compute nodes when in principle they should.
Hosts behind a NAT reachable from the outside. This is-
sue was highlighted solely by running netdiff in a public-
private network scenario. Tenant A creates a private virtual
network and connects it to a public network via a virtual
router, configuring source NAT on the external gateway of
the router. He then deploys some virtual machines within
his own private network and enrolls them in a permissive se-
curity groups allowing all ingress traffic. Tenant B also cre-
ates a virtual machine that he plugs directly into the public
network and manages to find the IP address of the router’s
external gateway and the VM’s private address.

Because the router is configured in SNAT mode, A would
expect that no traffic from outside his network can initiate
connections to any of his machines. However, Neutron vir-
tual routers perform routing between the external and the in-
ternal network regardless and thus B can reach both A’s VMs.
ARP spoofing. Assume a VM responds to an ARP request
by stating that the queried IP address can be found at a differ-
ent MAC than the one defined on the VM’s interface. Neu-
tron’s network abstraction asserts that no spoofing should
be possible. Spoofing prevention is implemented by having
the integration bridges 10 perform port-based checking on
ARP replies to ensure that IPv4 addresses cannot be modi-
fied (ARP SPA field) and all L2 frames coming from the VM
have expected L2 source addresses.

However, no explicit check is performed to ensure that
the advertised L2 address (ARP SHA) is the expected one.
Thus, a malicious or corrupt ARP implementation in a VM
may successfully transmit spoofed ARP pairs.
Unexpected interactions with libvirt. The following con-
figuration bug arises when deploying libvirt-based NAT net-
working alongside Neutron’s iptables-based security groups
mechanism. The libvirt toolset automatically creates
a default virtual network with some prefix P (usually
192.168.122.0/24) and installs a series of iptables rules in
the NAT table, POSTROUTING chain in order to perform

address translation for outgoing VM traffic. This issue was
discovered in one of the production settings we evaluated.

Say a tenant creates a virtual network with prefix P, then
all outgoing traffic from a VM in this network to other net-
works will be dropped. netdiff quickly discovers a non-
equivalence whenever the IP source address is in P and the
destination address is not in P. We reproduced the bug, val-
idated the model in our testbed and discovered that indeed
packets issued from network A were being NAT-ed due to
the unwanted interference with the rules generated by libvirt.
Troubleshooting VM connectivity. A common configura-
tion issue confirmed in production settings appears in tenant
networks with many security groups. The tenant wishes to
enable communication between two of its VMs but mistak-
enly adds them to different security groups (the groups may
have similar names). By default, security groups are con-
figured such that they allow ingress traffic from machines
belonging to the same group, but not from other security
groups. After deployment, the user notices that no traffic
flows between its VMs.

Troubleshooting connectivity problems is difficult for ten-
ants, as it requires manually checking the ports of a given
VM, and the security groups which they belong to. With
netdiff, the administrator is able to quickly assess that the
tenant and provider perspectives are identical. Thus, there
must be a misconfiguration at tenant level which does not
meet the user’s expectation. Symbolic execution of the ten-
ant topology indicates that all failed outcomes are due to an
ingress security group which is not matched at B’s level.
Iptables optimizations. Llorente et al. [28] aim at short-
ening packet processing pipelines in order to enhance per-
formance of Neutron’s iptables driver. We set out to check
whether the optimization algorithm works correctly on a few
inputs, i.e. it preserves the same packet processing behavior.

To achieve this, we deploy a one-node OpenStack deploy-
ment with 9 running VMs connected to 9 different security
groups. Since all iptables optimizations are localized within
the VM access Linux bridges, we only test equivalence at
this component level. netdiff takes an average of 9.4s per
VM to show that the optimization algorithm doesn’t break
any of the underlying logic. The result shows little perfor-
mance degradation with respect to normal symbolic execu-
tion of the same deployment using Symnet (7.3s).

6.2 Checking a large Neutron deployment
In order to test netdiff’s scalability and discover novel
bugs, we used a snapshot from our department’s Openstack
deployment. It consists of 87 compute nodes, running a to-
tal of 243 virtual machines. The deployment contains 14960
iptables and 11375 openflow rules which implement the 17
tenant-administered virtual networks and 2 public networks.

In the previous section, netdiff caught Neutron bugs
in seconds by checking equivalence of tenant-level and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 691

Network # ports in network
1 3 26 57 164

Virtual (s) 0.03 0.03 0.04 0.02 0.02
Physical (s) 0.23 0.14 0.14 1.2 3.2
netdiff (s) 2.1 1.65 2.28 12.8 31.8

Figure 4: Neutron L2 reachability

Security
group

rules in security group ACL
2 6 12 13 19

Virtual (s) 0.08 0.08 0.09 0.08 0.09
Physical (s) 0.12 1.09 1.51 2.48 1.57
netdiff (s) 0.24 1.74 6.87 8.51 2.47

Figure 5: Ingress security groups
Rewriter

Ingress	
Router	

Egress	
Router	

Copy-‐to-‐CPU	

CPU	

W
AN

	

LA
N
	

Figure 6: A modular P4 NAT

provider-level network models. In the departmental deploy-
ment this approach is not feasible. For instance, when testing
L3 unicast reachability, netdiff failed to finish processing
due to exponential state explosion, a common issue of sym-
bolic execution. First of all, the generated SEFL code was
introducing a lot of useless branching in lookup tables - such
as ARP tables. We used a state-merging technique to miti-
gate this issue [24]; the results show a significant decrease in
processing time in some scenarios, but increases in others -
whenever the number of elements in the table is small.

To further tame the complexity we used a compositional
approach: we test equivalence between corresponding parts
of the two dataplanes instead. For Neutron we tested three
equivalence checkpoints detailed below. As the size of each
component is small, the time to check equivalence is reduced
to seconds or tens of seconds. Since our implementation
is compositional by design, identifying distinct components
and running netdiff against them entailed a small amount
of extra work - cca. 200LOC.

L2 reachability equivalence can be checked by using a
symbolic ARP request in both the tenant and provider net-
work. In table 4, we show average execution times to check
equivalence for layer 2 reachability using ARP broadcast
probes, contrasted with plain symbolic execution in either
network. As the number of paths to be explored grows with
the number of ports size of the virtual network, equivalence
checking time goes up from 2.1 seconds to around 30 sec-
onds. To put the results in perspective, parsing all the con-
figuration files and code generation take around 15s each.

Security group compliance. For each VM in the deploy-
ment we test if its implementation is compliant to the secu-
rity groups (both ingress and egress) defined by the tenant.
netdiff checks egress security groups quickly (200ms on
average), and takes longer for ingress security groups (table
5) because tenants tend to use default-on egress policies.

Virtual routers must behave correctly with respect to their
expected functionality including routing, floating IPs and
source NAT. The physical implementation of a layer 3 router
is well delimited within the boundaries of a Linux network
namespace, so we can simply clog outgoing corresponding
interfaces in both virtual and physical topologies and inject
packets at input interfaces. Depending on the number of
router interfaces, as well as on the number of floating IPs
defined therein, the time for equivalence checking goes up to
80s for a router with 48 floating IPs.

6.3 P4 equivalence
P4 [5] is a high level language that enables programming
dataplanes and can also be efficiently implemented in hard-
ware. Despite its apparent simplicity, coding P4 programs
is tricky: unexpected behaviors may be accidentally intro-
duced during the design or runtime phase. In this section
we show how netdiff can be used to determine behavioral
equivalence between different P4 programs with seemingly
identical dataplane configuration and functionality.
Monolithic NAT vs modular NAT. One of the simplest P4
tutorials is a NAT that includes three distinct pieces of func-
tionality: a NAT rewriter, which simply sets packet fields
to given mappings, two routers, one for the LAN and one
for the WAN, each of which performs longest prefix match-
ing, assigns next hop address and selects the proper output
port and a CPU redirector, which encapsulates a packet and
sends it to a control-plane application if no NAT mapping is
found. Even for a simple set of table rules, understanding the
interactions between these different pieces is difficult.

To check whether the functionality of our P4 NAT works
correctly, we wish to compare it to a modular design that
runs different functionality in separate P4 programs which
are connected. We still prefer the monolithic approach for
deployment because it is cheaper to implement and performs
better at runtime than our modular design that serializes and
de-serializes packets between the interconnected boxes.

In Figure 6 we show how the modular NAT works. We
used Vera [40] to generate models for both NATs and used
netdiff to check whether they are equivalent. In around
5s, netdiff shows that the implementation of the mono-
lithic NAT is not equivalent to the modular implementation.
In the monolithic implementation, it is possible to translate
a packet intended for the LAN and then send it on the LAN
interface. The same behavior is not possible with the mod-
ular NAT because the routing tables corresponding to LAN
and WAN networks are split into 2 distinct routers - one for
ingress and one for egress.
Which is the correct order of table application? In our
next example, we take the simple router P4 tutorial and we
enhance it to enable ACL processing. Assume that the P4
programmer initially instructs the ingress pipeline to first
route packets and then apply ACL. In a subsequent run, the
programmer decides to reverse the order in which the two ta-
bles are applied in order to avoid routing packets that would
be dropped by the ACL; this approach seems more efficient.
In our program, the ACL table has two actions: one that
drops packets and one that passes them through (see Fig. 7).

When we compare the two programs with netdiff, it is

692 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ACL table:
table acl {

reads { ipv4.srcAddr : exact; }
actions { _drop; _nop; }

}

Entry:
table_add acl 10.0.0.3 _drop

Attempt 1:
apply(ipv4_lpm);
apply(acl);

Attempt 2:
apply(acl);
apply(ipv4_lpm);

Figure 7: Ways of adding an ACL to a P4 router.

surprising to find they are different. The first version matches
our expectation that unwanted packets (10.0.0.3) are indeed
dropped. The second version surprisingly allows all packets
through. This is because the packet is not actually dropped
in the ACL table. The P4 spec states that a drop action within
the ingress pipeline only marks the packet for rejection and
continues execution from that point on. When the dropped
packet hits the ipv4 lpm table, the default action sets the
egress spec to that of a valid interface, reviving the packet.
Trimming switch.p4 to size Recent work on verifying P4
programs [27, 40, 32, 10] highlights the difficulty of pro-
gramming correct P4 programs. Instead of writing software
from scratch. network operators can use existing catch-all
implementations and adjust them to their needs. An example
is switch.p4 [45] which provides a full implementation of
production-ready ToR switch. switch.p4 contains 131 tables
and a total of 6KLOC; deploying this program is wasteful
when one does not need all the functionality therein. If fewer
tables are synthesized, they can hold more match-action rules
allowing scope for specialization.

We used netdiff to help us trim switch.p4 while main-
taining equivalence for IPv4 processing. We began with a
working configuration of switch.p4, including concrete table
entries for all entries. We then iterated by (1) removing func-
tionality irrelevant for basic IPv4 routing and (2) generating
the SEFL model for the resulting program using Vera’s trans-
lator [40] (3) checking equivalence to the full program. In all
our tests, equivalence testing took between between one and
two minutes, depending on the number of table entries.

We confirmed that much processing was not needed for
the correct functioning of v4 routing and can be safely re-
moved: IP sourceguard, QOS processing, sFlow, Integrated
services, Storm control, MPLS, etc. Removing these from
the source code significantly reduces the total size of the ta-
bles (e.g. only sourceguard had space saved for 1500 en-
tries, and INT processing makes up for 10% of the LOC in
switch.p4). On the other hand, setting ingress port mappings,
validating the outer header, handling VLANs, as well as the
obvious IPv4 processing (longest prefix match, reverse path
forwarding checks, etc.) are needed for correct functioning.

6.4 Monitoring FIBs in a production network
For the last six months we have been using netdiff to mon-
itor routing in our university’s network. For each of the 9
routers that make up the network core, we have have taken
a FIB snapshot every 6 hours, and then checked the equiva-
lence between FIB snapshots from the same router. We aim

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

 0 10 20 30 40 50 60 70

Eq
ui

va
le

nc
e

tim
e

(s
)

prefixes in FIB (thousands)

netdiff
NoD

Figure 8: Router equivalence checking: netdiff vs. NOD

to help our admin understand how routing changes over time.
The snapshots vary in size from about 700 entries up to 20K
entries for the core router. Equivalence takes 100ms to com-
pare the smallest FIBs, and up to 50s for the largest ones.

Only in rare cases (about 5%) two snapshots of the same
router FIB are equivalent. However, most of the time, the
differences were due to churn in directly connected hosts
(92%). netdiff did uncover interesting differences: a few
routers had empty FIBs after recovering from a failure (1%)
or were missing certain routes due to link-failures (2%).

6.5 Is my datacenter network one big switch?

Fat-trees [2] are the de-facto standard datacenter network,
and they aim to provide a big-switch abstraction to end-hosts.
We use netdiff to check whether the myriad of intercon-
nected switches is equivalent to a single switch to which end-
hosts are directly connected. We used Batfish [8] to generate
the data planes for a fat-tree network with 125 switches (50
edge, 50 aggregation and 25 core switches). The question
we asked is whether every port of every edge device behaves
as if it was a port of the corresponding big-switch.

The verification procedure generates SEFL models for
both the fat-tree and the big switch from the FIBs given by
Batfish. We then run equivalence by injecting a packet with
symbolic destination address into equivalent server-facing
switch ports in the two topologies; the check takes around
4 minutes.
netdiff found that the two models are not equivalent:

every edge switch had at least one /32 prefix which wasn’t
advertised to the core (due to the configured routing policy),
rendering the prefix unreachable from different edges. This
contradicts the big switch assumption.

6.6 Scalability
Our experiments so far have highlighted the usefulness of
netdiff, which works well in practice despite its poor the-
oretical complexity (§4) given by the exponential nature of
symbolic execution. To better understand netdiff’s perfor-
mance, we compare it against Network Optimized Datalog
[29] when testing equivalence of two routers with small to
medium-sized routing tables.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 693

We generate NOD rules from router FIBs and measure
the total equivalence checking time. We run tests involving
reachability analysis and tests involving input, port and func-
tional equivalence. Functional equivalence tests with NOD
ran out of memory, even for small inputs.

Figure 8 shows the runtime of both tools against the num-
ber of entries in the FIB. Note that the NOD line corre-
sponds to input and port equivalence; the netdiff line cor-
responds to full equivalence checking (Definition 2.1). As
expected, the runtime grows exponentially for both NOD and
netdiff. For unicast reachability, NOD proves cca. an or-
der of magnitude faster than netdiff, but the difference di-
minishes for larger inputs; for the largest FIB netdiff is
faster than NOD. Overall,these results show that netdiff’s
more powerful equivalence comes at modest runtime costs.
Overhead breakdown. We also measured the time taken by
each of netdiff’s components: we measured separately the
symbolic execution for M1 and M2, their sieving (algorithm
2), and finally the equivalence testing time (Algorithm 3).
The results show that M2 symbex time grows linearly with
the number of output path conditions from M1. However,
M2 sieving time is constant, due to the fact that the number
of feasible outcomes from M2 is constant - most often equal
to one in case when M1 and M2 are very similar. Finally,
equivalence testing time is negligible.

We also noticed that for broadcast packets, our sieving al-
gorithm is faster since the number of solver queries is linear
in the number of output packets in the network. To reduce
the sieving time, we disable it for unicast packets.

7 Related work

Our observation that equivalence checking is a simple form
of specification is not novel: it has been used previously for
program regression verification [44, 36] and to check com-
piler correctness [23, 12], among other applications.

Note that, in contrast to compiler verification, which at-
tempts to show that compilation preserves semantic equiv-
alence on all possible source programs, netdiff limits its
scope to only showing equivalence between concrete data-
plane snapshots - i.e. a single source program.

There exist a wide range of specification languages and
verification tools for network dataplanes; we discuss here
the ones not covered in section 2. Margrave is a tool that
checks firewall configurations against user-specified policies
in first-order logic [31]. Anteater [30] translates networks
and reachability queries to SAT formulae, while NetPlumber
[18] takes as input a graph and network boxes modeled
as bitwise transfer functions, and uses HSA [19] to check
for compliance. Finally, NetCheck [35] takes specifications
written in CTL and uses symbolic execution with Symnet
to check them. All these tools have merits, yet one of their
biggest problems is the difficulty of specifying what the net-
work is meant to do. In many cases, the spec underspecifies

the behavior, meaning that potential problems are missed.
Another line of work focuses on more rigorous specifi-

cations which are first proven correct and then translated to
dataplane rules. Examples here include Kinetic [21] which
takes Finite State Machine descriptions of network function-
ality, FatTire [37] that takes regular expressions specifying
paths to be taken by packets, and Cocoon [38] which en-
ables iterative design and specification for networks. All
of these tools offer much stronger correctness properties,
but this comes at the expense of usability by non-experts.
netdiff is complementary to the above in that it may serve
as an extra validation step.

In programming languages, equivalence testing is not a
novel concept. DECKARD [14], CCFinder [17] and [25] P-
Miner look for syntactically similar pieces of code that are
equivalent. EQMINER [15] detects functionally equivalent
code via random testing but does not offer guarantees that
two programs are equivalent because it does not cover all
possible test cases. Another work that aims to achieve the
same goal with symbolic execution, targets functional equiv-
alence for simple arithmetic functions, in code that has no
branches [13]. Neither tool is exhaustive, so they do not of-
fer correctness guarantees. Our work aims to decide whether
two network dataplane models process the packet in the same
way, a much stronger definition of equivalence in the limited
context of programmable dataplanes.

8 Conclusions

Checking equivalence of programmable dataplanes is a sim-
ple way to check program correctness or verify policy. We
have presented netdiff, an algorithm that checks two net-
work dataplanes for equivalence using symbolic execution.
netdiff will be open-sourced soon.

We have used netdiff to uncover three previously-
unknown Openstack Neutron bugs and four configuration
errors. netdiff can be used to check P4 programs too:
we have found bugs even in simple P4 programs, and have
shown how netdiff can be used to help trim large P4 pro-
grams while preserving desired functionality. Overall, we
find that while equivalence checking is more expensive than
individual symbolic execution of the two programs, it scales
well enough for most use-cases; compositional equivalence
can be used to scale to large Neutron deployments.

In future work, we intend to further explore the applica-
bility of netdiff. One particularly interesting avenue of
research is to check the equivalence between SEFL models
and the actual dataplane (in C), which requires integrating
different symbolic execution engines (Symnet and Klee).

Acknowledgements

This work was funded by CORNET H2020, a research grant
of European Research Council (no. 758815).

694 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Symnet Source Code Repository. https://github.com/

nets-cs-pub-ro/Symnet/.

[2] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable, com-
modity data center network architecture. In Proceedings of ACM SIG-
COMM 2008.

[3] ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-B.,
KOZEN, D., SCHLESINGER, C., AND WALKER, D. Netkat: Seman-
tic foundations for networks. In POPL’14.

[4] BECKETT, R., GUPTA, A., MAHAJAN, R., AND WALKER, D. A
general approach to network configuration verification. In SIGCOMM
(2017).

[5] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev.
44, 3 (July 2014).

[6] DE MOURA, L., AND BJØRNER, N. Z3: An efficient smt solver. In
Proc. TACAS’08.

[7] DOBRESCU, M., AND ARGYRAKI, K. Software dataplane verifica-
tion. In Proc. NSDI’14, NSDI’14.

[8] FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-SULLIVAN, M.,
GOVINDAN, R., MAHAJAN, R., AND MILLSTEIN, T. A general ap-
proach to network configuration analysis. In NSDI (2015).

[9] FOSTER, N., KOZEN, D., MILANO, M., SILVA, A., AND THOMP-
SON, L. A coalgebraic decision procedure for netkat. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (New York, NY, USA, 2015), POPL
’15, ACM, pp. 343–355.

[10] FREIRE, L., NEVES, M., LEAL, L., LEVCHENKO, K., SCHAEFFER-
FILHO, A., AND BARCELLOS, M. Uncovering bugs in p4 programs
with assertion-based verification. In Proceedings of the Symposium
on SDN Research (New York, NY, USA, 2018), SOSR ’18, ACM,
pp. 4:1–4:7.

[11] GEMBER-JACOBSON, A., VISWANATHAN, R., AKELLA, A., AND
MAHAJAN, R. Fast control plane analysis using an abstract represen-
tation. In SIGCOMM (2016).

[12] GUO, S.-Y., AND PALSBERG, J. The essence of compiling with
traces. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New York,
NY, USA, 2011), POPL ’11, ACM, pp. 563–574.

[13] HIETALA, K. Detecting Behaviorally Equivalent Functions via Sym-
bolic Execution, 2016.

[14] JIANG, L., MISHERGHI, G., SU, Z., AND GLONDU, S. Deckard:
Scalable and accurate tree-based detection of code clones. In Proceed-
ings of the 29th International Conference on Software Engineering
(Washington, DC, USA, 2007), ICSE ’07, IEEE Computer Society,
pp. 96–105.

[15] JIANG, L., AND SU, Z. Automatic mining of functionally equivalent
code fragments via random testing. In Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis (2009), IS-
STA ’09.

[16] JOSE, L., YAN, L., VARGHESE, G., AND MCKEOWN, N. Com-
piling packet programs to reconfigurable switches. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15) (Oakland, CA, 2015), USENIX Association, pp. 103–115.

[17] KAMIYA, T., KUSUMOTO, S., AND INOUE, K. Ccfinder: A multilin-
guistic token-based code clone detection system for large scale source
code. IEEE Trans. Softw. Eng. 28, 7 (July 2002).

[18] KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE, G., MCKE-
OWN, N., AND WHYTE, S. Real time network policy checking using
header space analysis. In Proc. NSDI’13.

[19] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header space
analysis: Static checking for networks. In Proc. NSDI’12.

[20] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M., AND GOD-
FREY, P. B. Veriflow: Verifying network-wide invariants in real time.
In Proc. NSDI’13.

[21] KIM, H., REICH, J., GUPTA, A., SHAHBAZ, M., FEAMSTER, N.,
AND CLARK, R. Kinetic: Verifiable dynamic network control. In 12th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 15) (Oakland, CA, 2015), USENIX Association, pp. 59–
72.

[22] KING, J. C. Symbolic execution and program testing. Commun. ACM
19, 7 (July 1976), 385–394.

[23] KUNDU, S., TATLOCK, Z., AND LERNER, S. Proving optimizations
correct using parameterized program equivalence. In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (New York, NY, USA, 2009), PLDI ’09,
ACM, pp. 327–337.

[24] KUZNETSOV, V., KINDER, J., BUCUR, S., AND CANDEA, G. Ef-
ficient state merging in symbolic execution. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (New York, NY, USA, 2012), PLDI ’12, ACM,
pp. 193–204.

[25] LI, Z., LU, S., MYAGMAR, S., AND ZHOU, Y. Cp-miner: A tool for
finding copy-paste and related bugs in operating system code. In Pro-
ceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6 (2004), OSDI’04.

[26] LIU, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRAGADA, S.,
LOPES, N. P., RYBALCHENKO, A., LU, G., AND YUAN, L. Crys-
talnet: Faithfully emulating large production networks. In Proc. of the
26th Symposium on Operating Systems Principles (SOSP).

[27] LIU, J., HALLAHAN, W., SCHLESINGER, C., SHARIF, M., LEE, J.,
SOULÉ, R., WANG, H., CAŞCAVAL, C., MCKEOWN, N., AND FOS-
TER, N. P4v: Practical verification for programmable data planes.
In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (New York, NY, USA, 2018), SIG-
COMM ’18, ACM, pp. 490–503.

[28] LLORENTE, J., AND MAEL, K. Neutron firewall
optimizations. https://github.com/jllorente/

neutron-firewall-optimization.

[29] LOPES, N. P., BJØRNER, N., GODEFROID, P., JAYARAMAN, K.,
AND VARGHESE, G. Checking beliefs in dynamic networks. In Proc.
NSDI’15.

[30] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GODFREY,
P. B., AND KING, S. T. Debugging the data plane with anteater. In
Sigcomm (2011).

[31] NELSON, T., BARRATT, C., DOUGHERTY, D. J., FISLER, K., AND
KRISHNAMURTHI, S. The margrave tool for firewall analysis. In
Proceedings of the 24th International Conference on Large Instal-
lation System Administration (Berkeley, CA, USA, 2010), LISA’10,
USENIX Association, pp. 1–8.

[32] NÖTZLI, A., KHAN, J., FINGERHUT, A., BARRETT, C., AND
ATHANAS, P. P4pktgen: Automated test case generation for p4 pro-
grams. In Proceedings of the Symposium on SDN Research (New
York, NY, USA, 2018), SOSR ’18, ACM, pp. 5:1–5:7.

[33] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E., ZHOU, A., RA-
JAHALME, J., GROSS, J., WANG, A., STRINGER, J., SHELAR, P.,
AMIDON, K., AND CASADO, M. The design and implementation of
open vswitch. In 12th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 15) (Oakland, CA, 2015), USENIX
Association, pp. 117–130.

[34] PONTARELLI, S., BIFULCO, R., BONOLA, M., CASCONE, C.,
SPAZIANI, M., BRUSCHI, V., SANVITO, D., SIRACUSANO, G.,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 695

https://github.com/nets-cs-pub-ro/Symnet/
https://github.com/nets-cs-pub-ro/Symnet/
https://github.com/jllorente/neutron-firewall-optimization
https://github.com/jllorente/neutron-firewall-optimization

CAPONE, A., HONDA, M., HUICI, F., , AND BIANCHI, G. Flow-
blaze: Stateful packet processing in hardware. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19)
(2019), USENIX Association.

[35] POPOVICI, M. Verifying large-scale networks using netcheck. In
2017 European Conference on Networks and Communications (Eu-
CNC) (June 2017), pp. 1–5.

[36] RAMOS, D. A., AND ENGLER, D. Under-constrained symbolic ex-
ecution: Correctness checking for real code. In 24th USENIX Se-
curity Symposium (USENIX Security 15) (Washington, D.C., 2015),
USENIX Association, pp. 49–64.

[37] REITBLATT, M., CANINI, M., GUHA, A., AND FOSTER, N. Fattire:
Declarative fault tolerance for software-defined networks. In Proceed-
ings of the Second ACM SIGCOMM Workshop on Hot Topics in Soft-
ware Defined Networking (2013), HotSDN ’13.

[38] RYZHYK, L., BJØRNER, N., CANINI, M., JEANNIN, J.-B.,
SCHLESINGER, C., TERRY, D. B., AND VARGHESE, G. Correct
by construction networks using stepwise refinement. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17) (Boston, MA, 2017), USENIX Association, pp. 683–698.

[39] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C., ALIZADEH,
M., BALAKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND
LICKING, S. Packet transactions: High-level programming for line-
rate switches. In Proceedings of the 2016 ACM SIGCOMM Confer-
ence (New York, NY, USA, 2016), SIGCOMM ’16, ACM, pp. 15–28.

[40] STOENESCU, R., DUMITRESCU, D., POPOVICI, M., NEGREANU,
L., AND RAICIU, C. Debugging p4 programs with vera. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on
Data Communication (New York, NY, USA, 2018), SIGCOMM ’18,
ACM, pp. 518–532.

[41] STOENESCU, R., DUMITRESCU, D., AND RAICIU, C. Openstack
networking for humans: Symbolic execution to the rescue. In 2016
IEEE International Symposium on Local and Metropolitan Area Net-
works (LANMAN) (June 2016), pp. 1–6.

[42] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.
SymNet: scalable symbolic execution for modern networks. In SIG-
COMM (2016).

[43] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.
Tech report: Debugging p4 programs with vera. Tech. rep., June 2018.

[44] STRICHMAN, O., AND GODLIN, B. Regression Verification - A Prac-
tical Way to Verify Programs. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008, pp. 496–501.

[45] THE P4 CONSORTIUM. A p4 implementation of a tor
switch. https://github.com/p4lang/switch/blob/master/

p4src/switch.p4, 2018.

[46] ZAOSTROVNYKH, A., PIRELLI, S., PEDROSA, L., ARGYRAKI, K.,
AND CANDEA, G. A formally verified nat. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication
(New York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 141–154.

A Correctness of netdiff

Note the following useful properties of symbolic execution:

∀(pi,πi) ∈ DataplaneSymbex(M,k, p),S(pi)⊆ S(p) (1)

∀(pi,πi),(p j,π j) ∈ DataplaneSymbex(M,k, p)i 6= j,
S(pi)∩S(p j) = /0

(2)

⋃
(pi,πi)∈DataplaneSymbex(M,k,p)

S(pi) = S(p) (3)

The notation (p,π) denotes a pathset, where p is a predi-
cate - which we refer as path condition, describing a subset
in the input packet space, and π is a set of paths with the
same path condition. S(p) is the set of packets described by
predicate p.

Lemma 1 The set of pathsets computed by algorithm 2 sat-
isfies the symbolic execution properties 1, 2, 3.

Proof: Property 1 is satisfied by the design of symbolic exe-
cution. We need to prove that the set of pathsets built by the
algorithm 2 satisfies properties 2 and 3. Line 2 of the algo-
rithm creates the set Q that contains all the pathsets obtained
by running symbolic execution with the symbolic packet de-
scribed by predicate p0, not necessarily obeying property 2.
To reinforce this property, we build a new set L, that will con-
tain only the pathsets with disjoint path conditions. We will
prove the following invariant holds each time the algorithm
reaches line 14: the set L satisfies 2 and 3.

We iterate through all the pathsets (q,π) in Q and (l,s)
in L, lines 4 and 5, and check for overlapping path con-
ditions. We replace the overlapping pathset in (l,s) in L
with two pathsets: one that adds the union of paths s and
π with the overlapping path condition (q∧ l) and one that
keeps the pathset (l,s) with the non-overlapping path condi-
tion (l∧¬q), lines 7 and 8. Based on set theory, these opera-
tions keep the invariant for the local iteration. Line 9 guaran-
tees that the invariant is satisfied for all iterations through L,
by updating the pathset (q,π) to (q∧¬l,π). If after iterating
through all pathsets in L the path condition q is non empty
then we add it to L, line 13, reinforcing property 3. �

Theorem A.1 EQUIVALENCE(M1,M2, i1, i2, p0) is true iff
M1, M2 are equivalent w.r.t. Q = {x ∈ Packet|p0(x) = true}
and input ports i1, i2.

Proof: We show that when EQUIVALENCE(M1,M2, i1, i2, p0)
is true, there is a bijection χ mapping each successful located
packet produced by M1 to one produced by M2, c.f. Def. 2.2.

In order to determine if such a bijection can be built, we
symbolically execute the program M1 for the input port i1
and a symbolic packet specified by predicate p0. p0 de-
scribes the set of packets Q for which we decide the equiva-
lence of programs c.f. Def. 2.2. The result is a set of pathsets
(qi1, πi1). According to the symbolic execution properties
listed above, each path condition qi1 implies the initial path
condition p0 (Property 1), the sets of packets described by
the path conditions are disjoint (Property 2) and their union
over all path conditions is the set of packets specified by p0
(Property 3). For each pair (qi1, πi1) of M1 we symbolically
execute program M2 with path condition qi1 and decide on
the equivalence of paths.

696 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/p4lang/switch/blob/master/p4src/switch.p4
https://github.com/p4lang/switch/blob/master/p4src/switch.p4

For a path condition M1 there might be several pathsets
(q j2, π j2) of M2. The main point is that the symbolic execu-
tion property 3 holds, therefore the set of packets described
by condition qi1 is the union of the sets of packets described
by conditions q j2 over all j. Consequently, equivalence must
hold between (qi1, πi1) and each pathset (qi j2, πi j2) over all j,
under the constraints imposed by R and ω . To decide their
equivalence we must look into the pathset definition.

The above essentially means that ∀p ∈
S(p0).∃!qi j2 s.t. p ∈ S(qi j2) (because of property 2).
Thus, if the bijection condition holds true for all qi j2,
then it holds for their union. But due to property 3,⋃
(i, j)

S(qi j2) = S(p0), which implies that the bijection can be

found on all input packets.
A pathset is a set of input packets and located output pack-

ets. Two pathsets are equivalent if (i) they have the same
cardinality, (ii) the ports are in correspondence c.f. relation
R and (iii) the packet headers on the corresponding ports
satisfy the relation ω c.f. Def. 2.2 in the context of the cur-
rent path condition. Our approach consists in reducing the
equivalence decision problem to that of the maximum bipar-
tite matching (MBM). The conditions of the MBM define a
bijection between workers and jobs, which maps to a bijec-
tion χ between programs’ outcomes in our case. We need to
prove that our equivalence algorithm implements the condi-
tions of the MBM problem, therefore deciding on the exis-
tence of the bijection.

The first condition is satisfied since the ports are differ-
ent being defined in the namespace of each program. The
second condition reinforces the equality of the cardinalities
of the sets of workers and jobs, O1 and O2 in our case. We
verify it in the line 3 of the algorithm 3. The next condi-
tion imposes that worker i is qualified for job j, meaning that
we can create the edge representing the equivalence between
outcomes described as pairs of (port, packet). The associa-
tion between ports is checked in line 5 of algorithm 4. Line
7 insures that the relation between packets in the context of
the current path condition hold. The existence of the bijec-
tive association between programs’ outcomes is checked by
the algorithm MaxBipartiteMatching. The outcome of the
MBM is true iff the two path are equivalent. �

B Notes on equivalence

An equivalence relation is a binary relation satisfying the re-
flexivity, symmetry and transitivity conditions. The core of
our definition of equivalence 2.2 is the bijection between sets
of packet and output port pairs, meaning that equivalence
conditions are satisfied. The algorithm netdiff determines
if a bijection can be computed, therefore verifying the equiv-
alence. It is worth mentioning that two dataplane programs
written in SEFL have their own name spaces therefore the
algorithm netdiff can be applied to check equivalence be-

tween a program and itself.

C Notes on complexity of netdiff

The complexity of netdiff depends strongly on the com-
plexity and number of pathsets output by DataplaneSymbex.
First of all, we take into account the time of the symbolic
execution of the first program (line 2 in Alg. 1). Assume
that the number of pathsets produced as a result is n. Simi-
larly, the number of pathsets produced by executing line 5 is
m. Therefore, the complexity is C(DataplaneSymbex1)+n ·
(C(DataplaneSymbex2)+m ·C(EQP))

Now, we turn our attention to computing the complexity of
EQP. The dominating operation is represented by computing
the adjacency matrix of the correspondence graph. This in-
volves at most p2 calls to the SMT solver, where p is the
maximum number of paths in each pathset.

The total complexity of EQP is: C(DataplaneSymbex1)+
n ·
(
C(DataplaneSymbex2)+m · p2 ·C(SMT)

)
Since path conditions are usually simple and path length

through the network is not large, we assume the complex-
ity of invoking the SMT solver for one path condition to be
constant in the size of the network.

Notice that even though the networks under equivalence
test may be of similar size, the complexity of the first sym-
bolic execution is considered significantly larger, especially
when networks exhibit a high degree of similarity. This is
because the path conditions coming out of the first symbolic
execution reduce state explosion in the second. Even though
in theory both n and m are exponential in the size of the net-
work analyzed, we claim that in practice m << n. Therefore,
we need to stress that the complexity of EQP is strongly
dominated by the complexity of the symbolic execution of
M1 and the number of outcomes thereof.

Packet cloning is not widely used in the network data-
planes we have examined, which means that p is one or a
small integer. Even when cloning is used, for instance in L2
processing, the specifics of the network forwarding fabric
constrain p to be smaller than the number of terminals con-
nected to the L2 segment - which is evidently much smaller
than the size of the entire network.

Notes
1After taking pains to actively test it.
2it requires enumerating all possible values in the field range
3a join between all possible input packets and output packets is used to

model a router
4https://bugs.launchpad.net/neutron/+bug/1626010
5https://bugs.launchpad.net/neutron/+bug/1697593
6https://bugs.launchpad.net/neutron/+bug/1708358
7https://bugs.launchpad.net/neutron/+bug/1708092
8https://bugs.launchpad.net/neutron/+bug/1715789
9https://bugs.launchpad.net/neutron/+bug/1736739

10which aggregate traffic from all machines on a compute node

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 697

Alembic: Automated Model Inference for Stateful Network Functions∗

Soo-Jin Moon1, Jeffrey Helt2, Yifei Yuan3, Yves Bieri4, Sujata Banerjee5

Vyas Sekar1, Wenfei Wu6, Mihalis Yannakakis7, Ying Zhang8

1Carnegie Mellon University, 2Princeton University, 3Intentionet, 4ETH Zurich
5VMware Research, 6Tsinghua University, 7Columbia University, 8Facebook, Inc.

Abstract
Network operators today deploy a wide range of complex,
stateful network functions (NFs). Typically, they only have ac-
cess to the NFs’ binary executables, configuration interfaces,
and manuals from vendors. To ensure correct behavior of NFs,
operators use network testing and verification tools, which
often rely on models of the deployed NFs. The effectiveness
of these tools depends on the fidelity of such models. Today,
models are handwritten, which can be error prone, tedious,
and does not account for implementation-specific artifacts. To
address this gap, our goal is to automatically infer behavioral
models of stateful NFs for a given configuration. The problem
is challenging because NF configurations can contain diverse
rule types and the space of dynamic and stateful NF behaviors
is large. In this work, we present Alembic, which synthesizes
NF models viewed as an ensemble of finite-state machines
(FSMs). Alembic consists of an offline stage that learns sym-
bolic FSM representations for each NF rule type and an online
stage that generates a concrete behavioral model for a given
configuration using these symbolic FSMs. We demonstrate
that Alembic is accurate, scalable, and sheds light on subtle
differences across NF implementations.

1 Introduction

Modern production networks include a large number of propri-
etary network functions (NFs), such as firewalls (FWs), load
balancers (LBs), and intrusion detection systems (IDSs) [21].
To help debug network problems, ensure correct behavior,
and verify security, there are many efforts in network testing
and verification [22, 35, 40, 41] as well as “on-boarding” new
virtual NFs [32].

Such network management tools rely on NF models to
create test cases, generate verification proofs, and run compat-
ibility tests. These models are required because NF implemen-

∗Contributions by Soo-Jin Moon were made in-part during a former in-
ternship at Hewlett Packard Labs. Other contributors from former employees
at Hewlett Packard Labs include Sujata Banerjee, Ying Zhang and Wenfei
Wu.

tations are often proprietary, leaving operators with only con-
figuration interfaces and vendor manuals. Today, NF models
are handcrafted based on manual investigation [22,40], which
is tedious, time-consuming, and error-prone. Further, mod-
els do not capture subtle implementation differences across
vendors [22, 30, 35]. Using low-fidelity models can affect the
correctness and effectiveness of these management tools (§2).

Ideally, we want to automatically synthesize high-fidelity
NF models. Synthesizing such models is challenging because:
(1) NFs have large state spaces; (2) their state may be mutated
by any incoming packet; and (3) in response, the NF may
react with any number of diverse and possibly even nondeter-
ministic actions. In this paper, we present Alembic, a system
that addresses a scoped portion of this open challenge. Specif-
ically, we focus on modeling NFs where their internal states
are mutated by incoming TCP packets and their actions are
restricted to dropping and forwarding packets, possibly with
header modification. Our goal is to synthesize high-fidelity
NF models given only the binary executable, vendor manu-
als, and a specific configuration with which the NF is to be
deployed. We adopt this pragmatic approach as vendors may
not be willing to share their source code, even with customers.
Even this scoped problem presents significant challenges:

• C1) Modeling and representing stateful NF behaviors: The
behavior of an NF often depends on the history of observed
traffic, making it difficult to discover and concisely repre-
sent its internal states.

• C2) Large configuration space: Concrete configurations
(e.g., a FW rule-set) are composed of multiple rules. Fields
within a rule (e.g., source IP) can take large sets of values
or ranges of values (e.g., IP prefix), making it impractical
to infer models for all possible configurations.

• C3) Large traffic space: Given the stateful behavior, the
input space potentially includes all possible sequences of
TCP packets. Naively enumerating this large space would
be prohibitively expensive.

• C4) NF actions: NFs such as NATs can modify packet
headers, making model inference more difficult.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 699

To tackle these challenges, we leverage the following key
insights (§3):

A) Compositional model: Rather than exhaustively model-
ing an NF under all possible configurations, we consider the
NF’s behavior as the logical composition of its behavior for
individual rules in a configuration.

B) Learning symbolic model: Configurations consist of
different rule types, such as a firewall drop rule, where each
type is associated with a different runtime behavior of the
NF. For a given type, the logical behavior of the NF is the
same across different values of the rule’s parameters. Hence,
we can learn a symbolic model for each rule type rather than
exhaustively infer a new model for each possible value.

C) Ensemble representation: Even with the above insights,
each rule has a large search space as each rule parameter can
take a range of values (e.g., a range of ports). Fortunately, we
observe that NF behavior is logically independent for subsets
of these ranges. For instance, assume a FW contains one rule
and we know it keeps per-connection state. We can then model
this rule using an ensemble of independent models by cloning
the model learned using a single connection. However, we
must then consider how to infer the specific granularity of
state tracked by the NF (e.g., per-connection or per-source).
We show in §5 how we can automatically infer this granularity
and prove the correctness of this approach in §C.

D) Finite-state machine (FSM) learning: FSMs are a nat-
ural abstraction to represent stateful NFs [22, 35], and using
them allows us to potentially leverage classical algorithms for
FSM inference (e.g., L* [12]). But there are practical chal-
lenges in directly applying L* here: First, we need to create
suitable mappings between logical inputs (i.e., an input alpha-
bet) that L* uses and the real network packets/configurations
that NFs take as inputs (§4). Second, header modifications
by NFs make it incompatible with L*, so we need domain-
specific ideas to handle such cases (§6).

Having described the high-level insights, we discuss how
they specifically address the challenges: Compositional mod-
eling (Insight A) addresses the large configuration space (C2).
Both symbolic and ensemble representations (Insights B and
C) address the large traffic space (C3) by learning a symbolic
model for each rule type and then appropriately cloning it
to create an ensemble representation (say for large IP/port
ranges). Lastly, extending L* (Insight D) enables us to repre-
sent stateful NF behavior (C1 and C4).

Building on these insights, we design and implement Alem-
bic.1 In the offline stage, we infer symbolic FSMs for differ-
ent rule types as defined by an NF’s manual. To concisely
represent the internal states of an NF, we extend the L* algo-
rithm [12]. We also leverage our L*-based workflow to infer
the state granularity tracked by the NF (e.g., per-connection).
Since model synthesis need only be done once per NF, we can

1Alembic is a reference to the tool used in the alchemical process of
distillation or extraction, as our system extracts models from NFs.

Stateful Firewall
Internal
Network

Intended Policy: Only allow TCP traffic from external hosts on already ESTABLISHED
connections

Host A1
(10.1.1.1)

Host B1
(156.4.0.1)

External
Network

Rule 1: <srcip=10.1.1.0/24, srcport=*, dstip=156.4.0.0/24, dstport=*, action=1>

Figure 1: Network set-up
afford several tens of hours for this stage. Given a concrete
configuration (i.e., a set of rules), the online stage uses these
symbolic models to construct a concrete model within a few
seconds. Specifically, the online stage maps each rule in a con-
figuration to a corresponding symbolic FSM which, coupled
with the inferred granularity, is used to create an ensemble
of FSMs. The ensemble is logically composed together for
each rule to construct the final concrete model for the given
configuration. The resulting concrete model can then be used
as an input to network testing and verification tools.

We evaluate Alembic with a combination of synthetic, open-
source, and proprietary NFs: PfSense [5], Untangle [7], Propri-
etaryNF, Click-based NFs [31], and HAProxy [2]. We show
that Alembic generates a concrete model for a new config-
uration in less than 5 seconds, excluding the offline stage.
Alembic finds implementation-specific behaviors of NFs that
would not be easily discovered otherwise, including some
that depart significantly from typical high-level handwritten
models (§8.4). For instance, we discover: (1) in contrast to
a common view of a three-way TCP handshake, for some
NFs, the SYN packet from an internal host is sufficient for an
external host to send any TCP packets; and (2) the FIN-ACK
packet does not cause internal NF state transitions leading
to the changes in the NF’s behavior. Finally, we show that
using Alembic-generated models can improve the accuracy of
network testing and verification tools (§8.5).

2 Motivation

In this section, we highlight some examples of how inaccu-
racies in handwritten NF models may affect the correctness
of network verification and testing tools. Figure 1 shows an
example network, where the operator uses a stateful FW to
ensure that external hosts (e.g., B1) cannot initiate TCP traf-
fic to internal hosts (e.g., A1). This intent translates to three
concrete policies:
• Policy 1: To prevent unwanted traffic from entering the

network, A1 must establish a connection with B1 before
the FW forwards B1’s TCP packets to A1.

• Policy 2: When A1 sends a RST or RA (RST-ACK) packet
to terminate the connection, the FW should drop all subse-
quent packets from B1.

• Policy 3: To protect against an attacker sending out-of-
window packets to de-synchronize the FW state [44], the
FW should drop or send a RST when it receives packets
with out-of-window sequence (seq) or acknowledgment
(ack) numbers.

700 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

False positive (no violation but
reports a violation)

Test
Packets

Intended
Policy

Actual
Network

Buzz
Model

Forward Forward Forward
Forward Forward Forward
Drop Drop Forward

: Packets from an internal host A1 to an external host B1SYN SA ACKPacket
Legend SYN SA ACK

ESTABL
-ISHED

SYN
SENT

NULL

SYN! / Drop
SYN / Forward

! / DropSA

/ ForwardSA/Forward

Handwritten Model (BUZZ, NSDI16)

: Packets from an external host B1 to an internal host A1

Limitations of a handwritten model

FIN

FIN

SYN

SYN

SA

/ Forward
FIN

FIN

FIN! FIN

Figure 2: A handwritten model of a stateful firewall (FW)
which incorrectly reports a policy violation

To implement these policies, the FW is configured with
the rule shown in Figure 1. Since many FWs implement a
default-drop policy, there is no explicit drop rule for packets
originating externally. Note we do not need explicit rules for
Policy 2 and 3 as they should be performed by the FW when
following the TCP protocol.

To check if the network correctly implements the intended
policies, operators use testing and verification tools [22, 35,
40]. These tools use NF models to generate test traffic [22,41]
or to verify intended properties [35]. If these models are inac-
curate, the results can have any of the following error types:
(1) false positives, where the tool reports violations when
there is no violation; (2) false negatives, where the tool fails
to discover violations; or (3) inability to test or verify where
the tool fails completely because the models are not expres-
sive enough. As an example, consider BUZZ [22], a recently-
developed network testing tool. BUZZ uses a model-based
testing approach to generate test traffic for checking if the
network implements a policy, and the original paper includes
several handwritten models. In the remainder of this section,
we present three examples of how operators can encounter is-
sues while using the BUZZ tool due to discrepancies between
handwritten models and NF implementations. Our goal is
not to pinpoint limitations of the BUZZ tool but to highlight
shortcomings of handwritten models. We find that models
from other tools lead to similar problems [35, 40].

To control for NF-specific artifacts (for now), we use two
custom, Click-based [31] FWs that correctly implement the
above policies.2 Figure 2 shows the handwritten model of a
stateful FW used in the BUZZ tool [22]. We use the BUZZ
FW model for comparison as it implements a policy similar
to our example (i.e., the FW only forwards packets belonging
to a TCP connection initiated by an internal host).

Test case (policy 1): The operator uses the BUZZ tool to gen-
erate test traffic and check if TCP packets from B1 can reach
A1. Figure 2 shows a sample test traffic sequence generated
by BUZZ: SYNInternal

A1)B1 (i.e., TCP SYN packet from A1 to B1),
SYN-ACKExternal

B1)A1 , and finally SYNExternal
B1)A1 . Our Click-based

2Because BUZZ’s included FW model does not encode the notion of
out-of-window packets, we wrote a FW that adheres to policies 1 and 2 for a
fair comparison, and a separate FW for policy 3.

FW drops the last SYN from B1, which matches the policy
intent as the TCP handshake did not complete. However, ac-
cording to the handwritten model, SYNExternal

B1)A1 is marked as
forwarded. Specifically, the model updates the state to ES-
TABLISHED on receiving a SYN-ACK (SA in Figure 2)
from B1, allowing SYNExternal

B1)A1 to be forwarded to A1. This
discrepancy between the model and the Click-based FW will
be flagged as a policy violation, resulting in a false positive.
Test case (policy 2): The operator wants to test if a RST from
A1 actually resets the connection state of the FW. However,
as we see in Figure 2, the handwritten model only checks for
FIN packets but not RST packets to reset the connection state.
Hence, the test cases generated by the handwritten model will
have discrepancies with the Click-based FW, resulting in a
false positive (similar to policy 1).
Test case (policy 3): The operator wants to test whether the
FW correctly handles packets with out-of-window seq and
ack numbers. We observe that many FW vendors enable this
feature by default (e.g., §8.4). Unfortunately, the handwrit-
ten model is not expressive enough to encode the notion of
packets with correct and incorrect seq and ack numbers.

To make matters worse, existing tools (e.g., [22, 35, 40])
assume homogeneous models across vendor implementations
for a given NF type. However, we found non-trivial differ-
ences in implementations (§8.4). Further, NF models fed to
testing and verification tools need to be aware of the impact of
specific configurations, which can easily be missed by hand-
written models. For instance, the BUZZ FW model assumes
a default drop policy from the external interface, which is
consistent with many vendors. However, while running model
inference using Alembic, we found that one specific NF (Un-
tangle FW) allows packets by default [7]. To implement a
default-drop policy in Untangle, we need an explicit drop-all
rule, and a model for Untangle needs to be customized for
this configuration.

3 Alembic System Overview

In this section, we state our goals, identify the key challenges,
describe our insights to address these challenges, and provide
an end-to-end overview of Alembic.
Preliminaries: We introduce the terminology related to NF
configurations, which describe an NF’s runtime behavior. A
configuration schema contains NF rule types. Each rule
type has various configuration fields, and the data types these
fields accept (e.g., “srcip” takes an IPv4 range). Once we
specify the concrete values for the fields (concrete values can
be wild-card), we obtain a concrete rule of the rule type.
A concrete configuration consists of multiple concrete
rules. Figure 3 shows an example of a firewall (FW) and a
network address translation (NAT) configuration schema and
their corresponding concrete configurations. In the NAT Rule
type, the outsrcip field denotes the possible output IP values
used in address translation.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 701

ProprietaryNF FW
ConfigSchema:
Rule type 1 (Accept): 〈srcip:IPv4 range, srcport:Port range, dstip:IPv4
range, dstport:Port range, action:1 〉
Rule type 2 (Deny): 〈 srcip:IPv4 range, srcport:Port range, dstip:IPv4
range, dstport:Port range, action:0 〉
ConcreteConfig:
Rule 1: 〈 srcip:10.1.1.1,srcport:*,dstip:156.4.0.1,dstport:*, action:1 〉
Rule 2: 〈 srcip:10.8.0.0/16,srcport:*,dstip:151.0.0.0/8,dstport:*,action:0〉

PfSense outbound NAT
ConfigSchema:
Rule type 1: 〈srcip: IPv4 range, srcport: Port range, dstip: IPv4 range,
dstport: Port range, outsrcip: IPv4 range, outsrcport: Port range〉
ConcreteConfig:
Rule 1: 〈srcip:10.1.0.0/16,srcport:*,dstip:156.4.0.0/16,dstport:*,
outsrcip:126.2.0.0/16,outsrcport=* 〉
Rule 2: 〈srcip:10.0.0.0/8,srcport:*,dstip:162.4.0.0/16,dstport:*,
outsrcip:192.1.0.0/16,outsrcport=* 〉

Figure 3: Example of a simplified ConfigSchema and Con-
creteConfig for a FW and a NAT

3.1 Problem formulation
Given an NF with a concrete configuration, Alembic’s goal is
to automatically synthesize a high-fidelity behavioral model
of the NF. Since NF implementations do not change often,
we can afford several tens of hours of offline profiling per NF.
However, since concrete configurations (e.g., a FW rule-set)
can change often, we need to generate a new model given a
new configuration quickly, within a few seconds.

Alembic takes five inputs: (1) the NF executable binary, (2)
the configuration schema (ConfigSchema), (3) the high-level
rule processing semantics of parsing the configuration (e.g.,
first match), (4) a list of network interfaces, and (5) the set of
input packet types (e.g., TCP SYN or ACK) the model needs
to cover. For (1), we assume no visibility into the internal
implementation or source code and only have access to its
manual describing configuration. For (2), the ConfigSchema is
typically already available from vendor documentation.3 The
ConfigSchema in Figure 3 assumes we are explicitly given a
set of rule types (e.g., accept or deny), where each rule type
is associated with a different runtime behavior. In practice,
the vendor documentation may only specify a set of fields
and their types. For instance, a FW ConfigSchema provides
one rule type with an action field that takes a binary value, in
which each value leads to a rule type with different runtime
behaviors. We show how we generate a set of all rule types
in such a case (§7). For (3), we assume the rule processing
semantics are available from the vendor documentation. Our
design can handle any NF that applies a single rule per packet.
Our implementation currently supports first-match semantics
but can be easily extended to handle others (e.g., last-match).
For (4), we need to know a list of interfaces that the NF is
configured with. In this work, we assume that we are given
two interfaces (e.g., internal and external-facing interfaces).

3Alembic requires a one-time, manual effort to translate this documenta-
tion into a format compatible with our current workflow.

Lastly, given packet types (5), Alembic will automatically
configure each packet type with appropriate field values.

Here, we focus on modeling TCP-relevant behavior for NFs
that forward, drop, or modify headers (e.g., FWs, NATs, and
LBs). We provide default packet types for TCP, but Alembic
can be extended with additional packet types. We scope the
types of NFs and their actions that Alembic can handle in §3.3
and discuss how to extend Alembic to handle more complex
NFs in §10.

3.2 Key ideas
To highlight our main insights to address challenges C1
through C4 from §1, suppose we want to model an NF with
a concrete configuration C1 composed of N concrete rules
{R1 · · ·RN}. Figure 4 illustrates our ideas to make this model-
ing problem tractable.
A) Compositional model (Fig. 4a): The concrete configura-
tion C1 can be logically decomposed into individual rules. As
seen in Figure 4a, suppose we have models M1 for R1 and M2
for R2. Then, we can create a compositional model for the NF
given the processing semantics defined by the ConfigSchema
(e.g., first-match). If the packet matches Rule1, then apply
Model1, else if it matches Rule2, then apply Model2. Other-
wise, apply Modeldefault.
B) Symbolic model (Fig. 4b): To start, we make two sim-
plifying assumptions, which we relax below: (1) the IP and
port fields in a concrete rule take a single value from a range
(e.g., 10.1.1.1 for srcip); and (2) the NF keeps per-connection
state. Suppose the srcip field in R1 (Figure 4b) takes a single
IP from 10.1.0.0/16. It is infeasible to exhaustively infer the
model for all possible values. Fortunately, we observe that the
logical behavior of the NF for a particular rule type (e.g., FW
accept rule) is homogeneous across different values for the
IPs and ports in this range. Thus, we can efficiently generate
a model by representing each IP and port field in a rule with
a symbolic value. Hence, for each logical rule type (e.g., FW
accept rule), we can learn a symbolic model (e.g., M1(A)).
C) Ensemble representation (Fig. 4c): We relax the as-
sumption that IPs and ports take single values and discuss
how we handle ranges within a rule (i.e., R1 in Figure 4b
takes a /16 prefix for a srcip). We observe that NF behavior
is logically independent for subsets of this large traffic space.
Consider a stateful firewall that keeps per-connection state.
Rather than viewing M1 as a monolithic model that captures
the behavior of all relevant connections, we can view the
model as a collection of independent models, one per connec-
tion (i.e., M1,1 for connection 1, M1,2 for connection 2, etc.).
Combining this idea with B above, we learn a symbolic model
for each rule type and logically clone the model to represent
IP and port ranges (henceforth, an ensemble of models). How-
ever, to leverage this idea, we need to infer the granularity at
which an NF keeps independent states (e.g., per-connection
or per-source). We show in §5 how to automatically infer this.

702 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C1
C2

C∞

…

M1

M2

…

Rule1 (R1)

Rule1 (R2)

Space of possible
configurations

…
C1 à a logical composition of
its behavior for individual rules

(a) Compositional model for a config

M1 (A)

R1 (FW TCP Accept)
<srcip=10.1.x.x, … >

A ß10.1.1.1…

A ß10.1.255.255
Do not need to learn a model for all concrete values
Classify the logical rule type à learn a symbolic model

R2 (FW TCP Deny)
<srcip=10.1.y.y , … >

M2 (B)
B ß10.1.1.1…

B ß10.1.255.255

(b) Symbolic model (e.g., M1(A) for TCP accept)

M1,1

M1,..

srcip=10.1.1.1 à

srcip=10.1.1.255 à
…

M1

…

Model with
large relevant traffic

Ensemble of logically
independent models

Homogeneous

R1 (FW TCP Accept)
<srcip=10.1.1.0/24, … >

(c) Ensemble of independent models per rule

Figure 4: Alembic Key Insights

Algorithm 1 NF operational model for processing incoming
packets

1: function NF(locatedPkt p, Config c, ProcessingSemantic ps,
Map[rule, Map[key, state]] stateMap)

2: poutList = []
3: rule = FINDRULETOAPPLY(p, c, ps)
4: if rule is None then
5: rule = GETDEFAULTRULE()
6: keyType = GETKEYTYPE(rule)
7: key = EXTRACTHEADER(keyType, p)
8: FSM = GETMODEL(key, rule)
9: curState = GETSTATE(stateMap, rule, key)

10: poutList, nextState = TRANSITION(FSM, p, curState)
11: UPDATESTATE(stateMap, rule, key, nextState)
12: return poutList

D) FSM inference: The remaining question is how to rep-
resent and infer a symbolic model. Following prior work in
stateful network analysis, we adopt the FSM as a natural ab-
straction [22, 35]. To this end, we develop a workflow that
leverages L* for FSM inference [12]. At a high-level, given
a set of relevant inputs, L* adaptively constructs sequences,
probes the blackbox, and infers the FSM. However, directly
applying L* for an NF entails significant challenges: First,
L* requires the set of inputs a priori. Hence, we need to
generate inputs from a large input space, and create suitable
mappings between inputs that L* takes and real packets for
the NF. Second, L* is not suitable for learning a FSM for
a header-modifying NF because it assumes: (1) we know
the input alphabet a priori, and (2) the underlying system is
deterministic. As an example violation of (2), a NAT may
nondeterministically choose the outgoing ports. We leverage
a domain-specific idea to extend L* for such cases (§6).

3.3 Operational model and limitations
Having described our key insights, we scope the types of
NFs for which Alembic is applicable. We use an abstract NF
(Algo. 1) to describe how incoming packets are processed (a
more detailed description can be found in §B). Our goal is to
handle NFs with logic stated in Algo. 1.

NF operational model: We start by describing the inputs
and outputs of the abstract NF. The NF receives or transmits a

Lin
NF

L interface
Lout

Rin

Rout R interface
legend

Located
packet

Figure 5: An NF with located packets

located packet [34] (i.e., a packet associated with an interface).
Figure 5 shows a setup for an NF with 4 located packets. The
NF is configured with two interfaces, L (e.g., internal) and R
(e.g., external). As an example, Lin is a packet entering the
NF via L, and Lout is an outgoing packet from the NF via L.

The abstract NF is configured with a concrete configuration,
composed of a set of rules. Each rule maintains a mapping be-
tween keys and concrete FSMs. For instance, if the NF uses a
per-connection key, then it will keep a concrete FSM for each
unique 5-tuple. The concrete FSMs describe the appropriate
action (i.e., Lout or Rout) for an incoming located packet (i.e.,
Lin or Rin). As shown in Algo. 1, when a located packet ar-
rives, the NF searches the configuration for the correct rule to
apply based on the processing semantics. If no rule is found,
the NF uses the default (i.e., empty) rule. Then, it uses the
relevant packet headers determined by the rule’s key to find
the concrete FSM and current state associated with that key.
Finally, the NF processes the packet according to the FSM
and updates the current state (Lines 10 and 11). Alembic aims
to synthesize models for NFs following Algo. 1.
Assumptions on configurations: We make the following
assumptions about NF configurations:
• Rules in a concrete configuration are independent. For

instance, we do not consider NFs that share the same state
across different rules. At most one rule in a configuration
can be applied to an incoming packet.

• Within a concrete rule, the states across different keys (i.e.,
state granularity tracked by an NF) are independent. For
a per-connection FW with a rule that takes IP and port
ranges, states across connections are independent.

• When IPs and ports in a concrete rule take ranges (e.g.,
ports=*), NFs treat each value in the range homogeneously
such that we can pick a representative sample and learn a
symbolic model (i.e., the symbolic model obtained using
port 80 or port 5000 for an outsrcip is identical).

Assumptions on NF actions: We now scope the NF actions
that Alembic can handle:

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 703

NF binary

ConfigGen($7.1)

SymbolicRuleij

Library of
symbolic models

SymbolicRule ij :
(KeyijàSymbolicModelij)

FSM Inference
using Extended L*

($4)

KeyLearning
($5)

For each RuleTypei:

PktTypeProtoConfigSchema
Operator

Offline

Rule 1
Rule 2

… Concrete Model
for a Concrete Config

Library of
symbolic models

(from offline) MatchClone(Rule1)

MatchClone(Rule2)
…

Ensemble

Ensemble

If packet p match Rule1:

Else if packet k match Rule2:

Concrete Config

Online ($7.2)

Figure 6: Alembic Workflow

• For simplicity, we only consider single-function NFs, ex-
cluding cases such as combined NFs processing FW rules
and then NAT rules.

• To make learning tractable, we only look at IP and port
modifications. Our implementation does not consider se-
q/ack numbers, ToS, or other fields (§4.3). We only handle
header modifications for connection-oriented NFs (§6).4

We tackle header modification for an NF that initially mod-
ifies IP/port of a packet, p1, entering from a particular
interface before modifying a packet, p2 (that belongs to the
same connection as p1) entering from the other interface.
Lastly, we cannot infer context-sensitive relations such as
how the modified IP or port (e.g., NAT ports) is chosen.

• We do not explicitly model temporal effects, such as con-
nection timeouts. When we inject input packets into the
NF, we collect outputs for ∆wait (e.g., 100 ms) before in-
jecting the next input packet. Alembic cannot handle cases
where output packets are results of prior input packets (e.g.,
retries after 1 second).

• We support five types of state granularity: per-connection,
per-source (e.g., a scan detector which counts a number
of SYN packets), per-destination (e.g., DDoS detector),
cross-connection, and stateless.

3.4 Alembic workflow
Having described our key insights and scope, we now present
our workflow (Figure 6) consisting of two stages:

Offline stage: From the ConfigSchema, we generate a set of
rule types (§7). Given each rule type, the ConfigGen mod-
ule generates a SymbolicRule, Rsymb, and a corresponding
ConcreteRule. For instance, given a FW ConfigSchema, it
generates two SymbolicRules and ConcreteRules (e.g., FW
accept and deny rule as shown in Figure 7).

4Most header modifying NFs we are aware of are connection-oriented.

Rsymb
1 : 〈src:A,srcport:Ap1,dst:B,dstport:Bp1, action:1〉 FW TCP Accept

Rconc
1 : 〈src:10.1.1.1,srcport:2000,dst:156.4.0.1,dstport:5000,action:1〉

Rsymb
2 : 〈src:A,srcport:Ap1,dst:B,dstport:Bp1, action:0〉 FW TCP Deny

Rconc
2 : 〈src:10.1.1.1,srcport:2000,dst:156.4.0.1,dstport:5000,action:0〉

Figure 7: SymbolicRules and ConcreteRules for a FW

For each SymbolicRule, we use the FSMInference mod-
ule, which leverages L*-based workflow to infer a symbolic
model where IPs and ports are symbolic (§4) and handles
header modifications (§6). This module uses our version of
L* (i.e., Extended L*). We also design the KeyLearning
module, which leverages the FSMInference module and in-
fers the state granularity (i.e., key type) tracked by the NF
(e.g., per-connection). Using the key type, we can identify
the key, a set of header field values that identifies logically
independent states (e.g., a 5-tuple for per-connection NF).
The offline stage produces a set of symbolic models, mapping
each SymbolicRule to a symbolic model and its key type.

Online stage: Given a new configuration, each rule is
matched to a corresponding SymbolicRule, mapped to a key
type and a symbolic model. Based on the key type, we logi-
cally clone the symbolic model to represent concrete IP and
port ranges (collectively, an ensemble of FSMs). Given the
processing semantics, we logically compose each ensemble
to create the final model for this configuration. Network man-
agement tools can then use the resulting model.

Roadmap: In the interest of clarity, §4 describes the FS-
MInference module of Alembic for a given SymbolicRule
with the following simplifying assumptions: NFs keep per-
connection state and do not modify headers. In subsequent
sections, we relax these assumptions and show how we infer
the state granularity (§5) and handle header-modifying NFs
(§6). §7 discusses how we generate a set of rule types and the
corresponding SymbolicRule and the Alembic online stage.

4 Extended L* for FSM Inference

We now present the FSMInference module, which leverages
the Extended L* for inferring a symbolic model given a Sym-
bolicRule, Rsymb (e.g., in Figure 7). Recall that we are also
given a corresponding ConcreteRule, Rconc, to configure the
NF. For clarity, we start with two simplifying assumptions:
(1) NFs keep per-connection state, and (2) NFs do not modify
packet headers. We relax these assumptions in §5 and §6.

4.1 Background on L* algorithm
Before discussing the challenges of directly applying L*, we
provide a high-level description of the L* algorithm [12],
which infers a FSM for a given blackbox. Given the input
alphabet, Σ (e.g., {a,b} where a, b are input symbols), L*
generates sequences (e.g., a, aa, aba), and probes the black-
box, resetting the box between sequences. For each input

704 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Initialize Equivalence
Oracle

Generate query
+Probe Blackbox Update Complete?

Yes
No

Done

If counterexample
Refinement Stage

Itr Hypothesis Refinement (queries) Eq. Oracle

1
0

a/1,b/0

0 1
a/1

b/0

a/0,b/1 aa! 10
ab! 11
ba! 00
bb! 01

input, i=abbb
M(i)! 1111
BB(i)! 1110

2
0 1 2

a/1

b/0 b/1

a/0
Blackbox under learning

0 1 2 3
a/1

b/0 b/1 b/1

a/0 a/0 ⇤/0 aba! 110
abb! 111

. . .
abba! 1110

Terminate

Figure 6: Iterations of Angluin

of the SUL (NF) and the length of the counterexamples.

Practical challenges with NFs: While AngluinAlgo is
a useful starting points, we cannot directly use it in Alem-
bic for the following reasons:
1. Generating input alphabets: AngluinAlgo assumes

input alphabets are given. However, this is a challenge
because of the large size of the traffic space.

2. NF behavior (e.g., non-determinism): NFs perform di-
verse actions such as dynamically modifying packet
headers (as shown in (2)). This is a domain-specific
challenge as Angluin’s Algorithm requires all input
symbols to be known a priori. Furthermore, NFs
are non-deterministic meaning the same input can be
mapped to different outputs where AngluinAlgo can-
not handle.

3. Network I/O: We need the ability to inject concrete
traffic into the NF and monitor the NFs’ actions on
these injected traffic traces ((4) in Figure). Classifying
actions is crucial to distinguish different states.

4.2 Extending AngluinAlgo for Alembic
We now describe how we design ExtendedAngluin that
builds on AngluinAlgo to generate a symbolic-state rep-
resentation of an NF given a SymbolicAtomicConfig.

4.2.1 InputGen: Generating input alphabets

AngluinAlgo assumes that input alphabets are given a
priori. A naive solution would be either exhaustive
searching which is clearly infeasible. Alternatively, we
can use randomly generated packets, but the chance of
these exercising the NF state space is small. We discuss
our domain-specific heuristics to achieve both coverage
and efficiency.

Instead of generating raw packets, we define the input
space in terms of abstract traffic units we refer to as ATUs
(Alembic traffic units) to serve as input alphabets. To en-
able generalizing to arbitrary configs, ATU are symbolic
representation mapped to concrete traffic traces.

Now, a relevant question is how we find relevant fields
from packe headers and map values. To do so, we ob-

serve that fields that may affect the states are either in or
be derived from the Cdir. As defined by Cgrammar, if the
packet fields are defined in the Cdir then we deem they
are relevant. Also, for other unspecified fields, we fol-
low the protocol model. For some packet fields such as
TOS/TTL unless specified in Cdir, we use the “default"
values. For the dynamically changing packet fields such
as Checksum, we follow the protocol specification to re-
compute them. Now the question is how to generate dif-
ferent connections. To achieve generality, Alembic gen-
erates all possible flows (using the configured IPs in Cdir)
on all interfaces. Then, we use NF ACL to prune irrele-
vant connection objects.

4.2.2 Handling NF-specific behavior

Handling dynamic header modifications: An-
gluinAlgo requires all input symbols (ATU) to be known
a priori. However, NFs may modify various fields in the
packet headers. For instance, a NAT translates the IP and
port of internal hosts’ traffic to an external IP/port. Sup-
pose a NAT gateway is using a hash function to map each
IP-port pair to an external one. Hence, It is unrealistic for
us to know, a priori, the output of this hash function for
every internal IP-port pair. Our idea is to observe if new
alphabets have appeared as part of actions and use new
symbols to generate additional symbols for another run
of ExtendedAngluin. This process repeats until we con-
verge and no more new symbols are seen.

Handling non-determinism: The previous approach
only works if the mapping is determistic. However, NFs
exhibit non-determistic behavior such as NAT re-writing
packet header fields such that the same internal IP can be
re-mapped to different public ports (IP A gets mapped
to port 80. After reset, it maps to 90). Formally, at
any given time or iteration t, f (s, i, t)! {null,ot} where
ot 6= i,ot 6= ot�1. If we use the same technique for han-
dling dynamic modification, we will never reach a con-
vergence because new port will always be generated.
Another solution is to use algorithm for learning NFA.
However, the number of non-determistic paths can be

6

Itr Hypothesis Refinement (queries) Eq. Oracle

1
0

a/1,b/0

0 1
a/1

b/0

a/0,b/1 aa! 10
ab! 11
ba! 00
bb! 01

input, i=abbb
M(i)! 1111
BB(i)! 1110

2
0 1 2

a/1

b/0 b/1

a/0
Blackbox under learning

0 1 2 3
a/1

b/0 b/1 b/1

a/0 a/0 ⇤/0 aba! 110
abb! 111

. . .
abba! 1110

Terminate

Figure 6: Iterations of Angluin

of the SUL (NF) and the length of the counterexamples.

Practical challenges with NFs: While AngluinAlgo is
a useful starting points, we cannot directly use it in Alem-
bic for the following reasons:
1. Generating input alphabets: AngluinAlgo assumes

input alphabets are given. However, this is a challenge
because of the large size of the traffic space.

2. NF behavior (e.g., non-determinism): NFs perform di-
verse actions such as dynamically modifying packet
headers (as shown in (2)). This is a domain-specific
challenge as Angluin’s Algorithm requires all input
symbols to be known a priori. Furthermore, NFs
are non-deterministic meaning the same input can be
mapped to different outputs where AngluinAlgo can-
not handle.

3. Network I/O: We need the ability to inject concrete
traffic into the NF and monitor the NFs’ actions on
these injected traffic traces ((4) in Figure). Classifying
actions is crucial to distinguish different states.

4.2 Extending AngluinAlgo for Alembic
We now describe how we design ExtendedAngluin that
builds on AngluinAlgo to generate a symbolic-state rep-
resentation of an NF given a SymbolicAtomicConfig.

4.2.1 InputGen: Generating input alphabets

AngluinAlgo assumes that input alphabets are given a
priori. A naive solution would be either exhaustive
searching which is clearly infeasible. Alternatively, we
can use randomly generated packets, but the chance of
these exercising the NF state space is small. We discuss
our domain-specific heuristics to achieve both coverage
and efficiency.

Instead of generating raw packets, we define the input
space in terms of abstract traffic units we refer to as ATUs
(Alembic traffic units) to serve as input alphabets. To en-
able generalizing to arbitrary configs, ATU are symbolic
representation mapped to concrete traffic traces.

Now, a relevant question is how we find relevant fields
from packe headers and map values. To do so, we ob-

serve that fields that may affect the states are either in or
be derived from the Cdir. As defined by Cgrammar, if the
packet fields are defined in the Cdir then we deem they
are relevant. Also, for other unspecified fields, we fol-
low the protocol model. For some packet fields such as
TOS/TTL unless specified in Cdir, we use the “default"
values. For the dynamically changing packet fields such
as Checksum, we follow the protocol specification to re-
compute them. Now the question is how to generate dif-
ferent connections. To achieve generality, Alembic gen-
erates all possible flows (using the configured IPs in Cdir)
on all interfaces. Then, we use NF ACL to prune irrele-
vant connection objects.

4.2.2 Handling NF-specific behavior

Handling dynamic header modifications: An-
gluinAlgo requires all input symbols (ATU) to be known
a priori. However, NFs may modify various fields in the
packet headers. For instance, a NAT translates the IP and
port of internal hosts’ traffic to an external IP/port. Sup-
pose a NAT gateway is using a hash function to map each
IP-port pair to an external one. Hence, It is unrealistic for
us to know, a priori, the output of this hash function for
every internal IP-port pair. Our idea is to observe if new
alphabets have appeared as part of actions and use new
symbols to generate additional symbols for another run
of ExtendedAngluin. This process repeats until we con-
verge and no more new symbols are seen.

Handling non-determinism: The previous approach
only works if the mapping is determistic. However, NFs
exhibit non-determistic behavior such as NAT re-writing
packet header fields such that the same internal IP can be
re-mapped to different public ports (IP A gets mapped
to port 80. After reset, it maps to 90). Formally, at
any given time or iteration t, f (s, i, t)! {null,ot} where
ot 6= i,ot 6= ot�1. If we use the same technique for han-
dling dynamic modification, we will never reach a con-
vergence because new port will always be generated.
Another solution is to use algorithm for learning NFA.
However, the number of non-determistic paths can be

6

HypothesisItr
Equivalence Oracle
(counter-example)

Alphabet, w = {a,b}*

Itr Hypothesis Refinement (queries) Eq. Oracle

1
0

a/1, b/0 aa ! 10
ab ! 11
ba ! 00
bb ! 01

0 1
a/1
b/0

a/0, b/1
input, i=abbb
M(i) ! 1111

Blackbox(i) ! 1110

2
0 1 2

a/1
b/0 b/1

a/0 aba ! 110
abb ! 111

. . .

abba ! 1110 0 1 2 3
a/1
b/0 b/1 b/1

a/0 a/0 ⇤/0
No counterexample

Terminate

Figure 9: Iterations of Angluin

copies it for each connection. The copies are created reactively as
the model encounters new, active connections.

5.1 Key Learning

Figure 10: key learning module i/o

Ideally, we would like to remove the assumption that the NF is
keeping state based on the fields {srcip,srcport,dstip,dstport} (i.e.,
keeping connection-based state). For instance, an IDS may keep
per-source state, such as in tracking and limiting the number of
outgoing connections from a single host. We now discuss how we
learn the granularity at which this state is maintained (i.e., learn the
key) assuming NF is deterministic but not necessarily connection-
oriented.

We first describe input/output model of key learning. Key learn-
ingtakes as input a AtomicSymbolicConfig and a ConfigSchema.
Both are used to identify packet header fields with IP and port types
that can also take ranges. It also requires access to the ModelInfer-
ence module (as described in §4) and the blackbox NF. The output
of key learning is a set of configuration fields that influence the
state. For instance, the output for an IDS that keeps per-source state
would be {srcip, srcport}. Note that the key is only relevant for a
particular AtomicSymbolicConfig. Thus, for a particular NF, the key
learningalgorithm needs to be run for every AtomicSymbolicConfig.

This is a large cost only needs to be incurred once, however, as the
results can be stored.

[SM: in key learning, we also re-run the inputgen to generate inputs.. shud i say

that?]

Figure 11: Intuition on Keylearning

Types of key: We conduct a survey on canonical NF configurations
(e.g., [1–3]). We find that NF configured with a concrete configu-
ration can be classified into the following classes based the type
of state they keep: (1) per-connection; (2) per-source (i.e., scan de-
tector which counts the number of packets from each source); (3)
per-destination; (4) cross-connection (e.g., caching proxy that sends
request based on the content), and (5) stateless. We describe our
key learning algorithm that determines the category that NF with a
concrete configuration belongs amongst the five categories.

Intuition: We start by illustrating the high-level intuition behind
our approach. First, consider a connection-oriented firewall with

9

Flowchart

Detailed Steps
Refinement Stage

Target FSM

M1
Input seq, i=abbb

M1(i) à 1111
Blackbox(i) à 1110

M2

Figure 8: L* overview and example

sequence, L* builds a hypothesis FSM consistent with the
input-output pairs seen so far. Specifically, it builds a Mealy
machine whose outputs are a function of its current state and
inputs. As shown in Figure 8, L* iteratively refines the hypoth-
esis FSM until it is complete (i.e., the set of probing sequences
cover the state space of this hypothesis). After the hypothesis
converges, L* queries an Equivalence Oracle (EO), which
checks if the inferred FSM is identical to the blackbox and
provides a counterexample if they are not. If the EO reports
that the hypothesis is identical to the blackbox, the algorithm
terminates. Otherwise, L* uses the counterexample to further
refine the hypothesis. The process repeats until the EO reports
no counterexamples. L*’s runtime complexity is polynomial
in the number of states and transitions of a minimal FSM rep-
resenting the target FSM as well as the length of the longest
counterexample used to refine the hypothesis [12].

Example: Figure 8 illustrates an example of the steps in L*
for the target FSM shown with Σ = {a,b}. Initially, L* starts
with the inputs, a and b, and a single-state FSM. It generates
four sequences to refine the model and converges to M1 as
shown. It then queries the EO and finds a counterexample
where Blackbox(abbb)=1110 but M1(abbb)=1111, which is
used to update the model. To explore the state space of the
new hypothesis, L* generates longer sequences. After this
second iteration, the EO finds no counterexamples (as M2 is
identical to the blackbox), and the algorithm terminates.

4.2 Challenges in using L* for NFs
While L* is a natural starting point, there are practical chal-
lenges in applying it directly to NFs. We will describe these
challenges using Figure 9 and discuss our solutions.

1) Generating input alphabet (§4.3): L* assumes the input
alphabet (Σ) is known. As discussed in §3, we can set Σ for
Alembic to be a set of located symbolic packets, which are
packets with symbolic IPs and ports associated to interfaces.
From now on, when we say packets, we refer to located pack-
ets. The main disconnect here is that the NF (i.e., the blackbox

Input Alphabet
L* Algo

Equivalence
Oracle

NF
(Concrete Rule)

$4.3
Generating
input alphabet

Symbolic pkt

{Symbolic pkt}

concrete pkt concrete pkt

Symbolic pkt $4.4 Classifying
output packets

$4.5

Figure 9: Key challenges in adopting the L* workflow for
NF model inference

in the L* workflow) takes in concrete packets and not sym-
bolic packets. Thus, we need to map a symbolic packet to a
concrete packet. Two challenges exist here: First, the possible
header space for concrete packets is large (i.e., all IPs and
ports), and second, the concrete packets need to exercise the
internal states of the NF (e.g., trigger the NF behavior).
2) Classifying output packets (§4.4): Next, for each sym-
bolic packet suggested by L*, we need to map it to an NF
action. The practical challenge is that NFs may require an
unpredictable delay. If we assume a processing delay that is
too short and classify the action as a drop, we might learn a
spurious model. While a delay that is too long will lead to our
inferences taking a long time. Thus, we need a robust way to
map an input to the observed output.
3) Building an equivalence oracle (§4.5): L* assumes ac-
cess to an EO (Figure 9). In cases where we do not have
access to the ground truth, we can only approximate the or-
acle via input-output observations. There are two practical
issues. First, existing approaches (e.g., [17, 25]) to building
an EO generate a large number of equivalence queries, creat-
ing a scalability bottleneck. Second, different approaches for
building an EO may affect the soundness of Alembic (§4.5).

4.3 Generating input alphabet
We now describe how we generate a set of located sym-
bolic packets for the input alphabet and how we map each
located symbolic packet to a concrete packet. As discussed
in §3, we are given the representative packet types of interest
PktTypeProto (e.g., TCP handshake) as an input.

To illustrate these challenges, consider two straw-man so-
lutions that generate packets for: (1) every possible combi-
nations of header fields, and (2) randomly generated header
fields. (1) is prohibitively expensive, and (2) may not exercise
the relevant stateful behaviors. Our idea is to use the symbolic
and concrete rules to identify relevant header fields and their
values. Specifically, we observe that the header fields and
their values (e.g., IP-port) in Rconc will trigger relevant NF be-
haviors. Thus, we generate all combinations of these relevant
IP-port pairs using their concrete values from Rconc. Using a
pair of Rsymb

1 and Rconc
1 as an example (Figure 7), we identify

A=10.1.1.1 as a possible candidate for both source and des-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 705

tination IPs across all interfaces (i.e., A can be a source or
destination IP on packets entering from internal or external
interfaces). We consider all interfaces, as a packet entering
different interfaces can be treated differently.

We also consider the scenario where the packet does not
match any rules. One approach is to pick concrete header
values that do not appear in the concrete rule and generate a
corresponding symbolic packet (e.g., not A=12.1.0.1). How-
ever, this would double the size of Σ. Instead, we leverage
our insight regarding the compositional behavior of NFs and
view this as composing the action with the default behavior
of the NF when no concrete rule is installed. We separately
infer a model, Mde f ault , with an empty configuration (e.g., a
FW without any rules).5

Example: From Rsymb, we mark A:Ap1 and B:Bp1 as pos-
sible IP:port pairs, where A:Ap1 and B:Bp1 refer to sr-
cip:srcport and dstip:dstport pairs from Rsymb. Then, we gen-
erate all possible combinations across source and destina-
tion IP/ports and network interfaces: (1) TCPInternal

A:Ap1)B:Bp1
(corresponding to a TCP packet with srcip:port=A1:Ap1
and dstip:port=B1:Bp1 on the internal interface), (2)
TCPExternal

A:Ap1)B:Bp1, (3) TCPInternal
B:Bp1)A:Ap1, . . ., etc. Suppose the

packet types of interest are: {SYN,SYN-ACK,ACK}. Then,
for (1), we obtain SYNInternal

A:Ap1)B:Bp1, SYN-ACKInternal
A:Ap1)B:Bp1,

· · · . We follow the similar procedure for (2) and (3). Essen-
tially, SYNInternal

A:Ap1)B:Bp1 is a symbolic packet which maps to a
concrete SYN packet with A=10.1.1.1 and Ap1=2000 that is
injected from the internal interface. Alembic internally tracks
the symbolic-to-concrete map (i.e., A=10.1.1.1) to connect the
symbolic packet used by L* to the concrete packets into the
NF. Finally, we (optionally) prune out packets that are infea-
sible given the known reachability properties of the network.
For instance, it is infeasible for a packet with srcip=10.1.1.1
to enter from the external interface.

4.4 Classifying output packets
To classify the output from the NF, we monitor for output
packets at all interfaces of the NF and map them to their
symbolic representations. For instance, after detecting a SYN
on the external interface with source IP:port, 10.1.1.1:2000,
and destination IP:port, 156.4.0.1:5000, we assign the output
symbols as SYNExternal

A:Ap1)B:Bp1. Specifically, Alembic monitors
all interfaces for ∆wait and reports the set of observed packets
(e.g., Lout and Rin). ∆wait is critical for classifying dropped
packets and we cannot have an arbitrarily assigned values. Un-
fortunately, an NF sometimes introduces unexpectedly long
delays in packets (≥ 200ms). For instance, Untangle performs
connection setup steps with variable latency upon receiving
SYN packets, and ProprietaryNF experiences periodic spikes
in CPU usage leading to delayed packets. Such delays can

5We acknowledge an assumption that rule matching is correctly imple-
mented by the NF. If the NF has a rule for src=A and dst=B but a buggy
implementation that matches A’ and B’, we will not uncover this behavior.

result in misclassifying a packet as a drop and affect the learn-
ing process. For these NFs, ∆wait is determined by injecting
the TCP packets and measuring the maximum observed delay.
Further, we extended L* with an option to probe the same
sequence multiple times and pick the action that occurs in the
majority of test sequences.

4.5 Building an equivalence oracle
Building an efficient oracle is difficult with just black-box ac-
cess [17,25]. Any EO will be incomplete as it cannot generate
all sequences. Our goal is to achieve soundness with respect
to the generated Σ without sacrificing scalability.

We tested three standard approaches for generating EOs
that LearnLib [38], an open-source tool for FSM learning,
supports: (1) Complete Oracle (CO), which exhaustively
searches sequences to a specified length; (2) Random Oracle
(RO), which randomly generates sequences; and (3) Partial W-
method (Wp-method) [25], which takes d as an input parame-
ter which is an upper bound on the number of additional states
from its current estimate at each iteration.6 We discarded the
CO as it simply performs an exhaustive search and the RO as
it is not systematic in exploring the state space. Instead, we
use the Wp-method, a variant of the W-method [17] that uses
fewer test sequences without sacrificing W-method’s cover-
age guarantees. Briefly, the W-method uses a characterization
set, the W-set, which is a set of sequences that distinguish
every pair of states in the hypothesis FSM. The W-method
searches for new states that are within d additional inputs of
the current hypothesis and uses the W-set to confirm the new
states. In theory, one can set d to be large but increases the
runtime by a factor of |Σ|d . For this reason, we set d = 1 in
Alembic. Alembic can only discover additional NF states that
are discoverable by the Wp-method with d = 1; i.e., Alembic
with Wp-method (d = 1) is sound. Even with d = 1, Alem-
bic synthesizes models that are more expressive than many
handwritten models and discovers implementation-specific
differences (§8).

Distributed learning: Both L* and Wp-method for d = 1 are
polynomial in runtime. However, the Wp-method is the bot-
tleneck as the number of sequences generated by Wp-method
is approximately |Σ| factor higher than that of the L*. For-
tunately, the equivalence queries can be parallelized. In our
system implementation (§8), we run equivalence queries in
parallel across multiple workers until we find a counterex-
ample. Using this technique, we can significantly reduce the
time for learning a complex behavioral models (§8.3).

5 KeyLearning: Learning State Granularity

Thus far, we assumed that the NF maintains per-connection
state. We now relax this assumption and show how we tackle

6In practice, the number of states can grow by > d at each iteration.

706 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NFs that maintains other key types (e.g., per-source). Specifi-
cally, we implement a KeyLearning module. Given a Symbol-
icRule, the module outputs the key type, a set of header fields
that identify a relevant model in an ensemble representation.
Note that here we still assume that the NF does not modify
packet headers, which we will relax next in §6.
High-level intuition: Consider a FW configured with a rule
that keeps per-connection state. A packet from one connection
only affects its own FSM and is unaffected by packets that
belong to other connections. Now, consider an NF which
keeps per-source state, and packets, p1 and p2, with the same
srcip, but with different dstip. The arrival of p1 affects not
only the state for processing p1, but also the state associated
with p2 because they share the same srcip. The KeyLearning
algorithm builds on the above intuition; if two connections
are independent with respect to an NF’s processing logic, then
the packet corresponding to one connection only affects the
state of its FSM. Thus, to infer the key type, we construct test
cases using multiple connections to validate the independence
assumptions across these connections. We show how we can
validate independence by inspecting two connections using
carefully constructed source and destination values.

The KeyLearning algorithm is composed of test cases
to distinguish between different key types. As a con-
crete example of a test case, suppose we have a Symbol-
icRule, which takes 〈srcip=A, dstip=B〉 where A and B
are ranges of IPs (e.g., A=10.1.0.0/16 and B=156.4.0.0/16).
First, we infer two models with two separate ConcreteRules,
where we configure each IP using a concrete singleton
(e.g., Rconc

1 , with 〈srcip=10.1.1.1,dstip=156.4.0.1〉 to learn
Model1, and Rconc

2 with 〈srcip=10.1.1.1,dstip=156.4.0.2〉 to
learn Model2). Note that these two have the same srcip. We
leverage the FSMInference module in §4. We first gener-
ate Σ1 for Rconc

1 and use the FSMInference in §4 to obtain
Model1, and then repeat for Model2. Assuming these models
are independent, we run a logical FSM composition opera-
tion to construct Modelcomposite (Def.7 in §C). This is what
the hypothetical model will be if these two connections are
independent. As a second step, we now learn a joint model
Modeljoint, where we combine input alphabets from both con-
nections. Specifically, we configure a ConcreteRule, where
the dstip takes a range of IPs (e.g., 156.4.0.1-156.4.0.2).

For example, consider a scan detector, that keeps per-source
state. As the above two connections have the same srcip,
Modeljoint will reflect that the packets affect each other’s state
(i.e., Modeljoint is not equivalent to Modelcomposite, which as-
sumes independence across two connections). But, for a per-
connection model, the two connections are independent (i.e.,
Modeljoint would be equivalent to Modelcomposite). Thus, we
now have a simple logical test to distinguish between per-
connection and per-source.
Inference Algorithm: Our inference algorithm generalizes
the basic test described above. By crafting different Con-
creteRules (i.e., changing the overlap on srcip or dstip) and

Test1:
Cross-Conn Test

Key=
Cross-Conn

Test2:
Per-Src Test

Test3:
Per-Dst Test

Key=
Per-src

Key=
Per-dst

Key=
Per-Conn

No No No

YesYesYes

Start

Stateless Per-conn Per-src Per-dst Cross-conn
Test 1

(diff src, diff dst)
N N N N Y

Test 2
(same src, diff dst)

N N Y N Y

Test 3
(diff src, same dst)

N N N Y Y

Decision Tree

Test Cases (diff means different)

Figure 10: KeyLearning Decision Tree

running the equivalence tests between Modelcomposite and
Modeljoint for each case, we create a decision tree to iden-
tify the key type maintained by the NF, which are: (1) per-
connection, (2) per-source (e.g., a scan detector), (3) per-
destination, (4) cross-connection, or (5) stateless. 7

Figure 10 shows the result of test cases for these key types.
For instance, Test 1 configures two connections to have differ-
ent sources and destinations, to check whether the NF keeps
cross-connection state. Test 2 configures two connections to
have the same sources, but with different destinations. If Test 2
outputs that two connections affect the states relevant for each
other, then the NF is maintaining either a cross-connection
or per-source state. The decision tree (Figure 10) uniquely
distinguishes the key and the correctness naturally follows
from our carefully constructed test cases. We formally prove
the correctness of this approach in §C.

6 Handling NF Header Modifications

Now, we extend our FSMInference in §4 to handle header
modifications, such as a NAT rewriting a private IP-port pair to
a public IP-port pair. We currently only handle NFs that main-
tain per-connection state while modifying IPs and ports. We
consider two cases of possible header modifications: (1) static
(e.g., a source NAT modifies a private port to a static public
port), and (2) dynamic (e.g., a source NAT or LB randomly
generates port mappings across resets). We first describe how
we handle each case individually, then present our combined
workflow to handle both cases. Our workflow does not require
knowing a priori that an NF modifies header fields, which
field it modifies, or how it modifies packet headers (i.e., static
or dynamic).

Static header modifications: Consider a source NAT that
deterministically maps a source IP-port pair (e.g., A:Ap1) to
a public source IP-port pair (e.g., X:Xp1). To discover the
NAT’s behavior that rewrites the public IP-port back to the
private IP-port, we need to generate a symbolic packet using

7The key for a stateless NF is a 5-tuple. We can view a stateless NF as an
FSM with a single state, which is identical to each 5-tuple keeping one state.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 707

the public (modified) IP-port (i.e., X:Xp1). However, we may
not know the concrete value of X:Xp1 a priori. Hence, we
cannot generate a complete set of |Σ|. Our idea is to first
run the inference module (§4) and check whether a symbolic
model has additional symbolic IPs and ports. If so, we append
the new IP-port pairs to the Σ and re-run the inference. We
repeat this step until the output FSM contains no new IP-port
pairs. Given that the static modification maps an IP-port to
the same IP-port pair, this approach converges.

Dynamic header modification: The above approach of up-
dating the input alphabet will not converge for NFs that dy-
namically modify packet headers, however. Consider a NAT
that randomly picks one of the available ports for the same 5-
tuple (e.g., a private IP-port (e.g., A:Ap1 first maps to X:Xp1
but then to X:Xp2 after L* resets the NF). Since L* assumes
a deterministic FSM, it will crash as a result of this nondeter-
minism. Our idea is simple. If L* crashes, then we identify the
IP-port pair that caused the nondeterministic behavior. Next,
we mask this nondeterministic behavior of the NF from L* by
explicitly mapping such IP-port pairs to consistent symbolic
values (e.g., Alembic maps SYNInternal

A)B to SYNInternal
X)B regard-

less of the concrete value of the rewritten source IP). Since the
concrete value of X will change across resets, the extended
L* uses the most-recently observed concrete value of X when
playing sequences.

Combining both cases, we first run the FSMInference mod-
ule (§4). If L* completes but discovers new symbols (i.e.,
static modification), then we re-run the workflow with new
symbols. However, if L* crashes due to a nondetermistic FSM
(i.e., dynamic modification), we mask the non-deterministic
behavior as discussed. After the required modifications are
applied, the L* is repeated until it converges. As we only
handle modification for per-connection NF, we assume the
key is per-connection for an NF that modifies packet headers.

7 Handling an Arbitrary Config

We now discuss how we generate a set of SymbolicRules
(§7.1) and then how the online stage constructs a concrete
model given a concrete configuration (§7.2).

7.1 Generating SymbolicRules
The ConfigGen module generates a set of SymbolicRules. As
discussed in §3.1, the vendor documentation may not clearly
give a set of rule types where each type is associated with a
different runtime behavior (e.g., FW accept vs. deny). Sup-
pose the FW ConfigSchema specifies a rule types as 〈srcip,
srcport, dstip, dstport, action〉 where “action” takes a binary
value. To obtain a set of logical rule types, we use a set of con-
servative heuristics. Typically, we observe that fields which
take a large set of values (e.g., IPs and ports) demonstrate sim-
ilar behaviors across values within the set. For fields that only
take a small set of values (e.g., action), each value typically

carries a distinct runtime behavior. Based on this observation,
the ConfigGen module first assigns a new symbol (i.e., A for
srcip) to each field that takes a large set of values. Then for
each combination of other small fields (e.g., action), this mod-
ule generates a SymbolicRule (for each rule type). We also
generate a corresponding ConcreteRules by sampling a value
for each field. For the example above, ConfigGen generates
two rule types, accept and deny.

7.2 Alembic online
We now describe Alembic’s online stage, which constructs
a concrete model for a given a configuration. The concrete
model then uses our operational model (Algo. 1) to model
how an NF processes incoming packets.
Constructing a concrete model: For each concrete rule, R,
in a concrete configuration, we first fetch the corresponding by
SymbolicRule by substituting fields that were made symbolic
with concrete values from the rule, R (e.g., 〈srcip=10.1.0.1
· · · action=1〉 matches a SymbolicRule, 〈srcip=A · · · action
=1〉). Then, we fetch the corresponding symbolic FSM and the
key type, and use the key type (e.g., srcip-port for per-source
NF) to appropriately clone the symbolic model to create an
ensemble representation. There is one additional step when
the key type is not per-connection; we must substitute any
ranges based upon the key type. For example, for a per-source
NF, dstip-port in a concrete model refers to a range of concrete
values specified in R for dstip and dstport. The output is an
ensemble of concrete models for each rule in a configuration.
Processing incoming packets: Upon receiving a packet, the
NF fetches the corresponding rule in a configuration using
the processing semantics (e.g., first-match). The NF then uses
the key to access the relevant concrete FSM in an ensemble of
FSMs and the current state associated with the packet (Line 9
in Algo. 1). Finally, the NF applies the appropriate action
and updates the current state associated with that packet. We
present a more detailed description of how we instantiate an
ensemble of FSMs in §B.

8 Implementation & Evaluation

System Implementation: We implemented Alembic us-
ing Java for the extended L*, C for monitoring NF actions,
and Python for the rest. We create packet templates using
Scapy [6]. Then, Alembic feeds the output of prior mod-
ules into the Extended L* built atop LearnLib [38]. We
re-architected the Learnlib framework to enable distributed
learning where queries are distributed to workers via JSON-
RPC [4].8 Our L* implementation tracks the symbol-concrete
mapping of IPs and ports to translate between symbolic and
concrete packets. The symbolic FSM output is stored in DOT
format, which is then consumed by the online stage.

8Due to some unhandled edge cases, our current implementation requires
using only one worker for NFs with dynamic header modifications.

708 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Coverage of models over input packet types
FW staticNAT randNAT LB

PktType pf ut pNF pf pNF pf pf hp
correct-seq # G# G# #
combined-seq
pf: PfSense, ut: Untangle, pNF: ProprietaryNF, hp: HAProxy
G#: TCP-handshake pkts, {SYNC,SYN-ACKC,ACKC}, for both interfaces
#: G# set excluding SYNC from the external interface

L* assumes that we have the ability to reliably reset the NF
between every sequences. For Alembic, we need to reset the
connection states. For some NFs, this can be performed using
a single command (e.g., pfctl -k in PfSense). However,
other NFs required that the VM be rebooted (e.g., Untangle).
In such cases, we take a snapshot of the initial state of the
VM and restore the state to emulate a reset. This does cost up
to tens of seconds but is a practical alternative to rebooting.

Experimental Setup: We used Alembic to model a variety of
synthetic, open-source, and proprietary NFs. First, we created
synthetic NFs using Click [31] to validate the correctness of
Alembic. Each Click NF takes an FSM as input and processes
packets accordingly, so we know NF’s ground-truth FSM. To
validate against real NFs, we generated models of PfSense [5]
(FW, static NAT, NAT that randomizes the port mappings,
and LB), ProprietaryNF (FW, static NAT), Untangle [7] (FW),
HAProxy [2] (LB). We now use NAT to refer to a static NAT
and a randNAT to refer to a NAT that randomizes the IP-port
mappings. Our experiments were performed using Cloud-
Lab [1]. We ran PfSense, Untangle, ProprietaryNF, HAProxy,
and Click in VMs running on VirtualBox [8]. Recall that ∆wait
needs to be customized for each NF. We used ∆wait of 100 for
PfSense and Click-based NFs, 250 ms for ProprietaryNF, 200
ms for Untangle, and 300 ms for HAProxy. For NFs that incur
unexpected delays (e.g., HAProxy, ProprietaryNF, Untangle),
we took a majority vote of 3.

Packet types: We use two TCP packet types. First, the
correct-seq set consists of standard TCP packets, {SYNC,
SYN-ACKC, ACKC, RST-ACKC, FIN-ACKC}, where the
handling of seq and ack are under-the-hood. Instead of in-
troducing seq and ack numbers in Σ, we introduce additional
logic in the Extended L* to track seq and ack of the transmit-
ted packets and rewrite them during the inference to adhere
to the correct semantics (i.e., update the ack of SYN-ACKC
after we observed an output of SYNC).9 Second, we introduce
combined-seq set to model the interaction of TCP packets in
the presence of out-of-window packets. We extend the correct-
seq set with packets with randomly-chosen, incorrect seq and
ack values, {SYN-ACKI, ACKI, RST-ACKI, FIN-ACKI}.

8.1 Validation using synthetic NFs

A) Inferring the ground-truth model: We provide
Click [31] with a 4-state FSM that describes a stateful FW

9The seq number is incremented by 1 for packets with a SYN or FIN
flag set and otherwise, by the data size. T. The ack number for a side of a
connection is 1 greater than any received packet’s sequence number.

Table 2: Results of stress testing
NF (pkt type) accuracy NF (pkt type) accuracy
PfSense FW (C) 98.8-100% ProprietaryNF FW (C) 99.9-100%
PfSense FW (CI) 94.8-100% ProprietaryNF FW (CI) 98-100%
PfSense NAT (C) 99.1-100% PfSense randNAT (C) 98.2-100%
PfSense LB (C) 96.4-97.4% ProprietaryNF NAT (C) 98.8-100%

C : correct-seq CI : combined-seq

that only accepts packets from external hosts after a valid
three-way handshake. We also constructed another 18-state
FSM that describes a similar FW and a 3-state FSM that de-
scribes a source NAT (SNAT). In all three cases, Alembic
inferred the ground-truth FSM.
B) Finding intent violations: We used a red-team exercise
to evaluate the effectiveness of Alembic in finding intent vio-
lations in NF implementations. In each scenario, we modified
the FSM from A to introduce violations and verified that the
Alembic-generated model captured the behavior for all of the
following four cases. A and B refer to an internal and external
host, respectively: (1) a FW prevents the connection from
being established by dropping SYN-ACK packets; (2) a FW
proactively sends SYN-ACK upon receiving SYN from A to
B; (3) a SNAT rewrites the packet to unspecified srcip-port;
and (4) a SNAT rewrites a dstip-port. Some of these scenarios
are inspired by real-world NFs.
C) Validating key learning: We wrote additional Click [31]
NFs that track the number of TCP connections based on dif-
ferent keys. We applied the key learning algorithm to each
and confirmed it identifies the correct key (Table 5 in §C).

8.2 Correctness with real NFs
As summarized in Table 1, we generated models for PfSense
and ProprietaryNF FWs using both correct-seq and combined-
seq sets. For the other NF types, we used only the correct-seq
set because the FW models for these NFs already modeled the
interaction of TCP packets in the presence of out-of-window
packets. For an NF that uses dynamic modification (e.g., rand-
NAT), we cannot correctly instantiate the model in the pres-
ence of RST-ACK and FIN-ACK packets (§B). Hence, we
only showcased how this NF handles connection establish-
ment. Untangle and HAProxy have SYN retries and spurious
resets (i.e., temporal effects) that are beyond our current scope
(§3.3) and could not be disabled. Thus, we again only model
how these NFs handle connection establishment. Further, dur-
ing our attempts to infer models, we discovered these two NFs
are connection-terminating, where an external SYNC packet
interfered with the connection initiation attempt from the in-
ternal host, which violates our independence assumption. To
make the learning tractable, we removed the SYNC from the
external interface for these connection-terminating NFs.
Complementary testing methodologies: Since we do not
know the ground truth models and thus cannot report the cov-
erage of code paths inside the NF, we used three approaches
to validate the correctness of our models: (1) iperf [3] testing,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 709

Table 3: Time to infer a symbolic model (h: hours, m: min)
NF (pkt type) time NF (pkt type) time
PfSense FW (C) 11 m ProprietaryNF FW (C) 48 h
PfSense FW (CI) 16 h ProprietaryNF FW (CI) 25 h 18 m
PfSense NAT (C) 28 m PfSense randNAT (C) 14 m
PfSense LB (C) 14 m ProprietaryNF NAT (C) 48 h
Untangle FW (C) 37 m HAProxy LB (C) 20 m

generating valid sequences of TCP packets; (2) fuzz testing,
randomly picking a packet type and a concrete IP and port;
and (3) stress testing, generating packets by first picking a
packet type and selecting concrete IP and port values to acti-
vate at least one rule.

For each test run, we generated an arbitrary configuration.
For NFs that take multiple rules (e.g., FW and NAT), we var-
ied the number of rules between 1, 5, 20, and 100. For each
concrete rule, we randomly sampled a field from the field type
defined by the ConfigSchema. We ensured that we picked con-
crete configurations different from the ones used during the
inference (§4). For FWs and NATs, the generated configura-
tions were installed on one interface (i.e., internal). Further, as
Alembic cannot compose models for multi-function NFs (i.e.,
a FW with NAT), we set allow rules on the FWs when we
inferred models for NATs and LBs. For iperf [3] testing, we
set up a client and a server and collect the traces on each in-
terface. Because iperf [3] generates a deterministic sequence
of packets, we only tested with 1 accept rule. For stress and
fuzz testing, we generated sequences of 20, 50, 100, and 300
packets. In each setting, we measured model accuracy by cal-
culating the fraction of packets for which the model produced
the exact same output as the NF. Each setting is a combina-
tion of the NF vendor and type (e.g., PfSense FW with the
correct-seq set), input packet type (e.g., 300 packets), and the
number of rules (e.g., 20 rules).

Iperf testing: Our models predicted the behavior of all NFs
with 100% accuracy.

Fuzz testing: Across all settings for ProprietaryNF and Pf-
Sense FWs (both combined-seq and correct-seq set), the ac-
curacy was 100%. For PfSense and ProprietaryNF NATs, the
accuracy was 99.8% to 100%.

Stress testing: We summarize the results in Table 2. For
many NFs (e.g., ProprietaryNF and PfSense FWs), we see the
lowest accuracy (e.g., 98%) for 1 rule with 300 packets. This
is expected because our testing generates a long sequence
of packets that the Wp-method with d = 1 did not probe.
Also, given the same FW (e.g., PfSense FW), we observe
higher accuracy for an NF modeled with the correct-seq set
compared to that modeled using the combined-seq set. We
confirm that the model learned using the combined-seq set
is rather large (> 100 states) resulting from the many ways
in which the correct and incorrect packets can interact. Note
that ProprietaryNF NAT correct-seq took 49 hours to model
and ProprietaryNF FW combined-seq took 5 days to infer
the model. Going back to our earlier requirements that we

Table 4: Scalability benefits of our design choices

Runtime
(|Σ|)

1 connection
(Σ=6)

2 connections
(Σ=12)

3 connection
(Σ=18)

26 min 10 hr > 3 days

Runtime
(d in Wp-method)

d=1 d=2 d=3
13 min 1 hr 10 min 7 hr

can afford several tens of hours (i.e., a couple days) for the
offline stage, we ran the accuracy testing on an intermediate
model inferred after 48 hours, which still achieved high accu-
racy. We did not perform fuzz or stress testing for Untangle
FW and HAProxy LB. These NFs have temporal effects that
result in mis-attribution, which is outside our scope (§3.3).
We see that Alembic achieves high accuracy even with large
configurations.

8.3 Scalability
We now evaluate the runtime of Alembic’s components.
Time to learn symbolic models: For each NF, we report the
longest time to model one SymbolicRule as learning can be
parallelized across symbolic rules. In all cases, we use 20
servers setup, except for with PfSense random NAT which
used one. 8 The results are summarized in Table 3. In sum-
mary, we achieved our goal of inferring high-fidelity models
in less than 48 hours. We find that the runtime depends on: (1)
the size of the FSM and |Σ|, and (2) Alembic or NF-specific
details (e.g., rebooting). For (1), as the size of |Σ| was double
for the combined-seq set, it took more than 48 hours to dis-
cover 72-state FSM (ProprietaryNF FW, combined-seq) but
less than 26 hours for 79-state with the correct-seq set. For (2),
discovering the NAT model ProprietaryNF NAT (correct-seq)
took longer than the FW as the NAT inference ran in two
phases (§6). Lastly, PfSense models take less time to infer as
PfSense does not require rebooting, and has shorter ∆wait.
Time to validate the key: We use PfSense FW (correct-seq)
to report the time to infer the key. It took 6 hours to infer the
key (e.g., 2 hrs for each test).
Time for the online stage: For ProprietaryNF FW, the time
to compose a concrete model is 75 ms for 10 rules, 0.6 s for
100 rules, and 5 seconds for 1,000 rules. The result generalizes
to other NFs.
Scalability benefits of our design choices: The insights
to leverage compositional modeling and KeyLearning allow
Alembic are critical in achieving reasonable runtime by re-
ducing the size of Σ. Suppose one FW rule takes a source
IP field takes a /16 prefix. Without KeyLearning, we need to
infer a model with all 216 connections. Similarly, for a con-
figuration with 20 rules, we need to infer a model with all
relevant connections. The top half of the Table 4 shows how
the runtime drastically increases as we increase the number of
connections using a Click-based [31] FWs from §8.1 (using
just one worker). Further, we measured the runtime as a func-
tion of d in Wp-method (bottom of Table 4). Using d = 1, we

710 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2
SYN SYN

*
* DROP

DROP

SYN SYN

PfSense FW TCP Accept

Host B
External

FA RA

SYN SA ACK SYN SA ACK

FA RA

NF

Packet Legend

FA RA

SYN SA ACK

*
*

*
* . . .

RA RASYN DROP

FA RA

SA ACK

Host A
Internal

SYN

Figure 11: The light/dark coloring indicates packets on
host A/B’s interface, respectively. The figure below shows
the 3 states for PfSense FW accept rule

were still able to infer the ground truth while reducing the run-
time. These results demonstrate how reducing the size of |Σ|
is critical to obtain a reasonable runtime. Lastly, distributed
learning helps scalability. The Click-based [31] FW with 18
states takes 1.6 hours with 1 worker but only 16 minutes with
19 workers (and 1 controller).

8.4 Case studies
We now highlight vendor-specific differences found using
Alembic. For clarity, we present and discuss only partial rep-
resentations of the inferred FSMs (as some FSMs are large).
Firewall (correct-seq): A common view of stateful FWs
in many tools is a three-state abstraction (SYN, SYN-ACK,
ACK) of the TCP handshake. Using Alembic, however, we
discovered that the reality is significantly more complex. With
a single FW accept rule, the inferred PfSense model (correct-
seq) shows that a TCP SYN from an internal host, A, is suffi-
cient for an external host, B, to send any TCP packets (Fig-
ure 11). Furthermore, FIN-ACK, which signals termination
of the connection, does not cause a state transition. We find
that ProprietaryNF FW has 79 states for a FW accept rule in
contrast to 3 states for PfSense FW. ProprietaryNF, too, does
not check for entire three-way handshake (e.g., only SYN,
SYN-ACK). We find that the complexity of the FSM (i.e.,
79 states) results from the number of ways in which the two
TCP handshakes (from A and B) can interfere with each other.
Such behavior could not have been exposed through handwrit-
ten models. Untangle FW actually behaves like a connection-
terminating NF (Figure 13 in §A for partial model). The FW
lets the first SYN from A through, but when B replies with
a SYN-ACK, Untangle forwards it but preemptively replies
with an ACK. When the A replies with ACK, Untangle drops
it to prevent a duplicate.
Firewall (combined-seq): Surprisingly, for PfSense, we
learned 257 states with combined-seq. The complexity is
a result of packets with incorrect seq and ack causing state
transitions, where many are forwarded. We learned a 72-state
FSM for the ProprietaryNF FW after 48 hours and the full
model (104-state) after 5 days. The cause for the larger FSM
for PfSense is that the incorrect seq and ack packets often

0 1 2
SYN

*
*

HAProxy LBRST
RST

SA

*
*

RST
RST

ACK SYN

ACK DROP
ACK

ACKSA …

0 1
SYN

*
*

PfSense LB

. . .DROP
DROP

SYN

SYN SYN
ACK ACK

SYN
2

SA SA

DROP

SYN RA

SYN

Figure 12: First 3 states of the HAProxy and PfSense LB.
Stars on head/tail of packets indicate src/dst modification

cause state transitions more frequently than ProprietaryNF
FWs. Further, it is interesting to see how PfSense only had 3
states for the correct-seq set but 257 states with combined-seq,
in contrast to ProprietaryNF where the number of states for
both sets are similar. At a high-level, we find that obtaining
such model is useful as it could possibly be used to generate a
sequence of packets to bypass the firewall, but this is beyond
the scope of our work.
Load balancer: HAProxy (Figure 12) follows the NF’s
connection-terminating semantics. It completes the TCP hand-
shake with the client before sending packets to the server.
After the handshake, the source of outgoing packets is mod-
ified to server-facing IP of LB, and destination is modified
to the server (i.e., star on both-ends of TCP SYN in Fig. 12).
In contrast, PfSense LB behaves like a NAT. When a client
sends a SYN to the LB, the destination is modified to the
server’s IP (i.e., star in state 1 in Figure 12). Then, the LB
modifies destination of packets from both client and server.
We confirmed that PfSense indeed implements load balancing
this way [37]. Alembic automatically discovered this without
prior assumptions of any connection-termination behavior.
Further, the connection-termination semantics of HAProxy
differ from those of Untangle FW. Unlike HAProxy, Untangle
lets SYN packets through and preemptively completes the
connection with the external host. This is yet another example
of non-uniformity across NF implementations.

8.5 Implications for network verification
We use two existing tools, BUZZ [22] and VMN [35], to
demonstrate how Alembic can aid in network testing and
verification. Using a Click-based [31] FW which adheres
policy 1 and 2 (§2), we compare the test output using: (1)
MAlembic inferred using Alembic, and (2) existing Mhand for
FW. Using MAlembic, BUZZ did not report a violation. Using
Mhand , BUZZ reported a violation (false-positive) as 1 of 6
test traces did not match (trace in §2). Similarly, for policy 2,
BUZZ reported a violation using Mhand . The failed test case is:
SYNInternal

A)B , RSTExternal
B)A , RSTExternal

B)A . Mhand predicts that both
RST packets are dropped, as the model does not check for
RST flags. However, Click NF allows the first RST packet to

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 711

reset the NF state. We also plugged the model for PfSense into
a network verification tool, VMN [35]. The existing model in
VMN does not check TCP flags. Using VMN, we verified the
property: “TCP packets from an external host, B, can reach A
even if no SYN packet is sent from A.” Recall that in PfSense,
SYNInternal

A)B needs to be sent for B to send TCP packets to A.
Hence, the property is NOT SATISFIED. Using Modelhand,
the tool returned that the property is SATISFIED whereas
using ModelAlembic indicated that it is not (i.e., false-negative
for Modelhand).

9 Related Work

NF modeling: There is a large body of work on understand-
ing and modeling NFs [19, 26, 30, 35, 39]. Joseph and Sto-
ica [30] propose a language to model stateless NFs to ease
the NF deployment process. NFactor [45] uses code analysis
techniques to extract packet forwarding models in the form
of a match-action table. While this can be complementary, it
may be difficult to obtain source-code for proprietary NFs.
Some works focus on the NF internal states and how to man-
age them [26, 39]. Our work is orthogonal as we focus on NF
behavioral models of externally-visible actions.

FSM inference: L* algorithm by Angluin lays the founda-
tion for learning the FSM [12]. The techniques of learning
FSMs has been used for model checking blackbox systems
(e.g., [28,36]). Symbolic finite automata (SFA) [42] are FSMs
where the alphabet is given by a Boolean algebra with an infi-
nite domain. While Alembic does not directly formulate the
problem to infer SFAs, we use the homogeneity assumption
in the IP and port ranges to learn a symbolic model. Hence,
using abstractions like SFA may help us to naturally embed
symbolic encodings. We could potentially leverage a tool
(e.g., [20]) that extends L* to infer the SFA. However, using
SFA does not address the NF-specific challenges (e.g., infer-
ring the key, handling modifications) but may serve as the
basis for interesting future work.

NF model use cases: Many network testing and verification
tools need NF models [22,35,43]. Some [35,40] proposed new
modeling languages to represent NFs. However, it is unclear
how to represent existing NFs using these languages. Sym-
net [40] wrote parsers to automatically generate NF models
using their language, SEFL. Again, it is unclear whether the
parser generalizes to other FWs or to arbitrary configurations.
However, not all network verification tools require models.
Vigor [46] uses the C code of a NAT to verify properties such
as memory-safety, which are orthogonal to our approach.

Application of L*: L* has been used to discover protocol vul-
nerabilities (e.g., [15, 16]) or specific attacks (e.g., cross-site
scripting) against web-application firewalls [13]. However,
these approaches do not tackle the NF-specific challenges
(e.g., handling large configuration space and header modifica-
tions). Other works also use L* to infer models of various pro-

tocols (e.g., TLS [18]). While Fiterau-Brostean et al. [23, 24]
inferred the behavior of TCP/ IP implementations in an op-
erating system, these tools leverage a simple extension of L*
and cannot model NFs with a large configuration space.

10 Discussion

Before we conclude, we discuss outstanding issues.

Handling more protocols: NFs such as layer-7 load bal-
ancers (LB), transparent proxy, or deep packet inspection
(DPI) operate at the application layer. To model these cases,
Alembic needs to generate relevant input packet types for these
protocols (e.g., GET, POST, PUT for HTTP). However, the
main challenge is to model the multi-layer interactions.

Representing complex NFs: Some NFs exhibit complex ac-
tions that cannot be captured with “packet in and packet out”
semantics. For instance, to represent quantitative properties
(e.g., rate-limiting), we need to incorporate them as part of
the input alphabet (e.g., “sessions sent at a certain rate”) and
monitor relevant properties to classify NF actions. Similarly,
to handle temporal effects (e.g., timeout), we need to add the
passage of time (e.g., wait 30 s) to the input alphabet. While
we could extend our current infrastructure to handle these
NFs, it may be worthwhile to consider more native abstrac-
tions other than deterministic FSMs. For instance, many have
proposed different abstractions to represent quantitative prop-
erties (e.g., [9, 11, 29, 33]) and timing properties (e.g., [10]).
Once we pick the abstraction, we can find relevant techniques
that extend L* (i.e., [14,27]). It is difficult to find one abstrac-
tion to model multiple properties at once, and we need to pick
the abstraction based on the properties of interest.

Handling more complex ConfigSchema: To handle more
complex configuration semantics such as “if condition, do
X,” and “go to rule X”, we still need to model a rule type
(e.g., both X in the above example) similar to our workflow.
To incorporate new processing semantics, we need to change
how we compose individual models in the online stage.

11 Conclusions

We proposed Alembic, a system to automatically synthesize
NF models. To tackle the challenges stemming from large
configuration spaces, we synthesize NF models viewed as an
ensemble of FSMs. Alembic consists of an offline stage that
learns symbolic models and an online stage to compose con-
crete models given a configuration. Our evaluation shows that
Alembic is accurate, scalable, and enables more accurate net-
work verification. While Alembic demonstrates the promise of
NF model synthesis, there remain some open challenges (§3.3
and §10) that present interesting avenues for future work.

712 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

12 Acknowledgments

We thank our shepherd, Aurojit Panda, and the anonymous
reviewers for their suggestions. We also thank Tianhan Hu
for his help in implementing a distributed version of Alembic,
and Bryan Parno, Swarun Kumar, Matthew Mccormack, and
Adwait Dongare for providing feedback on this paper. This
work was funded in part by NSF awards CNS-1440065, CNS-
1552481, CCF-1703925, and CCF-1763970.

References
[1] Cloudlab. https://www.cloudlab.us/.

[2] Haproxy. http://www.haproxy.org/.

[3] iPerf Performance Tool. https://iperf.fr/.

[4] jsonrpc. https://github.com/briandilley/jsonrpc4j.

[5] pfsense. https://www.pfsense.org/.

[6] Scapy. http://www.secdev.org/projects/scapy/.

[7] untangle. https://www.untangle.com/.

[8] Virtualbox. https://www.virtualbox.org/.

[9] ALUR, R., DANTONI, L., DESHMUKH, J., RAGHOTHAMAN, M., AND
YUAN, Y. Regular functions and cost register automata. In Logic in
Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium
on (2013), IEEE, pp. 13–22.

[10] ALUR, R., AND DILL, D. L. A theory of timed automata. Theor.
Comput. Sci. 126, 2 (April 1994), 183–235.

[11] ALUR, R., FISMAN, D., AND RAGHOTHAMAN, M. Regular program-
ming for quantitative properties of data streams. In Proceedings of the
25th European Symposium on Programming Languages and Systems -
Volume 9632 (New York, NY, USA, 2016), Springer-Verlag New York,
Inc., pp. 15–40.

[12] ANGLUIN, D. Learning regular sets from queries and counterexamples.
Inf. Comput. 75, 2 (November 1987), 87–106.

[13] ARGYROS, G., STAIS, I., JANA, S., KEROMYTIS, A. D., AND KI-
AYIAS, A. Sfadiff: Automated evasion attacks and fingerprinting using
black-box differential automata learning. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security
(New York, NY, USA, 2016), CCS ’16, ACM, pp. 1690–1701.

[14] BALLE, B., AND MOHRI, M. Learning weighted automata. In Alge-
braic Informatics (Cham, 2015), A. Maletti, Ed., Springer International
Publishing, pp. 1–21.

[15] CHO, C. Y., BABI Ć, D., SHIN, E. C. R., AND SONG, D. Inference
and analysis of formal models of botnet command and control pro-
tocols. In Proceedings of the 17th ACM Conference on Computer
and Communications Security (New York, NY, USA, 2010), CCS ’10,
ACM, pp. 426–439.

[16] CHO, C. Y., BABIĆ, D., POOSANKAM, P., CHEN, K. Z., WU, E. X.,
AND SONG, D. Mace: Model-inference-assisted concolic exploration
for protocol and vulnerability discovery. In Proceedings of the 20th
USENIX Conference on Security (Berkeley, CA, USA, 2011), SEC’11,
USENIX Association, pp. 10–10.

[17] CHOW, T. S. Testing software design modeled by finite-state machines.
IEEE Trans. Softw. Eng. 4, 3 (May 1978), 178–187.

[18] DE RUITER, J., AND POLL, E. Protocol state fuzzing of TLS imple-
mentations. In 24th USENIX Security Symposium (USENIX Security
15) (Washington, D.C., 2015), USENIX Association, pp. 193–206.

[19] DETAL, G., HESMANS, B., BONAVENTURE, O., VANAUBEL, Y., AND
DONNET, B. Revealing middlebox interference with tracebox. In Pro-
ceedings of the 2013 Conference on Internet Measurement Conference
(New York, NY, USA, 2013), IMC ’13, ACM, pp. 1–8.

[20] DREWS, S., AND D’ANTONI, L. Learning symbolic automata. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (2017), Springer, pp. 173–189.

[21] EDELINE, K., AND DONNET, B. On a middlebox classification, 2017.

[22] FAYAZ, S. K., YU, T., TOBIOKA, Y., CHAKI, S., AND SEKAR, V.
Buzz: Testing context-dependent policies in stateful networks. In
Proceedings of the 13th Usenix Conference on Networked Systems
Design and Implementation (Berkeley, CA, USA, 2016), NSDI’16,
USENIX Association, pp. 275–289.

[23] FITERĂU-BROŞTEAN, P., JANSSEN, R., AND VAANDRAGER, F.
Learning fragments of the tcp network protocol. In International
Workshop on Formal Methods for Industrial Critical Systems (2014),
Springer, pp. 78–93.

[24] FITERĂU-BROŞTEAN, P., JANSSEN, R., AND VAANDRAGER, F. Com-
bining model learning and model checking to analyze tcp implemen-
tations. In International Conference on Computer Aided Verification
(2016), Springer, pp. 454–471.

[25] FUJIWARA, S., VON BOCHMANN, G., KHENDEK, F., AMALOU, M.,
AND GHEDAMSI, A. Test selection based on finite state models. IEEE
Trans. Softw. Eng. 17, 6 (June 1991), 591–603.

[26] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH, C.,
GRANDL, R., KHALID, J., DAS, S., AND AKELLA, A. Opennf:
Enabling innovation in network function control. In Proceedings of the
2014 ACM Conference on SIGCOMM (New York, NY, USA, 2014),
SIGCOMM ’14, ACM, pp. 163–174.

[27] GRINCHTEIN, O. Learning of timed systems. PhD thesis, Acta Univer-
sitatis Upsaliensis, 2008.

[28] GROCE, A., PELED, D., AND YANNAKAKIS, M. Adaptive model
checking. In Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (London,
UK, UK, 2002), TACAS ’02, Springer-Verlag, pp. 357–370.

[29] HENZINGER, T. A. The Theory of Hybrid Automata. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000, pp. 265–292.

[30] JOSEPH, D., AND STOICA, I. Modeling middleboxes. Netwrk. Mag.
of Global Internetwkg. (2008).

[31] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Trans. Comput.
Syst. 18, 3 (August 2000), 263–297.

[32] MAKAYA, C., AND FREIMUTH, D. Automated virtual network func-
tions onboarding. In IEEE SDN-NFV Conference (2016).

[33] MOHRI, M. Weighted automata algorithms. In Handbook of weighted
automata. Springer, 2009, pp. 213–254.

[34] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND
WALKER, D. Composing software defined networks. In 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13) (Lombard, IL, 2013), USENIX Association, pp. 1–13.

[35] PANDA, A., LAHAV, O., ARGYRAKI, K., SAGIV, M., AND SHENKER,
S. Verifying reachability in networks with mutable datapaths. In 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17) (Boston, MA, 2017), USENIX Association.

[36] PELED, D., VARDI, M. Y., AND YANNAKAKIS, M. Black box check-
ing. J. Autom. Lang. Comb. 7, 2 (November 2001), 225–246.

[37] PFSENSE. Inbound Load Balancing. https://doc.pfsense.org/
index.php/Inbound_Load_Balancing.

[38] RAFFELT, H., STEFFEN, B., AND BERG, T. Learnlib: A library for
automata learning and experimentation. In Proc. ACM FMICS 2005.

[39] RAJAGOPALAN, S., WILLIAMS, D., JAMJOOM, H., AND WARFIELD,
A. Split/merge: System support for elastic execution in virtual middle-
boxes. In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation (2013).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 713

https://www.cloudlab.us/
http://www.haproxy.org/
https://iperf.fr/
https://github.com/briandilley/jsonrpc4j
https://www.pfsense.org/
http://www.secdev.org/projects/scapy/
https://www.untangle.com/
https://www.virtualbox.org/
https://doc.pfsense.org/index.php/Inbound_Load_Balancing
https://doc.pfsense.org/index.php/Inbound_Load_Balancing

[40] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.
Symnet: Scalable symbolic execution for modern networks. In Pro-
ceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference
(New York, NY, USA, 2016), SIGCOMM ’16, ACM, pp. 314–327.

[41] TSCHAEN, B., ZHANG, Y., BENSON, T., BENERJEE, S., LEE, J.,
AND KANG, J.-M. SFC-Checker: Checking the Correct Forwarding
Behavior of Service Function Chaining. In IEEE SDN-NFV Conference
(2016).

[42] VEANES, M., HALLEUX, P. D., AND TILLMANN, N. Rex: Symbolic
regular expression explorer. In Proceedings of the 2010 Third Inter-
national Conference on Software Testing, Verification and Validation
(Washington, DC, USA, 2010), ICST ’10, IEEE Computer Society,
pp. 498–507.

[43] VELNER, Y., ALPERNAS, K., PANDA, A., RABINOVICH, A., SAGIV,
M., SHENKER, S., AND SHOHAM, S. Some complexity results for
stateful network verification. In Proceedings of the 22Nd International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems - Volume 9636 (New York, NY, USA, 2016), Springer-Verlag
New York, Inc., pp. 811–830.

[44] WANG, Z., CAO, Y., QIAN, Z., SONG, C., AND KRISHNAMURTHY,
S. V. Your state is not mine: A closer look at evading stateful in-
ternet censorship. In Proceedings of the 2017 Internet Measurement
Conference (New York, NY, USA, 2017), IMC ’17, ACM, pp. 114–127.

[45] WU, W., ZHANG, Y., AND BANERJEE, S. Automatic synthesis of
nf models by program analysis. In Proceedings of the 15th ACM
Workshop on Hot Topics in Networks (New York, NY, USA, 2016),
HotNets ’16, ACM, pp. 29–35.

[46] ZAOSTROVNYKH, A., PIRELLI, S., PEDROSA, L., ARGYRAKI, K.,
AND CANDEA, G. A formally verified nat. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(New York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 141–154.

A Partial FSM for Use Cases

Figure 13 shows partial FSM for Untangle FW accept, drop,
default rule, and ProprietaryNF accept rule.

0 1 2
SYN SYN

SA*
* DROP

DROP SYN
ACK

SYN

ACK
ACK

SA SA

DROP
DROP

ACK

SA

DROP

Untangle FW accept & FW default

Host A Host B

FA RA

SYN SA ACK SYN SA ACK

FA RA

NF

Legend

0 1 2

SA*
* DROP

DROP ACK

SA SA

DROP

Untangle FW drop all

SYN DROP

ACK ACK ACK

FA RA

SYN SA ACK

0 1 2
SYN

SYN

*
* DROP

DROP

SA

SA

Proprietary FW accept
. . .

FA

FA RA

SYN SA ACK

FA

RARA

*
*

*
*

Figure 13: Partial FSM for Untangle FW accept, drop, default
rule, and ProprietaryNF accept rule

B Instantiating a Concrete Model

We present a detailed description of how we instantiate a
concrete model in our online stage. We consider three cases:
(1) NFs that keep per-connection state but do not modify
headers, (2) NFs that keep per-connection state and do, and
(3) NFs that keep state according to other keys but do not
modify headers. We do not consider header-modifying NFs
that keep state according to other keys (e.g., per-source) as
they are outside our current scope. For simplicity, we assume
a perfect Equivalence Oracle such that the generated symbolic
model from the offline stage is identical to the ground truth.
Case 1) NFs that keep per-connection state but do not
modify headers

For NFs that do not modify packet headers, we define a key
with (A:Ap1, B:Bp1) where A:Ap1 is a srcip-port and B:Bp1
is a dstip-port. Note that matches for a per-connection key are
bi-directional; a packet with srcip-port, B:Bp1, and dstip-port,

714 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A:Ap1, would also match the key, (A:Ap1, B:Bp1). Then,
for each concrete value of the key in a rule, we instantiate a
concrete FSM.

We posit that our instantiation logic is correct for an input
packet type with all TCP packet types (e.g., SYN, SYN-ACK,
ACK, RST-ACK) for the following reasons:
1. A model learned using one connection from the offline

stage represents the ground truth (assuming a perfect Equiv-
alence Oracle).

2. Because we assume each connection is independent and
shares the same logical behavior (from §3.3 and Def 4
in §C), cloning a model learned from one connection to
represent other connections does not introduce errors.

Rule Type 1: Lin à Rout
(e.g., source NAT)

Lin : IPL à IPR

NF
Lout : IPR à IPL

Rin : IPR à PIP

Rout : PIP à IPR

IPL : an internal IP-port pair
IPR : an external IP-port pair
PIP : a public-facing IP-port pair

Figure 14: NAT example

Case 2) NFs that keep per-connection state and do
modify headers

We extend the NF operational model presented in Alg 1 to
instantiate a concrete model for header-modifying NFs. Recall
that in the Alembic’s offline stage, we learn a model using a
range, where we infer a model using a symbolic IP and port in
a range. For header-modifying NFs, even though the learned
model contains symbolic IPs and ports, our instantiation logic
is correct because each concrete model is indexed with a
concrete IP and port (Algo. 2).

Consider a NAT with two rule types defined in its Con-
figSchema.

1. Rule Type 1: Lin→ Rout where the initial modification
for a new connections happens for Lin (e.g., modifying
the source IP of an internal IP to a public-facing IP).

2. Rule Type 2 : Rin→ Lout where the initial modification
for a new connections happens for Rin (e.g., port for-
warding where the port 8080 from the R interface is
forwarded to port 80 on the internal server).

For ease of explanation, we first show how we instantiate a
concrete model for a model inferred for rule type 1 and later
describe how we can easily extend our design to handle rule
type 2. Figure 14 shows the ranges of valid source and desti-
nation IPs and ports for located packets for a NAT configured
with a concrete rule for rule type 1 (e.g., a valid ranges for
Lin is IPL for a srcip pair and IPR for a dstip-port pair).

Algorithm 2 Instantiating a model for a per-connection NF
with header modifications

1: function ONLINEFORMODIFICATION(locatedPkt p, Rule r,
Map[rule, Map[key, state]] stateMap, TL�R, TR�L)

2: if p.interface == L then
3: pout = FWDDIRECTION(p, r, stateMap, TL�R, TR�L)
4: else
5: pout = REVERSEDIRECTION(p, r, stateMap, TL�R,

TR�L)
6: return pout

7: function FWDDIRECTION(locatedPkt p, Rule r, Map[rule,
Map[key, state]] stateMap, TL�R, TR�L)

8: if NewConnection then
9: Update TL�R, TR�L

10: Extract FSM, currentState
11: pout , nextState← Get action from the FSM
12: Update currentState with nextState
13: return pout

14: function REVERSEDIRECTION(locatedPkt p, Rule r, Map[rule,
Map[key, state]] stateMap, TL�R, TR�L)

15: if p ∈ TR�L then
16: Extract FSM, currentState
17: pout , nextState← Get action from the FSM
18: Update currentState with nextState
19: else
20: Extract default FSM, currentState
21: pout , nextState← Get action from default FSM
22: Update currentState with nextState
23: return pout

To tackle the challenge above, we introduce two maps to
associate an output (or modified) packet’s 5-tuple to the cor-
responding input packet’s 5-tuple for both interfaces. Specifi-
cally, we use TL�R to map Lin to Rout, and TR�L to map Rin
to Lout (Algo 2). Algo 2 is a detailed description after Line 3
in the operational model (Algo 1 in §3). Note that for each of
presentation, we assume we found a rule to apply (Line 3 in
Algo 1) for the incoming packet.

If an NF receives a packet from the L interface, the al-
gorithm checks whether the packet is a new connection by
performing a lookup in the map (in FWDDIRECTION). If
the connection does not already exist in the map, we up-
date the TL�R with (IPL, IPR)→ (PIP, IPR) and TR�L with
(IPR,PIP)→ (IPR, IPL). Then, we extract the corresponding
FSM and the current state (or the initial state if a new con-
nection) to apply the appropriate action (i.e., determine pout).
If the incoming packet is from the R interface, we look up
the corresponding map, TR�L, to fetch the original IP-port
(e.g., IPL). Then, it uses the key to fetch the FSM and deter-
mine the appropriate action for the incoming packet. If the
entry does not exist in the map, our concrete model instead
uses the FSM associated with the NF’s default behavior. Note

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 715

that in the case of static header modification, such as a NAT
configured with a list of static mappings between internal and
external IP-port pairs, we prepopulate TL�R and TR�L with
these static mappings. Hence, for an NF that statically modify
packet headers, we will not reach Line 20 as these mapping
already exist.
Extending for Rule Type 2 : We now discuss how to adapt
the above framework to handle rule type 2 where the initial
modification happens for packet entering the other interface
(e.g., Rin). In contrast to rule type 1, an NF configured with a
concrete rule for rule type 2 initially modifies packet header
for Rin (i.e., not Lin). We need to make two changes in Algo 2:

1. Line 2 must change to call FWDDIRECTION (Line 7) if
the packet comes via the R interface.

2. For the corresponding packet coming from the reverse
direction (i.e., Lin for rule type 2), we need to perform a
look up in TL�R to check if the reverse mapping exists
instead of TR�L (i.e., change Line 15).

Note that our approach does not need a priori knowledge
of which rule type the NF is configured with. We just need
to infer at which interface the initial modification happens
by parsing the generated model. For instance, if the initial
modification happens for Lin (i.e., rule type 1), then we follow
the original algorithm shown in Algo. 2. If the initial modifi-
cation happens for Rin (i.e., rule type 2), then we follow the
algorithm in Algo. 2 with two changes mentioned above.

The above algorithm describes how we instantiate a con-
crete FSM. Now, there are two types of modifications. In the
case of static modification, we know the value of the modi-
fied packet a priori for a given incoming packet, so we can
prepopulate the concrete FSMs with all the known IPs and
ports. However, in the case of dynamic modification where we
cannot predict the modified values in advance, we initialize
an ensemble of concrete FSMs with symbolic IP and port (for
the modified values) and bind them to concrete IPs and ports
as they are revealed (i.e., after injecting packets and observing
outputs).

Given this context, we posit the correctness of these in-
stantiated models (formal proof is outside our current scope).
For per-connection NFs with static header modifications, our
instantiation of FSMs is correct with an input packet type of
all TCP packet types, for the same two reasons described for
case 1. We now state additional reasonings:
1. The same 5-tuple for an input packet maps to the same 5-

tuple for the output packet, and TL�R and TR�L store these
mappings. Thus, we will correctly discover the reverse
mapping during the instantiation.

2. Even in the presence of connection resets, the same 5-tuple
will be mapped to the same output (i.e., 5-tuple). Hence, the
model for each connection is correct even in the presence
of packets that reset the connection state (i.e., we can reuse
the previous mappings stored).

Table 5: Validating the correctness of KeyLearning using
Click-based NFs (§8.1)

Ground Truth Test1 Test2 Test3 Result
Cross-conn Y Cross-conn
Per-src N Y Per-src
Per-dst N N Y Per-dst
Per-conn N N N Per-conn

For NFs that dynamically modify packet headers, we posit
that for the input set of TCP-handshake packets (i.e., SYN,
SYN-ACK, ACK). However, when we receive a TCP packet
that resets a connections (e.g., RST-ACK), the concrete IP
and port that was bound to a symbolic IP and port will change
(i.e., after a reset, srcip-port maps to P:Pp2 instead of P:Pp1).
Hence, the generated model will continue to use the map-
ping already stored in TL�R and TR�L, resulting in inaccurate
model.
Case 3: NFs that do not keep per-connection state

We now consider NFs that do not modify packet headers
but have keys other than per-connection. Recall the following
key types and their corresponding header fields:
1. Per-source key, defined by a source IP
2. Per-destination key, defined by a destination IP
3. Cross-connection key, defined by any packet (i.e., all IP

and ports with the range)
4. Stateless key, defined by srcip-port and dstip-port. Note

that we view the stateless NF as keeping a per-connection
state but the FSM is always just a single state.

When we instantiate an ensemble of concrete FSMs for an
NF that keeps per-source state, the IPs and ports that do not
define the key (i.e., srcport, dstip, and dstport) refer to ranges
of values. Hence, the model for a srcip should accept ANY
srcport, dstip, and dstport within the specified range.

We posit that our instantiation logic outputs a correct model
for an input packet type, with all TCP-relevant symbols (i.e.,
All TCP-relevant symbols as there are no modifications) if
the per-source NF adheres to Def. 2 (§C):
1. Our definition for per-source NF assumes that all destina-

tions given the same source IP are treated homogeneously.
Hence, it is correct to use the model learned from one con-
nection and simply replace the symbolic destination in the
model to any destination IP that appears in the configura-
tion.

2. As we assume no header modification, the instantiated
model is correct for all TCP-relevant symbols.
We omit the cases for per-destination, cross-connection,

and stateless for brevity. The correctness arguments for these
cases are similar to that of per-source NFs.

C Correctness of KeyLearning

We formalize the definition of the granularities of states main-
tained by NFs (i.e., keys) and prove the correctness of our

716 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

KeyLearning algorithm in §5.
Recall that each NF SymbolicRule (1 rule) consists of

multiple configuration fields (e.g., FW needs to be config-
ured to allow packets from a subnet X to Y). To simplify
the presentation, let us consider a rule r in an NF that takes
two configuration fields, namely source and destination, and
thus also omit configuration fields that do not affect the key
(e.g., an action and a load-balancing algorithm that do not
affect the key). We use NF〈X ,Y 〉

r to refer to an NF instance
only with the targeted rule r that is configured with source
X and destination Y. Given such an NF instance, we use L*
to learn a model from it. Particularly, let LΓ(NF〈X ,Y 〉

r) refer
to the FSM learned by L* for the NF instance NF〈X ,Y 〉

r using
packets only from the set Γ ⊂ X ×Y ∪Y ×X . We assume
that the FSM learned by L* is correct with respect to the NF
instance. That is, given any sequence of packets with source
a and destination b, running LΓ(NF〈X ,Y 〉

r) on it obtains the
same output sequence as running NF〈X ,Y 〉

r on it, provided that
(a,b) ∈ X×Y or (a,b) ∈ Y ×X .
Definition of keys: To prove the correctness of our
KeyLearning algorithm, we first formalize the definition of
NF keys. The following table summarizes the notations we
use.

Term Definition

Σ

Σ(X ,Y)

the set of packets (symbol for FSMInference)
the set of packets with source (destination, resp.)
IP from X (Y , resp.)

σ|(a,b)

Given σ and a source-destination pair) (a,b), σ|(a,b)
is the sequence of packets obtained from σ by
removing all packets that are not with source a and
destination b.

σ|(a,b),(b,a)
Similar to above, but also keeps packets
with source b and destination a.

σ++(a,b)
The sequence obtained by appending (a,b)
to the sequence σ

NF〈X ,Y 〉
r (σ)

the output of the last packet given
σ to the NF configured with 〈X ,Y 〉

r

The definition of keys is given as follows.

Definition 1 (Cross-connection NF). A rule r in an NF keeps
cross-connection state iff for all NF instances NF〈X ,Y 〉

r , all
pairs of connections (a,b) and (c,d) such that a,c∈ X, b,d ∈
Y , and (a,b) 6= (c,d), there exists a sequence σ ∈ Σ(a,b), such
that NF〈X ,Y 〉

r (σ++(c,d)) 6= NF〈X ,Y 〉
r ((c,d)).

Definition 2 (Per-source NF). A rule r in an NF keeps per-
source state if all its instance NF〈X ,Y 〉

r satisfies the three con-
ditions:

1. for all a ∈ X and b ∈ Y , there exits a σ over Σ({a},Y), such
that NF〈X ,Y 〉

r (σ++(a,b)) 6= NF〈X ,Y 〉
r ((a,b)).

2. for all a ∈ X, b ∈ Y , and σ1,σ2 over Σ({a},Y) such that
σ1 and σ2 have the same length, NF〈X ,Y 〉

r (σ1 ++(a,b)) =

NF〈X ,Y 〉
r (σ2 ++(a,b)).

3. for all a ∈ X, b ∈ Y , and σ over Σ(X ,Y),
NF〈X ,Y 〉

r (σ++(a,b)) = NF〈X ,Y 〉
r (σ|(a,_)++(a,b)).

Definition 3 (Per-destination NF). A rule r in an NF keeps
per-destination state if all its instance NF〈X ,Y 〉

r satisfies the
three conditions:

1. for all a ∈ X and b ∈ Y , there exits a σ over Σ(X ,{b}), such
that NF〈X ,Y 〉

r (σ++(a,b)) 6= NF〈X ,Y 〉
r ((a,b)).

2. for all a ∈ X, b ∈ Y , and σ1,σ2 over Σ(X ,{b}) such that
σ1 and σ2 have the same length, NF〈X ,Y 〉

r (σ1 ++(a,b)) =
NF〈X ,Y 〉

r (σ2 ++(a,b)).
3. for all a ∈ X, b ∈ Y , and σ over Σ(X ,Y),
NF〈X ,Y 〉

r (σ++(a,b)) = NF〈X ,Y 〉
r (σ|(_,b)++(a,b)).

Definition 4 (Per-connection NF). A rule r in an NF keeps
per-connection state if all its instance NF〈X ,Y 〉

r satisfies the
two conditions:

1. for all (a,b) ∈ X × Y ∪ Y × X, there exits a σ

over Σ({a},{b}) ∪Σ({b},{a}), such that NF〈X ,Y 〉
r (σ++(a,b)) 6=

NF〈X ,Y 〉
r ((a,b)).

2. for all (a,b) ∈ X ×Y ∪Y ×X, and σ over Σ(X ,Y) ∪Σ(Y,X),
NF〈X ,Y 〉

r (σ++(a,b)) = NF〈X ,Y 〉
r (σ|(a,b),(b,a)++(a,b)).

Definition 5 (stateless). A rule r in an NF is called a stateless
NF iff for all NF instance NF〈X ,Y 〉

r , packet p ∈ Σ(X ,Y), and
sequence σ over Σ(X ,Y), NF〈X ,Y 〉

r (σ++p) = NF〈X ,Y 〉
r (p).

In addition, we assume all NFs satisfy the following con-
sistency in the configuration space:

Definition 6 (Consistency in the configuration space). For
all A,B,X ,Y,σ such that A⊂ X, B⊂ Y and σ is a sequence
over Σ(A,B), NF〈X ,Y 〉

r (σ) = NF〈A,B〉r (σ).

FSM composition: The definition of FSM composition is
given below.

Definition 7 (FSM composition for key learning). Given two
FSMs FSMi = (Si,Σi,∆i,δi,s0

i), where Si is the state space, Σi
is the space of possible input symbols such that Σ1∩Σ2 = /0,
∆i is the set of output symbols, δi : Si×Σi → Si×∆i is the
transition function, and s0

i ∈ Si is the initial state of FSMi,
the composite FSM of FSM1 and FSM2 is FSMcomposite =
(S1× S2,Σ1 ∪ Σ2,∆1 ∪∆2,δ,s0

1× s0
2), where δ((s1,s2), p) =

((s′1,s
′
2), p′) if and only if 1) δ1(s1, p) = (s′1, p′) and s2 = s′2;

or 2) δ1(s2, p) = (s′2, p′) and s1 = s′1.

Proof of KeyLearning algorithm: The correctness of our
KeyLearning algorithm is given in the following theorem.

Theorem 1 (Correctness of KeyLearning). Figure 10 is cor-
rect.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 717

Proof Sketch. For brevity, we only prove the column for the
per-source NF; proofs of other columns are similar. The proof
for per-source NF follows from the three lemmas below.

Lemma 1. All NFs that keep per-source state cannot pass
Test 1.

Proof. Let A1 and A2 be the FSM learned for NF〈{a},{b}〉r

and NF〈{c},{d}〉r respectively (i.e., A1 = L{(a,b)}(NF〈{a},{b}〉r),
similarly for A2), B be the FSM learned for
NF〈{a,c},{b,d}〉r using packets from (a,b) and (c,d) (i.e.,
B = L{(a,b),(c,d)}(NF〈{a,c},{b,d}〉r)), and C be the FSM
composed of A1 and A2. We only need to prove that for
any sequence σ consisting of packets over {(a,b),(c,d)},
B(σ) = C(σ). W.L.O.G., suppose σ ends with (a,b).
Then B(σ) = NF〈{a,c},{b,d}〉r (σ) = NF〈{a,c},{b,d}〉r (σ|(a,b)) =
B(σ|(a,b)) (condition 3), C(σ) =C(σ|(a,b)) = A1(σ|(a,b)) (the
first equality is by condition 3 and the second is by FSM
composition). But by homogeneity in the config space,
A1(σ|(a,b)) = B(σ|(a,b)). Thus, B(σ) =C(σ). In other words,
B is equivalent to C.

Lemma 2. All NFs that keep per-source state can pass Test
2.

Proof. Let A1 and A2 be the FSM learned for NF〈{a},{b}〉r

and NF〈{a},{c}〉r respectively, B be the FSM learned for
NF〈{a},{b,c}〉r , and C be the FSM composed of A1 and A2. By
the first condition of per-source NF, there exists a σ over
Σ({a},{b,c}), such that B(σ++(a,b)) 6= B((a,b)). By the sec-
ond condition, B(σ++(a,b)) = B(σ′++(a,b)), where σ′

is a sequence consisting of only (a,c). Since C is composed
of A1 and A2, C(σ′ ++(a,b)) = A1((a,b)). But by homo-
geneity in the config space, A1((a,b)) = B((a,b)). Thus,
C(σ′++(a,b)) 6= B(σ′++(a,b)). In other words, B is not
equivalent to the composite FSM of A1 and A2.

Lemma 3. All NFs that keep per-source state cannot pass
Test 3.

Proof. Let A1 and A2 be the FSM learned for NF〈{a},{b}〉r

and NF〈{c},{b}〉r respectively, B be the FSM learned for
NF〈{a,c},{b}〉r , and C be the FSM composed of A1 and A2. Con-
sider any sequence σ over Σ({a,c},{b}). W.L.O.G., suppose σ

ends with (a,b). Then by condition 3, B(σ) = B(σ|(a,b)). By
definition of composition, C(σ) = A1(σ|(a,b)). But by homo-
geneity in the config space, A1(σ|(a,b)) = B(σ|(a,b)). Thus,
C(σ) = B(σ). In order words, B and C are equivalent.

718 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Model-Agnostic and Efficient Exploration of Numerical State Space of Real-World

TCP Congestion Control Implementations

Wei Sun1, Lisong Xu1, Sebastian Elbaum2, Di Zhao1

1Department of Computer Science and Engineering, University of Nebraska-Lincoln

Lincoln, NE, {wsun, xu, dzhao}@cse.unl.edu
2Department of Computer Science, University of Virginia

Charlottesville, Virginia, selbaum@virginia.edu

Abstract

The significant impact of TCP congestion control on the In-

ternet highlights the importance of testing the correctness

and performance of congestion control algorithm implemen-

tations (CCAIs) in various network environments. Many

CCAI testing questions can be answered by exploring the nu-

merical state space of CCAIs, which is defined by a group of

numerical (and nonnumerical) state variables of the CCAIs.

However, the current practices for automated numerical state

space exploration are either limited by the approximate ab-

stract CCAI models or inefficient due to the large space of

network environment parameters and the complicated rela-

tion between the CCAI states and network environment pa-

rameters. In this paper, we propose an automated numerical

state space exploration method, called ACT, which leverages

the model-agnostic feature of random testing and greatly im-

proves its efficiency by guiding random testing under the

feedback iteratively obtained in a test. Our experiments on

five representative Linux TCP CCAIs show that ACT can

more efficiently explore a large numerical state space than

manual testing, undirected random testing, and symbolic ex-

ecution based testing, while without requiring an abstract

CCAI model. ACT successfully detects multiple design and

implementation bugs of these Linux TCP CCAIs, including

some new bugs not reported before.

1 Introduction

TCP congestion control algorithms are crucial to Internet per-

formance and stability. We have seen many of them emerged

in the last decades [1, 6, 20, 43, 50], and we have witnessed

how billions of computers, servers, routers, smartphones,

and other Internet devices are affected, when new TCP Con-

gestion Control Algorithm Implementations (CCAIs) are de-

ployed, such as Linux CUBIC [20] and Windows Compound-

TCP [43]. That is why a significant effort is placed in testing

the correctness and performance of CCAIs in various net-

work environments [16].

1.1 Numerical state space exploration

In this paper, we focus on how to explore the numerical state

space S1 of a CCAI in various network environments. S is

defined by a group of numerical state variables of the CCAI,

such as congestion window size (cwnd), slow start thresh-

old (ssthresh), and smoothed round-trip time (RTT, rtt). S

may also have some additional nonnumerical state variables,

such as the Linux TCP variable ca_state whose value indi-

cates the current status of CCAI (e.g., 0:normal, 3:recovery,

4:timeout) but does not have numerical meanings. Space S

contains all possible combinations of the values of the state

variables, and each point in S is called a state or state vector.

Exploring S aims to answer questions like the following.

Motivating Example 1: Does Linux CUBIC increase its

cwnd appropriately in various network environments? The

aggressiveness of CUBIC is determined by its state vari-

able target [20], which is the expected congestion window

size after one RTT. It is typically expected [15] that a

CCAI increases its cwnd less aggressively in the conges-

tion avoidance stage (i.e., when cwnd > ssthresh) than in

the slow start stage (i.e., when cwnd ≤ ssthresh) where it

doubles its cwnd every RTT. This requirement can be tested

by answering a numerical state space exploration question:

does Linux CUBIC ever visit any states satisfying the condi-

tion cwnd > ssthresh (i.e., congestion avoidance stage) and

target > 2× cwnd (i.e., more aggressively)?

Motivating Example 2: Does a Linux CCAI appropriately

decrease its cwnd during fast recovery in various network

environments? It is typically expected [2] that a CCAI de-

creases its cwnd in fast recovery when a congestion is de-

tected (e.g., three duplicate ACKs). For example, CUBIC

decreases its cwnd to 0.7 ∗ prior_cwnd and AIMD2 [2] to

0.5∗ prior_cwnd right after a fast recovery, where state vari-

able prior_cwnd is the congestion window size right before

the fast recovery. This requirement can be roughly tested

1S is not to be confused with the TCP connection management state

space [10] such as LISTEN, SYN-SENT, and CLOSED.
2Additive Increase Multiplicative Decrease of Reno and NewReno

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 719

by answering a numerical state space exploration question:

does a Linux CCAI ever visit any states satisfying the con-

dition previous_ca_state == 3 and ca_state == 0 (i.e., just

finished fast recovery) and cwnd ≥ prior_cwnd (i.e., no win-

dow decrease at all)?

Similar to these two motivating examples, many CCAI re-

quirements can be tested if we can explore the S of a CCAI

in various network environments. Specifically, in this paper,

we consider the numerical state space exploration problem:

how to automatically sample a network environment param-

eter space P in order to efficiently visit as many as different

regions of S within a given amount of testing time? Space

P contains the parameter values of all possible network envi-

ronments that a tester needs to check, and each point in P is

called a network environment or network environment param-

eter vector. A region of S contains a group of nearby states

in S, and is defined and discussed in Section 2.1.

1.2 Challenges

The numerical state space exploration problem, however, is

challenging to solve. The first challenge is that space P is

usually too large to check exhaustively. For example, sup-

pose that a tester is testing a CCAI using a simple network

topology with a single link, where the packet loss rate param-

eter is in the range of [0%, 10%] with a granularity of 10−6,

the link bandwidth parameter is in the range of [0.1, 10000]

Mbps with a granularity of 0.1 Mbps, and the packet delay

parameter is in the range of [0, 1000] ms with a granularity

of 1 ms. The P of this simple example already contains about

1013 possible network environments (i.e., combinations).

The second challenge is that the mapping from the P to S

of a CCAI is usually very complicated so that it is difficult

to directly find a network environment in P that can lead the

CCAI to visit certain regions in S. 1) A real-world CCAI,

such as Linux CUBIC, involves multiple intertwined com-

ponents contributed by tens of developers spanning tens of

years. Many state variables, such as cwnd, are affected by

multiple components, such as slow start, congestion avoid-

ance, fast recovery, timeout, and undo components. 2) This

is exacerbated by the fact that many states in a large S can

be visited only after a large number of packets. For example,

thousands of packets are needed in order to increase cwnd

and ssthresh to over thousands of packets. That is, the ex-

ploration path from the start state to a final state may contain

thousands of intermediate states. 3) There are currently no

complete abstract models (e.g., state machines, or high-order

logic) of real-world TCP implementations capturing all state

variables and all components of the CCAIs, because they are

very challenging to develop and verify. For example, a rel-

atively complete TCP model [3] took several man-years of

effort and deals with only the traditional AIMD.

Because of the unknown mapping from a large P to a large

S, it is hard to efficiently explore S by either randomly or sys-

tematically sampling P and it is challenging to answer gen-

eral numerical state space exploration questions, like the mo-

tivating examples.

1.3 Our contributions

We propose an Automated Congestion control Testing

method, called ACT, to model-agnostically and efficiently ex-

plore a general numerical state space S of real-world CCAIs

for a given P. ACT belongs to the class of feedback-guided

random testing methods [28] or guided fuzzing methods [51]

used in the software testing and verification community.

While the general idea of feedback-guided random testing

or guided fuzzing is not new, to the best of our knowledge,

our work is the first one to use it in automatically explor-

ing a large S of a CCAI. Specifically, ACT randomly se-

lects network environments in a large P to explore a large

S, and the random selection of new network environments is

guided by the feedback iteratively obtained from the region

coverage information of previously selected network environ-

ments. We propose two novel types of feedback to explore

the low-probability regions of S: 1) parameter estimation to

explore the low-probability regions due to the unknown non-

linear mapping from P to S, 2) parameter concatenation to

explore the low-probability regions due to the correlation

among the state variables of S. Intuitively ACT randomly

samples in P but favoring those network environments that

are more likely to explore different regions of S. By doing

so, ACT is scalable to a large P (i.e., first challenge) and does

not require an abstract CCAI model (i.e., second challenge).

Our contributions are threefold. First, we propose an

automated and model-agnostic method, ACT, which can ef-

ficiently explore a large S for a large P without requiring an

abstract CCAI model, and then output the states satisfying

the specified conditions along with the concrete data neces-

sary to deterministically reproduce the detected states.

Second, we present an ACT implementation using the

widely used network simulator NS3 with Direct Code Exe-

cution (DCE) [44] to execute the original Linux networking

stack. It can be easily used for testing, debugging, and study-

ing the correctness and performance of real-world CCAIs in

various reproducible and controllable network environments.

Third, we conduct a family of experiments on five repre-

sentative Linux TCP CCAIs showing that ACT can more ef-

ficiently explore different regions of S than manual testing,

undirected random testing, and symbolic execution based

testing. ACT successfully detects multiple design and im-

plementation bugs of these CCAIs, including several new

bugs not reported before. For example, ACT finds that Linux

CUBIC (current default) sometimes misjudges the network

congestion and then mistakenly aggressively increases its

throughput (i.e., motivating example 1). ACT also detects

that Linux AIMD (previous default) sometimes mistakenly

doubles its throughput right after a fast recovery (i.e., moti-

vating example 2) or suddenly increases its throughput to an

extremely large number.

720 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Design of ACT

2.1 Regions of numerical state space S

Intuitively, a region of S contains a group of nearby states

all satisfying or not satisfying a specified condition, and a

region is visited if at least one state of the region is visited.

We attempt to explore different regions of S instead of dif-

ferent individual states because of two unique properties of

numerical state variables. 1) Because numerical state vari-

ables usually have a large number of possible values, the S

of a CCAI is usually prohibitively large (e.g., in the order of

1011 states in our experiments). As a result, it is impossible

to visit each individual state in S in any reasonably amount

of testing time. 2) For a numerical state space exploration

problem (e.g., the two motivating examples), there are usu-

ally one or multiple regions of nearby states (instead of only

a single state) all satisfying the same condition. As long as

we find at least one state in these regions (i.e., one counterex-

ample), we can answer the exploration problem.

The shape and the size of a region might depend on the

CCAIs, S, P, and the specified conditions. Without mak-

ing any special assumption and for the sake of simplicity, we

divide S into equal-sized non-overlapping regions of size k.

Specifically, the range of each numerical state variable is di-

vided into equal-sized intervals with size k, and the range

of each nonnumerical state variable (if any) is divided into

intervals with size 1. A region contains all the states with

each state variable in the same interval. For example, let’s

consider a 2-dimensional S = {(cwnd,ssthresh) | cwnd ∈
[1,1024], ssthresh ∈ [1,1024]}. If k = 512, S is divided

into 4 equal-sized non-overlapping regions S = R1(512)∪
R2(512) ∪ R3(512) ∪ R4(512), where Ri(k) denotes the

i-th region when the region size is k. For instance,

R1(512) = {(cwnd,ssthresh) | cwnd ∈ [1,512], ssthresh ∈
[1,512]}, and R4(512) = {(cwnd,ssthresh) | cwnd ∈
[513,1024], ssthresh ∈ [513,1024]}. In the extreme case of

k = 1, S is divided into 1024× 1024 = 1,048,576 regions

R1(1),R2(1), ...,R1048576(1), each containing only one state.

In another extreme case of k = 1024, the whole S is a single

region R1(1024) = S.

Without making any special assumptions about the CCAIs,

S, P, and the specified conditions, we do not consider a spe-

cific region size k. Instead, we attempt to explore as many

as different regions for all possible k values within a given

amount of testing time.

Note that, it is reasonable to group nearby states of S into

regions, but it is not reasonable to group nearby network en-

vironments of P. This is because even a tiny difference be-

tween two network environments may lead to significantly

different CCAI behaviors. For example, two packet loss rates

of 10−5 and 10−6 with a tiny difference with respect to a pa-

rameter range [0%,10%] lead to about six times of different

throughputs for CUBIC [20].

init state

P S

s1

s2

p1

p2

a network

environment

p

Figure 1: A network environment −→p ∈ P leads a CCAI to

visit a sequence of states in S.

2.2 Numerical state space exploration

Each network environment −→p ∈ P leads a CCAI to visit a

sequence of states in S starting from the initial state, as illus-

trated in Fig. 1 using a two-dimensional P = {(p1, p2)} and

two-dimensional S = {(s1,s2)}. In a network simulation, the

sequence of visited states depends not only on −→p but also a

random seed e, which are collectively referred to as a simula-

tion configuration G = (e,−→p). The simulation results (e.g.,

visited states) are deterministic for a given G.

The numerical state space exploration problem is given

a number N, how to select N simulation configuration G’s

in order to maximize coverage(S,k) for any k ≥ 1, where

coverage(S,k) is the percentage of visited regions of S when

the region size is k.

max
N selected G′s

coverage(S,k) ∀ k ≥ 1 (1)

Note that we attempt to maximize coverage(S,k), instead

of exploring only a specific region of S for a specific condi-

tion that is nevertheless very challenging too. This is because

state space exploration is time consuming, and it is more con-

venient to explore S once and then use the explored S to an-

swer multiple different questions for the same S.

We say that a testing method is more efficient than another

one, if given the same N, the coverage(S,k) of the former is

higher than or equal to that of the latter for any k≥ 1. In this

and next sections, we propose ACT to solve the numerical

state space exploration problem, and in Section 4 we empiri-

cally evaluate the efficiency of ACT by comparing with other

related exploration methods.

The design of ACT is based on the following theorem,

where |S| denotes the total number of states in S. The proof

is shown in the appendix.

Theorem 1 Among all state exploration methods that visit

state i ∈ [1, |S|] with probability qi, the exploration method

with qi = q j for ∀i, j ∈ [1, |S|] maximizes coverage(S,k) for

any k ≥ 1.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 721

2.3 Feedback-guided random testing

Theorem 1 shows that the optimal exploration method should

uniformly visit the states. While it is hard or impossible to

design such an optimal exploration method, we attempt to de-

sign a method that visits as large as a fraction of S as possible

within a limited testing time budget, instead of thoroughly

visiting certain regions.

Our proposed ACT is based on undirected random test-

ing [41] that randomly samples P accordingly to a distribu-

tion, because it is scalable to a large P and does not require

an abstract model of a CCAI. Without making any special

assumptions about the CCAIs, S, P, and the specified condi-

tions, ACT uses the simple uniform distribution for the undi-

rected random testing. However, because of the unknown

and complicated mapping from P to S, undirected random

testing tends to repeatedly visit the high-probability regions

of S and thus is inefficient in covering different regions of

S. In other words, uniformly sampling P does not lead to

uniform coverage of S.

ACT leverages the model-agnostic feature of undirected

random testing, and greatly improves the region coverage

of S by guiding random testing under the feedback itera-

tively obtained in the test. Thus, ACT belongs to the class

of feedback-guided random testing [28] or guided fuzzing

methods [51]. We have identified two major reasons that

undirected random testing has low probabilities to visit cer-

tain regions of S, and correspondingly propose two types of

feedback to visit these low-probability regions of S: 1) pa-

rameter estimation to visit the low-probability regions due to

the unknown nonlinear mapping from P to S, 2) parameter

concatenation to visit the low-probability regions due to the

correlation among different state variables of S.

2.4 Parameter estimation

One reason that undirected random testing has low probabili-

ties to visit some regions of S is the unknown nonlinear map-

ping from P to S. For example, let’s consider packet loss rate

parameter loss in the range of [0%, 10%] and state variable

cwnd in the range of [1, 1024] packets for AIMD. The aver-

age cwnd of AIMD is greater than 379 packets if loss is lower

than 10−5 [15]. If loss is uniformly distributed in [0, 10%],

the probability that cwnd > 379 is approximately lower than

0.01%, and thus the regions with cwnd > 379 have very low

probabilities to be visited. With an unknown nonlinear map-

ping from P to S, it is impossible for undirected random test-

ing with any specific distribution (not just uniform) to uni-

formly visit different states of S.

Parameter estimation attempts to visit the low-probability

regions due to the unknown nonlinear mapping from P to S.

Specifically, for an unvisited state
−→
s∗ ∈ S, it attempts to find

a network environment
−→
p∗ such that the tested CCAI is likely

to visit region R(
−→
s∗ ,k), which is the region of state

−→
s∗ when

the region size is k. ACT starts with the smallest region size

P S

s1

s2

p1

p2

p
b

p*p
a

s
a

s* s
b

Figure 2: Interpolation finds
−→
p∗ using

−→
pa and

−→
pb to cover

the unvisited gap (e.g., the region of state
−→
s∗) between two

visited regions (e.g., the regions of
−→
sa and

−→
sb).

P S

s1

s2

p1

p2

directions to

decrease s2 s
c

p* s*

p
c

Figure 3: Extrapolation finds
−→
p∗ using

−→
pc to visit an unvisited

corner or side of S (e.g., the region of
−→
s∗ below the region of

−→
sc). The directions to decrease s2 are for illustration purpose.

k = 1 to find
−→
p∗, if not successful, it gradually doubles k until

it finds
−→
p∗.

Parameter estimation is illustrated in Figs. 2 and 3 where

shaded areas indicate the regions already visited by undi-

rected random testing. The pseudo-code of parameter esti-

mation is given in Method 1. Basically, for an unvisited state
−→
s∗ , we find a new network environment

−→
p∗ using either the

interpolation or extrapolation of the past selected network en-

vironments. Interpolation is used to cover the unvisited gap

between two visited regions in S, such as state
−→
s∗ in Fig. 2,

and extrapolation is used to cover an unvisited corner or side

of S, such as state
−→
s∗ in Fig. 3.

To implement parameter estimation, each state−→s ∈ S is as-

sociated with a pool of simulation configurations. Each sim-

ulation configuration G = (e,−→p) contains the random seed e

and the network environment −→p of a simulation that visited

state −→s . An unvisited state has an empty pool, and a visited

state may have multiple simulation configurations if it has

been visited multiple times by different simulations.

As an example of interpolation, for state
−→
s∗ in Fig. 2,

ACT randomly finds a pair of states
−→
sa and

−→
sb so that region

R(
−→
s∗ ,k) lies in between R(

−→
sa ,k) and R(

−→
sb ,k) for the small-

est possible k. In order to visit R(
−→
s∗ ,k), ACT estimates

−→
p∗

722 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Method 1 Parameter estimation to find a G∗ for
−→
s∗

1: function ESTIMATION(
−→
s∗)

2: e∗ ← randomly selected random seed

3: for region size k← 1; ; k← 2× k do

4: // First try interpolation

5: find a pair of states
−→
sa and

−→
sb such that R(

−→
s∗ ,k) lies in

between R(
−→
sa ,k) and R(

−→
sb ,k).

6: if find at least one pair of
−→
sa and

−→
sb then

7: randomly and uniformly select one pair

8: Ga ← randomly and uniformly select one from the

pool of simulation configurations associated with
−→
sa

9:
−→
pa ← the network environment in Ga for

−→
sa

10:
−→
pb ← similarly a network environment for

−→
sb

11: for i from 1 to dim(P) do

12: p∗i ← random(pa
i , pb

i)

13: return G∗← (e∗,
−→
p∗)

14: // If interpolation fails, then do extrapolation

15: find state
−→
sc such that R(

−→
sc ,k) and R(

−→
s∗ ,k) differ in

only one state variable.

16: if find at least one state
−→
sc then

17: randomly and uniformly select an
−→
sc

18:
−→
pc ← a network environment for

−→
sc

19: j ← the state variable index that R(
−→
sc ,k) and

R(
−→
s∗ ,k) differ

20: for i from 1 to dim(P) do

21: if
ds̄ j

d pi

∣

∣

∣−→
pc

and s∗j − sc
j have same sign then

22: p∗i ← random(pc
i , max)

23: else if different signs then

24: p∗i ← random(min, pc
i)

25: else ⊲ zero gradient

26: p∗i ← random(min, max)

27: return G∗← (e∗,
−→
p∗)

using the interpolation of the parameter vectors
−→
pa and

−→
pb of

the pair of states. The interpolation is implemented by lines

4 to 13 of the pseudo-code. Because ACT does not make

any assumption about the mapping from P to S, it randomly

and uniformly selects a network environment
−→
p∗ within the

range of
−→
pa and

−→
pb instead of possibly a linear or some other

interpolations.

As an example of extrapolation, for state
−→
s∗ in Fig. 3, ACT

randomly finds one state
−→
sc lying beside

−→
s∗ so that their re-

gions R(
−→
sc ,k) and R(

−→
s∗ ,k) differ only in one state variable,

say state s j with j ∈ [1,dim(S)], where dim(S) denotes the

dimension of S. That is, state
−→
sc and

−→
s∗ have a major dif-

ference only in s j, and have similar other state variables. In

order to visit R(
−→
s∗ ,k), ACT estimates

−→
p∗ using the extrapo-

lation of network environment
−→
pc (i.e., lines 14 to 27 of the

pseudo-code). Specifically, the extrapolation estimates
−→
p∗ by

P S

s1

directions to

decrease s2

s2

p1

p2

init state

s
d

p* s*

p
d

s
+

Figure 4: If s1 and s2 are positively correlated,
−→
p∗ estimated

by extrapolation leads to not only a smaller s2 but also a

smaller s1, and thus visits the region of
−→
s+ instead of

−→
s∗ .

P S

s1

s2

p1

p2

init state

s
d

p* s*

p
d

s
+

Figure 5: Parameter concatenation visits the region of
−→
s∗ by

first following the path from the initial state to state
−→
sd using

−→
pd , and then the path from state

−→
sd to state

−→
s+ using

−→
p∗.

increasing or decreasing each parameter of
−→
pc based on the

impact of that parameter on state variable s j. The impact

of a parameter pi (i ∈ [1,dim(P)]) on s j is measured using

the gradient of s̄ j with respect to pi, where s̄ j is the aver-

age of all visited s j values in a simulation and is defined as

s̄ j =
1
T

∫ T
0 s j(t)dt with T as the simulation time. The gradient

at
−→
pc is estimated using the simulation results of undirected

random testing. For example, states
−→
s∗ and

−→
sc in Fig. 3 dif-

fer mainly in state variable s2, and specifically state
−→
s∗ has a

smaller s2 than state
−→
sc . Then extrapolation estimates

−→
p∗ by

randomly adjusting
−→
pc in the directions to decrease s2.

2.5 Parameter concatenation

We notice that some regions of S have low probabilities to

be visited by both undirected random testing and parameter

estimation because of the correlation among the state vari-

ables of S. For example, state variables cwnd and ssthresh

are positively correlated due to the window reduction at each

congestion event (i.e., three duplicate acknowledgements),

where ssthresh is set to a certain fraction of cwnd (e.g., CU-

BIC: ssthresh = 0.7∗ cwnd, AIMD: ssthresh = 0.5∗ cwnd).

Because of this positive correlation, regions with very high

cwnd values but very low ssthresh values and regions with

very low cwnd values but very high ssthresh values have low

probabilities to be visited by both undirected random testing

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 723

and parameter estimation.

Let’s use states
−→
s∗ and

−→
sd in Fig. 4 to illustrate why extrap-

olation does not work if there is a strong positive correlation

between s1 and s2. Because
−→
s∗ has a smaller s2 than

−→
sd , ex-

trapolation estimates
−→
p∗ by randomly adjusting network en-

vironment
−→
pd in the directions to decrease s2. However, be-

cause of the positive correlation between s1 and s2,
−→
p∗ leads

to not only a smaller s2 but also a smaller s1. As illustrated

in Fig. 4,
−→
p∗ leads the tested CCAI to visit the region of state

−→
s+ by following the path from the initial state to

−→
s+, instead

of visiting the expected region of
−→
s∗ .

Parameter concatenation attempts to visit the low-

probability regions due to the state variable correlation. It

is illustrated in Fig. 5 where the shaded area indicates all the

region visited by the undirected random testing and parame-

ter estimation. The pseudo-code is given in Method 2. Ba-

sically, parameter concatenation runs a network simulation

with a list of network environments at different time periods

in order to visit the unvisited region of state
−→
s∗ .

To implement parameter concatenation, we extend the sim-

ulation configurations used in parameter estimation. A sim-

ulation configuration associated with state
−→
sd is changed to

Gd = (e,
−→
pd1 , t1,

−→
pd2 , t2,,

−→
pdn , tn), which means state

−→
sd was

visited by a simulation with random seed e, network environ-

ment
−→
pd1 from the beginning to time t1,

−→
pd2 to time t2, ..., and

finally
−→
pdn visiting state

−→
sd at time tn. The visiting time tn is

added to the configuration by ACT during the simulation.

Parameter concatenation runs a network simulation using

both the previous network environments
−→
pd1 ,
−→
pd2 ,...,

−→
pdn of

−→
sd and the new network environment

−→
p∗ estimated by extrap-

olation. At time tn when the simulation just visits state
−→
sd ,

parameter concatenation changes the current network envi-

ronment from
−→
pdn to

−→
p∗. As illustrated in Fig. 5, such a list

of network environments lead the tested CCAI to first visit

state
−→
sd by following the path from the initial state to

−→
sd , and

then visit state
−→
s+ by following the path from

−→
sd to

−→
s+.

The path from
−→
sd to

−→
s+ in Fig. 5 may possibly visit new

regions, such as the region of
−→
s∗ , which are not visited by

the path from the initial state to
−→
s+ in Fig. 4 for two reasons.

First, although both paths finally reach the same state
−→
s+ that

is determined by network environment
−→
p∗, they have differ-

ent starting states and thus go through different paths.

Second, we observe that two state variables may be corre-

lated strongly only over a long time scale but not in a short

time scale. For example, over a long time scale, such as

spanning multiple window reductions, cwnd and ssthresh are

strongly correlated. But in a short time scale, such as within

a congestion avoidance stage between two window reduc-

Method 2 Parameter concatenation to find a G∗ for
−→
s∗

1: function CONCATENATION(
−→
s∗)

2: for region size k← 1; ; k← 2× k do

3: find state
−→
sc such that R(

−→
sd ,k) and R(

−→
s∗ ,k) differ in

only one state variable

4: if find at least one state
−→
sd then

5: randomly and uniformly select an
−→
sd

6: Gd ← randomly and uniformly select one from the

pool of simulation configurations associated with
−→
sd

7:
−→
pdn ← the last parameter vector in Gd

8: j ← the state variable index that R(
−→
sd ,k) and

R(
−→
s∗ ,k) differ

9: for i from 1 to dim(P) do

10: if
ds̄ j

d pi

∣

∣

∣−→
pcn

and s∗j − sd
j have same sign then

11: p∗i ← random(p
dn

i , max)

12: else if different signs then

13: p∗i ← random(min, p
dn

i)

14: else ⊲ zero gradient

15: p∗i ← random(min, max)

16: G∗ ← append
−→
p∗ to end of Gd

17: return G∗

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64 128 256 512

C
o
r
r
e
la

ti
o
n

Time scale (Every n−th ACKs)

Figure 6: The longer the time scale, the stronger the positive

correlation between cwnd and ssthresh.

tions, they are weakly correlated in that only cwnd changes

and ssthresh remains unchanged. For example, Fig. 6 shows

the positive correlation between cwnd and ssthresh becomes

stronger as the time scale n increases. Specifically, the Pear-

son’s correlation coefficient is measured in a sliding window

of 10 pairs of cwnd and ssthresh sampled every n-th ACKs in

a simulation and averaged over 30,000 simulations. Because

of the strong correlation between s1 and s2 in a long time

scale, both the path from
−→
sd to

−→
s+ in Fig. 5 and the path from

the initial state to
−→
s+ in Fig. 4 reach the same state

−→
s+, which

has both a smaller s1 and a smaller s2 than
−→
sd . But because

of the weak correlation in a short time scale, the path from
−→
sd to

−→
s+ in Fig. 5 may possibly visit the region of

−→
s∗ where

only s2 is changed.

724 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: The ACT testing platform consists of three compo-

nents: the existing network simulator NS3+DCE, our auto-

mated parameter selector, and automated rule checker.

3 Implementation of ACT

3.1 Testing platform

The ACT testing platform as illustrated in Fig. 7 takes as the

input a list L of CCAIs, a state space S of the CCAIs, a net-

work topology T, a network environment parameter space P

for the topology, and a set C of state conditions to check.

It automatically outputs the states satisfying the conditions

along with specific network environments and other data nec-

essary to deterministically reproduce the detected states.

The platform consists of three components. 1) A network

simulator simulates CCAI flows of L in a network described

by topology T and simulation configuration G that includes a

random seed e and one or multiple network environments in

P. We choose the widely used NS3 enabled with DCE [44],

which can execute the original Linux networking stack in re-

producible and controllable network environments. The out-

put of each simulation is a trace of the timestamped CCAI

state variables. 2) The automated parameter selector auto-

matically selects network environments in P and generates

the next simulation configuration G based on the feedback of

the region coverage of the previously selected network envi-

ronments. 3) The automated condition checker automatically

checks whether any visited states satisfy the conditions in C.

3.2 Test input

A test input is a 5-tuple (L, T, P, S, C). CCAI list L =
(l1, l2, ..., lm) with m≥1 indicates the CCAIs of a total of m

tested CCAI flows, where li with i ∈ [1,m] is the CCAI of

the i-th tested CCAI flow. That is, ACT can be used to test

not only a single CCAI flow, but also the interaction among

multiple different/same CCAI flows. Network topology T

describes the topology (e.g., the total number of nodes and

the routing information) of the tested network environments

in which the m tested CCAI flows run. Leveraging the pow-

erful NS3, our testing platform supports various types of net-

work topologies, such as a single link, the dumbbell topology,

and the parking lot topology. Network environment param-

eter space P describes the parameter ranges of the network

topology T. Each point −→p ∈ P is a network environment

parameter vector −→p = (p1, p2, ...) (also called network envi-

ronment), where pi with i ∈ [1,dim(P)] is a network envi-

ronment parameter. CCAI state space S describes the possi-

ble states of the tested CCAI flows. Each point −→s ∈ S is a

state vector −→s = (s1,s2, ...) (also called state), where si with

i ∈ [1,dim(S)] is a numerical or nonnumerical state variable

of a CCAI in L. C contains a set of the conditions of the state

variables of the CCAIs, and is implemented as a script that

reads and analyzes the simulation traces generated by NS3.

Different CCAI tests may need different test inputs. For

example, a throughput test checks only a single CCAI flow

whereas a fairness test checks multiple CCAI flows, and thus

their test inputs have different L’s. Also the same CCAI state

conditions may be used for different test inputs, for example,

with different network topologies and/or parameter spaces.

This paper focuses on the testing methods, and does not con-

sider the design of comprehensive test inputs for CCAIs.

3.3 Test output

After a test, the testing platform reports all detected states

satisfying the conditions. For each detected state, it outputs

the corresponding simulation configuration G, which can be

used to deterministically reproduce the detected state using

NS3. In addition, it outputs the percentage of the regions

covered in the test.

3.4 ACT method

ACT has the following four steps.

Step 1, undirected random testing repeatedly simulates

CCAIs of L in a network specified by T and G = (e,−→p) with

randomly selected seed e and uniformly selected −→p ∈ P, un-

til the coverage saturates. The goal of this step is not only to

have an initial coverage of the state space, but also to profile

the mapping from P to S to estimate the gradients used in pa-

rameter estimation and concatenation. Without making any

assumptions for L, T, P, and S, ACT uses the simple uniform

distribution for the undirected random testing.

Step 2, parameter estimation iteratively simulates CCAIs

in a network specified by T and G∗=Estimation(
−→
s∗) for a uni-

formly selected unvisited state
−→
s∗ ∈ S, until the coverage sat-

urates. This step is used to improve the coverage of the low-

probability regions due to the unknown nonlinear mapping

from P to S.

Step 3, parameter concatenation iteratively sim-

ulates CCAIs in a network specified by T and

G∗=Concatenation(
−→
s∗) for a uniformly selected unvis-

ited state
−→
s∗ ∈ S, until the coverage saturates. This step is

used to improve the coverage of the low-probability regions

due to the state variable correlation.

Step 4, condition checking reports all visited states in S

satisfying the conditions in C.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 725

ACT checks the coverage saturation using two parameters:

saturation size κ and threshold δ. The coverage has reached

saturation if the growth rate of coverage(S,κ) is lower than δ.

Note that, these two parameters are used only to determine

the total testing time, and ACT still attempts to maximize

coverage(S,k) for all possible k values within that testing

time. Smaller κ and δ increase coverage(S,k) for all k values

but require longer testing times.

4 Experiments

4.1 General setup

We consider five representative CCAIs of Linux kernel 3.10:

the traditional AIMD [2], the current Linux default CU-

BIC [20], HTCP [33] as a time-based CCAI, HSTCP [15] as

a high-speed CCAI, and VENO [17] as a delay-based CCAI.

We choose Linux kernel 3.10 for two reasons. First, this

is the Linux kernel extensively tested with DCE-enhanced

NS3 [44], and thus we can minimize the impact of the poten-

tial DCE-enhanced NS3 bugs on our experiments. Second,

all the tested CCAIs were initially developed before 2005,

and their implementations were already relatively stable in

Linux kernel 3.10 that was released in 2013. For all the ex-

periments, we use the default TCP parameters of Linux ker-

nel 3.10, except that the maximum buffer size is increased to

not limit the TCP throughput.

Each CCAI has a default test input, which is mainly used

for comparing the region coverage of different testing meth-

ods, so it does not have any conditions in C. The default

test inputs for different CCAIs are the same, except dif-

ferent L. For example, the default test input for CUBIC

has L = (CUBIC), and the default test input for AIMD has

L = (AIMD). In every default test input, the network topol-

ogy T has a single (virtual) link, which is simple and yet

very powerful in simulating various network environments

with random packet dynamics in terms of packet bandwidth,

delay, loss, and reordering. The network environment pa-

rameter space P contains all possible network environments
−→p = (p1, p2, p3, p4, p5, p6), with random packet loss rate

p1 ∈ [0%,10%] with granularity 10−6, link bandwidth p2 ∈
[0.1,10000] Mbps with granularity 0.1 Mbps, link delay p3 ∈
[1,1000] ms with granularity 1 ms, random queuing delay

following a Gamma distribution [26] with shape parameter

p4 ∈ [0,20] and scale parameter p5 ∈ [0,80] both with gran-

ularity 0.01, and application rate p6 ∈ [0.001,10000] Mbps

with granularity 0.1 Mbps. The ranges of the parameters are

selected to cover most of possible Internet conditions.

In every default test input, the state space S contains all

possible states −→s = (s1,s2,s3,s4,s5), where s1 is the con-

gestion window size variable cwnd ∈ [1,1024] packets with

granularity 1 packet, s2 is the slow start threshold variable

ssthresh ∈ [1,1024] packets with granularity 1 packet, s3 is

the smoothed RTT variable rtt ∈ [0,2048] ms with default

Linux granularity 4 ms, s4 is the smoothed RTT deviation

variable rttvar ∈ [0,1024] ms with granularity 4 ms, and s5

is the congestion avoidance state variable ca_state ∈ [0:nor-

mal, 1:disorder, 2:cwr, 3:recovery, 4:timeout]. These vari-

ables are the basic CCAI state variables, and are maintained

in the tcp_sock structure in the Linux kernel. The ranges

of these state variables are selected to cover most of possi-

ble TCP states in the Internet, except that cwnd and ssthresh

could be even larger for ultra-high-speed networks. In addi-

tion to these basic state variables, more state variables can be

added into S depending on the tested conditions, such as con-

gestion window size prior_cwnd right before fast recovery,

and CCAI-specific variables like target for CUBIC.

In each experiment, each tested CCAI flow transfers a long

file of size 15 MBytes, which is selected to be long enough

to generate tens of thousands of packets so that all CCAIs

can possibly increase their cwnd and ssthresh to over 1024

packets (i.e., their ranges in S).

4.2 Evaluation: region coverage

We compare the region coverage of ACT with manual testing

(MAN) and with other model-agnostic methods: undirected

random testing (RAN) and symbolic execution based testing

(SYM). We are unable compare ACT with model-guided

methods, because there is no abstract model that can capture

all state variables used in our experiments.

Methods: ACT: For each default test input, ACT runs

DCE-enhanced NS3 simulations with the following satura-

tion parameter values: κ=128, and δ=1.5% per 5000 simu-

lation runs. That is, the coverage has reached saturation if

the growth rate of coverage(S,128) is slower than 1.5% per

5000 simulation runs. These parameter values are selected

so that ACT can finish every test in about three days.

MAN: For each default test input, MAN repeatedly runs

simulations with our manually selected network environ-

ments, which are similar to those selected for the response

function test in a representative CCAI test [24]. Specifically,

we consider packet loss rates p1=0, 10−6, 10−5, ..., and 10−1,

bandwidths p2=1, 10, 100, and 250 Mbps, link delays p3=8,

20, 40, 80, and 160 ms, queuing delay shape values p4=1

and 2.5 and scale values p5=0, 1, and 10, and application

rate p6=10000 Mbps. There are a total of 840 network en-

vironments (i.e., combinations), and MAN repeatedly runs

simulations with these network environments with different

random seeds for the same total number of times as ACT.

RAN: For each default test input, RAN repeatedly runs

simulations with uniformly and randomly selected network

environments for the same total number of times as ACT.

SYM: Symbolic execution based testing [40, 46] executes

the network simulator using symbolic execution platforms,

where the packet dynamics (e.g., delay) are represented us-

ing symbolic variables with ranges defined according to P.

Because DCE-enhanced NS3 is a huge system where each

simulated network node runs a virtualized Linux networking

stack, we symbolically execute the simulations using a pow-

726 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

erful symbolic execute platform S2E [8], which is capable of

symbolically testing a virtual machine. We find that SYM

systematically checks all possible TCP behaviors including

congestion control behaviors and non-congestion-control be-

haviors, such as all possible retransmissions and consecutive

timeouts of the data packets, and all possible ways to estab-

lish and terminate a connection. As a result it can only test a

TCP flow for a small file size of a few KBytes within three

days instead of the expected 15-MByte file size, and thus it

can only increase cwnd by a few packets that is far below our

expected 1024 packets.

Result: We show the results of only CCAI L = (CUBIC)
in Fig. 8, and the results of other CCAIs are similar. Fig. 8

shows the coverage(S,k) results of ACT, RAN, and MAN,

which are measured by the percentages of visited regions

with size k. The region coverage of SYM is too low (lower

than all others) and not shown in the figure. As k increases,

the size of a region increases and the total number of regions

in S decreases, and thus the region coverages of all methods

increase. As an extreme case, when k= 1024, the whole state

space S is treated as a single region, and thus all three meth-

ods achieve 100% coverage. It is interesting that MAN is

more efficient (i.e., higher or the same coverage) than RAN

for big regions but not for small ones. This is because the

network environments used in MAN are representative net-

work environments in P selected by TCP experts [24], and

thus MAN covers a broader range of states than RAN. As

a result, MAN is more efficient than RAN for big regions

(i.e., k > 4). However, MAN has only a limited number of

network environments (i.e., 840), and thus covers a smaller

number of distinct states than RAN. As a result, MAN is less

efficient than RAN for small regions (i.e., k≤ 4). We can see

that ACT is more efficient than MAN, RAN, and SYM for all

possible region sizes. Note that ACT achieves high coverage

without requiring an abstract CCAI model.

Figs. 9 and 10 show the growth of coverage(S,2) and

coverage(S,128), respectively. When k = 2, there are a to-

tal of about 1010 regions and all three methods achieve very

small coverage percentages in three days. When k = 128,

there are a total of 2048 regions and then all three methods

achieve higher coverage percentages. We can see that ACT

covers slightly more small regions (i.e., k = 2) than RAN,

but significantly more big regions (i.e., k = 128) than RAN.

This is because ACT uniformly selects unvisited states in S

and thus is more likely to visit different big regions, whereas

RAN uniformly selects parameter vectors in P and thus is

more likely to redundantly visit the same big regions. Fig. 10

shows that ACT step 2 (i.e., estimation) without requiring

an abstract CCAI model already achieves a higher coverage

than both MAN and RAN, and ACT step 3 (i.e., concatena-

tion) further greatly improves the coverage.

Note that when k is small (e.g., ≤ 16), all three methods

including ACT achieve low coverage (e.g., ≤ 10%). This is

because we only run each test for three days, and there are

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%

 1 4 16 64 256 1024

C
o

v
e
r
a

g
e
 P

e
r
c
e
n

ta
g

e

Region Size k

ACT
RAN
MAN

Figure 8: coverage(S,k) with different k values.

0.0001%

0.0010%

0.0100%

0.1000%

 0 10 20 30 40 50

C
o
v
e
r
a
g
e
 P

e
r
c
e
n

ta
g
e

Simulation runs (1000)

ACT
RAN
MAN

Figure 9: coverage(S,2).

1%

10%

100%

 0 10 20 30 40 50

ACT step 1

ACT step 2

ACT step 3

C
o
v
e
r
a
g
e
 P

e
r
c
e
n

ta
g
e

Simulation runs (1000)

ACT
RAN
MAN

Figure 10: coverage(S,128).

very large number of regions when k is small. For example,

when k is 16, there are already 8,388,608 regions. In three

days, RAN explores about 31,000 different regions, and ACT

explores about 260,000 different regions. The coverages of

all methods can be improved by running each test for a longer

time by reducing parameters κ and δ. But our experiments

already clearly demonstrate that ACT is significantly more

efficient than MAN, RAN, and SYM giving the same amount

of testing time.

4.3 Use case 1: Checking generic behaviors

We demonstrate the capability of ACT in detecting design

and implementation bugs using three types of state condi-

tions in the following three subsections, respectively: 1) a

condition that checks generic CCAI behaviors, 2) a condi-

tion that checks the window increase behavior of a CCAI, 3)

a condition that checks the window decrease behavior.

This group of experiments demonstrates that even a sim-

ple condition that checks generic CCAI behaviors might be

useful for detecting bugs. The test inputs are the same as the

default test inputs, except that C contains a simple condition:

cwnd > 107 packets. Intuitively, this test checks whether the

cwnd of a CCAI could be mistakenly larger than some upper

bound, such as 107 packets that approximately corresponds

to the throughput of a TCP flow with a rate of 100 Gbps and

an RTT of 1000 ms. Note that although 107 is outside of the

specified range [1,1024] for cwnd, it is still possible for ACT

to detect such states, because ACT keeps track of all the vis-

ited states, not just the states in the specified ranges. ACT

with this simple condition detects an implementation bug.

Due to a bug triggered by two consecutive undos, all tested

CCAIs with tcp_sack disabled, except CUBIC, mistakenly

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 727

 0

 1×10
9

 2×10
9

 3×10
9

 4×10
9

 5×10
9

 5 10 15 20 25 30

bug

c
w

n
d

 (
p

a
c
k

e
t)

Simulation Time (second)

Figure 11: AIMD imple-

mentation bug: Suddenly ex-

tremely large cwnd after con-

secutive undos.

 0

 100

 200

 300

 400

 500

 600

 300 350 400 450 500

bug

c
w

n
d

 (
p

a
c
k

e
t)

Simulation Time (second)

Figure 12: CUBIC design

bug: Too aggressive after

application rate-limited peri-

ods.

set cwnd to an extremely large number (i.e., 4,294,967,294

packets), as demonstrated in Fig 11. We thought that it was

a new and severe bug and reported it to Linux kernel devel-

opers [38], and then were told that it was just fixed a few

months ago.

4.4 Use case 2: Checking increase behavior

This group of experiments checks the first motivating exam-

ple in Section 1. The test inputs are the same as the de-

fault test inputs, except that C contains a condition: cwnd >

ssthresh and target > 2× cwnd, and S contains additional

target. Intuitively, this test checks whether CUBIC could be

mistakenly more aggressive in congestion avoidance than in

slow start. ACT detects multiple states satisfying this con-

dition. There are three types of cases. 1) New design bug

detected by ACT steps 1 and 2: CUBIC is designed to be

a time-based congestion control algorithm, and its window

increment in one RTT is a function of the duration of the

RTT. As a result, in cases of extremely long propagation or

queueing delays, CUBIC may set target to be higher than

twice of the current cwnd, which is reasonable for long prop-

agation delays but is questionable for long queueing delays

that are possible signs of network congestion. This is an ex-

treme case that we did not consider when we were designing

CUBIC [20]. 2) Design bug detected by ACT step 3: Linux

CUBIC mistakenly increases its target too aggressively after

a long idle period. This bug was first reported in 2015 [25],

and has been fixed in the latest Linux kernel. 3) New design

bug shown in Fig. 12 detected by ACT step 3: Linux CU-

BIC mistakenly increases its target too aggressively after a

long application rate-limited period. Both this and the previ-

ous bugs are special cases that we did not consider when we

were designing and implementing CUBIC [20].

4.5 Use case 3: Checking decrease behavior

This group of experiments checks the second motivating

example in Section 1. The test inputs are the same as

the default test inputs, except that C contains a condi-

tion: prior_ca_state == 3, ca_state == 0, and cwnd ≥
prior_cwnd, and S contains additional state variables used

in the condition. Intuitively, this test checks whether a CCAI

 0

 1

 2

 3

 4

 5

 5012 5014 5016 5018

bug

c
w

n
d

 (
p

a
c
k

e
t)

Simulation Time (second)

Figure 13: AIMD implemen-

tation bug: mistakenly in-

creases cwnd after fast recov-

ery.

 20

 30

 40

 50

 60

 70

 80

 445 446 447 448 449 450

bug

c
w

n
d

 (
p

a
c
k

e
t)

Simulation Time (second)

Figure 14: VENO implemen-

tation bug: mistakenly in-

creases cwnd after fast recov-

ery.

appropriately decreases its cwnd in fast recovery. ACT de-

tects multiple states satisfying this condition, all by steps 1

and 2. There are two types of cases. 1) New implementation

bug of AIMD and HTCP shown in Fig. 13. Due to a calcu-

lation boundary bug (happens only when cwnd < 4), AIMD

and HTCP mistakenly increase cwnd to 4 after an undoed

fast recovery. This is a new bug and was recently fixed af-

ter we reported it to Linux kernel developers [39]. This is

an important bug, because in a highly congested network

where we desperately need CCAIs, this bug makes the net-

work even more congested. 2) Implementation bug of VENO

and HSTCP shown in Fig. 14. VENO and HSTCP mistak-

enly double their cwnd after an undoed fast recovery, because

they mistakenly use the default undo function that was de-

signed for AIMD. This bug has been reported before and

was fixed in 2016 [47].

5 Discussions

What domain knowledge is required to use ACT? An ACT

user needs to know the state variables of a tested CCAI (e.g.,

by reading the related RFC or papers) in order to define the

state space S. In addition, currently the user needs to manu-

ally instrument the source code of CCAIs and NS3 to keep

track of the values of the state variables. The contribution of

our work is that ACT is model-agnostic so that the user does

not need to know how multiple intertwined components of

CCAIs change the state variables and does not need to know

the complicated mapping from P to S.

An ACT user needs to know the correct behavior of a

tested CCAI (e.g., by reading the related RFC or papers) in

order to define the set of conditions C. In addition, an ACT

user needs to manually analyze the outputted simulation

traces with buggy behavior (i.e., satisfying the conditions)

and then manually check the source code of CCAIs to iden-

tify the reasons for the bugs. The contribution of our work

is that ACT efficiently searches an extremely large number

of possible network environments P, and automatically finds

the specific network environments where the tested CCAIs

show the buggy behavior, so that the user only needs to man-

ually analyze the specific simulation traces with buggy be-

havior.

728 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

What kind of CCAIs ACT can or can’t test? Although we

haven’t evaluated ACT for all current CCAIs, we conjecture

that ACT works for general current and future CCAIs for

the following two reasons. First, ACT does not make any

specific assumptions about the network environment param-

eters of P and the state variables of S, except that S contains

mainly numerical state variables and state variables should

not be strongly correlated in a short time scale. Second, ACT

checks the general behaviors of a tested CCAI by analyzing

the impact of P on S, instead of checking the detailed imple-

mentations of the CCAI by analyzing its source code. While

different CCAIs may have quite different implementations

(e.g., loss based or delay based, expert designed or computer

generated, kernel space or user space), they have same or sim-

ilar general behaviors (e.g., increase or decrease cwnd based

on network congestion). Having said that, an important fu-

ture work is to evaluate the effectiveness of ACT for new

CCAIs, such as BBR [6], Remy [48], and PCC Vivace [12].

What kind of bugs ACT can or can’t detect? ACT can be

used to detect the bugs that can be described by state vari-

ables of S, like the two motivating examples. ACT does not

work well for the bugs related to the specific packet behav-

iors, such as whether an acknowledgement packet with the

correct acknowledgment number is sent right after receiving

a data packet, because it is hard or impossible to describe

such a behavior as a condition of state variables. In addition,

ACT does not work well for bugs that happen only with cer-

tain TCP configuration parameters, because ACT does not

search the large space of TCP configuration parameters.

Are there false positives and false negatives? ACT does

not have false positives, because ACT can output the specific

network environments and the actual simulation traces for

each reported bug. However, ACT does have false negatives

as it is possible that a tested CCAI satisfies a condition but

ACT could not find it. This is because ACT attempts to max-

imize the region coverage of S within a testing time budget,

instead of covering all regions which requires an unrealisti-

cally long time for small k values. Intuitively, this implies

that ACT can be used for bug detection but not for correct-

ness guarantee, which is consistent with a fundamental test-

ing principle “Program testing can be used to show the pres-

ence of bugs, but never to show their absence” [11] in the

software testing community. For real-world networking sys-

tems, correctness can be verified only for special cases, such

as for the abstract models of the code [34, 37], for code built

on verified libraries [52], and for partial pieces of code [42].

6 Related work

6.1 TCP numerical state space exploration

Three types of methods can be potentially used to address

TCP numerical state space exploration problems. 1) These

problems are usually studied by manual testing [19, 24],

where a tester manually selects some representative network

environments in P to test whether a CCAI visits certain re-

gions in S. Not only is manual testing unscalable to a pro-

hibitively large P (e.g., only an order of 102 network environ-

ments are selected in [19, 24]), but also the effectiveness of

manual testing highly depends on how much the tester knows

about a CCAI.

2) Automated and model-guided methods such as [22]

have the potential to automatically and efficiently explore a

limited S of a CCAI under the guidance of an abstract model

of the CCAI. But the choice of S is limited by the state vari-

ables captured in the abstract model. For example, the model

used in [22] does not capture CUBIC state variable target,

and thus cannot be used to explore the S of CUBIC in the

first motivating example. More importantly, the regions of

S that can be explored are limited by the CCAI components

captured in the abstract model. For example, the model used

in [22] does not capture the undo component of Linux CCAIs.

As a result, it is unable to guide the exploration of the regions

that can be reached by the undo component, and then hard to

detect the bugs caused by the interference between the undo

and fast recovery components in the second motivating exam-

ple. However, there is currently no complete abstract model

for real-world CCAIs, as described in the second challenge.

3) Automated and model-agnostic methods, such as undi-

rected random testing [41] and symbolic execution based

testing [40, 46], can automatically explore a general S of a

CCAI without requiring an abstract CCAI model. However,

they are inefficient to explore different regions of a large S,

because they blindly visit S and as a result tend to repeatedly

or densely explore some regions of S. Symbolic execution

based testing [40, 46] groups all the network environments

leading to exactly the same CCAI execution path into equiv-

alence classes in order to improve the scalability over exhaus-

tive testing that exhaustively tests each −→p ∈ P. However, it

is still inefficient in exploring different regions of a large S

for the following reasons. First, it still blindly explores S, be-

cause different equivalence classes of network environments

may still repeatedly or densely explore the same regions of

S. Second, the number of equivalence classes of network

environments is still prohibitively large, and is roughly an

exponential function of the number of packets (i.e., path ex-

plosion problem [4]). As a result, it can be used to test CCAI

with only a small number of packets [40, 46] or test partial

code of CCAIs [42].

ACT attempts to combine the advantages of the model-

guided and model-agnostic methods, that is, the efficiency of

model-guided methods and the generality of model-agnostic

methods. First, ACT is based on undirected random testing

instead of symbolic execution based testing, so that it is scal-

able to a large P and a large number of packets. Second,

ACT guides the selection of network environments under the

feedback iteratively obtained in a test, so as to select new net-

work environments that are more likely to explore different

regions. As a result, ACT does not blindly explore S, and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 729

can more efficiently explore different regions of S than undi-

rected random testing and symbolic execution based testing.

6.2 Enhancements to random testing

The efficiency of random testing can be improved by in-

corporating the right guidance, such as feedback-based ran-

dom testing [28] and guided fuzzing (e.g., AFL [51]), or by

combining with symbolic execution in various ways (e.g.,

DART [18], Driller [36], MACE [9]). The major differ-

ence between these techniques and our proposed ACT is

that these techniques explore the general program execution

state space by maximizing the code coverage or edge cov-

erage, whereas ACT explores the specific numerical state

space of CCAIs where maximizing code coverage may not

always be helpful. First, maximizing code coverage might

waste the testing resources on covering code with no or lit-

tle impact on congestion control, such as the TCP code re-

lated to connection management or packet formats. Second,

many congestion control states can be explored only by re-

peatedly visiting the already visited code blocks for many

times. For example, in order for AIMD to reach from a state

with cwnd = ssthresh = 500 packets to another state with

cwnd = 1000 packets and ssthresh = 500 packets, AIMD

needs to repeatedly visit the same additive increase code for

500+501+502+ ...+999 = 374,750 times.

The efficiency of random testing can also be improved us-

ing genetic algorithms [29], where new test inputs can be

generated by recombining two existing test inputs (called

crossover), or by randomly changing one existing test input

(called mutation). The parameter estimation of ACT is in-

spired by genetic algorithms. Specifically, the interpolation

is inspired by the crossover, as it generates a new network en-

vironment by combining two existing network environments.

The extrapolation is inspired by mutation, as it generates a

new network environment by changing one existing network

environment. The major difference between ACT and ge-

netic algorithms is the parameter concatenation of ACT that

concatenates a sequence of network environments instead of

combining them into a single network environment, as inter-

polation and extrapolation (similarly crossover and mutation)

do not work well for S with correlated state variables.

6.3 General state space exploration

In addition to random testing, many automated techniques

have been proposed to explore various state spaces (e.g., pro-

gram execution space, TCP connection management space)

of network programs.

Implementation-level model checking techniques [27, 31]

recursively explore the next states from the start state by enu-

merating all possible events at each state. They are effective

for systematically exploring a small state space, but are not

scalable to a large one [28]. The path explosion problem [4]

limits symbolic execution based techniques [32,35,40,42] to

testing only a small number of packets [40], a component of

a network protocol [42], or an abstract network model [37].

Static analysis techniques [7,13,45] analyze the network pro-

grams at compilation time to infer their run-time behaviors.

These techniques [13] are effective at quickly checking shal-

low behaviors of large programs, but not at accurately check-

ing the deep program behaviors, such as finding the exact

network environments that lead a CCAI to certain states af-

ter thousands of packets. Model learning techniques [14,21]

attempt to automatically build an abstract model and then ex-

plore the state space of the model. But they work only for a

small state space.

The major difference between all above techniques and

our proposed ACT is that these techniques attempt to explore

different individual states and are more suitable for small

state spaces, such as nonnumerical state spaces (e.g., TCP

connection management state space [27]) or small numerical

state spaces of simple protocols (e.g., TFTP [40]), whereas

ACT is specifically designed to efficiently explore different

regions of an extremely large numerical state space of CCAIs

where certain regions can be reached only after thousands of

intermediate states (i.e., thousands of packets).

6.4 Other related TCP testing work

Pantheon [49] provides a training ground for evaluating the

performance of CCAIs in real-world settings and can auto-

matically calibrate the parameters of a network emulator to

match a real network path so that a tested CCAI achieves sim-

ilar average throughput and delay, whereas ACT attempts to

maximize the coverage of the whole state space and then de-

tect bugs. PacketDrill [5] is an automated TCP testing tool

that checks whether TCP meets a requirement in a specific

network environment −→p , whereas ACT checks whether a

CCAI meets a requirement in a large space P of network

environments. Automated trace analysis [3, 23, 30] checks

the correctness of TCP packet traces against some formal

models or rules mainly about the TCP connection establish-

ment and termination, whereas ACT checks the correctness

of TCP congestion control.

7 Conclusion

This paper proposes a CCAI testing tool ACT, and presents

several design and implementation bugs of Linux TCP. Most

of them are due to the mismatch among different TCP com-

ponents, because they were designed by different researchers

but their interfaces are evolving and not clearly defined. In

the future, we plan to extend ACT to test other congestion

control algorithms, such as those based on UDP and those in

information-centric networking.

ACKNOWLEDGMENT

We thank our shepherd, Anirudh Sivaraman, and the review-

ers for their constructive comments. The work presented in

this paper was supported in part by NSF CNS-1526253 and

NSF SHF-1718040.

730 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix

Proof: Let I(k) denote the total number of regions in S when

the region size is k. Let Qi(k) denote the probability to visit

region Ri(k) with i ∈ [1, I(k)], which is the probability that at

least one state in region Ri(k) is visited. In the special case

when k = 1, we have I(k) = |S| and Qi(k) = qi.

Suppose that a method runs the network simulator for N

times and each time visits M states in S. The probability that

region Ri(k) is visited at least once is 1− (1−Qi(k))
N×M .

The expected number of visited regions is coverage(S,k) =

∑
I(k)
i=1

(

1− (1−Qi(k))
N×M

)

. Thus, the numerical state space

exploration problem can be rewritten as follows.

Maximize ∑
I(k)
i=1

(

1− (1−Qi(k))
N×M

)

(2)

Subject to ∑
I(k)
i=1 Qi(k) = 1 (3)

Using the Karush-Kuhn-Tucker conditions, we can prove

that the maximum coverage is achieved when Qi(k) = Q j(k)
for ∀i, j ∈ [1, I(k)]. If and only if qi = q j for ∀i, j ∈ [1, |S|],
we have Qi(k) = Q j(k) for ∀i, j ∈ [1, I(k)] and for any k ≥ 1.

That is, given the same amount of testing time (i.e., the same

N), the uniform distribution is the only one that maximizes

coverage(S,k) for any k ≥ 1.

References

[1] M. Alizadeh, A. Greenberg, D. Maltz, and J. Padhye et

al. Data center TCP (DCTCP). In Proceedings of ACM

SIGCOMM, New Delhi, India, August 2010.

[2] M. Allman, V. Paxson, and E. Blanton. TCP congestion

control. RFC 5681, September 2009.

[3] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell,

M. Smith, and K. Wansbrough. Rigorous specifica-

tion and conformance testing techniques for network

protocols, as applied to TCP, UDP, and sockets. In

Proceedings of ACM SIGCOMM, Philadelphia, PA, Au-

gust 2005.

[4] C. Cadar and K. Sen. Symbolic execution for software

testing: three decades later. Communications of the

ACM, 56(2):82–90, February 2013.

[5] N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis,

B. Raghavan, N. Dukkipati, H. Chu, A. Terzis, and

T. Herbert. PacketDrill: Scriptable network stack

testing, from sockets to packets. In Proceedings of

USENIX ATC, San Jose, CA, June 2013.

[6] N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, and V. Ja-

cobson. BBR: Congestion-based congestion control.

Coomunications of the ACM, 60(2):pp. 58–66, Febru-

ary 2017.

[7] Q. Chen, Z. Qian, Y. Jia, Y. Shao, and Z. Mao. Static

detection of packet injection vulnerabilities: A case

for identifying attacker-controlled implicit information

leaks. In Proceedings of ACM CCS, Denver, CO, Octo-

ber 2015.

[8] V. Chipounov, V. Kuznetsov, and G. Candea. The

S2E platform: design, implementation, and applica-

tions. ACM Transactions on Computer Systems, 30(1),

February 2012.

[9] C. Cho, D. Babic, P. Poosankam, K. Chen, E. Wu, and

D. Song. MACE: model-inference-assisted concolic

exploration for protocol and vulnerability discovery. In

Proceedings of USENIX Conference on Security (SEC),

San Francisco, CA, August 2011.

[10] DARPA Internet Program. Transmission control pro-

tocol – protocol specification. RFC 793, September

1981.

[11] E. Dijkstra. Notes on Structured Programming in Book

Structured Programming. Academic Press, 1972.

[12] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gi-

lad, P. Godfrey, and M. Schapira. PCC Vivace:

Online-learning congestion control. In Proceedings of

USENIX NSDI, Renton, WA, April 2018.

[13] D. Engler and M. Musuvathi. Static analysis versus

software model checking for bug finding. In Pro-

ceedings of International Conference on Verification,

Model Checking and Abstract Interpretation, Venice,

Italy, January 2004.

[14] P. Fiterau-Brosteam, R. Janssen, and F. Vaandrager.

Combining model learning and model checking to an-

alyze TCP implementations. In Proceedings of In-

ternation Conference on Computer Aided Verification,

Canada, July 2016.

[15] S. Floyd. HighSpeed TCP for large congestion win-

dows. RFC 3649, December 2003.

[16] S. Floyd and M. Allman. Specifying new congestion

control algorithms. RFC 5033, August 2007.

[17] C. Fu and S. Liew. TCP Veno: TCP enhancement for

transmission over wireless access networks. IEEE Jour-

nal on Selected Areas in Communication, 21(2):216–

228, February 2003.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Di-

rected automated random testing. In Proceedings of

ACM Programming Language Design and Implementa-

tion, Chicagi, IL, June 2005.

[19] S. Ha, L. Le, I. Rhee, and L. Xu. Impact of background

traffic on performance of high-speed TCP variant pro-

tocols. Computer Networks, 51(7):1748–1762, May

2007.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 731

[20] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-

friendly high-speed TCP variant. ACM SIGOPS Op-

erating System Review, 42(5):64–74, July 2008.

[21] Y. Hsu, G. Shu, and D. Lee. A model-based approach

to security flaw detection of network protocol imple-

mentations. In Proceedings of IEEE ICNP, Orlando,

FL, October 2008.

[22] S. Jero, E. Hoque, D. Choffnes, A. Mislove, and

C. Nita-Rotaru. Automated attack discovery in TCP

congestion control using a model-guided approach. In

Proceedings of NDSS, San Diego, CA, February 2018.

[23] D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and X. Yin.

Network protocol system monitoring - a formal ap-

proach with passive testing. IEEE/ACM Transactions

on Networking, 14(2):424–437, 2006.

[24] Y. Li, D. Leith, and R. Shorten. Experimental

evaluation of high-speed congestion control protocols.

IEEE/ACM Transactions on Networking, 15(5):1109–

1122, October 2007.

[25] P. McManus. Thanks Google for

open source TCP fix, September 2015.

http://bitsup.blogspot.com/2015/09/

thanks-google-tcp-team-for-open-source.

html.

[26] A. Mukherjee. On the dynamics and significance of

low frequency components of Internet load. Internet-

working: Research and Experience, 5:163–205, De-

cember 1994.

[27] M. Musuvathi and D. Engler. Model checking large

network protocol implementations. In Proceedings of

USENIX NSDI, San Francisco, CA, March 2004.

[28] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-

directed random test generation. In Proceedings

of International Conference on Software Engineering

(ICSE), Minneapolis, MN, May 2007.

[29] R. Pargas, M. Harrold, and R. Peck. Test-data gen-

eration using genetic algorithm. Journal of Software:

Testing, Verification and reliability, 9(4):263–282, De-

cember 1999.

[30] V. Paxson. Automated packet trace analysis of TCP

implementations. In Proceedings of ACM SIGCOMM,

Cannes, France, September 1997.

[31] W. Rathje and B. Richards. A framework for model

checking UDP network programs with Java Pathfinder.

In Proceedings of ACM High Integrity Language Tech-

nology (HILT) International Conference, Portland, OR,

October 2014.

[32] R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise,

S. Kowalewski, and K. Wehrle. KleeNet: discovering

insidious interaction bugs in wireless sensor networks

before deployment. In Proceedings of ACM/IEEE

IPSN, Stockholm, Sweden, April 2010.

[33] R. Shorten and D. Leith. H-TCP: TCP for high-speed

and long-distance networks. In Proceedings of PFLD-

Net, Argonne, IL, February 2004.

[34] M. Smith and K. Ramakrishnan. Formal specification

and verification of safety and performance of TCP se-

lective acknowledgment. IEEE/ACM Transactions on

Networking, 10(2):193–207, August 2002.

[35] J. Song, C. Cadar, and P. Pietzuch. SymbexNet: Test-

ing network protocol implementations with symbolic

execution and rule-based specifications. IEEE Trans-

actions on Software Engineering, 40(7):695–709, July

2014.

[36] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,

J. Corbette, Y. Shoshitaishvili, C. Kruegel, and G. Vi-

gna. Driller: augmenting fuzzing through selective

symbolic execution. In Proceedings of NDSS, San

Diego, CA, Feburary 2016.

[37] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu.

SymNet: Scalable symbolic execution for modern net-

works. In Proceedings of ACM SIGCOMM, Brazil,

August 2016.

[38] W. Sun. A bug report for Linux TCP congestion control

algorithms, May 2017. https://patchwork.ozlabs.

org/patch/767239/.

[39] W. Sun. A buggy behavior for Linux TCP Reno and

HTCP, July 2017. Report https://www.spinics.

net/lists/netdev/msg444955.html, Fix https://

patchwork.ozlabs.org/patch/797520/.

[40] W. Sun, L. Xu, and S. Elbaum. Improving the cost-

effectiveness of symbolic testing techniques for trans-

port protocol implementations under packet dynamics.

In Proceedings of ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis (ISSTA), Santa

Barbara, CA, July 2017.

[41] W. Sun, L. Xu, and S. Elbaum. Limitations of emulat-

ing realistic network environments for correctness test-

ing of internet applications. In Proceedings of IEEE

ICC, pages 1–6, Kansas City, MO, May 2018.

[42] W. Sun, L. Xu, and S. Elbaum. Scalably testing conges-

tion control algorithms of real-world TCP implementa-

tions. In Proceedings of IEEE ICC, pages 1–6, Kansas

City, MO, May 2018.

732 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html
http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html
http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html
https://patchwork.ozlabs.org/patch/767239/
https://patchwork.ozlabs.org/patch/767239/
https://www.spinics.net/lists/netdev/msg444955.html
https://www.spinics.net/lists/netdev/msg444955.html
https://patchwork.ozlabs.org/patch/797520/
https://patchwork.ozlabs.org/patch/797520/

[43] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A

compound TCP approach for high-speed and long dis-

tance networks. In Proceedings of IEEE INFOCOM,

Barcelona, Spain, April 2006.

[44] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Ca-

mara, T. Turletti, and W. Dabbous. Direct code ex-

ecution: revisiting library OS architecture for repro-

ducible network experiments. In Proceedings of ACM

CoNEXT, Santa Barbara, CA, December 2013.

[45] O. Udrea, C. Lumezanu, and J. Foster. Rule-based

static analysis of network protocol implementation. In

Proceedings of USENIX Security Symposium, Vancou-

ver, Canada, July 2006.

[46] M. Vu, L. Xu, S. Elbaum, W. Sun, and K. Qiao. Effi-

cient systematic testing of network protocols with tem-

poral uncertain events. In Proceedings of IEEE INFO-

COM, Paris, France, April 2019.

[47] F. Westphal. TCP: make undo_cwnd mandatory for

congestion modules, November 2016. https://www.

mail-archive.com/netdev@vger.kernel.org/

msg138481.html.

[48] K. Winstein and H. Balakrishnan. TCP ex machina:

computer-generated congestion control. In Proceed-

ings of ACM SIGCOMM, Hong Kong, China, August

2013.

[49] F. Yan, J. Ma, G. Hill, D. Raghavan, R. Wahby, P. Levis,

and K. Winstein. Pantheon: the training ground for

Internet congestion-control research. In Proceedings

of USENIX ATC, Boston, MA, July 2018.

[50] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and

Y. Lu. TCP congestion avoidance algorithm identifica-

tion. IEEE Transactions on Networking, 22(4):1311–

1324, August 2014.

[51] M. Zalewski. American Fuzzy Lop for network

fuzzing. https://github.com/jdbirdwell/afl.

[52] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki,

and G. Candea. A formally verified NAT. In Proceed-

ings of ACM SIGCOMM, 2017.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 733

https://www.mail-archive.com/netdev@vger.kernel.org/msg138481.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg138481.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg138481.html
https://github.com/jdbirdwell/afl

Scaling Community Cellular Networks with CommunityCellularManager

Shaddi Hasan
UC Berkeley

Mary Claire Barela
University of the Philippines, Diliman

Matthew Johnson
University of Washington

Eric Brewer
UC Berkeley

Kurtis Heimerl
University of Washington

Hundreds of millions of people still live beyond the cov-
erage of basic mobile connectivity, primarily in rural ar-
eas with low population density. Mobile network opera-
tors (MNOs) traditionally struggle to justify expansion into
these rural areas due to the high infrastructure costs neces-
sary to provide service. Community cellular networks, net-
works built “by and for” the people they serve, represent
an alternative model that, to an extent, bypasses these busi-
ness case limitations and enables sustainable rural cover-
age. Yet despite aligned economic incentives, real deploy-
ments of community cellular networks still face significant
regulatory, commercial and technical challenges.

In this paper, we present CommunityCellularManager
(CCM), a system for operating community cellular networks
at scale. CCM enables multiple community networks to op-
erate under the control of a single, multi-tenant controller
and in partnership with a traditional MNO. CCM preserves
flexibility for each community network to operate indepen-
dently, while allowing the mobile network operator to safely
make critical resources such as spectrum and phone numbers
available to these networks. We evaluate CCM through a
multi-year, large-scale community cellular network deploy-
ment in the Philippines in partnership with Globe, the largest
MNO in the country, providing basic communication ser-
vices to over 2,800 people in 17 communities without requir-
ing changes to the existing regulatory framework, and using
existing handsets. We demonstrate that CCM can support
independent community networks with unique service offer-
ings and operating models while providing a basic level of
MNO-defined service. To our knowledge, this represents the
largest deployment of community cellular networks to date.

1 Introduction

Despite the global expansion of mobile networks, millions
still live without access to basic voice and SMS connectivity.
A key reason for this is that most countries effectively al-
low only a small set of nation-scale actors to hold the neces-
sary operating and spectrum licenses, as well as interconnec-

tion infrastructure, to provide commercial mobile service.
In spite of their size, incumbent mobile network operators
(MNOs) are capital constrained and struggle to justify in-
vestment in rural areas with marginal business cases when
compared to more profitable and lower-risk urban markets.

Community cellular networking provides one alternative
approach for bringing mobile connectivity to these under-
served populations [2, 28]. Community networks, networks
built “by and for” the people they serve in a community-
centric, often cooperative, fashion [8, 52, 58], allow for cre-
ative localized schemes for sustainable operation that work
even when covering low-income, remote, or sparse commu-
nities. The strength of the community network model is its
ability to flexibly adapt to local needs using local resources
and local insights. A network serving one community can
provide services suited to that community, and can institute
their own policies that would not make sense in a nation-
scale network (for example, free local SMS mailing lists).
They can also tailor their network deployments to leverage
local capacity, such as existing towers and power systems,
lowering deployment costs. Yet even where communities
could run profitable networks, they face high barriers to en-
try in acquiring expensive and exclusive spectrum licenses,
as well as operating licenses necessary to secure phone num-
bers and interconnection with the global phone network.

We are left with an unfortunate market failure: incum-
bent MNOs hold resources and capabilities, in the form of li-
censes and interconnect, necessary to provide rural coverage,
but can’t justify investment in underserved areas. Concur-
rently, community networks could provide sustainable ser-
vice, but lack a combination of the commercial, legal, and
technological capacity to operate in a telecommunications
regime designed for large carriers. We argue that rather than
standing in opposition to each other, incumbent operators
and community networks have an opportunity for cooper-
ative interaction, leveraging the strengths of each to fulfill
mutually beneficial business and social goals. Fundamen-
tally, such a partnership requires a technology stack enabling
collaborative resource management and provisioning of com-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 735

mon services between MNOs and community networks.
In this paper, we present CommunityCellularManager

(CCM), a solution for operating community cellular net-
works at scale within the existing telecom ecosystem. CCM
enables multiple community networks to operate under the
control of a single, multi-tenant controller, preserving flexi-
bility for each community network to implement their own
unique services while allowing them to share MNO re-
sources, such as spectrum and phone numbers. For MNOs,
CCM resolves the administrative problems they face grant-
ing many small third parties access to their core network by
aggregating their traffic behind one logical point of intercon-
nection, while providing a point of control to mitigate the
risk they take on by sharing their resources and licenses. We
evaluate CCM in a deployment to expand the service of an
MNO into unserved areas via community networks using the
MNO’s spectrum and interconnect (Section 5).

The contributions of this paper are as follows. First, we
describe the design and implementation of CommunityCel-
lularManager, a system for deploying rural community cellu-
lar networks at scale by facilitating cooperation and resource
sharing with traditional mobile network operators. Second,
we present a multi-year, large-scale community network de-
ployment in the Philippines that provides basic communica-
tions service to 17 communities and over 2,800 monthly ac-
tive users, powered by CCM and in partnership with Globe,
the largest MNO in the country. We further demonstrate
CCM’s ability to support key use cases necessary for rural
community cellular networks, such as offline operation, as
well as its ability to support independent local services on a
subset of the community networks in our deployment.

2 Related Work

Rural Access. Access to connectivity supports numerous
services, such as health [37], education [35], and finance [9].
However, access remains unequal, with connectivity signif-
icantly better in dense, urban, and developed environments
than in sparse, rural, and developing ones. In attempts to re-
solve this disparity, researchers have proposed a variety of
novel technologies such as long-distance WiFi [47], delay
tolerant networking [16], and “sneaker” nets [22, 48, 24].

Although these technologies were all successes from a
research perspective, they have had limited impact on the
global problem of access. These technologies exist along-
side an array of other important infrastructure, and innova-
tions at the network layer alone will be insufficient. Surana
et al. [56] find that looking at the system holistically is crit-
ical for its success [55]. This includes both physical infras-
tructure such as power and the social structures and people
surrounding the technology. We take these lessons to heart
in CCM, bringing issues like local ownership and customiza-
tion to the forefront of the system design.

Community Networks. Researchers have explored wire-
less community networks [31] for years with contributions
such as specific wireless technologies [18], topologies [59,
58], and mesh protocols [5] more appropriate for their unique
constraints. The above systems all use WiFi for access, pri-
marily because of low cost and use of unlicensed spectrum.
While these networks have shown to have the potential to
empower local communities [14] and create more resilient
networks [8], this limits these networks to higher-end de-
vices and small coverage areas without mobility.

More recently, researchers and practitioners have built
community cellular networks [2, 28, 51, 12]. Ideologically
aligned with the goals of community networking, these net-
works use cellular protocols to provide wide-area coverage
to basic phones at lower cost. Unfortunately, they remain
limited by the technical affordances of cellular, including the
need for licensed spectrum, phone numbers, and intercon-
nect with the global phone network. CCM provides a plat-
form for community cellular that resolves these concerns.

Mobile cores. Cellular core network standards are devel-
oped by the 3GPP [46]; recent work focused on improving
scalability and reliability of core networks [50, 6, 49]. Sim-
ilar to SoftCell [33], CCM is a clean-slate architecture, and
was designed for public cloud environments like ECHO [42].
CCM differs in its focus on shifting administrative bound-
aries of the mobile core to enable cooperation between MNO
and community networks.

3 Design Goals

CCM is targeted to a specific but important use case: extend-
ing mobile network service provided by an incumbent MNO
in a cooperative partnership with community cellular net-
works. Prior work [28, 51] has shown that community cellu-
lar networks can effectively serve areas unserved by MNOs.
Such cooperative arrangements [11, 39] promise to unblock
regulatory and commercial barriers faced by community cel-
lular networks, such as access to spectrum. The architectural
rigidity of mobile networks, however, makes achieving our
federated use case challenging, since it provides no affor-
dance for having multiple administrative domains providing
service in a loosely coupled fashion.

The 3GPP specifications [46] define the architecture of
traditional mobile networks. Although these specifications
continue to evolve, the network architecture prioritizes (1)
mobility, (2) operator control of subscribers and network pol-
icy, and (3) efficient utilization of radio resources as first-
order priorities. To do this, 3GPP networks tunnel traffic be-
tween end-user devices and a (logically) centralized “core
network”, which provides services such as voice calling,
messaging, and data service. These logical services are of-
fered over the physical radio access network (RAN), which
is responsible for providing users with physical connectivity
to the core network and ensuring efficient use of the limited

736 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

radio resource. The two components of the network – the
core and the RAN – are tightly coupled: without a core net-
work, the RAN is not capable of providing network services
to end users. This approach stands in stark contrast to that
of the Internet [10], with its focus on supporting datagram
services among independent networks.

Both architectural approaches – 3GPP’s centralized con-
trol and the Internet’s decentralized flexibility – have clearly
enabled successful networks, but the 3GPP architecture has
several significant drawbacks for community networks in
rural areas. First, the strength of community cellular net-
works is their adaptability to their local context, providing
customized services that are relevant to users in the local
community. Centralized core networks make a single entity
responsible for all service provisioning, preventing innova-
tion at the local level. Second, community cellular networks
are heterogeneous and administratively decentralized, with
diverse IP transport and transit configurations and different
sets of actors responsible for network operation and main-
tenance at each site. Tightly coupling the RAN equipment
deployed in a community to a core network requires coordi-
nation between the community network and the MNO’s core
network. Fundamentally, this requires the MNO to expose
their most critical network assets – their core network – to a
third party, so they need ways to mitigate the risk of doing
so. As a result, this interaction incurs high administrative
overhead due to the configuration required for each new site
and the extensive security reviews required when connecting
third-party infrastructure to MNO core networks.

These challenges suggest the following design goals:
1. Enable community networks to autonomously deploy

services within their footprint, while providing a basic
set of services from the mobile network operator.

2. Minimize the cost and risk of adding new cell sites and
community networks for both the MNO and the com-
munity network operator.

3. Provide service at low incremental cost beyond that re-
quired for RAN deployment, even in small networks.

4 System Design

To achieve these goals, CCM builds upon our experience
building and operating an early community cellular net-
work [28, 27]. We implemented the first version of the soft-
ware that would evolve into CCM on location during our
fieldwork in Papua, Indonesia, and the constraints of that en-
vironment – reliance on satellite Internet and reliably unreli-
able power – shaped our design.

In CCM, each network node can provide service au-
tonomously, even without a connection to the Internet. CCM
is broadly divided into two components (Figure 1). The first
is the CCM Client, which is co-located with a community
network’s RAN equipment and fills the role typically played
by a 3GPP core network, terminating the logical connection

from a user’s phone and providing services to the end user.
To support voice and SMS services, we translate all 3GPP
voice and SMS to SIP and SMPP at the Client, which allows
us to perform call and message routing at the Client (also
knon as local breakout). By making each network node a
logically independent cellular network, CCM elegantly sup-
ports autonomous service deployment in each community
network and allows core network capacity to scale up and
down with the deployed RAN network.

The second component, the CCM Controller, provides a
set of common services across community networks, such as
RAN configuration and network management tools, includ-
ing a web application that serves as the primary user inter-
face for both MNO staff and community network operators.
Importantly, the Controller also manages state distribution
across the different networks: rather than centralizing both
policy and network state in on-path devices, we synchronize
application state among network nodes. The Controller also
provides interconnection between community networks and
the MNO network, regulating access to one of the most im-
portant resources the MNO owns: globally routable phone
numbers for voice calls and SMS.

This decomposition bridges the centralized world of tradi-
tional mobile networks with the decentralized world of com-
munity networks and IP. Network management functions –
subscriber provisioning, device management, network pol-
icy, and necessarily integration with Globe (Section 4.2.1) –
are all highly centralized. In contrast, user traffic and sig-
nalling (the data and control planes, from a 3GPP perspec-
tive) and service provision are decentralized where traffic
doesn’t interact with Globe. This hierarchy enables scale
by allowing individual community networks to take advan-
tage of common infrastructure while preserving their ability
to deploy new services. It also reflects a pattern we have ob-
served in other scaled (non-cellular) community networks,
with “second level organizations” solving expensive or com-
plicated problems once while more local groups operate net-
work infrastructure [3].

CCM is designed for GSM (2G) networks and provides
only voice and SMS service, not data (though we do rely on
IP data for management, we do not provide data service to
users’ phones), as the plurality of devices in our deployment
only supports 2G [54]. Similarly, we emphasize that our par-
ticular decomposition of responsibilities represents just one
point in a wider design space with its own political and tech-
nical tradeoffs. Section 7 discusses extensions toward LTE
and further exploration of this design space.

4.1 CCM Client

The CCM Client is responsible for all operation at the com-
munity network site. It has two key responsibilities: provide
connectivity services to users at the site, and manage the site
itself. Physically, the CCM Client is a suite of software tools

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 737

Figure 1: The CCM high level architecture, consisting of Clients, the Controller, and the interconnect with Globe. Phone
numbers, licenses, and spectrum [1] are provided by Globe, with a number block manually allocated into the Controller’s
subscriber database (SubDB). The CCM Controller [3] manages network configuration and status, provides a point of control
for Globe to enforce global network policies and perform administrative tasks, and a web interface for network management.
The CCM Controller also interconnects with Globe’s core for routing traffic between many individual community networks
and Globe’s network [2]. Clients communicate with the Controller via an HTTPS API [5], which is also used to determine call
and SMS routing [4]. Note that CCM utilizes local breakout at each component, so traffic may be handled as the SMPP/SIP
gateways closest to the two users. CCM is multitenant, so Clients in many communities [6] can have unique local services and
operate asynchronously if the backhaul is unavailable.

Figure 2: The CCM Client is deployed at each site and pro-
vides service even when the connection to the Internet is not
available. The Client also provides an opportunity for cus-
tomization of local web services and local applications.

that runs on a off-the-shelf x86 PC co-located with the radio
equipment of a rural cellular site. In our deployments, this
PC is either located physically within the RAN enclosure or
located nearby in a separate enclosure. Figure 3 shows the
components of one example install.

The Client is the primary element in our system responsi-
ble for delivering communication service (in our case, voice
and SMS) to end users. We designed CCM to work with
the two most popular open-source GSM network implemen-
tations, OpenBTS [44] and Osmocom [45], each of which
implements a complete GSM core network and, importantly,
translates cellular traffic and signalling to VOIP (SIP, RTP,
and SMPP). CCM extends this translation and implements

Figure 3: The CCM Client hardware components. (A) PC
and GSM radio (in combined enclosure). (B) The satellite
antenna used for backhaul and solar panels (not visible). (C)
Closet for power system and satellite modem.

the business logic to properly route calls and SMS, imple-
ment local services, and provide basic business support ser-
vices such as charging and user provisioning.

User management and billing. In GSM networks, the
SIM card holds a unique IMSI number, the user’s iden-
tity on the network. Each IMSI corresponds to a particular
subscriber’s profile in CCM, which associates both a phone
number and an account balance with the subscriber. Similar
to previous work [28], we provide basic SMS-based appli-
cations for provisioning a new SIM card (i.e., associating it
with a subscriber profile and assigning a phone number) and
transferring network credit between users. The network op-
erator may add or remove credit directly to a subscriber’s
account via the CCM Controller as well. CCM implements

738 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a simple prepaid billing system in which operators can set
the price of different network actions (e.g., price per minute
for a voice call to a certain number prefix); time-based ac-
count balances are also supported. This user profile is one of
the key elements of network state in our system, which we
discuss further in Section 4.2.

Local breakout. We run a SIP softswitch [19] on each
CCM Client to route calls and SMS. Because CCM leverages
local breakout, this softswitch can fully route and connect lo-
cal calls and messages without having any traffic (signalling
or media) leaving the site. This gives CCM the ability to
support arbitrary local services, including custom interactive
voice response applications or SMS shortcodes. Any out-
bound traffic addressed to a user not currently active on a
site is routed to the CCM Controller, which allows the MNO
to set policy for these communications and potentially route
them between different sites as well as to the global tele-
phony network (Section 4.2.1).

Site provisioning. Community networks are built and op-
erated by ordinary people, not specialized technical staff. As
a result, we focused on automating as much of site provi-
sioning and setup as possible: our goal was to make setup at
least as easy as installing a home WiFi router. To provision a
site, each CCM Client generates and assigns itself a unique
identifier during a “manufacturing” phase; we expect that ei-
ther the vendor or experts assembling the unit will perform
this step. The unique identifier is printed on the outside of
the hardware to be deployed at the site.

Devices start in an unprovisioned state; CCM prevents the
radio equipment from transmitting while unprovisioned. To
provision the device, installation technicians or community
members register the device by inputting the unique identi-
fier into the CCM Controller’s web interface. Once the de-
vice is powered on and connected to the Internet, it connects
to the CCM Controller to provision itself. If the device has
been registered with the CCM Controller, the device will re-
ceive VPN configuration information and a secret API token
for future requests to the CCM Controller.1 Using the API
token, the site can begin a process of generating secondary
credentials required for operation, such as a VPN keypair.
Once the Client establishes secure connectivity to the Con-
troller, configuration and network state information is syn-
chronized and the device is ready to begin operation.

Under nominal conditions, the only user interaction re-

1The gap between when a device is registered with the CCM Controller
and when it actually connects could allow an attacker with knowledge of the
unique ID to register a fake device with the CCM Controller. To mitigate
this, we instruct users to register the device only after they’ve verified it is
powered on and connected to the Internet. In practice, this is done in a “stag-
ing” lab environment prior to field installation, thus minimizing the window
of opportunity for an attacker. This attack could be completely mitigated if
the device-specific secret API tokens or a keypair were pre-provisioned with
a CCM Controller prior to associating a device with a user’s account; how-
ever, doing this would require coordination between device manufacturers
and the entity operating the CCM Controller, which was not feasible in our
deployment.

Figure 4: A screenshot of the CCM web UI.

quired to provision a site is entering the unique ID into the
web UI (see Figure 4). No prior coordination is required
between equipment providers, the CCM Controller operator,
and the community network team actually deploying the site.
This is in contrast to traditional 2G networks, which typically
require RAN, core, and network management software from
the same vendor to be manually provisioned by one entity.

4.2 CCM Controller

The CCM Controller is responsible for managing traffic
among the collection of community networks it manages, as
well as with the outside world. Moreover, while in prac-
tice CCM supports geographically distinct cell sites without
overlapping coverage, users can move between networks and
CCM must be able to coordinate state across networks; the
Controller also handles this task.

4.2.1 Voice and SMS Interconnection

Internally, CCM routes all calls and SMS between SIP
switches at each CCM Client site. Within the administrative
domain of a single CCM Controller, we can assign phone
numbers to subscribers much like an enterprise can assign
extensions to internal users or RFC1918 addresses for private
networks. However, for users of CCM networks to make and
receive communication from the global phone network, we
need to interconnect CCM sites with an entity that has been
assigned globally-routeable phone numbers and has the abil-
ity to route voice and SMS communication. CCM is capable
of interconnecting with wholesale VOIP providers (such as
Nexmo [40] or Bandwidth [4]) as well as an MNO’s VOIP
infrastructure; we will focus on the latter in this work, though
the mechanism is similar for both.

CCM interconnects with an MNO through its VOIP gate-
way (typically used for supporting enterprise customers) as
well as the MNO’s SMPP gateway, an industry standard for
SMS exchange. In this arrangement, the MNO allocates the
CCM Controller blocks of phone numbers to be used exclu-
sively by users of CCM sites. On the CCM side, we run a

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 739

corresponding SIP switch and SMPP gateway, as well as any
VPN infrastructure required for connecting to the MNO’s
systems. The CCM SIP and SMPP infrastructure is state-
less, and determines inbound call routing by querying the
CCM Controller API to determine subscriber location; all
billing and charging is handled on the CCM Client.

The integration architecture we use has two consequences.
First, since the CCM Controller handles multi-tenancy, there
is a single point of interconnection between the MNO and
potentially many community networks. This is crucial: set-
ting up our initial integration with Globe took just over four
months from start to finish, and required the team we were
working with at Globe to obtain approvals and request con-
figuration changes with a number of different teams within
their organization. Further, the technical work required to
set up this interconnection, while simple in theory, is com-
plicated by the fact that MNOs rely on custom and legacy
systems that must be carefully managed to prevent down-
time. Going through this process for dozens of community
networks would be impossible, so while our integration ap-
proach creates a single point of failure, the benefits of a one-
time integration outweigh the risks.

Second, this tightly ties CCM networks to the MNO who
assigns phone numbers: the MNO can at any point shut off
service to these users; users would need new phone num-
bers if the partner MNO changed. This is advantageous from
the perspective of the MNO, since they retain ultimate con-
trol over their users, which was important for gaining ap-
proval from Globe to allow community networks to oper-
ate under their spectrum and operating licenses. While other
approaches [25, 17, 51] enable community cellular without
hard dependencies on third parties, our MNO partnership ap-
proach required no regulatory change; the project would not
have been feasible in the Philippines in the timeframe we’ve
taken otherwise.

4.2.2 State Management

System state in CCM consists of per-site configuration, net-
work policy, and subscriber authentication, billing and loca-
tion data. In order to support disconnected operation, CCM
needs to ensure this state is distributed across all sites admin-
istered by a CCM Controller.

Checkin. The fundamental mechanism for state distribu-
tion in CCM is the “checkin”. At least once per minute, each
CCM Client sends a HTTPS request to an API endpoint on
the Controller. The content of this request includes the site
ID, usage logs (also known as call data records, or CDRs),
diagnostic information (such as CPU utilization), and sub-
scriber data to the Controller. Based on the computed config-
uration for the site, the Controller’s response to this checkin
request is the desired state of the system’s configuration and
the set of subscribers a site should be able to serve.

Both the request and response are JSON dictionaries di-

vided into independent sections: for example, billing records
are stored in the usage section. Only changed state is trans-
ferred in the server response after the initial checkin. The
Client and Controller each maintain a shared context of pre-
viously received configuration by tracking a hash of the con-
tents of each checkin section; the Client includes the last
hash of each section it has received in its subsequent re-
quests. If the Client hash matches the last recorded Con-
troller hash, it only sends the difference between the last state
and the current one. Otherwise, it sends the full contents of
the section. Because most configuration changes rarely, this
minimizes received checkin response sizes.

Subscriber data. Subscriber data consists of authentica-
tion information, location (i.e., which Client a user is cur-
rently attached to), and billing information. The first two
of these are straightforward to handle. Authentication in-
formation consists of SIM card keys as well as whether a
subscriber is allowed or not allowed on the network; the net-
work operator can add users via the Controller or through
an SMS-based short code application in the field. In both
cases, this information is directly written to the Controller
and replicated to all sites in the network. Each CCM Client
reports the list of subscribers currently attached to the site
during checkin; this allows the Controller to have a global
view of subscriber location for routing inbound traffic and
traffic between sites.

Billing state is more complicated, as it can be mutated
both at any particular site (e.g., decremented after a sub-
scriber makes a call) as well as at the CCM Controller (e.g.,
when an operator adds credit to a subscriber’s account di-
rectly). A site may also be disconnected from the CCM
Controller for arbitrary lengths of time, while still providing
communications services within its coverage area. Never-
theless, we need to be able to apply network policies around
charging to local calls while disconnected from the tower.

To achieve this, we restrict modifications to subscriber
balance to commutative operations (add or subtract), and
then represent subscriber balances as a CRDT [38]. Sub-
scriber balances are synchronized across the network during
the checkin process: as each site checks in, the Controller
merges its subscriber balance state with what the site reports,
and provides the merged state back to the site in the response
if it differs. This enables each node of the system to both
read and write subscriber balance independently – when a
site is disconnected, users can continue to communicate lo-
cally and transfer balance between each other, and balance
will converge once the site comes back online. Users can
also move between multiple offline sites and communicate
locally on each. In our current implementation, this raises
the possibility of double spending, but our partners made
the business decision to allow this to facilitate usage. The
risk of this particular attack is low in practice because of the
substantial distances between different sites, and could be
further mitigated by setting a threshold for spending during

740 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

disconnected operation at each site.
Site Management All other configuration state is simi-

larly managed by the Controller. We provide a web-based UI
for viewing network-wide state (including user activity) and
defining network policy and configuration. While some in-
formation must be manually defined by the network operator
(such as pricing plans), other information is automatically
generated to simplify operation (such as the radio channel
that each site uses). Outside this controller-based interface,
we do not support any other means of configuring devices.2

The UI provides fine-grained permissions and control, al-
lowing the operator of the Controller (Globe) to determine
which types of users may access different aspects of the UI.
In our deployment, spectrum usage is controlled by Globe,
and access to Globe sites is restricted to their staff. Globe
has allocated a separate “network” for a set of sites run di-
rectly by communities, but has restricts what administra-
tors of these networks can do. The superuser has view and
edit access to change configuration across sites, networks,
and subscribers, as well as the ability to adjust credit and
download activity reports. The superuser can also create ad-
ditional users based on predefined roles: business analyst
(view-only), partner (view-only + manage subscriber) and
loader (view-only + manage subscriber + adjust credit). The
system allows Globe to adjust specific permissions per user.

5 Deployments

We deployed CCM as part of a long-term partnership be-
tween the researchers, the University of the Philippines and
Globe Telecom [20], the largest MNO in the Philippines with
over sixty million subscribers. The researcher-driven portion
of the project, conducted in the Aurora province, is funded
by the Philippine Government and focuses on bringing the
benefits of community cellular to remote parts of the Philip-
pines; we refer to these as the “UP sites”. The MNO created
two different administrative domains for their subnetworks,
one owned entirely by Globe and another for the UP sites.
For both of these networks, users are using phone numbers
from Globe, though the service is branded separately from
their main service bundles to make clear to users that the ser-
vices and quality expectations on these extremely rural sites
are different from Globe’s main network. In this section we
describe each of these subnetworks including their pricing,
interconnect, and context. For site deployment dates and lo-
cations, please see the Appendix.

5.1 UP Community Networks

UP selected the province of Aurora for their CCM installa-
tions. Aurora is a coastal province of Luzon, the main island

2Each Client site does have a command line interface, but this is only
used for debugging or emergency recovery purposes.

Figure 5: Components of a typical UP CCN installation:
solar panels (top left), battery bank and network hardware
(middle left), VSAT antenna (bottom left), outdoor GSM ra-
dio system, tower and shelter (right).

of the Philippines, on the Pacific Ocean and the Philippine
Sea. The capital, Baler, is a relatively affluent town with
readily available connectivity and robust land routes to ur-
ban areas such as Metro Manila. Further south down the
coast, dozens of fishing communities lie outside of any ex-
isting connectivity. In these areas, people travel by boat to
Baler for any needs that cannot be met in their home com-
munities, including device repair and connectivity. Despite
the distance from coverage, initial site surveys done in 2016
found that mobile phones were prevalent and demonstrated
demand by uncovering a variety of existing (though com-
plex) connectivity solutions [7]. These communities were
selected by the UP team for (1) their relative proximity to
Metro Manila, (2) lack of connectivity, and (3) connection to
a local university for assistance in deployments. These de-
ployments began in late 2017, with all seven planned sites
launched as of February 2019. The community GSM sites
provide voice and SMS access to over 1,500 subscribers.

Structure and Context. The Aurora networks are or-
ganized in line with most definitions of community net-
works [58]. The operation and maintenance of the commu-
nity network is handled by local cooperatives, in partnership
with the local government units (LGUs), the local state col-
lege and the UP research team. These partners were identi-
fied during the initial site surveys. The LGU facilitated the
legal appropriation of land for towers and helped expedite
the permits and clearances required for civil works at each
site. In addition, the LGUs extended assistance to mobilize
local labor for installation and deployment activities.

The cooperatives conduct the day-to-day operations, busi-
ness management, and maintenance of the network. They
are in charge of pre-paid credit distribution from Globe to
the community retailers, who are mostly existing sari-sari
(general merchandise) store owners. The cooperative orders
credit from Globe at least once a month. After payment has
been sent through a bank deposit and verified, Globe tops

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 741

up the cooperative’s accredited mobile number via the CCM
Controller web interface. From here, the cooperative dis-
tributes it to their authorized retailers via a locally-hosted
SMS-based credit transfer application. The cooperative re-
ceives a wholesale discount from Globe, part of which is
passed on to the retailers. The retailers earn additional in-
come by charging a small “convenience” fee per sale. Fi-
nally, the gross revenue from all charged calls and texts on
the network is split based on a revenue sharing scheme be-
tween Globe and the cooperative, where the cooperative gets
80% and 20% goes to Globe. Earnings are used by the coop-
erative to pay personnel and as savings.

In terms of maintenance, the researchers employ a three-
tier support system. The first tier, L1, is composed of local
maintenance personnel hired by the cooperative and residing
in the community. They are assigned to do daily upkeep and
basic troubleshooting of the cell site. Any issues that are not
resolved at the L1 tier are escalated to the local state college
and/or the LGU, the L2 tier, which can provide intermediate-
level technical assistance. Finally all other issues that are not
resolved at the L1 or L2 tiers are escalated to the research
team, which provides L3 support.

Prior to launch, the researchers facilitated social enterprise
training sessions with cooperatives that had no prior experi-
ence in conducting business-related activities pertaining to
operations of a community network, and technical training
with community maintenance personnel. During the network
launch, the researchers held a forum with the broader com-
munity where the unique properties of their networks were
explained (e.g., lack of roaming to Globe’s main networks)
to the subscribers. The event was also a venue for the com-
munity to raise questions and concerns regarding the network
and services, and distribute SIM cards. The distribution of
SIMs in the UP networks is currently tightly controlled as
part of an ongoing randomized control trial [15] on the im-
pact of cellular networks on rural communities.

5.2 Globe’s Community Networks

Concurrent to the installation of the UP sites, Globe also in-
stalled CCM Client access points in eleven other rural com-
munities throughout the Philippines. Of these, the first two
were “proof of concept” (PoC) sites installed in Tanay, Rizal
province (60km from Manila) and another in Talisay, Que-
zon province (130km from Manila). Following the success-
ful trials of CCM in these two PoC sites, a further eight net-
works were deployed in Eastern Visayas. All of the sites are
rural and lack any existing network coverage, with popula-
tions ranging from one to five thousand people. Though cen-
sus information for rural areas in the Philippines is spotty, the
demographics and economics of Tanay have been described
in detail in other work [54]. Another twenty networks are
planned with rollouts expected throughout 2019.

Structure and Context. The MNO’s sites consist of two

groups: the PoC sites in Luzon and partner sites in Visayas.
Both are organized in a more traditional fashion with Globe
handling marketing, credit distribution, and installation. For
the PoC sites, Globe agents conducted selection interacting
with the LGUs to procure locations and timings amenable to
the local community. For the Visayas sites, Globe instead
partnered with a non-governmental organization (NGO) to
find partner communities and negotiate installations. This
NGO has a long history of projects in Visayas and was able
to find suitable communities in rural areas as well as assist in
the day-to-day operations of the sites. The NGO also handles
the SIM card and pre-paid credit distribution from Globe to
the community retailers.

The installations were done by Globe’s tower deployment
team using their standard site equipment, aside from the cus-
tom RAN equipment itself. The sites use a two-tiered main-
tenance system with one level of lightweight local support
and the main support provided by Globe staff in Manila. One
local community member is selected by the deployment team
and tasked with using the network to send messages back to
Globe’s technical team in case of ongoing issues. If any fail-
ures disable the network, Globe’s engineers use the CCM
Controller’s web interface to observe the network failures
and send engineering staff out to resolve the issue. Credit
sellers buy their credits by depositing money into Globe’s ac-
count at a nearby (but outside of the community) bank. They
then take a small premium when distributing these credits
throughout the community.

5.3 Project Evolution

Rural connectivity projects do not lend themselves to neat
stories, and this deployment was no exception. Our deploy-
ment of CCM originated from discussions between Globe
and the researchers’ company, Endaga, in early 2015, and
implementation work began in the summer of 2015. Origi-
nally, Endaga operated both the CCM Controller and directly
supported all field equipment running the CCM Client soft-
ware. After Endaga joined Facebook in late 2015, CCM was
released by Facebook as an open source project to enable
continued development by Globe and others. At the same
time, we interconnected the CCM Controller with Globe’s
core and then transferred administrative control of the CCM
Controller to Globe in mid-2017 after a successful early
proof-of-concept. While the researchers continued to be in-
volved in the development and aspects of the deployment of
CCM, day-to-day operation of the service passed to Globe;
this continues today. In practice, this means that Globe con-
trolled access to the CCM Controller (including software up-
dates), and the researchers could only deploy local services
on the sites we directly had access to: the UP sites. While
this wasn’t the deployment configuration we originally de-
signed CCM for, CCM was able to continue providing an
interconnection abstraction towards different groups of com-

742 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

munity networks, even while the administrative boundaries
between system elements shifted.

6 Evaluation

Our team completed interconnection between CCM and
Globe’s network in mid-2016, with two trial sites launched
in early 2017. After a year of evaluation, Globe launched
nine additional sites and granted permission to the UP to
launch seven community networks that year (launch dates
are provided in the appendix), of which six are live as of De-
cember 2018. While a total of 17 sites have been launched
throughout the project, only 9 were in operation as of De-
cember 2018 due to hardware failures; the failed sites are
being replaced with new hardware that is currently undergo-
ing testing. The UP sites used a mix of hardware (includ-
ing some self-assembled), and their deployments have not
been impacted as severely as Globe’s sites, which used a sin-
gle vendor for their deployments. Supporting heterogeneous
hardware was not an explicit goal of CCM, but its ability to
do so proved useful in our challenging rural context.

6.1 Usage
As of December 2018, CCM supports a total of about 2,800
monthly active users across 17 launched sites (Figure 6).
Spikes in the number of active users are due to site launches,
which are typically accompanied by marketing campaigns to
raise awareness for the launch of service in a new town.

Table 1 provides an overview of traffic volumes across the
network. Across all sites, we observed that inbound call traf-
fic is much more common than outbound call traffic, and is in
fact the predominant form of usage on both networks. This
is indicative of “call-me” or “flashing” [13] behavior as sub-
scribers are aware that they can save money by letting their
contacts call them instead; on all networks in our deploy-
ment, subscribers are only charged for user-initated calls and
SMS. Narrowing our analysis to only user-initiated traffic,
we find that SMS is the predominant form of communica-
tion, with roughly 7x more messages sent than minutes spent
on calls, and over 13x the number of calls made. This is
in line with the fact that SMS rates are significantly lower
than per-minute rates and extremely popular in the Philip-
pines (the “texting capital of the world” [23]).

We observed more local traffic among the UP sites than
the Globe sites. Interviews conducted by the team sug-
gest that one contributing factor is the fact that communi-
ties served by the UP sites can be clustered into two groups
where the sites are located relatively near each other, and be-
cause the community networks support existing locally rel-
evant services. In the UP sites in San Luis, Aurora, locals
frequently conduct trade activities and have personal connec-
tions with residents from the other sites, relationships which
existed before the arrival of the community cellular network.

Figure 6: Monthly active users for Globe (blue) and UP
(green) networks.

Service Type Volume

UP Globe Total

Calls Out (min) 55,459 114,294 169,754
Calls In (min) 1,128,849 1,886,642 3,015,492
SMS Out 440,767 713,017 1,153,784
SMS In 367,212 701,538 1,068,750

Table 1: Volume of usage by service type. Call volumes
are reported as duration in minutes, while SMS volume is
number of messages sent. Inbound communication is free.

In another example, the only high school in the area is lo-
cated in Dikapinisan and students from the nearby sites need
to relocate temporarily for their studies. Parents used the
community cellular network to call their children and get
updated on other current events. We note though that for
these “inter-cove” (the sites are located in a series of coves)
transactions, although they are classified as local traffic for
billing purposes, these communications are routed through
the Controller’s SIP switch. Community members also told
our team that they used the network for local events, such as
a community beauty contest that used SMS for voting.

6.2 Disconnected Operation

Figure 7 depicts the launch date and uptime for each site.
Downtime was a common case in our extremely rural sites.
All sites use satellite backhaul, and even where grid power is
available, its poor reliability necessitates battery backups or
fully off-grid solar systems; some sites were also turned off
on a nightly basis to conserve power. Overall, the mean site
uptime is only 35% across all sites, with a median of 27% for

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 743

Figure 7: Site uptime. Sites 1-11 are Globe operated, while
12-17 are UP operated. Each point is one hour.

Globe sites and 40% for UP sites.3 This reality motivated our
need to prioritize disconnection and downtime as common
cases to be handled by CCM.

To understand whether users benefited from CCM’s dis-
connected operation support, we examined CDRs from time
periods while sites were offline. We only considered user-
initiated “local” communications and credit transfers, since
communication out of a site is not possible while it does
not have a connection to the CCM Controller. This is still a
conservative assumption, since communication between two
sites in the same network (such as between two different UP
sites) is also considered “local”. We include credit transfer
as well since it is a crucial utility used by all users of the
network to buy service: if credit transfer breaks, sales are
directly impacted, hurting network sustainability.

We find that overall, offline local traffic accounts for
16% of the total local traffic, comprising 7% of local traf-
fic in the MNO sites and 23% of local traffic in the UP
sites. This accounts for 4,678 minutes of calls, 81,434 SMS
messages, and 11,970 credit transfers representing approx-
imately US$4,600 worth of transfer activity. These credit
transfers are largely top-up sales to end users and themselves
represent 14% of the transfer volume across all sites, bene-
fiting Globe, retailers, and the community networks at large.
Without effective support for offline operation, these sites
would have been completely down during backhaul outages,
further complicating the already difficult business and sus-
tainability cases for these rural network sites.

The primary cost CCM incurs for supporting offline oper-
ation is the overhead of state synchronization, carried by the
checkin protocol. Figure 8 shows the distribution of checkin
request and response sizes before and after our optimiza-
tion. The median checkin request and response is 2.6kB and
283B, respectively, corresponding to median “unoptimized”
request and response sizes of 14.4kB and 283B. Our opti-
mization is much more effective at the tails: 99th percentile
request and responses sizes are reduced by 86.3% and 91.2%

3Not all sites are unreliable. Three UP and two Globe sites achieve
>60% uptime, even despite planned nightly downtime to conserve power.

Figure 8: CDF of checkin sizes. Blue are requests from the
Client to the Controller, and red are responses from the Con-
troller to the Client. Dashed lines are raw data sizes and solid
lines are size after optimization for transport.

respectively. The optimized checkins place minimal burden
on our networks: even at the 99th percentile, a checkin con-
sumes less bandwidth than a single 6 second call (using a
64kbps codec). We note that these sizes are prior to gzip

compression over the wire, further reducing overhead.

6.3 Local Services
A consequence of CCM’s decentralized architecture, and one
that differentiates it from traditional centralized cellular net-
works, is that it allows customization of the individual net-
works to local needs, requirements, and desires. During our
deployment, we and our partners took advantage of this ca-
pability to implement a number of unique services in the UP
sites. Specifically, we implemented (1) a local repair support
tool aiming to empower lay actors from within the commu-
nity to conduct routine maintenance and repair, (2) a cus-
tom local billing solution to allow our team to explore the
demand curves for rural communication access without re-
quiring costly changes to Globe’s billing systems, and (3)
a local “outage hotline” connecting users directly to the UP
team. These applications demonstrate CCM’s ability to sup-
port flexible and dynamic community networks.

Repair. Repair is central to sustainable rural networking
interventions [56, 29]. Further, in rural areas, we have the
unique advantage that rural users are natural repairers [30].
While Globe installations use traditional maintenance prac-
tices, the UP community networks sought to address network
repair and maintenance through a local-only repair support
service that leveraged latent skills and abilities present in the
community [32]. The researchers implemented a set of ser-
vices leveraging the fact that community networks interact
directly with users and can help guide them in conducting
repair. The service consisted of digital “repair manuals” em-
bedded into the community cellular infrastructure. Network

744 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

components are labeled with small codes (e.g., “ANT” for
antenna) and an SMS shortcode (e.g., 777) that, when texted,
provides background and debugging information about that
particular system element. Labels are printed on a large
poster in a community building near the tower. For instance,
a user texting “hot” to the shortcode will receive a mes-
sage instructing them to turn off the system to allow it to
cool. This system was implemented on the Client’s local
softswitch (see Figure 2), and provides a unique, local mech-
anism for repair that is particularly appropriate for the UP
sites, which don’t have dedicated commercial technicians.

Billing. The UP sites also have unique requirements for
their billing system. Though CCM handles tariffs between
Globe and the community network, the community sets their
prices within their domain for their users. For the UP sys-
tems, the billing system was extended to enable promos,
a well-known local pricing scheme among Filipino MNOs.
Unlike the per-minute and per-SMS fees charged by default,
users pay up-front for a set of network functions, usually a
discrete volume of SMS and voice minutes. These services
were implemented in CCM as Client-only databases stor-
ing current promo offerings and promo counts for each sub-
scriber. The implementation also allows the administrator to
grant promos to subscribers, similar to a rewards system.

Promos exist at a per-site level and are not synchronized
across sites; quotas or discounted tariffs are stored locally.
These are defined when the network administrator creates
the promos via a web form or a CSV file upload. The sys-
tem supports multiple promos per user. It also offers a SMS
interface for users to check their promo status and usage.

Outage Hotline. The UP sites also offer an SMS-based
outage hotline. This free service accepts questions, com-
ments, reports and other service-related inquiries from the
communities. The hotline logs received messages to a file
on the CCM Client’s storage, which are synchronized to a
remote server (distinct from the Controller) at regular inter-
vals. The hotline also helps the researchers in the detection
of technical issues in the field as community members can
easily report any problems that they may experience on the
ground. This is also the mechanism that local maintenance
personnel utilize to send network status updates.

6.4 Reliability

Network downtime is common in our deployment. Accord-
ing to one user at the start of our deployment, “I’m OK
even if [the network] is turned off at night. At least now,
we have something that we can use to communicate. Unlike
before, we totally have none.” This attitude changed during
the course of the deployment; despite the utility of discon-
nected operation, users still came to expect continuous, re-
liable operation from these networks: “Why don’t we have
signal during the night? They shouldn’t turn it off during
the night, because it is still important in case something bad

Cause Percentage Example
Backhaul 42% VSAT offline due to weather
Power 24% Discharged batteries
Site Hardware 21% Overheating
Site RF 12% Broken antenna cable

Table 2: UP site outages by duration. This data comes from
manual record keeping by site caretakers and is approximate;
we do not have ground truth for all site outages.

happens here.” In our deployments, outages occurred at the
boundaries of the network’s physical infrastructure: power
systems, backhaul networks, and site hardware. While we
were able to mitigate these to an extent, we regard reliability
in community cellular networks as a open challenge.

All sites use satellite backhaul, and unreliable or non-
existent grid power requires use of battery backups or off-
grid solar systems. While we do not have ground truth for
all site outages, outage records from the UP sites provide an
approximate distribution of outage causes (Table 2). At these
sites, the most common cause of outage was backhaul fail-
ure, followed by power outages, collectively accounting for
about 66% of the downtime, with hardware or RF issues ac-
counting for the remainder. Backhaul failures had minor im-
pact since they tended to be transient and since CCM grace-
fully handles offline operation, but power failures were more
serious, often resulting in extended downtime. Improving re-
silience to power failures is hard, as increasing battery capac-
ity adds to site cost; approaches like “virtual coverage” [26]
address this challenge to an extent, but require non-standard
hardware. To reduce long-term outages, sites are shut down
at night to reduce power utilization during off-peak hours,
either manually or via an automatic switch.

All significant offline periods at Globe sites (Figure 7)
were due to hardware failure; this impacted 9 of 11 launched
sites. When Globe took on operation of the CCM Controller,
they selected a new hardware vendor to provide equipment
for Globe sites. This vendor included the CCM Client
into their existing mature rural base station product, which
promised to allow Globe sites to use proven hardware al-
ready being produced at scale, reducing cost. This hardware
used an SD card as a disk, which was used in read-only mode
in the vendor’s standard product offering; this is a best prac-
tice for rural networking hardware [56]. To support CCM,
which requires mutable persistent storage to support offline
operation and local applications, the vendor continued to use
the SD card, but in a writeable mode. This led to a per-
nicious failure mode where devices would fail after several
months’ successful operation in the field due to disk corrup-
tion driven by power failures and excessive writes. Commu-
nity networks benefit from applications like CCM and those
outlined in Section 6.3 that require mutable persistent stor-
age, but supporting these applications in rural environments
remains a challenge.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 745

7 Discussion

Towards LTE. The rapidly maturing ecosystem of open
source telecom software and newly-affordable RAN equip-
ment designed for rural cellular networks makes community
cellular networks technically and financially feasible. As
noted, CCM only supports GSM (2G) service because ba-
sic GSM-only phones are still the plurality in the rural ar-
eas we target [54]. However, CCM’s architecture represents
a framework for MNOs and community networks to partner
and share resources. We expect the shift towards LTE (4G) to
make community LTE networks viable in the coming years
and we are actively pursuing this agenda [53].

The shift to LTE creates new opportunities for community
networks. While GSM networks are essentially deployed in
four spectrum bands globally, LTE devices support dozens of
band combinations, some of which support spectrum sharing
(such as Band 48 [17]) and others that fall within “digital div-
idend” bands (e.g., Band 71); the latter is ideal for rural net-
works due to improved propagation of low band spectrum.
Even without shared spectrum, demand for LTE spectrum
for capacity in urban areas is likely to result in substantial un-
derutilization in rural geographies, opening up opportunities
for partnership and spectrum re-use as we’ve done in our de-
ployment. Driven by use cases like private LTE networks for
enterprises and industrial “Internet of Things” deployments,
as well as applications like mobile edge computing, the LTE
base station ecosystem is already larger than that for GSM,
lowering costs for community networks. Radio equipment
of varying degrees of openness is under development [57, 1],
and multiple open source software core networks, analogous
to OpenBTS and Osmocom, are available [41, 21, 43].

Given this progress, community LTE networks could pro-
vide broadband service independently of MNOs, connecting
to the Internet just as a small ISP would. Recognizing this,
we recently proposed a decentralized LTE architecture [34]
that does not require a telecom’s (or any centralized orga-
nization’s) participation. We expect a fully distributed ar-
chitecture should ease deployment and empower community
networks at the cost of increased difficulty scaling. Explo-
ration of the political and technical tradeoffs across the cen-
tralized/decentralized and telecom partnership/independent
network design spaces remain open research questions.

Fault diagnosis. Community cellular networks rely on
a collection of systems to provide service to end users;
just to send an SMS, a user’s traffic interacts with a ra-
dio implementation (proprietary hardware, or a software ra-
dio), a GSM stack (OpenBTS or Osmocom), a SIP engine
(Freeswitch [19]), an SMPP gateway (Kannel [36]), and of
course CCM. Even for experts, diagnosing faults in the mo-
bile stack is challenging due to the the need to manage state
across layers and components. We relied on regular auto-
mated end-to-end health checks of the CCM Client to iden-
tify and rectify faults; automated failure diagnosis will be

essential for community networks.
Sustainability. As of today, only a few of the UP sites

(and none of the MNO sites) are financially sustainable, tak-
ing into account the ongoing operating costs for the sites.
This was expected for the unsustainable UP sites, as they
were too small to provide enough revenue. We are hope-
ful that future research endeavors into novel business mod-
els and cost structures will resolve this issue. The MNO sites
were designed to all be sustainable but poor system reliabil-
ity hurt usage. We remain hopeful that stability improvement
will increase revenue to sustainable levels.

Repeatability. One of our broader objectives is to develop
a scalable and repeatable model for community cellular net-
works. We were fortunate that our project did not require any
significant regulatory changes and that spectrum sublicens-
ing was permissible under existing Filipino regulations. This
is not always the case, and where MNOs are unable to allow
third parties to use their spectrum, they may not be able to
engage in this particular business model. Nevertheless, CCM
reduces the challenge of starting many community networks
to a commercial negotiation rather than a regulatory discus-
sion (or even legislative action), often a much lower bar.

8 Conclusion

For the millions who live outside of basic mobile coverage,
community cellular networks present a way to sustainable
mobile coverage. Finding ways to remove the regulatory
and commercial barriers to their growth is key to realizing
this potential. Working with MNOs provides a straightfor-
ward, if not necessarily easy, path to doing this that requires
neither major regulatory changes in many jurisdictions nor
any of the actors involved to act contrary to their first order
interests. The challenge that remains is building the platform
to connect these different entities together.

Our work shows that these challenges are surmountable,
and provides an example of ways to deploy community net-
works at scale. We identified critical design goals for such
a system – autonomous services, minimal transaction costs
and risk, and minimal absolute deployment costs – and im-
plemented CCM to realize these goals. Through a large-scale
deployment, we demonstrate CCM’s ability to effectively
support these community network - MNO partnerships, con-
necting 17 communities and thousands of users. Our system
is open source,4 and we hope others will find it useful for
replicating this model.

Acknowledgments

We thank the anonymous reviewers and our shepherd Keith
Winstein for their helpful comments which improved the
quality of this work. CCM was developed over many years at

4https://github.com/co-cell/ccm

746 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Endaga, Facebook, UC Berkeley, University of Washington,
and University of the Philippines, Diliman. We are grateful
to the many individuals who contributed to CCM over the
course of its development, especially Omar Ramadan, Matt
Ball, Steve Muir, Evgeniy Makeev. This work was supported
by funding from Endaga, Facebook, the Philippines Com-
mission on Higher Education’s PCARI program, USAID,
and the NSF GRFP under Grant No. DGE-1762114. We also
thank the UP Diliman VBTS team, notably Philip Martinez,
Ronel Vincent Vistal, Maria Theresa Perez, Maria Theresa
Cunanan, Giselle Dela Cruz, Clarisse Aquino, Luigi Morata,
and Joshua Dalmacio for their tireless dedication in the field,
and anonymous individuals in communities throughout the
Philippines who worked to make this deployment possible.
Finally, we thank the Konekt team at Globe for their willing-
ness to try something new and their commitment to expand-
ing rural connectivity in the Philippines.

References
[1] ALI, K., AND HEIMERL, K. Designing Sustainable Rural Infrastruc-

ture Through the Lens of OpenCellular. Communications of the ACM
61, 8 (2018), 22–25.

[2] ANAND, A., PEJOVIC, V., BELDING, E. M., AND JOHNSON, D. L.
VillageCell: Cost Effective Cellular Connectivity In Rural Areas.
In Proceedings of the Fifth International Conference on Information
and Communication Technologies and Development (Atlanta, Geor-
gia, 2012), ICTD ’12, ACM, pp. 180–189.

[3] BAIG, R., ROCA, R., FREITAG, F., AND NAVARRO, L. Guifi.net,
a Crowdsourced Network Infrastructure Held in Common. Computer
Networks 90 (2015), 150–165.

[4] BANDWIDTH. https://www.bandwidth.com. Retrieved 9/2019.

[5] BANDYOPADHYAY, S., HASUIKE, K., HORISAWA, S., AND
TAWARA, S. An Adaptive MAC Protocol for Wireless Ad Hoc Com-
munity Network (WACNet) using Electronically Steerable Passive Ar-
ray Radiator Antenna. In Global Telecommunications Conference,
2001. GLOBECOM’01. IEEE (2001), vol. 5, IEEE, pp. 2896–2900.

[6] BANERJEE, A., MAHINDRA, R., SUNDARESAN, K., KASERA, S.,
VAN DER MERWE, K., AND RANGARAJAN, S. Scaling the LTE
Control-Plane for Future Mobile Access. In Proceedings of the 11th
ACM Conference on Emerging Networking Experiments and Tech-
nologies (2015), ACM, p. 19.

[7] BARELA, M. C., BLANCO, M. S., MARTINEZ, P., PURISIMA,
M. C., HEIMERL, K., PODOLSKY, M., BREWER, E., AND FES-
TIN, C. A. Towards Building a Community Cellular Network in the
Philippines: Initial Site Survey Observations. In Proceedings of the
Eighth International Conference on Information and Communication
Technologies and Development (2016), ACM, p. 55.

[8] BELUR, S. B., KHATURIA, M., AND RAO, N. P. Community-led
Networks for Sustainable Rural Broadband in India: the Case of Gram
Marg. In Community Networks: the Internet by the People, for the
People. Association for Progressive Communications, 2017, p. 193.

[9] BLUMENSTOCK, J. E., CALLEN, M., GHANI, T., AND KOEPKE,
L. Promises and Pitfalls of Mobile Money in Afghanistan: Evidence
from a Randomized Control Trial. In Conference Proceedings of the
Seventh International Conference on Information and Communication
Technologies and Development (NY, USA, 2015), New York.

[10] CLARK, D. The Design Philosophy of the DARPA Internet Pro-
tocols. ACM SIGCOMM Computer Communication Review 18, 4
(1988), 106–114.

[11] CONGRESO DE LA REPUBLICA DEL PERU. Ley No. 30083.
http://www.leyes.congreso.gob.pe/Documentos/Leyes/

30083.pdf, 2013.

[12] DHANANJAY, A., TIERNEY, M., LI, J., AND SUBRAMANIAN, L.
WiRE: a New Rural Connectivity Paradigm. In SIGCOMM (2011),
pp. 462–463.

[13] DONNER, J. The Rules of Beeping: Exchanging Messages Via In-
tentional ”Missed Calls” on Mobile Phones. Journal of Computer-
Mediated Communication 13, 1 (2007).

[14] DUARTE, M. E. Network Sovereignty: Building the Internet Across
Indian Country. University of Washington Press, 2017.

[15] EARL, S., SINHA, C., AND SMITH, M. L. Innovations in Evaluating
ICT4D Research. Connecting ICTs to Development (2013), 241.

[16] FALL, K. A Delay-Tolerant Network Architecture for Challenged
Internets. In SIGCOMM ’03: Proceedings of the 2003 Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (New York, NY, USA, 2003), ACM, pp. 27–
34.

[17] FEDERAL COMMUNICATIONS COMMISSION. Citizens Broadband
Radio Service (FCC 15-47). https://docs.fcc.gov/public/

attachments/FCC-15-47A1.pdf, 2015.

[18] FRANGOUDIS, P. A., POLYZOS, G. C., AND KEMERLIS, V. P. Wire-
less Community Networks: an Alternative Approach for Nomadic
Broadband Network Access. IEEE Communications Magazine 49,
5 (2011).

[19] FREESWITCH. http://www.freeswitch.org/. Retrieved
2/2019.

[20] GLOBE TELECOM, INC. https://www.globe.com.ph/. Retrieved
9/2018.

[21] GOMEZ-MIGUELEZ, I., GARCIA-SAAVEDRA, A., SUTTON, P. D.,
SERRANO, P., CANO, C., AND LEITH, D. J. srsLTE: an Open-
Source Platform for LTE Evolution and Experimentation. In Proceed-
ings of the Tenth ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation, and Characterization (2016),
ACM, pp. 25–32.

[22] GRAY, J., CHONG, W., BARCLAY, T., SZALAY, A., AND VANDEN-
BERG, J. TeraScale SneakerNet: Using Inexpensive Disks for Backup,
Archiving, and Data Exchange. arXiv preprint cs/0208011 (2002).

[23] GSMA INTELLIGENCE. Country Overview: Philippines Growth
Through Innovation. https://www.gsmaintelligence.com/

research/?file=141201-philippines.pdf. Retrieved 9/2018.

[24] GUO, S., FALAKI, M. H., OLIVER, E. A., OLIVER, E. A., RAH-
MAN, S. U., RAHMAN, S. U., SETH, A., ZAHARIA, M. A., AND
KESHAV, S. Very Low-Cost Internet Access Using KioskNet. SIG-
COMM Comput. Commun. Rev. 37, 5 (2007), 95–100.

[25] HASAN, S., HEIMERL, K., HARRISON, K., ALI, K., ROBERTS, S.,
SAHAI, A., AND BREWER, E. A. GSM Whitespaces: An Opportu-
nity for Rural Cellular Service. In DySPAN (2014), pp. 271–282.

[26] HEIMERL, K., ALI, K., BLUMENSTOCK, J., GAWALT, B., AND
BREWER, E. Expanding Rural Cellular Networks with Virtual
Coverage. In Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (Lombard, Illinois,
2013), NSDI’13, USENIX Association.

[27] HEIMERL, K., AND BREWER, E. The Village Base Station. In Pro-
ceedings of the 4th ACM Workshop on Networked Systems for Devel-
oping Regions (San Francisco, California, 2010), NSDR ’10, ACM,
pp. 14:1–14:2.

[28] HEIMERL, K., HASAN, S., ALI, K., BREWER, E., AND PARIKH, T.
Local, Sustainable, Small-Scale Cellular Networks. In Proceedings of
the Sixth International Conference on Information and Communica-
tion Technologies and Development (Cape Town, South Africa, 2013),
ICTD ’13, ACM.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 747

[29] JACKSON, S. J., POMPE, A., AND KRIESHOK, G. Things Fall Apart:
Maintenance, Repair, and Technology for Education Initiatives in Ru-
ral Namibia. In iConference (2011).

[30] JACKSON, S. J., POMPE, A., AND KRIESHOK, G. Repair Worlds:
Maintenance, Repair, and ICT for Development in Rural Namibia. In
Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work (New York, NY, USA, 2012), CSCW ’12, ACM,
pp. 107–116.

[31] JAIN, S., AND AGRAWAL, D. P. Wireless Community Networks.
Computer 36, 8 (2003), 90–92.

[32] JANG, E., BARELA, M. C., JOHNSON, M., MARTINEZ, P., FESTIN,
C., LYNN, M., DIONISIO, J., AND HEIMERL, K. Crowdsourcing
Rural Network Maintenance and Repair via Network Messaging. In
Conference on Human Factors in Computing Systems (CHI) (2018).

[33] JIN, X., LI, L. E., VANBEVER, L., AND REXFORD, J. SoftCell:
Scalable and Flexible Cellular Core Network Architecture. In Pro-
ceedings of the Ninth ACM Conference on Emerging Networking Ex-
periments and Technologies (2013), ACM, pp. 163–174.

[34] JOHNSON, M., SEVILLA, S., JANG, E., AND HEIMERL, K. dLTE:
Building a more WiFi-like Cellular Network: (Instead of the Other
Way Around). In Proceedings of the 17th ACM Workshop on Hot
Topics in Networks, HotNets 2018, Redmond, WA, USA, November
15-16, 2018 (2018), pp. 8–14.

[35] KAM, M., MATHUR, A., KUMAR, A., AND CANNY., J. Design-
ing Digital Games for Rural Children: A Study of Traditional Village
Games in India. In Conference on Human Factors in Computing Sys-
tems (CHI) (2009).

[36] KANNEL. https://www.kannel.org/. Retrieved 2/2019.

[37] KUMAR, N., PERRIER, T., DESMOND, M., ISRAEL-BALLARD,
K., KUMAR, V., MAHAPATRA, S., MISHRA, A., AGARWAL, S.,
GANDHI, R., LAL, P., AND ANDERSON, R. Projecting Health:
Community-Led Video Education for Maternal Health. In Seventh
International Conference on Information and Communication Tech-
nologies and Development (2015).

[38] LETIA, M., PREGUIÇA, N., AND SHAPIRO, M. CRDTs: Consis-
tency without Concurrency Control. arXiv preprint arXiv:0907.0929
(2009).

[39] MARTÍNEZ FERNÁNDEZ, A., VIDAL MANZANO, J.,
SIMÓ REIGADAS, J., PRIETO EGIDO, I., AGUSTÍN DE DIOS,
A., PACO, J., AND RENDÓN, Á. The TUCAN3G Project: Wireless
Technologies for Isolated Rural Communities in Developing Coun-
tries Based on 3G Small-Cell Deployments. IEEE Communications
Magazine 54, 7 (2016), 36–43.

[40] NEXMO. http://www.nexmo.com/. Retrieved 2/2019.

[41] NEXTEPC. http://nextepc.org/.

[42] NGUYEN, B., ZHANG, T., RADUNOVIC, B., STUTSMAN, R.,
KARAGIANNIS, T., KOCUR, J., AND VAN DER MERWE, J. ECHO:
A Reliable Distributed Cellular Core Network for Hyper-Scale Public
Clouds. In Proceedings of the 24th Annual International Conference
on Mobile Computing and Networking (2018), ACM, pp. 163–178.

[43] NIKAEIN, N., KNOPP, R., KALTENBERGER, F., GAUTHIER, L.,
BONNET, C., NUSSBAUM, D., AND GHADDAB, R. OpenAirInter-
face: an Open LTE Network in a PC. In Proceedings of the 20th An-
nual International Conference on Mobile Computing and Networking
(2014), ACM, pp. 305–308.

[44] OPENBTS. http://openbts.org. Retrieved 9/2018.

[45] OSMOCOM. https://osmocom.org/projects/

cellular-infrastructure. Retrieved 9/2018.

[46] PATEL, G., AND DENNETT, S. The 3GPP and 3GPP2 Movements
Toward an All-IP Mobile Network. IEEE Personal Communications
7, 4 (2000), 62–64.

[47] PATRA, R., NEDEVSCHI, S., SURANA, S., SHETH, A., SUBRAMA-
NIAN, L., AND BREWER, E. WiLDNet: Design and Implementation
of High Performance WiFi Based Long Distance Networks. In 4th
USENIX Symposium on Networked Systems Design and Implementa-
tion (2007).

[48] PENTLAND, A. S., FLETCHER, R., AND HASSON, A. DakNet: Re-
thinking Connectivity in Developing Nations. Computer 37, 1 (2004),
78–83.

[49] QAZI, Z. A., PENUMARTHI, P. K., SEKAR, V., GOPALAKRISHNAN,
V., JOSHI, K., AND DAS, S. R. KLEIN: A Minimally Disruptive
Design for an Elastic Cellular Core. In Proceedings of the Symposium
on SDN Research (2016), ACM, p. 2.

[50] QAZI, Z. A., WALLS, M., PANDA, A., SEKAR, V., RATNASAMY,
S., AND SHENKER, S. A High Performance Packet Core for Next
Generation Cellular Networks. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (2017),
ACM, pp. 348–361.

[51] RHIZOMATICA. http://rhizomatica.org/. Retrieved 2/2019.

[52] SALDANA, J., ARCIA-MORET, A., BRAEM, B., PIETROSEMOLI,
E., SATHIASEELAN, A., AND ZENNARO, M. Alternative Network
Deployments: Taxonomy, Characterization, Technologies, and Archi-
tectures. Tech. rep., 2016.

[53] SEVILLA, S., KOSAKANCHIT, P., JOHNSON, M., AND HEIMERL,
K. Building Community LTE Networks with CoLTE. In The commu-
nity network manual : how to build the Internet yourself, L. Belli, Ed.
FGV Direito Rio, 2018.

[54] SHAH, K., MARTINEZ, P., CRUZ, G. M. D., BLUMENSTOCK, J.
D. J., AND HEIMERL, K. An Investigation of Phone Upgrades in
Remote Community Cellular Networks. In International Conference
on Information and Communication Technologies and Development
(2017), P. Lahore, Ed.

[55] SURANA, S., HO, M., PATRA, R., AND SUBRAMANIAN, L. De-
signing Healthcare Systems in the Developing World: The Role of
Computer Science Systems Research. Tech. rep., New York Univer-
sity.

[56] SURANA, S., RABIN PATRA, S. N., RAMOS, M., SUBRAMANIAN,
L., BEN-DAVID, Y., AND BREWER, E. Beyond Pilots: Keeping
Rural Wireless Networks Alive. In 5th USENIX Symposium on Net-
worked Systems Design and Implementation (2008).

[57] TELECOM INFRA PROJECT. OpenRAN Project Group. https://

telecominfraproject.com/openran/.

[58] VEGA, D., BAIG, R., CERDÀ-ALABERN, L., MEDINA, E.,
MESEGUER, R., AND NAVARRO, L. A Technological Overview of
the Guifi.net Community Network. Computer Networks 93 (2015),
260–278.

[59] VEGA, D., CERDA-ALABERN, L., NAVARRO, L., AND MESEGUER,
R. Topology Patterns of a Community Network: Guifi.net. In Wireless
and Mobile Computing, Networking and Communications (WiMob),
2012 IEEE 8th International Conference on (2012), IEEE, pp. 612–
619.

9 Appendix

Site launch dates. Sites were launched throughout the three
year duration of the project. While initial testing at “proof
of concept” sites began as early as 2016, the bulk of sites
were deployed in late 2017 and throughout 2018. We note
that while the UP sites were deployed at a rate of less than
once per month, Globe sites were deployed in bursts, with
as many as four sites being deployed within the same week.

748 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Site Name Type Commercial Launch
Sabang-Limbok UP Sept 13, 2017
Dikapinisan UP Oct 25, 2017
Dibut UP Feb 1, 2018
Diotorin UP May 30, 2018
Bacong-Market UP Aug 29, 2018
Dianao UP Oct 17, 2018

Tanay Globe Jan 29, 2016
Talisay Globe Jan 21, 2017
Binobohan Globe Feb 2, 2018
Ginulagan Globe Apr 3, 2018
Balogo Globe Apr 3, 2018
Casalaan Globe Apr 5, 2018
Banat-i Globe Apr 5, 2018
Mayaposi Globe Jun 30, 2018
Golden Valley Globe Aug 10, 2018
San Mariano Globe Aug 11, 2018
Binucayan Globe Aug 11, 2018

Table 3: Site launch dates as of December 2018.

Table 3 depicts launch dates and locations for each site, and
Figure 9 shows the locations of deployed sites.

Site costs. The below tables provide an example of site
fixed costs and operating expenses for a typical site in our
deployment. Note that prices are in USD, and are approxi-
mate. These prices are estimates that reflect cost of equip-
ment once it has already cleared customs and is in country.
Similarly, civil and telecom works costs can vary depending
on the difficulty of access to a particular site.

Globe preferred to have a single vendor for each compo-
nent, with the goal of standardizing their deployments and
reducing costs. In contrast, the UP installations used differ-
ent setups and vendors due to a combination of funding limi-
tations, procurement difficulties and delays. For example, we
experienced challenges in the procurement and importation
of GSM radio hardware. As such, some sites used equipment
assembled from spare components we already had in stock.

The monthly backhaul subscription constitutes the bulk of
the OpEx costs. Since the sites are very remote, the only fea-
sible option is VSAT (a satellite Internet technology) which
is also expensive. Backhaul prices vary significantly depend-
ing on the provider; Globe has existing bulk contracts for
capacity as well as their own VSAT hub and network in-
frastructure, lowering costs compared to end-to-end VSAT
providers. Other OpEx components include transportation
costs by the local cooperative for credit distribution and col-
lection, and monthly honoraria for maintenance staff.

Infrastructure re-use – for example, using an existing
tower or building to mount equipment – can reduce costs
significantly when possible. For the UP sites, the lack of

Figure 9: Map of deployed sites. UP sites are green, Globe
sites are blue.

existing towers or other high structures required construct-
ing new towers from scratch. We identified a local metal-
worker to fabricate of towers, which we expect will reduce
transportation costs compared to shipping tower components
from Manila. Moreover, while grid power is provided in Au-
rora by a local electric cooperative, the grid infrastructure
was deemed unreliable by the locals, who recommended that
we use an off-grid solar power system instead. The local
cooperative also favored this to avoid paying for the site’s
electrical consumption.

In our deployments, we used equipment that ran on several
different voltages: 24VDC (common for low-power wireless
equipment), -48VDC (common for telecom equipment), and
220VAC (grid voltage in the Philippines). This not only re-
quired additional equipment to perform the necessary con-
versions, but also led to decreased power efficiency for the
entire site, driving up the cost of power, the second-largest
component of site CapEx after the radio itself.

These costs also do not include fees for permits, as they
were waived by the partner local government. As the
project’s main intention is research and not profitability, the
local government units recognized the project’s potential to
help their constituents. While we do not have direct knowl-
edge of what these fees cost, anecdotally we understand that
they can both vary significantly by municipality and can con-
stitute a significant portion of site costs; the permitting pro-
cess is a point of leverage for local governments. Although
fees were waived in our case, we still have to submit requisite
documents such as construction plans and electrical plans.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 749

Item Cost Notes
GSM Radio US$ 5,200 Combined GSM Radio + CPU for CCM Client, 2x10W
GSM Installation Accessories US$ 480 Includes cables, mounting brackets, etc.
GSM Antennas US$ 570 Two high-gain omnidirectional GSM900 antennas.
GSM Radio spare US$ 125 Budget per-site for spare radios.
VSAT System US$ 1,790 Includes installation (subcontracted).
Tower US$ 1,550 10m pole.
Lightning Protection US$ 200
Telecom Works US$ 1,100 Installation for networking and power.
Civil Works US$ 3,100 Transport and construction of site infrastructure.
Site Survey and Testing US$ 800 Pre- and post-installation evaluation.
Power System (Solar) US$ 3,800 Two day backup power for off-grid sites.
Power System (Grid) US$ 3,100 Inverter + batteries for locations with grid power.
Total CapEx (lower bound) US$ 18,015
Total CapEx (upper bound) US$ 18,715

Table 4: An example breakdown of a deployed site cost for a Globe site. Two different power systems are considered, one for
fully off-grid sites and another for sites with grid power. The radio vendor is anonymous due to a non-disclosure agreement
with Globe.

Item Cost Notes
GSM Radio (Endaga CCN1) US$ 4,700 Locally-assembled, 2x10W.
GSM Radio (NuRAN LiteCell 1.5) US$ 6,000 2x10W.
x86 Computer US$ 300
GSM Antenna and Accessories US$ 340 9dBi omni antenna, RF cables, connectors, grounding.
Networking Equipment US$ 200 Off-the-shelf switch and cables.
Power System (Solar) US$ 4,220 Three day standby power. Includes 800W panels, batter-

ies, controller, inverter and other accessories.
VSAT System US$ 2,000 VSAT modem and antenna; includes installation.
Civil Works US$ 3,370 12m tower, equipment shelter, foundation, fencing.
Installation US$ 2,000 Includes personnel, transport and community training.
Total CapEx (lower bound) US$ 17,160
Total CapEx (upper bound) US$ 18,760

Table 5: CapEx cost breakdown for a UP site in Aurora.

Item Cost (monthly) Notes
VSAT service US$ 100-400 512x512kbps, Price varies across vendors.
Transportation US$ 40 For credit distribution, remittance or technical visits.
Local maintenance US$ 40 Two maintenance personnel at $20 each. May be subsidized by LGU.
Total OpEx (lower bound) US$ 180
Total OpEx (upper bound) US$ 480

Table 6: OpEx cost breakdown for a UP site in Aurora.

750 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TrackIO: Tracking First Responders Inside-Out
Ashutosh Dhekne† ∗ Ayon Chakraborty? Karthikeyan Sundaresan? Sampath Rangarajan?

†University of Illinois at Urbana-Champaign, ?NEC Labs America, Inc.

Abstract
First responders, a critical lifeline of any society, often find
themselves in precarious situations. The ability to track them
real-time in unknown indoor environments, would signifi-
cantly contributes to the success of their mission as well
as their safety. In this work, we present the design, imple-
mentation and evaluation of TrackIO—a system capable of
accurately localizing and tracking mobile responders real-
time in large indoor environments. TrackIO leverages the
mobile virtual infrastructure offered by unmanned aerial vehi-
cles (UAVs), coupled with the balanced penetration-accuracy
tradeoff offered by ultra-wideband (UWB), to accomplish
this objective directly from outside, without relying on ac-
cess to any indoor infrastructure. Towards a practical system,
TrackIO incorporates four novel mechanisms in its design that
address key challenges to enable tracking responders (i) who
are mobile with potentially non-uniform velocities (e.g. dur-
ing turns), (ii) deep indoors with challenged reachability, (iii)
in real-time even for a large network, and (iv) with high accu-
racy even when impacted by UAV’s position error. TrackIO’s
real-world performance reveals that it can track static nodes
with a median accuracy of about 1–1.5 m and mobile (even
running) nodes with a median accuracy of 2–2.5 m in large
buildings in real-time.

1 Introduction
Tracking first responders: First responders are integral to
the safety and security of any community and to the society
at large. However, they often find themselves in precarious
and unknown environments, which poses a threat to their own
safety (e.g. “entrapment" [16] faced by fire-fighters). Being
able to accurately track first responders in indoor environ-
ments, allows a commander outside to better visualize and
direct his responders appropriately. This not only helps ad-
dress the situation efficiently but also ensures safety of the
responders themselves—the latter can now view and track
their own location with respect to the rest of the team.
Applicability of current solutions: The topic of indoor lo-
calization has seen many solutions in the past decade [4,9,53].
These can be broadly categorized under those that rely
on indoor infrastructure (e.g. multitude of access points,
RF/acoustic/infrared beacons, etc.) and those that do not (e.g.
leveraging cellular BSs, GPS satellites, IMUs, etc.). While
the latter can be applied to our target environment, they either
offer less-than-desirable accuracies (e.g. tens of meters with
cellular BSs), or are not functional indoors (e.g. GPS). Inertial
sensors carried by responders are a possibility, but suffer from

∗The work was performed during an internship at NEC Labs America.

poor accuracy as well (≈ 10−50 m, due to drift over time),
without periodic calibration and resetting to known indoor ref-
erence points. Further, the lack of access to multiple stationary
APs/BSs, prevents these solutions from accurately tracking
mobile responders in real-time. Hence, notwithstanding the
plethora of prior solutions, our target environment requires
a new, robust, (indoor) infrastructure-free solution that can
accurately (≈1–2 m) track mobile responders in unknown,
indoor environments from outside.

Responder UWB HelmetsRaspberry PiUWB Master Groundtruth RFID Tracks

UWB Helmet RFID Reader Sticks

Figure 1: Left: The TrackIO setup with a DJI Phantom 4 UAV
carrying a master UWB node and the Raspberry Pi controller units,
Right: 4 UWB equipped helmets for first responders.

Key design choices: This motivates us to design a
localization-tracking system from scratch, paving the way
for two key design choices: (i) modality of localization, and
(ii) wireless technology for localization. The lack of indoor
infrastructure support, and the need to quickly deploy and
localize responders in 3D, across multiple floors of a build-
ing (from outside), makes UAV (unmanned aerial vehicle)
an ideal platform for the task. The UAV can serve as a vir-
tual mobile infrastructure that is deployed on-demand, out-
side the building to localize the responders inside. For the
choice of wireless technology, we summarize their pros-cons
in Table 1. We refer to only techniques that allow long dis-
tance localization that would be applicable in our application.
While lower frequencies (e.g. LTE) offer better indoor pen-
etration/coverage (e.g. 1 Km) from outside, they are limited
by available bandwidths (tens of MHz) and hence accuracy
(tens of meters [35]). Higher frequencies (e.g. mmWave, > 20
GHz) offer high accuracies (tens of cm) from large (GHz)
bandwidths, but suffer from high attenuation (does not work
with blockages, not accounted for in Table 1). Ultra-wideband
(UWB) operates in 3−10 GHz and offers a 1 GHz bandwidth,
thereby striking a good balance between accuracy (tens of
cm) and indoor penetration (tens of meters). Further, its low
power design accompanied by a standardized high-resolution,
ranging protocol between peer UWB nodes, makes it a syner-
gistic choice for deployment on the UAV. Thus, our objective
is to localize and track responders (carrying UWB nodes) in

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 751

LTE [35] WiFi [25] UWB [43] mmW [36]
Accu > 20m 5m 10cm 1cm
Range > 1km 100m 50m 40m

Table 1: UWB offers the best tradeoff between accuracy and pene-
trability among all RF localization technologies.

real-time even if they are deep indoors, with the help of a UAV
(also carrying a UWB node) flying outside.

Challenges: One might wonder if deploying multiple UAVs
to effectively serve as stationary BSs/APs outside can help
solve the indoor tracking problem. We argue in Section 2.1
that having multiple UAVs outside does not guarantee access
to multiple (three or more) of them by a given indoor respon-
der, not to mention the need for their synchronization. More
importantly, we show that when available, multiple UAVs
need to be efficiently deployed to cover (localize) responders
in different sections of the building simultaneously, rather
than to serve as stationary APs/BSs. Thus, at the core of
our problem, we must localize and track indoor responders
in real-time by a single UAV using its key degree of free-
dom, namely mobility. This in turn poses several non-trivial
challenges. (i) Mobility of responders: The mobility of the
UAV is used to create a synthetic aperture over time, which
serves to provide reference points for localizing an indoor
node1 through multi-lateration. However, such temporal de-
pendency, makes multi-lateration approaches fail significantly
(accuracy of about 10m, Section 3), when the indoor node is
also mobile. (ii) Indoor coverage: While UWB’s penetration
capabilities are better than mmWave, they are still limited
to tens of meters and hence cannot guarantee reachability
to all nodes. While deploying multiple UAVs, outside dif-
ferent sections of the building can alleviate coverage issues,
it still cannot ensure reachability to those that are deep in-
side the building. (iii) Real-time tracking: The UWB proto-
col provides the basic two-way ranging primitive between
a UWB node-pair (UAV and responder in our case). How-
ever, employing its TDMA operational structure to collect
sufficient ranging measurements to all UWB nodes from the
UAV will not be scalable for real-time tracking in a large
network. (iv) Absolute location fix: Since the UAV localizes
the responders with respect to its own position, to get their ab-
solute location fix, we need to accurately estimate the UAV’s
position as well. Whereas high-end UAVs employ multiple
GPS receivers along with inertial sensor fusion to provide
position accuracy to under a meter, lower-end UAVs provide
accuracies of only around 2-3 m, thereby limiting the accuracy
of the overall system.

TrackIO: Towards addressing these challenges, we build
TrackIO – a UAV-UWB based system that is capable of local-
izing and tracking mobile responders to within 1-2 m accuracy
from a single UAV outside in real-time, even in deep indoor
environments. When multiple UAVs are available, TrackIO

1Responders are synonymously referred to as nodes.

deploys them on different sections of the building for wider, si-
multaneous coverage. In realizing this, TrackIO incorporates
four novel elements in its design.
(i) Trajectory Tracking: TrackIO adopts a first-principles ap-
proach to directly estimate the trajectory of the mobile node,
rather than just its location. TrackIO analytically instruments
multi-lateration formulation to not only estimate the location
but also the velocity of the responder. It incorporates intelli-
gent mechanisms for adaptively varying the size and choice
of the synthetic aperture (anchor points used for localization)
to address responders with non-uniform velocity (e.g. those
turning corners, etc.).
(ii) Multi-hop Localization Paradigm: TrackIO enables a
multi-hop localization paradigm for extended indoor coverage,
where, responders directly reachable from the UAV (hop1),
are localized first. Then, they serve as anchors for localizing
nodes (hop2) that are reachable by them but not by the UAV.
Nodes are able to dynamically estimate their own hop status
based on their reachability to the UAV and overheard rang-
ing messages from neighboring nodes. TrackIO alleviates the
deterioration in accuracy over hops (due to iterative localiza-
tion), by selecting only upstream nodes with accurate location
estimates as anchors for downstream localization.
(iii) Concurrent Ranging Protocol: To enable real-time
tracking even for a large, multi-hop network of nodes (e.g.
big buildings), TrackIO transforms UWB’s sequential rang-
ing protocol into an efficient, concurrent one. It leverages
the broadcast nature of the wireless medium to (a) par-
allelize the ranging measurements within each hop, and
(b) efficiently multiplexes ranging measurements between
hops,while also eliminating redundant message transmissions.
TrackIO achieves a 3× speed-up, resulting in a location up-
date frequency of 6 Hz that allows for real-time tracking.
(iv) Reverse Location Look-up: Instead of the UAV serving as
the anchor, TrackIO now estimates the location of the UAV
itself, by leveraging UWB again. It accomplishes this by using
four static UWB beacons, deployed on the roof corners of
a responder service vehicle, as anchors. One of these UWB
beacons is also fitted with a GPS receiver, whose stationary
estimates over time are highly accurate. This coupled with
known inter-beacon distances, allows for accurate localization
of the UAV to within a meter despite mobility.
TrackIO’s performance: We have built a complete version
of TrackIO using a DJI Phantom 4 [13] as the UAV, and
Decawave DW1000 [11] as the UWB node. The ranging
estimates collected at the UAV are transferred to a ground
service vehicle, where TrackIO’s algorithms estimate the po-
sition and trajectory of all the responders in real-time. Our
real-world deployment and evaluation across multiple floors
of a mid-size office building (2500 sq.m.) reveal that TrackIO
is able to track indoor static nodes with a median accuracy
of about 1–1.5 m and mobile (even running) nodes with a
median accuracy of 2–2.5 m. A demo of TrackIO is available
at http://www.nec-labs.com/trackio.

752 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.nec-labs.com/trackio

Broader applicability: While TrackIO leverages UAV and
UWB as its modality for enabling real-time tracking of first
responders, we would like to note that TrackIO’s core mecha-
nisms of trajectory tracking and multi-hop localization can be
equally applicable to other localization modalities (e.g. WiFi)
as well. Hence, TrackIO’s contributions can also benefit other
potential indoor localization and tracking applications.

2 Challenges in Building a Practical System
The UAV flies outside to create a synthetic aperture of an-
chor points, from where it ranges with each of the indoor
nodes using UWB, thereby allowing for their subsequent lo-
calization through multi-lateration. Albeit straight-forward in
principle, realizing this in practice faces several challenges,
some fundamental, and others practical that we now outline.
Brief Primer on UWB Ranging: UWB nodes employ a
protocol known as two way ranging (TWR) to estimate the
distance between each other. This standard protocol [20], in-
volves exchanging a specific set of messages (Figure 2) that
cancels the effect of clock offsets between nodes. Performed
in hardware with precise clocks and coupled with a 1GHz
wireless bandwidth, TWR allows accurate time-of-flight esti-
mates (even in presence of multi-path), resulting in accurate
ranging (≈10 cm). One TWR exchange takes around 16.7 ms
on a widely used UWB chip (DW1000 [10]).

Turn-
around

Time

Round
Trip

Time
RESP

Initiator Responder

RTT1

RTT2

TAT1

TAT2

𝜌 =
𝜌1 + 𝜌2

2

𝐷𝑖𝑠𝑡 = 𝑐 ∗ 𝜌

𝜌1 =
𝑅𝑇𝑇1 − 𝑇𝐴𝑇1

2

𝜌2 =
𝑅𝑇𝑇2 − 𝑇𝐴𝑇2

2

Figure 2: The original 802.15.4 TWR protocol is designed for
ranging between two devices.

2.1 Impact of Responder Mobility
Fig. 3(a) shows a typical synthetic aperture where three repre-
sentative < location,range > tuples are chosen to solve for
a stationary node’s location using trilateration. The solution
is reasonably accurate as all the three < location,range >
tuples are consistent with respect to a unique location of the
stationary node. Contrast this with figure 3(b), where the
node moves with an uniform velocity. In this case, the three
< location,range > tuples are no longer consistent with re-
spect to any particular node location. Different portions of the
synthetic aperture now correspond to different node locations.
In other words, the node has changed its position significantly
by the time the UAV started and completed building the aper-
ture. This can affect localization accuracy by as much as 10 m,
as shown in Fig. 9.

Can we alleviate the impact of mobility? A natural ap-
proach is to figure out if multiple < location,range > tu-
ples can be gathered from distinct UAV locations “simultane-
ously".

Estimated Node
Location

Stationary Node
Location

Sy
n

th
et

ic
 A

p
er

tu
re A

ct
u

al
 N

o
d

e
Lo

ca
ti

o
n

s

Sy
n

th
et

ic
 A

p
er

tu
re

Mobile Node

Estimated Node
Location

Figure 3: (a) Localization of a static node through trilateration (b)
Naive trilateration fails for mobile nodes

Using multiple UAVs: Multiple UAVs form a spatial aperture
that can simultaneously collect range estimates in principle.
This is however, difficult to realize in practice for the follow-
ing reasons: (a) It is unlikely that a particular indoor node
is simultaneously reachable from multiple UAV locations,
(b) Synchronizing the different UAVs as well as their cor-
responding range estimates in real-time becomes extremely
challenging, and (c) Operating multiple UAVs in close vicin-
ity requires sophisticated path planning to be done apriori.
Multiple UAVs have a role to play in the broader system (for
improving building coverage, as we discuss later). However,
they are less useful to solve the problem of node mobility,
which motivates us to address the problem with a single UAV.
Increasing the UAV’s speed relative to responders: Another
approach to counter node mobility can be to increase the
UAV’s velocity. Figure 4 shows the limited benefit of moving
the UAV faster. Even when the UAV is traveling at 10m/s it
cannot completely compensate for the node’s mobility. More-
over, moving the UAV too fast causes the channel to change
very rapidly, resulting in ranging errors.

0

5

10

15

20

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(m
)

Stationary

(0m/s)

Stroll

(0.5m/s)

Walk

(1m/s)

Run

(2m/s)

Perfect

Localization

UAV Velocity: 2.5m/s

UAV Velocity: 5m/s

UAV Velocity: 10m/s

Figure 4: Localization accuracy improves with UAV speed, yet falls
short of the target accuracy.

2.2 Insufficient Building Coverage
The FCC power emission limit for UWB transmitters is –
41.3 dBm/MHz [20] that severely restricts the communication
range between two UWB nodes. With the UAV located out-
side the building and limited indoor penetrability, some nodes
that are relatively deep indoors are not directly reachable. We
perform elaborate measurement studies to characterize the
communication range in such indoor environments. Figure 5
shows the packet-loss percentage as the distance between the
nodes increases in a cluttered indoor space. Such ranges could
vary from about 30 m (50% loss) in very dense/cluttered in-
door environments (e.g., rooms with concrete walls) to about

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 753

60 m in relatively open indoor spaces (e.g., office, library,
shopping malls etc.).

0 20 40 60

Indoor Distance (m)

0

50

100

P
a
c
k
e
t
L
o
s
s
 %

Figure 5: UWB packet-loss
over various distances in a clut-
tered office environment.

≈30m

≈100m

UAV ≈30m

UAV

Hop 2Hop 1
Hop 1

Figure 6: UAVs on the outside
may not be able to cover nodes
deep indoors. A multi-hop solu-
tion is necessary.

Multiple UAVs can improve but not solve the coverage
problem. With the UAV flying approximately 10 m away
from the face of the building, nodes that are about 30 m inside
are directly reachable. This limits the indoor coverage area
to a great extent. Note that even flying multiple UAVs along
the four faces of a medium-sized building (floor area ≈10000
sq.m) only improves coverage in the building’s periphery but
not in the deep interiors that account for about 20% of the
indoor space (see figure 6). Given the criticality of the appli-
cation, complete indoor coverage is of paramount importance.
This necessitates the design of a multi-hop localization net-
work, where range estimates and hence localization can be
achieved from nodes of a given hop to nodes belonging to the
next hop and so on.

Challenges with multi-hop localization. Realizing multi-
hop localization is challenging for several reasons: (i) iterative
localization leads to cascading errors and hence poor accu-
racy across hops; (ii) nodes need to identify their reachability
status (e.g hop1, hop2, etc.) to other nodes to help track a
dynamic, multi-hop topology; (iii) orchestration of ranging
measurements across hops becomes critical for ensuring real-
time tracking of the multi-hop network.

2.3 Inability to Track Real-time
In a large network of nodes spanning multiple hops, a time di-
vision (TDMA) scheme needs to be designed that runs TWR
across relevant pairs of nodes to estimate their range fast
enough to relatively localize all nodes in the network. Clearly,
executing a TWR across all pairs of nodes is not suitable:
unreachable links will waste time, and in a size N network,
one round of (range) data collection will require O(N2) time
slots. Hence, for a network consisting of several tens of nodes,
collecting a single set of range information might take several
hundreds of milliseconds. With several such sets needed to po-
sition the indoor nodes, the total delay can be several seconds.
Further, with the mobility of nodes resulting in highly dy-
namic topologies, it becomes very challenging to track nodes
in real-time with such an update rate of measurements.
2.4 Imprecise UAV Localization
Note that the UAV’s location measurements need to be as pre-
cise as possible in order to leverage the highly precise range
estimations offered by the UWB technology. Unfortunately,

UAV location estimates obtained out-of-the-box is at least an
order of magnitude less precise compared to UWB ranges.
For instance, consider the location estimates obtained from a
GPS device. In an open field, such locations have minimal er-
rors (≈ 2–3m). However, in scenarios, where the UAV moves
along the periphery of a building, the GPS signal reception
can be significantly hampered resulting in the error to escalate
to as high as 15–20m [50].

Open Space Occlusions Urban Canopy
0

10

20

30

40

50

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(m
)

σ=1.1

σ=3.5
σ=9.8

Figure 7: Effect of UAV’s GPS errors on localization accuracy

In figure 7 we show the impact on localization accuracy
of a static node using simple trilateration in three different
deployment settings; from a relatively open space to locations
having partial occlusions and urban canopies. Note that even
for a static outdoor node, slightly erroneous GPS locations
of the UAV can be detrimental for its eventual localization.
Assuming GPS corrections and inertial sensor fusion applied
by the UAV, the errors could be at best, 1−2 m even when the
node is outside and static; localizing a mobile node indoors
would only lead to significantly degraded accuracies.

3 System Design
We now present TrackIO – a UAV-UWB based system that
is capable of localizing and tracking mobile responders to
within 1-2 m accuracy from a single UAV outside in real-time,
even in deep indoor environments. TrackIO accomplishes this
without the necessity or dependence of any infrastructure
deployed indoors. TrackIO can almost instantly be functional
from the time of launch (under a minute). This is achieved by
employing a host of algorithmic and architectural changes to
the underlying multilateration and ranging protocols.

TrackIO Solver

UWB Range
Aggregation

Visualization

Outdoor Indoor

2

5

3

4

1
6

7

Hop 1: Direct Connectivity Hop 2: Relayed Connectivity

TrackIO Ground Station

TrackIO UAV

UWB nodes

Figure 8: High level system design

3.0.1 Overview
Fig. 8 shows a snapshot of TrackIO in action along with its
various architectural components. The UAV flying outside the
building’s periphery is equipped with a UWB master node
that collects range information from the client nodes inside
the building. The nodes are possibly worn by personnels (e.g.,

754 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

firefighters, military troops, emergency responders etc.) who
are tracked through our system. Client nodes that are directly
reachable from the UAV’s master node are designated as hop1
nodes, additional nodes are referred to as hop2 nodes, hop3
nodes and so on based on subsequent reachability. In Fig. 8,
the UAV directly ranges the nodes in hop1, who in turn range
the nodes in hop2 and relay information back to the UAV. The
UAV offloads range information to a ground control station
that solves for the locations of all client nodes. Additionally,
we develop a mobile application that can be used to visualize
the tracking information on a map with sub-second latency.

When multiple UAVs are available, they are deployed on
different sections of the building and/or at different altitudes
of the same section (for tall buildings) for wider, simultane-
ous coverage. Since each UAV would execute TrackIO in
parallel, we focus on a single UAV’s operation in the rest of
this section. Also, for easier exposition, we focus on the UAV
localizing responders in a single floor (horizontal plane) by
fixing its altitude appropriately. How the UAV scans floors
and identifies the appropriate altitude (z∗) is covered in Sec-
tion 3.5. Some results presented in this section are obtained
from simulation studies, which are intended for highlight-
ing the intricate aspects of our system design. Nonetheless,
sections 4 and 5 present extensive evaluation results from
experiments carried out in real testbeds.

3.1 Tracking Trajectory of Mobile Nodes
3.1.1 Estimating Velocity through Synthetic Apertrure

Recall that when a node is mobile, the < location, range >
tuples measured by the UAV do not uniquely map to a sin-
gle location, resulting in poor localization accuracy of multi-
lateration solvers. Instead of alleviating the impact of mobility,
TrackIO adopts a first-principles approach to directly estimate
the trajectory (speed and heading) of the mobile node, rather
than just its position. To accomplish this, TrackIO analyti-
cally instruments the multilateration formulation to estimate
both the initial location (x,y) as well as the velocity vector
(Vx î+Vy ĵ), where î and ĵ are unit vectors along positive X
and Y axes respectively of the node. Using these, the node’s
traversed path can be traced. This assumes that human mo-
bility can be approximated with uniform velocity, which is
reasonable within the short time-scales (few seconds) of the
UAV’s synthetic aperture. This assumption is relaxed in Sec-
tion 3.1.2, where we show how non-uniform mobility (e.g.
turning corners, etc.) can also be addressed in this framework.

Suppose we have ranging measurements from n consec-
utive UAV locations – n is called the aperture size and is
essentially a moving window of n historical measurements.
For any time instant Ti (i = [1..n]), the UAV records the map-
ping < locationi, rangei >, where locationi is the UAV’s 3D
location and rangei is the distance estimate of the mobile
node from the UAV. The mobile node is located at an un-
known location (xi, yi, zi). We denote the UAV’s 3D-location

as (Cxi, Cyi, Czi). The measured range is given by:

rangei =
√

(Cxi − xi)2 +(Cyi − yi)2 +(Czi − zi)2 (1)

Assuming we know which building floor the responder is
currently occupying, we do not need to solve for zi (= z∗).
Yet, this is a single equation with two unknowns—we can-
not directly solve for (xi, yi). Even if we obtain multiple
such ranges, each equation will add a new set of unknowns.
However, the new unknowns are not independent, but related
through the node’s velocity. Hence, assuming the node is
moving at a constant velocity, there are inherently only four
unknowns (x∗1, y∗1, V ∗

x , V ∗
y) that do not increase with addi-

tional ranges, thereby allowing us to solve for them.
We can reformulate this as an unconstrained minimization

problem that attempts to find the best fit, i.e. location and
velocity that minimize the following error function:

(x∗1, y∗1, V ∗
x , V ∗

y) = arg min
(x1, y1, Vx, Vy)

f

f =
n

∑
i=1

((Cxi − xi)
2 +(Cyi − yi)

2 +(Czi − zi)
2 − range2

i)
2 (2)

The various (xi, yi) are obtained from the intial (x1, y1)
and velocity (Vx,Vy) based on kinematic equations:

xi = xi−1 +Vx ·∆Ti = x1 +Vx

i

∑
j=1

∆Tj

yi = yi−1 +Vy ·∆Ti = y1 +Vy

i

∑
j=1

∆Tj (3)

where ∆Ti denotes the time between measurements. Since
(xi, yi) are generated based on the initial location (x1, y1)
and the velocity vectors (VX , Vy), by minimizing equation
2, we obtain the closest approximation of both, location and
velocity vectors for the node. The first output from this solver
is obtained only after n measurements (typically a few seconds
worth of data) have been recorded. Thereafter, a location
update is obtained for every round of range measurements.
Thus, the system’s steady state update rate depends only on
the duration of one range measurement round, and does not
depend on the aperture size.

We now analyze the improvement in localization achieved
by incorporating velocity vectors over simple multilatera-
tion. Our simulation framework mimics a UAV and a set of
indoor UWB nodes that follow predetermined trajectories
at any desired speed. We introduce an empirically derived
range estimation error to the ranges. Fig. 9 shows how sim-
ple multilateration results in higher localization errors with
increasing node velocities. The UAV is assumed to move at
a fixed 5 m/sec velocity. Note that even for human walking
speeds the error could be as high as 10 m. On the contrary, the
velocity-based solver is least impacted by increasing velocity
of the mobile node.
3.1.2 Adaptive Apertures for Non-uniform Velocity
The above approach assumes that the node does not change its
velocity (speed or direction) during the course of one aperture
window (say, 4 secs). However, this assumption is broken if

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 755

Static (0m/s) Stroll (0.5m/s) Walk (1m/s) Run (2m/s)
0

5

10

15
L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(m
)

Only Multilateration

Velocity + Multilateration

Figure 9: Localization error remains minimal when using velocity
vectors even under fast human mobility

the node turns, accelerates or halts. In principle, this could
be solved by adding higher order derivatives of the node’s lo-
cation (e.g., acceleration, jerk) into the kinematics equations
employed by our location solver. However, our analysis indi-
cates that such an approach is rather contrived. It makes the
solver prone to overfitting and extremely sensitive to range
errors. Further, given the short time scale of the aperture win-
dow, we find that the approximation of uniform velocity does
not hurt the performance much during acceleration and halt-
ing but does induce significant errors during turns, which we
now address. We propose to utilize the solver’s confidence
in the estimated location to infer non-uniform velocity and
when detected, trigger an aperture reset that eliminates mea-
surements prior to the turn.

1 2 3 4 5 6 7 8

Time (seconds)

0

2

4

6

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(m
)

Turning
Instant Fixed

Adaptive

Aperture Size

1 2 3 4 5 6 7 8

Time (seconds)

0

2

4

6

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r
(m

)

R
e

s
id

u
a

ls
 (

n
o

 u
n

it
s
)

Turning
Instant

Fixed Aperture Size

Residuals

Figure 10: (a) Localization error is high during turns. Resetting the
aperture helps curtail the loss in localization accuracy. (b) The high
error-residual also indicates low solver confidence in the location
estimate providing a hint for turn detection.

Impact of turns. Fig. 10(a) shows the impact of sudden turns
on the localization error (green line). We simulated a node
moving in a straight line, then taking a 90° turn, and continu-
ing again in a straight line. An aperture of 4 seconds—UAV
locations and the corresponding ranges of the past 4 seconds—
are used to estimate the current node location. Observe how
the localization error (grey line) starts to increase from the
point where the aperture’s head crosses the turning position
(first dashed vertical line) and falls back to its pre-turn val-
ues after the aperture’s tail has crossed the turning position
(second dashed vertical line).
Adaptive aperture to address turns. If we have a mecha-

nism to detect turns, we could potentially eliminate historic
measurements till the turn and restart constructing the aper-
ture. To understand the benefit, we introduce the notion of
an adaptive aperture in the above simulation. At the time of
the turn, we remove all history and restart estimating location
after a short history has built up2. Just after resetting history,
the localization error is indeed high (dark blue line just after
the “turning instant” in Fig. 10(a)) but quickly recovers and
becomes acceptable once the aperture fills up with relevant
measurements after the turn. In comparison, if a fixed aperture
size is used, the effects of a turn last for the entire duration of
the aperture (green line).

Triggering an adaptive aperture. During turns, the solver is
unable to provide a reasonable answer since no single velocity
estimate can represent all the measurements. This results
in larger residual errors after solving Equation 2. Observe
in Fig. 10(b) that the solver’s residuals (in arbitrary units)
are highly correlated with localization error. Thus, a sudden
increase in the residuals helps identify non-uniform velocity
events such as turns. We use Gaussian Mixture Models on the
residuals to identify a changing trend in them and captures
such events.

In summary, localization of mobile nodes, even those with
non-uniform velocity is possible through a combination of
joint location-velocity solving and by adaptively resetting the
aperture size. At any given instant, our solver uses different
aperture sizes that are appropriate for each node.

3.2 Multi-hop Tracking for Coverage
TrackIO is designed to function even if some nodes are be-
yond the UAV’s direct range. TrackIO allows such unreach-
able nodes to range with other nodes in the vicinity which
can in-turn reach the UAV and/or have already been local-
ized. Thus, a multi-hop topology is dynamically created with
nodes belonging to different hops based on their reachability
characteristics. The UAV’s synthetic aperture localizes first
hop (directly reachable) nodes. These hop1 nodes then act
as anchors for localizing hop2 nodes. This process iterates
across hops. TrackIO employs several mechanisms to ensure
that mobile nodes can be accurately localized even across
multiple hops.

Dynamic estimation of hop membership. Nodes that are
within the UAV’s UWB communication range, directly re-
ceive ranging messages initiated by the UAV, and classify
themselves as hop1 nodes. Those that do not receive messages
from the UAV but receive some of the response messages sent
by hop1 nodes, classify themselves as hop2 nodes and so on.
Thus, nodes can determine their own hop membership in a
decentralized manner.

Anchor selection for iterative localization. Two compo-
nents contribute to the final localization error of hopm nodes:

2During the short period that new history is being built, the system continues
to output results from the previous aperture.

756 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1. relative localization error of hopm nodes with respect to
hopm-1 nodes, and 2. localization error of hopm-1 nodes cho-
sen as anchors. Without loss of generality, hopm-1 nodes can
be assumed to be spaced far apart compared to the synthetic
aperture formed by the UAV. This increased spacing between
anchors, improves hopm localization, compared to that of hop1
nodes (w.r.t. the UAV). However, the localization error of the
hopm-1 nodes and recursively that of upstream hop nodes, will
cumulatively contribute to the error of hopm nodes. Thus, the
choice of anchors in hopm-1, has a cascading impact on the
localization accuracy of downstream nodes (i.e. hops ≥ m).

Nodes that are static or moving with a uniform velocity in
hop1 inherently have better localization accuracy than those
with non-uniform velocity. Hence, by leveraging the solver’s
ability to identify such nodes (those with high residuals),
TrackIO avoids selecting them as anchors for localizing hopm
nodes, curtailing the cascading effect across hops.
Instantaneous mobility tracking beyond hop1. In con-
trast to the first hop nodes which are localized through a tem-
poral aperture created by the UAV’s motion, hopm (m > 1)
nodes are localized through a spatial aperture formed from a
diverse placement of hopm-1 nodes. This decoupling (from
UAV’s mobility), allows for instantaneous localization of
hopm nodes from previously obtained hopm-1 locations. The
time scale of such localization is in milliseconds within which
the nodes move a negligible distance. As a result of the spatial
aperture employed, hopm (m > 1) nodes can use conventional
multilateration approaches (without need for velocity vectors)
even when they are mobile.
Localizing hop1 nodes with non-uniform velocity using
downstream spatial apertures. Unlike hop1 nodes, mobil-
ity is not a concern for hopm (m > 1) nodes as they are in-
stantaneously localized using a spatial aperture formed from
high-confidence (low residual) hopm-1 nodes. Hence, hop2
nodes can in-turn, form a spatial aperture (serve as anchors)
and correct the location of hop1 nodes, which are currently ex-
periencing non-uniform velocity (low confidence, high resid-
ual). Fig. 11 shows the localization accuracy of a turning
hop1 node using ranges from hop2 nodes. Observe how the
turn gets localized precisely using the spatial aperture from
hop2. Thus, TrackIO is able to eliminate most of the impact
of non-uniform velocity of hop1 nodes.

Hop1 Re-fix
applied

Hop1 Re-fix
not available

0 1 2 3

Localization Error (m)

0

0.5

1

C
D

F

Velocity Vectors

Hop1 Re-fix

Figure 11: Re-fixing hop1 nodes using hop2 nodes improves local-
ization even during turns. But, it may not be always available.

Note that this downstream spatial aperture technique is
opportunistic – it can be used when enough hop2 nodes exist.

In contrast, the mechanism of adaptive (temporal) aperture
of the UAV described in Section 3.1, provides benefits even
when no other nodes exist in the topology. Therefore, TrackIO
incorporates both these techniques to address non-uniform
velocity of hop1 nodes.
Leveraging multiple UAVs vs. multiple hops. While multi-
hop localization allows for coverage of even large buildings
using a single UAV, the localization error of its downstream
hop nodes (i.e. m > 2) will increase and might not satisfy our
desired target of 1-2m. Hence, TrackIO leverages the multi-
hop paradigm to primarily reach deep interiors of buildings
(where even multiple UAVs cannot help), while employing
multiple UAVs to provide non-overlapping, peripheral cover-
age for large buildings. Thus, using a combination of multiple
UAVs and hops, TrackIO is able to cover large buildings with
just two hops from a single UAV.
Handling hop2 disconnections. In rare circumstances, if a
node goes out of range from all hop-1 nodes, its localization
must rely on an IMU-based dead reckoning system. This ap-
proximate location estimate will then be communicated with
the UAV using alternative communication modes (such as
WiFi or cellular data). Adding support for such eventualities
is left to future work.
3.3 Concurrent Ranging
A fast and reliable ranging protocol is essential to create a
real-time localization system. Since the UWB ranging proto-
col is designed for ranging between a pair of nodes, it does
not broadcast messages. This leads to a sequential ranging
of every node in a hop, which is not scalable for real-time
operation, especially in a multi-hop network. The key idea in
TrackIO is to leverage the broadcast nature of wireless signals
to communicate and hence concurrently range with multiple
nodes using a single transmission. To this end, TrackIO makes
appropriate modifications to the underlying protocol (Fig. 2)
to create a concurrent ranging scheme (Fig. 12). We describe
the scheme for the first two hops; subsequent hops are similar.

RESPs

UAV Hop 1 Nodes Hop 2 Nodes

RESPs

RESPs

2

6
3

4

1

5

7

2

6
3

4

1

5

7

2

6
3

4

1

5

7

UAV Node Hop 1 Nodes Hop 2 Nodes

…

Ti
m

e

Overheard

B

C

A

Figure 12: Progress of the protocol in a 2-hop example topology.

Concurrent ranging at hop1. The UAV simultaneously ini-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 757

tiates ranging with all reachable hop1 nodes by broadcasting
a single POLL. Each node that receives this message, takes
turns (based on its hard-coded NodeID) to send a RESP mes-
sage. After collecting the timings from all the RESPs, the
UAV broadcasts a single FINAL message containing infor-
mation for all hop1 nodes. On receiving the FINAL, all hop1
nodes calculate their distance from the UAV and send it back
to the UAV (DIST_EST messages).
Concurrent ranging at hop2. Identical to hop1 nodes,
hop2 nodes listen to the channel for messages. However,
being outside the direct communication range of the UAV,
they cannot receive the POLL message. Instead, they only
overhear the messages sent by nearby hop1 nodes in response
to the UAV’s POLL (point A in Fig. 12). After all hop1 nodes
have completed sending their DIST_EST messages (point B
in Fig. 12), the first hop2 node initiates a full sequence of
POLL-RESPs-FINAL simultaneously with all hop1 nodes
in the vicinity. hop2 nodes follow the same protocol as the
UAV with one subtle difference. hop1 nodes do not send
DIST_ESTs back to hop2 nodes. Instead, hop1 nodes cal-
culate and locally store all the hop1-hop2 ranges, which are
piggybacked on the subsequent DIST_EST message. This
saves unnecessary network overhead, speeding up the collec-
tion of range estimates. All hop2 nodes take turns (point C in
Fig. 12), followed by the UAV starting the next round.
Efficient multiplexing of ranging between hops. Initially
the UAV is not aware of the topology. Hence, it waits for all
the nodes in the network to send a RESP. Once it has received
the last RESP (or, after a timeout), the UAV creates a bitmap
(Fig. 13) indicating which nodes are deemed to be in hop1
(setting the corresponding bit to one) based on the responses.
The UAV sends this bitmap in its FINAL message. When
hop1 nodes send a DIST_EST message it also contains a
copy of this bitmap. A node that receives such a DIST_EST,
but not the POLL from the UAV, would see its bit cleared and
know that it belongs to hop2. Also, it would know how many
other hop1 nodes are expected to send their DIST_ESTs, and
the order of all other hop2 nodes. This allows hop2 nodes
to efficiently take transmission turns without collision, even
when they are not in communication range of each other and
the UAV. The UAV generates the bitmap dynamically in every
round to track topology dynamics due to node mobility.

3

4

1

5

7

1 0 1 0 0 0 1
7 6 5 4 3 2 1

Bitmap
Node ID

= Three hop1 nodes

2 1st Hop-2 node

6 Last Hop-2 node

Figure 13: The bitmap constructed by the UAV and sent in the
FINAL message enables a collision free hop2 communication.

Finally, the variable length DIST_EST sent by hop1 nodes
piggybacks their distance from all hop2 nodes obtained in the

previous round, along with their own current range estimates
to the UAV. The UAV aggregates all the information received
in the DIST_ESTs and forwards to a ground control center
for further processing.

3.4 Reverse Lookup for UAV Location Fix
Obtaining the UAV’s precise GPS location is critical to
TrackIO’s end-end accuracy. This can be challenging since
off-the-shelf GPS receivers have multi-meter location er-
rors [24, 50]. High-End UAVs already employ GPS chips
with better precision and higher update rate [14], and improve
the precision further by incorporating IMU data as well. Some
UAVs [14] also support custom, albeit expensive RTK solu-
tions [39] that promise location accuracy within a few cm, but
require precise GPS transmitters in the vicinity.

In cases, where such precise UAV location estimates are
not possible, TrackIO leverages UWB to also localize the
UAV. It places four static UWB nodes as anchors at known
locations on the ground. One of these anchors is also fitted
with a GPS receiver. The known, exact, pairwise distances
between the anchors enables TrackIO to accurately determine
the GPS coordinates of all the static anchors. These static
anchors in turn allow for accurate localization of the UAV
itself. We envision that these anchors can be permanently
mounted at the four corners of a service vehicle (at different
heights to provide vertical diversity). The service vehicle can
use sophisticated GPS techniques [19, 21, 22, 26, 38, 39] to
achieve better accuracy for the ground anchors.

3.5 TrackIO’s Operations in a Nutshell

Velocity Based Solver

NL-LS
Solver

Per Node Aperture
5 5 5 0 2 5

High Confidence
Hop-1 Locations

Low Confidence
Hop-1 Nodes

Reset
Aperture

Instantaneous Solver

NL-LS
Solver

Hop-2 Locations

Re-fix Turning
Hop-1 Nodes

Master Node

Drone
Locations

Hop-1
Ranges

Hop-2
Ranges

Figure 14: TrackIO System Design

When a UAV is launched to cover a section of the building,
the static UWB anchors on the ground start localizing the
UAV to get its precise location estimate. The UAV performs
its flight trajectory to start creating a continuous, moving win-
dow of synthetic apertures (of 4 secs each). Within each of its
aperture window, it performs the following. It executes its con-
current ranging protocol to help classify nodes into various
hops based on their reachability. It then localizes the hop1
nodes first using its location-velocity solver that estimates
both the location and velocity. Using the error residuals of the
solver, it employs only high-confidence hop1 nodes (static or
uniform velocity) as anchors for localizing the hop2 nodes.
For the latter, it employs a conventional multi-lateration solver
to obtain only the location of hop2 nodes, which being in-
stantaneous, is sufficient. Finally, it uses a spatial aperture
of hop2 nodes (anchors), along with an adaptive (temporal)

758 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

aperture from the UAV, to refine the location estimate of the
hop1 nodes that have non-uniform velocity.

Altitude Considerations. So far, we have only focused on
the horizontal plane and assumed that TrackIO is aware of
the nodes’ altitude. However, in cases, when TrackIO is not
aware of the floor where the service personnel currently are,
the horizontal localization error can be significant (since the
algorithm will not take into account the additional vertical
offset the signals have to travel). We address such situations
by detecting the appropriate altitude (and hence floor) through
a special one-time maneuver of the UAV. We move the UAV
up and down through a short vertical distance that spans the
target floors. During this movement, as the UAV approaches
the horizontal plane of the nodes, its range estimates to the
nodes should start to decrease, reach a minimum when it is
on the plane, and increases when it moves away from the
plane. TrackIO records the altitude (z∗) as that corresponding
to the minimum range estimates and hence determines the
floor of interest. TrackIO then uses this altitude to execute its
localization process for the target floor.

4 Implementation and Testbed Setup
We build a custom payload consisting of a Decawave DW1000
UWB module and a Raspberry Pi 3 used as the TrackIO con-
troller. The payload, weighting about 200 grams is mounted
onboard a DJI Phantom 4 UAV platform. A fully charged
UAV flight with our current prototype lasts for about 20 mins
(≈25 mins without payload). In the following we describe the
key hardware/software components that form TrackIO.

4.1 TrackIO Components
UWB Modules: The UWB module mounted on the UAV
acts as the master node and is responsible for collecting rang-
ing information from the client nodes. Alongside the DW1000
RF chip, the UWB module houses an ARM based microcon-
troller that runs our multi-hop ranging protocol (implemented
in about 3000 lines of C code). The latter collects inter-node
ranging information (at about 6 Hz) which is read by the
controller Raspberry Pi and forwarded to the ground station
through a WiFi interface.

Ground Station: Ground station refers to the compute node
responsible for collecting ranging information obtained from
the UAV and running TrackIO’s localization algorithms. First,
it localizes the UAV using the four fixed client nodes on the
ground. These nodes are placed at different heights (vertical
diversity) on four vertices of a 5 m×5 m square to emulate
a service vehicle housing the ground station. One node is
equipped with a GPS receiver for an absolute location fix.
Second, the UAV’s location is fed along with the rest of the
range information that simultaneously solves all client node
locations. We implement the solver algorithms in Python that
run in real time on the ground station compute node (a Core
i7 Lenovo laptop). We also implement an Android application
that shows client node locations on a map.

Flight Automation: Automating the flight offers flexibility
to programmatically control the flight’s trajectory as well as
its speed. We use the Android Mobile SDK [12] provided
by DJI to program two candidate trajectories for our UAV to
follow: (a) STRAIGHT, a straight line path of length 30 m, and
(b) WAVY, a sinusoidal path of length 30 m with an amplitude
of 5 m (see figure 17). Note that such automation also helps
us to re-run/repeat flights for controlled experiments, which
would have been otherwise impossible in case of manually
controlled flights.

Groundtruth RFID Tracks

UWB Helmet
RFID Reader Sticks

Figure 15: Snapshots of trajectories marked with RFID tags. A
volunteer is shown walking along the track with the RFID reader
stick in her hand.

4.2 Testbed Setup
We deploy TrackIO with a single UAV in the third and fourth
floor of our department building spanning approximately 1250
sq. meters (half the building’s floor area). Nine client nodes
are placed indoors that mimic static or mobile first responders.
Out of these nine nodes, six are in hop-1 (3 static, 3 mobile)
and remaining three in the hop-2 (2 static, 1 mobile).

Obtaining location groundtruth: For static indoor nodes,
the node location is accurately estimated with the help of a
laser ranger. For tracking the mobile nodes’ groundtruth po-
sitions, we deploy fixed RFID tags on the ground, one every
meter, along predefined trajectories. We create portable RFID
reader sticks equipped with a ThingMagic M6E-Nano readers
(Fig. 15). We adjust the reader’s transmit power as well as the
antenna orientation to limit the reading range to about 50 cm.
The volunteers are instructed to move along the trajectories
while holding the stick vertically. The stick also hosts a Rasp-
berry Pi that controls the reader and logs timestamped entries
of RFID tags along with RSS/phase information (≈10 Hz)
it reads along the trajectory. We post-process such logs to
obtain accurate estimations of position (within 20 cm) and
velocity of the mobile node at granular timescales.

Trajectories: We lay out the trajectories within our office
area spanning multiple rooms, cubicles, hallways and open
spaces. Specifically we construct four different trajectories,
three in the first hop and one in the second hop. We create
the trajectories with increasing number of turns in them. The
first three trajectories are (a)LINE, a linear trajectory of length
20 m, (b)TRIANGLE, a triangular trajectory with a perimeter
of 30 m and (c)RECT, a rectangular trajectory with a perimeter

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 759

of 40 m. The trajectory in the second hop is roughly a 30 m
long sinusoidal path (SINU).

5 Evaluation
We present evaluation results from experiments conducted
in our real testbed discussed in §4.2. Recall that we use 6
nodes (3 static, 3 mobile) in hop1 and 3 nodes (2 static, 1
mobile) in hop2. Four volunteers (mobile nodes) are simul-
taneously instructed to move along their designated trajec-
tories at different speeds. Combined, we accumulate over 2
hours worth of traces accounting for over 10+Kms of total
trajectory length. Evaluating TrackIO’s performance (w.r.t.
groundtruth) through controlled experiments requires us to do
trace-driven analysis of the ranging information logged by the
ground station compute node. However, our system receiving
range information at 6 Hz is capable of real time operations.
In §5.4, we highlight end-to-end latency of our system for var-
ious node distributions. Fig. 16 shows the median localization
error for both hop1 and hop2 nodes, the latter localized using
static or mobile hop1 nodes. While static nodes are localized
with an accuracy of 1−−1.5 m, note that even for mobile
nodes, the median localization error is a little less than 2 m
(hop1) to around 2.5 m (hop2). In extreme cases, where the
hop2 nodes are localized using all mobile hop1 nodes and
the latter do not offer a good spatial diversity (e.g., all hop1
nodes are in close vicinity), TrackIO still offers a localization
accuracy of about 4 m (top 10 percentile). However such situ-
ations can be avoided by judiciously selecting nodes in hop1
that offer spatial diversity.

Static Hop-1 Mobile Hop-1
0

1

2

3

4

5

L
o

ca
liz

a
tio

n
 E

rr
o

r
(m

) Hop-1 Nodes

Static Hop-2 Nodes

Mobile Hop-2 Nodes

Figure 16: Overall localization accu-
racy for static and mobile hop1 and
hop1 nodes

Figure 17: Scatter plot of
estimated trajectories for all
mobile nodes.

5.1 Hop1 Localization Performance
We now evaluate the hop1 localization error over the dimen-
sions of node speed, trajectory, and turns.

Effect of node speed. Since TrackIO jointly solves for both
location and velocity of each node, ideally, the localization
error should be independent of the velocity for nodes mov-
ing at a constant velocity. However, when moving at a brisk
pace, the human body performs a complex set of movements,
including bobbing of the head, which strains the constant
velocity assumption. To evaluate these practical limitations,
a volunteer moved along LINE at different speeds—a stroll,
walk, and a run. Fig. 18 shows the resulting localization accu-
racy. The reported speeds are the average speed obtained from
ground-truth. The median localization accuracy is around
1.5 m during the stroll, whereas it is around 2.8 m during the

run. The gains over simple multilateration are above 3× for
all the velocities.

0

2

4

6

8

10

12

L
o
c
a

li
z
a

ti
o

n
 E

rr
o
r

(m
)

3x

3.3x

3.6x

Stationary

(0m/s)

Stroll

(0.5m/s)

Walk

(1.1m/s)

Run

(2m/s)

Naive Multilateration

TrackIO

Figure 18: TrackIO gains signifi-
cantly over simple multilateration by
solving for velocity vectors as well.

0 5 10

Localization Error (m)

0

0.5

1

C
D

F

Static

LINE

TRIANGLE

RECT

Figure 19: The three trajec-
tories have similar localiza-
tion error.

Effect of trajectory shapes. Fig. 19 shows the impact of
different trajectory shapes (LINE, TRIANGLE, RECT) on the
localization accuracy. While using naive multilateration, the
localization errors can spike upto 10 m, TrackIO makes the
system resilient to turns (median ≈2 m for all trajectories).
Minor differences do exist which can be explained by the in-
creasing number of turns present in the respective trajectories.
Effect of Turns. Human motion mostly comprises of straight
lines interspersed with turns of various degrees. Fig. 20 shows
the localization errors during turning events versus that during
traversal in straight line segments. Note that the errors can
significantly spike during such turning events (3× at 80 %ile).

0 2 4 6 8 10

Localization Error (m)

0

0.5

1

C
D

F

Turns

Straight Lines

Figure 20: Localization error
worsens during turns

0 5 10 15 20

Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Velocity Vectors (VV)

Adaptive Aperture + VV

TrackIO

Oracle Hop-2 locations

Localization Method

Figure 21: Benefit of spatial
aperture vs. adaptive aperture

TrackIO tackle such cases through adaptively changing the
aperture and spatial aperture offered by hop2 node positions
to fix the erring hop1 nodes as described in §3. Fig. 21 shows
the effectiveness of these approaches in our testbed and will
be referred to in the following analysis.
Benefit of Adaptive Aperture. Fig. 22 shows a time series
of localization error when a turning event occurs. The local-
ization error increases sharply and remains large while the
aperture slowly moves over this point in time. Our adaptive
aperture dynamically resets historical measurements in case
it detects turning events. It improves localization accuracy by
a factor of 1.8×, and also reduces the time (early recovery ≈
5 secs) it takes to stabilize the localization performance.
Benefit of spatial aperture from hop2 nodes. Opportunis-
tic re-fixing of a turning hop1 node, T might be possible if
there are at least three hop2 nodes that do not depend on T for
their localization. Fig. 21 shows the reduction in localization
error when a fast moving and turning node is subjected to
hop2 guided re-fix. As an example, we use the entire 2 m/s

760 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20

Time (secs)

0

5

10

Lo
ca

liz
a t

io
n

E
rr

o
r

(m
)

Early Recovery

Adaptive
Fixed

Aperture Size
Turning
Instant

Figure 22: Adaptive aperture recovers
from the effects of a turn earlier than
fixed aperture.

LINE TRI RECT
0

20

40

60

80

100

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

Figure 23: TrackIO cor-
rectly detects more than
80% of turns.

run shown in Fig. 18 including the turns at either ends. The
velocity-vector based localization performs poorly as seen
from Fig. 21. We use 3 other static hop1 nodes to localize 3
static hop2 nodes and then use their locations to solve for the
location of the running node, T . We observe about 2.8× im-
provement in the median localization accuracy after re-fixing.
This re-fixing accuracy is affected by two factors: (a) ranging
error, and, (b) imprecise location of the hop2 nodes. We can
eliminate the effect of imprecise locations and hypothetically
study just the ranging error effect by assuming ground truth
hop2 node locations are known—as if given by an Oracle.
Fig. 21 shows this error to be within 2m at the 75%ile. While
extremely promising, the re-fix approach may not always be
available depending on the current topology. In comparison,
the adaptive aperture technique is always available for any
hop1 node. Fig. 21 puts both these approaches (adaptive aper-
ture and re-fix) into perspective.
Effect of drone trajectory and velocity. Fig. 24 shows the
localization precision of two different trajectories, STRAIGHT
and WAVY, at two different drone speeds. In general, geomet-
ric diversity of measurements helps obtain better localization.
Therefore, the faster the drone moves, the better is the localiza-
tion. Similarly, a WAVY pattern of drone movement also helps
in obtaining better localization even for lower speeds. We
therefore fly the drone in a WAVY pattern for this evaluation.

Static Mobile

UAV Speed
Low High

Tr
aj

e
ct

o
ry

 T
yp

e

S
T
R
A
I
G
H
T

W
A
V
Y

Lo
ca

liz
at

io
n

 E
rr

o
r

(m
)

5

0
5

0

Figure 24: A WAVY trajectory provides better localization accuracy
due to increase in spatial diversity.

5.2 Hop2 Localization Performance
Effect of hop1 mobility. We perform instantaneous local-
ization3 of hop2 nodes based on 3 hop1 nodes. By selecting
which 3 nodes to use for this purpose, we obtain a combi-
nation of static and mobile hop1 nodes—ranging from all
static to all mobile. Fig. 25 shows the impact on localization
errors as we allow an increasing number of hop1 nodes to
3Instantaneous localization does not depend on UAV’s synthetic aperture
created in time.

be mobile. These results show the error-span between using
only static hop1 nodes (1.83 m) to using only mobile hop1
nodes (2.84 m). If multiple hop1 nodes are available, choice
of anchors influences hop2 localization error (Fig. 26). Due
to instantaneous localization of hop2 nodes, the accuracies for
both static and mobile hop2 nodes are similar (see Fig. 16).

0 2 4 6 8 10

Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Poor Diversity

0% Mobile

33% Mobile

66% Mobile

100% Mobile

Hop-1 Nodes

Figure 25: Localization error for
a mobile hop2 node with increas-
ing number of mobile hop1 nodes.

1 2 3 4

Anchor Combination

0

2

4

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(m
)

Figure 26: Selection of an-
chors influences localization
error.

Effect of hop1 diversity. The relative locations of hop1
nodes also affect the localization accuracy. We consider ran-
dom static snapshots of hop1 node locations moving on the
three trajectories (LINE, TRIANGLE, and RECT) and further lo-
calize hop2 nodes. Figure 27 shows a long tail indicating that
some hop1 position combinations perform poorly. A further
analysis of such failing combinations reveals that hop1 nodes
are nearly collinear4 in such cases, causing very high dilution
of precision [8, 34, 56] (Fig. 28). We expect such situations to
be minimal and short lived in real-life.

0 1 2 3 4 5

Localization Error (m)

0

0.5

1

C
D

F

Poor Geometric Diversity

Figure 27: hop2 localization error as
a function of various hop1 locations.
Localization fails about 10% times.

Collinear Non-Collinear

Hop-1 Node Diversity

0

0.2

0.4

0.6

0.8

Figure 28: Most failure
cases are caused by highly
collinear hop1 nodes.

5.3 UAV Localization
Note that the final localization accuracy of the mobile nodes
is tied to absolute location fixes for the UAV. We study the im-
pact of such accuracy as a function of the different modalities
we can localize the UAV through (viz, COTS GPS receiver [1],
UAV’s GPS with sensor fusion [13], UWB based). Fig. 29
shows the error in each of these modalities compared to laser
ranger based groundtruth (accurate to 1mm). Fig. 30 shows
the improvement in localization error of a static indoor node
(1 m using UWB versus 2+m using GPS) when UWB based
drone localization is used. Note that the UAV’s large trajec-
tory and the low vertical diversity in ground-UWB anchors
degrades the drone’s location accuracy. Yet, in GPS chal-

4We define collinearity as the ratio of the height and the base of the triangle
formed by the three hop1 nodes.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 761

lenged situations, such as in a dense urban space, UWB based
drone localization will remain valuable.

0 2 4 6

Distance Error (m)

0

0.5

1

C
D

F 31cm 1.03m 2.64m

Drone GPS

External GPS Chip

UWB

Figure 29: Range error between
two fixed locations on the ground
for different modalities.

0 2 4 6 8 10

Localization Error (m)

0

0.5

1

C
D

F

UWB Based

GPS Based

Drone Location

Figure 30: Effect of UAV local-
ization modalities on static hop1
localization accuracy.

5.4 TrackIO End-to-End Latency
We present TrackIO’s end-to-end latency for different topolo-
gies in Figure 31. Each topology shown assumes an additional
4 hop1 nodes on the ground for UAV localization. Thus, topol-
ogy A consists of 4+6 = 10 hop1, and 3 hop2 nodes. With
even 20 nodes TrackIO leaves room for real-time operations.

A (6-3) B (3-6) C (8-4) D (4-8) E (15-5) F (5-15)

Various Topologies

0

0.2

0.4

0.6

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

4 + 9 nodes

4 + 12 nodes

4 + 20 nodesRanging Protocol

Solver

Network

Figure 31: Protocol latency as a function of the network topology

5.5 Adding IMU: A What-If Analysis
Adding an IMU to our implementation might improve
TrackIO’s performance due to availability of another esti-
mation for velocity and direction. We show in Fig. 32 and
Fig 33 that while improvement in performance are possible
when accurate direction and velocity information is available,
presence of small errors in those estimates substantially re-
duce the gain over TrackIO. We leave more sophisticated
IMU-based implementation to future work.

0 2 4 6 8 10

Localization Error (m)

0

0.5

1

C
D

F

TrackIO

TrackIO+Dir (Accurate)

TrackIO+Dir (10° error)

Figure 32: Improvement us-
ing direction from IMU

0 2 4 6 8 10

Localization Error (m)

0

0.5

1

C
D

F

TrackIO

TrackIO+IMU (Accurate)

TrackIO+IMU (30cm/s Err)

Figure 33: Improvement us-
ing velocity from IMU

6 Related Work
Indoor localization. A significant amount of work exists in
indoor localization [5,33,42,51,54,55,57], but most of it relies
on indoor infrastructure and fingerprinting. Both of these are
not available in our target application. Techniques that use
commodity WiFi [28, 31] rely on the difference in subcarrier
phases. However, subcarrier phase wraps after a short distance
(7.5− 15 m) rendering them unsuitable in our application.

Localizing from outside a building could be performed with
RF sensing [2,3], however, we require a system that would be
robust to changing multipath, fast human mobility, and would
penetrate deep into a building. Use of inertial sensors (IMU)
for tracking human motion [42, 44, 52] has been extensively
studied. However, most of these systems suffer from drifts
and saturation introduced by the IMU sensors [18, 30, 46].
In contrast to IMU-based tracking, the ranging approach we
take in TrackIO is not based on dead-reckoning and instead
provides instantaneous location.
UWB based localization. UWB radios are increasingly be-
ing used for localization solutions in a variety of applica-
tions from positioning [37, 40], to tracking industrial ob-
jects [17, 47], to sports analytics [18]. UWB is particularly
resistant to indoor multipath [41, 43, 45] due to its 1ns time
resolution (1GHz bandwidth). This makes it suitable for use
in indoor spaces where multipath can be rampant. Different
UWB platforms are commercially available today [7, 10, 48],
and we chose Decawave Trek1000 UWB platform for its
superior performance [27, 43]. Most of these works assume
some static UWB anchors. In our application however, we
have no pre-deployed anchors, but create a synthetic aper-
ture over time by flying an anchor on a UAV. Some recent
works [32, 49] have explored use of the multipath profile as
virtual anchors localize using a single UWB device. However,
they assume the location of all strong reflectors are known,
making it prone to issues when multipath could change, due
to moving people or objects. In contrast, our technique does
not depend on the knowledge of the floor-plan, and is robust
to changing multipath profile.
Localization of UAV. UAV localization has been extensively
studied and approaches range from using a single GPS [13,
14], to using differential GPS [19], to using complex motion
models based on the drone’s IMU data. UAV localization
using UWB has been proposed in [6, 29]. We incorporate
UAV localization into TrackIO protocol. Authors of [15, 23]
also consider UAVs as a vehicle for fire-fighting, though they
do not discuss the outdoor-indoor localization problem.

7 Conclusion
Indoor localization without any support from the building’s
infrastructure is a challenging yet important problem. Par-
ticularly of importance to first responders, continuous real-
time tracking can be a life saver in many everyday situations.
TrackIO uses a UAV to create the missing infrastructure out-
side the building and performs continuous ranging with indoor
nodes. Through numerous algorithmic, architectural, and en-
gineering modifications to trilateration and ranging protocols
we obtain promising results localizing mobile indoor nodes
accurate to about 2m from twenty meters outside the building.
We believe TrackIO is a promising first step in active localiza-
tion from outside the building. While TrackIO provides a fully
working system where none exists today, we plan to continue
to explore avenues to further improve accuracy, resilience,
and redundancy.

762 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Adafruit ultimate gps breakout. https://www.adafruit.com/

product/746.

[2] ADIB, F., HSU, C.-Y., MAO, H., KATABI, D., AND DURAND, F. Cap-
turing the human figure through a wall. ACM Transactions on Graphics
(TOG) 34, 6 (2015), 219.

[3] ADIB, F., KABELAC, Z., AND KATABI, D. Multi-person localization
via rf body reflections. In NSDI (2015), pp. 279–292.

[4] BAHL, P., AND PADMANABHAN, V. N. Radar: An in-building rf-based
user location and tracking system. In INFOCOM 2000. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE (2000), vol. 2, Ieee, pp. 775–784.

[5] BAHL, P., AND PADMANABHAN, V. N. Radar: An in-building rf-based
user location and tracking system. In INFOCOM 2000. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE (2000), vol. 2, Ieee, pp. 775–784.

[6] BENINI, A., MANCINI, A., AND LONGHI, S. An imu/uwb/vision-
based extended kalman filter for mini-uav localization in indoor environ-
ment using 802.15. 4a wireless sensor network. Journal of Intelligent
& Robotic Systems 70, 1-4 (2013), 461–476.

[7] BESPOON. Precise location rtls. http://bespoon.com/
technology/precise-location-rtls/.

[8] BORRE, K., AKOS, D. M., BERTELSEN, N., RINDER, P., AND
JENSEN, S. H. A software-defined GPS and Galileo receiver: a single-
frequency approach. Springer Science & Business Media, 2007.

[9] CHINTALAPUDI, K., PADMANABHA IYER, A., AND PADMANABHAN,
V. N. Indoor localization without the pain. In Proceedings of the
sixteenth annual international conference on Mobile computing and
networking (2010), ACM, pp. 173–184.

[10] DECAWAVE. Decawave. http://www.decawave.com/.

[11] DECAWAVE. DW1000 User Manual. https://decawave.com/
content/dw1000-user-manual".

[12] DEVELOPER, D. Mobile sdk. https://developer.dji.com/
mobile-sdk/documentation/introduction/index.html.

[13] DJI. DJI Phantom 4 Specs.

[14] DJI. Mavic pro specs. https://www.dji.com/mavic/info#specs.

[15] DUEWEL, E., AND STODDARD, S. After dark, drone is
’best friend a firefighter could have’. https://www.usnews.
com/news/best-states/oregon/articles/2018-08-11/
after-dark-drone-is-best-friend-a-firefighter-could-have.

[16] FAHY, R. F., LEBLANC, P. R., AND MOLIS, J. L. Firefighter fatalities
in the united states - 2017. NFPA (2018).

[17] FERNANDEZ-MADRIGAL, J.-A., CRUZ-MARTIN, E., GONZALEZ,
J., GALINDO, C., AND BLANCO, J.-L. Application of uwb and gps
technologies for vehicle localization in combined indoor-outdoor envi-
ronments. In ISSPA (2007), pp. 1–4.

[18] GOWDA, M., DHEKNE, A., SHEN, S., CHOUDHURY, R. R., YANG,
L., GOLWALKAR, S., AND ESSANIAN, A. Bringing iot to sports
analytics. In NSDI (2017), pp. 499–513.

[19] GOWDA, M., MANWEILER, J., DHEKNE, A., CHOUDHURY, R. R.,
AND WEISZ, J. D. Tracking drone orientation with multiple gps
receivers. In Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking (2016), ACM, pp. 280–293.

[20] GUTIERREZ, J. A., CALLAWAY, E. H., AND BARRETT, R. IEEE
802.15.4 Low-Rate Wireless Personal Area Networks: Enabling Wire-
less Sensor Networks. IEEE Standards Office, New York, NY, USA,
2003.

[21] HEDGECOCK, W., MAROTI, M., LEDECZI, A., VOLGYESI, P., AND
BANALAGAY, R. Accurate real-time relative localization using single-
frequency gps. In Proceedings of the 12th ACM Conference on Embed-
ded Network Sensor Systems (2014), ACM, pp. 206–220.

[22] HEDGECOCK, W., MAROTI, M., SALLAI, J., VOLGYESI, P., AND
LEDECZI, A. Regtrack: a differential relative gps tracking solution.
In Proceeding of the 11th annual international conference on Mobile
systems, applications, and services (2013), ACM, pp. 475–476.

[23] HRABIA, C.-E., HESSLER, A., XU, Y., BREHMER, J., AND AL-
BAYRAK, S. Efffeu project: Efficient operation of unmanned aerial
vehicles for industrial fire fighters. In Proceedings of the 4th ACM
Workshop on Micro Aerial Vehicle Networks, Systems, and Applications
(New York, NY, USA, 2018), DroNet’18, ACM, pp. 33–38.

[24] HUGHES, W. J. T. C. N. T., AND TEAM, E. Global positioning system
(gps) standard positioning service (sps) performance analysis report.
WAAS FAA, 101 (2018).

[25] IBRAHIM, M., LIU, H., JAWAHAR, M., NGUYEN, V., GRUTESER, M.,
HOWARD, R., YU, B., AND BAI, F. Verification: Accuracy evaluation
of wifi fine time measurements on an open platform. In Proceedings of
the 24th Annual International Conference on Mobile Computing and
Networking (2018), ACM, pp. 417–427.

[26] IRISH, A., ISAACS, J., ILAND, D., HESPANHA, J., BELDING, E.,
AND MADHOW, U. Shadowmaps, the urban phone tracking system.
In Proceedings of the 20th annual international conference on Mobile
computing and networking (2014), ACM, pp. 283–286.

[27] JIMÉNEZ, A. R., AND SECO, F. Comparing decawave and bespoon
uwb location systems: Indoor/outdoor performance analysis. In IPIN
(2016), pp. 1–8.

[28] JOSHI, K. R., BHARADIA, D., KOTARU, M., AND KATTI, S. Wideo:
Fine-grained device-free motion tracing using rf backscatter. In NSDI
(2015), pp. 189–204.

[29] KEMPKE, B., PANNUTO, P., AND DUTTA, P. Polypoint: Guiding
indoor quadrotors with ultra-wideband localization. In Proceedings
of the 2nd International Workshop on Hot Topics in Wireless (2015),
ACM, pp. 16–20.

[30] KOK, M., HOL, J. D., AND SCHÖN, T. B. Using inertial sensors for
position and orientation estimation. arXiv preprint arXiv:1704.06053
(2017).

[31] KOTARU, M., JOSHI, K., BHARADIA, D., AND KATTI, S. Spotfi:
Decimeter level localization using wifi. In ACM SIGCOMM Computer
Communication Review (2015), vol. 45, ACM, pp. 269–282.

[32] KULMER, J., HINTEREGGER, S., GROSSWINDHAGER, B., RATH, M.,
BAKR, M. S., LEITINGER, E., AND WITRISAL, K. Using decawave
uwb transceivers for high-accuracy multipath-assisted indoor position-
ing. In Communications Workshops (ICC Workshops), 2017 IEEE
International Conference on (2017), IEEE, pp. 1239–1245.

[33] KUMAR, S., GIL, S., KATABI, D., AND RUS, D. Accurate indoor
localization with zero start-up cost. In Proceedings of the 20th annual
international conference on Mobile computing and networking (2014),
ACM, pp. 483–494.

[34] MASSATT, P., AND RUDNICK, K. Geometric formulas for dilution of
precision calculations. Navigation 37, 4 (1990), 379–391.

[35] NI, L., WANG, Y., TANG, H., YIN, Z., AND SHEN, Y. Accurate
localization using lte signaling data. In 2017 IEEE International
Conference on Computer and Information Technology (CIT) (Aug
2017), pp. 268–273.

[36] PALACIOS, J., CASARI, P., AND WIDMER, J. Jade: Zero-knowledge
device localization and environment mapping for millimeter wave sys-
tems. In INFOCOM 2017-IEEE Conference on Computer Communi-
cations, IEEE (2017), IEEE, pp. 1–9.

[37] PANNUTO, P., KEMPKE, B., CHUO, L.-X., BLAAUW, D., AND
DUTTA, P. Harmonium: Ultra wideband pulse generation with band-
stitched recovery for fast, accurate, and robust indoor localization. ACM
Trans. Sen. Netw. 14, 2 (June 2018), 11:1–11:29.

[38] PARKINSON, B., AND ENGE, P. Differential gps. In Global Position-
ing System: Theory and Applications (1996), American Institute of
Aeronautics and Astronautics, pp. 3–50.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 763

https://www.adafruit.com/product/746
https://www.adafruit.com/product/746
http://bespoon.com/technology/precise-location-rtls/
http://bespoon.com/technology/precise-location-rtls/
http://www.decawave.com/
https://decawave.com/content/dw1000-user-manual
https://decawave.com/content/dw1000-user-manual
https://developer.dji.com/mobile-sdk/documentation/introduction/index.html
https://developer.dji.com/mobile-sdk/documentation/introduction/index.html
https://www.dji.com/mavic/info#specs
https://www.usnews.com/news/best-states/oregon/articles/2018-08-11/after-dark-drone-is-best-friend-a-firefighter-could-have
https://www.usnews.com/news/best-states/oregon/articles/2018-08-11/after-dark-drone-is-best-friend-a-firefighter-could-have
https://www.usnews.com/news/best-states/oregon/articles/2018-08-11/after-dark-drone-is-best-friend-a-firefighter-could-have

[39] PIX4D. Do rtk/ppk drones give you better results than using gcps?
https://pix4d.com/rtk-ppk-drones-gcp-comparison/.

[40] PROROK, A., ARFIRE, A., BAHR, A., FARSEROTU, J. R., AND MAR-
TINOLI, A. Indoor navigation research with the khepera iii mobile
robot: An experimental baseline with a case-study on ultra-wideband
positioning. In 2010 International Conference on Indoor Positioning
and Indoor Navigation (Sept 2010), pp. 1–9.

[41] PROROK, A., TOMÉ, P., AND MARTINOLI, A. Accommodation of
nlos for ultra-wideband tdoa localization in single- and multi-robot
systems. In 2011 International Conference on Indoor Positioning and
Indoor Navigation (Sept 2011), pp. 1–9.

[42] RAI, A., CHINTALAPUDI, K. K., PADMANABHAN, V. N., AND SEN,
R. Zee: Zero-effort crowdsourcing for indoor localization. In Proceed-
ings of the 18th annual international conference on Mobile computing
and networking (2012), ACM, pp. 293–304.

[43] RUIZ, A. R. J., AND GRANJA, F. S. Comparing ubisense, bespoon,
and decawave uwb location systems: Indoor performance analysis.
IEEE Transactions on Instrumentation and Measurement 66, 8 (Aug
2017), 2106–2117.

[44] RUIZ, A. R. J., GRANJA, F. S., HONORATO, J. C. P., AND ROSAS,
J. I. G. Accurate pedestrian indoor navigation by tightly coupling
foot-mounted imu and rfid measurements. IEEE Transactions on In-
strumentation and measurement 61, 1 (2012), 178–189.

[45] SCZYSLO, S., SCHROEDER, J., GALLER, S., AND KAISER, T. Hybrid
localization using uwb and inertial sensors. In 2008 IEEE International
Conference on Ultra-Wideband (Sept 2008), vol. 3, pp. 89–92.

[46] SHEN, G., CHEN, Z., ZHANG, P., MOSCIBRODA, T., AND ZHANG, Y.
Walkie-markie: Indoor pathway mapping made easy. In Proceedings
of the 10th USENIX conference on Networked Systems Design and
Implementation (2013), USENIX Association, pp. 85–98.

[47] SPIEKER, S., AND ROHRIG, C. Localization of pallets in warehouses
using wireless sensor networks. In 2008 16th Mediterranean Confer-
ence on Control and Automation (June 2008), pp. 1833–1838.

[48] UBISENSE. Ubisense solutions. http://www.ubisense.net/
ubisense-solutions.

[49] VAN DE VELDE, S., AND STEENDAM, H. Cupid algorithm for coop-
erative indoor multipath-aided localization. In Indoor Positioning and
Indoor Navigation (IPIN), 2012 International Conference on (2012),
IEEE, pp. 1–6.

[50] VAN DIGGELEN, F., AND ENGE, P. The worlds first gps mooc and
worldwide laboratory using smartphones. In Proceedings of the 28th
International Technical Meeting of The Satellite Division of the Institute
of Navigation (ION GNSS+ 2015) (2015), pp. 361–369.

[51] VASISHT, D., KUMAR, S., AND KATABI, D. Decimeter-level local-
ization with a single wifi access point. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16) (2016),
pp. 165–178.

[52] WANG, H., SEN, S., ELGOHARY, A., FARID, M., YOUSSEF, M., AND
CHOUDHURY, R. R. No need to war-drive: Unsupervised indoor
localization. In Proceedings of the 10th international conference on
Mobile systems, applications, and services (2012), ACM, pp. 197–210.

[53] WANG, H., SEN, S., MARIAKAKIS, A., ROY CHOUDHURY, R., EL-
GOHARY, A., FARID, M., AND YOUSSEF, M. Unsupervised indoor
localization. In Proceedings of the 10th international conference on
Mobile systems, applications, and services (2012), ACM, pp. 499–500.

[54] XIONG, J., AND JAMIESON, K. Arraytrack: a fine-grained indoor
location system. In Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13) (2013),
pp. 71–84.

[55] YANG, Z., WU, C., AND LIU, Y. Locating in fingerprint space: wire-
less indoor localization with little human intervention. In Proceedings
of the 18th annual international conference on Mobile computing and
networking (2012), ACM, pp. 269–280.

[56] YARLAGADDA, R., ALI, I., AL-DHAHIR, N., AND HERSHEY, J. Gps
gdop metric. IEE Proceedings-radar, sonar and navigation 147, 5
(2000), 259–264.

[57] YOUSSEF, M., AND AGRAWALA, A. The horus wlan location determi-
nation system. In Proceedings of the 3rd international conference on

Mobile systems, applications, and services (2005), ACM, pp. 205–218.

764 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://pix4d.com/rtk-ppk-drones-gcp-comparison/
http://www.ubisense.net/ubisense-solutions
http://www.ubisense.net/ubisense-solutions

3D Backscatter Localization for Fine-Grained Robotics
Zhihong Luo Qiping Zhang Yunfei Ma

MIT Media Lab

Manish Singh Fadel Adib

Abstract – This paper presents the design, implemen-
tation, and evaluation of TurboTrack, a 3D localiza-
tion system for fine-grained robotic tasks. TurboTrack’s
unique capability is that it can localize backscatter nodes
with sub-centimeter accuracy without any constraints on
their locations or mobility. TurboTrack makes two key
technical contributions. First, it presents a pipelined ar-
chitecture that can extract a sensing bandwidth from
every single backscatter packet that is three orders of
magnitude larger than the backscatter communication
bandwidth. Second, it introduces a Bayesian space-time
super-resolution algorithm that combines time series of
the sensed bandwidth across multiple antennas to en-
able accurate positioning. Our experiments show that
TurboTrack simultaneously achieves a median accuracy
of sub-centimeter in each of the x/y/z dimensions and a
99th percentile latency less than 7.5 milliseconds in 3D
localization. This enables TurboTrack’s real-time proto-
type to achieve fine-grained positioning for agile robotic
tasks, as we demonstrate in multiple collaborative appli-
cations with robotic arms and nanodrones including in-
door tracking, packaging, assembly, and handover.

1 Introduction
The emergence of agile and miniature robots has led
to a novel set of capabilities and sensing tasks. Nan-
odrones that can fit in your palm are used for mapping
indoor environments and are deployed in swarms for
emergency response and hazard detection in urban set-
tings [29, 67, 43]. Dexterous robotic arms have shifted
manufacturing automation from assembly lines that con-
sist of dozens of robots, each of which is dedicated to
a single task, to a pair of multi-functional robots that
can collaborate on picking up, assembling, and packag-
ing items [16, 25]. Personal robots like the Roomba are
already cleaning our homes, and their roles are expected
to expand to folding clothes, washing dishes, and helping
with other daily routines [4, 47, 21].

A fundamental challenge that still faces agile robots,
however, is their ability to operate in highly cluttered set-
tings [28, 42, 27]. While highly-trained vision systems
can perform accurate classification and tracking tasks,
their performance suffers in cluttered environments, and
fails if the object of interest is fully occluded, e.g., if a
robot must pick up an item from under a pile [74, 48].
Moreover, tracking individual nanodrones in a swarm
is challenging even in line-of-sight settings due to their

constrained size and payload, which prevent instrument-
ing them with visually identifiable markers [33, 44].

RF-based identification and localization offers an al-
ternative sensing modality that is highly robust to visual
clutter, providing an attractive solution and a comple-
mentary sensing capability. Motivated by the recent ad-
vances in RF-based localization by the networking com-
munity [68, 45, 60, 50, 72], in this paper, we set out to
build a system for RF-based identification and 3D lo-
calization for fine-grained robotic tasks. Building such a
system requires meeting requirements along three fronts:

• Accuracy: To enable agile manipulation tasks, like
grasping and packaging, we need to achieve sub-
centimeter localization accuracy [57, 18]. Such accu-
racy is needed to enable a robot to align its grip with
an object for item grasping and manipulation tasks.

• Mobility: Robotic arms and nanodrones are in con-
stant mobility as they perform sensing and localiza-
tion. Hence, a localization system for fine-grained
robotic tasks must be fast enough to track them and
deal with random mobility patterns.

• Scalability: Since robots are expected to manipulate
everyday items, we need cost-effective solutions that
scale to hundreds or thousands of items, even in rela-
tively confined areas like homes or small businesses.

Unfortunately, no system exists today that can realize
all three goals simultaneously. On one hand, WiFi and
Bluetooth-based solutions [34, 73, 68] are not scalable
in our context since it is not feasible or cost-effective to
tag every item with a Bluetooth or WiFi radio. On the
other hand, billions of manufactured items are already
tagged with few-cent RFIDs, making RFID-based local-
ization attractive from a scalability standpoint. However,
RFID localization solutions are limited either in their
accuracy or in their ability to deal with mobility. Tech-
niques like Tagoram [75] and RFIDraw [71] can work
with mobile RFIDs, but they have decimeter-scale accu-
racy in obtaining a tag’s exact position;1 this prevents us-
ing them for tasks like grasping or manipulation. Others
like MobiTagBot [60] and RFCompass [69] achieve high
accuracy but require the tag to remain static for multiple
seconds as they perform their localization; this prevents
them from tracking nanodrones or enabling agile tasks

1These techniques track changes in distance so they can accurately re-
cover the shape of a trajectory, but relatively low accuracy in obtaining
the exact position.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 765

RFID1 RFID2

Figure 1: TurboTrack in an Assembly Task. Left figure shows a bottle and its cap tagged with RFIDs. Middle figure shows two robots collaborating
on assembly, where one robot puts a cap on a bottle carried by another. Right figure shows TurboTrack’s tracking output as the robots move the cap
(in green) and bottle (in red) into position for assembly and compares it to a ground-truth vision-based system (in blue) to show its accuracy.

where a robot needs to move and manipulate the object
of interest simultaneously.

The main contribution of this paper is to build an
RF localization system that can achieve all the above
requirements. Our system, TurboTrack, introduces two
main innovations that together allow it to achieve the
high accuracy and unconstrained mobility needed to de-
liver fine-grained robotic tasks:

(a) One-Shot Wideband Estimation: TurboTrack’s first
component allows it to estimate an RFID’s response over
a wide bandwidth – one that is three orders of magnitudes
larger than the backscatter communication bandwidth.
The large bandwidth can be used to mitigate reflections
from other objects in the environment and isolate the
RFID’s response. This component is inspired by past
work that performs frequency hopping for wideband es-
timation [45]. In contrast to this past work, which needs
every RFID to remain static as it repeatedly queries it
dozens of times while hopping frequencies, TurboTrack
can estimate the wide bandwidth in one shot from every
single RFID response. To do so, it introduces a wideband
localization helper which acts like a radar. The helper
transmits a wideband signal, and measures its reflection
off different objects in the environment, including the
RFID. In §3, we describe how TurboTrack constructs
the helper’s wideband signal to be compatible with the
RFID protocol, and how it synchronizes the helper with
an RFID reader to isolate the RFID’s reflection and es-
timate its wideband channel from every single response.
This one-shot estimation component enables TurboTrack
to operate correctly with moving targets.

(b) Bayesian Space-Time Super-Resolution: In prin-
ciple, if one could estimate multiple GHz of bandwidth
off an RFID using the above technique, then we could
apply standard ultra-wideband ranging methods to di-
rectly localize a tag. Unfortunately, the bandwidth that
can be estimated from an RFID remains limited by the
RFID’s antenna response and impedance matching cir-
cuitry. Specifically, because of their designs that opti-
mize for energy harvesting efficiency, the ability to sense
an RFID’s channel significantly degrades beyond a cou-

ple hundred MHz, even if we perform frequency hop-
ping [45]. Such bandwidth is still an order of magnitude
lower than that required for sub-centimeter localization
using ultra-wideband techniques [56, 14].

TurboTrack’s second innovation is a space-time super-
resolution algorithm that overcomes this challenge. Its
key insight is that while few hundred MHz of bandwidth
cannot enable sub-centimeter positioning, they narrow
down the potential locations of an RFID to a handful
of candidates. By combining these candidates over space
(multiple antennas) and time, TurboTrack zooms in on
the exact location. In §4, we formalize this as a Gaus-
sian mixture problem and incorporate it into a Bayesian
framework that fuses spatio-temporal bandwidth mea-
surements. Further, to deal with the nonlinear nature of
the measurements, we introduce an approximate infer-
ence algorithm that exploits RF and geometric properties
of the underlying estimators to design a computationally
efficient solution for highly accurate positioning.

We built a prototype of TurboTrack using USRP X310
software radios and tested it with off-the-shelf, battery-
free RFIDs. Our evaluation with over a million location
measurements demonstrates that TurboTrack can achieve
sub-centimeter localization accuracy in each of the x/y/z
dimensions. TurboTrack’s 99th percentile error remains
lower than 2-cm in each of the dimensions, while retain-
ing a 99th percentile latency smaller than 7.5 millisec-
onds in 3D localization. Further, we compared its per-
formance to two state-of-the-art proposals, RFind [45]
and RFIDraw [71]. Our results show that TurboTrack
achieves two to three orders of magnitude improvement
in localization accuracy of moving targets.

Finally, to demonstrate TurboTrack’s capability in mo-
bile and accurate positioning, we tested it in two classes
of agile and fine-grained robotic tasks. First, we show
how it can accurately track collaborative tasks between
robotic arms including packaging, handover, and assem-
bly. Second, we demonstrate how it can accurately track
nanodrones as they fly in indoor environments.

Contributions. TurboTrack’s contributions are:
• The first system architecture that performs one-shot

766 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

wideband estimation from every backscatter packet,
enabling low-latency and high-precision localization.

• A spatio-temporal Bayesian framework for RF local-
ization that fuses time series of bandwidth and phase
measurements across multiple antennas.

• An approximate inference algorithm with fast con-
vergence time for RF localization. The algorithm
achieves computational efficiency by incorporating
the properties of RF signals and the geometric nature
of its measurements.

• A real-time prototype implementation and evalua-
tion demonstrating the system’s ability to track fine-
grained robotic tasks performed using robotic arms
and nanodrones.

We note that our current implementation inherits some
of the limitations of RFIDs. Most importantly, its range
of operation is limited by a reader’s ability to power
up battery-free tags, which is typically within less than
10 m. However, this limitation is not inherent to our de-
sign since both TurboTrack’s architecture and algorithms
are general to any backscatter sensor and do not stop
at RFIDs. For example, they could work with battery-
assisted or solar-powered tags, which would enable long-
range communication [56, 55]. Such tags may be at-
tached to nanodrones or robotic arms to track the robots
themselves over tens to hundreds of meters and not just
the items they manipulate.

2 Design Overview
TurboTrack is a system that enables ultra-low latency,
very high accuracy localization of backscatter sensors
for fine-grained robotic applications. TurboTrack’s local-
ization works both in line-of-sight and through occlu-
sions. Further, TurboTrack can operate with inexpensive
backscatter sensors like off-the-shelf RFIDs without re-
quiring any hardware modifications, and it is fully com-
patible with today’s standard UHF RFID protocol. The
sensors can be attached as stickers to objects of interest
(e.g., manufacturing items) for object manipulation or to
miniature robots like nanodrones for tracking.

Architecturally, TurboTrack combines a standard
RFID reader with a wideband localization helper as
shown in Fig. 2. The helper transmits wideband sig-
nals, and captures their reflections off different ob-
jects in the environment. The combination of a standard
reader with a wideband helper enables both identification
(through the RFID’s identifier) and accurate localization
(using the wideband signals). To deliver both of these
tasks, TurboTrack’s centralized controller synchronizes
the helper’s signals with the RFID reader at the physi-
cal layer, and, at the protocol level, it incorporates the
helper’s operation into the reader’s finite state machine.

Algorithmically, TurboTrack leverages the wideband
channel estimates for localization. It fuses estimates

Reader
Tx

Localization
Helper

Tx

Rx1…

Centralized
Controller

Wideband estimates

Distance MoG

3D MoGHMM (SIS)

Approximate Inference

h2(t)

h1(t)

Rx3

3D Trajectory
& Position

RFID

Figure 2: System Architecture. TurboTrack combines a reader with a
localization helper to obtain wideband estimates. It fuses the estimates
across space and time via a Bayesian framework, and solves for accu-
rate 3D positions using approximate inference. MoG refers to Mixture
of Gaussians, and SIS refers to Sequential Importance Sampling.

across multiple receive antennas of the localization
helper and across time through a spatio-temporal
Bayesian framework. It models each antenna’s measure-
ments as a Gaussian mixture, and solves for each tag’s
location and trajectory through an approximate inference
algorithm customized for backscatter localization. The
algorithm linearizes and approximates the antenna mea-
surements in 3D and propagates their beliefs through a
particle filter. The resulting accuracy is high enough to
enable TurboTrack to track fine-grained robotic tasks.

The next sections describe TurboTrack’s operation at
the architectural (§3) and the algorithmic levels (§4).

3 One-Shot Wideband Estimation
In this section, we describe how TurboTrack’s helper can
obtain wideband estimates from every single (narrow-
band) RFID response. The one-shot estimation enables
it to track changes in the channel at very high speeds.
Then, in §4, we describe how it uses the wideband esti-
mates for accurate localization.

3.1 Primer on Backscatter Modulation
In backscatter networking, a wireless device called a
reader starts a communication session by sending a sig-
nal on the downlink. A backscatter sensor, e.g., an RFID,
harvests energy from this signal and powers up. To com-
municate with the reader, the sensor switches between
two states: reflective and non-reflective, to transmit bits
of zeroes and ones.

Our past work has observed that backscatter modula-
tion is frequency agnostic [45], meaning that RFIDs not
only modulate the reader’s signal but also all transmit-
ted signals in the environment. This enables us to es-
timate an RFID’s channel out-of-band. In particular, as
an RFID backscatters the reader’s signal, we can trans-
mit an unmodulated wave at another sensing frequency
and estimate the RFID’s channel at that frequency. By
hopping the sensing frequency across successive RFID

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 767

X(f)

Transmitter
Y(f)

Receiver

Channel
estimate

RFID
packet

detection

RFID
edge

detection

RFID
channel
estimate

H(f)

H2(f)⋮

⋮

⋮

FFT
OFDM

decoder ⋮y(t)

IFFT
OFDM

encoder x(t)
⋮

Figure 3: One-shot Estimation Architecture. The helper transmits OFDM sym-
bols. The receiver demodulates these symbols by performing an FFT followed by an
overall channel estimation step. The overall channel is fed into an RFID packet and
edge detection module that allow discovering the RFID’s state transitions. Using the
output of the edge detection and elimination block, TurboTrack can extract reliable
wideband channel estimates.

RFID packet start

OFDM symbols

discarded OFDM symbolsvalid OFDM symbols

RFID reflection

Figure 4: Two Modulations. RFIDs communicate by
switching between reflective and non-reflective states.
TurboTrack’s localization helper constructs and decodes its
symbols to accommodate the backscatter switching.

responses, we can emulate a large bandwidth – 1000×
larger than typical RFID backscatter bandwidths of few
100 kHz. But, such an approach needs to query the same
RFID many times before it can sense a wide bandwidth.
Thus, it requires the RFID to remain static, reducing the
reader’s throughput and increasing the tracking latency.

TurboTrack’s first component focuses on estimating
a wide bandwidth in a single shot, i.e., from every sin-
gle RFID response. In principle, one could do that by
simply transmitting a wideband signal from the local-
ization helper simultaneously with the reader, and esti-
mating the channel across its bandwidth. However, this
approach is complicated by two main factors. First, the
RFID’s switching process introduces a fast fading chan-
nel for the wideband signals; ignoring such fading cor-
rupts the wideband estimates. Second, by spreading its
transmitted signal over a wide bandwidth rather than a
single frequency, the helper’s signal-to-noise ratio (SNR)
significantly degrades, which limits its ability to detect
the RFID’s response and precludes channel estimation.

The rest of this section describes how TurboTrack’s
helper overcomes these challenges. On the transmit
side, the process involves constructing backscatter-aware
wideband transmissions. And on the receive side, it in-
volves robustly detecting the RFID’s response for accu-
rate channel estimation.

3.2 Backscatter-Aware Wideband Transmissions
To simplify channel estimation over a wide bandwidth,
TurboTrack borrows the OFDM (Orthogonal Frequency
Division Multiplexing) modulation technique from WiFi
and LTE systems. At a high level, OFDM divides a wide-
band channel into an array of narrowband channels, and
performs modulation in the frequency domain.

For the purpose of this paper, we do not need to delve
into the details of how OFDM operates beyond the FFT
and IFFT blocks of Fig. 3. Specifically, an OFDM mod-
ulator encodes information in the frequency domain as
X(f) then takes an IFFT before transmitting the signal
over the air. The receiver demodulates the signal by tak-
ing an FFT as shown in Fig. 3, and can estimate the chan-
nel H(f) by dividing the FFT’s output by X(f).

So, how can we construct OFDM symbols to be

friendly with backscatter modulation? To see why
OFDM construction is important, consider Fig. 4 which
shows both the backscatter modulation and the OFDM
symbols over time. OFDM channel estimation assumes
that the entire OFDM symbol lies within a channel co-
herence time (i.e., that the channel does not change dur-
ing the estimation process). However, as a backscatter
sensor switches its impedance, it causes an extremely
fast-fading channel and corrupts the entire OFDM chan-
nel estimate. Hence, if we choose long OFDM symbols,
then all of them will be corrupted with the backscatter
switching process. On another hand, if we choose very
short symbols, we cannot pack many frequencies into
them, which would prevent us from estimating the wide-
band channel at sufficient frequency resolution to deal
with frequency selectivity.

To address this challenge and obtain both non-
corrupted and fine-grained wideband estimates,
TurboTrack’s helper exploits information from the
RFID reader about the backscatter switching rate.
Specifically, the reader communicates that rate (called
backscatter link frequency or BLF) in its downlink com-
mand to the backscatter sensor. Hence, by coordinating
with the RFID reader, the localization helper can use the
BLF to construct its OFDM symbols.

In particular, to ensure that the channel is not cor-
rupted, an OFDM symbol must lie within a specific RFID
reflection mode (i.e., transition-free region). Hence, the
OFDM symbol duration Tsymbol must be smaller than
half the period of an RFID switching period Tswitching:

Tsymbol <
Tswitching

2
=

1

2BLF

Knowing that an OFDM symbol consists of N sam-
ples (i.e., N subcarriers), each with time period Tsample,
and denoting the overall bandwidth of the helper’s
OFDM transmission B, this means that we should
choose N such that N < B

2BLF . For example, if the
helper’s OFDM bandwidth is 100MHz and the backscat-
ter link frequency is 500 KHz, N must be less than 100.

3.3 Robust Wideband Channel Estimation
Now that we know how the localization helper constructs
its transmitted symbols, we switch our focus to how it

768 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

can obtain robust channel estimates on the receive side.
Recall that the difficulty in wideband estimation arises
from the low SNR at each subcarrier since the power is
spread across frequencies. This complicates packet de-
tection2 and reduces the reliability of the sensed channel.

(a) Robust Packet Detection: First, to compensate for
the reduced power and robustly estimate the beginning of
a backscatter packet, TurboTrack exploits the frequency
agnostic property of backscatter modulation. In partic-
ular, since the different OFDM subcarriers undergo the
same backscatter modulation, we can incoherently aver-
age their estimates. Such averaging would enable us to
reliably observe changes in the overall reflected power
and use them to detect the beginning of the RFID re-
sponse. Specifically, for every OFDM symbol at time n,
we compute Hcombined(n) =

∑
f |H(f, n)|.

Next, we leverage our knowledge of the RFID packet’s
preamble to detect the packet start. Specifically, every
RFID packet payload is preceded by a known preamble
p(n). Hence, the localization helper correlates the aver-
aged channel estimates Hcombined(n) with the preamble
to detect packet start. We can write this correlation as:

D(∆) =

T∑
n=1

p∗(n)Hcombined(n+ ∆)

where T is the preamble length and ∆ is the time in-
stance where correlation is performed. The helper identi-
fies the packet beginning whenD rises above a threshold.

(b) Edge Flip Elimination: Next, TurboTrack pro-
ceeds to eliminating corrupted OFDM symbols. Recall
from §3.2 that TurboTrack constructs the OFDM sym-
bols to accommodate for the backscatter reflection rate.
While this ensures that at least one whole symbol is in
a reflective or non-reflective state, it does not ensure that
all OFDM symbols are non-corrupted.

By leveraging the knowledge from the previous step –
namely when an RFID packet starts as well as the RFID’s
switching frequency – TurboTrack’s localization helper
can automatically detect and discard erroneous channel
estimates (marked in red in Fig. 4). In doing so, it only
retains the channel estimates that are obtained when the
RFID is reflecting or not reflecting, while eliminating es-
timates corrupted by RFID state transitions.

(c) Channel Estimation: Now that we have eliminated
erroneous OFDM channel estimates, we can proceed to
estimating the RFID channels at each of the subcarriers.
Note that the OFDM channel estimates H(f) not only
consist of the RFID’s reflection but also the direct path
between the helper’s transmit and receive antennas as
well as other reflections in the environment. To estimate
the RFID’s channel, TurboTrack exploits that the differ-
ence between the reflective and non-reflective states is
2The helper cannot simply rely on the reader’s packet detection, since
the reader uses much lower bandwidth and lower sampling rate.

due to the RFID, and subtracts them from each other to
obtain the RFID’s channel.

Mathematically, assume that after discarding the erro-
neous channel estimates from the preamble, the helper is
left with L symbols where the RFID is non-reflective and
M symbols where it is reflective, we can estimate these
channels at each subcarrier f as:

Ĥ2(f) ∝ 1

L

L∑
H(f |reflective)− 1

M

M∑
H(f |non-reflective)

Note that in the above equation, we only average over
the reflective states of a single RFID response, enabling
one-shot wideband estimation.

Finally, to improve the efficiency of the wideband esti-
mation process, TurboTrack incorporates the localization
helper into the finite state machine of the RFID reader.
In doing so, the helper only needs to perform OFDM
processing (packet detection, edge elimination, etc.) over
the short interval of time during which it expects the
RFID’s response rather than over the entire duration of
the reader’s communication session. Specifically, the re-
ceiver opens a short time window immediately after the
reader finishes transmitting its query command. In our
implementation, this window is 300µs-long in compar-
ison to the 2ms-long communication session. As a re-
sult, this synchronous architecture saves significant com-
putational resources (by 6.6×), allowing TurboTrack to
achieve ultra-high frame rates and ultra-low latency.

A few additional points are worth noting about
TurboTrack’s use of OFDM for channel estimation:

• Because the helper’s transmitter and receiver are con-
nected to the same oscillator, the estimated channels
do not have any carrier frequency offset (CFO) or
sampling frequency offset (SFO). Hence, unlike WiFi
or LTE, we do not need to correct for them.

• Since the helper transmits the same OFDM symbol
back-to-back to estimate the channel, each OFDM
symbol acts a cyclic prefix for the subsequent one.

• Since the helper’s transmit and receive antennas are
co-located, the line-of-sight would dominate the chan-
nel estimate, and we do not expect any sampling off-
set (or packet detection delay) between the transmit-
ted and received OFDM symbols. To correct for any
sample offsets introduced by the hardware channel,
we perform a time-domain correlation that allows us
to detect the beginning (i.e., first sample) of the first
OFDM symbol. Moreover, we perform a one-time cal-
ibration with a known RFID location in order to elim-
inate other over-the-wire hardware channels.

• Similar to standard OFDM receivers, the localization
helper drops the DC subcarrier as it is less robust to
noise, and since dropping it improves the dynamic
range of the ADC (Analog-to-Digital Converter).

• To further improve its signal-to-noise ratio (SNR),
TurboTrack employs an Exponential Moving Average

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 769

(EMA) on the channel estimates. The EMA provides
more robust channel estimates and higher accuracy
without sacrificing frame rate.

4 Bayesian Space-Time Super-Resolution
So far, we have discussed how TurboTrack can estimate
an RFID’s channel over a wide bandwidth. In this sec-
tion, we describe how it uses this wide bandwidth to es-
timate and track an RFID’s 3D location.

4.1 Bootstrapping Localization
Before we describe TurboTrack’s localization algorithm,
we start by asking whether backscattering a large band-
width would be sufficient for precise localization. In
principle, if one could backscatter a very large bandwidth
off an RFID, then we could directly use that bandwidth
to localize the tag in a manner similar to ultra-wideband
(UWB) ranging systems [58]. In particular, UWB sys-
tems leverage their large bandwidth to compute the time-
of-flight – i.e., the time it takes their signals to travel be-
tween a transmitter and a receiver; they then map this
time-of-flight to the distance traveled by multiplying it
by the speed of propagation. Because time and frequency
are inversely related, their distance resolution is inversely
proportional to their bandwidth:

resolution = speed/bandwidth
Since RF signals travel at the speed of light, obtaining
sub-centimeter resolution using UWB ranging would re-
quire a bandwidth of 30 GHz.

Unfortunately, backscattering 30 GHz off RFID tags is
neither feasible nor desirable for multiple reasons. First,
backscatter devices have antennas and impedance match-
ing circuits that are optimized to harness energy within
a specific frequency band. Hence, signals backscattered
significantly outside their optimal frequency band have
very poor SNR, making channel estimation infeasible.
Second, even if one could backscatter such a wide band-
width off the tags, generating it would require very costly
RF radios and processing its reflections would be com-
pute intensive as it would require processing 30 GS/s.

To achieve higher accuracy without such a large band-
width, one could leverage the phase of the backscattered
signal since it is very sensitive to changes in distances.
Specifically, in the noiseless case, we can express the
phase φ as:3

φ = 2π
d

λ
mod 2π

where d is the distance traveled and λ is the wavelength.
The difficulty in using the phase, however, is that it

wraps around every wavelength. Hence, it allows us to
accurately recover a fractional distance dfrac modulo the
wavelength. Said differently, we would know that the ac-
tual distance is dfrac + nλ, but n is an unknown integer.

3In presence of multipath, we can use a large bandwidth to obtain “san-
itized phases” [45] by projecting on the direct path after identifying it.

Since TurboTrack obtains a wide bandwidth and the
phase from every antenna, it can combine them to nar-
row down the candidate locations to a handful. For
example, if we consider a bandwidth of 100 MHz
and a wavelength of 33 cm, this leaves us with only
resolution/λ = 9 potential candidate locations for the
tag. Hence, TurboTrack still needs a mechanism to re-
solve ambiguity and identify the correct candidate.

4.2 Bayesian Formulation
To localize tags, TurboTrack employs a Bayesian frame-
work that fuses measurements across space and time:
• Spatially, each distance candidate maps to an el-

lipse whose foci are the transmit and receive anten-
nas. This is because TurboTrack’s antennas measure
the round-trip distance from the transmitter to the
backscatter tag, and back to the receiver. Since a given
transmit-receive pair has multiple distance candidates,
this leads to multiple confocal ellipses as shown in
Fig. 5(a). Adding more receive antennas would cre-
ate other sets of ellipses. However, due to noise, we
do not expect the correct ellipses from all antennas to
intersect at the same point; hence, we cannot simply
rely on voting to identify the correct candidate.

• Temporally, as the tag moves, each of the candidate
locations traces a different trajectory. The intuition of
using temporal series is that because noise is random,
we expect the intersection points that correspond to
the actual location to be closer to each other across
time, providing opportunities to identify them.

Hidden Markov Model. Given the above intuition, we
formulate the localization problem as a Hidden Markov
Model (HMM), as shown in Fig. 5(b). HMMs form a
class of powerful Bayesian inference models with hidden
states and observed variables. In our context, the hidden
states correspond to the actual locations of the RFID over
time, and the observations are the candidate distances ob-
tained from the different receive antennas.

Most importantly, TurboTrack’s HMM has a nonlinear
Gaussian observation model and a linear Gaussian transi-
tion model: the distance observations are nonlinear in the
state variables (the coordinates) as can be seen with the
dist function, while state transitions are linearly related
due to motion. Unfortunately, the nonlinearity prevents
us from adapting common solutions like Kalman Filters
to model the distributions [35].

TurboTrack’s goal is to find the most likely trajectory
x1 . . .xT given the observations (distance candidates)
y1 . . .yT. Formally, it needs to solve for the maximum
aposteriori (MAP):

x∗
0:T = arg max

x0:T

p(x0:T | y0:T)

where xt is a d dimensional coordinate vector of the
tag, yt is a k dimensional vector of the estimated dis-

770 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Confocal Ellipses (b) HMM (c) Centroid (d) Linearization

Figure 5: TurboTrack exploits RF and geometric properties for estimation. (a) shows that distances map to confocal ellipses. (b) shows the
HMM with nonlinear observations. (c) shows centroid approximation. (d) shows geometric linearization

tances from each receiver, and p(x|y) denotes the poste-
rior probability distribution.

Solving the above MAP inference problem requires us
to model the likelihood function p(yi | xi) and the prior
p(x0:T). In particular, per Bayes’ rule, we can write the
posterior as: p(x0:T | y0:T) ∝ p(y0:T | x0:T)p(x0:T)

Next, we describe how we model the likelihood func-
tion and prior given the geometric nature of the problem
and the underlying wireless properties of the estimators.

Likelihood Function. We first model TurboTrack’s like-
lihood function. Recall from §4.1 that the distance from
a given transmit-receive antenna pair exhibits as multiple
candidates. We formulate the likelihood as a mixture of
Gaussian (MoG), where each Gaussian is centered at a
different integer wavelength. In particular, given the true
distance d, we approximate the distance estimates dest
with the following distribution:

z(dest|d;σw) =

N∑
i=−N

w(i)N (d+ iλ, σ2
w)

N∑
i=−N

w(i) = 1
(1)

where N is determined by the total number of candi-
dates, i is integer wavelength, and σw corresponds to the
standard deviation of Gaussian noise. The weights w(n)
denote the discrete distribution of different integers.4

The above formulation models the likelihood distribu-
tion for one receiver. Since TurboTrack employs multiple
receivers, each provides a different set of distance esti-
mates. Because estimates from different antennas are in-
dependent, the overall likelihood p(yt | xt) is a product
of those from different receivers:

p(yt | xt) =

k∏
j=1

z(yt[j] | dist(xt)[j];σw) (2)

where dist : Rd → Rk returns the round trip distance
to the RFID, k denotes the total number of receivers, and
j is the index of each receiver.

Transition Model. Next, we model the prior p(x1:T).
Since the prior consists of a Markov time series of the
RFID’s location, we use a simple transition model:

xt = xt−1 + vt,vt ∼ N (0, Σv) (3)

4These weights could correspond to the value of the fractional Fourier
transform or a MUSIC projection [32]. In our implementation, we
found the overall algorithm performance is the same in both cases, so
we used the fractional Fourier as it is less computationally expensive.

where vt’s correspond to linear position changes, drawn
from a Gaussian distribution with zero mean and covari-
ance matrix Σv . Together, Eqs. 2 and 3 form our HMM.

4.3 Approximate Inference via Particle Filters
Due to the nonlinear observation model, we cannot solve
the MAP problem analytically. So, TurboTrack resorts
to approximate inference solutions, specifically particle
filters. Instead of propagating beliefs through analytical
probability distributions, these models approximate dis-
tributions with a set of particles [30]. Approximating dis-
tributions with particles requires us to answer two main
questions: First, how can we choose particles so that their
discrete distributions accurately represent the analytical
distributions? And second, how can we update these par-
ticles with new observations (distance candidates)?

In the rest of this section, we describe how
TurboTrack’s algorithm exploits the RF and geometric
structures of our measurements to answer these ques-
tions and develop a computationally efficient solution.
For simplicity, our exposition focuses on 2D localization
using three antennas, but the technique can naturally gen-
eralize to 3D with an arbitrary number of antennas.

4.3.1 Initial Sampling Function
Standard particle filters bootstrap the sampling process
by populating the entire d-dimensional space with ex-
ponentially many particles [63]. In contrast, TurboTrack
leverages its first observation to bootstrap its inference
with a relatively small number of particles. In particu-
lar, recall from §4.1 that each receive antenna discov-
ers a finite number of distance candidates, which can be
mapped to a set of ellipses in 2D as shown in Fig. 5(a).

To obtain an initial set of particles, one option is to
consider all intersection points between ellipses from dif-
ferent antennas. But, this is undesirable for three rea-
sons. First, any such two-way intersection point leaves
out important information about distance measurements
from other receive antennas. Second, it would result in a
polynomially large number of intersection points.5 Third,
such a set of intersection points would not be represen-
tative of the distribution as they are sparsely distributed
rather than concentrated at the most likely locations.
5The total number of intersection points is the number of distance can-
didates raised to the power of the number of receive antennas.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 771

 0.6

 1

 0.2 0.6 1 1.4

maxactual

y
 (

m
)

x (m)

 0.5

 0.9

 0.4 0.8 1.2

maxactual

x (m)

 0.7

 1.1

 1.5

 0.6 1 1.4

maxactual

x (m)

 0.2

 0.6

 1

 1 1.4

maxactual

x (m)

(a) Initial Sampling (t=0) (b) t = 1s (c) t = 2s (d) t = 3s

Figure 6: TurboTrack’s Particle Filter. We show the particles in 2D space over time. Colors indicate particle weights, with red being highest and
blue lowest. We label the actual location and that with highest weight. Over time, the highest weight particle converges to the correct one.

Instead, TurboTrack first identifies the most likely in-
tersection points then uses them to sample particles that
are representative of the distribution. At a high level, it
exploits the fact that each antenna’s distance measure-
ments can be modeled as a Mixture of Gaussians as
per §4.2 in order to (1) prune out unlikely candidates,
and (2) linearize the intersection points into a mixture of
2D Gaussians. Subsequently, it can sample from a mix-
ture of 2D Gaussians then adapt the particle weights as
per standard importance sampling [62].

Step 1: Pruning. In the pruning step, TurboTrack uses
the distances between intersection points to identify the
most likely candidates. In particular, given a tuple of dis-
tance measurements from three antennas, [d0, d1, d2], we
can plot three ellipses and identify the three closest inter-
section points between them as shown in Fig. 5(c).6 In
the noiseless case, the three points coincide. Otherwise,
we compute the average distance between them and dis-
card all points whose average is above a threshold.

Formally, if we denote the intersection points as
{xs

01,x
s
12,x

s
02}. TurboTrack will only keep tuple s 7 in

the set C := {s | r(s) ≤ T} where

r(s) :=
1

3
(‖xs

01 − xs
12‖2 + ‖xs

01 − xs
02‖2 + ‖xs

12 − xs
02‖2)

Step 2: Geometric Linearization. Next, TurboTrack ap-
proximates each intersection point as a 2D Gaussian us-
ing the original distance distributions of the correspond-
ing ellipses. To see why this linearization is possible,
consider two intersecting ellipses in Fig. 5(d), whose in-
tersection point we denote as xs

01. Since the noise on the
distance measurements is much smaller than the size of
the ellipses, the curvature of the ellipses around the inter-
section point is relatively flat. This allows us to approx-
imate the distribution as a 2D Gaussian centered around
xs
01 and whose axes lie along the normals to the two el-

lipses at the intersection point.
Formally, if we denote the two axes by the normal vec-

tors: a,b, and define A = [a, b], then we obtain Rij as
a Gaussian distribution in the 2D coordinate system:

Rij ∼ N (xs
01, Σs

01 = AV AT) s.t. V =

(
σ2
w 0
0 σ2

w

)
(4)

6Three ellipses can have at most six intersection points, from which we
choose the closest three.

7s is integer tuple [s0, s1, s2] for [d0 + s0λ, d1 + s1λ, d2 + s2λ].

where V denotes the diagonal covariance matrix, which
represents the fact that the distance errors from the dif-
ferent antennas are independent.

Step 3: Centroid Approximation. So far, we have iden-
tified the most likely tuples of intersection points, and we
have linearized each of the intersection points as a 2D
Gaussian. Next, TurboTrack fuses every surviving tuple
into a single candidate. This step is important because
it combines measurements from all antennas (while the
previous step considered antennas only in pairs). To do
so, it approximates any given candidate x0 as the cen-
troid of its three corresponding intersection points (from
Step 1). For simplicity, we assume mutual independence
between the intersection points, which results in the fol-
lowing Gaussian distribution f(x0;y0, s):

f(x0;y0, s) ∼ N (µs, Σs)

µs =
1

3
(xs

01 + xs
12 + xs

02)

Σs = (
1

3
)2(Σs

01 + Σs
12 + Σs

02)

(5)

This provides us with a set of 2D Gaussian distribu-
tions, each centered at a likely candidate position.

Step 4: Weighting and Initial Sampling. In the final
step, we combine the set of Gaussian distributions into
a single 2D mixture of Gaussians. To do so, we assign
weights proportional to the product of weights of indi-
vidual integers to tuples in C. This provides us with the
initial sampling distribution q0(x0;y0):

q0(x0;y0) =
∑
s∈c

w(s)

w
f(x0;y0, s)

w(s) = w(s0)w(s1)w(s2), w =
∑
s∈c

w(s)
(6)

Given this distribution, we can now efficiently sample
a small number of particles {x(i)

0 } and use them to ap-
proximate the distribution. After sampling, we normalize
every particle’s weight to the total weights.

Fig. 6(a) shows an example output of initial sampling
in 2D space. Each particle’s color indicates its normal-
ized weight, where red and blue indicate highest and
lowest probability. The particles are concentrated in sev-
eral clusters which correspond to the fused intersection
points. While the actual location is in one of the clus-
ters, the one with the highest weight is in another cluster
(due to noise). This shows the power of fusing across an-
tennas and emphasizes the need to resolve ambiguity by
exploiting target motion and fusing over time.

772 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.3.2 Sequential Sampling
So far, we have described how TurboTrack can obtain
an initial set of particles by fusing RF observations from
multiple antennas at a single point in time t = 0.
Next, we discuss how TurboTrack can update its parti-
cles through new observations over time. To do so, it
adapts Sequential Importance Sampling (SIS), a well-
known particle update filter, to our problem domain.

As its name indicates, SIS operates through a sequen-
tial process. To select representative particles for the
probability distribution at some time t, it uses the (new)
observations from time t and the probability distribution
from the previous state t−1. Hence, for every particle i, it
is optimal to sample from the following distribution [15]:

p(xt | x(i)
t−1,yt) ∝ p(yt | xt)p(xt | x(i)

t−1)

Recall that we have already modeled both terms on
the right hand side. In particular, we know that p(xt |
x
(i)
t−1) is a Gaussian as per the motion model in Eq. 3.

Moreover, p(yt | xt) can be approximated as a Gaussian
as per Eq. 5. Because the product of two Gaussians is
Gaussian, the overall sampling function is both Gaussian
and approximately optimal.8

Now that we know the sampling distribution for a
given particle i, SIS samples a single particle from that
distribution for time t. It then repeats the same process
for all the particles. After obtaining all the samples at
time t, it normalizes their weights then moves to the next
time step t+ 1 and repeats the same process.

Few additional points are worth noting about
TurboTrack’s inference algorithm:
• MAP Inference: At every point in time, TurboTrack

can make a decision about the most likely location by
choosing the particle with the highest weight. It can
also update the past trajectory since every particle can
backtrack its entire history. This allows us to continu-
ously update the trajectory with new observations.

• Resampling: It is known that even with optimal ap-
proximate sampling functions, the SIS algorithm can
degenerate to a small number of particles [30, 38]. To
avoid degeneracy, TurboTrack follows a standard re-
sampling approach. In particular, at every time t, it es-
timates the effective sample size N̂eff = 1∑N

i=1(w
(i)
t)2

,

and resamples when it is lower than a threshold.
• Computational Efficiency: In the sample update step,

TurboTrack exploits that many of the particles i come
from the same Gaussian in the Gaussian mixture be-
cause they share the same tuple of intersection points.
Hence, to optimize computation, it computes the se-
quential sampling function once for each cluster and
reuses it for all particles in that cluster.

8Note that p(yt | xt) is a mixture of Gaussians as per Eq. 6, but we
approximate it to the Gaussian nearest to x

(i)
t in the mixture.

• Outlier Detection & Recovery: The SIS filter accounts
for Gaussian noise but does not incorporate mech-
anisms to deal with wireless interference or strong
leakage from multipath.9 To deal with such scenarios,
TurboTrack employs outlier detection and recovery.
We identify two scenarios for outlier detection. The
first is when the centroid at t is far from that at t − 1.
The second is when all particles are assigned near-zero
weights, indicating that there is no valid position given
current distance estimation. To recover from such out-
liers, TurboTrack leverages its high frame rate and ex-
trapolates the previous estimates.

Finally, Alg. 4.1 summarizes TurboTrack’s approximate
inference algorithm and Fig. 6 shows how the algorithm
converges to the right candidate over time.

Algorithm 4.1 TurboTrack’s Approximate Inference
Input: Distance estimations: y0:T

Initialization: At time t = 0
. Compute mixture of Gaussian function q0(x0;y0)

(a) Prune unlikely intersection points of y0

(b) Linearize unpruned tuples as Gaussians per Eq. 4
(c) Approximate Gaussians per Eq. 5
(d) Assign weights to tuples per Eq. 6

. Sample and assign weights
For i = 1, ..., N :

(a) Sample x
(i)
0 from q0(x0;y0)

(b) Assign weights: ŵ0
(i) = p(y0 | x(i)

0)

. Normalize weights: w(i)
0 = ŵ0

(i)/
∑N

j=0 ŵ0
(j)

Iteration: For time t = 1, ..., T
For i = 1, ..., N :
. Compute Gaussian function f(xt;yt, s

(i))
(a) Identify the tuple s(i) corresponding to the

intersection point10closest to x
(i)
t−1

(b) Linearize tuple as per Eq. 4
(c) Approximate Gaussian as per Eq. 5

. Sample and assign weights
(a) Sample x

(i)
t from

π(xt | x(i)
t−1,y0:t) ∝ p(xt | x(i)

t−1)f(xt;yt, s
(i))

(b) Add to history: x(i)
0:t = (x

(i)
0:t−1,x

(i)
t)

(c) Assign weights:

ŵt
(i) = w

(i)
t−1

p(yt | x(i)
t)p(x

(i)
t | x

(i)
t−1)

π(x
(i)
t | x

(i)
t−1,y0:t)

. Normalize weights: w(i)
t = ŵt

(i)/
∑N

j=0 ŵt
(j)

. Compute effective sample size N̂eff .
If N̂eff < Nthres, resampling based on w(i)

t

Output: MAP Trajectory: x∗0:T = arg max{
x
(i)
0:t,w

(i)
0:t

} w(i)
0:t

9Recall that we mitigate (but not eliminate) multipath by projection.
10Recall that the intersection point can be computed from yt + s(i)λ.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 773

5 Implementation & Evaluation
Localization Helper: We implement TurboTrack’s lo-
calization helper on USRP X310 software radios, all syn-
chronized to the same external clock [11]. We use three
USRPs with two UBX daughterboards each. Since each
USRP can support two chains, we use one chain at a
transmitter and four as receivers. Each transmit/receive
chain is connected to a circularly polarized patch an-
tenna [8]. All antennas are arranged in a single plane,
with a separation of 40 cm between any two adjacent
pairs. USRPs sample at 100 MSps and send data over
Ethernet to a computer using the Intel Converged Net-
work Adapter X520-DA2 [3] to support high data rates.
The computer runs Ubuntu 16.04 and has an 4-core 8-
thread 64-bit Intel Core i7 processor and 16GB RAM.

RFID Reader: We adapt a USRP RFID reader devel-
oped by past work [36] and implement it on USRP
N210 software radios [12] with SBX daughterboards.
The reader implements the EPC Gen2 protocol [2]. The
reader powers up and communicate with the RFID tags,
setting various parameters such as the BLF and tag se-
lection in multi-tag scenarios.

Real-time Processing. We implement the algorithms de-
scribed in §3-§4 directly into the USRP’s UHD driver in
C++. Our implementation consists of a multi-threaded
pipelined architecture with worker pools. On the trans-
mit side, we use two threads in total: one for the RFID
reader and another one for the OFDM transmitter. On
the receive side, we use one thread for extracting buffer-
sized packets from the USRPs. In addition, every an-
tenna has a worker pool of two threads; each worker ex-
tracts and processes individual RFID responses from the
shared buffer, computes and timestamps the wideband
estimates, and feeds them to an output buffer. Finally, we
aggregate the threads, combining the wideband estimates
from all the antennas to perform 3D localization.

Our implementation runs in real-time, transmitting
and receiving OFDM symbols, decoding, estimating
channels, performing super-resolution and localization
(Σv = 5mm)11. Our OFDM symbols use N = 20 sub-
carriers over a bandwidth of 100 MHz to increase re-
silience to RFID state-transitions. In contrast, the RFID
BLF is set to 40 kHz.

Baselines: We implemented two baselines:

• RFind [45]: represents a state-of-the-art system for
centimeter-scale RFID positioning. It emulates a large
bandwidth by frequency hopping. As per the imple-
mentation described in the original paper, the hopping
process takes few seconds (for channel acquisition).

11In principle, one could learn the HMM parameters, but setting a con-
stant standard deviation worked well for our applications.

We reproduced the implementation and wrote the code
directly into the UHD driver of the USRP (as we did
for TurboTrack).

• RF-IDraw [71]: represents a state-of-the-art system
for high-accuracy RFID tracking.12 As per the au-
thors evaluation, RF-IDraw can achieve high track-
ing accuracy but decimeter-scale accuracy in exact po-
sitioning. It combines various antenna patterns. We
faithfully reproduced the authors’ implementation on
Thingmagic m6e [6] RFID readers.

RFID tags: We evaluated TurboTrack with commercial,
off-the-shelf, passive UHF RFID tags. We tested it with
multiple tags including Avery Dennison AD-238u8 [1],
Alien Squiggle [17], and Smartrac [10]. Each tag costs
about 5-10 cents. Because our tags are vertically polar-
ized, we program the robots to maintain their orienta-
tion to minimize phase changes from orientation changes
(for both TurboTrack and the baselines). Alternatively,
one could use circularly polarized tags to avoid this
problem, or incorporate an orientation-phase model into
TurboTrack’s inference algorithm.

Robots: We tested TurboTrack with three kinds of mov-
ing robots. For 2D evaluation, we attached an RFID to
a Roomba [4]. For 3D evaluation, we attached the RFID
to an item carried by LeArm 6DoF robotic arms [5] (as
shown in Fig. 1) and to A20 minidrones from Poten-
sic [7] (as shown in Fig. 12).

Ground truth: We use the OptiTrack system [9] to
obtain ground truth location measurements. The Opti-
Track is an optical tracking system which consists of
an array of tripod-mounted infrared cameras that can
achieve millimeter-scale accuracy by relying on infrared-
reflective markers placed on the objects of interest. Since
the OptiTrack can only operate in line-of-sight, in our
non-line-of-sight evaluation, we ensure that while the
RFIDs of interest are occluded from our antennas, they
remain in LOS of the OptiTrack cameras.

Evaluation Environment: We evaluated TurboTrack in
a standard office building, fully furnished with tables,
chairs, computers. We tested it in both line-of-sight and
non-line-of-sight settings, where RFIDs are within 6m of
the antennas. We performed NLOS testing similar to past
work [45, 71] by blocking the visible LOS path between
an RFID and TurboTrack’s antenna using standard office
cubicle dividers made of wood.

12Mathematically, RF-IDraw’s tracking algorithm is similar to Tago-
ram’s [75] method for tracking movement with unknown track and
both systems achieve comparable tracking and localization accuracy.

774 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

F
ra

c
ti
o
n
 o

f
M

e
a
s
u
re

m
e
n
ts

Localization Error (cm)

X
Y
Z

Figure 7: 3D Localization Accuracy in Line-of-Sight. The figure
plots the CDF of TurboTrack’s localization error in LOS along each
of the x/y/z dimensions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

F
ra

c
ti
o
n
 o

f
M

e
a
s
u
re

m
e
n
ts

Localization Error (cm)

X
Y
Z

Figure 8: 3D Localization Accuracy in Non-Line-of-Sight. The figure
plots the CDF of TurboTrack’s localization error in NLOS in the x/y/z
dimensions.

6 Results

6.1 Performance Evaluation

We first evaluated TurboTrack’s performance quantita-
tively. Specifically, we evaluated its localization accu-
racy, latency, and performance with moving targets.

(a) 3D Localization Accuracy: We tested TurboTrack’s
localization accuracy in LOS an NLOS settings. We per-
formed 5,000 experimental trials, each lasting between
30 seconds and one minute. This allowed us to collect
more than 20 million location measurements. In each
trial, we performed different arbitrary movements with
the robotic arm or the drone carrying the RFID. We
compute the tracking error as the difference between
TurboTrack’s location estimate and the ground truth from
OptiTrack.

Figs. 7-8 plot the CDFs of the location errors in each
of the x, y, and z dimensions for both LOS and NLOS set-
tings. Our results show that TurboTrack achieves a me-
dian error less than 1 cm and a 90th percentile error is
less than 2 cm in each dimension. Further, we note that
the accuracy in LOS is slightly better than its accuracy in
NLOS settings. This is expected since the SNR is higher
in LOS, resulting in higher accuracy.

(b) Latency & Frame Rate: Next, we evaluated the la-
tency of TurboTrack’s pipelined architecture in both 2D
and 3D localization. Our 2D trials were performed using

 1

 10

 100

0 2 4 8 16 32 50

E
rr

o
r

(c
m

)
in

 L
o

g
 S

c
a

le

Speed (cm/s) in Log Scale

TurboTrack
RFind

RF-IDraw

Figure 9: Tracking Error vs. Speed. We plot the median 2D tracking
accuracy of TurboTrack (violet), RF-IDraw (green), and RFind (red) vs
speed. Error bars indicate 10th and 90th percentiles.

an RFID attached to a Roomba. The latency is computed
as the time difference between the time the USRP obtains
an RFID response and the time it outputs a location. We
ignore the time-of-flight of the wireless signal since it is
only few nanoseconds for the distances of testing (few
meters) hence negligible for our latency measurements.

Our results shows that the 99th percentile latency mea-
surements for 2D and 3D tracking are 6.6 ms and 7.3 ms,
respectively. This latency is primarily limited by the pro-
cessing time of the computer rather than the latency of
the RFID’s response or acquisition. Specifically, in both
the 2D and 3D experiments, TurboTrack’s receivers all
obtain the RFID responses at the same time, yet the
difference in latency is due to the difference in pro-
cessing speed. We also note that across these experi-
ments, TurboTrack could achieve a frame rate of 300
frames/second in both 2D and 3D localization. This high
frame rate owes to TurboTrack’s pipelined architecture
which decouples the frame rate from the latency, en-
abling it to achieve both high frame rates and low latency.

(c) Performance with Motion: TurboTrack’s high accu-
racy, low latency, and high frame rate aim at enabling it
to track objects in continuous motion, as necessary for
robotic manipulation and tracking tasks. Next, we evalu-
ated TurboTrack’s accuracy with motion and compare it
to our baselines. In fairness to RF-IDraw, we focused on
2D tracking since the system was only evaluated in 2D.

We perform 400 experimental trials, each time vary-
ing the speed at which an RFID moves. We varied the
speed by attaching the RFID on a mobile Roomba whose
speed can be controlled. Fig. 9 plots the CDF of track-
ing accuracy for RFind, RF-IDraw, and TurboTrack. It
is important to note that the figure is in log-log scale to
demonstrate how much TurboTrack is more capable in
maintaining its accuracy despite high speed motion.

Our results show that TurboTrack outperforms both
RF-IDraw and RFind across all speeds. Even at speeds
of 50 cm/s, which is the maximum speed of Roomba
[4], its error remains under 2 centimeters. This is due to

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 775

three reasons: First, it has significantly higher frame rates
than RFind. Second, it has more resilience to multipath
than RF-IDraw due to its larger bandwidth. And lastly, its
Bayesian framework boosts its accuracy and robustness.

We also note that RFind suffers the most with motion,
even at speeds as low as 2 cm/s. This owes to its fre-
quency hopping process, which requires the object to re-
main static for 3 s. On the other hand, while RF-IDraw
can deal with some movements, its ability to accurately
track the phase diminishes beyond speeds of few cm/sec.

In the above result, we eliminated the initial position
error as per RF-IDraw’s implementation. In fairness to
RFind, we run 100 additional experiments with a static
RFID and compute RFind and RF-IDraw’s accuracy. We
summarize our results in the table below.

RFind RF-IDraw TurboTrack
Median (cm) 0.87 19 0.51
90th percentile (cm) 2.3 63 1.1

Table 1: Positioning Accuracy.

The table shows that both TurboTrack and RFind out-
perform RF-IDraw, which has a median accuracy of
19 cm. This result is expected since RF-IDraw is de-
signed for high tracking accuracy rather than high lo-
calization accuracy. In the RF-IDraw paper [71], the au-
thors call this the initial position error. We also note
that even though RFind has larger overall bandwidth
than TurboTrack (around 200 MHz vs TurboTrack’s
100 MHz), TurboTrack takes advantage of motion and
fuses measurements across multiple antennas to achieve
a 90th percentile error of around 1.1 cm.

6.2 Microbenchmarks

Next, we would like to understand the effectiveness of
each of TurboTrack’s sub-components. To do so, we
ran micro-benchmarks with partial implementations of
the system as well as with simplified variants. This en-
ables us to gain deeper understanding into the impor-
tance of each component as well as the effectiveness
of TurboTrack’s design choices from two main perspec-
tives: localization accuracy and computational efficiency.

(a) Decomposing TurboTrack’s Gains. We would like
to quantify the accuracy gains arising from TurboTrack’s
space-time super-resolution algorithm and the different
sub-components of this algorithm. Hence, we imple-
mented three variants of the algorithm and compared
their localization accuracy; we focus on 2D localiza-
tion for simplicity. All three schemes are given the same
distance estimates obtained from TurboTrack’s one-shot
wideband estimation algorithm over 100 MHz of band-
width. The schemes differ in how they perform localiza-
tion based on these distance estimates:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100F
ra

c
ti
o
n
 o

f
M

e
a
s
u
re

m
e
n
ts

Localization Error (cm)

TurboTrack’s Super-Resolution Algorithm
Standard (Gaussian) Particle Filter

Ellipse Intersection

Figure 10: Comparing Partial Implementations of TurboTrack. The
figure plots the CDF of the 2D localization errors of three different
localization schemes, all of which use the output of TurboTrack’s one-
shot wideband estimation.

1. Ellipse Intersection: Recall from §4 that each dis-
tance estimate maps to an ellipse whose foci are the
transmit and receive antennas. A simple localization
method would consider the most likely distance esti-
mate from each receive antenna, map it to an ellipse,
and solve for the intersection point of the ellipses in
order to identify the tag’s location [14, 13]. To imple-
ment this scheme, we select the distance estimate with
the highest weight from each receive antenna (where
the weights are obtained from the amplitude of the
interpolated FFT in a manner similar to [13]). Since
TurboTrack employs more antennas than the number
of ellipses needed for 2D localization, we solve for
all the intersection point and assign the one closest to
the ground truth as the tag’s location. Doing so pro-
vides this scheme with more information than we pro-
vide TurboTrack’s super-resolution algorithm. Hence,
TurboTrack’s ability to outperform this scheme is a
stronger demonstration of its effectiveness.

2. Standard (Gaussian) Particle Filter: The second lo-
calization scheme employs a standard Gaussian par-
ticle filter. The main difference between this scheme
and TurboTrack’s algorithm is that its likelihood func-
tion (i.e., Eq. 1) is a single Gaussian (centered around
the most likely distance estimate and with a large stan-
dard deviation) rather than a mixture of narrow Gaus-
sians. This scheme also incorporates the SIS filter.

3. TurboTrack’s Super-Resolution Algorithm: The final
scheme implements TurboTrack’s space-time super-
resolution algorithm, which incorporates the proposed
Mixture of Gaussians (MoG) likelihood function and
SIS filter.

Fig. 10 plots the CDFs of the localization error for
each of the three schemes. We observe the following:

• All three schemes achieve a median error less than
20 cm. This decimeter-scale error of moving RFIDs
is smaller than that of state-of-the-art systems (as per
in §6.1(c)), and is possible because of TurboTrack’s
one-shot wideband estimation technique.

776 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 10

 100

 100 1000

E
rr

o
r

(c
m

)
in

 L
o
g
 S

c
a
le

Number of Particles in Log Scale

Uniform Sampling and Gaussian Filtering
TurboTrack

Figure 11: Tracking Error vs. Number of Particles. The figure plots
the median error of 2D localization as a function of the number of par-
ticles for TurboTrack’s sampling method and compares it to a uniform
sampling method. The figure shows that TurboTrack can converge to
sub-centimeter accuracy using 25× less particles.

• The error distribution of the ellipse intersection
method exhibits multiple discontinuities. This is be-
cause there are multiple candidate distance estimates
(as described in §4.2), and the scheme picks one of
them independently in every frame. Thus, while the
error is small if the correct candidate is chosen, the
error is typically larger than a wavelength (33 cm) if
the incorrect candidate has a higher weight (e.g., due
to noise). We note that this scheme’s results are in line
with the reported errors in [45] when using the same
bandwidth with frequency hopping for static RFIDs.

• Interestingly, the ellipse intersection method has
slightly smaller median error (16 cm) than that of a
standard particle filter-based method (17 cm). How-
ever, the 90th percentile error of the particle filter is
smaller than that of the intersection-based method.
This is due to two reasons. First, the ellipse intersec-
tion scheme is given more information since we allow
it to choose the intersection point closest to the ground
truth. And second, the particle filter smoothes the tra-
jectory, which increases its median error but enables it
to achieve better tail performance.

• Finally, TurboTrack’s full implementation signifi-
cantly outperforms both partial schemes, achieving at
least 30× improvement in median accuracy (5 mm
median error).

(b) Complexity Gain of Approximate Inference. Next,
we would like to quantify the efficiency (complexity)
gains arising from TurboTrack’s approximate inference
algorithm and its initial sampling scheme. To do so, we
compare the algorithm to a baseline implementation of a
standard Gaussian particle filter. The baseline uniformly
samples 2D space and updates particles weights using
the Gaussian filtering method described in §6.2(a).

The complexity of a particle filter is a direct function
of the number of particles N used to represent the dis-
tribution. Hence, to compare the two schemes, we ran
both particle filters (the baseline and TurboTrack’s) with
the same number of particles over 30-second-long trajec-

tories, and we computed the localization accuracy. We
repeat this process multiple times, each time with a dif-
ferent number of particles.

Fig. 11 plots the median error (on the y-axis) as a func-
tion of the number of particles (on the x-axis) in log-log
scale for each of the two schemes. The figure shows that
TurboTrack’s inference algorithm can converge to sub-
centimeter accuracy with only 100 particles; in compari-
son, to achieve the same accuracy, the uniform sampling-
based scheme requires around 2500 particles. Since the
complexity of the particle filters is O(N), this demon-
strates that TurboTrack’s algorithm is more computation-
ally efficient.

6.3 Qualitative Performance

Finally, we evaluated TurboTrack qualitatively in fine-
grained robotic tasks. Our results, shown in Fig. 12-13,
demonstrate the ability to track nanodrones docking, ma-
neuvering, and even flying simultaneously. The results
also show that TurboTrack’s fine-grained tracking can be
an enabler for collaborative packaging and handover be-
tween robotic arms.

7 Related Work & Conclusion
(a) RF-based Localization is a long studied problem in
the networking community. Early work relied on measur-
ing the received signal strength (RSS) [54, 76, 24, 26],
the angle of arrival (AoA) [49, 77, 20, 40], and the re-
ceived signal phase [19, 41]. These proposals could op-
erate correctly in line-of-sight but not in the presence
of multi-path since constructive and destructive interfer-
ence make the strength, angle, and the phase of the re-
ceived signal unpredictable.

Unfortunately, state-of-the-art proposals that can deal
with multi-path cannot deliver on the mobility or accu-
racy requirements for fine-grained robotic tasks. In par-
ticular, solutions that achieve high accuracy require the
target to remain static for seconds as their antennas move
over multiple meters, collecting measurements from dif-
ferent spatial locations then combining them to local-
ize [70, 60, 69, 51]. Others, like RFind [45], achieve
high accuracy without requiring antenna motion, but they
still require the object of interest to remain static for few
seconds as they perform frequency hopping over a large
bandwidth. As demonstrated in §6, this leads to large er-
rors in mobile settings. Fundamentally, even if one could
hop frequencies faster, such systems would still suffer
from a range-Doppler ambiguity [46] and have lower ac-
curacy, frame rate, and throughput than TurboTrack.

To avoid this latency problem, researchers have looked
into recovering the shape of the trajectory while sacrific-
ing exact positioning [71, 75, 61, 39]. These proposals
focus on tracking changes in distances and can achieve

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 777

RFID

(a) Nanodrone with RFID (b) Docking (c) Maneuvering (d) Multi-drone Simultaneous Tracking

Figure 12: Tracking Nanodrones. (a) shows the nanodrone we use in our experiments. (b), (c), and (d) show TurboTrack’s output and the ground
truth (dotted blue) in tracking docking, maneuvering, and two drones flying simultaneously.

RFID1

RFID2

RFID

(a) Packaging (b) Output (c) Handover (d) Output

Figure 13: Robotic Manipulation. (a) shows two robotic arms collaborating on packaging an RFID-tagged item in an RFID-tagged box. (c) shows
one robotic arm handing over an RFID-tagged item item to another. (b) and (d) show TurboTrack’s output for tracking the RFID tagged items.

high accuracy over short periods of time, however, they
have decimeter-scale accuracy (i.e., tens of centimeters)
in computing the exact location. As a result, while they
may recover the shape of a trajectory of an RFID or
a WiFi device, they cannot enable precise positioning
tasks like grasping or manipulation. In contrast to all of
these proposals, because TurboTrack computes the wide-
band estimates from every single RFID response, it can
achieve precise positioning and at low latency.

(b) Super-resolution algorithms have been extensively
studied both theoretically and practically. Most past work
falls in the imaging community, where the goal is to ob-
tain a higher-resolution image by combining images of
the same scene across multiple viewpoints [65, 23, 37,
64] or across time frames in a video [31, 22, 52, 53].
While TurboTrack is inspired by this body of work, it
differs in two key aspects. First, in contrast to imaging
systems which rely only on pixel intensity, TurboTrack
also has access to phase information and utilizes it in
its super-resolution algorithm. Second, its formulation is
unique in how it models and linearizes distances obtained
from wideband RF measurements and how it incorpo-
rates them into a computationally efficient particle filter.

The RF community has also taken interest in super-
resolution algorithms, with famous algorithms like MU-
SIC [32], smoothed MUSIC [59], and ESPRIT [66].
TurboTrack builds on this body of work as well, and to
the best of our knowledge introduces the first Bayesian
spatio-temporal framework that combines bandwidth and
phase measurements to achieve this level of accuracy.

Naturally, TurboTrack also relates to a growing liter-

ature on object manipulation in the robotics community.
The majority of past work relies on vision-based or opti-
cal systems which, unlike TurboTrack, cannot operate in
visually occluded settings [48, 74, 42]. Finally, we note
that some of the RF localization solutions mentioned
above [69, 60] have been explored in this context as well,
but they lacked the localization accuracy and/or the low
latency required to deliver on these tasks. TurboTrack is
inspired by this work and builds on it to enable highly ac-
curate tracking and identification for fine-grained robotic
tasks, particularly in cluttered or occluded settings.

Acknowledgments. We thank Nick Selby for his help
in early developments of the system and in the baseline
evaluation. We also thank our shepherd, Lili Qiu, and the
anonymous NSDI reviewers for their feedback and in-
sights. This research is partially supported by the MIT
Media Lab and NSF CPS Award CNS-1739723.

References

[1] Avery denison. http://rfid.
averydennison.com, 2018. Avery Deni-
son.

[2] EPC UHF Gen2 Air Interface Protocol.
http://www.gs1.org/epcrfid/
epc-rfid-uhf-air-interface-protocol/
2-0-1, 2018.

[3] Intel X520. https://ark.intel.com, 2018.
Intel X520.

778 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[4] irobot roomba. https://www.irobot.com,
2018. irobot Roomba.

[5] Lewansoul learm. http://www.lewansoul.
com, 2018. LewanSoul LeArm.

[6] M6e. http://www.thingmagic.com, 2018.
ThingMagic Inc.

[7] mini-drone a20. http://www.ipotensic.
com/, 2018. Potensic mini-drone.

[8] MTI RFID antenna. http://www.mtiwe.com,
2018. MTI Wireless Edge.

[9] Optitrack. http://www.optitrack.com,
2018.

[10] Smartrac RFIDs. https://www.
smartrac-group.com, 2018. Smartrac.

[11] UBX daughterboard. http://www.ettus.
com, 2018. ettus inc.

[12] usrp n210. http://www.ettus.com, 2018. et-
tus inc.

[13] F. Adib, Z. Kabelac, and D. Katabi. Multi-person
localization via rf body reflections. In Usenix
NSDI, 2015.

[14] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller.
3d tracking via body radio reflections. In Usenix
NSDI, 2014.

[15] H. Akashi and H. Kumamoto. Construction of
discrete-time nonlinear filter by monte carlo meth-
ods with variance-reducing techniques. Systems
and Control, 19(4):211–221, 1975.

[16] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and
F. Robert. Multi-robot cooperation in the martha
project. IEEE Robotics Automation Magazine,
5(1):36–47, March 1998.

[17] Alien Technology Inc. ALN-9640 Squiggle Inlay,
2018. www.alientechnology.com.

[18] P. K. Allen, A. Timcenko, B. Yoshimi, and
P. Michelman. Automated tracking and grasping
of a moving object with a robotic hand-eye sys-
tem. IEEE Transactions on Robotics and Automa-
tion, 9(2):152–165, April 1993.

[19] D. Arnitz, K. Witrisal, and U. Muehlmann. Multi-
frequency continuous-wave radar approach to rang-
ing in passive uhf rfid. IEEE Transactions on Mi-
crowave Theory and Techniques, 57(5):1398–1405,
2009.

[20] S. Azzouzi, M. Cremer, U. Dettmar, R. Kronberger,
and T. Knie. New measurement results for the lo-
calization of uhf rfid transponders using an angle of
arrival (aoa) approach. In IEEE RFID. IEEE, 2011.

[21] J. M. Beer, C.-A. Smarr, T. L. Chen, A. Prakash,
T. L. Mitzner, C. C. Kemp, and W. A. Rogers. The
domesticated robot: design guidelines for assisting
older adults to age in place. In Proceedings of
the seventh annual ACM/IEEE international con-
ference on Human-Robot Interaction, pages 335–
342. ACM, 2012.

[22] C. M. Bishop, A. Blake, and B. Marthi. Super-
resolution enhancement of video. In AISTATS,
2003.

[23] N. K. Bose and N. A. Ahuja. Superresolution and
noise filtering using moving least squares. IEEE
Transactions on Image Processing, 15(8):2239–
2248, 2006.

[24] M. Bouet and A. L. Dos Santos. Rfid tags: Posi-
tioning principles and localization techniques. In
Wireless Days, 2008. WD’08. 1st IFIP, pages 1–5.
IEEE, 2008.

[25] L. Chaimowicz, T. Sugar, V. Kumar, and M. F. M.
Campos. An architecture for tightly coupled
multi-robot cooperation. In Proceedings 2001
ICRA. IEEE International Conference on Robotics
and Automation (Cat. No.01CH37164), volume 3,
pages 2992–2997 vol.3, May 2001.

[26] K. Chawla, C. McFarland, G. Robins, and
C. Shope. Real-time rfid localization using rss. In
Localization and GNSS (ICL-GNSS), 2013 Interna-
tional Conference on, pages 1–6. IEEE, 2013.

[27] B. Choi and J. Lee. Mobile robot localization in in-
door environment using rfid and sonar fusion sys-
tem. In 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2039–
2044, Oct 2009.

[28] C. M. Costa, H. M. Sobreira, A. J. Sousa, and G. M.
Veiga. Robust and accurate localization system for
mobile manipulators in cluttered environments. In
2015 IEEE International Conference on Industrial
Technology (ICIT), pages 3308–3313, March 2015.

[29] Defense IQ. Small is beautiful: Nano drone tech
is advancing. https://www.defenceiq.com/defence-
technology/articles/nano-drone-tech-is-advancing.

[30] A. Doucet, S. Godsill, and C. Andrieu. On sequen-
tial monte carlo sampling methods for bayesian fil-
tering. Statistics and computing, 10(3):197–208,
2000.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 779

[31] M. Elad and A. Feuer. Superresolution restoration
of an image sequence: adaptive filtering approach.
IEEE Transactions on Image Processing, 8(3):387–
395, 1999.

[32] B. Friedlander. The root-music algorithm for direc-
tion finding with interpolated arrays. Signal pro-
cessing, 30(1):15–29, 1993.

[33] M. Hassanalian and A. Abdelkefi. Classifications,
applications, and design challenges of drones: A re-
view. Progress in Aerospace Sciences, 91:99 – 131,
2017.

[34] K. Joshi, S. Hong, and S. Katti. Pinpoint: Localiz-
ing interfering radios. In Usenix NSDI, 2013.

[35] R. E. Kalman. A new approach to linear filtering
and prediction problems. Journal of basic Engi-
neering, 82(1):35–45, 1960.

[36] N. Kargas, F. Mavromatis, and A. Bletsas. Fully-
coherent reader with commodity sdr for gen2 fm0
and computational rfid. IEEE Wireless Communi-
cations Letters, 4(6):617–620, 2015.

[37] K. I. Kim and Y. Kwon. Single-image super-
resolution using sparse regression and natural im-
age prior. IEEE transactions on pattern analysis &
machine intelligence, (6):1127–1133, 2010.

[38] A. Kong, J. S. Liu, and W. H. Wong. Sequen-
tial imputations and bayesian missing data prob-
lems. Journal of the American statistical associ-
ation, 89(425):278–288, 1994.

[39] M. Kotaru and S. Katti. Position tracking for virtual
reality using commodity wifi. IEEE CVPR, 2017.

[40] R. Kronberger, T. Knie, R. Leonardi, U. Dettmar,
M. Cremer, and S. Azzouzi. Uhf rfid localization
system based on a phased array antenna. In Anten-
nas and Propagation (APSURSI), 2011 IEEE In-
ternational Symposium on, pages 525–528. IEEE,
2011.

[41] X. Li, Y. Zhang, and M. G. Amin. Multifrequency-
based range estimation of rfid tags. In RFID, 2009
IEEE International Conference on, pages 147–154.
IEEE, 2009.

[42] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, Y. Taguchi,
T. K. Marks, and R. Chellappa. Fast object localiza-
tion and pose estimation in heavy clutter for robotic
bin picking. The International Journal of Robotics
Research, 31(8):951–973, 2012.

[43] G. Loianno, C. Brunner, G. McGrath, and V. Ku-
mar. Estimation, control, and planning for aggres-
sive flight with a small quadrotor with a single cam-
era and imu. IEEE Robotics and Automation Let-
ters, 2(2):404–411, 2017.

[44] C. Luis and J. L. Ny. Design of a trajectory
tracking controller for a nanoquadcopter. CoRR,
abs/1608.05786, 2016.

[45] Y. Ma, N. Selby, and F. Adib. Minding the billions:
Ultrawideband localization for deployed rfid tags.
ACM MobiCom, 2017.

[46] B. R. Mahafza. Radar systems analysis and design
using MATLAB. Chapman & Hall, 2013.

[47] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei,
and P. Abbeel. Cloth grasp point detection based
on multiple-view geometric cues with application
to robotic towel folding. In Robotics and Automa-
tion (ICRA), 2010 IEEE International Conference
on, pages 2308–2315. IEEE, 2010.

[48] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei,
and P. Abbeel. Cloth grasp point detection based
on multiple-view geometric cues with application
to robotic towel folding. In 2010 IEEE Inter-
national Conference on Robotics and Automation,
pages 2308–2315, May 2010.

[49] G. Mao, B. Fidan, and B. D. Anderson. Wireless
sensor network localization techniques. Computer
networks, 51(10):2529–2553, 2007.

[50] W. Mao, J. He, and L. Qiu. Cat: High-precision
acoustic motion tracking. In Proceedings of the
22Nd Annual International Conference on Mobile
Computing and Networking, MobiCom ’16, pages
69–81, New York, NY, USA, 2016. ACM.

[51] R. Miesen, F. Kirsch, and M. Vossiek. Holographic
localization of passive uhf rfid transponders. In
RFID (RFID), 2011 IEEE International Confer-
ence on, pages 32–37. IEEE, 2011.

[52] B. Narayanan, R. C. Hardie, K. E. Barner, and
M. Shao. A computationally efficient super-
resolution algorithm for video processing using
partition filters. IEEE Transactions on Circuits
and Systems for Video Technology, 17(5):621–634,
2007.

[53] M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang.
A total variation regularization based super-
resolution reconstruction algorithm for digital
video. EURASIP Journal on Advances in Signal
Processing, 2007(1):074585, 2007.

780 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[54] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. Land-
marc: indoor location sensing using active rfid.
Wireless networks, 10(6):701–710, 2004.

[55] Z. Nitzan, D. Lavee, and G. Guri. Battery-assisted
backscatter rfid transponder, July 1 2008. US Patent
7,394,382.

[56] P. Pannuto, B. Kempke, and P. Dutta. Slocalization:
sub-µw ultra wideband backscatter localization. In
Proceedings of the 17th ACM/IEEE International
Conference on Information Processing in Sensor
Networks, pages 242–253. IEEE Press, 2018.

[57] J. R. Cannon and E. Miles. Utilizing human vision
and computer vision to direct a robot in a semi-
structured environment via task-level commands.
In Intelligent Robots and Systems, IEEE/RSJ In-
ternational Conference on(IROS), volume 01, page
366, 08 1995.

[58] Z. Sahinoglu, S. Gezici, and I. Gvenc. Ultra-
wideband Positioning Systems: Theoretical Limits,
Ranging Algorithms, and Protocols. Cambridge
University Press, New York, NY, USA, 2011.

[59] T.-J. Shan, M. Wax, and T. Kailath. On spatial
smoothing for direction-of-arrival estimation of co-
herent signals. IEEE Trans. on Acoustics, Speech
and Signal Processing, 1985.

[60] L. Shangguan and K. Jamieson. The design and
implementation of a mobile rfid tag sorting robot.
In ACM MobiSys, pages 31–42, 2016.

[61] L. Shangguan and K. Jamieson. Leveraging elec-
tromagnetic polarization in a two-antenna white-
board in the air. In ACM CoNEXT, 2016.

[62] R. Srinivasan. Importance Sampling: Applications
in Communications and Detection. Springer Berlin
Heidelberg, 2013.

[63] S. Thrun. Particle filters in robotics. In Proceedings
of the Eighteenth conference on Uncertainty in ar-
tificial intelligence, pages 511–518. Morgan Kauf-
mann Publishers Inc., 2002.

[64] B. C. Tom and A. K. Katsaggelos. Reconstruc-
tion of a high-resolution image by simultaneous
registration, restoration, and interpolation of low-
resolution images. In icip, page 2539. IEEE, 1995.

[65] R. Tsai. Multiframe image restoration and regis-
tration. Advance Computer Visual and Image Pro-
cessing, 1:317–339, 1984.

[66] U. Tureli, H. Liu, and M. D. Zoltowski. Ofdm blind
carrier offset estimation: Esprit. IEEE Transactions
on communications, 48(9):1459–1461, 2000.

[67] US Department of Defense. Department of De-
fense Announces Successful Micro-Drone Demon-
stration. https://dod.defense.gov/News/News-
Releases/News-Release-
View/Article/1044811/department-of-
defense-announces-successful-micro-drone-
demonstration/.

[68] D. Vasisht, S. Kumar, and D. Katabi. Decimeter-
level localization with a single wifi access point. In
Usenix NSDI, 2016.

[69] J. Wang, F. Adib, R. Knepper, D. Katabi, and
D. Rus. RF-Compass: Robot Object Manipulation
Using RFIDs. In ACM MobiCom, 2013.

[70] J. Wang and D. Katabi. Dude, where’s my card? rfid
positioning that works with multipath and non-line
of sight. In ACM SIGCOMM, 2013.

[71] J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: vir-
tual touch screen in the air using rf signals. In ACM
SIGCOMM, 2015.

[72] T. Wei and X. Zhang. Gyro in the air: tracking 3d
orientation of batteryless internet-of-things. In Pro-
ceedings of the 22nd Annual International Confer-
ence on Mobile Computing and Networking, pages
55–68. ACM, 2016.

[73] J. Xiong and K. Jamieson. ArrayTrack: a fine-
grained indoor location system. In Usenix NSDI,
2013.

[74] H. Yang and A. Kak. Determination of the identity,
position and orientation of the topmost object in a
pile: Some further experiments. In Proceedings.
1986 IEEE International Conference on Robotics
and Automation, volume 3, pages 293–298, April
1986.

[75] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and
Y. Liu. Tagoram: Real-time tracking of mobile rfid
tags to high precision using cots devices. In ACM
MobiCom, 2014.

[76] J. Zhou and J. Shi. Rfid localization algorithms and
applicationsa review. Journal of intelligent manu-
facturing, 20(6):695–707, 2009.

[77] J. Zhou, H. Zhang, and L. Mo. Two-dimension lo-
calization of passive rfid tags using aoa estimation.
In Instrumentation and Measurement Technology
Conference (I2MTC), 2011 IEEE, pages 1–5. IEEE,
2011.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 781

Many-to-Many Beam Alignment in Millimeter Wave Networks

Suraj Jog, Jiaming Wang, Junfeng Guan, Thomas Moon, Haitham Hassanieh, Romit Roy Choudhury
University of Illinois at Urbana Champaign

{sjog2, jw27, jguan8, tmoon, haitham, croy}@illinois.edu

Abstract

Millimeter Wave (mmWave) networks can deliver multi-Gbps
wireless links that use extremely narrow directional beams.
This provides us with a new opportunity to exploit spatial
reuse in order to scale network throughput. Exploiting such
spatial reuse, however, requires aligning the beams of all
nodes in a network. Aligning the beams is a difficult pro-
cess which is complicated by indoor multipath, which can
create interference, as well as by the inefficiency of carrier
sense at detecting interference in directional links. This pa-
per presents BounceNet, the first many-to-many millimeter
wave beam alignment protocol that can exploit dense spatial
reuse to allow many links to operate in parallel in a confined
space and scale the wireless throughput with the number of
clients. Results from three millimeter wave testbeds show
that BounceNet can scale the throughput with the number
of clients to deliver a total network data rate of more than
39 Gbps for 10 clients, which is up to 6.6× higher than current
802.11 mmWave standards.

1 Introduction
Millimeter wave (mmWave) is emerging as the de facto tech-
nology for next generation wireless networks [24, 35]. The
abundance of bandwidth available in mmWave frequencies
(above 24 GHz) led to the design of wireless radios that can
operate at several Gbps [2, 39, 56] and the wireless industry
is constantly pushing towards incorporating these radios in
wireless products [7, 8, 24, 25, 27, 50]. Hence, mmWave will
significantly change the future of wireless LANs by deliver-
ing links at fiber-like speed. This will allow wireless LANs
to handle the surge in IoT and mobile devices. Furthermore,
it will enable new applications like multi-user wireless VR
for education, professional training, and multiplayer games,
where high bandwidth data must be streamed to each user
in real-time [1, 11, 29]. It will also enable large scale robotic
factory automation where many robots stream continuous
real-time video back to servers that run AI algorithms and
generate decisions to coordinate the robots [34, 57].

Enabling the above vision, however, requires scaling
mmWave networks from a single communication link to a
network of many links without compromising the throughput
of each user. Fortunately, mmWave radios use very directional
steerable narrow beams to focus their power. This presents a
significant new opportunity for exploiting dense spatial reuse

AP AP2AP1

(a) Traditional Wireless LAN (b) Millimeter Wave Wireless LAN

AP3

Figure 1: Spatial reuse in traditional WiFi vs mmWave networks.

to enable many links to simultaneously communicate at multi-
Gbps data rates without interfering. Consider the example
shown in Fig. 1. In the current broadcast model for 802.11
WLANs, whenever a node is transmitting, all other nodes
must stay silent to avoid interference. With more users, the
throughput is divided since the entire medium is shared. In
contrast, the use of very narrow beams in mmWave networks
allows several APs and clients to transmit and receive simulta-
neously on the same channel without interfering as shown in
Fig. 1(b). Hence, mmWave can potentially scale the network
throughput with the number of users by adding more APs.

The directional nature of communication, however, brings
its own new challenges. Millimeter wave APs and clients need
to align their narrow beams towards each other in order to
communicate at very high data rates. Past mmWave research
focused on developing algorithms and protocols to quickly
find the best direction to align the beams for a single commu-
nication link [1,23,41,49,53,64]. However, in a network with
multiple links, selfishly choosing the best alignment for each
AP-client pair independent of other APs and clients can create
interference that severely harms the throughput of interfering
links. First, due to multipath reflections, even if two nodes are
transmitting in completely different directions, their packets
might still collide. The problem is further complicated by the
fact that carrier sense is ineffective at detecting interference
since the narrow beams prevent mmWave radios from hearing
nearby transmissions unless these transmissions are specifi-
cally directed towards them. Hence, we can rely on neither
carrier sense nor the direction in which the nodes transmit to
avoid interference.

In this paper, we introduce BounceNet, the first many-
to-many millimeter wave beam alignment protocol that effi-
ciently aligns the beams of many APs and clients in a manner
that allows them to simultaneously communicate without in-
terfering. To achieve this, we must address two key questions:

(1) How does BounceNet align the beams of all the APs

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 783

and clients in 3D space to densely pack as many links as
possible? The challenge arises from the fact that the choice of
beam alignment at any node is intertwined with the choices at
other APs and clients. To address this, BounceNet leverages
the sparsity in the mmWave channel. There is much past work
that shows that mmWave signals travel along a small number
of paths, e.g., 2 or 3 paths [5, 48]. This means that there is
a small number of paths connecting any two nodes in the
network. BounceNet leverages this sparsity to reformulate the
problem as a signal level routing problem at the physical layer
where wireless signals are routed along different “air paths”
in a manner that avoids interference and maximizes network
throughput. Routing physical signals is possible in mmWave
due to the lack of scattering effects at such high frequencies
which ensures the signal reflects off obstacles and does not
scatter in many directions [48]. Hence, BounceNet can choose
to route the signal along an isolated path by aligning the
narrow beam towards that path.

By choosing a combination of direct and reflected paths
to route the wireless signals, BounceNet can align the beams
of all APs and clients in the network. While this allows it to
maximize the number of links that can operate concurrently
without interfering, it forces some APs and clients to com-
municate along reflected paths which typically achieve lower
data rates. To address this issue, BounceNet generates several
combinations of beam alignments and schedules them in dif-
ferent time slots; i.e., the transmissions of the links are routed
along different paths in each time slot to ensure that each
client gets high data rate while still maximizing the number
of links that can operate simultaneously. BounceNet jointly
solves the alignment and scheduling problems. We also model
paths belonging to the same link as a supernode in a multi-
layer conflict graph and weight them by the SNR of the path.
This ensures that paths which deliver higher data rates are
used more often as we describe in detail in section 6.

(2) How does BounceNet quickly learn the paths and in-
terference patterns in order to adapt the beam alignment in
dynamic and mobile environments? In dynamic environments,
the propagation paths and the interference patterns constantly
change. Thus, we must periodically perform a beam search to
learn the directions of the paths along which an AP and client
can communicate.1 BounceNet must also learn the propaga-
tion paths that can result in interference between two links
and, hence, needs to perform the beam search between all APs
and clients in the network to learn all the possible paths. Past
work has shown how to leverage sparsity to quickly learn the
paths without scanning all directions and reduce the search
time to a millisecond [23, 49]. However, for a network of N
APs and clients, this process must be performed O(N2) times.
For N = 10, even with fast algorithms like [23, 49], the over-
head is 100 ms which is prohibitively expensive especially at
multi-Gbps data rates.

1Typically, the beam search is repeated every 100 ms in current standards
like 802.11ad in order to track mobile users and maintain alignment.

Instead of performing the search independently for all APs
and clients, BounceNet redesigns the beam search protocol
to jointly find all the paths between the nodes. BounceNet
coordinates the APs’ transmissions and then shares their mea-
surements over the Ethernet which allows it to amortize the
cost of the search and reduce it to O(N). Since the beam
search is inherent to mmWave and is required to maintain
connectivity between clients and APs, BounceNet’s design
does not introduce additional overhead compared to current
standards. This allows BounceNet to quickly learn the paths
and reconfigure the beam alignment to maintain high through-
put as we describe in detail in section 5.

Implementation & Results: We have designed BounceNet
to be backward compatible with the current mmWave wire-
less LAN standard 802.11ad/ay making it easy to integrate
into future standards. Our design also addresses several prac-
tical challenges like side-lobe leakage from imperfect beam
patterns and interference estimation. We have implemented
BounceNet by using extensive real measurements from three
indoor wireless testbeds:
• A 60 GHz testbed with 3◦ beam directional antennas.
• A 60 GHz testbed with 12◦ beam directional antennas.
• A 24 GHz testbed with 8-element phased arrays.
For a testbed with 10 APs and clients packed in an area

of 860 sq.ft., our results show that BounceNet can scale the
overall network data rate with the number of clients deliv-
ering over 39 Gbps for 10 clients. Furthermore, compared
to the current 802.11ad standard that exploits spatial reuse,
BounceNet can increase the average client throughput by
6.6×, 5×, and 3.1× for each of the above testbeds respec-
tively. Compared to a baseline that aligns the beams of each
link independent of other links, BounceNet increases the av-
erage client throughput by 1.27×, 2.7×, and 3.4× for each
of the above testbeds respectively. BounceNet also improves
the minimum data rate among all clients by up to 13.5×
compared to the baseline which can create interference that
severely harms some clients. Finally, Fig. 2 shows an example
snapshot of a time slot where BounceNet exploits multipath to
enable all 10 APs and clients, in the 60 GHz testbed with 12◦

beams, to communicate at the same time without interfering,
hence demonstrating BounceNet’s ability to enable extreme
spatial reuse.

Contributions: We make the following contributions:
• We present the first many-to-many beam alignment pro-

tocol that can efficiently align the beams of a network of
APs and clients to maximize the number of links that can
operate concurrently.

• We demonstrate the opportunity of routing physical sig-
nals along different paths that bounce off the environment
to improve the spatial reuse of the network. We harness
this opportunity to design new algorithms that maximize
network throughput while maintaining a lower bound of
fairness for each client.

784 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C1C2

C3

C4

C5
C6

C7C8

C10
C9

A1A2A4 A3A5A7 A6A8A9A10

AP Client Cabinet

Figure 2: Example of BounceNet’s signal routing in practice.

• We extensively evaluate our system through micro-
benchmark measurements, trace-driven simulations, and
experiments using 3 testbeds. Our results demonstrate the
first design of a wireless LAN that can deliver more than
39 Gbps to 10 clients.

2 Related Work

Millimeter Wave Networks: BounceNet is related to recent
work on increasing the speed and robustness of beam align-
ment in mmWave networks to enable mobility [19, 20, 23, 41,
42,49,53,63–65] and avoid blockage [1,31,32,41,52,54,61].
All this work, however, focuses on a single communication
link. BounceNet is the first to demonstrate many-to-many
beam alignment. It is complementary to these systems and
can benefit from faster beam search to discover the paths
between nodes.

BounceNet also builds on past work in mmWave that uses
60 GHz wireless links in data centers [12,21,66] and leverages
reflections off the ceiling to improve the throughput and avoid
blockage [12]. Data centers, however, have static and known
topologies with predictable interference models [12], and this
does not hold in 802.11 LANs where the clients can move.

Our work is also related to recent mmWave work that de-
ploys multiple APs to deal with blockage [60, 62]. [60] lever-
ages multiple APs and allows clients to switch between them
whenever blockage occurs in VR applications. However, it
requires brute-force training to map all reflectors in the en-
vironment and relies on sensors in VR headsets to track the
direction of users. [62] addresses blockage by having multiple
APs jointly transmit the same signal to the clients. However,
the method works only for downlink traffic and requires phase
and frequency synchronization to ensure the signals sum up
coherently. Achieving such level of synchronization is diffi-
cult and adds significant complexity to the design [22, 46].
BounceNet opts for a simpler design that scales the throughput
of the network for both downlink and uplink traffic without

requiring phase, frequency or packet level synchronization. It
also learns the reflected paths in real-time.

Some recent simulation-based work for mmWave wire-
less PANs (Personal Area Networks) [3, 4, 17, 18, 44, 58] and
mmWave mesh networks [38] tries to exploit spatial reuse.
However, these solutions assume that the exact locations of the
nodes are known a priori and can be used to compute the inter-
ference between links while ignoring multipath. BounceNet,
on the other hand, designs and empirically tests a system that
can work in the presence of multipath without prior assump-
tions of the clients’ locations.

Finally, [14, 16] use MU-MIMO in mmWave and demon-
strate concurrent transmissions to two clients from one MU-
MIMO AP. BounceNet’s beam alignment algorithm is com-
plementary to MU-MIMO and can benefit from having APs
that support MU-MIMO to further scale the gains.

Enterprise WiFi and WLANs with Directional Antennas:
Past work has designed protocols for mobile ad-hoc networks
and WLANs with directional antennas [9,10,28,33]. However,
past work can support only large cone beams (e.g. 45◦ and
60◦ cones) at data rates of at most tens of Mbps. The scale
of the problem is far more extreme in mmWave with narrow
pencil beams of few degrees to sub-degree beamwidth at data
rates of multi-Gbps. Hence, the overhead of past protocols can
be prohibitively expensive in mmWave. Moreover, most of
these protocols assume the locations of the nodes are known
and ignore multipath [9, 10, 28].

The closest to our work is [33] which leverages directional
phased arrays at 2.4 GHz to increase spatial reuse. How-
ever, [33] assumes only APs to have directional antennas
which simplifies the problem since the clients can easily per-
form interference detection in the omnidirectional mode. Fur-
thermore, the scheduling algorithm in [33] is exponential in
the number of APs and hence is only shown to work for 3.

Past work had designed centralized scheduling algorithms
for enterprise WiFi networks [51]. However, WiFi networks
are omni-directional. Extending past algorithms to deal with
directionality is non-trivial since the interference or conflict
graph used for scheduling is itself dependent on the choices
of beam alignment and there is a combinatorial number of
choices as we discuss in section 5. BounceNet jointly solves
the beam alignment and scheduling problems to deliver an
efficient algorithm.

3 Background
BounceNet is designed to be backward compatible with
802.11 millimeter wave standards for indoor wireless LANs.
In this section, we provide a brief overview of the 802.11ad
standard for 60 GHz networks [26, 40].2

2Note that another standard in the works is 802.11ay. However, it fully
inherits the same PHY and MAC structure of 802.11ad. The main difference
is the introduction of MIMO [15].

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 785

!"# $"# "%&'()*+, "%&'()*+, "%&'()*+, "%&'()*+, "%&'()*+,

!'-.+/(#/,'01-*

"%&'

2-,-("0-/3&%33%+/(#/,'01-*!'-.+/(4'-5'0

$6!7" !"# $6!7"

Figure 3: 802.11ad/ay Beacon Interval Structure.

The standards divide time into transmission cycles typically
referred to as Beacon Intervals (BI) which consist of two
phases shown in Fig. 3. The first is the association phase
which is referred to as the Beacon Header Interval (BHI). It
is used to associate the clients with the AP and perform beam
alignment. The second is the transmission phase which is
referred to as Data Transmission Interval (DTI) where time
slots are allocated for communication between the AP and
associated clients. We will first describe these phases for the
case of a single AP and multiple clients. We will then extend
our description to multiple APs.

A. Association Phase:
The beacon header shown in Fig. 3 is used to associate the

clients with the AP and perform beam alignment so that both
the clients and the AP know which direction they should point
their beam during data transmission.

The beacon header starts with a Beacon Transmission In-
terval (BTI) where the AP transmits announcement frames
in all directions by sequentially sweeping its narrow beam
along different sectors. During this time, the clients listen to
the channel in all directions using a quasi-omnidirectional
beam pattern so that they can receive packets from all paths.
The announcement frames are marked with the sector ID
along which they are sent allowing each client to discover the
directions which the AP can use to send it data packets.

BTI is then followed by Association Beamform Training
(A-BFT) which reverses the above operation. The AP uses a
quasi-omnidirectional beam pattern so that it can hear clients
from all directions while the clients sweep their narrow beam
along different sectors. This allows the AP to discover the
beam directions which the client can use to send its data
packets and send it feedback to inform it of these directions.
A-BFT is divided into multiple slots. Each client selects a
random slot to perform its sweep. If two clients collide in an
A-BFT slot, they will not get feedback from the AP and they
can try again in another random slot.

The above process enables the AP and client to align their
beams towards each other so that they can boost their SNR
and use very high data rates for data transmission. However,
during this association phase and before aligning their beams,
the AP and clients use a control PHY with a low data rate of
27.5 Mbps to ensure the frames can be decoded correctly at
low SNR. The beacon header finally ends with Announcement
Transmission Interval (ATI), where the AP and associated
clients exchange control frames such as information regarding
time slots that have already been allocated to the client.

Association Phase

Data Transmission Phase

BounceNet

AP Beam Scan Client Beam Scan

Many-to-Many Beam Alignment

Mutipath
Discovery

Interference
Estimation

AP-Client
Assignment

Direct Path
Routing

SIGNAL ROUTING
Indirect Path

Routing

Learning Paths & Interference

Figure 4: BounceNet’s System Architecture.

B. Transmission Phase:
The data transmission interval (DTI) is divided into time

slots. The AP either uses TDMA to allocate each slot to a
certain client or it allows the clients to contend for each time
slot using CSMA. CSMA, however, does not work for direc-
tional networks [9, 33]. Hence, TDMA is more commonly
used especially for video streaming applications where clients
require dedicated slots in every beacon interval to ensure high
quality and reliability.

For data transmission, the standard provides 32 different
modulation and coding schemes (MCS) including single car-
rier modulation and OFDM modulation. Commercial prod-
ucts, however, adopt single carrier modulation due to the high
power consumption of OFDM [45, 55]. Hence, in this pa-
per, we will focus on single carrier: MCS1 to MCS12 which
provide data rates between 385 Mbps and 4.62 Gbps [26].

C. Multiple Access Points:
In the case of multiple APs, a lead AP is selected. The lead

AP divides the beacon interval into smaller beacon intervals
called beacon service periods (BSP). Each BSP has its own
beacon header and data transmission period and it is allocated
to one AP. All other APs must stay silent during this service
period. In order to enable spatial reuse, the lead AP can allo-
cate a service period to two APs and request that they measure
mutual interference and report back. If no interference occurs,
it allocates the same service period to these APs in subsequent
beacon intervals. Unfortunately, our results show that such
a greedy mechanism for exploiting spatial reuse is unable to
scale the network throughput with the number of clients.

4 BounceNet Overview
BounceNet’s goal is to align the beams of all APs and clients
in the network in a manner that maximizes spatial reuse. This
allows WLANs to add additional APs to quickly scale their
throughput with the number of clients.

We have designed the BounceNet protocol to support inde-
pendent flows. This means that for an AP-client pair that is
assigned to communicate along a path in a time slot, its link
flow runs independently of other links for that time slot. The
AP and client can transmit packets on the uplink or downlink
without interfering with other links. The pair does not have to
share any data packets or synchronize the individual packet
transmissions with other APs or clients.

786 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

BounceNet is also backward compatible with 802.11ad/ay.
It maintains the same high-level structure. BounceNet’s ar-
chitectural flow is shown in Fig. 4. It uses a controller that
sits between the association phase and the data transmission
phase of the protocol. BounceNet uses association phase to
learn the paths and interference in the network and then runs
its signal routing algorithm which dictates the many-to-many
beam alignment in the data transmission phase.

BounceNet starts with an association phase similar to
802.11 where the APs and clients sweep their beams to col-
lect information about the directions in which their signals
can reach other APs and clients. This information is then
aggregated at the APs, and fed to the BounceNet controller
which allows it to discover all the paths connecting any two
nodes in the network. We refer to this as multipath discovery
(Section 5.1). BounceNet then uses the phased array beam
patterns and the learned paths to estimate the interference
created by routing signals along each path (Section 5.2).

BounceNet uses the results to route physical signals along
propagation paths in a manner that maximizes the number of
AP-clients pairs that can communicate simultaneously. Ide-
ally, we would have liked to treat all APs as one large AP
with many paths to all clients and find the optimal routing.
However, this significantly increases the complexity of the
problem and will require very fast handoff between APs to
allow clients to switch APs within a beacon interval.3 Hence,
BounceNet assigns a single AP to each client for communica-
tion during the entire Beacon Interval.

To reduce the complexity of the system and ensure fairness,
BounceNet performs signal routing in three stages:
• Stage 1: Associate each client to communicate with one AP

for the duration of the entire beacon interval. (Section 6.1)
• Stage 2: Route the signal of each AP-client pair along

their direct or highest throughput path in a manner that
maximizes the number of links that can communicate in a
given time slot without interfering. (Section 6.2)

• Stage 3: Route additional signals of AP-client pairs along
their indirect paths to increase throughput without interfer-
ing with existing transmissions. (Section 6.3)
The above signal routing results in several beam alignments

that are used for transmissions between APs and clients during
each time slot of the data transmission phase. The entire
process is repeated every beacon interval to adapt to changes
in the environment and accommodate client mobility.

5 Learning Paths & Interference
BounceNet must first map all the paths between all nodes in
the network and discover the potential interference between
paths. Typically, for a network with N APs and N clients, this
would require collecting O(N2) measurements. BounceNet

3Such fast handoffs are not feasible in mmWave networks because they
require transferring the buffer at one AP to another AP at the time scale of
few ms which would overwhelm the backhaul.

Algorithm 1 BounceNet Multipath Discovery
N← Number of APs
∀ Clients → Set quasi-omnidirectional beam
∀ APs → Set quasi-omnidirectional beam
Begin BTI:
for m ∈ {1, · · · ,N} do

AP(m)→ Set directional beam
for θ ∈ Sectors do

AP(m)→ Transmit frame in direction θ

∀ Clients & APs
if Frame Received then

Paths.AP(m){θ}← SNR
AP(m)→ Set quasi-omnidirectional beam

Begin A-BFT:
Repeat the above process for clients.
Report Paths back to APs in transmitted frames.

instead redesigns the 802.11ad/ay protocol and exploits its
beam alignment phase to extract all the paths from O(N)
measurements that are already part of the standard protocol.

5.1 Multipath Discovery
As described earlier, in case of multiple APs, the current
standard divides the beacon interval into smaller beacon
intervals and dedicates each interval to one AP. Instead,
BounceNet aggregates them into one beacon interval with one
beacon header and one data transmission interval. In particu-
lar, BounceNet only expands the BTI, shown in Fig. 3, to allow
all APs to perform their beam scan of sequentially sweeping
all sectors. While an AP is performing a sweep, all other
clients and APs set their antenna to a quasi-omnidirectional
mode and record the sector IDs of the frames they receive
along with the SNR of the signals. A-BFT is then performed
by assigning each client to a slot. While some client is per-
forming its sweep, all other clients and APs set their beam
to quasi-omnidirectional and record the sector IDs and SNRs
of the frames received from the client. Algorithm 1 shows
pseudocode for BounceNet’s association phase.

The above process recovers a list of directions from which
any node (AP or client) in the network can reach any other
node. However, this might not be sufficient for discovering
the paths between an AP and a client. Consider the example
shown in Fig. 5(a) where there are three paths between an
AP and a client. During BTI, we discover that the AP can
reach the client by transmitting in one of three directions: 30◦,
60◦ or 150◦ as shown in Fig. 5(b). During A-BFT, we dis-
cover that the client can reach the AP by transmitting in one
of three directions: 30◦, 110◦ or 150◦ as shown in Fig. 5(c).
Unfortunately, since we do not know the position and orienta-
tion of the client, we do not know which direction at the AP
corresponds to which direction at the client.

To address this, BounceNet needs to match the directions
corresponding to the same paths by correlating the SNRs

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 787

C

AP

C

AP

C

AP

(a) 3 Paths connecting
AP and client

(b) Directions from AP
side after BTI

(c) Directions from
client after A-BFT

30o
110o

150o

30o
60o

150o

Figure 5: Multipath Discovery in BounceNet.

recorded from the client side and from the AP side. For in-
stance, the directions corresponding to the direct path can
be easily identified since typically the direct path delivers
significantly higher SNR compared to indirect paths as we
empirically show in Fig. 14(a) in section 8. However, in some
cases, there could be two indirect paths that show similar
SNR values (within 1 dB of each other). In such situations,
correlation might lead to erroneous matching due to the in-
herent noise in SNR measurements. Fortunately though, as
we show in section 8, the number of reflected paths between
a pair of nodes in millimeter wave is quite small, e.g. 1 to 2
paths [5, 48]. Hence, at most, only two paths would remain
ambiguous after the correlation step. BounceNet can then
leverage the beam refinement option in 802.11ad which al-
lows AP-client pairs to test pairwise directions to resolve such
ambiguity. This incurs four more measurements. However,
these measurements are taken while both AP and client beams
are directional. Hence, they are transmitted at high data rate
and incur negligible overhead.

5.2 Interference Estimation
Once we have discovered all the paths between the nodes in
the network, we can estimate the interference caused by using
any two paths simultaneously. BounceNet defines interference
between paths as opposed to between nodes. If two paths
interfere, then signals cannot be simultaneously routed along
these two paths. We would like to keep the flows independent
and avoid synchronization. Hence, at any point in time, both
paths can be used to transmit uplink traffic, downlink traffic,
or one path is used on the uplink while the other is used on
the downlink. Consider a path between AP 1 and client 1 and
another path between AP 2 and client 2 as shown in Fig. 6.
Interference can occur in one of four cases: between AP 1
and AP 2, client 1 and client 2, AP 1 and client 2, or AP 2 and
client 1 if there is a path connecting any of these pairs.

Formally, each path is defined by two angles corresponding
to the direction from which it leaves one node and arrives at
another node. We distinguish two types of paths:
• Communications Paths: defined as (θAPi,θCi) between AP

1 and client 1 as well as between AP 2 and client 2.
• Interference Paths: defined as (φAPi,φC j) between AP 1

and client 2 or AP 2 and client 1. They can also be defined
as (φAPi,φAP j) or (φCi,φC j).

C2

AP1AP2

C1

Figure 6: Estimating Interference using phased array beam patterns.

Ideally, it would be sufficient to check the directions of the
paths to discover if interference occurs. Suppose AP 1 and
client 1 can communicate along the path (θAP1,θC1) and AP
2 and client 2 communicate along the path (θAP2,θC2). In
this case, for example, AP 2 will create interference at client
1 only if there exists an interference path (φAP2,φC1) where
φAP2 is in the direction of θAP2 and φC1 is in the direction of
θC1. A similar rule can be used to detect interference between
the other pairs.

Unfortunately, such a simple interference detection scheme
will not work in practice. This is because the antenna beam
patterns are not ideal cones. They have side lobes and can
leak signal in other directions. Consider the example in Fig. 6,
while AP 2 is transmitting in direction θAP2 = 90◦, its signal
might leak along another direction φAP2 = 160◦ and reach
client 1. To address this, BounceNet incorporates the phased
array transmit and receive beam patterns into its interference
estimation.4 Specifically, to estimate interference between any
pair of nodes, we consider all the interference paths between
the two nodes and weight them by the beam pattern gains.
Formally, when AP 2 directs its beam towards client 2 in
the direction θAP2, it will have a beam pattern of BθAP2(φ).
Similarly, when client 1 directs its beam towards AP 1 in the
direction θC1, it will have a beam pattern of BθC1(φ). The
interference created by AP 2 on client 1 due to an interference
path P = (φAP2,φC1) can be calculated as:

BθAP2(φAP2) ·BθC1(φC1) ·SNR(P)

where SNR(P) is the normalized SNR5 of the path P from
AP 2 to client 1 measured during multipath discovery.

The maximum interference AP 2 causes can then be es-
timated as the constructive sum of leakage along all paths
between AP 2 and client 1:

INR = ∑
P=(φAP2,φC1)

BθAP2(φAP2) ·BθC1(φC1) ·SNR(P)

where INR is the interference-to-noise ratio. BounceNet re-
peats this estimation eight times: from AP 1 to AP 2 and client
2, from AP 2 to AP 1 and client 1, from client 1 to AP 2 and

4Such patterns can be modeled or measured to account for imperfections
in the mmWave phased arrays.

5The SNR is normalized by the antenna beam patterns used during the
measurement of the SNR value in the multipath discovery phase.

788 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

client 2 and from client 2 to AP 1 and client 1. BounceNet
then defines the INR between the two communication paths
as the maximum INR of all these 8 values.

Two points are worth noting:
• The above interference estimation does not assume to know

the location or orientation of the APs or the clients. It
also does not rely on knowing the room geometry or the
use of ray tracing. It only requires the direction of the
propagation paths (φ1,φ2) between nodes in the network
and the associated signal strength along the paths.

• BounceNet is able to constantly maintain an up-to-date
view of the multipath and interference pattern in the net-
work since it obtains fresh measurements from the AP and
client sweeps at the start of every Beacon Interval (which is
approximately 100 ms). This feature allows BounceNet to
deal with dynamic network conditions and accommodate
for client mobility.

6 BounceNet’s Signal Routing
Once BounceNet knows all the paths connecting the nodes
and all the interference between the paths, it can route signals
to/from clients in a manner that maximizes the number of
AP-client pairs that can communicate in parallel. The choice
of routing will govern the many-to-many beam alignment.
BounceNet simplifies the problem by dividing it into three
stages: AP-Client Association, Direct Path Routing, and Indi-
rect Path Routing. We will elaborate on each stage below.

6.1 AP-Client Association

In the first stage, our goal is to associate each client to one AP
for communication during the subsequent Data Transmission
Phase of the Beacon Interval. Each client can associate with
one AP, whereas each AP can serve multiple clients. Hence,
for a network with N APs and N clients, we have NN possi-
ble assignments. Trying all assignments is computationally
infeasible. Thus, we develop an algorithm that sequentially
assigns the clients to APs, with the objective of increasing
throughput while minimizing the interference in the network.
The intuition behind our algorithm is based on the following
observations:
• In indoor settings, clients can typically achieve the highest

data rate if they have a direct line-of-sight path to an AP.
Hence, to ensure fairness, we should assign each client to
an AP with a direct line-of-sight path.

• To maximize spatial reuse and throughput, we should avoid
assigning multiple clients to the same AP unless the client
cannot find any unassigned AP with a direct path.
Our algorithm works as follows. For each client,

BounceNet keeps a list of best APs which have a direct path
(high SNR path) to that client. BounceNet starts with the
client with the least number of best APs and assigns it to one
of the APs in its best AP list. It then adds this AP-Client pair

to a list of already assigned links. For every subsequent client,
BounceNet finds an AP from its best AP list such that: (1) the
AP has not yet been assigned to a client, and (2) when com-
municating along their direct path, the AP-Client pair creates
the minimum amount of interference on the direct paths of
the already assigned links.6 If no such AP exists, BounceNet
simply picks the AP from the client’s best AP list that creates
the least interference.

The above algorithm is a best effort algorithm to assign
each client to an AP with a direct path that creates the least
amount of interference between the links. In the worst case,
the best AP list of each client contains N APs. Then, while
assigning the ith client, BounceNet must compute the in-
terference created by choosing one of the N − i remain-
ing APs on the i assigned links. Hence, the complexity is:
∑

N
i=1 (N− i)i = O(N3). This reduces the complexity from ex-

ponential O(NN) to polynomial O(N3).

6.2 Direct Path Routing
Once each client is assigned to an AP, we will have N unique
direct paths. BounceNet starts by routing signals to/from
clients along these direct paths. Decoupling the signal rout-
ing along the direct and reflected paths simplifies the prob-
lem and allows us to ensure fairness among links when it
comes to routing signals through their highest throughput
paths, i.e. their direct paths. In the next section, we will show
how BounceNet routes additional signals along indirect paths
to enhance throughput.

A. Scheduling of Direct Paths
BounceNet uses graphs to solve the problem. It starts by

building the Direct Path Conflict Graph: G(V,E). V repre-
sents the set of vertices in the graph. Each vertex v corre-
sponds to a direct path between an AP-client pair. E repre-
sents the set of edges in the graph. An edge eu,v exists between
vertices u and v if the corresponding paths interfere. We use
the estimation from section 5.2 to compute the interference
between paths, and if the INR > 0 dB, we assign the paths as
interfering.

In each time slot, BounceNet’s goal is to schedule rout-
ing signals along as many paths as possible. Traditionally
scheduling is modeled and solved as a minimum graph color-
ing problem on the conflict graph [30, 36, 47, 59]. This finds
the minimum number of colors required to color the graph
such that no two vertices connected by an edge share the same
color. Thus, paths corresponding to vertices of the same color
can be scheduled and used concurrently in the same time slot.
This will minimize the number of time slots needed to sched-
ule the paths while ensuring that each path gets one time slot
to route signal to/from the client. Fig. 7(a) shows a possible
minimum coloring of a graph which requires 3 colors. This

6The amount of interference is estimated as the sum of the INRs computed
in Section 5.2.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 789

(a) Conflict Graph

(b) Minimum Graph Coloring

P2 P1 P5

P3 P6P4

P2 P1 P5

P3 P4 P6

P2

P1

P6

P5

P3

P2

P5

P4

P2

P1

P5

(c) BounceNet

P2

P1

P6

P5

P3

P2

P5

P4

P2

P1

P5

P5

P6

P2

P4

P3

P1

Figure 7: Scheduling of Direct Paths.

means that we can schedule all paths within 3 time slots as
shown in Fig. 7(b). Since there are 6 paths, this will give 2×
higher throughput than a scheduling which does not utilize
spatial reuse and routes signals only along one path at any
point in time.

B. Fairness in Millimeter Wave Networks
The above formulation can leverage spatial reuse to in-

crease throughput while ensuring that each client gets an
equal share of the time on the channel. This notion of fairness,
however, is suboptimal in mmWave networks and needlessly
wastes throughput. Due to the use of very directional beams
in mmWave networks, the medium is no longer “equally"
shared among all clients. Consider the example in Fig. 7(a).
Paths 2 and 5 do not interfere with any other path and hence
we should route signals through these paths in every time slot.
Not doing so would reduce the throughput without benefit-
ing anyone in the network. On the other hand, paths 4 and 6
share their medium with two other paths since they interfere
with two other paths. Hence, a path should get a share of the
medium which is at least a fraction of the number of paths it
shares its medium with. For example, we should route signals
through paths 4 and 6 in 1/3 of the time slots, whereas we
should route signals through paths 2 and 5 in all time slots
since they interfere with no one.

Formally, if a path interferes with d other paths, it shares
its medium with these d paths and hence should get a share of
at least 1/(d +1). In the conflict graph G, d will correspond
to the degree of the vertex, i.e. the number of edges that the
vertex has. Using this new notion of fairness, we develop an
algorithm to route signals through direct paths in a manner
that achieves higher throughput while maintaining fairness.

C. BounceNet’s Algorithm
BounceNet starts by trying to maximize the number of

paths that can be used in each time slot. Maximizing the
number of paths is theoretically equivalent to solving a maxi-
mum independent set problem. The maximum independent
set refers to the maximum number of vertices that do not share
any edges. For example, in Fig. 7(a), the maximum indepen-

Algorithm 2 BounceNet Scheduling of Direct Paths
G(V,E)← Direct Path Conflict Graph
M← Number of time slots in beacon interval
F1(u) = M ∀u ∈V
for t ∈ {1, · · · ,M} do

Wt ←WEIGHTEDMAXINDEPENDENTSET(G,Ft)
for u ∈Wt do

if Ft(u)> 2(d(u)+1) then
Ft+1(u) = Ft(u)− (d(u)+1)

else
Ft+1(u) = 0

dent set can be formed of paths 1, 2, 4, and 5 since none of
these paths share edges, i.e. none of them interfere. Routing
signals through these paths in every time slot will achieve
the highest possible throughput. However, it will result in
starvation of some clients whose paths are never included in
the maximum independent set, e.g. Path 3 in Fig. 7(a).

Instead, BounceNet uses a variant of the same problem
referred to as the Weighted Maximum Independent Set. The
idea is to give each vertex u a weight F(u)≥ 0. We then find
the set of vertices W that maximize the sum of weights such
that no two vertices in W share an edge. More formally, we
find the set W that satisfies:

maximize ∑
u∈W

F(u) such that ∀u,v ∈W, eu,v /∈ E (1)

BounceNet solves the above optimization problem for every
time slot and schedules to route paths corresponding to the
vertices in W to each of the time slots. After each time slot,
BounceNet decrements the weights of each of the vertices in
W by an amount proportional to the interference it creates
in the network, i.e. the degree of the vertex d. Hence, if we
initialize all the weights equally, then for the first time slot,
BounceNet will pick a Maximum Independent Set. However,
as the algorithm proceeds, the weights of the scheduled paths
keep getting decremented, and eventually paths that interfere
with the paths in the Maximum Independent Set start to get
picked in W , and in turn get scheduled.

Pseudocode of this algorithm is shown in Algorithm 2.
Fig. 7(c) shows an example of the output of BounceNet’s
direct path routing. In this example, BounceNet’s algorithm
achieves 3.66× higher throughput while ensuring fairness, i.e.
each path gets scheduled at least 1/(d +1) of the time.

D. Analysis
If BounceNet wishes to schedule the nodes into M slots, it

initializes all the weights to M. Then, every time a vertex u is
picked, its weight is decremented by d(u)+1 where d(u) is
the degree of this vertex. After this vertex has been picked up
M/(d(u)+1) times, its weight becomes 0. Once the weight
of a vertex becomes zero, its inclusion in W can no longer
help maximize the sum of weights, and hence it does not get

790 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

picked up (or in our context, the path is no longer used) after
that. However, by the time the weight of the vertex reaches
0, it has already been scheduled in 1/(d(u)+1) of the time
slots and hence fairness is achieved. For example, if a vertex
has degree d = 0, i.e. it does not interfere with anyone, it will
be picked up every time since it will always help maximize
the sum of weights. Every time it is picked, its weight is
decremented by 1. Its weight will reach 0 only after it has
been scheduled M times which means it has been scheduled in
all time slots. In Appendix A, we prove the following lemma:
Lemma 6.1 If t = O(M log(NM)), then Ft(u) = 0 ∀u ∈V

Algorithm 2, however, requires solving a Weighted Maxi-
mum Independent Set problem which is NP-hard [13]. This
would require an exponential time algorithm to find the opti-
mal solution, which would be infeasible for any real-time im-
plementation. We use the approximation algorithm from [13]
to solve this problem. Empirically we find that the algorithm
is at most two timeslots worse than optimal. However, in
many cases, the algorithm achieves the optimal. This is be-
cause the sparsity renders the Direct Path Conflict Graphs
in mmWave networks as chordal with very high probability.
Chordal graphs are graphs in which all cycles of four or more
vertices have a chord. For such graphs, [13] is optimal.

6.3 Indirect Path Routing
In this section, we will show how BounceNet will route ad-
ditional signals along indirect multipath routes to increase
the throughput without creating interference to signals being
routed along the direct path.

BounceNet’s indirect path routing is best understood
through an example. Let us consider the direct path schedul-
ing result shown in Fig. 7(c). During the first time slot, paths
1, 2, 5 and 6 were scheduled. Hence, clients 1, 2, 5 and 6 can
communicate on their direct paths during this time slot. Note
that a client can route its signal through only one path during
any time slot. As a result, we only need to consider whether
we can route signals through multipath for clients 3 and 4.

To this end, BounceNet forms an Indirect Path Conflict
Graph. This graph includes vertices corresponding to the
direct paths that have been scheduled as well as vertices cor-
responding to indirect paths of AP-client pairs that have not
been scheduled in this time slot. Fig. 8(a) shows an exam-
ple of this graph where client 3 has two indirect paths to its
AP and client 4 has three indirect paths to its AP. Indirect
path vertices corresponding to the same client are always in
conflict since the client can use only one of those indirect
paths. Hence, vertices corresponding to indirect paths of the
same client form a fully connected subgraph which we will
refer to as a supernode. We then estimate the interference that
the indirect paths can create on direct paths that are already
scheduled as well as other indirect paths.

Direct paths have already been scheduled and hence they
are locked. Any indirect path that interferes with the direct

P5P6

P2

I-P1

P1
I-P2

I-P1

I-P2

I-P3

(a)

I-P1

I-P1
I-P3

(b)

3

4

3

4

Figure 8: Indirect Path Conflict Graph before & after pruning.

path cannot be used in this time slot and hence can be elimi-
nated from the indirect path conflict graph. Thus, BounceNet
prunes the graph by removing all vertices that interfere with
direct paths as well as vertices corresponding to direct paths
as shown in Fig. 8(b). The resulting graph is typically much
smaller and formed only of supernodes and vertices corre-
sponding to indirect paths. BounceNet can route signals
through any of the remaining indirect paths without inter-
fering with signals being routed through the direct paths.

In order to schedule indirect paths, BounceNet uses the
same algorithm as before where it maximizes throughput by
solving a maximum weighted independent set problem on
the Indirect Path Conflict Graph. However, BounceNet has to
take into account two key differences:
• Unlike direct paths where there is small variance in SNR,

the SNR of indirect paths can vary significantly as we will
show in section 8. Hence, BounceNet should give indirect
paths with higher SNR more weight. To do so, BounceNet
gives each supernode a weight of M and divides this weight
among its indirect path vertices in a manner proportional
to the data rate that each indirect path can achieve. For
example, if supernode 4 in Fig. 8 has indirect paths with
SNRs 3 dB, 5 dB, and 7 dB, then it can deliver data rates
of around 1.1 Gbps, 1.9 Gbps, and 2.5 Gbps respectively.
Hence, its indirect paths will be weighted as 0.2M,0.35M,
and 0.45M. This ensures that the higher data rate paths
have a higher chance of getting picked.

• The degree d of a vertex no longer corresponds to the
number of other clients it shares the medium with since
vertices of the same supernode belong to the same client.
Hence, instead of decrementing the weight of the node by
d +1, we decrement it by d− s+1 where s is the number
of other vertices that remain in the supernode after pruning
the graph. For example, in Fig. 8(b) the indirect path in
supernode 3 has s = 0 whereas in supernode 4 have s = 1.

7 Testbed and Implementation
We evaluated BounceNet using three indoor testbeds that
operate at 60 GHz and 24 GHz. The 60 GHz testbeds used
Pasternack PEM009 radios [43] shown in Fig 10(a). One
testbed is equipped with directional antennas with beamwidth
3◦ and the other with 12◦ antennas shown in Fig. 10(b). The
60 GHz Pasternack modules are connected to USRP software
defined radios through a Balun circuit to sample the signal.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 791

(a) (b) (c) (d) (e) (f)

Figure 9: Indoor Experimental Space: (a) Lecture Hall (b) Atrium (c) Lounge (d) Empty Room (e) Lab (f) Office Space.

(a) 60 GHz Radios

(b) 12o and 3o Antennas (c) Steering Platform

Clock

I QI Q

Clock

(d) 24 GHz radios with phased arrays

Figure 10: Experimental hardware used to evaluate BounceNet.

70o 60o 50o

100o

130o 120o 110o

90o 80o

Figure 11: Example beam patterns of the 24 GHz phased arrays.

They are also mounted on a steerable platform shown in
Fig 10(c) controlled through an Arduino.

The 24 GHz testbed used two radios, each equipped with
an 8-element phased array shown in Fig. 10(d). The radios
use HMC815B and HMC977 IQ up/down converters from
Analog Devices which operate between 21 GHz and 27 GHz
with 3.75 GHz of bandwidth. The integrated boards shown in
Fig. 10(d) also include RF amplifiers and a frequency doubler.
The boards are fed a clock in the range 10.5 GHz to 14.5 GHz
from a TI LMX2594 PLL which is doubled to the 24 GHz
range. The I and Q signals are connected to USRP software
defined radios where the signals are collected. Fig. 11 shows
examples of the beam patterns of the phased array that we
obtain from our own empirical measurements. Note that while
the beam patterns from some commercial phased arrays have
much larger side lobes, we are able to achieve beam patterns
as shown in Fig. 11 by leveraging the online algorithm for
phased array calibration presented in [37].

We use the Tektronix DPS77004SX oscilloscope which

AP Client Cabinet

(a) Deployment for 60 GHz Testbeds (b) Deployment for 24 GHz Testbed

AP Client Cabinet

Figure 12: Placement of APs in the 60 GHz and 24 GHz testbeds.

samples at 200 GS/s and has a bandwidth of 70 GHz to cal-
ibrate the transmitted power of both 60 GHz and 24 GHz
radios to match FCC regulations. We also use it to calibrate
the measured power and noise floor of the USRPs.

Due to the large overhead of real-time processing and the
limited bandwidth of USRPs, we use the software radios to
measure interference and signal-to-noise ratio, which we map
to the minimum achievable data rate using the receiver sen-
sitivity table of 802.11ad [26] with 1% packet loss rate. We
then used these testbed measurements to run trace-driven sim-
ulations using an 802.11ad ns3 library that takes phased array
beam patterns into account [6]. We also modified this library
to implement BounceNet. We then empirically verified the
results by testing the interference and making sure any pair
of paths used in a given time slot does not interfere. We then
report the data rates per client as well as the overall network
data rate. Finally, we also study the impact of our system
when integrated with higher layer protocols like TCP and
UDP and report application level throughput results.

We collected measurements in different rooms in order to
evaluate the level of multipath and verify that BounceNet can
exploit this multipath to maximize the number of links. We
tested in six different types of rooms shown in Fig. 9: a lecture
hall, an atrium, a lounge, a completely empty room, a lab
space, and an office space. The full BounceNet protocol was
evaluated in the lab which is 860 sq.ft. of space. The APs were
deployed along the walls of the lab with the clients scattered
across the room as shown in Fig. 12. We vary the number
of APs and clients from 1 to 10. In every run, the clients
are assigned randomly to these locations. We tested 5000
different configurations of locations. To emulate mobility, we
move the clients in 5 cm steps along a path where we run
scans and collect measurements for each step in the path.

792 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C3C8

C1
C9

C2
C5

C4C7

C10
C6

A1A2A4 A3A5A7 A6A8A9A10

AP Client Cabinet
Slot 7

1,5
2,6
3,2
4,4
5,1
6,10
7,3
8,8
9,7
10,9

C3C8

C1

C9

C2
C5

C4
C7

C10
C6

A1A2A4 A3A5A7 A6A8A9A10

AP Client Cabinet
Slot 8

1,5
2,6
3,2
4,4
5,1
6,10
7,3
8,8
9,7
10,9

C3C8

C1

C9

C2
C5

C4C7

C10
C6

A1A2A4 A3A5A7 A6A8A9A10

AP Client Cabinet
Slot 9

1,5
2,6
3,2
4,4
5,1
6,10
7,3
8,8
9,7
10,9

Slot 1 Slot 2 Slot 3

Figure 13: Beam Alignments computed by BounceNet for 12◦ beam testbed.

8 Microbenchmark Results

We start our evaluation with a few microbenchmarks that
provide insights into the working of the system as well as the
characteristics of mmWave networks before we present the
evaluation results.

A. Multipath in mmWave Networks:
BounceNet leverages multipath in mmWave networks to

maximize the number of links that can operate at the same
time. Table 1 shows the distribution of the number of reflected
multipath per link in each of the six rooms shown in Fig. 9.
The results show that for all rooms except the atrium, in about
80% of the cases the client has 1 to 2 reflected paths through
which it can route its signal to the AP. This is expected as
the atrium is a large open space with limited reflectors. The
results also show that very few clients see 3 or 4 indirect paths
due to sparsity in mmWave.

Fig. 14(a) shows the CDF of the SNRs of the direct and
reflected paths respectively measured from our testbeds. We
observe that direct paths always provide sufficient SNR to
support the highest data rate of 4.62 Gbps. The variation in
direct path SNRs is small and the median SNR of direct paths
is 15 dB larger than the median SNR of reflected paths which
motivates BounceNet’s design to split routing signals along
direct and indirect paths into two stages. Furthermore, the
SNRs of indirect paths can vary between 5 dB to 20 dB and
hence it is important to take the SNR of indirect paths into
account when deciding which indirect path to route signals
through as we have described in section 6.3.

B. Accuracy of Interference Estimation:
Here, we evaluate the accuracy of BounceNet’s ability to

correctly estimate interference. We choose 100 different pairs
of links from our testbed and measure the ground truth inter-
ference between every pair. For each pair, we consider both
the direct path and indirect paths. To obtain the interference
estimates from BounceNet, we perform the association phase
using the experimental setup. Then, we use the measurements
to find all the paths and compute the INR as described in
section 5.2. Fig. 14(b) shows the CDF of the absolute error
between the ground truth interference measurements and the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

(b) Estimation Error in dB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

(a) SNR (in dB)

Indirect Multipath Direct Path

Figure 14: Microbenchmarks: (a) SNR of indirect vs. direct paths.
(b) Interference estimation error.

Table 1: Percentage of Links with n Reflected Paths
Room n = 0 n = 1 n = 2 n = 3 n = 4

Lecture Hall 0 20 46.6 26.6 6.6
Atrium 5 95 0 0 0
Lounge 0 46.6 50 3.3 0

Empty Room 0 21.0 52.6 26.4 0
Lab 0 37.4 41.4 21.2 0

Office Space 0 30 45 15 5

estimated values from BounceNet. BounceNet’s median error
is 0.52 dB and 90th percentile error is 1.54 dB which is within
the 3 dB tolerance for various mmWave MCSs. BounceNet is
able to achieve such high accuracy in predicting the interfer-
ence in the network because it accounts for both the multipath
in the environment as well as the imperfections in antenna
beam patterns. Furthermore, it is able to do this using only a
linear number of measurements O(N), therefore avoiding the
need to explicitly measure interference between every pair
which would be O(N2).

C. BounceNet’s Signal Routing
In Fig. 13, we present additional examples of BounceNet’s

beam alignments in the 12◦ testbed. We pick one client config-
uration and plot the beam alignments computed by BounceNet
for the first three time slots. We can see that BounceNet makes
use of both direct and reflected paths in order to squeeze in
as many links as possible for communication during the time
slot. Furthermore, over the three time slots, BounceNet sched-
ules the direct paths for different clients, thus clients get a
chance to use their direct paths in different time slots. Clients
that create less interference such as C1 and C10 get to use
their direct paths in all time slots whereas clients that create
more interference such as C2 or C7 get to use it once.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 793

(a)

(b)

(c)

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l N
e
tw

o
rk

 D
a
ta

 R
a
te

 (
G

b
p
s)

Number of Clients

BounceNet 802.11ad Baseline

(i) Total Network Data Rate (ii) CDF of Average Client Data Rate (iii) CDF of Minimum Client Data Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
D

F

Minimum Client Data Rate (Gbps)

BounceNet 802.11ad Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Minimum Client Data Rate (Gbps)

BounceNet 802.11ad Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Minimum Client Data Rate (Gbps)

BounceNet 802.11ad Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

C
D

F

Average Client Data Rate (Gbps)

BounceNet 802.11ad Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
C

D
F

Average Client Data Rate (Gbps)

BounceNet 802.11ad Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Average Client Data Rate (Gbps)

BounceNet 802.11ad Baseline

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet 802.11ad Baseline

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet 802.11ad Baseline

 5
 10
 15
 20
 25
 30
 35
 40
 45

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l N
e
tw

o
rk

 D
a
ta

 R
a
te

 (
G

b
p
s)

Number of Clients

BounceNet 802.11ad Baseline

To
ta

l N
et

w
or

k
D

at
a

R
at

e
(G

bp
s)

To
ta

l N
et

w
or

k
D

at
a

R
at

e
(G

bp
s)

To
ta

l N
et

w
or

k
D

at
a

R
at

e
(G

bp
s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

C
D

F
Average Client Data Rate (Gbps)

BounceNet 802.11ad Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

C
D

F

Average Client Data Rate (Gbps)

BounceNet 802.11ad Baseline

Figure 15: Data rates in BounceNet, 802.11ad and baseline for (a) 24 GHz phased array (b) 60 GHz with 12◦ beams (c) 60 GHz with 3◦.

9 Evaluation Results

We will present our main evaluation results here. We will
start by describing our baselines and evaluation metrics.

A. Compare Schemes: We compare BounceNet to:
(1) 802.11ad with Spatial Reuse: As described in section 3,
the current standard provides a greedy mechanism for exploit-
ing spatial reuse by measuring pairwise mutual interference
and merging links that do not interfere into the same slots. If
the nodes detect changes in the interference in the network,
they reset to transmitting in exclusive time slots.
(2) Baseline: Our baseline will consider independently align-
ing the beams of each AP and client and letting them transmit.
To give the baseline an edge, we assume that the APs and
clients can perform their beam search without creating any
interference. Hence, they can find the right alignment in O(N)
and then use it for data transmission.

B. Metrics: We evaluate BounceNet using these metrics:

• Total Network Data Rate: The aggregate data rate of all
the clients in the network.

• Average Client Data Rate: The average data rate of the
clients in the network.

• Minimum Client Data Rate: The minimum data rate
among all clients in the network.

• Fraction of Time on the Channel: The fraction of time
slots a client gets to transmit in; used to evaluate fairness.

• Average Client Throughput: The average application
layer throughput of a client using TCP or UDP flows.

C. BounceNet Data Rate Gain:
We start by evaluating the gains in total network data rates.

Fig. 15(i) shows the total network data rate as a function of the
number of clients in a network with 10 APs for BounceNet,
802.11ad, and the baseline. As the number of clients increases,
BounceNet is able to scale the total network data rate with
the number of clients to deliver a total of 39.2 Gbps and
32.8 Gbps data rates for 10 clients using 60 GHz with 3◦ and
12◦ beams respectively. For 24 GHz, BounceNet is able to
achieve 18.2 Gbps for 10 clients. This is expected as sidelobe
leakage of phased arrays creates more interference in the
network which limits spatial reuse.

802.11ad, on the other hand, is unable to properly exploit
spatial reuse and shows limited gains. Specifically, for the case
of 10 clients, BounceNet achieves 6.6×, 5×, and 3.1× gain
in network throughput as compared to 802.11ad for 3◦ beam,
12◦ beam, and the phased array respectively. This is due to
802.11ad’s inefficiency which stems from requiring pairs of
links to measure mutual interference during data transmission
and merge these links during the following beacon interval
only if they do not interfere. The baseline can exploit spatial
reuse for 3◦ beam since the interference in this case is very
limited. Hence, for 10 clients with 3◦ beam, BounceNet only
achieves 1.27× gain over the baseline. This gain, however,
increases to 2.7× and 3.4× for 12◦ beam and the phased array
respectively where there is more interference. In fact, the
baseline is unable to exploit spatial reuse and scale network
throughput in such cases.

In Fig. 15(ii) we plot the CDF of the average data rate
achieved by the clients across all the runs with 10 clients in

794 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) 1 Mobile Client (b) 3 Mobile Clients (c) 5 Mobile Clients

 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
e

tw
o

rk
 D

a
ta

 R
a

te
 in

 G
b

p
s

Time (in sec)

BounceNet 802.11ad

 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
e

tw
o

rk
 D

a
ta

 R
a

te
 in

 G
b

p
s

Time (in sec)

BounceNet 802.11ad

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
e

tw
o

rk
 D

a
ta

 R
a

te
 in

 G
b

p
s

Time (in sec)

BounceNet 802.11ad

Figure 16: Mobility: This figure shows that BounceNet can adapt to changing and mobile clients whereas 802.11ad is unable to exploit spatial reuse in mobile
networks.

Fairness Baseline
BounceNet

Al
lo

ca
te

d
Fr

ac
tio

n
of

 C
ha

nn
el

 T
im

e

Degree in Conflict Graph
0 1 2 3 4 5 6 7 8 9

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Figure 17: Client’s share of time on the channel.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

P
e

r
C

lie
n

t
T

C
P

 T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of Clients

BounceNet (3o Beam)
BounceNet (12o Beam)

802.11ad (3o Beam)
802.11ad (12o Beam)

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10

P
e

r
C

lie
n

t
U

D
P

 T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of Clients

BounceNet (3o Beam)
BounceNet (12o Beam)

802.11ad (3o Beam)
802.11ad (12o Beam)

(a) (b)

Figure 18: BounceNet’s Application Level Average Throughput Under (a) TCP and (b) UDP.

the network. A client in BounceNet can achieve a 50th per-
centile average data rate of 3.8 Gbps for 3◦ beam, 3.25 Gbps
for 12◦ beam, and 1.81 Gbps for the phased array. Whereas
in 802.11ad, the 50th percentile average data rate is around
0.6 Gbps in all three cases. The baseline, however, shows high
average data rate of 3.4 Gbps for 3◦ beam which decreases to
1.26 Gbps for 12◦ and 0.5 Gbps for the phased array. Hence,
with wider beams, simply ignoring interference would result
in an even worse performance than 802.11ad.

Two points are worth noting. First, each of the 10 clients
in BounceNet can achieve a 90th percentile average data rate
of 3.9 Gbps for 3◦, 3.7 Gbps for 12◦, and 2 Gbps for the
phased array. This is a small deviation from the median data
rate which shows that BounceNet is fair in dividing the rate
across the clients. Second, while BounceNet scales the net-
work throughput, the overhead of beam alignment starts to
kick in. This, however, can be addressed by employing faster
beam alignment protocols [23, 49, 64].

We also plot the CDF of the minimum data rate among all
clients in Fig. 15(iii), across all the runs with 10 clients in the
network. The figure shows that BounceNet can significantly
improve the minimum and benefit worst case clients which
can suffer from interference. BounceNet can improve the
minimum data rate of any client in the network by 13.5×
for 12◦ beam and 7.5× for phased arrays as compared to the
baseline. This is because the baseline does not try to avoid
interference, and hence clients that suffer from interference
can really benefit from BounceNet.

In Appendix B, we present additional results when there
are only 5 APs in the network. This allows us to evaluate

BounceNet in scenarios where clients outnumber the APs.

D. Adapting to Changes and Mobile Clients:
To understand BounceNet’s ability to adapt to mobile

clients, we examine what happens to the total network data
rate as clients move for both BounceNet and 802.11ad. As
the baseline does not actively try to optimize for spatial reuse,
we expect the total network data rate to remain smooth albeit
lower than BounceNet.

We run an experiment where there are five clients in the
network and we vary the number of clients that are moving.
Fig. 16 shows the total network data rate versus time, when
one client, three clients or five clients are moving. This figure
shows that BounceNet can continue to maintain a high data
rate as the clients move. For one client moving, BounceNet
achieves almost a constant data rate. As more clients move,
the interference patterns in the network change, and hence
the maximum achievable data rate changes. The figure shows
that BounceNet can quickly adapt to changes and continue to
exploit spatial reuse.

On the other hand, the data rate in 802.11ad fluctuates sig-
nificantly and keeps falling back to the case of no spatial reuse.
This is because 802.11ad merges AP-client pairs only after
measuring the mutual interference during the data transmis-
sion phase. Hence, it takes 802.11ad several beacon intervals
(≈ 100ms) to exploit spatial reuse. By that time, the client
has moved and the interference patterns have changed. Even
if one client moves, it can affect the interference patterns of
many links. Fig. 16 shows that as more clients move, the inter-
ference patterns change faster, and hence 802.11ad is unable
to properly exploit spatial reuse.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 795

E. BounceNet Fairness:
Recall from section 6.2 that fairness in mmWave networks

depends on how much each client interferes with other clients.
If a client interferes with d other links, it should get at least
a fraction of 1/(d + 1) of time on the channel. For each of
our 5000 experiments, we compute the fraction of channel
time that a client interfering with d other links in the network
obtains as a result of BounceNet’s algorithm. Fig. 17 plots
this fraction for all clients against their degree in the conflict
graph (equivalent to their number of interfering links). The
figure shows that the algorithm guarantees that all points lie
above the line denoted by Fraction= 1/(d+1). Hence, every
link gets at least its fair share of channel time in BounceNet.

F. Application Level throughput in BounceNet:
In order to understand whether BounceNet’s gains translate

to higher layer network throughput, we evaluated the applica-
tion level throughput achieved using BounceNet and 802.11ad
under TCP and UDP traffic flows in ns3. Fig. 18 shows the
throughput versus the number of clients. BounceNet’s scal-
ing properties are maintained with roughly the same gain
over the 802.11ad standards. For 10 links, BounceNet can
achieve a UDP throughput of 1.44 Gbps for 60 GHz with 12◦

beamwidth and 2.23 Gbps for 3◦ beamwidth. As expected, the
application level throughput is lower than the MAC data rates
due to the overhead of headers. For TCP the throughput is
even lower with 360 Mbps for 12◦ beamwidth and 740 Mbps
for 3◦ beamwidth. This is expected as TCP has larger over-
head and does not perform well in wireless networks.

G. Results Summary:
802.11ad requires multiple beacon intervals to detect in-

terference in the network and schedule concurrent transmis-
sions. While this would work in completely static scenarios
where the paths do not change, it is inefficient in mobile or
dynamic environments. Our results show that in such cases,
802.11ad keeps resetting to a configuration with no spatial
reuse. BounceNet, on the other hand, is able to maintain an
up-to-date view of the paths and interference every Beacon
Interval which allows it to achieve significant gains especially
for narrower beams (e.g. 3◦) where the potential for spatial
reuse is very high.

The baseline, on the other hand, performs well with nar-
row beams (e.g. 3◦) and on average achieves comparable
results to BounceNet. However, the tail of the distribution
is very long. Specifically, clients that experience interfer-
ence would achieve significantly lower data rates than both
BounceNet and 802.11ad. The performance quickly degrades
for wider beams where there is more interference between
links. BounceNet can achieve the best of both worlds by
combining efficient path learning and interference estimation
algorithms with signal routing and beam alignment. Hence,
BounceNet can exploit spatial reuse for both very narrow
beams and wide beams and can perform well in both static
and mobile environments.

10 Limitations and Discussion
Few points are worth noting.

• Our current evaluation is limited by today’s hardware which
makes it infeasible to implement a full-fledged real-time
version of our system. Cheap commercial mmWave de-
vices [2, 39, 56] do not provide access to the lower lay-
ers: PHY and MAC. On the other hand, the hardware we
used costs around $14,000 for the RF front end of one
TX/RX pair, making it prohibitively expensive to scale the
implementation. Note, however, that our simulations are
not based on ray-tracing or any channel modeling. Rather,
they are based on actual measurements of SNRs and beam
scanning through a labor-intensive study that generated
over 5000 configurations. We have also used two pairs
of links to verify that our interference estimates are accu-
rate. Our results show a significant opportunity to scale
the throughput in mmWave networks and we believe the
protocol can be implemented on cheap commercial devices
if the chip manufacturers open up the firmware.

• BounceNet’s protocol is mainly designed for continuous
traffic in applications like VR, 3D video streaming, and
Robotics. To deal with bursty traffic, one can leverage the
polling mechanism available in 802.11ad [26] to obtain a
real-time view of the traffic demands for different clients
during the Beacon Interval, and adjust the conflict graph
based on the traffic.

• BounceNet’s interference estimation relies on accurate
measurements of the SNR. The high directionality in
mmWave networks reduces multipath fading and channel
fluctuations which allows us to achieve accurate estimates
as we show in section 8. However, to address the case of
noisy and unstable SNR measurements, we take a more con-
servative approach for determining when two links interfere
(Section 6.2.A). The threshold to determine interference
can be adjusted as a trade-off between robustness to noisy
SNR estimates and maximizing spatial reuse.

11 Conclusion
In this paper, we introduced BounceNet, the first many-to-
many millimeter wave beam alignment system that can effi-
ciently align the beams of many APs and clients in a manner
that allows them to simultaneously communicate without in-
terfering. We evaluated BounceNet using three experimental
testbeds and demonstrated that it can enable dense spatial
reuse and scale the total network throughput with the number
of APs and clients.

Acknowledgments: We would like to thank our shepherd,
Prof. Lin Zhong, and the reviewers for their comments. We
would also like to thank Piotr Indyk for his input on the proof.
Lastly, we also thank the Systems and Networking Group
(SyNRG) at UIUC for their feedback. This work is funded in
part by NSF Award CNS−1750725.

796 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi. En-

abling high-quality untethered virtual reality. In NSDI, 2017.

[2] Acer. TravelMate P6 TMP658-M-70S3 Laptop.

[3] Xueli An and Ramin Hekmat. Directional MAC protocol for millimeter
wave based wireless personal area networks. In Vehicular Technology
Conference, 2008. VTC Spring 2008. IEEE, pages 1636–1640. IEEE,
2008.

[4] Xueli An, Shuang Zhang, and Ramin Hekmat. Enhanced mac layer
protocol for millimeter wave based WPAN. In 2008 IEEE 19th Inter-
national Symposium on Personal, Indoor and Mobile Radio Communi-
cations, pages 1–5. IEEE, 2008.

[5] Christopher R. Anderson and Theodore S. Rappaport. In-Building
Wideband Partition Loss Measurements at 2.5 and 60 GHz. IEEE TWC,
2004.

[6] Hany Assasa and Joerg Widmer. Extending the ieee 802.11ad model:
Scheduled access, spatial reuse, clustering, and relaying. In Proceedings
of the Workshop on Ns-3, WNS3 ’17, pages 39–46, New York, NY, USA,
2017. ACM.

[7] Matt Branda. Qualcomm Research demonstrates robust mmWave
design for 5G. Qualcomm Technologies Inc., November 2015.

[8] Neeraj Choubey and Ali Yazdan Panah. Introducing Facebook’s new
terrestrial connectivity systems-Terragraph and Project ARIES, Face-
book Research, 2016.

[9] Romit Roy Choudhury and Nitin H Vaidya. Deafness: A MAC problem
in ad hoc networks when using directional antennas. In Proceedings of
the 12th IEEE International Conference on Network Protocols., pages
283–292, 2004.

[10] Romit Roy Choudhury, Xue Yang, Ram Ramanathan, and Nitin H
Vaidya. On designing MAC protocols for wireless networks using di-
rectional antennas. IEEE Transactions on Mobile Computing, 5(5):477–
491, 2006.

[11] Adam Connor-Simons. Enabling wireless virtual reality, MIT News,
2016.

[12] Yong Cui, Shihan Xiao, Xin Wang, Zhenjie Yang, Chao Zhu, Xiangyang
Li, Liu Yang, and Ning Ge. Diamond: Nesting the Data Center Network
with Wireless Rings in 3D Space. In NSDI, 2016.

[13] András Frank. Some polynomial algorithms for certain graphs and
hypergraphs. In Proceedings of the Fifth British Combinatorial Con-
ference, pages 211–226, 1975.

[14] Y. Ghasempour, M. K. Haider, and E. W. Knightly. Decoupling
beam steering and user selection for MU-MIMO 60-GHz WLANs.
IEEE/ACM Transactions on Networking, pages 1–14, 2018.

[15] Yasaman Ghasempour, Claudio RCM da Silva, Carlos Cordeiro, and
Edward W Knightly. IEEE 802.11ay: Next-generation 60 GHz com-
munication for 100 Gb/s Wi-Fi. IEEE Communications Magazine,
55(12):186–192, 2017.

[16] Yasaman Ghasempour, Muhammad K Haider, Carlos Cordeiro, Dim-
itrios Koutsonikolas, and Edward W Knightly. Multi-stream beam-
training for mmwave mimo networks. In ACM MobiCom, 2018.

[17] Michelle X Gong, Dmitry Akhmetov, Roy Want, and Shiwen Mao. Di-
rectional CSMA/CA protocol with spatial reuse for mmWave wireless
networks. In Global Telecommunications Conference (GLOBECOM),
pages 1–5. IEEE, 2010.

[18] Michelle X Gong, Robert Stacey, Dmitry Akhmetov, and Shiwen Mao.
A directional CSMA/CA protocol for mmWave wireless PANs. In
Wireless Communication and Networking Conference, pages 1–6. IEEE,
2010.

[19] Muhammad Kumail Haider, Yasaman Ghasempour, and Edward W
Knightly. Search light: Tracking device mobility using indoor lumi-
naries to adapt 60 GHz beams. In Proceedings of the Eighteenth ACM
International Symposium on Mobile Ad Hoc Networking and Comput-
ing, pages 181–190. ACM, 2018.

[20] Muhammad Kumail Haider, Yasaman Ghasempour, Dimitrios Kout-
sonikolas, and Edward W Knightly. Listeer: mmwave beam acquisition
and steering by tracking indicator leds on wireless aps. 2018.

[21] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl,
and David Wetherall. Augmenting Data Center Networks with Multi-
Gigabit Wireless Links. In ACM SIGCOMM, 2011.

[22] Ezzeldin Hamed, Hariharan Rahul, Mohammed A Abdelghany, and
Dina Katabi. Real-time Distributed MIMO Systems. In Proceedings
of ACM SIGCOMM, 2016, pages 412–425.

[23] Haitham Hassanieh, Omid Abari, Michael Rodriguez, Mohammed Ab-
delghany, Dina Katabi, and Piotr Indyk. Fast millimeter wave beam
alignment. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 432–445. ACM, 2018.

[24] Kelly Hill. A look at Verizon’s fixed millimeter wave testing. RCR
Wireless News, May 2017. http://www.rcrwireless.com/20170501/test-
and-measurement/verizon-fixed-millimeter-wave-testing-tag6.

[25] Huawei. Huawei to bring 73GHz mmWave Mu-MIMO live demo to
Deutsche Telekom, Press Release, 2016.

[26] IEEE Standards Association. IEEE Standards 802.11ad-2012: En-
hancements for Very High Throughput in the 60 GHz Band, 2012.

[27] Intel Inc. Intel accelerates path to 5G, Press Release, 2016.

[28] Gentian Jakllari, Wenjie Luo, and Srikanth V Krishnamurthy. An inte-
grated neighbor discovery and MAC protocol for ad hoc networks using
directional antennas. IEEE Transactions on Wireless Communications,
6(3):1114–1024, 2007.

[29] Suraj Jog, Jiaming Wang, Haitham Hassanieh, and Romit Roy Choud-
hury. Enabling Dense Spatial Reuse in mmWave Networks. In ACM
SIGCOMM, 2018.

[30] Sanjeev Khanna and Krishnan Kumaran. On wireless spectrum esti-
mation and generalized graph coloring. In Proceedings of INFOCOM,
volume 3, pages 1273–1283. IEEE, 1998.

[31] Sungoh Kwon and Joerg Widmer. Relay selection for mmwave com-
munications. In Personal, Indoor, and Mobile Radio Communications
(PIMRC), 2017 IEEE 28th Annual International Symposium on, pages
1–6. IEEE, 2017.

[32] Sungoh Kwon and Joerg Widmer. Multi-beam power allocation for
mmwave communications under random blockage. In 2018 IEEE
87th Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE,
2018.

[33] Xi Liu, Anmol Sheth, Michael Kaminsky, Konstantina Papagiannaki,
Srinivasan Seshan, and Peter Steenkiste. DIRC: Increasing indoor wire-
less capacity using directional antennas. ACM SIGCOMM Computer
Communication Review, 39(4):171–182, 2009.

[34] Barry Manz. 5G Cellular Networks Are the Future of Robotics, Mouser
Electronics, 2016.

[35] Markets and Markets. Millimeter Wave Technology Market worth
4,632.8 Million USD by 2022, Press Release, 2017.

[36] Arunesh Mishra, Suman Banerjee, and William Arbaugh. Weighted
coloring based channel assignment for WLANs. ACM SIGMOBILE
Mobile Computing and Communications Review, 9(3):19–31, 2005.

[37] Thomas Moon, Junfeng Guan, and Haitham Hassanieh. Online millime-
ter wave phased array calibration based on channel state information.
In IEEE VLSI Test Symposium, 2019. VTS’19. IEEE, 2019.

[38] Raghuraman Mudumbai, SK Singh, and Upamanyu Madhow. Medium
access control for 60 GHz outdoor mesh networks with highly direc-
tional links. In INFOCOM 2009, IEEE, pages 2871–2875. IEEE, 2009.

[39] NetGear. NIGHTHAWK X10 R9000 Wi-Fi Router.

[40] Thomas Nitsche, Carlos Cordeiro, Adriana B Flores, Edward W
Knightly, Eldad Perahia, and Joerg C Widmer. IEEE 802.11 ad: di-
rectional 60 GHz communication for multi-gigabit-per-second Wi-Fi.
IEEE Communications Magazine, 52(12):132–141, 2014.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 797

[41] Thomas Nitsche, Adriana B Flores, Edward W Knightly, and Joerg
Widmer. Steering with eyes closed: mm-wave beam steering without
in-band measurement. In Conference on Computer Communications
(INFOCOM), pages 2416–2424. IEEE, 2015.

[42] Joan Palacios, Guillermo Bielsa, Paolo Casari, and Joerg Widmer.
Communication-driven localization and mapping for millimeter wave
networks. IEEE INFOCOM, 2018.

[43] Pasternack Enterprises Inc. 60 GHz Transmitter/Receiver Development
System. www.pasternack.com.

[44] Jian Qiao, Lin X Cai, Xuemin Shen, and Jon W Mark. STDMA-
based scheduling algorithm for concurrent transmissions in directional
millimeter wave networks. In Communications (ICC), 2012 IEEE
International Conference on, pages 5221–5225. IEEE, 2012.

[45] Qualcomm. QCA9500 specifications.
https://www.qualcomm.com/products/qca9500.

[46] Hariharan Shankar Rahul, Swarun Kumar, and Dina Katabi. Jmb:
scaling wireless capacity with user demands. In Proceedings of the
ACM SIGCOMM 2012 conference on Applications, technologies, archi-
tectures, and protocols for computer communication, pages 235–246.
ACM, 2012.

[47] Krishna N Ramachandran, Elizabeth M Belding-Royer, Kevin C
Almeroth, and Milind M Buddhikot. Interference-Aware Channel
Assignment in Multi-Radio Wireless Mesh Networks. In Infocom,
volume 6, pages 1–12, 2006.

[48] Sundeep Rangan, Theodore S Rappaport, and Elza Erkip. Millimeter-
wave cellular wireless networks: Potentials and challenges. IEEE,
2014.

[49] Maryam Eslami Rasekh, Zhinus Marzi, Yanzi Zhu, Upamanyu Madhow,
and Haitao Zheng. Noncoherent mmwave path tracking. In Proceedings
of the 18th International Workshop on Mobile Computing Systems and
Applications, pages 13–18. ACM, 2017.

[50] Wonil Roh, Ji-Yun Seol, Jeongho Park, Byunghwan Lee, Jaekon Lee,
Yungsoo Kim, Jaeweon Cho, Kyungwhoon Cheun, and Farshid Aryan-
far. Millimeter-wave beamforming as an enabling technology for 5G
cellular communications: Theoretical feasibility and prototype results.
IEEE Communications Magazine, 52(2):106–113, 2014.

[51] Vivek Shrivastava, Nabeel Ahmed, Shravan Rayanchu, Suman Baner-
jee, Srinivasan Keshav, Konstantina Papagiannaki, and Arunesh Mishra.
Centaur: realizing the full potential of centralized wlans through a
hybrid data path. In Proceedings of the 15th annual international con-
ference on Mobile computing and networking, pages 297–308. ACM,
2009.

[52] Sumit Singh, Federico Ziliotto, Upamanyu Madhow, E Belding, and
Mark Rodwell. Blockage and directivity in 60 GHz wireless personal
area networks: From cross-layer model to multihop MAC design. IEEE
Journal on Selected Areas in Communications, 27(8):1400–1413, 2009.

[53] Sanjib Sur, Vignesh Venkateswaran, Xinyu Zhang, and Parameswaran
Ramanathan. 60 GHz Indoor Networking through Flexible Beams: A
Link-Level Profiling. In SIGMETRICS, 2015.

[54] Sanjib Sur, Xinyu Zhang, Parameswaran Ramanathan, and Ranveer
Chandra. BeamSpy: Enabling Robust 60 GHz Links Under Blockage.
In NSDI, 2016.

[55] Tensorcom. Product specifications. http://tensorcom.com/products-1/.

[56] TP-Link. Talon AD7200 Multi-Band Wi-Fi Router.

[57] Victoria Turk. These Supermarket Warehouse Robots Have Their Own
Mobile Network, Vice Motherboard, 2016.

[58] Kiran Venugopal, Matthew C Valenti, and Robert W Heath. Interference
in finite-sized highly dense millimeter wave networks. In Information
Theory and Applications Workshop (ITA), 2015, pages 175–180. IEEE,
2015.

[59] Weizhao Wang, Yu Wang, Xiang-Yang Li, Wen-Zhan Song, and Ophir
Frieder. Efficient interference-aware TDMA link scheduling for static
wireless networks. In Proceedings of the 12th annual international con-
ference on Mobile computing and networking, pages 262–273. ACM,
2006.

[60] Teng Wei and Xinyu Zhang. Pose Information Assisted 60 GHz Net-
works: Towards Seamless Coverage and Mobility Support. In Mobi-
Com’17, 2017.

[61] Teng Wei, Anfu Zhou, and Xinyu Zhang. Facilitating Robust 60 GHz
Network Deployment By Sensing Ambient Reflectors. In NSDI, 2017.

[62] Ding Zhang, Mihir Garude, and Parth H Pathak. mmChoir: Exploiting
joint transmissions for reliable 60 GHz mmwave WLANs. In Proceed-
ings of the Eighteenth ACM International Symposium on Mobile Ad
Hoc Networking and Computing, pages 251–260. ACM, 2018.

[63] Anfu Zhou, Leilei Wu, Shaoqing Xu, Huadong Ma, Teng Wei, and
Xinyu Zhang. Following the shadow: Agile 3-d beam-steering for 60
GHz wireless networks. IEEE INFOCOM, 2018.

[64] Anfu Zhou, Xinyu Zhang, and Huadong Ma. Beam-forecast: Facili-
tating Mobile 60 GHz Networks via Model-driven Beam Steering. In
INFOCOM, 2017.

[65] Anfu Zhou, Xinyu Zhang, and Huadong Ma. Beam-forecast: Facili-
tating mobile 60 GHz networks via model-driven beam steering. In
INFOCOM 2017-IEEE Conference on Computer Communications,
IEEE, pages 1–9. IEEE, 2017.

[66] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,
and H Zheng. Mirror Mirror on the Ceiling: Flexible Wireless Links
for Data Centers. In ACM SIGCOMM, 2012.

Appendix
A Proof of Lemma 6.1
Suppose we are given a graph G(V,E) where |V | = N and
d(u) denotes the degree of u. Consider the following process
which iteratively assigns weights (in the range {0 . . .M}) to
the vertices. The initial assignment is F0 such that F0(v) = M
for all v ∈V . We compute Ft as follows:

• Compute a Weighted Max Independent Set Wt+1 in the
weighted graph induced by G and Ft .
• If u ∈ Wt+1, then Ft+1(u) = Ft(u) − (d(u) + 1) if

Ft(u)> 2(d(u)+1) and Ft+1(u) = 0 otherwise.
• If u /∈Wt+1, then Ft+1(u) = Ft(u).

Lemma A.1 If t = O(M log(NM)), then Ft(u) = 0 ∀u ∈V

Proof Consider the potential function Tt = ∑u Ft(u).

Claim A.2 Tt+1 ≤ Tt(1−1/M).

Proof Consider the set of vertices St containing u’s such that
Ft(u)> 0. Since the maximum value of Ft(u) is M, it follows
that

|St | ≥ Tt/M (2)

Consider now the set Wt+1, and w.l.o.g. assume that Wt+1 ⊂
St . Observe that Wt+1 must be a maximal independent set, i.e.,
we cannot add any u ∈ St −Wt+1 to Wt+1 without violating
the independence property. Since the total number of nodes

798 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a)

(b)

(i) Phased Array (ii) 12 Degree Beam (iii) 3 Degree Beam
To

ta
l N

et
w

or
k

D
at

a
R

at
e

(G
bp

s)
Av

er
ag

e
N

et
w

or
k

D
at

a
R

at
e

(G
bp

s)

To
ta

l N
et

w
or

k
D

at
a

R
at

e
(G

bp
s)

To
ta

l N
et

w
or

k
D

at
a

R
at

e
(G

bp
s)

Av
er

ag
e

N
et

w
or

k
D

at
a

R
at

e
(G

bp
s)

Av
er

ag
e

N
et

w
or

k
D

at
a

R
at

e
(G

bp
s)

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet
802.11ad

Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet
802.11ad

Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet
802.11ad

Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet
802.11ad

Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)
Number of Clients

BounceNet
802.11ad

Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet
802.11ad

Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l
N

e
tw

o
rk

 D
a
ta

 R
a
te

 (
G

b
p
s
)

Number of Clients

BounceNet 802.11ad Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l
N

e
tw

o
rk

 D
a
ta

 R
a
te

 (
G

b
p
s
)

Number of Clients

BounceNet 802.11ad Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l
N

e
tw

o
rk

 D
a
ta

 R
a
te

 (
G

b
p
s
)

Number of Clients

BounceNet 802.11ad Baseline

0

5

10

15

20

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet
802.11ad

Baseline

0

5

10

15

20

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet
802.11ad

Baseline

0

5

10

15

20

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet
802.11ad

Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l N

e
tw

o
rk

 D
a

ta
 R

a
te

 (
G

b
p

s)

Number of Clients

BounceNet
802.11ad

Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10
T

o
ta

l N
e

tw
o

rk
 D

a
ta

 R
a

te
 (

G
b

p
s)

Number of Clients

BounceNet
802.11ad

Baseline

0

1

2

3

4

5

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l N
e
tw

o
rk

 D
a
ta

 R
a
te

 (
G

b
p
s)

Number of Clients

BounceNet
802.11ad

Baseline

Figure 19: Data rates in BounceNet, 802.11ad and baseline for the case of 5 APs in network (a) Total Network Data Rates (b) Average Client
Data Rates.

with an edge to a node in Wt+1 (including self-loops) is at
most ∑w∈Wt+1

d(w)+1, it follows that

∑
w∈Wt+1

d(w)+1≥ |St | (3)

However, the left-hand side in the above expression is upper
bounded by the amount by which we reduce the potential, i.e.,
by the difference Tt −Tt+1 (the reduction in potential could
be higher, because we round all weights smaller than d +1 to
0). From Equations 2 and 3 we have

Tt −Tt+1 ≥ ∑
w∈Wt+1

d(w)+1≥ |St | ≥ Tt/M

and the lemma follows.

Since Tt has integral values, it follows that after
O(M log(T0)) steps we have Tt = 0, and therefore Ft(u) = 0
for all u.

B Data Rate Gains for 5 APs
In Fig. 19, we present results for the case when there are 5 APs
in the network. This allows us to evaluate BounceNet’s per-
formance in scenarios where the number of clients is greater
than the number of APs. In such scenarios where the clients
outnumber the APs, two or more clients could be assigned
to the same AP, following the algorithm presented in Section
6.1. Since clients that share an AP can essentially be con-
sidered as interfering links, the corresponding nodes in the
conflict graph will have edges between them. We can then
apply BounceNet’s signal routing algorithm (Section 6.2 and
6.3) to this modified conflict graph.

Fig. 19(a) shows the total network data rate, and Fig. 19(b)
shows the average network data rate per client, as a function

of the number of clients in the network. BounceNet is able to
deliver a total of 21.33 Gbps, 20.81 Gbps and 15.78 Gbps data
rates for 10 clients in the 3◦ beam, 12◦ beam and the phased
array testbeds respectively. The baseline performs almost as
well as BounceNet for the 3◦ beam since the interference in
this case is very limited, and as a result, the baseline is able
to exploit spatial reuse. However, as the amount of interfer-
ence increases, the performance of the baseline deteriorates,
with BounceNet achieving 2.2× and 3.2× gain in network
throughput over the baseline for the case of 10 clients in the
12◦ beam, and the phased array testbeds respectively. Since
the baseline does not account for interfering links, it leads to
frequent packet collisions, and as a result, inefficient use of
the channel.

Compared to 802.11ad, BounceNet achieves 3.26×, 3.35×,
and 2.78× gain in network throughput for the case of 10
clients in the 3◦ beam, 12◦ beam, and the phased array testbed
respectively. One should note that for 802.11ad, the gains
with 5 APs are smaller as compared to the gains observed in
Section 9.C, where there were 10 APs in the network. This is
because BounceNet’s strength over 802.11ad comes primarily
from its ability to exploit spatial reuse efficiently, and with
only 5 APs in the network, the potential for spatial reuse is
reduced, and therefore the gains that BounceNet can provide
over the standard will be smaller. Hence, to achieve signif-
icant gains in throughput, BounceNet advocates for dense
AP deployments with narrow directional antenna beams in
mmWave networks.

Finally, the following points are worth noting.

• With the 3◦ beam in the 60 GHz testbed, we see that the to-
tal network data rate for BounceNet saturates after 5 clients
as can be seen in Fig. 19(a)(iii), achieving 21.33 Gbps and
21.29 Gbps for 10 clients and 5 clients respectively. This

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 799

is expected, since at any given time at most 5 clients can
be communicating simultaneously in the network. Such
saturation can also be observed in the other two testbeds.

• It may seem counter-intuitive that the total network data
rate for BounceNet in the 12◦ and the phased array testbeds
continues to grow even when there are more than 5 clients
in the network. This happens because as the number of
clients increases in the network, the total number of propa-
gation paths (direct and reflected) between APs and clients

increases as well. Therefore, now it is more likely that
BounceNet can find a set of five propagation paths that
can coexist in the network, and consequently, BounceNet
can schedule more clients in every time slot. However, one
should note that the rate of growth of the network data rate
reduces as the number of clients increases beyond five, and
correspondingly, the average per-client data rates start to
drop more sharply beyond five clients as can be seen in
Fig. 19(b).

800 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	nsdi19-kalia
	Introduction
	Background and motivation
	High-speed datacenter networking
	Limitations of existing options
	Drawbacks of specialization

	eRPC overview
	RPC API
	Worker threads
	Evaluation clusters

	eRPC design
	Scalability considerations
	Packet I/O scales well
	Scalability limits of RDMA

	Challenges in zero-copy transmission
	Message buffer layout
	Message buffer ownership
	Zero-copy request processing

	Sessions
	Session credits
	Session scalability

	Wire protocol
	Protocol messages
	Congestion control
	Available options
	Common-case optimizations
	Comparison with IRN

	Handling packet loss

	Microbenchmarks
	Small RPC latency
	Small RPC rate
	Session scalability
	Large RPC bandwidth
	Effectiveness of congestion control

	Full-system benchmarks
	Raft over eRPC
	Comparison with NetChain
	Comparison with ZabFPGA

	Masstree over eRPC

	Related work
	Conclusion
	eRPC's NIC memory footprint
	Handling node failures
	Rate limiting with zero-copy

	nsdi19-saeed
	Introduction
	Background and Objectives
	Eiffel Design
	Priority Queueing in Eiffel
	Circular FFS-based Queue (cFFS)
	Approximate Priority Queuing

	Flexibility in Eiffel
	PIFO Model Extensions
	Arbitrary Shaping

	Eiffel Implementation
	Evaluation
	Eiffel Use Cases
	Use Case 1: Shaping in Kernel
	Use Case 2: Least/Largest X First in Userspace

	Eiffel Microbenchmark

	Conclusion
	Gradient Queue Correctness
	Examples of Errors in Approximate Gradient Queue

	nsdi19-stephens
	Introduction
	Motivation
	High-Level Network Policies
	Issues with Multiqueue NICs
	Background
	Inflexible NIC Packet Schedulers
	Inefficient OS/NIC Interfaces

	DAG Policy Abstraction
	Loom Design
	Programmable Scheduling Background
	Programmable Scheduling for NICs
	Scheduling Operations
	DAG Rate-Limiting
	Line-rate (100Gbps) Operation

	OS/NIC Interface
	Batched Doorbells
	Scheduling Metadata

	Discussion

	Implementation
	Methodology
	Evaluation
	Policy Enforcement
	OS/NIC Interface
	DC Applications

	Related Work
	Conclusions

	nsdi19-park
	Introduction
	Separating Durability from Ordering
	CURP Protocol
	Architecture and Model
	Normal Operation
	Client
	Witness
	Master

	Recovery
	Garbage Collection
	Reconfigurations
	Read Operations
	Consistent Reads from Backups

	Implementation on NoSQL Storage
	Life of A Witness
	Data Structure of Witnesses
	Commutativity Checks in Masters
	Improving Throughput of Masters
	Garbage Collection
	Recovery Steps
	Zombies
	Modifications to RIFL

	Evaluation
	RAMCloud Performance Improvements
	Resource Consumption by Witness Servers
	Impact of Highly-Skewed Workloads
	Making Redis Consistent and Durable
	Applicability of CURP

	Related work
	Conclusion
	Informal Proof of Correctness
	Extra Discussions
	Why Are Witnesses Separate from Backups?
	Extending CURP to Consensus Protocols
	Why Do Fast / Generalized Paxos require 1.5 RTTs?

	Implementation Details
	Modifications to RIFL
	Why Use Set-associative Cache for Witnesses?

	Additional Evaluations
	RAMCloud's Throughput by Batch Size
	Redis Latency vs. Throughput

	nsdi19-eisenman
	nsdi19-didona
	nsdi19-wang-jiaping
	Introduction
	Background
	Blockchain System
	PoW and PoS
	UTXO and Account/Balance

	System Design
	Partitioning and Naming
	Isolated Intra-Zone Workload
	Minimized Cross-Zone Overhead

	Efficient Cross-Zone Atomicity
	Verification
	Eventual Atomicity
	Fork Resolution

	Defense Per-Zone Security
	Chu-ko-nu Mining
	Independent Validation in Zones
	Redistributed Mining Power
	Scalable Mining System

	Discussions
	Single Address Hotspot
	Incentives and Fees
	Generalization beyond Payment

	Experimental Results
	Scalability
	Overhead
	Confirmation Latency
	Throughput and Orphan Rate

	Related Work
	Conclusion
	Acknowledge
	Programmable Transaction
	World State
	Transaction
	Operation
	Smart Asset

	nsdi19-kim
	Introduction
	Background
	Overview
	Overall Design
	Verbs: the ``narrow waist'' for RDMA
	FreeFlow Architecture
	Challenges

	Transparent Support for RDMA Operations
	Connection Establishment
	Two-sided Operations
	One-sided Operations
	Event-based Operations

	Communication Channel between FFL and FFR
	Verbs Forwarding via File Descriptor
	Fastpath between FFL and FFR

	Implementation
	Discussion
	Evaluation
	Microbenchmarks
	Throughput and Latency
	CPU Overhead and Trade-off
	Rate Limiter and Performance Isolation
	TCP Socket over RDMA

	Real-world Applications
	Tensorflow
	Spark

	Related Work
	Conclusion
	Acknowledgments
	Availability

	nsdi19-shu
	Introduction
	Background
	FPGA Deployments in Data Centers
	Existing Problems

	Desired Communication Architecture
	DUA Overview
	DUA Communication Interface
	Resource Address Format
	API
	Semantic Primitives
	I/O interface

	DUA Control Plane
	Resource Management
	Routing Management
	Connection Management

	DUA Data Plane
	DUA Overlay
	Connector
	Switch Fabric

	Communication Stacks
	Stack Translators
	FPGA Connect Stack

	DUA Underlay

	Evaluation
	System Micro Benchmark
	FPGA Area Cost
	Switch Fabric Performance
	Routing Table Performance
	Latency Overhead
	Handling Multiplexing
	Deep Crossing

	Applications Built With DUA
	Fast Multi-Regular-Expression Matching

	Related Work and Conclusion
	Appendices
	Appendices
	OpenCL sample code to use DUA API
	OpenCL sample code to use DUA API

	nsdi19-zilberman
	Introduction
	Motivating Observations
	The Resource Wall
	The I/O Wall
	The Performance Wall

	Architecture
	Constructing a Stardust Based Network
	Dynamic Cell Forwarding
	Buffering And Scheduling
	Packet Packing

	Device Architecture
	Fabric Adapter
	Fabric Element
	Fabric Element Queuing Analysis

	Stardust on a data center scale
	Scaling, Tiers Reduction and Longevity
	Push Fabric vs. Pull Fabric
	Optimal Load Balancing
	Effective Buffer and Incast Absorption
	Lossless Transmission
	Latency and Jitter
	Traffic Pattern Agnosticism
	Dynamic Routing
	Improved Resilience, Self-Healing Fabric
	Handling Failures

	Evaluation
	Experiment-Driven Measurements
	Packet Packing
	Throughput and Latency

	Simulation of a 2-Tier Network
	Comparisons to Existing Works

	Cost Analysis
	The Case for Future Data Centers
	Related Work
	Conclusion
	Acknowledgement
	The Math Behind Network Size
	Parallel Processing of Packets
	Silicon Area
	Cost Estimation
	Resilience
	Push Fabric vs Pull Fabric
	Performance Simulations

	nsdi19-holterbach
	Introduction
	Key Principles and Challenges
	Data-plane signals upon failures
	Key challenges and requirements when fast rerouting using data-plane signals

	Overview
	Blink, at the node level
	Blink, at the network level

	Data-plane design
	Monitoring the most important prefixes
	Selecting active flows to monitor
	Detecting failures
	Rerouting at line rate
	Maintaining the per-prefix next-hops list
	Avoiding forwarding issues

	Implementation
	Evaluation
	Blink's failure detection algorithm
	Blink often detects actual failures, quickly
	Blink distinguishes failures from noise

	Blink's rerouting algorithm
	Blink in the real world
	Running Blink on real traces
	Deploying Blink on Barefoot Tofino switches

	Deployment considerations
	Related Work
	Conclusions
	Acknowledgments
	Blink parameters
	Implementation of a sliding window in P416
	Hardware Resource Usage
	Evaluating Blink on partial failures
	Real traces used in the evaluation

	nsdi19-curino
	nsdi19-pu
	nsdi19-yu
	nsdi19-zhao
	nsdi19-zhang
	Introduction
	Background
	Deployment Complexity
	Packaging, Placement, and Bundling
	Deployment Complexity Metrics
	Comparing Topology Classes

	Topology Expansion
	The Practice of Expansion
	An Expansion Step
	Expansion Complexity Metrics
	Comparing Topology Classes

	Towards Lower Lifecycle Complexity
	FatClique Construction
	FatClique Synthesis Algorithm
	FatClique Expansion
	Discussion

	Evaluating Lifecycle Complexity
	Methodology
	Patch Panel Placement
	Deployment Complexity
	Expansion Complexity
	 FatClique Result Summary

	Related Work
	Conclusions and Future Work
	Appendix
	Clos Generation Algorithm
	Jellyfish Placement Algorithm
	Scale-invariance of Expansion
	FatClique Expansion Algorithm
	Expansion for Clos
	FatClique Topology Synthesis Algorithm
	Parameter Setting
	Other Metrics

	nsdi19-shrivastav
	Introduction
	Motivation
	Design
	Design overview
	Shoal fabric
	Shoal network stack
	Forwarding plane
	Congestion control
	Improving network latency
	Bounded queuing

	Shoal slots and guard band
	Practical concerns

	Implementation
	Switch design
	NIC design

	Power and cost implications
	Prototype
	Prototype setup
	Prototype experiments

	Simulation
	Simulation setup
	Microbenchmarks
	Datacenter workloads
	Disaggregated workloads

	Discussion
	Related work
	Summary
	Accounting for propagation delay
	Resource consumption for Shoal's FPGA-based implementation
	Quality-of-Service
	Recovering from cell corruption

	nsdi19-hessar
	nsdi19-li-zhuqi
	nsdi19-wang-jingxian
	Introduction
	Related Work
	Overview
	Blind Distributed Beamforming
	Exploring the Beamforming Space
	Accounting for Multipath

	Distributed Synchronization for RFIDs
	Frequency Offset Compensation
	Time Synchronization

	Implementation and Evaluation
	Results
	Synchronization Accuracy
	Range vs. Number of Nodes
	Throughput vs. Distance and Scale
	Impact of Orientation
	Impact of Mobility
	Convergence and Coverage

	Conclusion and Future Work

	nsdi19-guddeti
	Introduction
	Related Work
	Making Off-the-Shelf Radios Sweep
	How to make an LO chirp
	Proof of Concept: Sweeping USRP

	Unsweeping the Samples
	Calibration
	Recovery

	Analysis and Inference
	Implementation
	Evaluation
	Case Studies
	ISM Protocol Classification
	LTE Channel Utilization
	CBRS ESC Sensor

	Micro benchmarks

	Limitation: SNR Loss and Inference
	Conclusion

	nsdi19-zhuo
	Introduction
	Background
	Container Overlay Network
	Overhead in Container Overlay Networks
	Journey of an Overlay Network Packet
	Quantifying Overhead

	Fine-Tuning Data-plane

	Overview
	Slim
	Connection-based Network Virtualization
	Supporting Flexible Network Policies
	Addressing Security Concerns

	Implementation
	Evaluation
	Microbenchmarks
	Applications
	Memcached
	Nginx
	PostgreSQL
	Apache Kafka

	Container Migration

	Discussion
	Related Work
	Conclusion

	nsdi19-kaffes
	Introduction
	Motivation
	Shinjuku
	Design Overview
	Fast Preemption
	Low-overhead Context Switch
	Preemptive Scheduling
	Implementation
	Discussion

	Evaluation
	Experimental Methodology
	Synthetic Workload Comparison
	Shinjuku Analysis
	RocksDB Comparison

	Related Work
	Conclusion

	nsdi19-ousterhout
	Introduction
	The Case Against Slow Core Allocators
	Challenges and Approach
	Shenango's Approach

	IOKernel
	Core Allocation
	Number of cores per application
	Which cores for each application

	Dataplane

	Runtime
	Implementation
	IOKernel Implementation
	Runtime Implementation

	Evaluation
	CPU Efficiency and Latency
	Resilience to Bursts in Load
	Microbenchmarks

	Discussion
	Related Work
	Conclusion
	Acknowledgments

	nsdi19-yang
	Introduction
	Background: TaihuLight Network Storage
	Beacon Design and Implementation
	Beacon Architecture Overview
	Multi-layer I/O Monitoring
	Multi-layer I/O Profiling Data Analysis
	Generality and Limitations

	Beacon Use Cases
	Performance Issue Diagnosis
	Automatic I/O Anomaly Diagnosis
	Application and User Behavior Analysis
	Extension to network monitoring

	Beacon Framework Evaluation
	Accuracy Verification
	Monitoring and Query Overhead

	Related Work
	Conclusion
	Appendix Evaluation of Beacon Data Compression
	Appendix Anomaly Detection

	nsdi19-wu
	Introduction
	Overview
	Prior work: Trace trees
	Prior work: Provenance
	Our approach

	Background
	Network Datalog
	System model
	Classical provenance

	Temporal provenance
	Sequencing edges
	Queries
	Delay annotations
	Handling multiple preconditions
	Handling sequencing delays
	Correctness
	Limitations

	Improving readability
	Pruning zero-delay subgraphs
	Provenance aggregation

	The Zeno debugger
	Evaluation
	Diagnostic scenarios
	Identifying off-path causes
	Size of the provenance
	Runtime overhead
	Query processing speed
	Scalability

	Related Work
	Conclusion
	Formal Model
	Background: Execution Traces
	Graph construction
	Properties
	Proofs
	Delay annotations
	Semantics of delay annotations

	nsdi19-khandelwal
	Introduction
	Confluo Overview
	Motivation
	Confluo Interface
	Confluo Design Overview

	Confluo Design
	Background
	Atomic MultiLog
	Atomic Operations on Collection of Logs

	Monitor & Diagnoser Modules
	Archival Module

	Distributed Diagnosis
	Evaluation
	Confluo Performance
	Confluo Applications

	Related Work
	Conclusion

	nsdi19-li-yuliang
	nsdi19-jeong
	Introduction
	Challenges and Proposed Solution
	Challenges
	Related Works
	Proposed Solution: Speculative Graph Generation and Execution

	Janus System Design
	Fast Path for Common Cases
	Accurate Path for Rare Cases

	Symbolic Graph Generation
	Graph Generation Basics
	Dynamic Features
	Dynamic Control Flow
	Dynamic Type
	Impure Functions

	Imperative-Only Features
	Coverage Limitations from Design
	Coverage Limitations from Implementation

	Implementation
	Evaluation
	Experimental Setup
	Model Convergence
	Training Throughput
	Single-machine Throughput
	Scalability

	Conclusion
	Appendix
	Python Syntax Coverage

	nsdi19-subramanya
	nsdi19-gu
	Introduction
	Background and Motivation
	Distributed Deep Learning (DDL)
	Challenges
	Potential for Benefits

	Tiresias Design
	Overall Architecture
	Scheduling
	Why Two-Dimensional Scheduling?
	Two-Dimensional Attained Service-Based Scheduler (2DAS)
	Priority Discretization

	Placement
	Profiler
	The Placement Algorithm

	Summary

	Implementation
	Evaluation
	Experimental Setup
	Tiresias in Testbed Experiments
	JCT Improvements
	Cluster-Wide GPU Utilization
	Sources of Improvements
	Overheads

	Tiresias in Trace-Driven Simulations
	Simulator Fidelity
	JCT Improvements

	Sensitivity Analysis
	Impact of Queue Thresholds
	Impact of K (number of priority queues)
	Impact of PromoteKnob

	Discussion and Future Work
	Related Work
	Conclusion
	Characteristics of Production Cluster
	Characteristics of Popular DNN models
	2D-Gittins Index Value in Section 3.2.2
	ILP Formula for DDL Placement

	nsdi19-khalid
	nsdi19-iyer
	nsdi19-pontarelli
	Introduction
	Requirements and state-of-the-art
	Existing systems

	FlowBlaze Design
	The FlowBlaze Abstraction
	Machine Model
	FlowBlaze Programming
	Expressiveness: A Case Study

	Hardware Design and Implementation
	Stateful Element Architecture
	Scalability of Flow Context Tables
	Guaranteeing Flow State Consistency
	Hardware Implementation
	Software Implementation

	Evaluation
	Throughput
	Latency
	Power Consumption
	Flow Scalability
	Flow Insertion Performance

	Discussion
	Related Work
	Conclusion

	nsdi19-geng
	nsdi19-dukic
	Introduction
	Background & motivation
	Flow size estimation: design space
	Exact sizes provided by application
	Flow aging
	TCP buffer occupancy
	Monitoring system calls
	Learning from past traces

	Learning flow sizes
	Workloads
	Machine learning models

	Opening the black box
	The treachery of time
	Why these features?
	Model accuracy
	Fast-enough, deployable learning?

	Improving network scheduling
	Flow-level scheduling
	Coflow scheduling

	Limitations of learning
	More knowledge better performance?
	Related work
	Conclusion
	Deployment architecture
	Where does Flux operate?
	Virtualization and offload
	Inference speed

	nsdi19-jin
	nsdi19-tan
	Introduction
	NetBouncer overview
	Path probing via packet bouncing
	IP-in-IP basics
	Packet bouncing

	Probing plan and device failure detection
	Underlying model
	Real-world challenges for path selection
	Link-identifiable probing plan
	Device failure detection

	Link failure inference
	Data inconsistency
	NetBouncer's latent factor model
	Algorithm for link failure inference

	Simulation studies
	Simulation setup
	Probing plan
	Device failure detection
	NetBouncer design choices
	Comparison with existing systems

	Implementation and evaluation
	Implementation
	Data processor runtime evaluation

	Deployment experiences
	Discussions
	Related work
	Conclusion
	Proof of sufficient probing theorem
	Failure inference algorithm and complexity analysis
	Acknowledgement

	nsdi19-wang-frank
	nsdi19-wang-xiang
	Introduction
	Background and Motivation
	Regular Expression Decomposition
	Matching with Regex Decomposition
	Rationale and Guidelines
	Graph-based String Extraction

	SIMD-accelerated Pattern Matching
	Multi-string Pattern Matching
	Finite Automata Pattern Matching

	Implementation
	Evaluation
	Experiment Setup
	Effectiveness of Regex Decomposition
	Microbenchmarks
	Real-world DPI Application

	Evolution, Experience, and Lessons
	Evolution of Hyperscan
	Lessons Learned
	Future Directions

	Conclusion

	nsdi19-sommer
	nsdi19-cao
	Introduction
	Background
	Daily operations at NCSA
	System model
	Threat model

	Motivation
	A Motivating Example

	System Architecture
	SSH authentication logger (SAL)
	SSH credential auditor (SCA)
	Black hole router (BHR)
	Alert-sharing Network (ASN)

	Measurement Results
	Dataset
	Attack sources
	SSH clients in attacks
	Attacks using personalized passwords
	Attack attempts using SSH keys
	Impact of attacks

	Evaluation
	Gradual deployment of CAUDIT in NCSA's production network
	Overall impact of our system
	Honeypot
	Black Hole Router
	SSH credential auditor
	Alert-sharing network

	Discussions
	Related Work
	Conclusion
	Code and Data Availability

	nsdi19-dumitrescu
	Introduction
	Goals
	Approaches to checking equivalence
	Existing solutions fall short

	Dataplane equivalence with netdiff
	Dataplane symbolic execution
	Equivalence between pathsets
	Correctness and complexity

	Implementation
	OpenStack Neutron Integration

	Evaluation
	Neutron bugs
	Checking a large Neutron deployment
	P4 equivalence
	Monitoring FIBs in a production network
	Is my datacenter network one big switch?
	Scalability

	Related work
	Conclusions
	Correctness of netdiff
	Notes on equivalence
	Notes on complexity of netdiff

	nsdi19-moon
	Introduction
	Motivation
	Alembic System Overview
	Problem formulation
	Key ideas
	Operational model and limitations
	Alembic workflow

	Extended L* for FSM Inference
	Background on L* algorithm
	Challenges in using L* for NFs
	Generating input alphabet
	Classifying output packets
	Building an equivalence oracle

	KeyLearning: Learning State Granularity
	Handling NF Header Modifications
	Handling an Arbitrary Config
	Generating SymbolicRules
	Alembic online

	Implementation & Evaluation
	Validation using synthetic NFs
	Correctness with real NFs
	Scalability
	Case studies
	Implications for network verification

	Related Work
	Discussion
	Conclusions
	Acknowledgments
	Partial FSM for Use Cases
	Instantiating a Concrete Model
	Correctness of KeyLearning

	nsdi19-sun
	Introduction
	Numerical state space exploration
	Challenges
	Our contributions

	Design of ACT
	Regions of numerical state space S
	Numerical state space exploration
	Feedback-guided random testing
	Parameter estimation
	Parameter concatenation

	Implementation of ACT
	Testing platform
	Test input
	Test output
	ACT method

	Experiments
	General setup
	Evaluation: region coverage
	Use case 1: Checking generic behaviors
	Use case 2: Checking increase behavior
	Use case 3: Checking decrease behavior

	Discussions
	Related work
	TCP numerical state space exploration
	Enhancements to random testing
	General state space exploration
	Other related TCP testing work

	Conclusion

	nsdi19-hasan
	nsdi19-dhekne
	Introduction
	Challenges in Building a Practical System
	Impact of Responder Mobility
	Insufficient Building Coverage
	Inability to Track Real-time
	Imprecise UAV Localization

	System Design
	Overview
	Tracking Trajectory of Mobile Nodes
	Estimating Velocity through Synthetic Apertrure
	Adaptive Apertures for Non-uniform Velocity

	Multi-hop Tracking for Coverage
	Concurrent Ranging
	Reverse Lookup for UAV Location Fix
	TrackIO's Operations in a Nutshell

	Implementation and Testbed Setup
	TrackIO Components
	Testbed Setup

	Evaluation
	Hop1 Localization Performance
	Hop2 Localization Performance
	UAV Localization
	TrackIO End-to-End Latency
	Adding IMU: A What-If Analysis

	Related Work
	Conclusion

	nsdi19-luo
	nsdi19-jog
	Introduction
	Related Work
	Background
	BounceNet Overview
	Learning Paths & Interference
	Multipath Discovery
	Interference Estimation

	BounceNet's Signal Routing
	AP-Client Association
	Direct Path Routing
	Indirect Path Routing

	Testbed and Implementation
	Microbenchmark Results
	Evaluation Results
	Limitations and Discussion
	Conclusion
	Proof of Lemma 6.1
	Data Rate Gains for 5 APs

	nsdi19_front_matter.pdf
	_GoBack
	_GoBack

	Blank Page
	Blank Page

