
conference

proceedings

Proceedings of the 15th U
SEN

IX Sym
posium

 on N
etw

orked System
s Design and Im

plem
entation

Renton, W
A

, USA
April 9–11, 2018

Sponsored by

In cooperation with
SIGCOMM and SIGOPS

ISBN 978-1-939133-01-4

15th USENIX Symposium on
Networked Systems Design
and Implementation

Renton, WA, USA
April 9–11, 2018

USENIX Supporters

© 2018 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-01-4

NSDI ’18 Sponsors

Industry Partners and Media Sponsor

ACM Queue Distributed Management
Task Force (DMTF)

No Starch Press

Gold Sponsors

Bronze Sponsors

General Sponsor

Silver Sponsors

USENIX Patrons
Facebook Google Microsoft
NetApp Private Internet Access

USENIX Benefactors
Amazon Oracle Squarespace VMware

USENIX Partners
Booking.com Can Stock Photo Cisco Meraki

Dealslands Fotosearch

Open Access Publishing Partner
PeerJ

USENIX Association

April 9–11, 2018
Renton, WA, USA

Proceedings of the
15th USENIX Symposium on

Networked Systems Design and
Implementation

Symposium Organizers

Program Co-Chairs
Sujata Banerjee, VMware Research
Srinivasan Seshan, Carnegie Mellon University

Program Committee
Rachit Agarwal, Cornell University
Mohamed Alizadeh, MIT
Katerina Argyraki, EPFL
Ranjita Bhagwan, Microsoft Research
Marco Canini, KAUST
Kai Chen, HKUST
Romit Roy Choudhury, University of Illinois at

Urbana-Champaign
Mike Freedman, Princeton University
Roxana Geambasu, Columbia University
Shyam Gollakota, University of Washington
Ramesh Govindan, USC
Dongsu Han, KAIST
Jon Howell, Google
Kyle Jamieson, Princeton University
Michael Kaminsky, Intel Labs
Srikanth Kandula, Microsoft
Srinivas Keshav, University of Waterloo
Kyu-Han Kim, Hewlett Packard Labs
Eddie Kohler, Harvard University
Arvind Krishnamurthy, University of Washington
Wyatt Lloyd, Princeton University
Boon Thau Loo, University of Pennsylvania
Jay Lorch, Microsoft
Harsha V. Madhyastha, University of Michigan
Dahlia Malkhi, VMware Research
KyongSoo Park, KAIST
Amar Phanishayee, Microsoft
Raluca Ada Popa, University of California, Berkeley
George Porter, University of California, San Diego
Lili Qiu, UT Austin

Costin Raiciu, University Politehnica of Bucharest
Timothy Roscoe, ETH Zurich
Michael Schapira, Hebrew University
Cole Schlesinger, Barefoot Networks
Vyas Sekar, Carnegie Mellon University
Emin Gun Sirer, Cornell University
Alex C. Snoeren, University of California, San Diego
Hakim Weatherspoon, Cornell University
Keith Winstein, Stanford University
Tim Wood, George Washington University
Minlan Yu, Yale University
Matei Zaharia, Stanford University
Lin Zhong, Rice University

Poster Session Co-Chairs
Rachit Agarwal, Cornell University
Dongsu Han, KAIST

Test of Time Awards Committee
Aditya Akella, University of Wisconsin–Madison
Jon Crowcroft, University of Cambridge
Mike Dahlin, Google
Nick Feamster, Princeton University

Steering Committee
Aditya Akella, University of Wisconsin–Madison
Katerina Argyraki, EPFL
Paul Barham, Google
Nick Feamster, Princeton University
Casey Henderson, USENIX Association
Jon Howell, Google
Arvind Krishnamurthy, University of Washington
Jeff Mogul, Google
Brian Noble, University of Michigan
Timothy Roscoe, ETH Zurich
Alex C. Snoeren, University of California, San Diego

External Reviewers
Aditya Akella
Gustavo Alonso
David Andersen
Les Atlas
Suman Banerjee
Daniel S. Berger
Sol Boucher

Prabal Dutta
Giulia Fanti
Ian Goldberg
Chris Hodsdon
Anuj Kalia
Charles Killian
Dejan Kostić

Hyeontaek Lim
Haonan Lu
Bruce Maggs
David Naylor
Ravi Netravali
Khiem Ngo
Matthew Mukerjee

Jitendra Padhye
Theano Stavrinos
Ion Stoica
Ki Suh Lee
Christina Vlachou

Message from the
NSDI ’18 Program Co-Chairs

Welcome to NSDI ’18!

Over the years, NSDI has established itself as the top venue for work on networked and distributed systems. This
year’s iteration is no exception, and we have an excellent program that showcases exciting research advances and
operational experience on topics including distributed systems, cloud, NFV, web systems, video systems, congestion
control, traffic management, fault tolerance, configuration management, and diagnosis.

NSDI ’18 received 255 submissions of which we accepted 40 papers. Our Program Committee consisted of 45
members with a mix of research and industry experience. This year’s review process was double-blind as it was with
NSDI ‘17. The papers were reviewed in two rounds, with papers that advanced to the second round receiving at least
five reviews. In total, the Program Committee and external reviewers generated 1,003 reviews. Once we completed
reviewing, the committee discussed online and selected 77 papers that were discussed further at a 1.5-day PC
meeting held in Palo Alto, CA. The program committee strived to produce valuable feedback; we hope it benefited
authors of every submission.

It has been a great pleasure working with many other people to put this program together. We would like to thank
the authors of all submitted papers for choosing to send work of such high caliber to NSDI. Thanks also to the
program committee for their professionalism, diligence and enthusiasm. Special thanks to Dongsu Han and Rachit
Agarwal for serving as poster chairs and to Lin Zhong, George Porter, Dahlia Malkhi, Dongsu Han, Lili Qiu, Srini-
vasan Keshav and Tim Wood for their help in selecting the Best Paper and Community Awards. Thanks also to the
members of the Test of Time Awards Committee, Aditya Akella, Jon Crowcroft, Mike Dahlin, and Nick Feamster.
We are also very grateful to the USENIX staff, including Casey, Hilary and Michele, for their exceptional support
and help. We are grateful for the help from Keith Winstein and Mary Jane Swenson in organizing the PC meeting at
Stanford University.

Finally, NSDI wouldn’t be what it is without the attendees, so thank you very much for being here. We hope you
enjoy the conference!

Srinivasan Seshan, Carnegie Mellon University
Sujata Banerjee, VMWare Research
NSDI ’18 Program Co-Chairs

NSDI ’18: 15th USENIX Symposium on
Networked Systems Design and Implementation

April 9–11, 2018
Renton, WA, USA

New Hardware
Approximating Fair Queueing on Reconfigurable Switches .1
Naveen Kr. Sharma and Ming Liu, University of Washington; Kishore Atreya, Cavium; Arvind Krishnamurthy,
University of Washington

PASTE: A Network Programming Interface for Non-Volatile Main Memory .17
Michio Honda, NEC Laboratories Europe; Giuseppe Lettieri, Università di Pisa; Lars Eggert and Douglas
Santry, NetApp

NetChain: Scale-Free Sub-RTT Coordination .35
Xin Jin, Johns Hopkins University; Xiaozhou Li, Barefoot Networks; Haoyu Zhang, Princeton University;
Nate Foster, Cornell University; Jeongkeun Lee, Barefoot Networks; Robert Soulé, Università della Svizzera
italiana; Changhoon Kim, Barefoot Networks; Ion Stoica, UC Berkeley

Azure Accelerated Networking: SmartNICs in the Public Cloud .51
Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh Chaturmohta,
Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg,
Microsoft

Distributed Systems
zkLedger: Privacy-Preserving Auditing for Distributed Ledgers .65
Neha Narula, MIT Media Lab; Willy Vasquez, University of Texas at Austin; Madars Virza, MIT Media Lab

Exploiting a Natural Network Effect for Scalable, Fine-grained Clock Synchronization 81
Yilong Geng, Shiyu Liu, and Zi Yin, Stanford University; Ashish Naik, Google Inc.; Balaji Prabhakar and
Mendel Rosenblum, Stanford University; Amin Vahdat, Google Inc.

SnailTrail: Generalizing Critical Paths for Online Analysis of Distributed Dataflows 95
Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki Kalavri, Desislava Dimitrova, Sebastian Wicki,
Zaheer Chothia, and Timothy Roscoe, ETH Zurich

Traffic Management
Balancing on the Edge: Transport Affinity without Network State .111
João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek, and Raul Landa, Fastly

Stateless Datacenter Load-balancing with Beamer .125
Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu, University Politehnica of Bucharest

Larry: Practical Network Reconfigurability in the Data Center . 141
Andromachi Chatzieleftheriou, Sergey Legtchenko, Hugh Williams, and Antony Rowstron, Microsoft Research

Semi-Oblivious Traffic Engineering: The Road Not Taken .157
Praveen Kumar and Yang Yuan, Cornell; Chris Yu, CMU; Nate Foster and Robert Kleinberg, Cornell;
Petr Lapukhov and Chiun Lin Lim, Facebook; Robert Soulé, Università della Svizzera italiana

(continued on next page)

NFV and Hardware
Metron: NFV Service Chains at the True Speed of the Underlying Hardware . 171
Georgios P. Katsikas, RISE SICS and KTH Royal Institute of Technology; Tom Barbette, University of Liege;
Dejan Kostic, KTH Royal Institute of Technology; Rebecca Steinert, RISE SICS; Gerald Q. Maguire Jr.,
KTH Royal Institute of Technology

G-NET: Effective GPU Sharing in NFV Systems .187
Kai Zhang, Fudan University; Bingsheng He, National University of Singapore; Jiayu Hu, University of Science
and Technology of China; Zeke Wang, National University of Singapore; Bei Hua, Jiayi Meng, and Lishan Yang,
University of Science and Technology of China

SafeBricks: Shielding Network Functions in the Cloud .201
Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy, UC Berkeley

Web and Video
Vesper: Measuring Time-to-Interactivity for Web Pages . 217
Ravi Netravali and Vikram Nathan, MIT CSAIL; James Mickens, Harvard University; Hari Balakrishnan,
MIT CSAIL

Towards Battery-Free HD Video Streaming .233
Saman Naderiparizi, Mehrdad Hessar, Vamsi Talla, Shyamnath Gollakota, and Joshua R Smith, University of
Washington

Prophecy: Accelerating Mobile Page Loads Using Final-state Write Logs .249
Ravi Netravali, MIT CSAIL; James Mickens, Harvard University

Salsify: Low-Latency Network Video through Tighter Integration between a Video Codec
and a Transport Protocol .267
Sadjad Fouladi, John Emmons, and Emre Orbay, Stanford University; Catherine Wu, Saratoga High School;
Riad S. Wahby and Keith Winstein, Stanford University

Performance Isolation and Scaling
ResQ: Enabling SLOs in Network Function Virtualization .283
Amin Tootoonchian, Intel Labs; Aurojit Panda, NYU, ICSI; Chang Lan, UC Berkeley; Melvin Walls, Nefeli;
Katerina Argyraki, EPFL; Sylvia Ratnasamy, UC Berkeley; Scott Shenker, UC Berkeley, ICSI

Elastic Scaling of Stateful Network Functions .299
Shinae Woo, KAIST, UC Berkeley; Justine Sherry, CMU; Sangjin Han, UC Berkeley; Sue Moon, KAIST;
Sylvia Ratnasamy, UC Berkeley; Scott Shenker, UC Berkeley, ICSI

Iron: Isolating Network-based CPU in Container Environments .313
Junaid Khalid, UW-Madison; Eric Rozner, Wesley Felter, Cong Xu, and Karthick Rajamani, IBM Research;
Alexandre Ferreira, Arm Research; Aditya Akella, UW-Madison

Congestion Control
Copa: Practical Delay-Based Congestion Control for the Internet .329
Venkat Arun and Hari Balakrishnan, MIT CSAIL

PCC Vivace: Online-Learning Congestion Control .343
Mo Dong and Tong Meng, UIUC; Doron Zarchy, The Hebrew University of Jerusalem; Engin Arslan, UIUC;
Yossi Gilad, MIT; Brighten Godfrey, UIUC; Michael Schapira, The Hebrew University of Jerusalem

Multi-Path Transport for RDMA in Datacenters .357
Yuanwei Lu, Microsoft Research and University of Science and Technology of China; Guo Chen, Hunan
University; Bojie Li, Microsoft Research and University of Science and Technology of China; Kun Tan,
Huawei Technologies; Yongqiang Xiong, Peng Cheng, and Jiansong Zhang, Microsoft Research; Enhong Chen,
University of Science and Technology of China; Thomas Moscibroda, Microsoft Azure

Cloud
Andromeda: Performance, Isolation, and Velocity at Scale in Cloud Network Virtualization 373
Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin
DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas
Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat, Google, Inc.

LHD: Improving Cache Hit Rate by Maximizing Hit Density .389
Nathan Beckmann, Carnegie Mellon University; Haoxian Chen, University of Pennsylvania; Asaf Cidon,
Stanford University/Barracuda Networks

Performance Analysis of Cloud Applications . .405
Dan Ardelean, Amer Diwan, and Chandra Erdman, Google

Diagnosis
007: Democratically Finding the Cause of Packet Drops .419
Behnaz Arzani, Microsoft Research; Selim Ciraci, Microsoft; Luiz Chamon, University of Pennsylvania;
Yibo Zhu and Hongqiang (Harry) Liu, Microsoft Research; Jitu Padhye, Microsoft; Boon Thau Loo, University
of Pennsylvania; Geoff Outhred, Microsoft

Efficient and Correct Test Scheduling for Ensembles of Network Policies .437
Yifei Yuan, Sanjay Chandrasekaran, Limin Jia, and Vyas Sekar, Carnegie Mellon University

Distributed Network Monitoring and Debugging with SwitchPointer .453
Praveen Tammana, University of Edinburgh; Rachit Agarwal, Cornell University; Myungjin Lee, University
of Edinburgh

Stroboscope: Declarative Network Monitoring on a Budget .467
Olivier Tilmans, Université Catholique de Louvain; Tobias Bühler, ETH Zürich; Ingmar Poese, BENOCS;
Stefano Vissicchio, University College London; Laurent Vanbever, ETH Zürich

Fault-Tolerance
Plover: Fast, Multi-core Scalable Virtual Machine Fault-tolerance .483
Cheng Wang, Xusheng Chen, Weiwei Jia, Boxuan Li, Haoran Qiu, Shixiong Zhao, and Heming Cui,
The University of Hong Kong

Odin: Microsoft’s Scalable Fault-Tolerant CDN Measurement System .501
Matt Calder, Microsoft/USC; Manuel Schröder, Ryan Gao, Ryan Stewart, and Jitendra Padhye, Microsoft;
Ratul Mahajan, Intentionet; Ganesh Ananthanarayanan, Microsoft; Ethan Katz-Bassett, Columbia University

Deepview: Virtual Disk Failure Diagnosis and Pattern Detection for Azure .519
Qiao Zhang, University of Washington; Guo Yu, Cornell University; Chuanxiong Guo, Toutiao (Bytedance);
Yingnong Dang, Nick Swanson, Xinsheng Yang, Randolph Yao, and Murali Chintalapati, Microsoft; Arvind
Krishnamurthy and Thomas Anderson, University of Washington

Physical Layer
LiveTag: Sensing Human-Object Interaction through Passive Chipless WiFi Tags .533
Chuhan Gao and Yilong Li, University of Wisconsin-Madison; Xinyu Zhang, University of California San Diego

Inaudible Voice Commands: The Long-Range Attack and Defense .547
Nirupam Roy, Sheng Shen, Haitham Hassanieh, and Romit Roy Choudhury, University of Illinois at
Urbana-Champaign

PowerMan: An Out-of-Band Management Network for Datacenters Using Power Line Communication 561
Li Chen, Jiacheng Xia, Bairen Yi, and Kai Chen, The Hong Kong University of Science and Technology

Configuration Management
NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion 579
Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev, ETH Zürich

Automatically Correcting Networks with NEAt .595
Wenxuan Zhou, Jason Croft, Bingzhe Liu, Elaine Ang, and Matthew Caesar, University of Illinois at
Urbana-Champaign

Net2Text: Query-Guided Summarization of Network Forwarding Behaviors .609
Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev, ETH Zürich

Approximating Fair Queueing on Reconfigurable Switches

Naveen Kr. Sharma∗ Ming Liu∗ Kishore Atreya† Arvind Krishnamurthy∗

Abstract

Congestion control today is predominantly achieved via
end-to-end mechanisms with little support from the net-
work. As a result, end-hosts must cooperate to achieve
optimal throughput and fairness, leading to inefficiencies
and poor performance isolation. While router mecha-
nisms such as Fair Queuing guarantee fair bandwidth al-
location to all participants and have proven to be optimal
in some respects, they require complex flow classifica-
tion, buffer allocation, and scheduling on a per-packet
basis. These factors make them expensive to implement
in high-speed switches.

In this paper, we use emerging reconfigurable switches
to develop an approximate form of Fair Queueing that
operates at line-rate. We leverage configurable per-
packet processing and the ability to maintain mutable
state inside switches to achieve fair bandwidth alloca-
tion across all traversing flows. Further, present our
design for a new dequeuing scheduler, called Rotating
Strict Priority scheduler that lets us transmit packets from
multiple queues in approximate sorted order. Our hard-
ware emulation and software simulations on a large leaf-
spine topology show that our scheme closely approxi-
mates ideal Fair Queueing, improving the average flow
completion times for short flows by 2-4x and 99th tail
latency by 4-8x relative to TCP and DCTCP.

1 Introduction
Most current congestion control schemes rely on end-
to-end mechanisms with little support from the net-
work (e.g., ECN, RED). While this approach simplifies
switches and lets them operate at very high speeds, it
requires end-hosts to cooperate to achieve fair network
sharing, thereby leading to inefficiencies and poor per-
formance isolation. On the other hand, if the switches
were capable of maintaining per-flow state, extracting
rich telemetry from the network, and performing con-
figurable per-packet processing, one can realize intelli-
gent congestion control mechanisms that take advantage
of dynamic network state directly inside the network and
improve network performance.

One such mechanism is Fair Queueing, which has
been studied extensively and shown to be optimal in sev-
eral aspects. It provides the illusion that every flow (or
participant) has its own queue and receives a fair share

∗University of Washington
†Cavium Inc.

of the bandwidth under all circumstances, regardless of
other network traffic. Having the network enforce fair
bandwidth allocation offers several benefits. It simplifies
congestion control at the end-hosts, removing the need
to perform slow-start or complex congestion avoidance
strategies. Further, flows can ramp up quickly without
affecting other network traffic. It also provides strong
isolation among competing flows, protects well-behaved
flows from ill-behaving traffic, and enables bounded de-
lay guarantees [34].

A fair bandwidth allocation scheme is potentially well
suited to today’s datacenter environment, where mul-
tiple applications with diverse network demands often
co-exist. Some applications require low latency, while
others need sustained throughput. Datacenter networks
must also contend with challenging traffic patterns – such
as large incasts or fan-in, micro-bursts, and synchronized
flows, – which can all be managed effectively using a fair
queueing mechanism. Fair queueing mechanisms can
also provide bandwidth guarantees for multiple tenants
of a shared cloud infrastructure [35].

Over the years, several algorithms for enforcing fair
bandwidth allocation have been proposed [25, 27, 28,
33], but rarely deployed in practice, primarily due to their
inherent complexities. These algorithms maintain state
and perform operations on a per-flow basis, making them
challenging to implement at data rates of 3-6 Tbps in
hardware. However, recent advances in switching hard-
ware allow flexible per-packet processing and the abil-
ity to maintain limited mutable state at switches without
sacrificing performance [12, 6]. In this paper, we explore
whether an efficient fair queueing implementation can be
realized using these emerging reconfigurable switches.

We present Approximate Fair Queueing (AFQ), a fair
bandwidth allocation mechanism that approximates the
various components of an ideal fair queueing scheme
using features available in emerging programmable
switches, such as the ability to maintain and mutate
switch state on a per-packet basis, perform limited com-
putation for each packet, and dynamically determine
which egress queue to use for a given packet. We de-
scribe a variant of the packet-pair flow control proto-
col [24], designed to work with AFQ, that achieves close
to optimal performance while maintaining short queues.
We further prototype an AFQ implementation on a Cav-
ium networking processor and study its feasibility on
upcoming reconfigurable switches. Using a real hard-
ware testbed and large-scale simulations, we demon-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 1

123456789

346

123456789

346 5

6

3

4

6

5

4

123456789

346 5

6

5

8

8

ideal
per-flow
queues

sorted packet buffer

T = 0 T = 1 T = 2

Figure 1: An example of the bit-by-bit round robin Fair Queueing algorithm. The algorithm buffers all packets in sorted order based on their
departure round. When a blue packet D of size 2 arrives at T = 1, its departure round is calculated as 5 and is placed between packets A and C in the
sorted buffer. Similarly, when a green packet of size 4 arrives at T = 2, its departure round is 8, and it is placed at the end of the departure queue.

strate AFQ’s utility, showing it achieves fair bandwidth
allocation for common datacenter workloads and traffic
patterns, significantly improving performance over exist-
ing schemes. Specifically, AFQ reduces the average flow
completion time of common workloads by 2-4x com-
pared to TCP and DCTCP, and 99th percentile tail latency
for short flows by up to 5-10x. We measure its overhead
programmable switches by implementing AFQ in the P4
language and compiling it to a realistic hardware model,
demonstrating that the resource overhead is modest.

2 Background
The idea of enforcing fair bandwidth allocation inside
the network has been well studied and shown to offer
several desirable properties. A straight-forward way of
achieving such allocation is to have per-flow queues,
as proposed by Nagle [31], serviced in a round robin
manner. This is clearly impractical given today’s net-
work speeds and workload complexities. An efficient
algorithm, called bit-by-bit round robin (BR), proposed
in [18], achieves ideal fair queueing behavior without re-
quiring expensive per-flow queues. We describe this ap-
proach next since it forms the basis of our AFQ mecha-
nism. We then provide background on the reconfigurable
switch architecture.

2.1 Bit-by-Bit Round Robin (BR)

The bit-by-bit round robin algorithm achieves per-flow
fair queueing using a round robin scheme wherein each
active flow transmits a single bit of data every round.
Then, the round ends, and the round number is incre-
mented by one. Since it is impractical to build such a sys-
tem, the BR algorithm “simulates" this scheme at packet
granularity using the following steps.

• For every packet, the switch computes a bid number
that estimates the time (round) when the packet would
have departed.

• All packets are then buffered in a sorted priority queue
based on their bid numbers, which allows dequeuing
and transmission of the packet with the lowest bid
number at any time.

Figure 1 shows a simple example of this approach. Al-
though the BR algorithm achieves ideal fair queuing be-
havior, several factors make it challenging to implement
given today’s line-rate, 3-6 Tbps switches. First, to com-
pute bid numbers for each packet, the switch must main-
tain the finish round number for each active flow. This
is equal to the round when the flow’s last byte will be
transmitted and must be updated after each packet’s ar-
rival. Today’s switches carry hundreds to thousands of
concurrent flows [7, 37]. Their limited amounts of state-
ful memory makes it difficult to store and update per-flow
bid numbers. Second, inserting packets into an ordered
queue is an expensive O(logN) operation, where N is
the maximum buffer size in number of packets. Given the
12-20MB packet buffers available in today’s switches,
this operation is challenging to implement at a line-rate
of billions of packets per second. Finally, switches need
to store and update the current round number periodi-
cally using non-trivial computation involving: (1) time
elapsed since last update, (2) number of active flows,
and (3) link speed, as described in [25]. Today’s line-
rate switches lack the capability to perform such complex
computations on a per-packet basis.

As noted, emerging reconfigurable switches allow
flexible packet processing and the ability to maintain lim-
ited switch state, therefore we explore whether we can
implement fair-queuing on these new line-rate switches.
Further, recent work [38] has shown approximation to
be a useful tool for implementing a broad class of in-
network protocols for congestion control, load balancing,
QoS and fairness.

2.2 Reconfigurable Switches

Reconfigurable switches provide a match+action (M+A)
processing model: match on arbitrary packet header
fields and then perform simple packet processing ac-
tions. In our work, we assume an abstract Reconfigurable
Match Table (RMT) switch model, as described in [8, 9]
and depicted in Figure 2. A reconfigurable switch begins
packet processing by extracting relevant packet headers
via a user-defined parse graph. The extracted header
fields and packet metadata are passed onto a pipeline of

2 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: The architecture of a reconfigurable switch. Packets are pro-
cessed by a pipeline of match+action stages with local state.

user-defined M+A tables. Each table matches on a sub-
set of extracted headers and can apply simple process-
ing primitives to any field. After traversing the pipeline
stages, packets are deposited in one of multiple queues
associated with the egress port for future transmission.
The parser and the M+A pipeline can be configured us-
ing a high-level language, such as P4 [8] or PoF [43].

A reconfigurable switch provides several hardware
features to support packet processing on the data path:
(1) a limited amount of stateful memory, such as coun-
ters, meters, and registers, which can be accessed and
updated to maintain state across packets, and (2) com-
putation primitives, such as addition, bit-shifts, hashing,
and max/min, which can perform a limited amount of
processing on header fields and data retrieved from state-
ful memory. Further, switch metadata, such as queue
lengths, congestion status, and bytes transmitted, can
also be used in packet processing. Crucially, the pipeline
stages can determine which transmit queue to use for a
given packet based on packet header content and local
state. Finally, a switch-local control plane CPU can also
perform periodic bookkeeping tasks. Several such re-
configurable switches, – Cavium XPliant [12], Barefoot
Tofino [6] and Intel Flexpipe [32] – are available today.

3 Approximate Fair Queueing
Any fair queuing router must perform per-flow man-
agement tasks to guarantee fair bandwidth allocation.
These tasks include packet classification – which flow
this packet belongs to, buffer allocation – whether this
flow’s packet should be enqueued or dropped, and packet
scheduling – decide which flow’s packet to transmit next.
The key idea behind AFQ is to approximate the vari-
ous components of a fair queueing scheme using features
available in programmable switches.

Our design goals for AFQ include achieving per-flow
max-min fairness [20], where a flow is defined as a
unique 5-tuple. Our design should be implementable in
high-speed routers running at line-rate. It must also be
able to handle several thousand flows with varying packet
sizes. We next provide an overview of our design.

3.1 Design Overview

Our design emulates the ideal BR algorithm described
earlier. Like that algorithm, AFQ proceeds in a round
robin manner, where every flow transmits a fixed num-
ber of bytes in each round. On arrival, each packet is
assigned a departure round number based on how many

bytes the flow has sent in the past, and packets are sched-
uled to be transmitted in increasing round numbers. Im-
plementing this scheme requires AFQ to store the fin-
ish round number for every active flow at the switch and
schedule buffered packets in a sorted order. It must also
store and update the current round number periodically
at the switch.

We approximate fair queueing using three key ideas.
First, we store approximate flow bid numbers in sub-
linear space using a variant of the count-min sketch, let-
ting AFQ maintain state for a large number of flows
with limited switch memory. This is made feasible by
the availability of read-write registers on the datapath
of reconfigurable switches. Second, AFQ uses coarser
grain rounds that are incremented only after all active
flows have transmitted a configurable number of bytes
through an output port. Third, AFQ schedules pack-
ets to depart in an approximately sorted manner using
multiple FIFO queues available at each port on these
reconfigurable switches. Combining these techniques
yields schedules that approximate those produced by a
fair queueing switch. However, we show that AFQ pro-
vides performance that is comparable to fair queueing for
today’s datacenter workloads despite these approxima-
tions. Figure 3 shows the pseudocode describing AFQ’s
main components, which we explain in more detail in the
next three sections.

3.2 Storing Approximate Bid Numbers

A flow’s bid number in the BR algorithm is its finish-
round number, which estimates when the flow’s last en-
queued byte will depart from the switch. The bid number
of a flow’s packet is a function of both the current ac-
tive round number as well as the bid number associated
with the flow’s previous packet, and it is used to deter-
mine the packet’s transmission order. AFQ stores each
active flow’s bid number in a count-min sketch-like data-
structure to reduce the stateful memory footprint on the
switch since such memory is a limited resource.

A count-min sketch is simply a 2D array of coun-
ters that supports two operations: (a) inc(e,n), which
increments the counter for element e by n, and (b)
read(e), which returns the counter for element e. For a
sketch with r rows and c columns, inc(e,n) applies
r independent hash functions to e to locate a cell in
each row and increments the cell by n. The operation
read(e) applies the same r hash functions to locate the
same r cells and returns the minimum among them. The
approximate counter value always exceeds or equals the
exact value, letting us store flow bid numbers efficiently
in sub-linear space. Theoretically, to get an ε approxima-
tion, – i.e., error < ε×K with probability 1− δ, where
K is the number of increments to the sketch, – we need
c = e/ε and r = log(1/δ) [17].

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 3

/* AFQ parameters */

S[][] : sketch for bid numbers
nH : # of hashes in sketch
nB : # of buckets in sketch
nQ : # of FIFO queues
BpR : bytes sent in each round

/* Count-min sketch functions */
func read_sketch(pkt):

val = INT_MAX
for i = 1 to nH:

h = hash_i(pkt) % nB
val = min(S[i][h], val)

return val

func update_sketch(pkt, val):
for i = 1 to nH:

h = hash_i(pkt) % nB
S[i][h] = max(S[i][h], val)

/* Enqueue Module */

R : Current round (shared w/ dequeue)

On packet arrival:
bid = read_sketch(pkt)

// If flow hasn’t sent in a while,
// bump it’s round to current round.
bid = max(bid, R * BpR)

bid = bid + pkt.size
pkt_round = bid / BpR

// If round too far ahead, drop pkt.
if (pkt_round - R) > nQ:

drop(pkt)
else:

enqueue(pkt_round % nQ, pkt)
update_sketch(pkt, bid)

/* Dequeue Module */

R : Current round number (shared)
i : Current queue being serviced

while True:
// If no packets to send, spin.
if buffer.empty()

continue;

// Drain i’th queue till empty.
while !queue[i].empty():

pkt = dequeue(i)
send(pkt)

// Move onto next queue,
// increment round number.
i = (i + 1) % nQ
R = R + 1

Figure 3: Pseudocode for AFQ

1234

3

1

2

ideal
per-flow
queues

AFQ
buffering

1

2

3

4

1234

3

1

2

1

2

3

4

1234

3

2

2

1

2

3

4

A

B

C

D

E

FG

ABCD

EF

G

A

B

C

D

E

FG A

B

C

D

E

FG

ABCD

EF

G

ABCD

EF

G

H

H

HI

H

I

T = 0 T = 1 T = 2

Figure 4: An example of the AFQ enqueue mechanism. As packets arrive, their bid numbers are estimated, and they are placed in an available
FIFO queues. When a blue packet H arrives at T = 1, its bid number falls within round 1 and is placed in the first FIFO queue servicing round 1.
When a subsequent blue packet I arrives at T = 2, its bid number falls in round 2; hence, it is placed is the second FIFO queue. For both packets H
and I, we can see the approximation effects of using a large quantum of bytes per round and FIFO queues. An ideal FQ scheme using BR would
transmit packet H before packets C and D, and packet I before E and F, as their last bytes are enqueued before the other packets in the per-flow
queue. However, this reordering is upper-bounded by the number of active flows multiplied by the round quantum.

In hardware, a sketch is realized using a simple incre-
ment by x primitive and predicated read-write registers
(as described in [40]), both of which are available in re-
configurable switches. On packet arrival, r hashes of the
flow’s 5-tuple are computed to index into the register ar-
rays and estimate the flow’s finish round number, which
is used to determine the packet’s transmission schedule.
In practice, AFQ re-uses one of several hashes that are al-
ready computed by the switch for Link Aggregation and
ECMP. Today’s devices support up to 64K register en-
tries per stage and 12-16 stages [22], which is sufficient
for a reasonably sized sketch per port to achieve good
approximation, as we show in Appendix E.

3.3 Buffering Packets in Approximate Sorted Order

The BR fair queuing algorithm ensures that the packet
with the lowest bid number is transmitted next at any
point of time using a sorted queue. Since maintaining
such a sorted queue is expensive, AFQ instead leverages
the multiple FIFO queues available per port to approx-
imate ordered departure of buffered packets, similar to
timer wheels [46].

Assume there are N FIFO queues available at each
egress port of the switch. AFQ uses each queue to buffer
packets scheduled to depart within the next N rounds,
where in each round, every active flow can send a fixed
number of bytes, i.e., BpR bytes (bytes per round). We
next describe how packets are enqueued and dequeued
in approximate sorted order using these multiple queues.

3.3.1 Enqueue Module

The enqueue module decides which FIFO queue to as-
sign to each packet. On arrival, the module retrieves the
bid number associated with the flow’s previous packet
from the sketch. If it is lower than the starting bid number
for the current round, the bid is pushed up to match the
current round. The packet’s bid number is then obtained
by adding the packet’s size to the previous bid number,
and the packet’s departure round number is computed as
the packet’s bid number divided by BpR. If this depar-
ture round exceeds N rounds in the future, the packet
is dropped, else it is enqueued in the queue correspond-
ing to the computed round number. Note that the current
round number is a shared variable that the dequeue mod-

4 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

123

3

1

2

ideal
per-flow
queues

AFQ
buffering

1

2

3

4

A

B

C

D

E

FG

ABCD

EF

G

 Dequeue

current round

23

3

1

2

5

2

3

4

E

FG

EF

G

current round

Figure 5: An example of the AFQ dequeue mechanism.

ule updates after it finishes draining a queue. Finally,
the enqueue module updates the sketch to reflect the bid
number computed for the current packet. Figure 4 shows
an example of how AFQ works when various flows with
variable packet sizes arrive at the same egress port.

Clearly, having more FIFO queues leads to finer order-
ing granularity and a better approximation of fair queu-
ing. Switches available today support 24-32 queues per
port [9, 12], which we show is sufficient for datacenter
workloads. AFQ assumes that the total buffer assigned to
each port can be dynamically assigned to any queue as-
sociated with that port. This lets AFQ to absorb a burst of
new flow arrivals when several packets are scheduled for
the same round number. Most switches already imple-
ment this functionality via dynamic buffer sharing [16].

3.3.2 Dequeue Module

The dequeue module transmits the packet with the small-
est departure round number. Since the enqueue module
already stores packets belonging to a given round number
in a separate queue, AFQ must only drain the queue with
the smallest round number. This is achieved by arrang-
ing all queues in strict priority, with the queue having
the lowest round number assigned the highest priority.
However, once empty, the queue must be bumped down
to the lowest priority and the current round number incre-
mented by 1. Note that this round number is shared with
the enqueue module, which can then adjust its queueing
behavior. The just-emptied queue is then used to store
packets belonging to a future round number that is N
higher than the current round number. Figure 5 shows the
priority change and round assignment that occurs when
a queue is drained to empty by a Rotating Strict Priority
(RSP) scheduler. We describe in Section 4 how to imple-
ment this scheduler on reconfigurable switches.

An important implication of this design is that up-
dating the current round number becomes trivial – in-
crement by 1 whenever the current queue drains com-
pletely. Unlike the BR fair queuing algorithm, which
must update the round number on every packet arrival,
this coarse increment does not involve any complex com-
putations or extra packet state, making it much more fea-
sible to implement on reconfigurable switches.

3.4 Discussion

Several approximations govern how closely the AFQ de-
sign can emulate ideal fair queueing and present a fair-
ness versus efficiency trade-off.

Impact of approximations: First, using a count-min
sketch means that AFQ can over-estimate a packet’s bid
number in case of collisions. As the number of active
flows grows beyond the size of the sketch, the probability
of collisions increases, causing packets to be scheduled
later than expected. However, as we show in the Ap-
pendix E, the sketch must be sufficiently large to store
state only for active flows that have a packet enqueued at
the switch, not all flows traversing the switch, including
dormant ones that have not transmitted recently.

Second, unlike the BR fair queueing algorithm, which
transmits one bit from each flow per round, AFQ lets
active flows send multiple bytes per round. Since this
departure round number is coarser than the bid number
and AFQ buffers packets with the same round number in
FIFO order, packets with higher bid numbers might be
transmitted before packets with lower bid numbers if the
switch received them earlier. This reordering can lead to
unfairness within the round, but is bounded by number
of active flows times BpR in the worst case.

BpR trade-off: Since AFQ buffers packets for the next
N rounds only, the BpR must be chosen carefully to bal-
ance fairness and efficient use of the switch buffer. If
BpR is too large, a single flow can occupy a large portion
of the buffer, causing unfair packet delays and drops. If
it is too small, AFQ will drop packets from a single flow
burst despite having sufficient space to buffer them. The
choice of BpR depends on network parameters, such as
round trip times and link speeds, switch parameters, such
as number of FIFO queues per port and total amount of
packet buffer, as well as the endhost flow control pro-
tocol. We discuss how to set the BpR parameter after
we describe the end-host transport protocol, which pre-
scribe the rate adaptation mechanisms and determine the
desired queue buildups on the switch.

4 Rotating Strict Priority (RSP) Scheduler
Given the Figure 3 pseudocode, implementing the de-
queue module appears to be trivial. However, some hard-
ware constraints make it more challenging than it seems.
First, the two modules are generally implemented as sep-
arate blocks in hardware, which drives considerations re-
garding the sharing of state and synchronization issues
between them. This is important since the decision of
which queue to insert the packet into, or whether to drop
the packet altogether, depends on the current round num-
ber. Second, the RSP scheduler, a custom mechanism,
requires a queue’s priority to be adjusted with respect
to all other queues after it is completely drained by the

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 5

dequeue module. This mechanism is currently not sup-
ported, so we explore multiple ways to implement the
RSP scheduler on today’s hardware.

Synchronizing the enqueue and dequeue modules.
Our design requires the current round number to be
shared and synchronized between the two modules. The
RMT architecture outlined in [9] does not permit the
sharing of state across pipelines stages or pipelines
due to performance considerations, but other reconfig-
urable switches that support the disaggregated RMT
model [15, 12] do not impose this constraint. However,
a workaround on the RMT architecture is possible if we
make the following modifications to the enqueue mod-
ule. Instead of explicitly receiving a signal regarding
round completion (through the increment of the round
number), the enqueue model can maintain a local esti-
mate of the round number and infer round completion by
obtaining queue metadata regarding its occupancy.

An empty queue corresponding to a given round num-
ber implies that the queue has been completely drained,
and the enqueue module then locally increments its es-
timate of the round number and tries adding the packet
to the next queue. Eventually, the enqueue module will
identify a queue that is either not empty or that corre-
sponds to a round number that it has not previously as-
signed to any incoming packet; it then assigns the packet
to this queue. Note that we have replaced explicit signal-
ing by providing access to queue occupancy data, which
is supported on reconfigurable switches such as Bare-
foot’s Tofino and Cavium Xpliant, at least at a coarse-
grain level (i.e., pipeline stages have access to a coarse-
grain occupancy level for each queue, if not the exact
number of bytes enqueued).

Emulating RSP using a generic DRR scheduler.
Deficit Round Robin (DRR) is a scheduling algorithm
that guarantees isolation and fairness across all queues
serviced. It proceeds in rounds; in each round it scans all
non-empty queues in sequence and transmits up to a con-
figurable quantum of bytes from each queue. Any deficit
carries over to the next round unless the queue is empty,
in which case the deficit is set to zero. We note that RSP
is simply a version of DRR with the quantum set to a
large value that is an upper-bound on the number of bytes
transmitted by flows in a round. With a very high quan-
tum, a queue serviced in DRR is never serviced again
until all other queues have been serviced. This is equiva-
lent to demoting the currently serviced queue to the low-
est priority. Crucially, the DRR emulation approach in-
dicates that the hardware costs of realizing RSP should
be minimal since we can emulate its functionality using
a mechanism that has been implemented on switches.
However, we note that many modern switches imple-
ment a more advanced version of DRR, called Shaped

DWRR, a variant that performs round robin scheduling
of packets from queues with non-zero deficit counters in
order to avoid long delays and unfairness. Unfortunately,
the RSP mechanism cannot be emulated directly using
DWRR due to its use of round robin scheduling across
active queues.

Emulating RSP using strict priority queues. We now
consider another emulation strategy that uses periodic
involvement of the switch-local control plane CPU to
alter the priority levels of the available egress queues.
When the priority level for a queue is changed, typically
through a PCIe write operation, the switch hardware in-
stantaneously uses the queue’s new priority level to de-
termine packet schedules. The challenge here is that the
switch CPU cannot make repeated updates to the priority
levels given its clock speed and the PCIe throughput. We
therefore designed a mechanism that requires less fre-
quent updates to the priority levels (e.g., two PCIe oper-
ations every 10us) using hierarchical schedulers.

Our emulation approach splits the FIFO queues into
two strict priority groups and defines hierarchical prior-
ity over the two groups. All priority level updates are
made by switching the upper-level priority of the two sets
of queues; these updates are made only after the system
processes a certain number of rounds. Suppose we have
2×n queues, split into two groups (G1, G2) of n queues
each. In each group, all n queues are serviced using strict
priority. Initially, G1 has strict priority over G2. Pack-
ets with round number 1 → n are enqueued in G1

1→n,
whereas packets with round (n+ 1)→ 2n are enqueued
in G2

1→n. Packets with a round number greater than that
are dropped. After a period τ , or when all queues in G1

are empty, we switch the priorities of G1 and G2, mak-
ing all queues of G2 higher priority than G1. Queues in
each group retain their strict priority ordering. After the
switch, we allow packets to be enqueue on G1’s queues
for rounds corresponding to (2n+ 1)→ 3n.

This approach is feasible using hierarchical sched-
ulers available in most ToR switches today. It reduces
the number of priority transitions the switch must make
and is implementable with the help of the manage-
ment/service CPU on the switch. The time period τ
depends on the link-rate and number of queues. Our
experiments with the Cavium Xpliant switch indicate
that τ = 10µs is both sufficient and supportable us-
ing the switch CPU. The disadvantage of this emulation
approach is that the number of active queues the sys-
tem can use could drop from 2n to n at certain points
in time. However, our evaluations show that AFQ can
perform reasonably well even with a small number of
queues (viz., 8 queues for 40 Gbps links).

6 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 End-host Flow Control Protocol
Although AFQ is solely a switch-based mechanism
that can be deployed without modifying existing end-
hosts to achieve significant performance improvement,
a network-enforced fair queuing mechanism lets us op-
timize the end-host flow control protocol to extract even
more gains. This section describes our approach, adapted
from literature, for performing fast ramp ups and keep-
ing queue sizes small at switches. If all network switches
provided fair allocation of bandwidth, the bottleneck
bandwidth could be measured using the packet-pair ap-
proach [26], which sends a pair of packets back-to-back
and measures the inter-arrival gap.

Packet-pair flow control. We briefly describe the
packet-pair flow control algorithm. At startup, two pack-
ets are sent back-to-back at line-rate, and the returning
ACK separation is measured to get an initial estimate
of the channel RTT and bottleneck bandwidth. Nor-
mal transmission begins by sending packet-pairs paced
at a rate equal to the estimated bandwidth. For every
packet-pair ACK received during normal transmission,
the bandwidth estimate is updated and the packet send-
ing rate adjusted accordingly. If the bandwidth estimate
decreases, a few transmission cycles are skipped, pro-
portional to the rate decrease, to avoid queue buildup.
Similarly, when the bandwidth estimate increases, a few
packets, again proportional to the rate increase, are in-
jected immediately to maintain high link utilization as
described in [24], which also studies the stability of such
a control-theoretic flow control.

Although this approach works well for an ideal fair-
queuing network, we need to make some modifications
for it to be robust against approximations introduced by
AFQ. The complete pseudocode of our flow control pro-
tocol is available in Appendix A.

Robust bandwidth estimation. Since AFQ transmits
multiple bytes in a single round, the packet-pair approach
can incorrectly estimate bottleneck bandwidth if two
back-to-back packets are enqueued in the same round
and transmitted one after the other. This is not an issue
if the BpR is less than or equal to 1 MSS, where MSS
is the maximum segment size of the packets in the pair,
and it holds true for our testbed and simulations. How-
ever, if the BpR is greater than twice the MSS, we must
ensure that the very first packet-pair associated with a
flow maps onto different rounds to get a reasonable band-
width estimate using the inter-arrival delay. We accom-
plished this by adding a delay of BpR-MSS bytes at line-
rate in between the packet-pairs at the end-host. This
careful spacing mechanism, described in [45] measures
the cross-traffic observed in a short interval and extrap-
olates it to identify the number of flows traversing the
switch at that juncture. The protocol records the packet-

pair arrival gap at the receiver and piggybacks on the ac-
knowledgment to avoid noise and congestion on the re-
verse path. To further reduce variance, the protocol keeps
a running EWMA of bandwidth estimates in the last RTT
and uses the average for pacing packet transmission.

Per-flow ECN marking. Unlike an ideal fair-queueing
mechanism, where the packet with the largest round
number is dropped on buffer overflow, AFQ never drops
packets that have already been enqueued. As a result,
AFQ must maintain short queues to absorb bursty ar-
rival of new flows. To dissipate standing queues and
keep them short, we rely on a DCTCP-like ECN marking
mechanism. Each sender keeps track of the fraction of
marked packets and instead of transmitting packets at the
estimated rate, the protocol sends packets at estimated
rate times (1− α/2). This optimization ensures that any
standing queue is quickly dissipated. Further, unlike sim-
ple drop-tail queues, AFQ lets us perform per-flow ECN
marking, which we exploit by marking packets when the
enqueued bytes for a flow exceed a threshold round num-
ber. We set this number to 8 rounds in our simulations,
which keeps per-flow queues very short without sacrific-
ing throughput.

Bounding burstiness. Finally, since we have a fairly
accurate estimate of the base RTT and the fair-share rate
for each flow, we bound the number of inflight packets to
a small multiple of the available bandwidth delay product
(BDP) – similar to the rate based TCP BBR [10], – cur-
rently set to 1.5x the BDP in our implementation. This
reduces network burstiness, especially when new flows
arrive, by forcing older flows to stop transmitting due to
their reduced BDP. This optimization keeps queues short,
avoiding unnecessary queue buildup and packet drops.

We now perform a simple back of the envelope cal-
culation to determine how to set the BpR parameter. As
noted, we can use any end-host mechanism with AFQ,
including standard ones such as TCP and DCTCP. Prior
work has shown that DCTCP requires a queue of size
roughly 1/6th of the bandwidth delay product for effi-
cient link utilization [3]. If the average round-trip latency
of the datacenter network is d and the peak line rate is l,
then we require d × l/6 amount of buffering for a sin-
gle flow to ensure maximum link utilization. Further, if
we have nQ queues in the system, then we set BpR to
d × l/(6 × nQ). In practice, this is less than a MSS for
a 40 Gbps link, 20 us RTT, and 10-20 queues. Further,
the amount of buffering required by a single flow can
be even lower by using an end-host protocol that lever-
ages packet-pair measurements (such as that described
above). Section 6.2.3 provide empirical data from our ex-
periments to show that our end-host protocol does indeed
maintain lower levels of per-flow buffer buildup than tra-
ditional protocols and that packet drops are rare.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 7

6 Evaluation
We evaluated AFQ’s overall performance, fairness guar-
antees and feasibility using: (1) a hardware prototype
based on a Cavium network processor within a small
cluster, (2) large-scale packet-level simulations, and (3)
a programmable switch implementation in P4.

6.1 Hardware Prototype

Existing reconfigurable switches do not expose the pro-
grammability of internal queues, we therefore built a
prototype of an AFQ switch using a programmable net-
work processor. The Cavium OCTEON platform [14]
has a multi-core MIPS64 processor with on-board mem-
ory and 4x10Gbps network I/O ports alongside sev-
eral hardware-assisted network/application acceleration
units, such as a traffic manager, packet buffer manage-
ment units, and security co-processors. All of these com-
ponents are connected via fast on-chip interconnects pro-
viding high performance, low latency, and programma-
bility for network applications ranging from 100Mbps to
200Gbps.

6.1.1 AFQ Switch Implementation

We built a 4-port AFQ switch on top of the network pro-
cessor using the Cavium Development Kit [13]. Fig-
ure 6 shows the high-level architecture, which includes
4 ingress pipelines, 4 egress pipelines, 32 FIFO packet
queues, and a count-min sketch table containing 4 rows
and 16K columns. The number of ports was fixed due to
hardware limitations while all other individual compo-
nents, such as ingress/egress pipelines, queue and table
sizes were configured based on available resources.

Each ingress and egress pipeline instance runs on a
dedicated core, sharing access to packet buffer queues
and the count-min sketch stored on the on-board DRAM.
The ingress pipeline implements most of the AFQ func-
tionality. First, it parses the packet and computes multi-
ple hashes using on-chip accelerators for indexing into
the count-min sketch. Next, it estimates the current
round number for the packet using the algorithm shown
in Figure 3. Finally it updates the count-min sketch and
enqueues the packet in the queue corresponding to the
estimated round number. The egress simply dequeues
packets from the queue corresponding to the current
round being serviced, re-encapsulates the packets and
transmits them to the specific port based on a pre-loaded
MAC table.

Each packet queue maintains a shared lock to avoid
race conditions arising from concurrent accesses of the
ingress and egress cores. Other queue state updates and
sketch table reads/writes use lock-free operations. We
use the software reference counting technique to avoid
TOCTOU race conditions.

Ingress pipeline

Port 0 Port 1 Port 2 Port 3

Queues

Match Action

* 32 cnMIPS64 cores

Match-action Tables

Egress pipeline

Match Action

Match-action Tables

Count-min sketch

* 2GB DRAM

* 4 X 10Gbps ports

Figure 6: High-level architecture of the AFQ switch prototype.

6.1.2 End-host Protocol Implementation

We implemented the packet-pair flow control protocol
(Section 5) in user-space on top of UDP and integrated it
with our workload generator. The implementation uses
hardware timestamps from the NIC to measure the spac-
ing between packet-pairs to accurately obtain bandwidth
estimate and RTT samples, similar to prior work [30].
The flow control re-implements standard TCP sequenc-
ing, fast retransmit, and recovery in user-space atop UDP.

6.1.3 Hardware Testbed and Workload

Our testbed includes 8 Supermicro servers, 2 Cavium
XPliant switches and the prototype AFQ switch atop
the network processor described above. All servers are
equipped with 2x10Gbps port NICs. We created a 2-
level topology using VLANs to divide the physical ports
on the two switches. We integrated the prototyped AFQ
switch into the aggregation switch which runs the AFQ
mechanism at the second layer of the topology. The end-
to-end latency is approximately 200µs, most of which is
spent inside the network processor.

We set up 4 clients and 4 servers that generated traffic
using the enterprise workload described in [1], such that
all traffic traversed the AFQ switch in the aggregation
layer. Each client opened 25 concurrent long-running
connections to each server, and requested flows accord-
ing to a Poisson process at a rate configured to achieve
desired network load. We compared four schemes,

• Default Linux TCP CUBIC with droptail queues
• DCTCP [2] with ECN marking droptail queues
• DCTCP with our AFQ mechanism
• Our packet-pair flow control with AFQ mechanism

For DCTCP, we enabled the default kernel DCTCP
module and set the ECN marking threshold to K = 65
packets. For a fair comparison, we relayed the TCP and
DCTCP traffic through our emulated switch.

8 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 0 20 40 60 80 100

N
o
rm

a
liz

e
d
 F

C
T

Network Load (%)

(a) Average over all flows

TCP
DCTCP

DCTCP-AFQ
PP-AFQ

 0

 3

 6

 9

 12

 0 20 40 60 80 100

Network Load (%)

(b) 99th percentile for small flows < 100KB

DCTCP
DCTCP-AFQ

PP-AFQ

100

101

102

103

< 3k 12k 48k 192k 768k 3M > 3M

Flow size in bytes

(c) FCT breakdown at 70% network load

TCP
DCTCP
PP-AFQ

Figure 7: FCT summary for the enterprise workload on our hardware testbed. (a) average FCT for all flows, (b) tail latency for short flows, and (c)
average and 99th percentile (using error bar) for various flow sizes. Note, TCP does not appear in (b) as its performance is outside the plotted range.

6.1.4 Overall Performance

We use flow completion time (FCT) as the evaluation
metric and report the average and 99th percentile latency
over a period of 60 seconds. Figure 7 shows FCT statis-
tics for various flow sizes as we increase the network
load; data points are normalized to the average FCT
achieved in an idle network. AFQ improves DCTCP
performance by 2x and TCP performance by 10x for
both average and tail flow completion times. The ben-
efits of AFQ are more visible at high network loads
when there is substantial cross-traffic with high churn. In
such a scenario, TCP and DCTCP take multiple RTTs to
achieve fair bandwidth allocation, and suffer long queue-
ing delays behind bursty traffic; whereas AFQ lets new
flows achieve their fair share immediately and isolates
them from other concurrent flows, leading to signifi-
cantly more predictable performance.

Figure 7(b) also shows the improvement from our
packet-pair end-host flow control over DCTCP, as the
packet-pair approach avoids slow-start and begins trans-
mitting at fair bandwidth allocation immediately after the
first ACK. This fast ramp-up along with fair allocation
at AFQ switches translates to significant FCT improve-
ment, especially for short flows, as shown in Figure 7(c).

6.2 Software Simulation

We also studied AFQ’s performance in a large-scale clus-
ter deployment using an event-driven, packet-level sim-
ulator. We extended the mptcp-htsim simulator [36] to
implement AFQ and several other comparison schemes.

6.2.1 Simulation Topology and Workload

We simulated a cluster of 288 servers connected in a
leaf-spine topology, with 9 leaf and 4 spine switches.
Each leaf switch is connected to 32 servers using 10Gbps
links; and each spine switch is connected to each leaf us-
ing 40Gbps links. All leaf and spine switches have a
fixed-sized buffer of 512KB and 1MB per port respec-
tively. The end-to-end round-trip latency across the spine
(4 hops) is ≈ 10µs. All flows are ECMP load balanced
across all spine switches. We use a small value of min-
RTO = 200µs for all schemes, as suggested in [4].

We used both synthetic and empirical workloads de-
rived from traffic patterns observed in productions dat-
acenters. The synthetic workload generates Pareto dis-
tributed (α = 1.1) flows with mean flow size 30KB.
The empirical workload is based on an enterprise clus-
ter reported in [1]. Flows arrive according to a Poisson
process at randomly and independently chosen source-
destination server pairs from all servers. The arrival rate
is chosen to achieve a desired level of utilization in the
spine links. Both workloads are heavy-tailed with ma-
jority bytes coming from a small fraction of large flows;
both also have a diverse mix of short and long flows, with
the enterprise workload having more short flows.

6.2.2 Comparison Schemes

• TCP: Standard TCP-Reno with fast re-transmit and
recovery, but without SACKs, running on switches
with traditional drop-tail queues

• DCTCP: The DCTCP [2] congestion control algo-
rithm with drop-tail queues supporting ECN marking
on all switches; marking threshold set to 20 packets
for 10Gbps links and 80 packets for 40Gbps links

• SFQ: Same TCP-Reno as above with Stochastic Fair
Queueing [29] using DRR [39] on all switch ports;
with 32 FIFO queues available at each switch port

• AFQ: Our packet-pair flow control with AFQ switches
using 32 FIFO queues per port, a count-min sketch of
size 2x16384, and a BpR of 1 MSS

• Ideal-FQ: An ideal fair queueing router that imple-
ments the BR algorithm (described in [18]) and uses
our packet-pair flow control at the end-host

6.2.3 Overall Performance

We compared the overall performance of various
schemes in the simulated topology by measuring the FCT
of all flows that finished over a period of 10 seconds in
the simulation. Figures 8 and 9 show the normalized
FCT (normalized to the average FCT achieved in an idle
network) for all flows, short flows (<100KB) and flows
bucketed across different sizes at varying network loads
and workloads.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 9

 0

 2

 4

 6

 8

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 F
C

T

Network Load (%)

(a) Average over all flows

TCP
DCTCP

SFQ
AFQ

Ideal-FQ

 0

 4

 8

 12

 16

 0 20 40 60 80 100

Network Load (%)

(b) Average over small flows < 100KB

TCP
DCTCP

SFQ
AFQ

Ideal-FQ

100

101

102

103

< 3k 12k 48k 192k 768k 3M > 3M

Flow size in bytes

(c) FCT breakdown at 70% network load

TCP
DCTCP
PP-AFQ

Figure 8: Flow completion times for synthetic workload in the cluster. (a) average FCT for all flows, (b) average FCT for flows shorter than 100KB,
and (c) average and 99th percentile (using error bar) for various flow size buckets at 70% network load.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 F
C

T

Network Load (%)

(a) Average over all flows

TCP
DCTCP

SFQ
AFQ

Ideal-FQ

 0

 4

 8

 12

 16

 20

 0 20 40 60 80 100

Network Load (%)

(b) Average over small flows < 100KB

TCP
DCTCP

SFQ
AFQ

Ideal-FQ

100

101

102

103

< 3k 12k 48k 192k 768k 3M > 3M

Flow size in bytes

(c) FCT breakdown at 70% network load

TCP
DCTCP
PP-AFQ

Figure 9: Flow completion times for enterprise workload, with each graph showing the same metrics as in Figure 8.

Our simulation results match previous emulated ob-
servations. As expected, most schemes perform close
to optimal at low network load, but quickly diverge as
network traffic increases. Traditional TCP keeps switch
buffers full, leading to long queueing delays, especially
for shorter flows. DCTCP improves the performance
of short flows significantly since it maintains shorter
queues, but is still a factor of 2-4x away from ideal
fair-queuing behavior. SFQ works very well at low net-
work loads when the number of active flows is compa-
rable to number of queues, however as network traffic
increases, collisions within a single queue become more
frequent leading to poor performance. AFQ achieves
close to ideal fair queuing performance for all network
load, which is 3-5x better that TCP and DCTCP for tail
latency of short flows: irrespective of other network traf-
fic, all flows immediately get their fair share of the net-
work without waiting behind other packets. This leads to
significant performance benefit for shorter flows, which
do not have to wait behind bursty traffic.

To further understand the performance gains, we mea-
sured several other metrics, such as packet drops, re-
transmissions, average queue lengths, and buffer occu-
pancy distribution during the experiment. Figure 10(a)
shows the average bytes dropped per flow for each
scheme. As expected, standard TCP drops on average
one packet per flow, and DCTCP has negligible drops at
low network load. However, at higher loads, drops are
more frequent, leading to occasional re-transmission and
performance penalty. This is also reflected in the aver-

age queue length shown in Figure 10(b). Both DCTCP
and packet pair with AFQ are able to maintain very short
queues, but with an interesting difference in the buffer
occupancy distribution as shown in Figure 10(c). We
took periodic snapshots on the queue every 100µs, to
count how many packets belong to each flow in the buffer
and plotted the CCDF of number of packets per flow
across all snapshots. AFQ with packet-pair flow con-
trol rarely has more than 5 packets enqueued per flow
at the core links, whereas DCTCP and TCP have many
more packets buffered per flow. This can lead to unfair-
ness when bursty traffic arrives, such as during an incast,
which we discuss next. In summary, AFQ achieves simi-
lar performance to DCTCP for all flows, and 2x better
performance for short flows while maintaining shorter
queues and suffering fewer drops by ensuring fair allo-
cation of bandwidth and buffers.

6.2.4 Incast Patterns

Incast patterns, common in datacenters, often suffer per-
formance degradation due to poor isolation. In this setup,
we started a client on every end-host which requests a
chunk of data distributed over N other servers. Each
sender replies back with 1/N of the data at the same
time. We report the total transfer time of the chunk of
data with a varying number of senders averaged over
multiple runs. Simultaneous multiple senders can cause
unfair packet drops for flow arriving later, causing time-
outs that delay some flows and increase overall comple-
tion time. An ideal fair-queuing scheme would allocate

10 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10-1

100

101

102

103

104

105

 0 20 40 60 80 100

A
v
e
ra

g
e
 d

ro
p

p
e
d

 b
y
te

s
p

e
r
fl
o
w

Network Load (%)

(a) Packet Drops

TCP
DCTCP
PP-AFQ

Ideal-FQ

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

A
v
e
ra

g
e
 Q

u
e
u
e
 S

iz
e
 i
n
 k

ilo
-b

y
te

s

Network Load (%)

(b) Core Link Queue Size

TCP
DCTCP

AFQ
Ideal-FQ

10-4

10-3

10-2

10-1

100

 0 5 10 15 20 25 30

C
C

D
F

P
[X

 >
=

 x
]

Number of packets per flow

(c) Core Link Buffer Distribution at 80% load

Ideal-FQ
PP-AFQ
DCTCP

TCP

Figure 10: Packet drops, queue lengths and buffer occupancy distribution for enterprise workload in the cluster.

 0

 1

 2

 3

 10 30 50 70 90

N
o
m

a
liz

e
d
 I
n
ca

st
 L

a
te

n
cy

Number of Senders

(a) Average Completion Time

TCP
DCTCP

AFQ
Ideal-FQ

 0

 2

 4

 6

 8

 10

 10 30 50 70 90

Number of Senders

(b) 99%tile Completion Time

TCP
DCTCP

AFQ
Ideal-FQ

 0

 1

 2

 3

 10 30 50 70 90

Number of Senders

(c) Unfairness (diff b/w 1% and 99% FCT over all flows)

TCP
DCTCP

AFQ
Ideal-FQ

Figure 11: Completion time summary for an incast request of size 1.5MB from a varying number of senders.

equal bandwidth and buffer to each sender, hence finish-
ing all transfers at roughly the same time.

Figure 11 shows the total completion time of vari-
ous schemes for a total chunk size 1.5MB with vary-
ing number of senders. The receiver link has approx-
imately 300KB of buffer, roughly around 200 packets.
Most schemes perform well with few senders, but de-
grade when the number of senders overwhelms the re-
ceiver link buffer. This leads to packet drops for flows ar-
riving later in a traditional droptail queue, sending them
into timeouts. AFQ achieves close to optimal request
completion time, even with large senders because it en-
sures each flow gets fair buffer allocation regardless of
when it arrives. As a result packet drop are minimal,
leading to fewer re-transmissions and lower completion
time. Figure 12 shows the number of packet drops ob-
served during the incast, packet re-transmissions, and
buffer occupancy, which confirm the preceding observa-
tion. As expected, TCP drops several packets throughout
the incast experiment, causing several re-transmissions.
DCTCP performs much better and suffers zero packet
drops until the number of senders exceeds the link buffer
capacity. AFQ has even fewer drops than DCTCP be-
cause it distributes the available buffer space in a fair
manner among all flows, as shown in Figure 12(c).

6.3 P4 Implementation

To evaluate the overhead of implementing AFQ on an
actual reconfigurable switch, we expressed AFQ in the
P4 programming language and compiled it to a produc-
tion switch target. The P4 code ran on top of a base-

line switch implementation [41] that provides common
functionality of today’s datacenter switches, such as ba-
sic L2 switching (flooding, learning, and STP), basic L3
routing (IPv4, IPv6, and VRF), link aggregation groups
(LAGs), ECMP routing, VXLAN, NVGRE, Geneve and
GRE tunneling, and basic statistics collection. The com-
piler implements the functionality proposed in [23] and
compiles to the hardware model described in Section 2.2.
It reports the hardware usage of various resources for the
entire implementation.

Resource Baseline +AFQ +AFQ-Large

Pkt Header Vector 187 191 +2% 191 +2%
Pipeline Stages 9 12 +33% 12 +33%
Match Crossbar 462 465 +1% 465 +1%
Hash Bits 1050 1082 +3% 1092 +4%
SRAM 165 178 +8% 190 +15%
TCAM 43 44 +2% 44 +2%
ALU Instruction 83 90 +8% 90 +8%

Table 1: Summary of resource usage for AFQ.

Table 1 shows the additional overhead of implement-
ing two variants of AFQ as reported by the compiler.
AFQ uses a count-min sketch of size 2x2048, while
AFQ-Large uses a sketch of size 3x16384. We can see
the extra overhead is small for most resources. We need
more pipeline stages to traverse the count-min sketch and
keep a running minimum, and more SRAM to store all
the flow counters. We also use extra ALU units to per-
form per-packet increments and bit-shifts to divide by
BpR.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 11

10-1

100

101

102

103

104

 10 30 50 70 90

A
v
e
ra

g
e
 b

y
te

s
d

ro
p

p
e
d

 p
e
r
fl
o
w

Number of Senders

(a) Packet Drops

TCP
DCTCP
PP-AFQ

Ideal-FQ
10-1

100

101

102

103

 10 30 50 70 90

A
v
e
ra

g
e
 r

e
tr

a
n
sm

is
si

o
n
s

p
e
r

in
ca

st

Number of Senders

(b) Packet Retransmissions

TCP
DCTCP
PP-AFQ

Ideal-FQ
10-3

10-2

10-1

100

 0 1 2 3 4 5 6 7 8 9 10

C
C

D
F

P
[X

 >
=

 x
]

Number of packets per flow

(c) Buffer Distribution with 80 senders

TCP
DCTCP
PP-AFQ

Ideal-FQ

Figure 12: Packet drops, re-transmissions and buffer distribution across flows during incast traffic.

7 Related Work
Starting from Nagle’s proposal [31] for providing fair-
ness by using separate queues, several algorithms have
been designed to implement a fair queueing mechanism
inside the network. In [18], an efficient bit-by-bit round
robin (BR) algorithm was developed to provide ideal fair
queuing without per-flow queue support; [25] describes
an efficient implementation of the BR algorithm. How-
ever, its inherent complexities make it hard to implement
on today’s high-speed routers.

Many algorithms were later proposed to reduce the
complexity and cost of implementing fair queuing mech-
anisms. Most either use stochastic approaches or avoid
complex per-flow management by using simpler heuris-
tics. Stochastic Fair Queuing (SFQ) [29] hashes flows
onto a reduced set of FIFO queues and perturbs the hash-
ing function periodically to minimize unfairness. An
efficient realization of SFQ using Deficit Round Robin
(DRR) was proposed in [39]. However, its fairness guar-
antees are closely tied to the number of queues, and per-
formance degrades significantly when the number of ac-
tive flow exceeds the number of queues.

Several schemes [33, 28, 27] enforce fairness by drop-
ping packets of flows sending faster than their fair share.
They estimate flow rate by tracking recent history of
packet arrivals or the current buffer occupancy. A vari-
ant, called Stochastic Fair Blue [19], uses an array of
bloom filters to store packet counts and drop probabili-
ties, which is similar to how AFQ stores round numbers.
Core-Stateless Fair Queueing (CSFQ) [44] enforces fair
allocation by splitting the mechanism between the edge
and the core network. All complexity of rate estima-
tion/labeling is at the edge, and the core performs simple
packet forwarding based on labels. It achieves fairness
by dropping packets with probability proportional to the
rate above the estimated fair rate.

Other schemes – PIAS [5] and FDPA [11] also
leverage multiple priority queues available in commod-
ity switches to emulate shortest-job-next scheduling or
achieve approximate fair bandwidth allocation using an
array of rate estimators to assign flows to different
priority queues. Although similar, AFQ uses multi-

ple queues to emulate an ideal fair-queueing algorithm.
A more recent approach PIFO [42] proposes a pro-
grammable scheduler that can implement variants of pri-
ority scheduling and ideal fair queuing at line rate by ef-
ficiently implementing O(logN) sorted insertion com-
plexity in hardware. However, like fixed-function sched-
ulers, the number of distinct flows that can be sched-
uled is bound in hardware and can support up to 2048
flows. In addition, we discuss how to store approximate
per-flow bid numbers in limited switch memory, and in-
crement current round number efficiently, which has not
been explored in prior work.

8 Conclusion
In this paper, we proposed a fair bandwidth allocation
mechanism called Approximate Fair Queueing (AFQ),
designed to run on emerging reconfigurable switches.
We approximate the various mechanisms of a fair queue-
ing scheduler using features available on reconfigurable
switches. Specifically, we approximate the per-flow state
regarding the number and timing of its previously trans-
mitted packets using mutable switch state; we perform
limited computation for each packet to compute its po-
sition in the output schedule; we dynamically determine
which egress queue to use for a given packet; and we
design a new dequeuing approach, called the Rotating
Strict Priority scheduler, to transmit packets in approxi-
mate sorted order. Using a networking-processor-based
prototype in a real hardware testbed and large scale sim-
ulations, we showed that AFQ approximates ideal queu-
ing behavior accurately, improving performance signifi-
cantly over existing schemes. We also showed that the
overhead of implementing AFQ on top of programmable
switches is fairly minimal.

Acknowledgments
We would like to thank the anonymous NSDI reviewers
and our shepherd Mohammad Alizadeh for their valuable
feedback. We also thank Antoine Kaufmann for many
insightful discussions. This research was partially sup-
ported by the National Science Foundation under Grants
CNS-1518702, CNS-1616774, and CNS-1714508.

12 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,

VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM,
V. T., MATUS, F., PAN, R., YADAV, N., AND VARGH-
ESE, G. CONGA: Distributed congestion-aware load bal-
ancing for datacenters. In Proceedings of the ACM SIG-
COMM Conference (2014).

[2] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP). In
Proceedings of the ACM SIGCOMM Conference (2010).

[3] ALIZADEH, M., JAVANMARD, A., AND PRABHAKAR,
B. Analysis of DCTCP: Stability, convergence, and fair-
ness. In Proceedings of the ACM SIGMETRICS Confer-
ence (2011).

[4] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S.,
MCKEOWN, N., PRABHAKAR, B., AND SHENKER, S.
pFabric: Minimal near-optimal datacenter transport. In
Proceedings of the ACM SIGCOMM Conference (2013).

[5] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C.,
AND WANG, H. Information-agnostic flow scheduling
for commodity data centers. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and
Implementation (Oakland, CA, 2015).

[6] BAREFOOT NETWORKS. Tofino Programmable
Switch. https://www.barefootnetworks.
com/technology/.

[7] BENSON, T., AKELLA, A., AND MALTZ, D. A. Net-
work traffic characteristics of data centers in the wild. In
Proceedings of the ACM SIGCOMM Conference on In-
ternet Measurement (2010).

[8] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M.,
MCKEOWN, N., REXFORD, J., SCHLESINGER, C.,
TALAYCO, D., VAHDAT, A., VARGHESE, G., AND

WALKER, D. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer Commu-
nication Review 44, 3 (July 2014).

[9] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE,
G., MCKEOWN, N., IZZARD, M., MUJICA, F., AND

HOROWITZ, M. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. In Proceedings of the ACM SIGCOMM Conference
(2013), pp. 99–110.

[10] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH,
S. H., AND JACOBSON, V. BBR: Congestion-based con-
gestion control. Queue 14, 5 (Oct. 2016), 50:20–50:53.

[11] CASCONE, C., BONELLI, N., BIANCHI, L., CAPONE,
A., AND SANSÒ, B. Towards approximate fair band-
width sharing via dynamic priority queuing. In Local and
Metropolitan Area Networks (LANMAN) (2017), IEEE.

[12] CAVIUM. XPliant Ethernet switch prod-
uct family. http://www.cavium.com/
XPliant-Ethernet-Switch-Product-Family.
html.

[13] CAVIUM. OCTEON Development Kits, 2016.
http://www.cavium.com/octeon_software_
develop_kit.html.

[14] CAVIUM. Cavium OCTEON SoC Development
Board, 2017. http://www.cavium.com/OCTEON_
MIPS64.html.

[15] CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A.,
VARGAFTIK, S., BERGER, A., MENDELSON, G., AL-
IZADEH, M., CHUANG, S.-T., KESLASSY, I., ORDA,
A., AND EDSALL, T. dRMT: Disaggregated pro-
grammable switching. In Proceedings of the ACM SIG-
COMM Conference (2017).

[16] CHOUDHURY, A. K., AND HAHNE, E. L. Dy-
namic queue length thresholds for shared-memory packet
switches. IEEE/ACM Transactions on Networking 6, 2
(1998), 130–140.

[17] CORMODE, G., AND MUTHUKRISHNAN, S. An Im-
proved Data Stream Summary: The Count-Min Sketch
and its Applications. Journal of Algorithms 55, 1 (2005),
58–75.

[18] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis
and simulation of a fair queueing algorithm. In Proceed-
ings on the ACM SIGCOMM Conference (1989).

[19] FENG, W.-C., KANDLUR, D. D., SAHA, D., AND SHIN,
K. G. Stochastic Fair Blue: A queue management algo-
rithm for enforcing fairness. In IEEE INFOCOM (2001).

[20] JAFFE, J. Bottleneck flow control. IEEE Transactions on
Communications 29, 7 (1981), 954–962.

[21] JAIN, R., CHIU, D., AND HAWE, W. A quantitative
measure of fairness and discrimination for resource allo-
cation in shared computer systems. CoRR cs.NI/9809099
(1998).

[22] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOS-
TER, N., KIM, C., AND STOICA, I. NetCache: Balanc-
ing key-value stores with fast in-network caching. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (2017).

[23] JOSE, L., YAN, L., VARGHESE, G., AND MCKE-
OWN, N. Compiling packet programs to reconfigurable
switches. In Proceedings of the 12th USENIX Confer-
ence on Networked Systems Design and Implementation
(2015).

[24] KESHAV, S. A control-theoretic approach to flow con-
trol. In Proceedings of the ACM SIGCOMM Conference
(1991).

[25] KESHAV, S. On the efficient implementation of fair
queueing. Journal of Internetworking: Research and Ex-
perience 2 (1991), 157–173.

[26] KESHAV, S. The packet pair flow control protocol. Tech.
Rep. 91-028, ICSI Berkeley, 1991.

[27] LIN, D., AND MORRIS, R. Dynamics of random early
detection. In ACM SIGCOMM Computer Communication
Review (1997).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 13

https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/octeon_software_develop_kit.html
http://www.cavium.com/octeon_software_develop_kit.html
http://www.cavium.com/OCTEON_MIPS64.html
http://www.cavium.com/OCTEON_MIPS64.html

[28] MAHAJAN, R., FLOYD, S., AND WETHERALL, D. Con-
trolling high-bandwidth flows at the congested router. In
Network Protocols, 2001. Ninth International Conference
on (2001), IEEE, pp. 192–201.

[29] MCKENNEY, P. E. Stochastic fairness queueing. In
INFOCOM’90, IEEE Computer and Communication So-
cieties. The Multiple Facets of Integration. Proceedings,
IEEE (1990).

[30] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM, E.,
WASSEL, H., GHOBADI, M., VAHDAT, A., WANG, Y.,
WETHERALL, D., AND ZATS, D. TIMELY: RTT-based
congestion control for the datacenter. In Proceedings of
the ACM SIGCOMM Conference (2015).

[31] NAGLE, J. B. On packet switches with infinite storage.
In Innovations in Internetworking. Artech House, Inc.,
1988, pp. 136–139.

[32] OZDAG, R. Intel R© Ethernet Switch FM6000
Series-Software Defined Networking. http:
//www.intel.com/content/dam/www/
public/us/en/documents/white-papers/
ethernet-switch-fm6000-sdn-paper.pdf.

[33] PAN, R., BRESLAU, L., PRABHAKAR, B., AND

SHENKER, S. Approximate fairness through differential
dropping. ACM SIGCOMM Computer Communication
Review 33, 2 (Apr. 2003).

[34] PAREKH, A. K., AND GALLAGER, R. G. A generalized
processor sharing approach to flow control in integrated
services networks: The single-node case. IEEE/ACM
Transactions on Networking 1, 3 (1993), 344–357.

[35] POPA, L., KUMAR, G., CHOWDHURY, M., KRISHNA-
MURTHY, A., RATNASAMY, S., AND STOICA, I. Fair-
Cloud: Sharing the network in cloud computing. In Pro-
ceedings of the ACM SIGCOMM Conference (2012).

[36] RAICIU, C. MPTCP htsim simulator. http://
nrg.cs.ucl.ac.uk/mptcp/implementation.
html.

[37] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND

SNOEREN, A. C. Inside the social network’s (datacenter)
network. In Proceedings of the ACM SIGCOMM Confer-
ence (2015).

[38] SHARMA, N. K., KAUFMANN, A., ANDERSON, T.,
KRISHNAMURTHY, A., NELSON, J., AND PETER, S.
Evaluating the power of flexible packet processing for
network resource allocation. In Proceedings of the 14th
USENIX Conference on Networked Systems Design and
Implementation (Boston, MA, 2017), pp. 67–82.

[39] SHREEDHAR, M., AND VARGHESE, G. Efficient fair
queueing using deficit round robin. In Proceedings on the
ACM SIGCOMM Conference (1995).

[40] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C.,
ALIZADEH, M., BALAKRISHNAN, H., VARGHESE, G.,
MCKEOWN, N., AND LICKING, S. Packet transactions:
High-level programming for line-rate switches. In Pro-
ceedings of the ACM SIGCOMM Conference (2016).

[41] SIVARAMAN, A., KIM, C., KRISHNAMOORTHY, R.,
DIXIT, A., AND BUDIU, M. DC.P4: Programming the
forwarding plane of a data-center switch. In Proceedings
of the ACM SIGCOMM Symposium on Software Defined
Networking Research (2015).

[42] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M.,
CHOLE, S., CHUANG, S.-T., AGRAWAL, A., BALAKR-
ISHNAN, H., EDSALL, T., KATTI, S., AND MCKEOWN,
N. Programmable packet scheduling at line rate. In Pro-
ceedings of the ACM SIGCOMM Conference (2016).

[43] SONG, H. Protocol-oblivious forwarding: Unleash the
power of SDN through a future-proof forwarding plane.
In Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking (2013).

[44] STOICA, I., SHENKER, S., AND ZHANG, H. Core-
Stateless Fair Queueing: Achieving approximately fair
bandwidth allocations in high speed networks. In Pro-
ceedings on the ACM SIGCOMM Conference (1998).

[45] STRAUSS, J., KATABI, D., AND KAASHOEK, F. A mea-
surement study of available bandwidth estimation tools.
In Proceedings of the 3rd ACM SIGCOMM Conference
on Internet Measurement (2003).

[46] VARGHESE, G., AND LAUCK, A. Hashed and hierar-
chical timing wheels: Efficient data structures for imple-
menting a timer facility. IEEE/ACM Transactions on Net-
working 5, 6 (Dec. 1997), 824–834.

14 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html

A End-host Pseudocode
Figure 13 shows our adapted packet-pair flow control at
the end-host. Each flow begins by transmitting a pair
of back-to-back packets and waits for the acks to return.
The receiver measures the packet inter-arrival gap and
returns it back to the sender piggybacked on the ack. Af-
ter receiving the first ack, it starts normal transmission at
the estimated rate in packet-pairs. For every ack received
during normal transmission, the rate estimate is updated
based on the packet gap and ECN marks.

SENDER PROTOCOL

Startup():
state = STARTUP
SendPacketPair()

On AckReceive(pktpair, rtt):
newGap = pktpair.gap

if (rtt < minRTT):
minRTT = rtt

if state == STARTUP:
/* Start normal packet transmission. */
state = NORMAL
gap = newGap
SendPacketPair()

else:
/* Update rate estimate. */
gap = (1 - GAIN) * gap + GAIN * newGap
linkRate = MSS / gap
bdp = linkRate * minRTT

/* Throttle rate based on ECN marks. */
rate = linkRate * (1 - alpha / 2)

SendPacketPair():
/* Bound inflight bytes to roughly bdp. */
if (inflight > CWND_FACTOR * bdp):
/* Wait for ack or retransmission timeout. */
return

packet1 = nextPacket()
packet1.first = true
send(packet1)

/* Add delay if necessary. */

packet2 = nextPacket()
send(packet2)

if (state == STARTUP):
Wait for AckReceive()

else:
nextSendTime = now() + 2 * MSS / rate
scheduleTimer(SendPacketPair, nextSendTime)

RECEIVER PROTOCOL

OnPacketReceive (packet):
if (packet.first == true):

first_pktpair_time = now()
pktpair_ts = packet.sendTime

else:
gap = now - first_pktpair_time
ack = nextAck()
ack.sendTime = pktpair_ts
ack.gap = gap
send(ack)

Figure 13: Pseudocode for endhost flow control protocol

B Convergence and Fairness
To demonstrate that AFQ does indeed assign each flow
its fair share rapidly, we connected two hosts via a
10Gbps, 10µs RTT link and sequentially started-stopped
flows at 1-second intervals. We used standard TCP end-
hosts, and change the queueing mechanism from droptail
to AFQ. The time series in Figure 14 shows the through-
put achieved by each flow as they enter and exit the link.
AFQ assigns each flow its fair share immediately, while
a droptail queue exhibits high variance in throughput.

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9

T
h
ro

u
g

h
p

u
t

in
 G

b
p

s

Time in seconds

TCP with Droptail

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9

Time in seconds

TCP with AFQ

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

Figure 14: Convergence test

Next, we plot the FCT versus flow size from our clus-
ter simulations in Figure 15 to demonstrate how fair each
scheme is with respect to flow size. An ideal fair queu-
ing scheme would be a straight line from the origin. All
schemes achieve fairness over a period of time for long
flows, but are significantly unfair to short flows either
due to slow-start or queueing behind other flows in the
network. AFQ lets all flows, regardless of size to achieve
their fair share within an RTT, leading to better fairness.

101

102

103

104

105

106

104 105 106 107

A
v
e
ra

g
e
 F

C
T
 (

in
 m

ir
co

 s
e
co

n
d
s)

Flow Size (in bytes)

TCP
DCTCP

SFQ
AFQ

Figure 15: FCT vs flow size at 70% network load.

To further study AFQ’s fairness guarantees, we simu-
lated a 10Gbps, 25µs RTT link and increased the number
of on-off senders transmitting concurrent flows on the
link. We measured the Jain Unfairness index (1−Jain
Fairness [21]) across all flows. Figure 16(a) shows the
unfairness across different queueing schemes. AFQ has
better fairness than other schemes, until the number of
concurrent flows exceeds the sketch size. Figures 16(b)
and (c), plot the same metric while varying the sketch-
size and number of FIFO queues available to AFQ.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 15

 0

 0.1

 0.2

 0.3

 0.4

 10 100 1000 10000

Ja
in

 U
n
fa

ir
n
e
ss

 I
n
d

e
x

Number of Senders

(a) Unfairness with various queue types

Droptail
SFQ
AFQ

Ideal-FQ

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 100 1000 10000

Number of Senders

(b) Unfairness with #queues

AFQ-4
AFQ-8

AFQ-12
AFQ-16
AFQ-32

 0

 0.03

 0.06

 0.09

 0.12

 10 100 1000 10000

Number of Senders

(c) Unfairness with sketch size

1x512
2x1024
4x1024
4x2048
2x4096

Figure 16: Micro-benchmarks showing deviation of various queuing mechanism compared to ideal fair queuing using a DCTCP end-host.

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

N
o
m

a
liz

e
d

 F
C

T

Network Load (%)

AFQ-4
AFQ-8

AFQ-16
AFQ-32

(a) FCT vs number of FIFO queues

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

N
o
m

a
liz

e
d

 F
C

T

Network Load (%)

TCP-Droptail
TCP-AFQ

DCTCP-AFQ
PP-AFQ

(b) AFQ performance with end-host protocols

10-4

10-3

10-2

10-1

 0 20 40 60 80 100Fr
a
ct

io
n
 o

f
p

a
ck

e
ts

 m
is

-e
st

im
a
te

d

Network Load (%)

1x512
2x1024
4x2048
4x4096
2x8192

(c) Round Estimation vs Sketch Size

Figure 17: Benchmarks showing the impact of various AFQ parameters.

C Impact of Number of Queues on FCT
AFQ uses multiple FIFO queues to store packets in an
approximate sorted order. To understand how many
FIFO queues are required per-port to get accurate fair-
queueing behavior, we ran the same enterprise workload
while varying the number of FIFO queues available to
the AFQ implementation and keeping BpR fixed at 1
MSS. Figure 17a shows the impact on average FCT of
all flows as we varied the number of queues from 4 to
32. When fewer queues are available, AFQ buffers pack-
ets for very few rounds at any given time. This causes
unnecessary packet drops during bursty arrivals, and also
leads to poor bandwidth estimation at the endhost. Once
there are sufficient queues to absorb packet bursts and
accurately estimate bottleneck bandwidth, AFQ achieves
near ideal fair queueing behavior, which occured around
16-20 queues. This is not surprising, given the analysis
from [2], a queue of size roughly 1/6th of the bandwidth
delay product is required for efficient link utilization. For
our testbed with 40 Gbps links and 20µs RTT, this value
is ≈20KB, translating to about 15 queues.

D AFQ with Other End-host Protocols
As an in-network switch mechanism, AFQ can be de-
ployed without modifying the end-host to achieve sig-
nificant performance gains. To quantify the benefits,
we simulate the same enterprise workload using TCP,
DCTCP end-hosts with all switches implementing the
AFQ mechanism. Figure 17b shows the significant im-

provement in average FCT when switching from droptail
to AFQ behavior inside the network. Moving to DCTCP
gives another small improvements due to shorter queues;
finally, using packet-pair flow control eliminates slow-
start behaviors, further reducing FCT. This matches our
observations from the hardware prototype emulation.

E Impact of Sketch Size
AFQ stores bid numbers in a count-min sketch, trading
off space for accuracy. To determine how large a sketch
is required to achieve sufficient accuracy without affect-
ing performance, we re-ran the enterprise workload in
the leaf-spine topology while tracking exact bid numbers
and those returned by the count-min sketch. During the
10 second simulation run, we count how many times a
packet bid number was mis-estimated and enqueued in
a later-than-expected queue. Figure 17c shows the mis-
estimation rate as we change the sketch size. This is less
than 1% using a relatively small sketch of 2x1024. This
is not surprising since the collision probability is propor-
tional to number of active flows that have packets en-
queued at the switch, which is generally a few tens to
hundreds. It is not affected by the total number of on-
going flows, which could be several thousands. Such a
low rate of mis-estimation does not significantly impact
the flow-level performance, because a bad estimate de-
lays the packet by only a small amount of time. Fur-
ther, increasing the number of cells in each row has a
more significant impact on the accuracy than increasing
the number of rows.

16 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PASTE: A Network Programming Interface for Non-Volatile Main Memory
Michio Honda†, Giuseppe Lettieri‡, Lars Eggert? and Douglas Santry?

NEC Laboratories Europe†, Università di Pisa‡, NetApp?

Abstract
Non-Volatile Main Memory (NVMM) devices have been
integrated into general-purpose operating systems through
familiar file-based interfaces, providing efficient byte-
granularity access by bypassing page caches. To leverage
the unique advantages of these high-performance me-
dia, the storage stack is migrating from the kernel into
user-space. However, application performance remains
fundamentally limited unless network stacks explicitly
integrate these new storagemedia and follow themigration
of storage stacks into user-space. Moreover, we argue that
the storage and the network stacks must be considered
together when being designed for NVMM. This requires a
thoroughly new network stack design, including low-level
buffer management and APIs.
We propose PASTE, a new network programming in-

terface for NVMM. It supports familiar abstractions—
including busy-polling, blocking, protection, and run-to-
completion—with standard network protocols such as
TCP and UDP. By operating directly on NVMM, it
can be closely integrated with the persistence layer of
applications. Once data is DMA’ed from a network in-
terface card to host memory (NVMM), it never needs to
be copied again—even for persistence. We demonstrate
the general applicability of PASTE by implementing two
popular persistent data structures: a write-ahead log and
a B+ tree. We further apply PASTE to three applications:
Redis, a popular persistent key-value store, pKVS, our
HTTP-based key value store and the logging component of
a software switch, demonstrating that PASTE not only ac-
celerates networked storage but also enables conventional
networking functions to support new features.

1 Introduction

Non-volatile main memory (NVMMs) [49] has the po-
tential to change the way modern systems are designed
and implemented1. The memory hierarchy, with CPU
registers at the top and persistent storage at the bottom, has
changed little since the early 1970s. The media available
at the bottom of the hierarchy, i.e., block-based persistent
storage, has grown to offer a wider spectrum of choices,
but ephemeral DRAM has ruled supreme as main memory.
Durable main memory will precipitate sweeping

changes to how systems are designed end-to-end. The

1We define NVMM as byte-addressable memory that is persistent,
connected to the memory bus and directly addressable by the CPU.

entire processing cycle of an application will change. Stor-
age and networking, in the form of user-level libraries, will
become inextricably intertwined with application logic,
instead of maintaining the clean separation offered by the
kernel APIs today (e.g., POSIX).

This paper addresses this space by examining the ramifi-
cations of NVMM from the perspective of an application—
not the storage system—and offers a means of leveraging
NVMM from the earliest stage of a server’s request cycle.
In particular, this paper addresses the following question:
What should the end-to-end data path—across a NIC,
the network stack, an application and a persistent data
store—look like?

Consider a transactional data transfer. The NIC on the
receiver writes an incoming packet to main memory via a
DMA, then the kernel network stack processes the packet.
The application then reads the packet data (if the socket
API is used, this involves a data copy) and processes
it. Processing a transaction can result in side-effects to
persistent data structures (e.g., adding a row to a table).
The semantics typically require the application to accept
and persist a transaction prior to acknowledging it as
successful. As persistence is required, and updating the
primary data structure on disk (e.g., in a database table)
is very slow, it is common practice to use a write-ahead
log to speed up transaction processing. Using Write-
ahead logs is much faster than updating a primary data
structure, as it simply involves serially appending to a log
of accepted transactions. The primary data structure is
persisted periodically and corresponding log entries are
discarded. Accepting a transaction thus involves updating
the primary data structure in memory (but not pushing it
to disk) and copying data to a write-ahead log.
Today, since the end-to-end latencies of transactional

data transfers are dominated by slow block-device I/O
(even for NVMe-attached SSDs), the impact of network
stack performance is negligible. However, when applica-
tions store their data on NVMM, the time scales are such
that they become sensitive to both networking and storage
stack performance (see Section 2).

With NVMM, a transaction could in principle become
durable when the NIC DMAs data to host memory, rather
than after an explicit data copy to a write-ahead log by
the application. The data copy is particularly problematic
in systems with NVMM, because it introduces latency
and pollutes the CPU caches. Further, because of low-
latency random access on durably-stored data, NVMMs

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 17

Figure 1: Today’s OS organization: No integration be-
tween network stack and NVMM abstractions. A light
gray arrow indicates path of data from NIC to NVMM.

could even obviate write-ahead logging depending on
the primary database—creating a new opportunity of
organizing primary data structures with packet buffers
to which the NIC DMAs. However, since there is no
integration between NVMM abstractions and the network
stack, packet data and persistent data are treated separately.
This leads to superfluous copying by applications (see
Figure 1).

This paper proposes a fast new networking interface for
persistent data on NVMMs, which we call PAcket STorE
(PASTE). It allows applications to organize persistent data
structures directly with network buffers, eliminating the
superfluous data copies inherent in today’s transactional
systems. PASTE places static packet buffers into an
NVMM region, statically named by a file so that they can
be located across OS reboots. Therefore, applications can
locate packet buffers across reboots using private metadata
that points to arbitrary packet data. Network buffers are not
recycled by the network stack until the owning application
gives the stack permission. We implement PASTE as
a Linux kernel module by extending the netmap [58]
framework and exploiting the OS NVMM abstraction.

Our microbenchmarks that involve persistent data show
PASTE outperforms a well-tuned Linux stack by up to
108% in throughput and by up to 51% in latency; It
outperforms StackMap [68], the state-of-the art network
stack by up to 43% in throughput and 30% in latency.

We apply PASTE to three applications: Redis, a popular
persistent key-value store (up to 133% improvement),
pKVS, our custom key value store that runs over HTTP
(up to 56% improvement), and the logging component
of software switch (up to 50% improvement), in order to
demonstrate that PASTE not only accelerates networked
storage systems but also enables traditional networking
functions to support new features.
The remainder of this paper is organized as follows:

Section 2 describes background and analyzes the costs
of durably storing data from an end-to-end perspective;
Section 3 describes design and implementation of PASTE.
Section 4 evaluates PASTE; Section 5 shows PASTE’s
use cases of key-value stores and software switch. Sec-
tion 6 discusses PASTE’s applicability and future work.
Section 7 describes related work, and the paper concludes

with Section 8. Appendix A provides supplemental infor-
mation and advanced experiment results.

2 Motivation

To motivate the proposed reorganization of the network
stack, this section briefly reviews literature around per-
sistent data. We then perform case studies to see what
happens in reality.

2.1 Background
A transactional data transfer is an essential operation in
many networked storage systems, such as blob stores [7,
48, 51], key-value stores [13, 37] and databases [1, 8, 26].
A general transactional data transfer consists of following
steps:
1. A client transmits data to a server.
2. The server receives packets at a NIC.
3. The NIC DMAs the packets to memory.
4. The packets are processed by the network stack.
5. A server application reads the data.
6. The server application durably stores a record of the

transaction (e.g., on an SSD).
7. The server application replies to the client; the client

now knows the transaction has been accepted and
persisted.

Step 6 is where the largest contribution to end-to-end
latency comes from (e.g., on the order ofmilliseconds). As
discussed above, applications frequently use a write-ahead
log to speed up transaction persistence instead of directly
updating primary data structures, such as a B tree, which
involves durably updating multiple blocks and hence many
random seeks. The client-perceived transaction commit
time is thus increased. Today, logs are implemented
as files and are updated with the write() followed by
fsync() or fdatasync() system calls (the latter differs
only in that it does not update file metadata, so is faster).
As NVMM becomes available, applications will mi-

grate away from using system calls and access persistent
NVMM directly (a black arrow in Figure 1). It should
be emphasized that NVMM DIMMs are expected within
months. While they will be more expensive than NAND
Flash, they are expected to be cheaper than DRAM;
DRAM is what they will be replacing so adoption is ex-
pected to be rapid and wide-spread. File systems can be
put on top of NVMM much as they are today for RAM
disks—except the contents will survive reboots and power
failures. Applications can mmap() files into their address
space, without a buffer cache interposed, and access their
data directly with unprivileged CPU load and store instruc-
tions. System calls will be far too slow in comparison,
so applications will just flush data from CPU caches into
NVMM, typically using the clflush instruction. Thus,

18 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Memory Measurement Time [µs]

— Network only (H/W, stack, HTTP) 23.32

NVMM
Network + memcpy() 25.57
Network + memcpy()/clflush 27.17
Network + read()/clflush 27.41

SSD

Network + memcpy()/msync() 1320.00
Network + read()/msync() 1300.00
Network + write()/fdatasync() 1370.00
Network + write()/fsync() 3490.00

Table 1: End-to-end transaction latency with various
persistence methods: NVMM dramatically reduces end-
to-end latency and data copy comes at a significant cost.

accessing storage in this new world will be two to three
orders of magnitude faster than it is today.

2.2 End-to-End Transaction Latencies
To better understand the impact of logging on end-to-end
latency, we wrote a simple HTTP server that implements
three methods to durably log data. In all three cases, data
arrives on a socket and is read by the server into a buffer.
The methods of logging the data are:
(i) write() the buffer to a file, followed by either
fsync() or fdatasync().

(ii) memcpy() the buffer to a mmap()-ed file, followed
by msync() for SSD or clflush for NVMM.

(iii) Pass the address of a mmap()-ed file to read() for
use as the buffer, followed by msync() for SSD or
clflush for NVMM.

The last method merges steps 5 and 6 of the general
transactional data transfer (see Section 2.1), avoiding
one of the two data copies that would occur otherwise.
The data movement is depicted as a light gray arrow in
Figure 1.
We examine two types of persistent media: a PCIe-

attached SSD (Samsung 950 Pro, 256GB) and an NVMM
(HPE, 8GB NVDIMM) attached to a DIMM slot. Both
are formatted with the XFS file system that supports the
Linux page-cache bypassmechanism, DAX [44] (“NVMM
absts.” in Figure 1). This NVMM has been available since
early 2016, and costs approximately $900 for 8GB [22].
On the client, we instrument wrk, a popular HTTP

benchmark tool, to send 1412B HTTP POSTs. The
HTTP OK returned by the server is 127B long. The
server and client setup is described in Section 4.1.
Table 1 shows end-to-end transaction latencies that

wrk reports. Storing data on NVMM is almost two
orders of magnitude faster than on SSD. An interesting
artifact is observed when comparing time to persist of
the read()/clflush (4.09 µs) and memcpy()/clflush
(3.85 µs) cases. Contrary to intuition, reading data directly
into a mmap()’ed area is slower. This is because this case

1 25 50 75 100
0

50

100

150

200

250

300

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

1 25 50 75 100
0

100
200
300
400
500
600
700
800

L
at

en
cy

[µ
s]

of Concurrent Connections

Net. only Net. + memcpy Net. + memcpy + clflush

Figure 2: Throughput (left) and transaction latency (right)
for concurrent requests and connections: Durably storing
data still significantly reduces throughput and increases
end-to-end transaction latency.

is more likely to require full virtual to physical address
translation, so it is slower than reading into a temporary
buffer; the same temporary buffer is used every time so
the CPU cache has the physical addresses already. Further,
memcpy()moves data into the log using SSE instructions.
In the later discussion, we focus on the variant that uses
memcpy(), also because it is more realistic, e.g., it applies
to user-level NVMM management systems [10, 67].
The majority of costs to durably store data stem from

the data copy. We ran the same measurements without
flushing data after copying it (the Network + memcpy()
row in Table 1), which exhibits 1.6 µs lower latency. This
is because the access latency with our NVDIMM is almost
the same as for DRAM, which is on the order of tens
of nanoseconds. Since we flush 1412B—or 23 cache
lines—in a write-through manner, we expect a latency
around 1 to 2 µs, which matches out measurement result
rather well.

2.3 Implications
We claim that these costs of durably storing data should be
regarded as high because of two reasons. First, we expect
that network stacks will become faster, as demonstrated by
mTCP [30], IX [4] and StackMap [68], which could further
emphasize the costs of durably storing data. Second,
increased latencies—which we have already observed in a
single request-response transaction—amplify in realistic
scenarios, because server applications typically serve a
large number of clients.
Figure 2 plots throughputs and transaction latencies

over concurrent requests over parallel TCP connections.
We confirm these reduced throughputs and increased
transaction latencies as the number of concurrent requests
increases. Note that while our experiments are using a
single CPU core, real deployments could serve similar or
larger numbers of connections or requests on each core.
We think that these costs are unavoidable as long as

we design storage and network stacks in isolation. For

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 19

example, Decibel [50] leverages DPDK for the network
stack and SPDK for the storage stack, but it needs to move
data between them, experiencing similar costs to those we
identified above.

3 PASTE

In this section we describe PASTE, our integrated network
and storage (in the form of NVMM) stack and API.

3.1 Design Principles
The persistence tier has been literally secondary storage,
due to the costs of durably storing data on disks or SSDs,
which we have quantified in the last section. NVMMs
provide persistence primitives at the speed and with an
interface comparable to main memory, and we envision
ubiquitous deployment of them across many different
applications. This includes not only storage systems, but
also, for example, software switches and middleboxes for
fault tolerance and fine-grained real-time monitoring, and
different contexts, such as bare-metal servers in private
data centres or virtual machines in the cloud 2. For
broadest deployability of PASTE,we do not rely onRDMA
networking (we discuss it in Section 6.1).
PASTE is a new network programming interface for

persistent data on NVMMs. There are a number of
requirements for networking and persistent storage APIs,
including blocking for efficiency and scalability, busy-
polling for low latency and fault isolation between the stack
and applications, which are benefits provided by the socket
APIs today. In addition to these general requirements,
PASTE achieves the following properties that concern
applications:
Persisting data without a copy: This is essential, as

in the previous subsection we identified that data copies
to durably store data come at significant costs.
Crash recovery and consistency: Data must be ran-

domly accessible from applications over reboots, other-
wise persisting it is useless. Further, applications must be
able to write and recover data consistently, so that they
can reason about the validity of data and the metadata
accompanying it (e.g., pointers and extent information)
after system crash.
Avoiding unnecessary data persistence: Most net-

work service also offer idempotent operations, some form
of read. As seen above, persisting data is expensive so
only mutable requests should be persisted.
Support for large data stores: Large capacity

NVMMs are expected to store even a primary database [10,
40, 66] as opposed to fast, lower-capacity NVMMs that

2Virtualization and pass-through of NVMMs are active topics in
both academia and industry [33, 63]

Figure 3: PASTE architecture: Packet buffers are named
by a file backed by NVMM and pointed to by private
application metadata.

are expected to store logs or journals [15, 36]. Therefore,
we must design a networking framework that can manage
large persistent data stores.

Support for network protocols: Applications must
be able to use existing and new network protocols such
as IP, UDP, TCP and NDP [20] for reliability, congestion
control and/or compatibility with remote end systems.

Obviating serialization of application state: In gen-
eral, applications have to maintain two forms of state: their
in-memory state and their persistent state on disk/SSD.
They are different, because DRAM is byte-addressable
and exacts only minor performance penalties for random
accesses whereas disks/SSDs offer awful random access
performance. These conflicting characteristics lead to
different interfaces that leads to different formats. The
process of converting between the states is serialization [5,
6, 21, 59]. The DRAM image is the state that application
actually wants, as that is the state that it actually computes
with. Serialization leads to data corruptions bugs and
performance problems. NVMM offers the opportunity to
dispense with serialization where applications only need
1 state with NVMM, their in-memory state.

We describe details next, then show how useful these
features are in building applications in the later section.

3.2 Architecture
PASTE is designed to execute NIC I/O, protocol stack
processing and application logic synchronously in a batch,
so called run-to-completion. This model is familiar and
used by some recent systems such as Seastar [9], Sand-
storm [42], IX [4] and StackMap [68], but PASTE extends
it to accelerate persistence in cooperation with NVMM
abstractions and provides suitable APIs for it. Figure 3
illustrates the PASTE architecture with its building blocks.

DMA into NVMM: First and foremost, we must avoid
superfluous copying of data, as we have observed there are
significant costs attached to such operations, which points

20 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

towards performing DMA directly into NVMM. However,
this is just a starting point. We must leverage the fact that
NVMM is persistent, and moving data from the NIC to
NVMM introduces the opportunity to avoid later copies
for persistence. Today’s network stacks dynamically
allocate packet buffers from a kernel pool of dynamic
memory, which are thus anonymous. If the packet buffers
themselves are to become the persistent version of data,
then the first requirement is to ensure that such buffers
can be found across system reboots and crashes.
Named packet buffers: To that end, packet buffers

must become named; we use the well understood and
supported file abstraction for this purpose. Using files is
muchmore convenient compared to managing the physical
addresses of NVMMs directly. This means that a file must
be created and NVMM pages are allocated for its contents.
The network stack must then statically allocate its packet
buffers in the physical pages that the file contains.
Further, since the application needs to manage and

access packet data with its private metadata, the network
stack must provide a good representation of individual
packet buffers. PASTE uses fixed-size packet buffers
that are indexed by 32-bit integers, supporting several
TB of data using 2 kB buffers. Hence, an application
can represent data in its private data structures (Plog
in Figure 3) by a simple tuple of a 32-bit buffer index,
length and offset, which are 16-bit each in size (enough to
accommodate an Ethernet jumbo frame).
PASTE initializes Ppool (see Figure 3) deterministi-

cally for a given memory region, which is “pinned” by a
file. Hence, Plog and Pbufs are consistent over reboots.

Selective persistence: A quick digression into modern
DMA is required to understand this issue. Modern NICs
DMA packets into main memory logically, physically
they are placed into the lowest-level CPU cache. Even
if NVMM is backing the physical DMA target address,
the contents of a packet are not persistent after a DMA.
Thus, PASTE must explicitly push a packet to NVMM
after a DMA to be certain that it is made persistent. Since
this operation is costly, we do not want to perform it
for every packet. Instead, the application examines a
packet first while the packet is still in the CPU cache
(applications are oblivious to this as the CPU manages
its cache transparently). Only if the application decides
that the packet needs to be persisted is the packet moved
to NVMM. On the current generation of Intel CPUs, this
can be done with the clflush(opt) machine instruction.
Applications must distinguish between request data

that should be persisted and request data that may remain
ephemeral. Requests that are idempotent, such as SQL
select queries, do (by definition) not have side-effects
and need not be persisted. Mutable transactions that must
be logged must be persisted (e.g., inserting a row in a
table). When an application identifies such a transaction,

portions of the packets (bytes in the TCP stream) are
pushed to NVMM and made persistent.

Lightweight ordered journaling: It is trivial to im-
plement a log or journal [18] based on this primitive.
A linked list with entries pointing to requests inside the
packet buffer can be superimposed onto them. The result
is a log that is temporally ordered and serves the same
purpose as the journals stored on block devices today—but
in a much faster fashion.
Applications can store their own log in their own

NVMM-backed file (/mnt/pm/plog in Figure 3). In
our example, the nodes of the linked list that comprise the
log can be stored in said file, while the data they point to
are in /mnt/pm/pp0.

Journaling with PASTE can be done as follows (see the
pseudo-code in Figure 4, line 1–6): First, the application
flushes buffer contents (lines 2–4), then durably writes
a buffer extent that is a tuple of buffer index, offset and
length (lines 5–6). The order ensures consistency against
system failures. We analyse data integrity in detail in
Appendix A.1.

Applications can perform each step overmultiple buffers
to journal long data. Since a tuple of buffer index, offset
and length is 8 B in size, and Intel CPUs write an entire
cache line of 64 B, it is possible to atomically commit up
to eight entries. For longer data, the applications may put
logs between additional “begin” and “end” entries like in
conventional transaction logging.

Copy-on-write style free-space management: Com-
mitted buffers and logs comprise either write-ahead logs
or primary data structures, such as a B+ tree. In either
case, persisted buffers need to be moved out of the NIC
ring (i.e., DMA target) so that buffers containing live
data are not over-written. Since the Pring (in Figure 3)
contains only slots—each of which includes a buffer index,
length and offset (i.e., pointers to buffers)— this can be
easily done by swapping buffers containing data with new
empty ones outside the ring. The new empty buffers are
thus attached to the slots of the ring and returned to the
kernel to be eventually used as DMA targets.
The pseudo-code in lines 8–19 of Figure 4 shows the

typical workflow. The application poll()s the receive
ring for incoming requests (line 11); when it returns, it
examines and generates a reply to each request (lines 12–
19). Whenever it receives an update request (test at line
14) it also permanently stores the buffer containing data
(lines 15–16) and then replaces it with a free one (lines
17–18) to preserve it. Buffers containing read requests
are simply left in the receive ring to be reused. Responses
are sent to the network in a batch at the next poll() (line
11).

Figure 3 illustrates an example. Initially, the Pring
slots 0–7 pointed to buffers 0–7. Assume that the NIC has
received packets on buffers 0–6 and the application has

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 21

1 flush_buf(buf, off, len, buf_idx, *log)
2 buf += off;
3 for (int i = 0; i < len; i += CACHE_LINE_SIZE)
4 clflush(buf + i);
5 *log = buf_idx << 32 | off << 16 | len;
6 clflush(log);
7
8 paste_eventloop(nmd, plog, plogsiz)
9 rx, tx = get_netmap_rings(nmd);
10 for (;;)
11 poll(/* on the rx ring */);
12 for each new slot s in rx
13 char *buf = get_netmap_buf(s, rx);
14 if (is_write_request(buf))
15 uint64_t *log = next_log(rx, plog, plogsiz);
16 flush_buf(buf, s->offset, s->len-s->offset,

s->buf_idx, log);
17 netmap_slot *extra = next_free_buf();
18 swap(s, extra); // swap buffer indices
19 write_response(tx);
20
21 main(pm_file, size, plog_file, plog_size, netmap_port)
22 fd = open(pm_file); // Ppool
23 p = mmap(fd, size);
24 netmap_pools_info *pi = p;
25 pi->memsize = size;
26 pi->buf_pool_objtotal = HOW_MANY_BUFFERS;
27 nmreq nmr = { .cmd = POOLS_CREATE, .extm = pi };
28 nm_desc *nmd = nm_open(netmap_port, &nmr);
29 plog_fd = open(plog_file);
30 plog_map = mmap(plog_fd, plog_size);
31 paste_event_loop(nmd, plog_map, plog_size);

Figure 4: Durably writing data and log in flush_buf(),
event loop in paste_eventloop() and Ppool initializa-
tion in main(). Figure 12 in Appendix A.1 illustrates
buffer state over time.

consumed them (indicated by advancing the “cur” ring
pointer from slot 0 to 6) and persisted and logged buffers
1, 2 and 6 (the gray ones in the Ppool). The application
thus has swapped the persisted buffers with free ones: in
the example, these are the buffers 8, 9 and 10, respectively.

Although the Plog is depicted as an array of tuples for
simplicity, it can be of an arbitrary form, such as a B+ tree
accompanying more structured metadata (e.g., sorted by
keys), as long as a single buffer extent can still be flushed
atomically, thus ensuring consistency.
As it turns out, PASTE is suitable for copy-on-write

operations, as opposed to in-place updates, because new
data is always (DMA-)written to free space. Further,
when data is stored in the primary database as with B+tree,
since new data is written prior to logging, PASTE achieves
write-behind logging [2].
If PASTE is used only for logging, primary data struc-

tures (not shown in Figure 3), such as a database table,
may also be stored in NVMM, or stored on a block device
(at much lower cost per byte) and updated at leisure (one
of the purposes of a write-ahead log is to mask the cost of
updating a primary data structure and permitting faster re-
sponses to waiting clients). Periodically, the primary data
structure is updated to reflect the write-ahead log and the
log contents can be safely discarded. The corresponding
buffers can now be returned to the free pool.

Network protocols: A protocol suite operates directly
on Pbufs where the NIC or application reads or writes.
On RX, the protocol suite sets only buffers whose data are
ready (e.g., in-order TCP segments) to the application ring
(Pring) with providing application data offset, so that the
application can see useful data only. PASTE can hold
non-ready data packets (e.g., out-of-order TCP segments)
out of the NIC’s DMA target, which are inserted to the
Pring when the protocol suite indicates they are ready.

To exploit system call and I/O batching, a Pring multi-
plexes multiple streams (e.g., TCP connections); PASTE
thus sets a file descriptor to each ring slot such that the
application can distinguish them.

Protection: To be a generic programming interface,
fault isolation is an essential property. Despite of the
direct access to NVMM, PASTE only exposes data buffers
to applications using the shared memory primitive in the
kernel; it does not expose NIC registers or data structures
managed by file systems or network protocols. When an
application crashes, the rest of the system is unaffected.

3.3 API
In order to promote wide deployment, PASTE is designed
to smoothly integrate with the netmap framework [58]; it
runs in the kernel and mediates physical or virtual NIC
ring(s) and applications via shared memory in which
kernel- and user-owned regions are synchronized by
poll() (blocking or non-blocking) or ioctl() (non-
blocking) system calls. Therefore, PASTE inherits most
parts of the netmap API.
Data semantics contained in ring slots depend on port

types. When PASTE is used with the kernel TCP/IP
implementation, each ring slot points to a buffer that
contains an in-order TCP segment with offsets to payload
data and a file descriptor as a ring may contain data from
multiple TCP connections. On RX, buffers that belong
to the same descriptor are grouped in the ring, so that the
application needs to process each descriptor only once
in an event loop. TX is opposite. The application puts
data on Pbufs pointed by available slots (or sets existing
Pbufs to the slots, avoiding data copy) with providing
a file descriptor and headroom for protocol headers to
each of them. PASTE relies on regular socket APIs (e.g.,
socket(), bind(), listen(), accept()) for control
operations. When PASTE is used for a user-level TCP/IP
implementation or a middlebox that perform raw packet
I/O, a ring is just a replica of the physical or virtual NIC
ring where packets are placed in arrival order.
To (re)initialize the Ppool (which also includes all

packet buffers), an application first open()s and mmap()s
a file backed by NVMM (lines 22–23 in Figure 4). If this
is the first time the file is opened, the application initializes
a header that describes how the memory region should be

22 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

organized (lines 24–26). In any case, it prepares a netmap
request pointing at the memory region (line 27) and then
opens the netmap port, binding it to the region (line 28).
The kernel validates the user-space virtual addresses and
obtains the corresponding kernel-space virtual address,
then initializes the Ppool using them.
Recovery: PASTE deterministically initializes Ppool

for the given NVMM region. Therefore, after reboot,
the application can restore previous buffers by simply
re-initializing Ppool with nm_open(), and reason about
application-specific organization of these buffers using
Plog which can be a write-ahead log or a primary data
structure like B+ tree. In Figure 4, lines 29–30, the Plog
is also allocated on the NVMM, in a separate file.

3.4 Implementation
We implemented PASTE by heavily extending netmap,
inserting approximately 4K lines of code and removing ap-
proximately 0.4K, which also contains the kernel TCP/IP
support and software switch extension which we explain
in Section 5.2. PASTE is a loadable kernel module and
it supports Linux kernel versions of 4.6–4.12 (the latest
version at the time of this writing). No modification to
the main Linux kernel is needed.
We rely on the Linux NVMM kernel subsystem that

provides standard NVMMabstractions [62], such as pages,
namespaces [28] and DAX [44], a file system interface to
access a physical NVMM device without buffer caches.
Thus, applications can create their packet buffers, journals,
data structures on their favorite file systems, including ones
whose file operations (e.g., directory scan) are optimized
for NVMMs [66].
PASTE is open source and under active development.

It is available at https://github.com/luigirizzo/netmap/
tree/paste with all the PASTE applications we use for
experiments. We also provide some implementation
details in Appendix A.4.

4 Evaluation

We begin with microbenchmarking PASTE in comparison
to state-of-the art systems. We evaluate PASTE with more
realistic applications in Section 5.

4.1 Hardware and Software Setup
We use two machines connected back-to-back with two
Intel X540-T2 10Gbit/s NICs and a direct attached cable.
The server machine that runs PASTE has two Intel Xeon
E5-2640v4 processors clocked at 2.4GHz. For NVMM,
we use an HPE 8GB NVDIMM and format it with XFS
with DAX enabled (See Figure 1 for an architecture dia-
gram.) The client machine has an Intel Xeon E5-2690v4

64B 256B 768B 1280B 2560B

Net. only 22.2 22.9 23.9 24.7 28.0
σ = 1.4 σ = 1.1 σ = 1.2 σ = 1.2 σ = 1.2

Linux 21.5 22.8 25.0 27.2 33.1
σ = 3.5 σ = 5.7 σ = 8.9 σ = 11.0 σ = 14.1

StackMap 22.7 23.9 26.2 28.4 31.6
σ = 3.6 σ = 5.7 σ = 8.8 σ = 10.9 σ = 10.7

PASTE 22.6 23.2 24.7 26.4 29.4
σ = 1.9 σ = 1.9 σ = 2.1 σ = 1.8 σ = 2.1

Table 2: Mean roundtrip latencies in µs with standard
deviations σ for WAL without concurrent requests.

processor. Both the server and the client disable “turbo
boost”, hyper-threading and all the C-states. They both
run Linux kernel 4.11 and compiled with gcc version 6.3.
Unless otherwise stated, we use a single CPU core at the
server and the wrk HTTP benchmark tool with fourteen
CPU cores at the client to saturate the server. Unless
otherwise stated, we use busy-wait and TCP on all the
systems except for Section 5.2.

4.2 Methodology
We compare PASTE against a well-tuned Linux stack and
StackMap, which is the state-of-the art network stack that
achieves comparable performance to user-space network
stacks while using the feature-rich kernel TCP/IP imple-
mentation [68]. We refer to a version of PASTE that
uses a DRAM region organized by the regular netmap
as StackMap, because it resembles the architecture while
details differ (e.g., PASTE does not modify the kernel,
scales better to multiple cores and offers simpler API).
PASTE’s improvements over this StackMap thus indicates
effect of reduction of data copy to persist data.
In the end, comparing Linux, StackMap and PASTE,

which all use the same TCP/IP implementation, precisely
exposes the stack architecture differences without any
performance difference that could arise from different
TCP/IP protocol implementations, which is (only) a sub-
set of the network stack. This is important, because
TCP/IP implementations have largely different features
and supported protocol extensions, and adopt different
software architectures to implement them.

4.3 Microbenchmarks
4.3.1 Write-Ahead Log

Write-ahead logs (WALs) are the simplest data structure
to persist data in practice. We arrange the NVMM to
accommodate as many WAL entries and packet buffers,
which amount to roughly 3.5 million entries and buffers.
The client continually generates a fixed-size HTTP POST
on each experiment.

Table 2 and Figure 5 shows end-to-end throughput and
mean latency of Linux, StackMap and PASTE. To see how
each method compares to a networking-only performance

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 23

https://github.com/luigirizzo/netmap/tree/paste
https://github.com/luigirizzo/netmap/tree/paste

100

200

300

400

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

1 25 50 75 100

64 B

0

200

400

600

800

L
at

en
cy

[µ
s]

1 25 50 75 100

256 B

1 25 50 75 100

768 B

1 25 50 75 100

1280 B

1 25 50 75 100

2560 B
of Concurrent Connections

No Data Persist Linux Stackmap PASTE

Figure 5: Write throughput and mean latency with WAL. Latency plots have standard deviations of at most 20%,
43%, 46% and 9% in No Data Persist, Linux, StackMap and PASTE, respectively.

baseline, we also plot PASTE without any persisting of
data (it simply discards received messages and returns
“HTTP OK” as if the transaction had been recorded).

For 64 to 1280B message sizes, PASTE increases
throughput by up to 108% over Linux, and by up to
43% over StackMap; it reduces latency by up to 51%
over Linux, and by up to 30% over StackMap. In each
method, throughput stays at almost flat on and after 25
parallel connections while latency keeps increasing. This
is because the server (i.e. consumer) always has backlog
requests to process. We observe improvements over
StackMap by larger margins with increased message sizes.
This is expected, because the cost of a data copy is small
when messages are small. Latencies for the 2560B case
have different characteristics from the others, because each
request now consists of two packets. In StackMap and
PASTE, the lower latencies compared to that of smaller
message cases is because queueing latency at the server
becomes much lower due to decreased packet rates.

4.3.2 B+ Tree

Having identified that PASTE speeds up transactions to a
write-ahead log, which is a temporary data structure, we
now evaluate if PASTE can accelerate the case in which
the data are directly stored in a primary database. We
implement aB+ tree as aPlog onNVMM(Figure 3), a self-
balanced, ordered tree which is widely used to organize
primary data structures of file systems and databases. We
instrument the B+ tree to store a Plog entry whose format
is the same as in the WAL case (i.e., a tuple of buffer
index, offset and length) as a value for a key. Recall from
Section 3.2, the server flushes data for a network buffer
prior to inserting the entry for this buffer to the B+tree.

0
20
40
60
80

100
120
140

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

1 25 50 75 100

64 B

0
200
400
600
800

1000
1200
1400
1600

L
at

en
cy

[µ
s]

1 25 50 75 100

1280 B
of Concurrent Connections

Linux Stackmap PASTE

Figure 6: Write throughput and mean latency with a
B+ tree. Latency plots have standard deviations of at most
39%, 39% and 7% for in Linux, StackMap and PASTE
respectively.

Figure 6 shows throughput and latency of Linux,
StackMap and PASTE. The client continually transmits
an “HTTP POST” message whose first 8 bytes indicate
a “key” used by the B+ tree which contains 1 million
random values. In the Linux and StackMap cases, the
B+tree contains entire values copied from the network
buffers. All the POST messages are served as insert or
update. We test 64B and 1280B value cases.
While peak throughput is lower than in the WAL case

because of tree traversal operations, we observe that
PASTE improves throughput by up to 65% over Linux

24 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4 6 8 10
0

1

2

3

4
T

hr
ou

gh
pu

t
[1

M
tr

an
s/

s]
No Persist Stackmap PASTE

1 2 4 6 8 10
0.0
0.6
1.2
1.8
2.4

1 2 4 6 8 10
0.0
0.3
0.6
0.9
1.2

of CPU Cores
64B 256B 768B

Figure 7: WAL throughput over multiple CPU cores.

and up to 28% over StackMap, as well as reducing latency
by up to 39% over Linux and 23% over StackMap.

For 64 B writes we see improvements by larger margins
than WAL cases, because a B+tree is more memory
intensive and the effect of reducingmemory traffic is larger.
We conclude that PASTE improves not only ephemeral
persistent data structures, but also more complex primary
data structures. In Section 5.1.1, we extend this PASTE
B+ tree to a realistic key-value store that also serves read
requests efficiently.

4.4 Multicore Scalability
Next, we evaluate PASTE’s scalability to multiple CPU
cores. We dedicate a single thread to each CPU core,
and the NIC is configured to have one TX/RX pair of
rings per core. Each thread independently processes a
single pair of rings (Prings in Figure 3) with the poll()
loop in Figure 4. It also persists data in its own Plog of
WAL. The rings are mapped to the NIC rings, to which
TCP connections are balanced by the NIC based on the
connection hash value or the tuple of source-destination
addresses and ports. All the rings share the same packet
buffer pool or Ppool on NVMM. To saturate the server,
we use an additional identical client machine. We use a
ratio of 25 TCP connections to the number of cores.

PASTE reasonably increases throughout with additional
cores. It reaches the 10Gbit/s line rate at 8 and 6 cores
with 256 and 768B data, respectively.

5 Use Cases

In order to demonstrate how PASTE accelerates realistic
applications and provides new opportunities, we have built
three applications with it.

5.1 Key-Value Store
A popular use case is a key-value store (KVS) with dura-
bility support. The performance of a KVS is usually con-
strained by the network, because of lightweight put/get
operations as opposed to relational databases, which re-
quire more computation to process client requests. While

0
80

160
240
320
400

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

0
40
80

120
160

0
25
50
75

100

Uni. Zipf
5%

0
50

100
150
200

L
at

en
cy

[µ
s]

Uni. Zipf
50%

0
150
300
450
600

Uni. Zipf
95%

0
200
400
600
800

Write ratio

Linux Stackmap PASTE

Figure 8: Throughput and mean latency with pKVS.
Latency plots have standard deviations at most 30%
(Linux), 17% (StackMap) and 11% (PASTE).

joint-optimization of the network stack and volatile main-
memory management has been explored (see Section 7),
efficiently supporting data durability requires PASTE.

5.1.1 pKVS

pKVS is our custom KVS, which builds on top of PASTE
and organizes data in a B+ tree. It uses HTTP as a com-
munication protocol, mapping “set” and “get” commands
into HTTP “POST” and “GET” methods, respectively. In
addition to durable zero-copy writes, which we share in
Section 4.3.2, pKVS also performs opportunistic zero-
copy reads. On the “set” command, the server records a
pointer to a buffer slot, and on the “get” command, the
server first searches for the key in the B+ tree to obtain the
buffer index and extent, then further obtains the slot which
contains this buffer. The result is a complete form of the
previous POST message in a packet buffer. The server
thus simply places this buffer into a TX ring. In order to
enable zero-copy, we tailor the length of the HTTP POST
and OK to be identical.
Figure 8 shows throughput and average latency on dif-

ferent write ratio and key skewness. 50% and 5% of
write ratios with Zipfian 0.99 distribution correspond to
YCSB [12] workload A (Update heavy) and B (Read
mostly), respectively. We use the default YCSB param-
eters for the key space (1K) and size (1KB). We use 50
concurrent TCP connections.
Because of large benefit of zero-copy durable write,

PASTE improves throughput and latency as the write ratio
increases. PASTE increases throughput by up to 56%,
and reduces latency by up to 36% in comparison to Linux.
PASTE increases throughput by up to 23%, and reduces
latency by up to 19% in comparison to StackMap.

5.1.2 Redis

Redis [57] is a popular named “data structure” on a net-
work service. The server offers many services including

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 25

0
60

120
180
240
300

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

Uni. Zipf
5%

0
60

120
180
240
300

Uni. Zipf
50%

Uni. Zipf
95%Write ratio

64B

1024B

Linux Linux (no persist) PASTE

Figure 9: Redis transaction rates.

counters, hyperlog estimators and a key/value store to
name but a few. To demonstrate both the advantages of
using PASTE, and the feasibility, we extended Redis 3.2.8.

Redis uses the socket API to communicate with clients
over TCP and the POSIX file I/O interface. The source
codewasmodified to receive events fromPASTE instead of
read() and data was persisted in PASTE buffers. Around
200 lines of source code were added to the 65K line base
system. We discuss porting effort in Appendix A.4.
Figure 9 plots throughput of the regular and PASTE-

enabled Redis with a single CPU core over different write
ratios and key distribution patterns, including two default
YCSB’s workloads: read-mostly (5% writes with key
skewness of Zipfian 0.99 for 1KB data) and update-heavy
(50%writes with the same distribution and data size). For
comparison, we test the regular Redis with and without
persisting write operations (HSETs). To be fair, PASTE
does not use busy-polling in this test.

Since the data structure is a relatively lightweight hash
table, peak throughputs with PASTE are similar to the
WAL case in Figure 5. PASTE outperforms Redis by 43 to
133%. Even in comparison to Redis without persistence,
PASTE outperforms it by 12 to 31%, indicating PASTE
offers persistence for more than free.

5.2 Software Switch
There is a growing interest by operators in the reliability of
network middleboxes whose failure impacts on many end
systems [35, 56, 61]. Network Function Virtualization
(NFV) has led to deploying and consolidatingmiddleboxes
on commodity servers, enabling better resource utilization
and fine-grained isolation [41, 60, 69]. Fault-tolerant
middlebox (FTMB) [61] allows them to recover with
states after crash. It relies on input packets stored in stable
storage at the virtualization backend, which are replayed
after the middlebox fails [61] since the last VM snapshot.
Programmable traffic monitoring systems [14, 32, 47]

could also benefit from real-time packet logging, which
is now often performed by dynamically activating a mir-

Figure 10: mSwitch with packet logging support.

roring port on a hardware or software switch [53, 64]
to capture traffic. PASTE already maintains a file with
captured packets that is a snapshot of the most recent
packets decided to be recorded, which can be directly
leveraged for this use-case.

In order to support FTMB and other applications that
benefit from packet logging, we implement a logging
feature in mSwitch, a fast, modular software switch that
supports a large number of virtual and physical ports to
serve an NFV backend [24]. Its switching logic is modular
and can implement arbitrary packet processing, such as a
learning bridge, L3 forwarding, theOpen vSwitch datapath
and a subset of P4 [54]. A module takes packets as input
from the switching fabric, and returns packet action values
indicating destination switch port, drop or broadcast.

mSwitch acts as an application of PASTE despite that it
runs in the kernel (Figure 10). We implement a new packet
action of “logging” which is used in conjunction with the
existing actions by switching logic modules. When the
module indicates a packet to be logged, mSwitch swaps
out the buffer from the receive ring slots.

Figure 11 shows throughput with PASTE in comparison
to a variant of mSwitch that implements packet logging
without PASTE, by copying and flushing packets from the
DRAM to the NVMM. We use the default learning bridge
module that has moderate overhead consisting of two hash
calculations for source and destination MAC addresses.
Packets are forwarded between the two 10Gbit/s NIC
ports. For the latency measurement, we increase burst
sizes, which indicate the number of packets arriving at
the input NIC of the mSwitch at a line rate. This models
a very common situation, for example, a TCP sender is
allowed to send up to ten packets at once (i.e., at line rate)
even at the beginning of a connection.

We confirm that PASTE improves throughput and la-
tency by up to 50% and 15%, respectively. A higher
latency with increasing burst sizes is due to batching in
order to amortize device I/O cost (on the order of hun-
dreds of ns) and improve packet processing locality [24].
Thus, reduction of per-packet logging costs with PASTE
reduces latency by larger margins in the presence of larger
numbers of packets processed within the same batch.

26 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

64 256 768 1280
Packet Size [B]

0
2
4
6
8

10
12

T
hr

ou
gh

pu
t

[1
M

pa
ck

et
s.

/s
]

1 4 8 12 16
30

40

50

60

70

80

L
at

en
cy

[µ
s] 64B

1 4 8 12 16

256B

1 4 8 12 16

768B

1 4 8 12 16

1280B

Burst Size [# of packets]

No log Copy PASTE

Figure 11: mSwitch packet forwarding throughput and latency with packet logging.

6 Discussion

In this section we discuss applicability of PASTE to
various systems, and describe future work.

6.1 Kernel-Bypass Networking
PASTE relies on sharing network buffers between the
network stack, the application and NVMM abstractions
(e.g., files). Our implementation employs netmap [58],
which executes in the kernel and thus allows PASTE to
exploit a Linux file systemwithDAX [44] support. PASTE
could also be implemented on systems such asArrakis [55],
IX [4] or Intel SPDK [27]. However, these systems have
to implement NVMM abstractions by themselves.
Some user-space TCP/IP stacks, including Sand-

storm [42], UTCP [25] and Warpcore [16], are easier
to support with PASTE, because their buffers can be man-
aged by netmap in the kernel. The only difference from
our current design is that the TCP/IP implementation
(“TCP/IP suite” in Figure 3) resides in user space.

As it turns out, our mSwitch extension in the last section
follows this line and demonstrates flexibility of PASTE
architecture, because it bypasses the vast majority of the
kernel network stack to utilize a fast packet I/O framework.

We are starting to see RDMA deployments [19], but it
requires loss-less network fabric and individual systems
closely tied with low-level hardware details [15, 31, 40].
LITE [65] remedies the latter problem by kernel-level
abstraction. This could help PASTE support RDMA, pro-
viding a higher-level interface to integrate with NVMMs
and to be transparent to TCP/IP networking.
Our latency target range (e.g., 22.6–29.4 µs without

parallel requests, see Section 4.3.1) is close to that of
RDMA. [19] reportsRTTs of several tens of µs overRDMA
network fabric likely in the absence of queueing between
network and application formed by parallel requests. In
addition, recent work also reports comparable latency is
achievable over lossy Ethernet fabric without RDMA [20].

6.2 NVMM Access Latency
Many different NVMM technologies are anticipated, with
I/O latencies from tens to thousands of nanoseconds [29,

45]. As explained in Section 3.2, idempotent requests are
only DMA’ed to the CPU cache, thus the performance of
idempotent requests is decoupled from the characteristics
of the underlying storage. PASTE would only be exposed
to the underlying media for mutable transactions. This is
unavoidable and inherent in storing data. We anticipate
that PASTE would be suitable for many different NVMM
types, but the performance of PASTE transactions would
depend on the performance of any underlying media.

The latest generation of Intel CPUs have a faster cache-
line flush instruction (clflushopt), which also works in
a write-back fashion. Therefore, we will be able to overlap
NVMM access latencies with subsequent processing; and
this can be done across multiple requests processed in the
same batch, i.e., in the same poll() loop (see Figure 4).
We can guarantee that all the flushes are done at the time
of triggering transmission (i.e., poll() using mfence
instructions. In Appendix A.2 we describe details, and
quantify effects with some experiments.

6.3 Generality
PASTE works as a fast, scalable network stack in the
absence of NVMM, because it still exploits run-to-
completion, system call and I/O batching, and zero copy
between the NIC and application. The netmap API that
PASTE is based on has been widely used in packet I/O
applications and has proven its flexibility and ease of use.
Further, PASTE can be used without modifying the kernel,
and offers protection provided by the socket API. There-
fore, we believe PASTE is a suitable basis which achieves
high performance in general and makes applications ready
to efficiently support NVMMs.

6.4 Limitations and Future Work
Space utilization: PASTE relies on fixed-size packet
buffers for indexing. For better space utilization, we would
combine copies for small data depending on workloads.

Multiple applications: Since the application needs to
have direct access to NIC’s DMA target, isolating multiple
applications requires partitioning it. This could be done
using Flow Director on multiple NIC queues and Smart
NICs (based on more flexible policy).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 27

NVMM wear: DMA-writes would increase wear on
NVMMs, while it could be mitigated by DDIO. We leave
analysing this effect in future work.

7 Related Work

Previous work discussed PASTE’s concept and strategy,
and made minimalistic implementation and experiments
using an emulated NVMM device [23]; This paper com-
pletes our design and implementation, as well as extensive
evaluation and case study of applying to applications.
Special-Purpose Network Stacks: Specializing a net-

work stack by leveraging application knowledge has been
proposed several times [17, 38, 42, 43]. PASTE takes a
different approach with a network stack that is general
enough to support different classes of applications.
Enhanced Network Stacks: IX [4], mTCP [30], Fast-

socket [39] and StackMap [68] are fast network stacks.
Since they do not assume DMA on NVMM, they do
not address the overheads of durably storing data, as de-
scribed in Section 2, and shown how PASTE improves
these approaches in Section 4. We have discussed RDMA
approaches in Section 6.1.
General-Purpose Networking API: On the transmit

path, the sendfile() system call enables applications
to directly transmit data from in-kernel buffer caches or
NVMMs. However, doing the opposite (i.e., directly
receiving data into the buffer cache or NVMM) is not
trivial, because applications need to examine the data to
make processing decisions. PASTE enables this by the
persistent, named packet buffers and their abstraction.
New NIC Interfaces: FlexNIC [34] provides rich ab-

stractions of NIC features, such as scheduling, offloading
and classification. These works are complementary to
PASTE. For example, they could support isolatingmultiple
applications on the same NIC.
NVMM-Aware Persistent Data Store: There exists

a large body of work on efficiently managing data in
NVMM. They tend to examine the problem from the
perspective of the storage system in isolation. There is
little consideration of data arrival from a network or the
requirements of application logic. The POSIX API is
often their starting point. They can be generally classed
into block-oriented storage systems, such as file systems
and virtual disks [3, 26, 36, 46], or byte-oriented file
systems [11, 66, 67], that is the latter’s metadata is byte-
oriented, but they still export a POSIX interface. Some
NVMM programming systems [10, 59] are designed from
the application’s perspective. malloc() manages NVM
and transactions on nodes in linked lists or binary trees
are supported instead of file blocks. This approach fits
the PASTE approach, the native representation of data is
a first class citizen, not serialized data.

None offer a coherent and integrated life-cycle for
work arriving from a network that needs to be persisted.
For example, NVWAL [36] employs byte-granularity
differential logging to reduce the amount of data to log,
resulting in a reduced number of memory copies and
cache-line flushes. There is no support efficiently storing
data in its final resting place. However, PASTE allows
applications to log only a packet buffer index, offset and
length (8B in total) per packet, which is much smaller
than the differential data set.

DRAM-based Data Store: There is a large body of
work which co-design in-memory data store with network
stacks. For example, MICA [38] is an extremely fast,
scalable key-value store that bypasses the most of the
network stack and relies on UDP to tightly map key-
value data structures and packets. RAMCloud [52] is
a distributed key/value store that avoids the penalty of
persisting to media by replicating to multiple physical
machines. PASTE could help such systems to support
persistence, because it creates and names packet buffers
on NVMM and allows applications to organize them with
zero-copy, protocol-independent networking API. On
NVMM, applications can use the same cache invalidation
mechanisms with this class of work.

8 Conclusion

NVMM is not just a faster, more exotic, storage medium.
It is a fundamental change in the memory hierarchy. Its
introduction and adoption will change the way we de-
sign and evaluate systems. The artificial sequestering of
networking stacks, storage stacks and application logic
will be infeasible with such hardware. The Network File
System (NFS) was feasible because the network was not
the bottleneck, the bottleneck was the disk. Commodity
NVMM is pushing the stack out of the kernel and into
user-land. Network stacks are following. As the appli-
cation, network/storage stacks will be operating in the
same address space they need to be co-designed for true
efficiency.
In this paper we have quantified the cost of a network

service offering reliable storage services under a variety
of scenarios. We have shown that by tightly integrating
the network stack, application logic and the storage stack
large performance improvements can be realized. PASTE
is a system that safely permits applications to be built,
and back-ported, to gain these performance improvements.
It does this while retaining the isolation, protection and
software maintenance advantages of modern monolithic
kernel stacks. We verified our system by implementing
and evaluating PASTE then writing and back porting real
applications to use it. We then showed PASTE-based
applications’ performance to be superior to the state of
the art.

28 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments

We thank our shepherd, Rachit Agarwal, and anonymous
HotNets and NSDI reviewers for their feedback. We are
thankful to Luigi Rizzo for his insightful comments. We
would also like to thank PJ Waskievicz for his assistance
during experiments. This paper has received funding
from the European Union’s Horizon 2020 research and
innovation program 2014–2018 under grant agreement
No. 644866 (“SSICLOPS”). It reflects only the authors’
views and the European Commission is not responsible for
any use that may be made of the information it contains.

References

[1] J. Arulraj, A. Pavlo, and S. R. Dulloor. “Let’s
Talk About Storage & Recovery Methods for Non-
Volatile Memory Database Systems”. Proc. ACM
SIGMOD/PODS. 2015.

[2] J. Arulraj, M. Perron, and A. Pavlo. “Write-behind
Logging”. Proc. VLDB Endow. Nov. 2016.

[3] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy.
“Operating System Implications of Fast, Cheap,
Non-Volatile Memory”. Proc. ACM HotOS. 2011.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. “IX: A Protected
Dataplane Operating System for High Throughput
and Low Latency”. Proc. USENIX OSDI. 2014.

[5] A. Birrell, M. Jones, and E. Wobber. “A Simple
and Efficient Implementation of a Small Database”.
Proc. ACM SOSP. 1987.

[6] S. Bykov,A.Geller, G.Kliot, J. R. Larus, R. Pandya,
and J. Thelin. “Orleans: cloud computing for every-
one”. Proc. ACM SoCC. ACM. 2011.

[7] B. Calder et al. “Windows Azure Storage: A Highly
Available Cloud Storage Service with Strong Con-
sistency”. Proc. ACM SOSP. 2011.

[8] A. Chatzistergiou, M. Cintra, and S. D. Viglas.
“REWIND: Recovery Write-ahead system for
In-memory Non-volatile Data-structures”. Proc.
VLDB Endow. Jan. 2015.

[9] Cloudius Systems. Seastar. http://www.seastar-
project.org/.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. “NV-Heaps:
Making Persistent Objects Fast and Safe with Next-
generation, Non-volatile Memories”. Proc. ACM
ASPLOS. 2011.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
B. Lee, D. Burger, and D. Coetzee. “Better I/O
Through Byte-addressable, Persistent Memory”.
Proc. ACM SOSP. 2009.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrish-
nan, and R. Sears. “Benchmarking cloud serving
systems with YCSB”. Proc. ACM SoCC. ACM.
2010.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. “Dynamo: Amazon’s
Highly Available Key-value Store”. Proc. ACM
SOSP. 2007.

[14] S. Donovan and N. Feamster. “Intentional Network
Monitoring: Finding the Needle Without Capturing
the Haystack”. Proc. ACM HotNets. 2014.

[15] A. Dragojević, D. Narayanan, M. Castro, and O.
Hodson. “FaRM: Fast Remote Memory”. Proc.
USENIX NSDI. 2014.

[16] L. Eggert. warpcore. Jan. 2017.
[17] G. Ganger, D. Engler, M. Kaashoek, H. Briceno,

R. Hunt, and T. Pinckney. “Fast and flexible
application-level networking on exokernel systems”.
ACM ToCS, 2002.

[18] G. R. Ganger and Y. N. Patt. “Metadata Update
Performance in File Systems”.Proc. USENIXOSDI.
1994.

[19] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Pad-
hye, and M. Lipshteyn. “RDMA over Commodity
Ethernet at Scale”. Proc. ACM SIGCOMM. 2016.

[20] M. Handley, C. Raiciu, A. Agache, A. Voinescu,
A. W. Moore, G. Antichi, and M. Wójcik. “Re-
architecting Datacenter Networks and Stacks for
Low Latency and High Performance”. Proc. ACM
SIGCOMM. 2017.

[21] M. P. Herlihy andB. Liskov. “AValue Transmission
Method for Abstract Data Types”. ACM Trans.
Program. Lang. Syst. Oct. 1982.

[22] Hewlett Packard Enterprise. Turbo-charge per-
formance with HPE Persistent Memory. https :
//www.hpe.com/h20195/v2/GetDocument.aspx?
docname=4AA6 - 4771ENW&doctype=data%
20sheet&doclang=EN_US. Mar. 2016.

[23] M. Honda, L. Eggert, and D. Santry. “Paste: Net-
work stacks must integrate with nvmm abstrac-
tions”. Proc. ACM HotNets. ACM. 2016.

[24] M. Honda, F. Huici, G. Lettieri, and L. Rizzo.
“mSwitch: A Highly-scalable, Modular Software
Switch”. Proc. ACM SOSR. 2015.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 29

https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=4AA6-4771ENW&doctype=data%20sheet&doclang=EN_US
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=4AA6-4771ENW&doctype=data%20sheet&doclang=EN_US
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=4AA6-4771ENW&doctype=data%20sheet&doclang=EN_US
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=4AA6-4771ENW&doctype=data%20sheet&doclang=EN_US

[25] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L.
Rizzo. “Rekindling Network Protocol Innovation
with User-level Stacks”. ACM SIGCOMM CCR,
Apr. 2014.

[26] J. Huang, K. Schwan, and M. K. Qureshi.
“NVRAM-aware Logging in Transaction Systems”.
Proc. VLDB Endow. Dec. 2014.

[27] Intel. Introduction to the Storage Performance De-
velopment Kit (SPDK). https : / / software . intel .
com/en-us/articles/introduction-to-the-storage-
performance-development-kit-spdk. Sep. 2015.

[28] Intel Corporation. NVDIMM Namespace Specifi-
cation. http://pmem.io/documents/NVDIMM_
Namespace_Spec.pdf.

[29] JeffChang.NVDIMM-NCookbook: A Soup-to-Nuts
Primer on Using NVDIMM-Ns to Improve Your
Storage Performance. http://www.snia.org/sites/
default / files / SDC15_presentations / persistant _
mem / JeffChang - ArthurSainio _ NVDIMM _
Cookbook.pdf. Sep. 2015.

[30] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. “mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems”. Proc.
USENIX NSDI. 2014.

[31] A. Kalia, M. Kaminsky, and D. G. Andersen. “De-
sign Guidelines for High Performance RDMA Sys-
tems”. Proc. USENIX ATC. 2016.

[32] A. Kangarlou, S. Shete, and J. D. Strunk. “Chron-
icle: Capture and Analysis of NFS Workloads at
Line Rate”. Proc. USENIX FAST. 2015.

[33] S. Kannan, A. Gavrilovska, and K. Schwan. “pVM:
Persistent Virtual Memory for Efficient Capacity
Scaling and Object Storage”. Proc. ACM EuroSys.
2016.

[34] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson,
and A. Krishnamurthy. “High Performance Packet
Processing with FlexNIC”. Proc. ACM ASPLOS.
2016.

[35] J. Khalid, A. Gember-Jacobson, R. Michael, A.
Abhashkumar, and A. Akella. “Paving the Way for
NFV: Simplifying Middlebox Modifications Using
StateAlyzr.” Proc. USENIX NSDI. 2016.

[36] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won.
“NVWAL: Exploiting NVRAM in Write-Ahead
Logging”. Proc. ACM ASPLOS. 2016.

[37] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky.
“SILT: AMemory-efficient, High-performanceKey-
value Store”. Proc. ACM SOSP. 2011.

[38] H. Lim, D. Han, D. G. Andersen, andM. Kaminsky.
“MICA: A Holistic Approach to Fast In-Memory
Key-Value Storage”. Proc. USENIX NSDI. 2014.

[39] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y.
Shi. “Scalable Kernel TCP Design and Implemen-
tation for Short-Lived Connections”. Proc. ACM
ASPLOS. 2016.

[40] Y. Lu, J. Shu, Y. Chen, and T. Li. “Octopus: an
RDMA-enabled Distributed Persistent Memory
File System”. Proc. USENIX ATC. 2017.

[41] V. Maffione, L. Rizzo, and G. Lettieri. “Flex-
ible virtual machine networking using netmap
passthrough”. Proc. IEEE LANMAN. IEEE. 2016.

[42] I. Marinos, R. N. Watson, and M. Handley. “Net-
work Stack Specialization for Performance”. Proc.
ACM SIGCOMM. 2014.

[43] I. Marinos, R. N. Watson, M. Handley, and R. R.
Stewart. “Disk|Crypt|Net: Rethinking the Stack for
High-performance Video Streaming”. Proc. ACM
SIGCOMM. 2017.

[44] Matthew Wilcox. DAX: Page cache bypass for
filesystems on memory storage. https:// lwn.net/
Articles/618064/. Oct. 2014.

[45] Micron. Breakthrough Nonvolatile Memory Tech-
nology. https://www.micron.com/about/emerging-
technologies/3d-xpoint-technology.

[46] J. C.Mogul, E. Argollo, M. Shah, and P. Faraboschi.
“Operating System Support for NVM+DRAM Hy-
brid Main Memory”. Proc. ACM HotOS. 2009.

[47] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
“Trumpet: Timely and Precise Triggers in Data
Centers”. Proc. ACM SIGCOMM. 2016.

[48] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W.
Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang, and
S. Kumar. “f4: Facebook’s Warm BLOB Storage
System”. Proc. USENIX OSDI. 2014.

[49] M. Nanavati, M. Schwarzkopf, J. Wires, and A.
Warfield. “Non-volatile Storage”. Commun. ACM,
Dec. 2015.

[50] M. Nanavati, J. Wires, and A. Warfield. “Decibel:
Isolation and Sharing in Disaggregated Rack-Scale
Storage”. Proc. USENIX NSDI. 2017.

[51] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann,
J. Howell, and Y. Suzue. “Flat Datacenter Storage”.
Proc. USENIX OSDI. 2012.

[52] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ouster-
hout, and M. Rosenblum. “Fast Crash Recovery in
RAMCloud”. Proc. ACM SOSP. 2011.

[53] Open vSwitch. Basic Configuration. http://docs.
openvswitch.org/en/latest/faq/configuration/.

30 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://software.intel.com/en-us/articles/introduction-to-the-storage-performance-development-kit-spdk
https://software.intel.com/en-us/articles/introduction-to-the-storage-performance-development-kit-spdk
https://software.intel.com/en-us/articles/introduction-to-the-storage-performance-development-kit-spdk
http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/JeffChang-ArthurSainio_NVDIMM_Cookbook.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/JeffChang-ArthurSainio_NVDIMM_Cookbook.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/JeffChang-ArthurSainio_NVDIMM_Cookbook.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/JeffChang-ArthurSainio_NVDIMM_Cookbook.pdf
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/
https://www.micron.com/about/emerging-technologies/3d-xpoint-technology
https://www.micron.com/about/emerging-technologies/3d-xpoint-technology
http://docs.openvswitch.org/en/latest/faq/configuration/
http://docs.openvswitch.org/en/latest/faq/configuration/

[54] P4 Consortium. P4 Language Specification. https:
//p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-
spec.pdf.

[55] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
“Arrakis: The Operating System is the Control
Plane”. Proc. USENIX OSDI. 2014.

[56] R. Potharaju and N. Jain. “Demystifying the Dark
Side of the Middle: A Field Study of Middlebox
Failures in Datacenters”. Proc. ACM IMC. 2013.

[57] Redis. Official Redis Website. https://redis.io/.
[58] L. Rizzo. “netmap: A Novel Framework for Fast

Packet I/O”. Proc. USENIX ATC. 2012.
[59] D. Santry and K. Voruganti. “Violet: A Storage

Stack for IOPS/Capacity Bifurcated Storage Envi-
ronments”. Proc. USENIX ATC. 2014.

[60] V. Sekar, N. Egi, S. Ratnasamy,M. K. Reiter, and G.
Shi. “Design and Implementation of a Consolidated
Middlebox Architecture”. Proc. USENIX NSDI.
2012.

[61] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Kr-
ishnamurthy, C. Maciocco, M. Manesh, J. Mar-
tins, S. Ratnasamy, L. Rizzo, and S. Shenker.
“Rollback-Recovery for Middleboxes”. Proc. ACM
SIGCOMM. 2015.

[62] SNIA Technical Position. NVM Programming
Model Version 1.2. https : / / www . snia . org /
sites / default / files / technical _ work / final /
NVMProgrammingModel_v1.2.pdf. 2017.

[63] Stefan Hajnoczi. Using NVDIMM under KVM.
https : / /vmsplice .net /~stefan/ stefanha- fosdem-
2017.pdf.

[64] O. Tilmans, T. Bühler, S. Vissicchio, and L. Van-
bever. “Mille-Feuille: Putting ISP Traffic Under the
Scalpel”. Proc. ACM HotNets. 2016.

[65] S.-Y. Tsai and Y. Zhang. “LITE Kernel RDMA
Support for Datacenter Applications”. Proc. ACM
SOSP. 2017.

[66] J. Xu and S. Swanson. “NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main
Memories”. Proc. USENIX FAST. 2016.

[67] J. Yang, Q.Wei, C. Chen, C.Wang, K. L. Yong, and
B. He. “NV-Tree: Reducing Consistency Cost for
NVM-based Single Level Systems”. Proc. USENIX
FAST. 2015.

[68] K. Yasukata, M. Honda, D. Santry, and L. Eggert.
“StackMap: Low-Latency Networking with the OS
Stack and Dedicated NICs”. Proc. USENIX ATC.
2016.

[69] W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakr-
ishnan, and T. Wood. “Flurries: Countless Fine-
Grained NFs for Flexible Per-Flow Customization”.
Proc. ACM CoNEXT. 2016.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 31

https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://redis.io/
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://vmsplice.net/~stefan/stefanha-fosdem-2017.pdf
https://vmsplice.net/~stefan/stefanha-fosdem-2017.pdf

A Appendix

A.1 Consistency Analysis
Figure 12 illustrates data states over a single network
event loop cycle. If the system crashes before metadata
(Plog entries) are flushed, extant packet buffers are simply
overwritten by the next packets following reboot. If it
crashes after the metadata has been written but before
the corresponding buffers are swapped out of Pring, the
application must do so right after re-initializing Ppool,
before starting network I/O. Note that the application
should not have updated the ring’s pointer (cur in Figure 3)
before swapping out the buffers.

The application can identify the buffers to be swapped
out by reading its Plog. There is no atomicity semantics
on buffer swapping, so the application should read Plog
and ensure that the necessary buffers are in the intended
place in either on or outside the Pring. The application
may also leverage the ring pointer to identify buffers that
have been swapped out, because the ring pointer can be
updated atomically.
If the system crashes after buffers have been swapped

out, buffers are consistent. However, some data sent
after that, such as response messages might have been
lost before being dispatched to the network. It is the
responsibility of the application-level protocol to address
or tolerate duplicate responses.

A.2 Overlap Flushes for an Event Loop
In Section 6.2, we have introduced a technique that over-
laps flushes and other processing in a network event
loop that processes multiple requests, by leveraging
clflushopt and mfence. We set out to test this method
using a server equipped with an Intel Xeon Silver 4110
CPU clocked at 2.1Ghz that supports this instruction.
Unfortunately, since this machine does not support our
NVMM device, we emulate NVMM using a reserved
region of DRAM as prior work does [26, 40].
Figure 13a shows WAL throughput and mean latency.

The overlap improves throughput by up to 47%and latency
by up to 32% in StackMap that copies data. It improves
throughput by up to 72% and latency by up to 42% in
PASTE. PASTE with the overlap improves throughput by
up to 54% and latency by up to 35% in comparison to
StackMap.

Figure 13b shows theB+tree case. The overlap improves
throughput by up to 93% in StackMap, and up to 133%
in PASTE; PASTE with the overlap improves throughput
by up to 59% in comparison to StackMap.

We observe higher throughputs in comparison to equiv-
alent results in Section 4, although the CPU clock is lower
in this server and the real NVMM used in the other server
achieves the same speed with DRAM “in theory”. This

is perhaps because of higher memory clock frequency of
this server (2600Mhz, as opposed to 2133Mhz in that
section), and the newer CPU generation.

A.3 Effect of High NVMM Access Latency
Using the aforementioned overlap technique, we examine
the effect of NVMMs with higher access latency. Since
clflushopts are asynchronous, we expect that higher
NVMM access latency delays mfence to return. We thus
insert artificial sleep() before mfence, and measure
impact on overall throughput.

Figure 14 plots results, and they match our expectation.
Emulated latency decreases throughput by largermargin as
the number of parallel connections or requests decreases,
because the NVMM access latency is amortised over the
number of requests processed in the same network event
loop.

In summary, also including the previous subsection, we
conclude that the overlap technique significantly improves
performance, and could mask high NVMM access latency.
However, there is also a caveat. This method could
increase the complexity of consistency guarantees. It
certainly avoids compromising data after acknowledging
to the client. However, when the system crashes before
doing so, the system does not have any guarantee of
the correctness of receiving data to be written. We can
mitigate this risk by either flushing metadata, or designing
the application-level protocol to tolerate duplicate writes
where the server thinks the data is written but the client
does not so thus precipitating resends of the previous write.
We leave the analysis of these approaches for future work.

A.4 Implementation Note
In the OS kernel, network protocols are usually imple-
mented using OS-specific packet representation structures
(sk_buff in Linux, mbuf in *BSD). They typically con-
tain metadata and one or more pointers to buffers that
contain actual packet data, allowing them to point Pbufs.
Once an RX buffer is passed to the TCP/IP implementation
(netif_receive_skb() in Linux, ifp->if_input()
in FreeBSD), in order to identify whether it is ready to be
set to a Pring (e.g., in-order TCP segment), we exploit
a callback that is invoked on data enqueued to a socket
buffer (sk_data_ready() in Linux and sb_upcall()
in FreeBSD). The socket structure also has interfaces
for kernel subsystems (e.g., iSCSI) similar to user-space
socket APIs. But in the kernel they also provide zero-copy
APIs (kernel_sendpage() in Linux and sosend() in
FreeBSD), which allow PASTE to pass data that reside in
Pbufs to the TCP/IP implementation on the TX path.
Further, the OS kernels provide an interface

(get_user_pages() in Linux and vm_map_*() family

32 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 12: Buffer state over a networking event cycle.

0

100

200

300

400

500

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

1 25 50 75 100

64 B

0

120

240

360

480

600

L
at

en
cy

[µ
s]

1 25 50 75 100

1280 B
of Concurrent Connections

Stackmap
Stackmap (clflushopt)

PASTE
PASTE (clflushopt)

(a)WAL

0

80

160

240

320

400

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

1 25 50 75 100

64 B

0

180

360

540

720

900

L
at

en
cy

[µ
s]

1 25 50 75 100

1280 B
of Concurrent Connections

Stackmap
Stackmap (clflushopt)

PASTE
PASTE (clflushopt)

(b) B+tree

Figure 13: Throughput and mean latency with clflushopt.

0 2 4 6 8 10

64 B

25
30
35
40
45

0 2 4 6 8 10

1280 B

Stackmap (1 conn.) PASTE (1 conn.)
200

250

300

350

400

450

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

Stackmap (50 conn.)
Stackmap (100 conn.)

PASTE (50 conn.)
PASTE (100 conn.)

Emulated Latency [µs]

Figure 14: WAL throughput over emulated NVMM
access latency.

in FreeBSD) to obtain kernel-space virtual addresses from
the user-space ones mmap()ed to the file (e.g., Ppool).
Therefore, PASTE can be implemented without modify-
ing the OS kernel, using its good parts, such as protec-
tion mechanisms inherited from the netmap framework,

NVMM abstractions, file systems and extensive network
protocol implementations.
FreeBSD support is our ongoing effort. It appears

possible once the basic NVMM programming model [62]
is supported, because the netmap framework is already
there.

The porting effort of existing applications to use PASTE
is medium, according to our experience with Redis (where
the majority of the effort was to understand how Redis
works, a burden that the maintainers would not have to
bear). We have a library implemented as a header file
to initialize and run an event loop in Figure 4. This
library implements two callbacks to be registered by an
application: one invoked at accept() and the other
invoked on every RX packet buffer when traversing the
ring (line 12 in the figure). In addition to rearranging
Redis to use these features, we extended a function that
parses and identifies a write request to flush and swap out
the buffer, using the same procedure with flush_buf()
in the figure.

In order to ease porting existing applications andwriting
new ones, we plan to extend libuv, a popular event-driven
networking library, to support PASTE.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 33

NetChain: Scale-Free Sub-RTT Coordination

Xin Jin1, Xiaozhou Li2, Haoyu Zhang3, Nate Foster2,4,
Jeongkeun Lee2, Robert Soulé2,5, Changhoon Kim2, Ion Stoica6

1Johns Hopkins University, 2Barefoot Networks, 3Princeton University,
4Cornell University, 5Università della Svizzera italiana, 6 UC Berkeley

Abstract
Coordination services are a fundamental building block
of modern cloud systems, providing critical functionali-
ties like configuration management and distributed lock-
ing. The major challenge is to achieve low latency
and high throughput while providing strong consistency
and fault-tolerance. Traditional server-based solutions
require multiple round-trip times (RTTs) to process a
query. This paper presents NetChain, a new approach
that provides scale-free sub-RTT coordination in dat-
acenters. NetChain exploits recent advances in pro-
grammable switches to store data and process queries
entirely in the network data plane. This eliminates the
query processing at coordination servers and cuts the
end-to-end latency to as little as half of an RTT—clients
only experience processing delay from their own soft-
ware stack plus network delay, which in a datacenter set-
ting is typically much smaller. We design new proto-
cols and algorithms based on chain replication to guar-
antee strong consistency and to efficiently handle switch
failures. We implement a prototype with four Barefoot
Tofino switches and four commodity servers. Evaluation
results show that compared to traditional server-based
solutions like ZooKeeper, our prototype provides orders
of magnitude higher throughput and lower latency, and
handles failures gracefully.

1 Introduction
Coordination services (e.g., Chubby [1], ZooKeeper [2]
and etcd [3]) are a fundamental building block of mod-
ern cloud systems. They are used to synchronize ac-
cess to shared resources in a distributed system, provid-
ing critical functionalities such as configuration manage-
ment, group membership, distributed locking, and bar-
riers. These various forms of coordination are typically
implemented on top of a key-value store that is replicated
with a consensus protocol such as Paxos [4] for strong
consistency and fault-tolerance.

High-throughput and low-latency coordination is es-
sential to support interactive and real-time distributed ap-
plications, such as fast distributed transactions and sub-
second data analytics tasks. State-of-the-art in-memory
transaction processing systems such as FaRM [5] and

DrTM [6], which can process hundreds of millions of
transactions per second with a latency of tens of mi-
croseconds, crucially depend on fast distributed locking
to mediate concurrent access to data partitioned in mul-
tiple servers. Unfortunately, acquiring locks becomes a
significant bottleneck which severely limits the transac-
tion throughput [7]. This is because servers have to spend
their resources on (i) processing locking requests and (ii)
aborting transactions that cannot acquire all locks under
high-contention workloads, which can be otherwise used
to execute and commit transactions. This is one of the
main factors that led to relaxing consistency semantics
in many recent large-scale distributed systems [8, 9], and
the recent efforts to avoid coordination by leveraging ap-
plication semantics [10, 11]. While these systems are
successful in achieving high throughput, unfortunately,
they restrict the programming model and complicate the
application development. A fast coordination service
would enable high transaction throughput without any of
these compromises.

Today’s server-based solutions require multiple end-
to-end round-trip times (RTTs) to process a query [1, 2,
3]: a client sends a request to coordination servers; the
coordination servers execute a consensus protocol, which
can take several RTTs; the coordination servers send a re-
ply back to the client. Because datacenter switches pro-
vide sub-microsecond per-packet processing delay, the
query latency is dominated by host delay which is tens
to hundreds of microseconds for highly-optimized im-
plementations [12]. Furthermore, as consensus protocols
do not involve sophisticated computations, the workload
is communication-heavy and the throughput is bottle-
necked by the server IO. While state-of-the-art solutions
such as NetBricks [12] can boost a server to process tens
of millions of packets per second, it is still orders of mag-
nitude slower than a switch.

We present NetChain, a new approach that lever-
ages the power and flexibility of new-generation pro-
grammable switches to provide scale-free sub-RTT coor-
dination. In contrast to server-based solutions, NetChain
is an in-network solution that stores data and processes
queries entirely within the network data plane. We stress
that NetChain is not intended to provide a new theoretical

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 35

answer to the consensus problem, but rather to provide a
systems solution to the problem. Sub-RTT implies that
NetChain is able to provide coordination within the net-
work, and thus reduces the query latency to as little as
half of an RTT. Clients only experience processing de-
lays caused by their own software stack plus a relatively
small network delay. Additionally, as merchant switch
ASICs [13, 14] can process several billion packets per
second (bpps), NetChain achieves orders of magnitude
higher throughput, and scales out by partitioning data
across multiple switches, which we refer to as scale-free.

The major challenge we address in this paper is build-
ing a strongly-consistent, fault-tolerant, in-network key-
value store within the functionality and resource limit
of the switch data plane. There are three aspects of
our approach to address this challenge. (i) We lever-
age the switch on-chip memory to store key-value items,
and process both read and write queries directly in the
data plane. (ii) We design a variant protocol of chain
replication [15] to ensure strong consistency of the key-
value store. The protocol includes a routing protocol in-
spired by segment routing to correctly route queries to
switches according to the chain structure, and an order-
ing protocol based on sequence numbers to handle out-
of-order packet delivery. (iii) We design an algorithm for
fast failover that leverages network topologies to quickly
resume a chain’s operation with remaining nodes, and
an algorithm for failure recovery that restores the partial
chains to the original fault-tolerance level and leverages
virtual groups to minimize disruptions.

NetChain is incrementally deployable. The NetChain
protocol is compatible with existing routing protocols
and services already in the network. NetChain only
needs to be deployed on a few switches to be effective,
and its throughput and storage capacity can be expanded
by adding more switches. In summary, we make the fol-
lowing contributions.
• We design NetChain, a new strongly-consistent, fault-

tolerant, in-network key-value store that exploits new-
generation programmable switches to provide scale-
free sub-RTT coordination.

• We design protocols and algorithms tailored for pro-
grammable switches to ensure strong consistency (§4)
and fault-tolerance (§5) of the key-value store.

• We implement a NetChain prototype with Barefoot
Tofino switches and commodity servers (§7). Evalu-
ation results show that compared to traditional server-
based solutions like ZooKeeper, NetChain provides
orders of magnitude higher throughput and lower la-
tency, and handles failures gracefully (§8).

Recently there has been an uptake in leveraging pro-
grammable switches to improve distributed systems.
NetChain builds on ideas from two pioneering works in
particular: NetPaxos [16, 17] and NetCache [18]. Net-

Server Switch

Example NetBricks [12] Tofino [13]
Packets per sec. 30 million a few billion
Bandwidth 10-100 Gbps 6.5 Tbps
Processing delay 10-100 µs < 1µs

Table 1: Comparison of packet processing capabilities.

Paxos uses programmable switches to accelerate consen-
sus protocols, but it does not offer a replicated key-value
service, and the performance is bounded by the overhead
of application-level replication on servers. NetCache
uses programmable switches to build a load-balancing
cache for key-value stores, but the cache is not repli-
cated and involves servers for processing write queries.
In comparison, NetChain builds a strongly-consistent,
fault-tolerant key-value store in the network data plane.
We discuss NetChain’s limitations (e.g., storage size) and
future work in §6, and related work in detail in §9.

2 Background and Motivation
2.1 Why a Network-Based Approach?
A network data-plane-based approach offers significant
advantages on latency and throughput over traditional
server-based solutions. Moreover, such an approach is
made possible by the emerging programmable switches
such as Barefoot Tofino [13] and Cavium XPliant [19].

Eliminating coordination latency overhead. The mes-
sage flow for a coordination query is:

client→ coordination servers→ client.
Coordination servers execute a consensus protocol such
as Paxos [4] to ensure consistency, which itself can take
multiple RTTs. NOPaxos [20] uses the network to order
queries and eliminates the message exchanges between
coordination servers. It reduces the latency to two mes-
sage delays or one RTT, which is the lower bound for
server-based solutions. As shown in Table 1, since data-
center switches only incur sub-microsecond delay, the
host delay dominates the query latency. By moving co-
ordination to the network, the message flow becomes:

client→ network switches→ client.
Because the network time is negligible compared to host
delay, a network-based solution is able to cut the query
latency to one message delay or sub-RTT, which is bet-
ter than the lower-bound of server-based solutions. Note
that the sub-RTT latency is not a new theoretical answer
to the consensus problem, but rather a systems solution
that eliminates the overhead on coordination servers.

Improving throughput. The workload of coordi-
nation systems is communication-heavy, rather than
computation-heavy. While varying in their details, con-
sensus protocols typically involve multiple rounds of
message exchanges, and in each round the nodes exam-
ine their messages and perform simple data comparisons

36 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

S0 S1 S2

Head Replica Tail

Write
Request

Read
Request

Read/Write
Reply

S0

S1

S2

Primary Backup

Read/Write
Request

Write Request
Read/Write

Reply

(a) Classical primary-backup. (b) Chain replication.

Figure 1: Primary-backup and chain replication.

and updates. The throughput is determined by how fast
the nodes can process messages. Switches are specifi-
cally designed and deeply optimized for packet process-
ing and switching. They provide orders of magnitude
higher throughput than highly-optimized servers (Ta-
ble 1). Alternative designs like offloading to NICs and
leveraging specialized chips (FPGAs, NPUs or ASICs)
either do not provide comparable performance to switch
ASICs or are not immediately deployable due to cost and
deployment complexities.

2.2 Why Chain Replication?
Given the benefits, the next question is how to build a
replicated key-value store with programmable switches.
NetCache [18] has shown how to leverage the switch on-
chip memory to build a key-value store on one switch.
Conceivably, we can use the key-value component of
NetCache and replicate the key-value store on multiple
switches. But the challenge in doing so would be how to
ensure strong consistency and fault-tolerance.

Vertical Paxos. We choose to realize Vertical Paxos [21]
in the network to address this challenge. Vertical Paxos is
a variant of the Paxos algorithm family. It divides a con-
sensus protocol into two parts, i.e., a steady state proto-
col and a reconfiguration protocol. The division of labor
makes it a perfect fit for a network implementation, be-
cause the two parts can be naturally mapped to the net-
work data and control planes. (i) The steady state pro-
tocol is typically a primary-backup (PB) protocol, which
handles read and write queries and ensures strong consis-
tency. It is simple enough to be implemented in the net-
work data plane. In addition, it only requires f +1 nodes
to tolerate f node failures, which is lower than 2 f +1
nodes required by the ordinary Paxos, due to the exis-
tence of the reconfiguration protocol. This is important
as switches have limited on-chip memory for key-value
storage. Hence, given the same number of switches, the
system can store more items with Vertical Paxos. (ii)
The heavy lifting for fault-tolerance is offloaded to the
reconfiguration protocol, which uses an auxiliary mas-
ter to handle reconfiguration operations like joining (for
new nodes) and leaving (for failed nodes). The auxil-
iary master can be mapped to the network control plane,
as modern datacenter networks already have a logically
centralized controller replicated on multiple servers.

NetChain (Vertical Paxos)

Auxiliary Master
(Reconfiguration Protocol)

Chain Replication
(Steady State Protocol)

Network
Controller

Host
Racks

S2 S3 S4 S5

S0 S1

(a) NetChain architecture.

ETH IP UDP OP KEY VALUES0 SEQS1 … Sk

NetChain routingL2/L3 routing inserted by head switch

read, write, delete, etc.reserved port #

SC

(b) NetChain packet format.

Figure 2: NetChain overview.

While it seems to move the fault-tolerance problem
from the consensus protocol to the auxiliary master, Ver-
tical Paxos is well-suited to NetChain because reconfig-
urations such as failures (on the order of minutes) are or-
ders of magnitude less frequent than queries (on the order
of microseconds). So handling queries and reconfigura-
tions are mapped to data and control planes, respectively.
Chain Replication. We design a variant of chain repli-
cation (CR) [15] to implement the steady state protocol
of Vertical Paxos. CR is a form of PB protocols. In the
classical PB protocol (Figure 1(a)), all queries are sent to
a primary node. The primary node needs to keep some
state to track each write query to each backup node, and
to retry or abort a query if it does not receive acknowl-
edgments from all backup nodes. Keeping the state and
confirming with all backup nodes are costly to imple-
ment with the limited resources and operations provided
by switch ASICs. In CR (Figure 1(b)), nodes are orga-
nized in a chain structure. Read queries are handled by
the tail; write queries are sent to the head, processed by
each node along the chain, and replied by the tail. Write
queries in CR use fewer messages than PB (n+1 instead
of 2n where n is the number of nodes). CR only requires
each node to apply a write query locally and then for-
ward the query. Receiving a reply from the tail is a direct
indication of query completion. Thus CR is simpler than
PB to be implemented in switches.

3 NetChain Overview
We design NetChain, an in-network coordination service
that provides sub-RTT latency and high throughput. It
provides a strongly-consistent, fault-tolerant key-value
store abstraction to applications (Figure 2(a)).
NetChain data plane (§4). We design a replicated key-
value store with programmable switches. Both read and

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 37

Match Action
Key = X (0xfb2d7326dd4e36ac) Read/Write RA[0]

Key = Y (0xfa21549a1e8926a7) Read/Write RA[5]

Key = Z (0xfbeb2c7e4db86208) Read/Write RA[2]

default Drop()

Register Array (RA)Match-Action Table

0
1
2
3
4
5

Figure 3: Key-value index and storage.

write queries are directly processed in the switch data
plane without controller involvement. We design a vari-
ant of CR to ensure strong consistency of the key-value
store. Coordination queries use a custom network format
based on UDP (Figure 2(b)) and the processing logic of
NetChain is invoked by a reserved UDP port.

NetChain control plane (§5). The controller handles
system reconfigurations such as switch failures, which
are orders of magnitude less frequent than read and write
queries. The controller is assumed to be reliable by
running a consensus protocol on multiple servers, as
required by Vertical Paxos. Note that NetChain can
also work with traditional distributed network control
planes. In such scenarios, we need to implement an aux-
iliary master for handling system reconfigurations, and
the network control plane should expose an interface for
NetChain to manage NetChain’s tables and registers in
switches. NetChain does not need access to any other
switch state, such as forwarding tables.

NetChain client. NetChain exposes a key-value store
API to applications. A NetChain agent runs in each host,
and translates API calls from applications to queries us-
ing our custom packet format. The agent gathers returned
packets from NetChain and generates API responses.
The complexity of the in-network key-value store is hid-
den from applications by the agent.

4 NetChain Data Plane

Problem statement. The data plane provides a repli-
cated, in-network key-value store, and handles read and
write queries directly. We implement CR to guarantee
strong consistency, which involves three specific prob-
lems: (R1) how to store and serve key-value items in
each switch; (R2) how to route queries through the
switches according to the chain structure; (R3) how to
cope with best-effort network transport (i.e., packet re-
ordering and loss) between chain switches.

Properties. NetChain provides strong consistency: (i)
reads and writes on individual keys are executed in some
sequential order, and (ii) the effects of successful writes
are reflected in subsequent reads. NetChain assumes
trustworthy components; otherwise, malicious compo-
nents can destroy these consistency guarantees.

Algorithm 1 ProcessQuery(pkt)
– sequence: the register array that stores sequence numbers
– value: the register array that stores values
– index: the match table that stores array locations of keys

1: loc← index[pkt.key]
2: if pkt.op == read then
3: Insert value header field pkt.val
4: pkt.val← value[loc]
5: else if pkt.op == write then
6: if isChainHead(pkt) then
7: sequence[loc]← sequence[loc]+1
8: pkt.seq← sequence[loc]
9: value[loc]← pkt.val

10: else if pkt.seq > sequence[loc] then
11: sequence[loc]← pkt.seq
12: value[loc]← pkt.val
13: else Drop()
14: Update packet header and forward

4.1 Data Plane Key-Value Storage
On-chip key-value storage. Modern programmable
switch ASICs (e.g., Barefoot Tofino [13]) provide on-
chip register arrays to store user-defined data that can be
read and modified for each packet at line rate. NetChain
separates the storage of key and value in the on-chip
memory. Each key is stored as an entry in a match ta-
ble, and each value is stored in a slot of a register array.
The match table’s output is the index (location) of the
matched key. Figure 3 shows an example of the index-
ing. Key X is stored in slot 0 of the array, and key Z
is stored in slot 2. NetChain uses the same mechanism
as NetCache [18] to support variable-length values with
multiple stages.

UDP-based key-value query. We leverage the capabil-
ity of programmable switches to define a custom packet
header format (Figure 2(b)) and build a UDP-based
query mechanism (Algorithm 1). The core header fields
for key-value operations are OP (which stands for oper-
ator), KEY and VALUE. Other fields are used for rout-
ing (§4.2) and ordered delivery (§4.3). NetChain sup-
ports four operations on the key-value store: Read and
Write the value of a given key; Insert and Delete
key-value items. Read and Write queries are entirely
handled in the data plane at line rate. Delete queries
invalidate key-value items in the data plane and re-
quires the control plane for garbage collection. Insert
queries require the control plane to set up entries in
switch tables, and thus are slower than other operations.
This is acceptable because Insert is a less frequent op-
eration for the use cases of coordination services. Most
queries are reads and writes on configuration parameters
and locks that already exist. Nevertheless, if necessary
in particular use cases, data plane insertions are feasible
using data structures like d-left hashing, but at the cost of
low utilization of the on-chip memory.

Data partitioning with consistent hashing. NetChain

38 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

S0

S1

S2

Write Request

… dstIP
= S0

… SC
= 2 S1 S2 …

Read Request
… dstIP

= S1
… SC

= 1 S2 …

… dstIP
= S2

… SC
= 0 … … dstIP

= S2
… SC

= 2 S1 S0 …

… dstIP
= H0

… SC
= 2 S1 S0 …… dstIP

= H0
… SC

= 0 …

Figure 4: NetChain routing.

uses consistent hashing [22] to partition the key-value
store over multiple switches. Keys are mapped to a hash
ring, and each switch is responsible for several continu-
ous segments on the ring. Virtual nodes [23] are used to
help evenly spread the load. Given n switches, NetChain
maps m virtual nodes to the ring and assign m/n vir-
tual nodes to each switch. Keys of each segment on the
ring are assigned to f +1 subsequent virtual nodes. In
cases where a segment is assigned to two virtual nodes
that are physically located on the same switch, NetChain
searches for the following virtual nodes along the ring
until we find f +1 virtual nodes that all belong to differ-
ent switches.

4.2 NetChain Routing
NetChain routing protocol. Our goal is to route queries
for switch processing according to the chain structure.
This is different from overlay routing that uses servers
as intermediate hops and underlay routing that specifies
hop-by-hop routing. We require that certain hops must
be visited in the chain order, but do not care how queries
are routed from one chain node to the next. While this
is similar to segment routing and loose source routing,
the write and read queries visit the chain switches in dif-
ferent orders, and read queries only visit the tail of the
chain. We build the NetChain routing protocol on top
of existing underlay routing protocols. This allows us to
partially deploy NetChain with only a few switches being
NetChain nodes, and take advantage of many properties
provided by existing routing protocols, e.g., fast rerout-
ing upon failures.

Specifically, we assign an IP address for each switch,
and store an IP list of the chain nodes in the packet header
(Figure 2(b)). SC, which is short for switch count, de-
notes the number of remaining switches in the chain. The
destination IP in the IP header indicates the next chain
node for the query. When a switch receives a packet and
the destination IP matches its own address, the switch
decodes the query and performs the read or write opera-
tion. After this, the switch updates the destination IP to
the next chain node, or to the client IP if it is the tail.

Write queries store chain IP lists as the chain order
from head to tail; read queries use the reverse order

S0 S1 S2

Head Replica Tail

time

foo=B
foo=C

W1: foo=B
W2: foo=C

foo=C
foo=B

foo=B
foo=C

foo=A foo=A foo=A

Concurrent Writes

(a) Problem of out-of-order delivery.

S0 S1 S2

Head Replica Tail

time

foo=B,seq=1
foo=C,seq=2 foo=C,seq=2

foo=B,seq=1
foo=C,seq=2

foo=A,seq=0 foo=A,seq=0 foo=A,seq=0

W1: foo=B
W2: foo=C

Concurrent Writes

(b) Serialization with sequence numbers.

Figure 5: Serializing out-of-order delivery.

(switch IPs other than the tail are used for failure han-
dling with details in §5). The chain IP lists are encoded
to UDP payloads by NetChain agents. As we use con-
sistent hashing, a NetChain agent only needs to store a
small amount of data to maintain the mapping from keys
to switch chains. The mapping only needs to be updated
when the chain is reconfigured, which does not happen
frequently. As will be described in §5, we only need
to make local changes on a few switches to quickly re-
flect chain reconfigurations in the network, followed by
a slower operation to propagate the changes to all agents.
Example. The example in Figure 4 illustrates NetChain
routing for chain [S0,S1,S2]. A write query is first sent
to S0, and contains S1 and S2 in its chain IP list. After
processing the query, S0 copies S1 to the destination IP,
and removes S1 from the list. Then the network uses
its underlay routing protocol to route the query based on
the destination IP to S1, unaware of the chain. After S1
processes the packet, it updates the destination IP to S2
and forwards the query to S2. Finally, S2 receives the
query, modifies the query to a reply packet, and returns
the reply to the client H0. A read query is simpler: it is
directly sent to S2, which copies the value from its local
store to the packet and returns the reply to the client.

4.3 In-Order Key-Value Update
Problem of out-of-order delivery. CR is originally im-
plemented on servers and uses TCP to serialize mes-
sages. However, when we move CR to switches and use
UDP, the network data plane only provides best-effort
packet delivery. Packets can arrive out of order from one
switch to another, which introduces consistency prob-
lems that do not exist in the server-based CR. Figure 5(a)
shows the problem of out-of-order delivery. We have a
key foo that is replicated on S0, S1 and S2 with initial

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 39

value A. We have two concurrent write queries, which
modify the value to B and C respectively. W1 and W2 are
reordered when they arrive at S1, and are reordered again
when they arrive at S2. foo has inconsistent values on
the three switch replicas. Clients would see foo chang-
ing from C to B if S2 fails. To make things worse, if S1
also fails, clients would see the value of the item revert-
ing to C again. This violates the consistency guarantees
provided by CR.

Serialization with sequence numbers. We use se-
quence numbers to serialize write queries, as shown in
Algorithm 1. Each item is associated with a sequence
number, which is stored in a dedicated register array that
shares the same key indexes with the value array. The
head switch assigns a monotonically increasing sequence
number to each write query, and updates its local value.
Other switches only perform write queries with higher
sequence numbers. Figure 5(b) shows how the out-of-
order delivery problem is fixed by sequence numbers. S1
drops W1 as W1 carries a lower sequence number. The
value is consistent on the three replicas.

4.4 Comparison with Original CR
NetChain replaces the servers used in the original CR
with programmable switches, which requires new so-
lutions for R1, R2 and R3 (see the preamble of §4).
These solutions are limited by switch capabilities and re-
sources. Here we describe the differences and the intu-
itions behind the correctness of the new protocol.

The solution to R1 (§4.1) implements per-key read and
write queries, as opposed to per-object read and update
queries. NetChain does not support multi-key transac-
tions. The motivation for this change is due to charac-
teristics of modern switches, which have limited compu-
tation and storage. Note that per-object operations are
more general than per-key operations, as objects can in-
clude multiple keys or even the entire database. In princi-
ple it is possible to pack multiple application values into
a single database value for atomic and consistent updates,
although there are practical limitations on value sizes, as
discussed in §6. Likewise, updates are more general than
writes, as they need not be idempotent and may require
multiple operations to implement. However, writes are
still sufficient to implement state updates and so are of-
ten provided as primitives in the APIs of modern coordi-
nation services [2, 3].

The solution to R2 (§4.2) routes queries through
switches, which does not change the CR protocol.

The solution to R3 (§4.3) delivers messages between
chain switches over UDP. The original CR assumes
ordered, reliable message delivery (implemented with
TCP), which is not available on switches. NetChain
uses sequence numbers to order messages, and relies on
client-side retries (e.g., based on a timeout) when mes-

sages are lost. Because datacenter networks are typically
well managed, the already-small packet loss rate can be
further reduced by prioritizing NetChain packets, since
coordination services are critical and do not have large
bandwidth requirements. In addition, because writes are
idempotent, retrying is benign. By considering every (re-
peated) write as a new operation, the system is able to en-
sure strong consistency. Note that client-side retries are
also used by the original CR to handle message losses
between the clients and the system, because it is difficult
to track the liveness of the clients which are peripheral to
the system.

CR and its extensions have been used by many key-
value stores to achieve strong consistency and fault-
tolerance, such as FAWN-KV [24], Flex-KV [25] and
HyperDex [26]. The design of NetChain is inspired by
these server-based solutions, especially FAWN-KV [24]
and its Ouroboros protocol [27]. The unique contribution
of NetChain is that it builds a strongly-consistent, fault-
tolerant key-value store into the network, with the switch
on-chip key-value storage, a routing protocol for chain-
based query routing and an ordering protocol for query
serialization, which can all be realized in the switch data
plane. In addition, as we will show in §5, compared
to the failure handling in the Ouroboros protocol [27],
NetChain leverages the network topology to reduce the
number of updated nodes for failover, and relies on the
controller to synchronize state in failure recovery instead
of directly through the storage nodes themselves.

4.5 Protocol Correctness
To prove that our protocol guarantees consistency in un-
reliable networks with switch failures, we show that the
following invariant always holds, which is a relaxation
of the invariant used to establish the correctness of the
original CR [15].

Invariant 1 For any key k that is assigned to a chain of
nodes [S1,S2, ...,Sn], if 1 ≤ i < j ≤ n (i.e., Si is a prede-
cessor of S j), then StateSi [k].seq≥ StateS j [k].seq.

Formally, we restrict the history to one with a sin-
gle value for each key and show that state transitions
of NetChain can be mapped to those of the original CR,
proving that NetChain provides per-key consistency. The
proof shows that when a write query between switches is
lost, it is equivalent to a state where the write query is
processed by the tail switch, but the item is overwritten
by a later write query, before the first query is exposed
by any read queries. Moreover, as explained in §5, under
various failure conditions, the protocol ensures that for
each key, the versions exposed to client read queries are
monotonically increasing. We provide a TLA+ verifica-
tion of our protocol in the extended version [28].

40 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

S0 S1 S2N

Modify destination IP
to the next chain
switch (or reply to
client if S1 is the tail)

Figure 6: Fast failover.

5 NetChain Control Plane
Overview. The NetChain controller runs as a component
in the network controller and only manages switch tables
and registers related to NetChain. As discussed in §3,
we assume the network controller is reliable. We mainly
consider system reconfigurations caused by switch fail-
ures, which are detected by the network controller using
existing techniques. We assume the failure model is fail-
stop, and the switch failures can be correctly detected by
the controller. To gracefully handle switch failures, we
divide the process into two steps: fast failover and fail-
ure recovery. (i) In fast failover, the controller quickly
reconfigures the network to resume serving queries with
the remaining f nodes in each affected chain. This de-
grades an affected chain to tolerate f−1 node failures.
(ii) In failure recovery, the controller adds other switches
as new replication nodes to the affected chains, which re-
stores these chains to f +1 nodes. Since failure recovery
needs to copy state to the new replicas, it takes longer
than fast failover.

Other types of chain reconfigurations that (temporar-
ily) remove switches from the network (e.g., switch
firmware upgrade) are handled similarly to fast failover;
those that add switches to the network (e.g., new switch
onboarding) are handled similarly to failure recovery.

5.1 Fast Failover
Fast failover quickly removes failed switches and min-
imizes the durations of service disruptions caused by
switch failures. Given a chain [S1,S2, ...,Sk], when Si
fails, the controller removes Si and the chain becomes
[S1, ...,Si−1,Si+1...,Sk]. A strawman approach is to no-
tify the agents on all servers so that when the agents send
out requests, they would put IPs of the updated chains
to the packet headers. The drawback is the huge cost of
disseminating chain updates to hundreds of thousands of
servers in a datacenter. Another solution is to update Si’s
previous hop Si−1. Specifically, after Si−1 finishes pro-
cessing the requests, it pops up one more IP address from
the chain IP list and uses Si+1 as the next hop. Given
n switches and m virtual nodes, each switch is mapped
to m/n virtual nodes. Since each virtual node is in f +1
chains, a switch failure affects m(f +1)/n chains in total.
This implies that we need to update m(f +1)/n switches

Algorithm 2 Failover(fail sw)
1: for sw ∈ fail sw.neighbors() do
2: rule.match← dst ip = f ail sw
3: if fail sw is not tail then
4: rule.action← (dst ip = chain ip[1], pop two chain IPs)
5: else
6: rule.action← (swap src ip & dst ip, pop chain IP)
7: sw.insert(rule)

for one switch failure in fast failover. While m(f +1)/n
is fewer than the number of servers, it still incurs consid-
erable reconfiguration cost as m/n can be a few tens or
hundreds. Furthermore, if Si is the head (tail) of a chain,
the previous hop for write (read) queries would be all
the servers, which need to be updated. In order to mini-
mize service disruptions, we want to reduce the number
of nodes that must be updated during failover.

Reducing number of updated nodes. Our key idea
is that the controller only needs to update the neighbor
switches of a failed switch to remove it from all its chains
(Algorithm 2). Specifically, the controller inserts a new
rule to each neighbor switch which examines the desti-
nation IP. If the destination IP is that of the failed switch
(line 2), the neighbor switches copy the IP of the next
chain hop of the failed switch (i.e., Si+1’s IP) to the des-
tination IP (line 3-4), or reply to the client if the failed
switch is the tail (line 5-6). The condition of whether the
failed switch is the tail (line 3) is implemented by check-
ing the size of the chain IP list. Write and read queries
are handled in the same way as they store the original
and reverse orders of the chain IP list respectively. Fig-
ure 6 illustrates this idea. All requests from S0 to S1 have
to go through S1’s neighbor switches, which are repre-
sented by the dashed circle. N is one of the neighbor
switches. After S1 fails, the controller updates N to use
S2’s IP as the new destination IP. Note that if N overlaps
with S0 (S2), it updates the destination IP after (before) it
processes the query. If S1 is the end of a chain, N would
send the packet back to the client.

With this idea, even if a failed switch is the head or tail
of a chain, the controller only needs to update its neigh-
bor switches, instead of updating all the clients. Multiple
switch failures are handled in a similar manner, i.e., up-
dating the neighbor switches of the failed switches, and
NetChain can only handle up to f node failures for a
chain of f +1 nodes.

5.2 Failure Recovery
Failure recovery restores all chains to f +1 switches.
Suppose a failed switch Si is mapped to virtual nodes
V1,V2, ...,Vk. These virtual nodes are removed from their
chains in fast failover. To restore them, we first randomly
assign them to k live switches. This helps spread the load
of failure recovery to multiple switches rather than a sin-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 41

S0 S1 S2N

S3Modify destination IP to
the new next hop S3

Figure 7: Failure recovery.

gle switch. Let Vx be reassigned to switch Sy. Since Vx
belongs to f +1 chains, we need to add Sy to each of them.
We use Figure 7 to illustrate how we add a switch to a
chain. Fast failover updates S1’s neighbor switches to
forward all requests to S2 (the blue line from N to S2).
Failure recovery adds S3 to the chain to restore the chain
to three nodes (the orange lines from N to S3 and from S3
to S2). The process involves two steps, described below.
Note that in essence the process is similar to live virtual
machine migrations [29] and reconfigurations for server-
based chain replication [24]. The difference is that we
have the network controller to copy state and to mod-
ify switch rules to perform the reconfigurations. Algo-
rithm 3 gives the pseudo code. In the example, f ail sw,
new sw and re f sw are S1, S3 and S2, respectively.

Step 1: Pre-synchronization. The controller copies
state from S2 to S3 (line 2). This includes (i) copying val-
ues from S2’s register array to S3’s register array, and (ii)
inserting rules to S3’s index table (Figure 3). While this
step is time-consuming, the availability is not affected
as the chain continues its operation with S0 and S2. We
cover the case where there is no S2 in the paragraph be-
low on handling special cases.

Step 2: Two-phase atomic switching. The controller
switches the chain from [S0,S2] to [S0,S3,S2]. This step
has to be done carefully to ensure consistency. We keep
the following invariant: any node in the chain has newer
values than its next hop. The switching has two phases.
• Phase 1: Stop and synchronization. The controller

inserts rules to all neighbors of S1 (N in Figure 7) to
stop forwarding queries to S2 (line 3-4). At the same
time, it continues synchronizing the state between S2
and S3 (line 5). Since no new queries are forwarded
to S2, the state on S2 and S3 would eventually become
the same. In this phase, the chain stops serving write
queries, but still serves read queries with S2.

• Phase 2: Activation. The controller activates the new
chain switch S3 to start processing queries (line 6), and
activates all neighbor switches of S1 (N in the figure)
to forward queries to S3 (line 7-8). These rules modify
the destination IP to S3’s IP. They override the rules
of fast failover (by using higher rule priorities), so that
instead of being forwarded to S2, all queries would be
forwarded to S3. The chain is restored after this phase.

Algorithm 3 FailureRecovery(fail sw, new sw)
1: re f sw← getLiveRe f erenceSwitch(fail sw)
2: preSyncState(new sw,re f sw)
3: for sw ∈ fail sw.neighbors() do
4: sw.stopForward(fail sw)
5: syncState(new sw,re f sw)
6: new sw.activateProcess()
7: for sw ∈ fail sw.neighbors() do
8: sw.activateForward(fail sw,new sw)

Note that Step 1 is actually an optimization to shorten
the temporary downtime caused by Phase 1 in Step 2,
as most data is synchronized between the switches af-
ter Step 1. The invariant is kept throughout Phase 1 and
Phase 2: in Phase 1, S3 is synchronized to the same
state as S2 before it is added to the chain; in Phase 2,
the neighbor switches of S1 gradually restart to forward
write queries again, which always go to S3 first. The read
queries in this process are continuously handled by S2
and do not have temporary disruptions as write queries.
The failure recovery process is performed for each failed
switch under multiple failures.

Handling special cases. The above example shows the
normal case when S1 is in the middle of a chain. Now
we discuss the special cases when S1 is the head or tail
of a chain. (i) When S1 is the head, the process is the
same as S1 is in the middle. In addition, since the head
switch assigns sequence numbers, the new head must as-
sign sequence numbers bigger than those assigned by the
failed head. To do this, we adopt a mechanism similar to
NOPaxos [20], which uses an additional session number
for message ordering. The session number is increased
for every new head of a chain, and the messages are or-
dered by the lexicographical order of the (session num-
ber, sequence number) tuple. (ii) When S1 is the tail, in
Step 1, we copy state from its previous hop to it as we do
not have S2 (line 1 would assign S0 to re f sw). In Phase
1 of Step 2, both read and write queries are dropped by
S1’s neighbors to ensure consistency. Although S0 is still
processing write queries during synchronization, we only
need to copy the state from S0 that are updated before we
finish dropping all queries on S1’s neighbor switches, as
no new read queries are served. Then in Phase 2, we
activate the chain by forwarding the queries to S3.

Minimizing disruptions with virtual groups. While
we guarantee the consistency for failure recovery with
two-phase atomic switching, write queries need to be
stopped to recover head and middle nodes, and both
read and write queries need to be stopped to recover tail
nodes. We use virtual groups to minimize the service dis-
ruptions. Specifically, we only recover one virtual group
each time. Let a switch be mapped to 100 virtual groups.
Each group is available by 99% of the recovery time and
only queries to one group are affected at each time.

42 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Discussion
Switch on-chip storage size. Coordination services are
not intended to provide generic storage services. We ar-
gue that the switch on-chip memory is sufficient from
two aspects. (i) How much can the network provide?
Commodity switches today have tens of megabytes of
on-chip SRAM. Because datacenter networks do not use
many protocols as WANs and use shallow buffers for
low latency, a large portion of the on-chip SRAM can
be allocated to NetChain. Assuming 10MB is allocated
in each switch, a datacenter with 100 switches can pro-
vide 1GB total storage, or 333MB effective storage with
a replication factor of three. The number can be further
increased with better semiconductor technology and allo-
cating more on-chip SRAM to NetChain. (ii) How much
does NetChain need? As shown in [1], a Chubby in-
stance at Google that serves tens of thousands of clients
store 22k files in total, among which ∼90% are 0-1
KB and only ∼0.2% are bigger than 10KB. This means
42MB is enough to store ∼99.8% of the files. Fur-
thermore, consider the use case for locks. Assuming
each lock requires 30B, then 333MB storage can pro-
vide 10 million concurrent locks. For in-memory dis-
tributed transactions that take 100µs, NetChain would
be able to provide 100 billion locks per second, which
is enough for the most demanding systems today. Even
with a small deployment using three switches (providing
10MB storage), NetChain would be able to provide 0.3
million concurrent locks or 3 billion locks per second.

Value size. The value size is limited by the packet size
(9KB for Ethernet jumbo frames). Conceivably, a big
value can be stored with multiple keys, but strong con-
sistency is not provided for a multi-key query spanning
several packets. The value size is also limited by the
switch chip. Typically, a switch pipeline contains multi-
ple stages (k) and each stage can read or write a few bytes
(n). Assuming k=12 and n=16, switches can handle val-
ues up to kn=192 bytes at line rate. Values bigger than
kn can be supported using packet mirroring/recirculation
which sends packets to go through the pipeline for an-
other round of processing, but at the cost of lower effec-
tive throughput [18]. We suggest that NetChain is best
suitable for small values that need frequent access, such
as configuration parameters, barriers and locks.

Data placement. NetChain uses consistent hashing and
virtual nodes to partition the key-value store between
multiple switches. The data placement strategy can be
optimized for throughput and latency by taking into ac-
count the network topology and the query characteristics.

Full interface. The current NetChain prototype pro-
vides a basic key-value interface for fixed-length keys
and limited-size variable-length values. Many commer-
cial and open-source systems like ZooKeeper provide

H0

S0 S2

S1

S3

H1

H2

H3

Figure 8: NetChain testbed with four 6.5Tbps Barefoot
Tofino switches (S0-S3) and four servers (H0-H3).

additional features, e.g., hierarchical name space (as a
file system), watches (which notify clients when watched
values are updated), access control list (ACL) and data
encryption. We leave these features as future work.

Accelerator for server-based solutions. NetChain can
be used as an accelerator to server-based solutions such
as Chubby [1], ZooKeeper [2] and etcd [3]). The key
space is partitioned to store data in the network and the
servers separately. NetChain can be used to store hot
data with small value size, and servers store big and less
popular data. Such a hybrid approach provides the ad-
vantages of both solutions.

7 Implementation
We have implemented a prototype of NetChain, includ-
ing a switch data plane, a controller and a client agent. (i)
The switch data plane is written in P4 [30] and is com-
piled to Barefoot Tofino ASIC [13] with Barefoot Capi-
lano software suite [31]. We use 16-byte keys and use 8
stages to store values. We allocate 64K 16-byte slots in
each stage. This in total provides 8 MB storage. We use
standard L3 routing that forwards packets based on des-
tination IP. In total, the NetChain data plane implementa-
tion uses much less than 50% of the on-chip memory in
the Tofino ASIC. (ii) The controller is written in Python.
It runs as a process on a server and communicates with
each switch agent through the standard Python RPC li-
brary xmlrpclib. Each switch agent is a Python process
running in the switch OS. It uses a Thrift API generated
by the P4 compiler to manage the switch resources and
update the key-value items in the data plane (e.g., for fail-
ure handling) through the switch driver. (iii) The client
agent is implemented in C with Intel DPDK [32] for opti-
mized IO performance. It provides a key-value interface
for applications, and achieves up to 20.5 MQPS with the
40G NICs on our servers.

8 Evaluation
In this section, we provide evaluation results to demon-
strate NetChain provides orders of magnitude improve-
ments on throughput (§8.1) and latency (§8.2), is scal-
able (§8.3), handles failures gracefully (§8.4), and sig-
nificantly benefits applications (§8.5).

Testbed. Our evaluation is conducted on a testbed con-
sisting of four 6.5 Tbps Barefoot Tofino switches and

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 43

2000

20
40
60
80

0 32 64 96 128
Value Size (Byte)

0
0.15Th

ro
ug

hp
ut

 (M
Q

P
S

)
NetChain(max)
NetChain(4)

NetChain(3)
NetChain(2)

NetChain(1)
ZooKeeper

(a) Throughput vs. value size.

2000

20
40
60
80

0 20K 40K 60K 80K 100K
Store Size

0
0.15Th

ro
ug

hp
ut

 (M
Q

P
S

)

NetChain(max)
NetChain(4)

NetChain(3)
NetChain(2)

NetChain(1)
ZooKeeper

(b) Throughput vs. store size.

2000

20
40
60
80

0 20 40 60 80 100
Write Ratio (%)

0
0.15Th

ro
ug

hp
ut

 (M
Q

P
S

)

NetChain(max)
NetChain(4)

NetChain(3)
NetChain(2)

NetChain(1)
ZooKeeper

(c) Throughput vs. write ratio.

40

80

120

10-3 10-2 10-1 100 101

Packet Loss Rate (%)

0

0.15

Th
ro

ug
hp

ut
 (M

Q
P

S
)

NetChain(4) ZooKeeper

(d) Throughput vs. loss rate.

10-3 10-2 10-1 100 101 102 103 104

Throughput (MQPS)

100

101

102

103

104

La
te

nc
y

(¹
s)

ZooKeeper (write)
ZooKeeper (read)
NetChain (read/write)

(e) Latency vs. throughput.

0 20 40 60 80 100
Number of Switches

0

20

40

60

80

Th
ro

ug
hp

ut
 (B

Q
P

S
) NetChain (read)

NetChain (write)

(f) Scalability (simulation).

Figure 9: Performance results. (a-e) shows the experimental results of a three-switch NetChain prototype. Netchain(1),
Netchain(2), Netchain(3) and Netchain(4) correspond to measuring the prototype performance with one, two, three
and four servers respectively. NetChain(max) is the theoretical maximum throughput achievable by a three-switch
chain; it is not a measured throughput. (f) shows the simulation results of spine-leaf networks of various sizes.

four server machines. Each server machine is equipped
with a 16-core CPU (Intel Xeon E5-2630) and 128 GB
total memory (four Samsung 32GB DDR4-2133 mem-
ory). Three server machines are equipped with 40G NICs
(Intel XL710) and the other one is equipped with a 25G
NIC (Intel XXV710). The testbed is organized in a topol-
ogy as shown in Figure 8.

Comparison. We compare NetChain to Apache
ZooKeeper-3.5.2 [33]. We implement a client to mea-
sure ZooKeeper’s performance with Apache Curator-
4.0.0 [34], which is a popular client library for
ZooKeeper. The comparison is slightly unfair: NetChain
does not provide all features of ZooKeeper (§6), and
ZooKeeper is a production-quality system that compro-
mises its performance for many software-engineering
objectives. But at a high level, the comparison uses
ZooKeeper as a reference for server-based solutions to
demonstrate the performance advantages of NetChain.

8.1 Throughput
We first evaluate the throughput of NetChain. We use
three switches to form a chain [S0,S1,S2], where S0 is
the head and S2 is the tail. Each server can send and re-
ceive queries at up to 20.5 MQPS. We use NetChain(1),
NetChain(2), NetChain(3), NetChain(4) to denote the
measured throughput by using one, two, three and four
servers, respectively. We use Tofino switches in a mode
that guarantees up to 4 BQPS throughput and each query

packet is processed twice by a switch (e.g., a query from
H0 follows path H0-S0-S1-S2-S1-S0-H0). Therefore, the
maximum throughput of the chain is 2 BQPS in this
setup. As the four servers cannot saturate the chain, we
use NetChain(max) to denote the maximum throughput
of the chain (shown as dotted lines in figures). For com-
parison, we run ZooKeeper on three servers, and a sepa-
rate 100 client processes on the other server to generate
queries. This experiment aims to thoroughly evaluate the
throughput of one switch chain under various setups with
real hardware switches. For large-scale deployments, a
packet may traverse multiple hops to get from one chain
switch to the next, and we evaluate the throughput with
simulations in §8.3. Figure 9(a-d) shows the through-
puts of the two systems. The default setting uses 64-
byte value size, 20K store size (i.e., the number of key-
value items), 1% write ratio, and 0% link loss rate. We
change one parameter in each experiment to show how
the throughputs are affected by these parameters.

Figure 9(a) shows the impact of value size. NetChain
provides orders of magnitude higher throughput than
ZooKeeper and both systems are not affected by the
value size in the evaluated range. NetChain(4) keeps
at 82 MQPS, meaning that NetChain can fully serve all
the queries generated by the four servers. This is due
to the nature of a switch ASIC: as long as the P4 pro-
gram is compiled to fit the switch resource requirements,
the switch is able to run NetChain at line rate. In fact,

44 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a three-switch chain is able to provide up to 2 BQPS,
as denoted by NetChain(max). Our current prototype
support value size up to 128 bytes. Larger values can
be supported using more stages and using packet mirror-
ing/recirculation as discussed in §6.

Figure 9(b) shows the impact of store size. Similarly,
both systems are not affected by the store size in the eval-
uated range, and NetChain provides orders of magnitude
higher throughput. The store size is restricted by the al-
located total size (8MB in our prototype) and the value
size. The store size is large enough to be useful for coor-
dination services as discussed in §6.

Figure 9(c) shows the impact of write ratio. With read-
only workloads, ZooKeeper achieves 230 KQPS. But
even with a write ratio of 1%, its throughput drops to 140
KQPS. And when the write ratio is 100%, its throughput
drops to 27 KQPS. As for comparison, NetChain(4) con-
sistently achieves 82 MQPS. This is because NetChain
uses chain replication and each switch is able to process
both read and write queries at line rate. As the switches
in the evaluated chain [S0,S1,S2] process the same num-
ber of packets for both read and write queries, the total
throughput is not affected by the write ratio, which would
be different in more complex topologies. As we will
show in §8.3, NetChain has lower throughput for write
queries for large deployments, as write queries require
more hops than read queries.

Figure 9(d) shows the impact of packet loss rate. We
inject random packet loss rate to each switch, ranging
from 0.001% to 10%. The throughput of ZooKeeper
drops to 50 KQPS (3 KQPS) when the loss rate is 1%
(10%). As for comparison, NetChain(4) keeps around 82
MQPS for packet loss rate between 0.001% and 1%, and
only drops to 48 MPQS when the loss rate is 10%. The
reason is because ZooKeeper uses TCP for reliable trans-
mission which has a lot of overhead under high loss rate,
whereas NetChain simply uses UDP and lets the clients
retry a query upon packet loss. Although high packet
loss rate is unlikely to happen frequently in datacenters,
this experiment demonstrates that NetChain can provide
high throughput even under extreme scenarios.

8.2 Latency
We now evaluate the latency of NetChain. We sepa-
rate the read and write queries, and measure their laten-
cies under different throughputs. For NetChain, since
the switch-side processing delay is sub-microsecond, the
client-side delay dominates the query latency. In addi-
tion, as both read and write queries traverse the same
number of switches in the evaluated chain, NetChain has
the same latency for both reads and writes, as shown in
Figure 9(e). Because we implement NetChain clients
with DPDK to bypass the TCP/IP stack and the OS ker-
nel, NetChain incurs only 9.7 µs query latency. The la-

0 50 100 150 200 Time (s)
0
5

10
15
20
25

Th
ro

ug
hp

ut
(M

Q
P

S
)

failover failure recovery

(a) 1 Virtual Group.

0 50 100 150 200 Time (s)
0
5

10
15
20
25

Th
ro

ug
hp

ut
(M

Q
P

S
)

failover failure recovery

(b) 100 Virtual Groups.

Figure 10: Failure handling results. It shows the through-
put time series of one client server when one switch fails
in a four-switch testbed. NetChain has fast failover. By
using more virtual groups, NetChain provides smaller
throughput drops for failure recovery.

tency keeps at 9.7 µs even when all four severs are gen-
erating queries to the system at 82 MQPS (the solid line
of NetChain in the figure), and is expected to be not af-
fected by throughput until the system is saturated at 2
BQPS (the dotted line of NetChain in the figure).

As for comparison, ZooKeeper has a latency of 170
µs for read queries and 2350 µs for write queries at low
throughput. The latencies slightly go up before the sys-
tem is saturated (27 KQPS for writes and 230 KQPS for
reads), because servers do not have deterministic per-
query processing time as switch ASICs and the latency
is affected by the system load. Overall, NetChain pro-
vides orders of magnitude lower latency than ZooKeeper
at orders of magnitude higher throughput.

8.3 Scalability
We use simulations to evaluate the performance of
NetChain in large-scale deployments. We use standard
spine-leaf topologies. We assume each switch has 64
ports and has a throughput of 4 BQPS. Each leaf switch
is connected to 32 servers in its rack, and uses the other
32 ports to connect to spine switches. We assume the net-
work is non-blocking, i.e., the number of spine switches
is a half of that of leaf switches. We vary the network
from 6 switches (2 spines and 4 leafs) to 96 switches
(32 spines and 64 leafs). Figure 9(f) shows the max-
imum throughputs for read-only and write-only work-
loads. Both throughputs grow linearly, because in the
two-layer network, the average number of hops for a
query does not change under different network sizes.
The write throughput is lower than the read through-
put because a write query traverses more hops than a
read query. When the queries have mixed read and
write operations, the throughput curve will be between
NetChain(read) and NetChain(write).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 45

8.4 Handling Failures
The four-switch testbed allows us to evaluate NetChain
under different failure conditions. For example, to eval-
uate the failure of a middle (tail) node, we can use an
initial chain [S0,S1,S2], fail S1 (S2), and let S3 replace
S1 (S2). Since failing S0 would disconnect the servers
from the network, to evaluate a head failure and show the
system throughput changes during the transition, we can
use an initial chain [S1,S2,S0], fail S1, and let S3 replace
S1. Due to the limited space, we show one such experi-
ment where we fail S1 in the chain [S0,S1,S2] and use S3
to replace S1 for failure recovery. We use a write ratio
of 50%, and let the write queries use path S0-S1-S2 and
the read queries use path S0-S3-S2. In this way, we can
demonstrate that when the middle node fails, the system
is still able to serve read queries. We show the through-
put time series of one client with different numbers of
virtual groups.

Figure 10(a) shows the throughput time series with
only one virtual group. Initially, the client has a through-
put of 20.5 MQPS. Then at 20s, we inject the failure
of S1 by letting S0 drop all packets to S1. NetChain
quickly fails over to a two-switch chain [S0,S2], and the
client throughput is fully restored. Note that to make
the throughput drop visible, we manually inject a one-
second delay to the controller before it starts the failover
routine. In practice, the duration of failover depends on
how fast the control plane can detect the failure, which
is beyond the scope of this paper. We also add 20 sec-
onds to separate the failure recovery process from the
failover process. The failure recovery starts around 40s
and lasts about 150s. The throughput drops to half be-
cause NetChain needs to synchronize the key-value store
between S2 and S3, during which write queries cannot
be served. Note that if it was a tail failure, the through-
put would drop to 0, because both read and write queries
cannot be served during the recovery of the tail (§5).

Figure 10(b) shows the time series of NetChain
throughput with 100 virtual groups. The failover part
is similar, but the failure recovery part only experi-
ences a 0.5% throughput drop. This is because by using
100 virtual groups, NetChain only needs to stop serv-
ing write queries for one virtual group each time, or 1%
of queries. Since we use a write ratio of 50%, only
1%× 50% = 0.5% of queries are affect during failure
recovery. Therefore, using more virtual groups provides
both slight throughput drops and better availability.

8.5 Application Performance
Finally, we use distributed transactions as an applica-
tion to further demonstrate the benefits of NetChain. We
use a benchmark workload from previous work [35, 36],
which is a generalization of the new-order transaction in
TPC-C benchmark [37], because the workload allows us

10-3 10-2 10-1 100

Contention Index

100

101

102

103

104

105

106

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

NetChain (100 clients)

NetChain (10 clients)

NetChain (1 client)

ZooKeeper (100 clients)

ZooKeeper (10 clients)

ZooKeeper (1 client)

Figure 11: Application results. NetChain provides orders
of magnitude higher transaction throughput.

to test transactions with different contention levels. In
this workload, for each transaction, a client needs to ac-
quire ten locks, where one lock is chosen from a small
set of hot items and the other nine locks are from a very
large set of items. The workload uses contention index,
which is the inverse of the number of hot items, to con-
trol the contentions. For example, a contention index of
0.001 (or 1) means all clients compete for one item in
1000 (or 1) items. We use the classic two-phase locking
(2PL) protocol: each client first acquire all the locks from
NetChain or ZooKeeper, and then releases all the locks
to complete one transaction. For NetChain, we use the
compare-and-swap (CAS) primitive in Tofino switches
to implement exclusive locks. Specifically, in addition to
checking sequence numbers, a lock can only be released
by the client that owns the lock by comparing the client
ID in the value field. For ZooKeeper, exclusive locks can
be implemented by ephemeral znodes and are directly
provided by Apache Curator client library.

Figure 11 shows the transaction throughputs. By us-
ing NetChain as a locking server, the system can achieve
orders of magnitude higher transaction throughput than
ZooKeeper. We observe that the line with one client
is flat because there are no contentions with one client.
With 100 clients, the system has higher throughput at
small contention index, because more clients can do
more transactions. But the throughput decreases when
the contention index increases, and is even slightly lower
than that with one client, due to more contentions. We
expect a lightning fast coordination system like NetChain
can open the door for designing a new generation of dis-
tributed systems beyond distributed transactions.

9 Related Work
Consensus protocols. Various protocols have been pro-
posed to solve the distributed consensus problem, such
as Paxos [4], ZAB [38], Raft [39], Viewstamped Repli-
cation [40], Virtual Synchrony [41], etc. By leveraging
that in some scenarios messages arrive in order, some

46 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

protocols are designed to reduce the overhead, such as
Fast Paxos [42] and Optimistic Atomic Broadcast [43].
Recent work goes one step further by ordering mes-
sages with the network, including SpecPaxos [44] and
NOPaxos [20]. NetChain directly processes coordination
queries in the network, providing higher performance.
Coordination services. As distributed coordination is
widely used, some systems are built to provide coordi-
nation as a service, e.g., Chubby [1], ZooKeeper [2] and
etcd [3]. These services have highly-optimized imple-
mentations of consensus protocols in their core and pro-
vide simple APIs. NetChain provides a similar key-value
API and implements the system in the network.
Hardware accelerations. NetPaxos [16, 17] imple-
ments Paxos on switches. It still requires to build a repli-
cated key-value store on servers, which may use Net-
Paxos for consensus to improve performance. As such,
the key-value store is still bounded by server IO, and thus
is much slower than NetChain. Besides, NetChain uses
Vertical Paxos for consensus which is more suitable for
in-network key-value stores, provides protocols and al-
gorithms for routing and failure handling, and has an
implementation with multiple switches and an evalua-
tion. Compared to NetCache [18], NetChain uses Net-
Cache’s on-chip key-value store design, and designs a
replicated, in-network key-value store that handles both
read and write queries and provides strong consistency
and fault-tolerance. Some other work has also used hard-
ware to speed up distributed systems. SwitchKV [45]
uses switches to enable content-based routing for load
balancing of key-value stores; the switches do not cache
key-value items or serve queries. Marple [46] designs
a new hardware primitive to support key-value stores
for network measurements. Schiff et al. [47] designs a
synchronization framework to resolve conflicts for dis-
tributed network controllers, which has to go through the
switch control plane. Li et al. [48] proposes a new hard-
ware design to achieve a throughput of 1 BQPS with a
single server platform. IncBricks [49] caches key-value
items with NPUs. Consensus in a box [50] uses FP-
GAs to speed up ZooKeeper’s atomic broadcast protocol.
NetChain does not require specialized chips, and switch
ASICs have higher performance than NPUs and FPGAs.

10 Conclusion
We present NetChain, an in-network coordination ser-
vice that provides billions of coordination operations per
second with sub-RTT latencies. NetChain leverages pro-
grammable switches to build a strongly-consistent, fault-
tolerant, in-network key-value store. This powerful capa-
bility dramatically reduces the coordination latency to as
little as half of an RTT. We believe NetChain exemplifies
a new generation of ultra-low latency systems enabled by
programmable networks.

Acknowledgments We thank our shepherd Amar
Phanishayee and the anonymous reviewers for their valu-
able feedback. Robert Soulé is supported in part by
SNF 167173. Nate Foster is supported in part by
NSF CNS-1413972. Ion Stoica is supported in part by
DHS Award HSHQDC-16-3-00083, NSF CISE Expedi-
tions Award CCF-1139158, and gifts from Ant Finan-
cial, Amazon Web Services, CapitalOne, Ericsson, GE,
Google, Huawei, Intel, IBM, Microsoft and VMware.

References
[1] M. Burrows, “The Chubby lock service for loosely-

coupled distributed systems,” in USENIX OSDI,
November 2006.

[2] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
“ZooKeeper: Wait-free coordination for Internet-
scale systems,” in USENIX ATC, June 2010.

[3] “etcd key-value store.” https://github.
com/coreos/etcd.

[4] L. Lamport, “The part-time parliament,” ACM
Transactions on Computer Systems, May 1998.

[5] A. Dragojević, D. Narayanan, E. B. Nightin-
gale, M. Renzelmann, A. Shamis, A. Badam, and
M. Castro, “No compromises: Distributed trans-
actions with consistency, availability, and perfor-
mance,” in ACM SOSP, October 2015.

[6] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen,
“Fast in-memory transaction processing using
RDMA and HTM,” in ACM SOSP, October 2015.

[7] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi,
J. M. Hellerstein, and I. Stoica, “Highly available
transactions: Virtues and limitations,” in VLDB,
September 2014.

[8] “MongoDB.” https://www.mongodb.com/.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s
highly available key-value store,” in ACM SOSP,
October 2007.

[10] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica, “Coordination avoidance
in database systems,” in VLDB, August 2015.

[11] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat,
C. Koch, N. Foster, and J. Gehrke, “The home-
ostasis protocol: Avoiding transaction coordination
through program analysis,” in ACM SIGMOD, May
2015.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 47

[12] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,
and S. Shenker, “NetBricks: Taking the V out of
NFV,” in USENIX OSDI, November 2016.

[13] “Barefoot Tofino.” https://www.
barefootnetworks.com/technology/
#tofino.

[14] “Broadcom Tomahawk II.” https://www.
broadcom.com/.

[15] R. Van Renesse and F. B. Schneider, “Chain repli-
cation for supporting high throughput and availabil-
ity,” in USENIX OSDI, December 2004.

[16] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé, “NetPaxos: Consensus at network speed,”
in ACM SOSR, June 2015.

[17] H. T. Dang, M. Canini, F. Pedone, and R. Soulé,
“Paxos made switch-y,” SIGCOMM CCR, April
2016.

[18] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica, “NetCache: Balancing key-
value stores with fast in-network caching,” in ACM
SOSP, October 2017.

[19] “Cavium XPliant.” https://www.cavium.
com/.

[20] J. Li, E. Michael, N. K. Sharma, A. Szekeres,
and D. R. Ports, “Just say NO to Paxos overhead:
Replacing consensus with network ordering,” in
USENIX OSDI, November 2016.

[21] L. Lamport, D. Malkhi, and L. Zhou, “Vertical
paxos and primary-backup replication,” in ACM
PODC, August 2009.

[22] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin, “Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web,” in ACM
Symposium on Theory of Computing, May 1997.

[23] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica, “Wide-area cooperative storage with
CFS,” in ACM SOSP, October 2001.

[24] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan,
“FAWN: A fast array of wimpy nodes,” in ACM
SOSP, October 2009.

[25] A. Phanishayee, D. G. Andersen, H. Pucha,
A. Povzner, and W. Belluomini, “Flex-KV: En-
abling high-performance and flexible KV systems,”
in Workshop on Management of Big Data Systems
(MBDS), September 2012.

[26] R. Escriva, B. Wong, and E. G. Sirer, “HyperDex:
A distributed, searchable key-value store,” in ACM
SIGCOMM, August 2012.

[27] A. Phanishayee, Chaining for Flexible and High-
Performance Key-Value Systems. PhD thesis,
Carnegie Mellon University, September 2012.

[28] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica, “NetChain: Scale-free sub-
RTT coordination (extended version),” in arXiv,
February 2018.

[29] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migra-
tion of virtual machines,” in USENIX NSDI, May
2005.

[30] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McK-
eown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming protocol-independent packet proces-
sors,” SIGCOMM CCR, July 2014.

[31] “Barefoot Capilano.” https://www.
barefootnetworks.com/technology/
#capilano.

[32] Intel, “Intel data plane development kit (dpdk),”
2017. http://dpdk.org/.

[33] apache, “Apache zookeeper,” 2017. http://
zookeeper.apache.org/.

[34] curator, “Apache curator,” 2017. http://
curator.apache.org/.

[35] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi, “Calvin: Fast distributed
transactions for partitioned database systems,” in
ACM SIGMOD, May 2012.

[36] K. Ren, A. Thomson, and D. J. Abadi,
“Lightweight locking for main memory database
systems,” VLDB, December 2012.

[37] “TPC-C.” http://www.tpc.org/tpcc/.

[38] B. Reed and F. P. Junqueira, “A simple totally
ordered broadcast protocol,” in ACM Large-Scale
Distributed Systems and Middleware, September
2008.

[39] D. Ongaro and J. Ousterhout, “In search of an
understandable consensus algorithm,” in USENIX
ATC, June 2014.

48 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[40] B. M. Oki and B. H. Liskov, “Viewstamped repli-
cation: A new primary copy method to sup-
port highly-available distributed systems,” in ACM
PODC, August 1988.

[41] K. Birman and T. Joseph, “Exploiting Virtual Syn-
chrony in Distributed Systems,” SIGOPS Operat-
ing Systems Review, November 1987.

[42] L. Lamport, “Fast Paxos,” Distributed Computing,
October 2006.

[43] F. Pedone and A. Schiper, “Optimistic atomic
broadcast,” in International Symposium on Dis-
tributed Computing, September 1998.

[44] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and
A. Krishnamurthy, “Designing distributed systems
using approximate synchrony in data center net-
works,” in USENIX NSDI, May 2015.

[45] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and
M. J. Freedman, “Be fast, cheap and in control with
SwitchKV,” in USENIX NSDI, March 2016.

[46] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,
V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim,

“Language-directed hardware design for network
performance monitoring,” in ACM SIGCOMM, Au-
gust 2017.

[47] L. Schiff, S. Schmid, and P. Kuznetsov, “In-
band synchronization for distributed SDN control
planes,” SIGCOMM CCR, January 2016.

[48] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia,
M. Kaminsky, D. G. Andersen, O. Seongil, S. Lee,
and P. Dubey, “Architecting to achieve a billion re-
quests per second throughput on a single key-value
store server platform,” in ACM/IEEE ISCA, June
2015.

[49] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishna-
murthy, and K. Atreya, “IncBricks: Toward in-
network computation with an in-network cache,” in
ACM ASPLOS, April 2017.

[50] Z. István, D. Sidler, G. Alonso, and M. Vukolic,
“Consensus in a box: Inexpensive coordination in
hardware,” in USENIX NSDI, March 2016.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 49

Azure Accelerated Networking: SmartNICs in the Public Cloud
Daniel Firestone Andrew Putnam Sambhrama Mundkur Derek Chiou Alireza Dabagh

Mike Andrewartha Hari Angepat Vivek Bhanu Adrian Caulfield Eric Chung
Harish Kumar Chandrappa Somesh Chaturmohta Matt Humphrey Jack Lavier Norman Lam
Fengfen Liu Kalin Ovtcharov Jitu Padhye Gautham Popuri Shachar Raindel Tejas Sapre

Mark Shaw Gabriel Silva Madhan Sivakumar Nisheeth Srivastava Anshuman Verma Qasim Zuhair
Deepak Bansal Doug Burger Kushagra Vaid David A. Maltz Albert Greenberg

Microsoft
Abstract

Modern cloud architectures rely on each server running its
own networking stack to implement policies such as tun-
neling for virtual networks, security, and load balancing.
However, these networking stacks are becoming increas-
ingly complex as features are added and as network speeds
increase. Running these stacks on CPU cores takes away
processing power from VMs, increasing the cost of run-
ning cloud services, and adding latency and variability to
network performance.

We present Azure Accelerated Networking (AccelNet),
our solution for offloading host networking to hardware,
using custom Azure SmartNICs based on FPGAs. We
define the goals of AccelNet, including programmability
comparable to software, and performance and efficiency
comparable to hardware. We show that FPGAs are the best
current platform for offloading our networking stack as
ASICs do not provide sufficient programmability, and em-
bedded CPU cores do not provide scalable performance,
especially on single network flows.

Azure SmartNICs implementing AccelNet have been
deployed on all new Azure servers since late 2015 in a
fleet of >1M hosts. The AccelNet service has been avail-
able for Azure customers since 2016, providing consis-
tent <15µs VM-VM TCP latencies and 32Gbps through-
put, which we believe represents the fastest network avail-
able to customers in the public cloud. We present the
design of AccelNet, including our hardware/software co-
design model, performance results on key workloads, and
experiences and lessons learned from developing and de-
ploying AccelNet on FPGA-based Azure SmartNICs.

1 Introduction
The public cloud is the backbone behind a massive and
rapidly growing percentage of online software services [1,
2, 3]. In the Microsoft Azure cloud alone, these services
consume millions of processor cores, exabytes of stor-
age, and petabytes of network bandwidth. Network per-
formance, both bandwidth and latency, is critical to most
cloud workloads, especially interactive customer-facing
workloads.

As a large public cloud provider, Azure has built its
cloud network on host-based software-defined network-
ing (SDN) technologies, using them to implement almost

all virtual networking features, such as private virtual net-
works with customer supplied address spaces, scalable L4
load balancers, security groups and access control lists
(ACLs), virtual routing tables, bandwidth metering, QoS,
and more. These features are the responsibility of the host
platform, which typically means software running in the
hypervisor.

The cost of providing these services continues to in-
crease. In the span of only a few years, we increased net-
working speeds by 40x and more, from 1GbE to 40GbE+,
and added countless new features. And while we built in-
creasingly well-tuned and efficient host SDN packet pro-
cessing capabilities, running this stack in software on the
host requires additional CPU cycles. Burning CPUs for
these services takes away from the processing power avail-
able to customer VMs, and increases the overall cost of
providing cloud services.

Single Root I/O Virtualization (SR-IOV) [4, 5] has been
proposed to reduce CPU utilization by allowing direct ac-
cess to NIC hardware from the VM. However, this di-
rect access would bypass the host SDN stack, making
the NIC responsible for implementing all SDN policies.
Since these policies change rapidly (weeks to months), we
required a solution that could provide software-like pro-
grammability while providing hardware-like performance.

In this paper we present Azure Accelerated Network-
ing (AccelNet), our host SDN stack implemented on the
FPGA-based Azure SmartNIC. AccelNet provides near-
native network performance in a virtualized environment,
offloading packet processing from the host CPU to the
Azure SmartNIC. Building upon the software-based VFP
host SDN platform [6], and the hardware and software in-
frastructure of the Catapult program [7, 8], AccelNet pro-
vides the performance of dedicated hardware, with the
programmability of software running in the hypervisor.
Our goal is to present both our design and our experiences
running AccelNet in production at scale, and lessons we
learned.

2 Background
2.1 Traditional Host Network Processing

In the traditional device sharing model of a virtualized
environment such as the public cloud, all network I/O to
and from a physical device is exclusively performed in the
host software partition of the hypervisor. Every packet

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 51

Figure 1: An SR-IOV NIC with a PF and VFs.

sent and received by a VM is processed by the Virtual
Switch (vSwitch) in the host networking stack. Receiv-
ing packets typically involves the hypervisor copying each
packet into a VM-visible buffer, simulating a soft inter-
rupt to the VM, and then allowing the VM’s OS stack to
continue network processing. Sending packets is similar,
but in the opposite order. Compared to a non-virtualized
environment, this additional host processing: reduces per-
formance, requires additional changes in privilege level,
lowers throughput, increases latency and latency variabil-
ity, and increases host CPU utilization.
2.2 Host SDN

In addition to selling VMs, cloud vendors selling
Infrastructure-as-a-Service (IaaS) have to provide rich net-
work semantics, such as private virtual networks with cus-
tomer supplied address spaces, scalable L4 load balancers,
security groups and ACLs, virtual routing tables, band-
width metering, QoS, and more. These semantics are suf-
ficiently complex and change too frequently that it isn’t
feasible to implement them at scale in traditional switch
hardware. Instead, these are implemented on each host in
the vSwitch. This scales well with the number of servers,
and allows the physical network to be simple, scalable and
very fast.

The Virtual Filtering Platform (VFP) is our cloud-scale
programmable vSwitch, providing scalable SDN policy
for Azure. It is designed to handle the programmabil-
ity needs of Azure’s many SDN applications, providing
a platform for multiple SDN controllers to plumb com-
plex, stateful policy via match-action tables. Details about
VFP and how it implements virtual networks in software
in Azure can be found in [6].
2.3 SR-IOV

Many performance bottlenecks caused by doing packet
processing in the hypervisor can be overcome by using
hardware that supports SR-IOV. SR-IOV-compliant hard-
ware provides a standards-based foundation for efficiently
and securely sharing PCI Express (PCIe) device hardware
among multiple VMs. The host connects to a privileged
physical function (PF), while each virtual machine con-
nects to its own virtual function (VF). A VF is exposed as
a unique hardware device to each VM, allowing the VM
direct access to the actual hardware, yet still isolating VM
data from other VMs. As illustrated in Figure 1 , an SR-
IOV NIC contains an embedded switch to forward packets

to the right VF based on the MAC address. All data pack-
ets flow directly between the VM operating system and
the VF, bypassing the host networking stack entirely. This
provides improved throughput, reduced CPU utilization,
lower latency, and improved scalability.

However, bypassing the hypervisor brings on a new set
of challenges since it also bypasses all host SDN pol-
icy such as that implemented in VFP. Without additional
mechanisms, these important functions cannot be per-
formed as the packets are not processed by the SDN stack
in the host.
2.4 Generic Flow Table Offload

One of AccelNet’s goals was to find a way to make
VFP’s complex policy compatible with SR-IOV. The
mechanism we use in VFP to enforce policy and filtering
in an SR-IOV environment is called Generic Flow Tables
(GFT). GFT is a match-action language that defines trans-
formation and control operations on packets for one spe-
cific network flow. Conceptually, GFT is comprised of a
single large table that has an entry for every active network
flow on a host. GFT flows are defined based on the VFP
unified flows (UF) definition, matching a unique source
and destination L2/L3/L4 tuple, potentially across multi-
ple layers of encapsulation, along with a header transpo-
sition (HT) action specifying how header fields are to be
added/removed/changed.

Whenever the GFT table does not contain an entry for a
network flow (such as when a new network flow is started),
the flow can be vectored to the VFP software running on
the host. VFP then processes all SDN rules for the first
packet of a flow, using a just-in-time flow action compiler
to create stateful exact-match rules for each UF (e.g. each
TCP/UDP flow), and creating a composite action encom-
passing all of the programmed policies for that flow. VFP
then populates the new entry in the GFT table and delivers
the packet for processing.

Once the actions for a flow have been populated in the
GFT table, every subsequent packet will be processed by
the GFT hardware, providing the performance benefits of
SR-IOV, but with full policy and filtering enforcement of
VFP’s software SDN stack.

3 Design Goals and Rationale
We defined the GFT model in 2013-2014, but there are
numerous options for building a complete solution across
hardware and software. We began with the following goals
and constraints as we set out to build hardware offloads for
host SDN:
1. Don’t burn host CPU cores

Azure, like its competitors, sells VMs directly to cus-
tomers as an IaaS offering, and competes on the price of
those VMs. Our profitability in IaaS is the difference be-
tween the price a customer pays for a VM and what it costs
us to host one. Since we have fixed costs per server, the
best way to lower the cost of a VM is to pack more VMs

52 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

onto each host server. Thus, most clouds typically deploy
the largest number of CPU cores reasonably possible at a
given generation of 2-socket (an economical and perfor-
mant standard) blades. At the time of writing this paper,
a physical core (2 hyperthreads) sells for $0.10-0.11/hr1,
or a maximum potential revenue of around $900/yr, and
$4500 over the lifetime of a server (servers typically last
3 to 5 years in our datacenters). Even considering that
some fraction of cores are unsold at any time and that
clouds typically offer customers a discount for commit-
ted capacity purchases, using even one physical core for
host networking is quite expensive compared to dedicated
hardware. Our business fundamentally relies on selling as
many cores per host as possible to customer VMs, and so
we will go to great lengths to minimize host overheads.
Thus, running a high-speed SDN datapath using host CPU
cores should be avoided.

2. Maintain host SDN programmability of VFP
VFP is highly programmable, including a multi-

controller model, stateful flow processing, complex
matching capabilities for large numbers of rules, complex
rule-processing and match actions, and the ability to eas-
ily add new rules. This level of programmability was a key
factor in Azure’s ability to give customers highly config-
urable and feature-rich virtual networks, and enabling in-
novation with new virtual networking features over time.
We did not want to sacrifice this programmability and
flexibility for the performance of SR-IOV — in fact we
wanted SDN controllers to continue targeting VFP with-
out any knowledge that the policy was being offloaded.
This would also maintain compatibility on host servers
that do not have the necessary hardware for AccelNet.

Offloading every rule to hardware is neither feasible nor
desirable, as it would either constrain SDN policy or re-
quire hardware logic to be updated every time a new rule
was created. However, we concluded that offloading all
rules is unnecessary. Most SDN policies do not change
during the duration of the flow. So all policies can be
enforced in VFP software on the first packet of a new
TCP/UDP flow, after which the actions for that flow can
be cached as an exact-match lookup. Even for short flows,
we typically observe at least 7-10 packets including hand-
shakes, so processing only the first packet in software still
allows the majority to be offloaded (if the offload action is
fast and efficient).

3. Achieve the latency, throughput, and utilization of SR-
IOV hardware

Basic SR-IOV NICs set an initial bar for what is pos-
sible with hardware-virtualized networking — bypassing
the host SDN stack and schedulers entirely to achieve
low (and consistent) latency, high throughput, and no host
CPU utilization. Offloading only exact match flows with

1Azure D v3 series or AWS EC2 m4 series instances, with price vary-
ing slightly by region

associated actions allows for a tractable hardware design
with the full performance of a native SR-IOV hardware
solution on all but the first packet of each flow.

4. Support new SDN workloads and primitives over time
VFP continues to evolve, supporting new requirements

and new policies, and AccelNet must be able to evolve
along with VFP. We were, and continue to be, very wary
of designs that locked us into a fixed set of flow actions.
Not only does AccelNet need to support adding/changing
actions, but the underlying platform should allow for new
workloads that don’t map neatly to a single exact-match
table.

5. Rollout new functionality to the entire fleet
A corollary to the previous requirement, the AccelNet

platform needed to enable frequent deployment of new
functionality in the existing hardware fleet, not just on new
servers. Customers should not have to move their exist-
ing deployments to new VM types to enable new features.
Similarly, maintaining the same SDN functionality across
hardware generations makes development, qualification,
and deployment easier for us.

6. Provide high single-connection performance
From our experience with software-based SDN, we

knew that network processing on a single CPU core gen-
erally cannot achieve peak bandwidth at 40Gb and higher.
A good way to scale throughput past the limit of what
one core can process is to break single connections into
multiple parallel connections, utilizing multiple threads to
spread load to multiple cores. However, spreading traffic
across multiple connections requires substantial changes
to customer applications. And even for the apps that im-
plement multiple connections, we saw that many do not
scale well over many flows because flows are often bursty
— apps will dump large messages onto one flow while
others remain idle.

An explicit goal of AccelNet is to allow applications
to achieve near-peak bandwidths without parallelizing the
network processing in their application.

7. Have a path to scale to 100GbE+
We designed AccelNet for a 2015 server generation that

was going to deploy 40GbE widely. But we knew that
the number of cores per server and the networking band-
widths would continue to increase in future generations,
with speeds of 100GbE and above likely in the near fu-
ture. We wanted a SmartNIC design that would continue
to scale efficiently as network speeds and the number of
VMs increase.

8. Retain Serviceability
VFP was designed to be completely serviceable in the

background without losing any flow state, and supports
live migration of all flow state with a VM being migrated.
We wanted our SmartNIC software and hardware stack to
have the same level of serviceability.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 53

4 SmartNIC Hardware Design

4.1 Hardware Options

Based on the above goals, we proceeded to evaluate dif-
ferent hardware designs for our SmartNIC architecture.

Traditionally Microsoft worked with network ASIC
vendors, such as Intel, Mellanox, Broadcom, and others,
to implement offloads for host networking in Windows —
for example TCP checksum and segmentation offloads in
the 1990s [9], Receive-Side Scaling (RSS) [10] and Vir-
tual Machine Queues (VMQ) [11] for multicore scalabil-
ity in the 2000s, and more recently stateless offloads for
NVGRE and VxLAN encapsulation for virtual network-
ing scenarios for Azure in the 2010s [12]. In fact, GFT
was originally designed to be implemented by ASIC ven-
dors as an exact match-action table in conjunction with
SR-IOV, and we shared early design ideas widely in the
industry to see if vendors could meet our requirements.
After time, our enthusiasm for this approach waned as no
designs were emerging that could meet all of the design
goals and constraints laid out in Section 3.

One major problem for SmartNIC vendors is that SR-
IOV is an example of an all-or-nothing offload. If any
needed SDN feature cannot be handled successfully in the
SmartNIC, the SDN stack must revert to sending flows
back through the software-based SDN stack, losing nearly
all of the performance benefit of SR-IOV offload.

We saw four different possible directions emerge:
ASICs, SoCs, FPGAs, and sticking with existing CPUs.

4.1.1 ASIC-based NICs

Custom ASIC designs for SDN processing provide the
highest performance potential. However, they suffer from
a lack of programmability and adaptability over time. In
particular, the long time span between requirement spec-
ifications and the arrival of silicon was on the order of
1-2 years, and in that span requirements continued to
change, making the new silicon already behind the soft-
ware requirements. ASIC designs must continue to pro-
vide all functionality for the 5 year lifespan of a server
(it’s not feasible to retrofit most servers at our scale). All-
or-nothing offloading means that the specifications for an
ASIC design laid out today must meet all the SDN require-
ments for 7 years into the future.

ASIC vendors often add embedded CPU cores to han-
dle new functionality. These cores can quickly become a
performance bottleneck compared to rest of the NIC pro-
cessing hardware. In addition, these cores can be expected
to take an increasing burden of the processing over time as
new functionality is added, exacerbating the performance
bottleneck. These cores are also generally programmed
via firmware updates to the NIC, which is handled by the
ASIC vendors and slows the deployment of new features.

4.1.2 Multicore SoC-based NICs

Multicore SoC-based NICs use a sea of embedded CPU
cores to process packets, trading some performance to
provide substantially better programmability than ASIC
designs. These designs became widely available in the
10GbE NIC generation. Some, like Cavium [13], used
general purpose CPU cores (MIPS, later ARM64), while
others, like Netronome [14] and Tilera, had specific cores
for network processing. Within this space, we much pre-
ferred the general purpose SoCs — based on our evalua-
tion that they were easier to program (you could take stan-
dard DPDK-style code and run it in a familiar Linux en-
vironment). To our surprise, these didn’t have much of a
drawback in performance compared to similar-generation
ASIC designs.

However, at higher network speeds of 40GbE and
above, the number of cores increases significantly. The
on-chip network and schedulers to scatter and gather pack-
ets becomes increasingly complex and inefficient. We saw
often 10 µs or more delays associated with getting packets
into a core, processing the packet, and back out to the net-
work — significantly higher latency than ASICs, and with
significantly more variability. And stateful flows tend to
be mapped to only one core/thread to prevent state shar-
ing and out-of-order processing within a single flow. Thus
individual network flow performance does not improve
much because embedded CPUs are not increasing perfor-
mance at the same pace as network bandwidths. This leads
to the problem of developers having to spread their traffic
across multiple flows, as discussed in Section 3, limiting
the performance advantage of faster networks to only the
most parallel workloads.

The future of SoC-style network offload is also ques-
tionable. At 10GbE, the total package was tolerable,
with a few general purpose SoC cores being sufficient.
40GbE required nearly 4x the cores, though several ven-
dors still created viable solutions. Still, 40GbE parts with
software-based datapaths are already surprisingly large,
power hungry, and expensive, and their scalability for
100GbE, 200GbE, and 400GbE looks bleak.

So while we found that the SoC approach has the ad-
vantage of a familiar programming model, the single-flow
performance, higher latency, and poor scalability at higher
network speeds left us looking for another solution.

4.1.3 FPGAs

Field programmable gate arrays (FPGAs) are reconfig-
urable hardware devices composed of small generic logic
blocks and memories, all connected by a statically config-
ured network. Programmers write code to assemble the
generic logic and memory into ”soft logic” circuits, form-
ing custom application-specific processing engines — bal-
ancing the performance of ASICs with the programmabil-
ity of SoC NICs.

In contrast to CPUs like those on SoC-based NICs, an

54 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Azure SmartNIC boards with Bump-in-the-Wire Architecture

FPGA is programmed only with the essential elements
to complete the application, and can even take advan-
tage of application characteristics such as the maximum
size of the data to reduce bus widths and storage require-
ments. There are many studies that demonstrate FPGA
can accelerate applications several orders of magnitude
over pure software implementations for a wide range of
application spaces from microprocessor simulation [15],
genomics [16], machine learning [17], networking, pattern
matching, graph processing, and so on.

The key characteristics of FPGAs that made it at-
tractive for AccelNet were the programmability to adapt
to new features, the performance and efficiency of cus-
tomized hardware, and the ability to create deep process-
ing pipelines, which improve single-flow performance.

When we evaluated SmartNIC options, Microsoft had
already done the work to deploy FPGAs as datacenter ac-
celerators for project Catapult [7] — we had a success-
ful multi-thousand node cluster of networked FPGAs do-
ing search ranking for Bing, with greatly-improved per-
formance and lowered costs, and with a network transport
layer running between the FPGAs within a rack. This
led us to believe that FPGAs could be a viable option at
scale for SmartNIC, as they had the potential to solve our
dilemma of wanting the performance characteristics of an
ASIC, but the programmability and reconfigurability in-
herent in a software solution like an SoC.

4.1.4 Burn host cores

We still evaluated all options against our original strat-
egy of just using host cores to run our SDN stack, espe-
cially as technologies such as DPDK [18] showed that we
could lower the cost of packet processing significantly by
bypassing the OS networking stack and running cores in
poll-mode. This option beat out ASICs given we couldn’t
get ASICs to meet our programmability requirements, but
the cost and performance overhead of burning cores to our
VM hosting costs was sufficiently high as outlined in Sec-
tion 3 that even the inefficient multicore SoCs were a bet-
ter approach.
4.2 Evaluating FPGAs as SmartNICs

FPGAs seemed like a great option from our initial anal-
ysis, but our host networking group, who had until then
operated entirely as a software group, was initially skepti-
cal — even though FPGAs are widely used in networking

in routers, cellular applications, and appliances, they were
not commonly used as NICs or in datacenter servers, and
the team didn’t have significant experience programming
or using FPGAs in production settings. A number of ques-
tions below had to be answered before we decided to go
down this path:

1. Aren’t FPGAs much bigger than ASICs?
The generic logic portions of FPGAs are roughly 10x-

20x bigger than identical logic in ASICs, since pro-
grammable memories (look up tables, or LUTs) are used
instead of gates, and a programmable network of wires
and muxes are used instead of dedicated wires to connect
components together. If the FPGA design were simply
generic logic, we should expect to need 10-20x more sili-
con area than an ASIC. However, FPGAs have numerous
hardened blocks, such as embedded SRAMs, transceivers,
and I/O protocol blocks, all of which are custom compo-
nents nearly identical to those found in custom ASICs.

Looking at a modern NIC, the packet processing logic
is not generally the largest part. Instead, size is usually
dominated by SRAM memory (e.g. to hold flow contexts
and packet buffers), transceivers to support I/O (40GbE,
50GbE, PCIe Gen3), and logic to drive these interfaces
(MAC+PCS for Ethernet, PCIe controllers, DRAM con-
trollers), all of which can be hard logic on an FPGA
as well. Furthermore, modern ASIC designs often in-
clude significant extra logic and configurability (and even
embedded CPU cores) to accommodate different require-
ments from different customers. This extra logic is needed
to maximize volumes, handle changing requirements, and
address inevitable bugs. Prior work demonstrates that such
configurability can add an order of magnitude of area to
ASIC logic [19]. So the trend has been for FPGAs to in-
clude more and more custom logic, while ASICs include
more and more programmable logic, closing the efficiency
gap between the two alternatives.

In practice, we believe for these applications FPGAs
should be around 2-3x larger than similarly functioned
ASICs, which we feel is reasonable for the massively in-
creased programmability and configurability.

2. Aren’t FPGAs very expensive?
While we cannot disclose vendor pricing publicly, the

FPGA market is competitive (with 2 strong vendors), and
we’re able to purchase at significant volumes at our scale.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 55

In our experience, our scale allows non-recoverable engi-
neering costs to be amortized, and the cost of the silicon
becomes dominated by the silicon area and yield. Total sil-
icon area in a server tends to be dominated by CPUs, flash,
and DRAM, and yields are typically good for FPGAs due
to their regular structure.
3. Aren’t FPGAs hard to program?

This question was the source of the most skepticism
from the host networking team, who were not at the time
in the business of digital logic design or Verilog program-
ming. FPGAs can provide incredible performance com-
pared to a CPU for programmable logic, but only if hard-
ware designers really think through efficient pipeline de-
signs for an application and lay them out as such. The
project was originally assisted by the Catapult team in Mi-
crosoft Research, but eventually we built our own FPGA
team in Azure Networking for SmartNIC. The team is
much smaller than a typical ASIC design team, with the
AccelNet team averaging fewer than 5 FPGA developers
on the project at any given time.

Our experience on AccelNet as well as other projects
within Microsoft, such as Bing Ranking [7, 8] for web
search, LZ77 for data compression [20], and Brain-
Wave [17] for machine learning, demonstrate that pro-
gramming FPGAs is very tractable for production-scale
cloud workloads. The exact same hardware was used in
all four of these applications, showing the programmabil-
ity and flexibility of the Azure SmartNIC expands well
beyond SDN and network processing capabilities. This
bodes well as we seek to add new functionality in years
to come. Investment in strong development teams, infras-
tructure, simulation capabilities, and tools is essential, but
much of this can be shared across different teams.

We have found the most important element to success-
fully programming FPGAs has been to have the hardware
and software teams work together in one group, and use
software development methodologies (e.g. Agile develop-
ment) rather than hardware (e.g. Waterfall) models. The
flexibility of the FPGA allows us to code, deploy, learn,
and revise at a much faster interval than is possible for any
other type of hardware desig. This hardware/software co-
design model is what enables hardware performance with
software-like flexibility.
4. Can FPGAs be deployed at hyperscale?

Getting FPGAs into our data centers was not an easy
effort — when project Catapult started this was just not a
common use case for FPGAs, and the team had to work
through numerous technical, logistical, and team structure
issues. However by the time we began SmartNIC, Cata-
pult had worked out many of the common infrastructure
details that were needed for a hyperscale deployment. The
Catapult shell and associated software libraries abstracted
away underlying hardware-specific details and allowed
both hardware and software development for SmartNIC to
focus largely on application functionality. Though much

of this functionality is now common for FPGA vendors to
support, at the time it wasn’t. This project would not have
been feasible without the prior Catapult work.
5. Isn’t my code locked in to a single FPGA vendor?

Today’s FPGA development is done almost entirely
in hardware description languages like SystemVerilog
(which we use), which are portable if the original devel-
opment was done with the intention to facilitate porting.
There are vendor-specific details, for example Intel FP-
GAs have 40b wide SRAMs versus Xilinx’s 36b SRAMs,
but once such details are accounted for, compiling code
for a different FPGA is not that difficult. As a proof point
of portability, project Catapult was first developed on Xil-
inx FPGAs, but was ported over to Altera FPGAs before
our original pilot.
4.3 SmartNIC System Architecture

Even after selecting FPGAs as the path forward, there
were still major questions about how to integrate it —
where should the FPGA fit in our system architecture for
our first SmartNIC, and which functions should it include?
The original Catapult FPGA accelerator [7] was deliber-
ately not attached the data center network to avoid being a
component that could take down a server, and instead was
connected over an in-rack backend torus network. This
was not ideal for use in SDN offload, since the FPGA
needed to be on the network path to implement VFP func-
tionality.

Another option was to build a full NIC, including SR-
IOV, inside the FPGA — but this would have been a sig-
nificant undertaking (including getting drivers into all our
VM SKUs), and would require us to implement unre-
lated functionality that our currently deployed NICs han-
dle, such as RDMA[14]. Instead we decided to augment
the current NIC functionality with an FPGA, and initially
focus FPGA development only on the features needed for
offload of SDN.

The converged architecture places the FPGA as a bump-
in-the-wire between the NIC and the Top of Rack (TOR)
switch, making the FPGA a filter on the network. A cable
connects the NIC to the FPGA and another cable connects
the FPGA to the TOR. The FPGA is also connected by
2 Gen3x8 PCIe connections to the CPUs, useful for ac-
celerator workloads like AI and web search. When used
as an accelerator, the network connection (along with an
RDMA-like lossless transport layer using DCQCN [21])
allows scaling to workloads such as large DNN models
that don’t fit on one chip. The resulting first generation
Azure SmartNIC, deployed in all Azure compute servers
beginning in 2015, is shown in Figure 2(a).

The second generation of SmartNIC, running at 50GbE,
Figure 2(b), is designed for the Azure Project Olympus
OCP servers [22]. We integrated a standard NIC with SR-
IOV on the same board as the FPGA, keeping the same
bump-in-the-wire architecture, but eliminating the sepa-
rate NIC board and the cable between the NIC and the

56 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FPGA, reducing cost, and upgrading to a newer Intel Ar-
ria 10 FPGA.

5 AccelNet System Design
The control plane for AccelNet is largely unchanged from
the original VFP design in [6], and remains almost entirely
in the hypervisor. It remains responsible for the creation
and deletion of flows from the flow table, along with de-
termining the associated policy for each flow. The data
plane for AccelNet is offloaded to the FPGA SmartNIC.
The driver for the NIC is augmented with a filter driver
called the GFT Lightweight Filter (LWF), which abstracts
the details of the split NIC/FPGA hardware from VFP to
make the SmartNIC appear as a single NIC with both full
SR-IOV and GFT support, and to help in serviceability, as
discussed in detail in Section 7.1.
5.1 Software Design

While the vast majority of the packet processing work-
load for GFT falls onto the FPGA hardware, software
remains responsible for control operations, including the
setup/teardown of flows, health monitoring, and enabling
serviceability so that flows can continue during updates to
VMs and the FPGA hardware. A high-level view of our
architecture is shown in Figure 3. The flow table may not
contain a matching rule for a given packet. In these cases,
the offload hardware will send the packet to the software
layer as an Exception Packet. Exception packets are most
common on the first packet of a network flow, when the
flow is just getting established.

A special virtual port (vPort) dedicated to the hypervi-
sor is established for exception packets. When the FPGA
receives an exception packet, it overloads the 802.1Q
VLAN ID tag in the packet to specify that it is an ex-
ception path packet, and forwards the packet to the hy-
pervisor vPort. VFP monitors this port and performs the
necessary flow creation tasks after determining the appro-
priate policy for the packet’s flow. If the exception packet
was destined for a VM on the same host, the VFP software
can deliver the packet directly to the VM. If the exception
packet was outbound (sent by a VM for a remote desti-
nation), then the VFP software must resend the packet to
the SmartNIC, which it can do using the same dedicated
hypervisor vPort.

VFP also needs to be aware of terminated connections
so that stale connection rules do not match to new net-
work flows. When the FPGA detects termination packets
such as TCP packets with SYN, RST or FIN flag set, it
duplicates the packet — sending the original packet to its
specified destination, and an identical copy of the packet
to the dedicated hypervisor vPort. VFP uses this packet to
track TCP state and delete rules from the flow table.
5.2 FPGA Pipeline Design

The GFT datapath design was implemented on the
Azure SmartNIC hardware described in 4.3. For the re-
mainder of this section we focus on the implementation

Figure 3: The SmartNIC GFT architecture, showing the
flow of exception packets from the FPGA to software to
establish a flow offloaded in hardware

on SmartNIC Gen1, though the same structure (with dif-
ferent values) applies to Gen2.

The design of the GFT implementation on FPGA can
be divided into 2 deeply pipelined packet processing units,
each comprised of four major pipeline stages: (1) a store
and forward packet buffer, (2) a parser, (3) a flow lookup
and match, and (4) a flow action. A high-level view of our
system architecture is shown in Figure 4.

The Parser stage parses the aggregated header informa-
tion from each packet to determine its encapsulation type.
We currently support parsing and acting on up to 3 groups
of L2/L3/L4 headers (9 headers total, and 310 possible
combinatons). The output of the parser is a key that is
unique for each network flow.

The third processing stage is Match, which looks up
the rules for the packet based on the unique key from the
Parser stage. Matching computes the Toeplitz hash [23] of
the key, and uses that as the cache index. We use a 2-level
caching system with an L1 cache stored on-chip, and an
L2 cache stored in FPGA-attached private DRAM.

The L1 cache is structured as a direct-mapped cache
supporting 2,048 flows. We experimented with 2-
way set associative caches and simpler hash algo-
rithms than the Toeplitz hash [24], but found that the
more computationally-intensive but less collision-prone
Toeplitz hash coupled with the simpler direct-mapped

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 57

Figure 4: Block diagram of the GFT processing pipeline

cache resulted in better overall performance.
The L2 cache is structured as an 8-way set-associative

cache, with support for O(1M) flows. Total number of
supported flows is limited only by the DRAM capacity.

The final component is the Action stage, which takes
the parameters looked up from the flow table, and then per-
forms the specified transformations on the packet header.
The Action block uses microcode to specify the exact be-
haviors of actions, enabling easy updates to actions with-
out recompilation of the FPGA image. Only when entirely
new actions are added will the FPGA need to be recom-
piled and a new bitstream loaded.

Non-trivial software-programmable Quality-of-Service
guarantees can be implemented as optional components of
the processing pipeline. For example, rate limiting can be
done on a per-flow basis using a packet buffer in DRAM.
Full description of our QoS frameworks and actions is be-
yond the scope of this paper. In total, the GFT role uses
about 1/3 of the logic of the Intel Stratix V D5 chip that
we used in the Gen1 SmartNICs.
5.3 Flow tracking and reconciliation

VFP is used by overlying controllers and monitoring
layers to track per-flow connection state and data. GFT
keeps track of all per-connection byte/flow counters, such
as TCP sequence/ack numbers and connection state, and
timestamps of the last time a flow got a packet. It period-
ically transmits all flow state to VFP via DMA transfers
over PCIe, allowing VFP to ensure proper flow configura-
tions, and to perform actions such as the cleanup of inac-
tive flows.

GFT must also perform reconciliation so that flow ac-
tions get updated when VFP policy changes. Like VFP’s
unified flow table, GFT maintains a generation ID of the
policy state on a system, and tracks what the generation ID
when the rules for each flow were created. When a con-
troller plumbs new policy to VFP, the generation ID on
SmartNIC is incremented. Flows are then updated lazily
by marking the first packet of each flow as an exception
packet, and having VFP update the flow with the new pol-
icy actions.

6 Performance Results
Azure Accelerated Networking has been available since
2016. Performance results are measured on normal Azure

AccelNet VMs in an Azure datacenter, running on In-
tel Xeon E5-2673 v4 (Broadwell at 2.3 Ghz) CPUs with
40Gbps Gen1 SmartNICs. Sender and receiver VMs are
in the same datacenter and cross a Clos network of 5 stan-
dard switching ASICs between each other. We created no
special configuration and the results, in Figure 5, should be
reproduceable by any Azure customer using large Dv2 or
Dv3 series Azure VMs. VFP policy applied to these VMs
includes network virtualization, stateful NAT and stateful
ACLs, metering, QoS, and more.

We measure one-way latency between two Windows
Server 2016 VMs using registered I/O sockets [25] by
sending 1 million 4-byte pings sequentially over active
TCP connections and measuring response time. With our
tuned software stack without AccelNet, we see an aver-
age of 50µs, with a P99 around 100µs and P99.9 around
300µs. With AccelNet, our average is 17µs with P99 of
25µs and P99.9 of 80µs — both latency and variance are
much lower.

Azure offers VM sizes with up to 32Gbps of network
capacity. With pairs of both Ubuntu 16.04 VMs and Win-
dows 10 VMs with TCP congestion control set to CU-
BIC [26] and a 1500 Byte MTU, we consistently measure
31Gbps on a single connection between VMs with 0% as-
sociated CPU utilization in the host. Without AccelNet
we see around 5Gbps on a single connection and multiple
cores utilized in the host with enough connections run-
ning (∼8) to achieve line rate. Because we don’t have to
scale across multiple cores, we believe we can scale sin-
gle connection performance to 50/100Gb line rate using
our current architecture as we continue to increase net-
work speeds with ever-larger VMs.

For an example of a real world application, we deployed
AccelNet to our Azure SQL DB fleet, which runs in VM
instances, and ran SQL queries from an AccelNet VM in
the same DC against an in-memory DB replicated across
multiple nodes for high availability (both reads and writes
to the service traverse multiple network hops). Average
end-to-end read times went from ∼1ms to ∼300µs, and
P99 read and write times dropped by over half as a result
of reduced jitter in the network. Replication and seeding
jobs that were often bound by the performance of a burst
on a single connection ran over 2x faster.

Figure 6 shows comparative performance of AccelNet
compared to other public cloud offerings that we mea-
sured on latest generation Intel Skylake-based instances
(Fs72 v2 on Azure, c5.18xlarge on AWS, n1-highcpu-64
on GCP, measured in November 2017). All tests used un-
modified Ubuntu 16.04 images provided by the platform
with busy poll enabled. We used the open source tools
sockperf and iperf to measure latency and through-
put, respectively. In our measurements, AccelNet had the
lowest latencies, highest throughput, and lowest tail laten-
cies (measured as percentiles of all pings over multiple
10-second runs of continuous ping-pong on established

58 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Selected performance data from Azure AccelNet VMs

TCP connections) of the instances we measured, includ-
ing a consistent 10µs average latency between our Linux
VMs. To test the performance of userspace I/O such as
DPDK, we used a userspace TCP stack based on the open
source VMA library [27], which achieved about 5µs la-
tency pinging standard TCP sockets between our produc-
tion VMs.

VFP is widely used in our fleet to run software gate-
ways bridging between our SDN and external networks,
such as ExpressRoute [28] circuits to customer datacen-
ters. We used the programmable forwarding and QoS in
our FPGA GFT implementation to offload all forward-
ing (after first packet on a flow) to the SmartNIC. Includ-
ing encap/decap, stateful ACLs/NAT and metering, QoS,
and forwarding, we saw a gateway forwarding line-rate
32Gbps traffic (even with just one flow), and consistent
<5s latency with 0% host CPU utilization. Our prior gate-
way required multiple connections to hit line rate, burned
CPU cores, and could spike to 100-200µs latency (in-
cluding going to and from a VM) depending on system
scheduling behavior. We believe this platform will let us
create many more accelerated programmable appliances.

Using configurable power regulators on our SmartNIC,
we’ve measured the power draw of our Gen1 board in-
cluding all components in operational servers at 17-19W
depending on traffic load. This is well below the 25W
power allowed for a typical PCIe expansion slot, and on
par with or less than other SmartNIC designs we’ve seen.

7 Operationalization
7.1 Serviceability

As with any other feature that is being built for the pub-
lic cloud, serviceability, diagnostics and monitoring are
key aspects of accelerated networking. The fact that both
software and hardware are serviceable makes this particu-
lar scenario deployable for us. As discussed in [6], VFP is
already fully serviceable while keeping existing TCP con-
nections alive, and supports VM live migration with exist-
ing connections. With AccelNet, we needed to extend this
serviceability as well — TCP flows and vNICs should sur-
vive FPGA reconfiguration, FPGA driver updates, NIC PF
driver updates (which bring down VFs), and GFT driver
updates.

We accomplished online serviceability by turning off
hardware acceleration and switching back to synthetic
vNICs to maintain connectivity when we want to ser-
vice the SmartNICs or the software components that drive
them, or when live migrating a VM. However, since Ac-
celNet is exposed directly into the VM in the form of
VFs, we must ensure that none of the applications break
when the VF is revoked and the datapath is switched to
synthetic mode. To satisfy this requirement, we do not
expose the VF to the upper protocol stack in the VM di-
rectly. Instead, when the VF comes up, our synthetic NIC
driver, the Hyper-V Network Virtual Service Consumer
(NetVSC), marks the VF as its slave, either by using the
slave mode present in the kernel for Linux VMs, or by
binding to the NetVSC’s upper NDIS edge in Windows
VMs. We call this transparent bonding — the TCP/IP
stack is bound only to the synthetic NIC. When VF is ac-
tive, the synthetic adapter automatically issues sends over
the VF adapter rather than sending it through the synthetic
path to the host. For receives, the synthetic adapter for-
wards all receives from both the VF and synthetic path up
the stack. When the VF is revoked for servicing, all trans-
mit traffic switches to the synthetic path automatically, and
the upper stack is not even aware of the VF’s revocation
or later reassignment. Figure 7 shows the accelerated data
path and synthetic data path. The network stack is com-
pletely transparent to the current data path since NetVSC
provides transparent bonding.

One of the benefits of SR-IOV is that VMs can use ker-
nel bypass techniques like DPDK (Data Plane Develop-
ment Kit) [18] or RDMA (Remote Direct Memory Ac-
cess) to directly interface with hardware via the VF, but
we needed to consider serviceability for them too when
the VF is revoked, and the VM is potentially live-migrated
elsewhere. We needed these applications to transparently
fall back to a non-accelerated code path for that brief time
period.

We found that there is no built-in fallback mechanism
for many DPDK applications. So, we use a failsafe PMD
(Poll Mode Driver) which acts as a bond between the VF
PMD and a PMD on the synthetic interface. When the
VF is active, the failsafe PMD operates over the VF PMD,
thereby bypassing the VM kernel and the host software
stack. When the VF is revoked for serviceability, the

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 59

Figure 6: Performance of AccelNet VM-VM latencies vs. Amazon AWS Enhanced Networking and Google GCP An-
dromeda on Intel Skylake generation hardware.

Synthetic data path Accelerated data path Transparent

Figure 7: Transparent bonding between an SR-IOV inter-
face and a synthetic interface

failsafe PMD starts operating over the synthetic path and
packets flow through the VMBUS channels. Since the fail-
safe PMD exposes all DPDK APIs, the application does
not see any difference except for a drop in performance
for a short period of time.

For RDMA applications, this form of serviceability is
harder and potentially involves many more queues. In
practice, we found all our common RDMA applications
are designed to gracefully fall back to TCP anyways, so
we issue completions closing all RDMA queue pairs and
let the app fail over to TCP. This isn’t an issue for currently
known workloads, but app-level transparency for RDMA
serviceability remains an open question for the future if
apps ever take a hard dependency on RDMA QPs staying
alive.

Support for transparent VF bonding has been commit-
ted upstream in the Linux kernel (for NetVSC) and to
dpdk.org for DPDK, and is natively available in Windows
Server 2012 and later VMs. We’ve issued regular fleet-
wide updates to all parts of the AccelNet stack, (VFP
through GFT, the FPGA, and the PF driver), and found
that transparent bonding works well in practice for our
customers. While there is a short performance degrada-
tion while the synthetic path is active, apps stay alive and
handle this well as they don’t see a change in the network
adapter they’re bound to, or on active TCP connections. If
an application is sensitive to this, we let VMs subscribe to
an instance metadata service that sends notifications about

upcoming maintenance and update events to the VM to
enable it to prepare or move traffic elsewhere. If a VM is
running behind the Azure load balancer, we can remove it
from the active load balanced set during an update so that
new external TCP/UDP flows are directed elsewhere for
the duration of the update window.

7.2 Monitoring and Diagnostics
Monitoring is key to the reliability of a system like Ac-

celNet at scale. Detection of early warning signs from
both hardware and software and correcting them in an au-
tomated fashion is necessary to achieve production-quality
reliability. We collect metrics from each component of
AccelNet, including VFP, GFT, the SmartNIC and its
driver, and the SR-IOV NIC and its driver — we have
over 500 metrics per host (of which many are per-VM)
collected in our scalable central monitoring system. Alerts
and actions are triggered by combinations of these and we
are constantly tweaking thresholds and actions as we get
more experience and data over time with the system.

For diagnostics, we built programmable packet capture
and tracing services at every interface on the SmartNIC —
packet headers and data can be sampled at NIC/ToR ports
on ingress/egress. We built a metadata interface along the
network bus inside SmartNIC so that any module can emit
diagnostic data about what exactly happened to a packet at
that module, which is included in the capture. For exam-
ple, in GFT we can trace how a packet was parsed, what
flow it matched, what action it took, etc. We can collect
hardware timestamps for these for accurate latency anal-
ysis. We also expose diagnostic information on key state
machines as well as extensive counters, and automatically
dump all critical internal state on an error.

8 Experiences
Azure SmartNICs and AccelNet have been deployed at
scale for multiple years, with hundreds of thousands of
customer VMs across our fleet. In our experience, Accel-
Net has improved network performance across the board
for our customers without negatively impacting reliabil-
ity or serviceability, and offering better throughput and
latency than anything else we’ve measured in the public

60 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cloud. We believe our design accomplished all the goals
we set out in Section 3 :

1. We stopped burning CPU cores to run the network
datapath for AccelNet VMs. Host cores show less
than 1% utilization used for exception processing.

2. SDN controllers have continued to add and program
new policy in VFP, agnostic of the hardware offload
now underneath.

3. We measured the overhead of the FPGA on latency
as <1µs vs our SR-IOV NIC alone, and achieve line
rate. This is much better than CPU cores alone.

4. We’ve continued to add new actions and primitives to
GFT on the FPGA to support new workloads, as well
as new QoS primitives and more.

5. Changes have been rolled out across multiple types
of servers and SmartNIC hardware.

6. We can achieve line rate on a single connection.
7. We believe our design scales well to 100Gb+.
8. We have done production servicing of our FPGA im-

age and drivers regularly for years, without nega-
tively impacting VMs or applications.

8.1 Are FPGAs Datacenter-Ready?
One question we are often asked is if FPGAs are ready

to serve as SmartNICs more broadly outside Microsoft.
We certainly do not claim that FPGAs are always the best
and only solution for accelerating networking in all cloud
environments. The development effort for FPGA pro-
gramming is certainly higher than software — though can
be made quite tractable and agile with a talented hardware
team and support from multiple stakeholders.

When Microsoft started Catapult, FPGAs were far from
cloud-ready. Because SmartNIC shares a common devel-
opment environment and history with Catapult, much of
the development effort was shared across teams. We’ve
observed that necessary tooling, basic IP blocks, and gen-
eral support have dramatically improved over the last few
years. But this would still be a daunting task for a new
team. We didn’t find that the higher level languages for
FPGAs we experimented with produced efficient results
for our designs, but our trained hardware developers had
no trouble rapidly iterating on our SystemVerilog code.

The scale of Azure is large enough to justify the mas-
sive development efforts — we achieved a level of perfor-
mance and efficiency simply not possible with CPUs, and
programmability far beyond an ASIC, at a cost that was
reasonable because of our volume. But we don’t expect
this to be a natural choice for anyone beyond a large-scale
cloud vendor until the ecosystem evolves further.

8.2 Changes Made
As we expected, we continued adding all kinds of ac-

tions over time as the SDN stack evolved that we could
never have predicted when we started, such as new stateful
tunneling modes and state tracking. We believe respond-
ing to these rapidly shifting requirements would never

have worked in an ASIC development flow. A small se-
lection of examples include:
• We’ve repeatedly extended our TCP state machine with

more precise seq/ack tracking of every TCP flow in our
system for various functional and diagnostic purposes.
For example, an ask to inject TCP resets into active
flows based on idle timeouts and other parameters ne-
cessitated VFP being aware of the latest valid sequence
numbers of every flow.

• We created a number of new packet forwarding and du-
plication actions, for example supporting tap interfaces
with their own encapsulation and SDN policy, complex
forwarding actions for offloading gateways and soft-
ware routers to hardware, and multicast semantics using
fast hardware replication on a unicast underlay.

• We added SDN actions such as NAT46 with custom
translation logic for our internal workloads, support for
virtualizing RDMA, and new overlay header formats.

• As we saw pressure to improve connection setup per-
formance, we repeatedly iterated on our offload path,
moving many functions such as hashing and table in-
sertion of flows from software into hardware over time
based on production telemetry.

• We’ve used the FPGAs to add constant new datapath
diagnostics at line rate, including programmable packet
captures, packet tracing through stages in our FPGA for
latency and correctness analysis, and extensive counters
and telemetry of the kind that require support in hard-
ware in the datapath. This is our most constant source
of iteration.

8.3 Lessons Learned
Since beginning the Azure Accelerated Networking

project, we learned a number of other lessons of value:
• Design for serviceability upfront. The topics in Sec-

tion 7 were the hardest of anything here to get right.
They worked only because the entire system, from hard-
ware to software to VM integration, were designed to be
serviceable and monitorable from day 1. Serviceability
cannot be bolted on later.

• Use a unified development team. If you want Hard-
ware/Software co-design, hardware devs should in the
same team as software devs. We explicitly built our
hardware team inside the existing Azure host network-
ing group, rather than the traditional approach of having
separate groups for HW and SW, to encourage frequent
collaboration and knowledge sharing.

• Use software development techniques for FPGAs.
One thing that helped our agility was viewing the host
networking datapath stack as a single stack and ship
vehicle across VFP and FPGA, reducing complex roll-
out dependencies and schedule mismatch. As much as
possible, we treated and shipped hardware logic as if
it was software. Going through iterative rings of soft-
ware qualification meant we didn’t need ASIC-levels of
specification and verification up front and we could be

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 61

more agile. A few minutes in a live environment cov-
ers far more time and more scenarios than typical RTL
verification flows could ever hope to cover.

• Better perf means better reliability. One of the
biggest benefits of AccelNet for VMs is that the net-
work datapath no longer shares cores or resources with
the rest of the host, and is not subject to transient is-
sues — we’ve seen much more reliable performance
and lower variance as a result.

• HW/SW co-design is best when iterative. ASIC de-
velopment traditionally means designing a specification
and test methodology for everything that a system could
possibly want to do over its lifetime upfront. FPGAs
allowed our hardware developers to be far more agile
in their approach. We can deploy designs directly to
customers, collect data from real workloads with de-
tailed counters, and use those to decide what functions
should be in hardware vs. software in the next release,
and where performance bottlenecks are. More impor-
tantly, we can allow the specifications to evolve con-
stantly throughout the development process. For exam-
ple, we changed the hashing and caching strategies sev-
eral times after the initial release.

• Failure rates remain low, and were in line with other
passive parts in the system, with the most frequently
failing part being DRAM. Overall the FPGAs were re-
liable in datacenters worldwide.

• Upper layers should be agnostic of offloads. Because
VFP abstracted out whether SDN policy was being of-
floaded or not from controllers and upper layers, Accel-
Net was much less disruptive to deploy.

• Mitigating Spectre performance impact. In the
wake of the Meltdown and Spectre attacks on our
CPUs, CPU-based I/O was impacted by common miti-
gations [29]. Because AccelNet bypasses the host and
CPUs entirely, our AccelNet customers saw signifi-
cantly less impact to network performance, and many
redeployed older tenants to AccelNet-capable hardware
just to avoid these impacts.

9 Related Work
Since we first deployed Azure SmartNICs and announced
them at the Open Networking Summit in 2015, we’ve seen
numerous different programmable NIC solutions with
vSwitch offload come to market (recently many of these
are labeled as “Smart NICs” too). Most follow the trends
we discussed in 4.1. Some [30] are based on ASICs with
internal match-action tables — these tend to not be very
flexible or support some of the more advanced actions
we’ve implemented over time in GFT, and give little room
for growth as actions and policy change. Others [13, 14]
do datapath processing entirely in embedded cores, either
general purpose CPUs or network-specific ones, but we’ve
found the performance of this model is not great and we
don’t see a path to scale this to 100G and beyond with-

out requiring many cores. A newer trend is to combine
an ASIC supporting some match-action function with a
small SoC supporting a DPDK-style datapath for on-core
packet processing. But we don’t ultimately see that this
solves the dilemma of ASICs vs CPUs — if you have
a widely-applied action that the ASIC can’t handle, you
have to send all your packets up to the CPUs, and now
your CPUs have to handle line rate processing.

Others [31] show that they can improve the performance
of software stacks entirely in the host and suggest burning
cores to do host SDN. While we believe this in practice re-
quires multiple cores at line rate for our workloads, in IaaS
even taking a very small number of cores is too costly for
this to make sense for us, and the performance and latency
aren’t optimal. With FPGAs, we’ve found we’re able to
achieve sufficient programmability and agility in practice.
Offloading functionality to the switches as in [32] was also
explored, but since we have to store complex actions for
every TCP connection in our system, and with the increase
of VM and container density on a node, we found the min
set of policy needed to be offloaded, even when reasonably
compressed, is at least 2 orders of magnitude more than
even the latest programmable switch ASICs can store in
SRAM - at NIC speeds we can scale out to GBs of DRAM.

Another recent suggestion is to use P4 engines [33],
thus far mostly implemented in switches, to create Smart-
NICs. The P4 specification offers flexible parsing and
relatively flexible actions, many of which are similar to
GFT. In fact, P4 could potentially serve as a way to spec-
ify some of the GFT processing flow. However, there are
other SDN functions outside the scope of existing P4 en-
gines and even the P4 language specification that are im-
portant for us to implement in AccelNet — functions such
as scheduling, QoS, background state updates, any kind
of programmable transport layer, and a variety of com-
plex policies outside the scope of simple packet transfor-
mations. While we expect the P4 language to be extended
to include many of these, using a programmable fabric like
an FPGA to implement GFT or P4 functionality remains
a good choice given the evolving nature of the SDN and
cloud space. We expect much of the functionality outside
of the core packet processor to harden over time, but ex-
pect SDN to remain soft for the foreseeable future.

10 Conclusion and Future Work
We detailed the Azure SmartNIC, our FPGA-based pro-
grammable NIC, as well as Accelerated Networking, our
service for high performance networking providing cloud-
leading network performance, and described our experi-
ences building and deploying them.

This paper describes primarily functions we were al-
ready doing in software in host SDN and offloaded to
hardware for great performance. Future work will de-
scribe entirely new functionality we’ve found we can sup-
port now that we have programmable NICs on every host.

62 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgements
We thank our shepherd Arvind Krishnamurthy and the

anonymous reviewers for their many helpful comments
that greatly improved the final paper.

Azure Accelerated Networking represents the work of
many engineers, architects, product managers, and leaders
across Azure and Microsoft Research over several years,
more than we can list here. We thank the entire Azure
Networking, Server Infrastructure, and Compute teams for
their support in developing, iterating on, and deploying
SmartNICs and the Accelerated Networking service.

We thank Parveen Patel, Pankaj Garg, Peter Carlin,
Tomas Talius, Jurgen Thomas, and Hemant Kumar for
their invaluable early feedback in deploying preview ver-
sions of our service, and KY Srinivasan, Stephen Hem-
minger, Josh Poulson, Simon Xiao, and Haiyang Zhang
for supporting our Linux VM ecosystem’s move to Accel-
Net. Finally, in addition to our leaders in the author list,
we thank Yousef Khalidi, Mark Russinovich, and Jason
Zander for their support.

References
[1] Microsoft Azure. http://azure.microsoft.com, 2018.

[2] Amazon. Amazon Web Services. http://aws.amazon.com,
2018.

[3] Google. Google Cloud Platform. http://cloud.google.com,
2018.

[4] Microsoft. Overview of Single Root I/O Virtualiza-
tion (SR-IOV). https://msdn.microsoft.com/en-

us/windows/hardware/drivers/network/overview-

of-single-root-i-o-virtualization--sr-iov-, Apr
2017.

[5] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan. High
performance network virtualization with sr-iov. In HPCA - 16
2010 The Sixteenth International Symposium on High-Performance
Computer Architecture, pages 1–10, Jan 2010.

[6] Daniel Firestone. VFP: A virtual switch platform for host SDN
in the public cloud. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 315–328,
Boston, MA, 2017. USENIX Association.

[7] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Jan Gray, Michael Haselman, Scott Hauck, Stephen
Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James R.
Larus, Eric Peterson, Gopi Prashanth, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A Reconfigurable Fabric for Ac-
celerating Large-Scale Datacenter Services. In International Sym-
posium on Computer Architecture (ISCA), 2014.

[8] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger. A cloud-scale acceleration architecture.
In 2016 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 1–13, Oct 2016.

[9] Microsoft. TCP/IP Offload. https://docs.microsoft.com/

en-us/windows-hardware/drivers/network/tcp-ip-

offload, Apr 2017.

[10] Microsoft. Introduction to Receive Side Scaling.
https://docs.microsoft.com/en-us/windows-

hardware/drivers/network/introduction-to-receive-

side-scaling, Apr 2017.

[11] Microsoft. Virtual Machine Queue (VMQ). https:

//msdn.microsoft.com/en-us/windows/hardware/

drivers/network/virtual-machine-queue--vmq-, Apr
2017.

[12] Microsoft. Network Virtualization using Generic Routing
Encapsulation (NVGRE) Task Offload. https://docs.

microsoft.com/en-us/windows-hardware/drivers/

network/network-virtualization-using-generic-

routing-encapsulation--nvgre--task-offload, Apr
2017.

[13] Cavium. Cavium LiquidIO II Network Appliance Smart
NICs. http://www.cavium.com/LiquidIO-II_Network_

Appliance_Adapters.html.

[14] Netronome. Open vSwitch Offload and Acceleration with Ag-
ilio CX SmartNICs. https://www.netronome.com/media/

redactor_files/WP_OVS_Benchmarking.pdf.

[15] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William
Reinhart, Darrel Eric Johnson, Jebediah Keefe, and Hari Angepat.
Fpga-accelerated simulation technologies (fast): Fast, full-system,
cycle-accurate simulators. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 40, pages 249–261, Washington, DC, USA, 2007. IEEE
Computer Society.

[16] Yatish Turakhia, Kevin Jie Zheng, Gill Bejerano, and William J.
Dally. Darwin: A hardware-acceleration framework for genomic
sequence alignment. bioRxiv, 2017.

[17] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Pa-
pamichael, Adrian Caulfield, Todd Massengil, Ming Liu, Daniel
Lo, Shlomi Alkalay, Michael Haselman, Christian Boehn, Oren
Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi,
Stephen Heil, Kyle Holohan, Tamas Juhasz, Ratna Kumar Kovvuri,
Sitaram Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel,
Steve Reinhardt, Adam Sapek, Raja Seera, Balaji Sridharan, Lisa
Woods, Phillip Yi-Xiao, Ritchie Zhao, and Doug Burger. Acceler-
ating Persistent Neural Networks at Datacenter Scale. In Hot Chips
27, 2017.

[18] DPDK. DPDK: Data Plane Development Kit. http://dpdk.

org/about, 2018.

[19] Gokhan Sayilar and Derek Chiou. Cryptoraptor: High throughput
reconfigurable cryptographic processor. In Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’14, pages 154–161, Piscataway, NJ, USA, 2014. IEEE
Press.

[20] J. Fowers, J. Y. Kim, D. Burger, and S. Hauck. A scalable
high-bandwidth architecture for lossless compression on fpgas.
In 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, pages 52–59, May
2015.

[21] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Ma-
rina Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Rain-
del, Mohamad Haj Yahia, and Ming Zhang. Congestion control
for large-scale rdma deployments. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communica-
tion, SIGCOMM ’15, pages 523–536, New York, NY, USA, 2015.
ACM.

[22] Microsoft. Server/ProjectOlympus. www.opencompute.org/

wiki/Server/ProjectOlympus, 2018.

[23] P. P. Deepthi and P. S. Sathidevi. Design, implementation and anal-
ysis of hardware efficient stream ciphers using lfsr based hash func-
tions. Comput. Secur., 28(3-4):229–241, May 2009.

[24] Microsoft. RSS Hashing Functions. https://docs.microsoft.
com/en-us/windows-hardware/drivers/network/rss-

hashing-functions, Apr 2017.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 63

http://azure.microsoft.com
http://aws.amazon.com
http://cloud.google.com
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/tcp-ip-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/tcp-ip-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/tcp-ip-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/virtual-machine-queue--vmq-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/virtual-machine-queue--vmq-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/virtual-machine-queue--vmq-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/network-virtualization-using-generic-routing-encapsulation--nvgre--task-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/network-virtualization-using-generic-routing-encapsulation--nvgre--task-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/network-virtualization-using-generic-routing-encapsulation--nvgre--task-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/network-virtualization-using-generic-routing-encapsulation--nvgre--task-offload
http://www.cavium.com/LiquidIO-II_Network_Appliance_Adapters.html
http://www.cavium.com/LiquidIO-II_Network_Appliance_Adapters.html
https://www.netronome.com/media/redactor_files/WP_OVS_Benchmarking.pdf
https://www.netronome.com/media/redactor_files/WP_OVS_Benchmarking.pdf
http://dpdk.org/about
http://dpdk.org/about
www.opencompute.org/wiki/Server/ProjectOlympus
www.opencompute.org/wiki/Server/ProjectOlympus
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions

[25] Microsoft. Registered Input/Output (RIO) API Ex-
tensions. https://technet.microsoft.com/en-

us/library/hh997032(v=ws.11).aspx, Aug 2016.

[26] Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zimmermann,
Lars Eggert, and Richard Scheffenegger. CUBIC for Fast Long-
Distance Networks. RFC 8312, February 2018.

[27] Messaging Accelerator (VMA). https://github.com/

Mellanox/libvma, 2018.

[28] Microsoft. ExpressRoute overview. https://docs.microsoft.
com/en-us/azure/expressroute/expressroute-

introduction, Oct 2017.

[29] Microsoft. Securing Azure customers from CPU vulnerability.
https://azure.microsoft.com/en-us/blog/securing-

azure-customers-from-cpu-vulnerability/, 2018.

[30] Chloe Jian Ma and Erez Cohen. OpenStack and OVS:
From Love-Hate Relationship to Match Made in Heaven.
https://events.static.linuxfound.org/sites/events/

files/slides/Mellanox%20OPNFV%20Presentation%20on%

20OVS%20Offload%20Nov%2012th%202015.pdf, Nov 2012.

[31] Jad Naous, David Erickson, G. Adam Covington, Guido Appen-
zeller, and Nick McKeown. Implementing an openflow switch on
the netfpga platform. In Proceedings of the 4th ACM/IEEE Sym-
posium on Architectures for Networking and Communications Sys-
tems, ANCS ’08, pages 1–9, New York, NY, USA, 2008. ACM.

[32] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and
Minlan Yu. Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching asics. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, pages 15–28, New York, NY, USA, 2017. ACM.

[33] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun.
Rev., 44(3):87–95, July 2014.

64 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://technet.microsoft.com/en-us/library/hh997032(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh997032(v=ws.11).aspx
https://github.com/Mellanox/libvma
https://github.com/Mellanox/libvma
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://azure.microsoft.com/en-us/blog/securing-azure-customers-from-cpu-vulnerability/
https://azure.microsoft.com/en-us/blog/securing-azure-customers-from-cpu-vulnerability/
https://events.static.linuxfound.org/sites/events/files/slides/Mellanox%20OPNFV%20Presentation%20on%20OVS%20Offload%20Nov%2012th%202015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Mellanox%20OPNFV%20Presentation%20on%20OVS%20Offload%20Nov%2012th%202015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Mellanox%20OPNFV%20Presentation%20on%20OVS%20Offload%20Nov%2012th%202015.pdf

zkLedger: Privacy-Preserving Auditing for Distributed Ledgers
Neha Narula

MIT Media Lab
Willy Vasquez

University of Texas at Austin∗
Madars Virza

MIT Media Lab

Abstract
Distributed ledgers (e.g. blockchains) enable financial in-
stitutions to efficiently reconcile cross-organization trans-
actions. For example, banks might use a distributed ledger
as a settlement log for digital assets. Unfortunately, these
ledgers are either entirely public to all participants, re-
vealing sensitive strategy and trading information, or are
private but do not support third-party auditing without
revealing the contents of transactions to the auditor. Au-
diting and financial oversight are critical to proving insti-
tutions are complying with regulation.

This paper presents zkLedger, the first system to protect
ledger participants’ privacy and provide fast, provably cor-
rect auditing. Banks create digital asset transactions that
are visible only to the organizations party to the transac-
tion, but are publicly verifiable. An auditor sends queries
to banks, for example “What is the outstanding amount
of a certain digital asset on your balance sheet?” and
gets a response and cryptographic assurance that the re-
sponse is correct. zkLedger has two important benefits
over previous work. First, zkLedger provides fast, rich
auditing with a new proof scheme using Schnorr-type non-
interactive zero-knowledge proofs. Unlike zk-SNARKs,
our techniques do not require trusted setup and only rely
on widely-used cryptographic assumptions. Second, zk-
Ledger provides completeness; it uses a columnar ledger
construction so that banks cannot hide transactions from
the auditor, and participants can use rolling caches to
produce and verify answers quickly. We implement a dis-
tributed version of zkLedger that can produce provably-
correct answers to auditor queries on a ledger with a
hundred thousand transactions in less than 10 millisec-
onds.

1 Introduction
Institutions engage trusted third-party auditors to prove
that they are complying with laws and regulation. Tradi-
tionally this is done by auditing companies like Deloitte,
Pricewaterhouse Coopers, Ernst and Young, and KPMG
(known as the “Big Four”), which together audit 99% of

* Work completed at the MIT Media Lab.
† Source code and full version of the paper: zkledger.org.

the companies in the S&P 500 [19]. This type of audit-
ing is laborious and time-consuming, so regulators and
investors do not get real-time access to information about
the financial status of institutions. In addition, trusted
third parties can make mistakes. The most well-known
example of this is the collapse of Arthur Anderson in
2002, after it failed to catch Enron’s $100 billion account-
ing fraud.

Recently, financial institutions are exploring distributed
ledgers (or blockchains) to reduce verification and recon-
ciliation costs in an environment with multiple distrusting
parties. Distributed ledgers enable real-time validation
by all participants (known as public verifiability), but at
the cost of privacy—every participant must download
all transactions in order to verify their integrity. This is
untenable for institutions that rely on secrecy to protect
strategy and intellectual property (e.g. trading strategies),
and for organizations that have to comply with laws and
regulation around data privacy (for example, the General
Data Protection Regulation in Europe [24]).

Distributed ledgers that support privacy generally op-
erate in one of two ways: either by only committing to
hashes of transactions on the ledger, using trusted third
parties to independently verify transactions [22, 23], or
by using cryptographic commitment schemes to hide the
content of transactions [17, 42, 47, 51]. The former class
of ledgers suffers from the fact that participants can no
longer verify the integrity of private transactions, elimi-
nating the distributed ledger benefit. The latter class still
has public verifiability, but either reveals the transaction
graph [17, 42] or requires trusted setup, which, if compro-
mised, would let an adversary undetectably create new
assets [47, 51]. None of the existing privacy-preserving
distributed ledgers offer an important property for real-
world systems—efficient auditing.

This paper presents zkLedger, the first distributed
ledger system to support strong transaction privacy, pub-
lic verifiability, and practical, useful auditing. zkLedger
provides strong transaction privacy: an adversary cannot
tell who is participating in a transaction or how much is
being transacted, and crucially, zkLedger does not reveal
the transaction graph, or linkages between transactions.
The time of transactions and the type of asset being trans-
ferred are public. All participants in zkLedger can still

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 65

http://zkledger.org/

verify transactions are maintaining important financial
invariants, like conservation of assets, and an auditor can
issue a rich set of auditing queries to the participants
and receive answers that are provably consistent with the
ledger. zkLedger supports a useful set of auditing primi-
tives including sums, moving averages, variance, standard
deviation, and ratios. An auditor can use these primitives
to measure financial leverage, asset illiquidity, counter-
party risk exposures, and market concentration, for the
system as a whole or for individual participants.

A set of banks might use zkLedger to construct a set-
tlement log for an over-the-counter market trading digital
assets. In these markets, buyers and sellers are matched
via electronic exchanges, trades are frequent and fast set-
tlement helps lower counterparty risk. Once a trade is
confirmed, a bank can initiate the transfer of the asset as
a transaction in zkLedger, which, when accepted in the
ledger, settles the transaction. Each bank stores plain-text
transaction data in its own private datastores. In zkLed-
ger, instead of storing plain-text transactions, participants
store value commitments on the distributed ledger. Im-
portantly, these commitments can be homomorphically
combined. A bank can prove to an auditor how much of
an asset it has on its balance sheet by opening up the prod-
uct of all transaction commitments it has referencing that
asset. The auditor can confirm that the opened product
is consistent with the product of the commitments on the
ledger.

Designing zkLedger required overcoming three key
challenges:

Providing privacy and auditing. The first challenge
is to preserve privacy while still allowing an auditor to
compute provably correct measurements over the data
in the ledger. zkLedger is the first system to simultane-
ously achieve this, by combining several cryptographic
primitives. To hide values, zkLedger uses Pedersen com-
mitments [41]. Pedersen commitments can be homomor-
phically combined, so a verifier can, for example, confirm
that the sum of the outputs is less than or equal to the
sum of the inputs, conserving assets. More than that,
an auditor can combine commitments to compute linear
combinations of values in different rows in the ledger.
Previous confidential blockchain systems also use Ped-
ersen commitments to hide values but end up revealing
linkages between transactions, and do not support private
auditing [17, 34, 42].

zkLedger uses an interactive map/reduce paradigm over
the ledger with non-interactive zero-knowledge proofs
(NIZKs) to compute measurements that go beyond sums.
These are Generalized Schnorr Proofs [48], which are fast
and rely only on widely accepted cryptographic assump-

tions. Banks can provably recommit to functions over
values in the ledger, such as f : v→ v2, which lets the
auditor compute measurements like variance, skew, and
outliers without revealing individual transaction details.

Auditing completeness. Since an auditor cannot deter-
mine who was involved in which transactions, zkLed-
ger must ensure that during auditing, a participant can-
not leave out transactions to hide assets from the audi-
tor. We call this property completeness. At the same
time, we do not want to reveal to the auditor who was
involved in which transactions. zkLedger uses a novel
table-construction in the ledger. A transaction is a row
which includes an entry for every participant, and an
empty entry is indistinguishable from an entry involving a
transfer of assets. All of a participant’s transfers are in its
column in the ledger. An auditor audits every transaction
when auditing a participant, meaning a participant can-
not hide transactions. This presents efficiency challenges,
which zkLedger addresses by using commitment caches
and audit tokens, described below.

Efficiency. The third challenge is supporting all of this
efficiently. zkLedger implements a number of optimiza-
tions: every participant and the auditor keeps commitment
caches, which are rolling products of every participants’
column in the ledger; this makes it fast to generate asset
proofs and to answer audits. To reduce communication
costs, zkLedger is designed so that participants do not
have to interact to construct the proofs for the transac-
tion; the spender can create the transaction alone (this is
similar to how other blockchain systems work). But a
malicious spender could try to encode incorrect values in
the commitments for other banks—we must ensure all of
the commitments and proofs are correct and that every
participant has what they need to later respond to an audit.
To do this, we designed a set of proofs that everyone can
publicly verify—transactions with incorrect proofs will be
ignored. These proofs ensure that every participant has an
audit token, which they can use to later open up commit-
ments for that row, and that all proofs and commitments
are consistent. The audit token and the consistency proofs
are publicly verifiable, but do not leak any transaction
information. They are also non-interactive, so zkLedger
makes progress even if banks cannot communicate, and
they are encoded for a specific bank, so a token for one
bank cannot be used by another bank to lie to the auditor.

The slowest part of transaction creation and validation
are range proofs, which ensure that an asset’s value is in
a pre-specified range, and prevent a malicious attacker
from undetectably creating new assets. Range proofs are
10× the size of the other proofs and take 5× as much
time to prove and verify. A naive implementation of

66 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

zkLedger might require multiple range proofs, but by
using disjunctive proofs, we can multiplex different values
into one range proof per entry.

In summary, the contributions of this paper are:

• zkLedger, the first distributed ledger system to achieve
strong privacy and complete auditing;

• a design combining fast, well-understood cryptographic
primitives using audit tokens and map/reduce to com-
pute provably correct answers to queries;

• an evaluation of zkLedger showing efficient transaction
creation and auditing; and

• an analysis of the types of queries zkLedger can support,
suggesting that zkLedger can efficiently handle a useful
set of auditing measurements.

2 Related Work
zkLedger is related to work in auditing or computing on
private data and privacy-preserving blockchains. zkLed-
ger achieves fast, provably correct auditing by creating
a new distributed ledger table model and applying a new
scheme using zero-knowledge proofs.

2.1 Computing on Private Data
Previous work proposed a multi-party computation
scheme in which participants use a secure protocol to
compute the results of functions which answer questions
about systemic financial risk, the same problem which zk-
Ledger aims to address [3, 10], and network security [14].
This work provides privacy benefits over existing analyt-
ics systems by allowing participants to keep their data
secret. However, it only supports overall system auditing,
it is not a solution to audit individual participants. There
is also nothing preventing participants from lying in the
inputs to the multi-party computation; they do not achieve
completeness.

Provisions [21] is a way for Bitcoin exchanges to prove
they are solvent without revealing their total holdings.
Provisions uses Proof of Assets and Proof of Liabilities,
which are very similar to the zero-knowledge proofs we
use in zkLedger. However, in Provisions, an exchange
could “borrow” private keys from another Bitcoin holder
and thus prove assets they do not actually hold; in fact
multiple exchanges could share the same assets. More-
over, Provisions does not provide completeness. By using
a columnar construction with a distributed ledger, zkLed-
ger achieves completeness.

In Prio [18], untrusted servers can compute privately
on mobile client data. Prio does not operate on distributed
ledgers, and thus does not guarantee public verifiability.

Prio requires all servers to cooperate in order for client
proofs to validate; zkLedger can tolerate non-cooperating
participants.

Several systems provide private and correct computing
using trusted hardware [4–6, 49, 52]. In our setting, we
cannot guarantee that all participants will trust the same
hardware provider. In addition, it would be a conflict
of interest to use such a system to audit the company
providing the trusted hardware.

There are many systems which compute on encrypted
data to protect user confidentiality in the event of a server
compromise [25, 31, 32, 40, 43, 44, 50]. These systems
address a different problem than what zkLedger is trying
to solve. Instead, we provide interactive, provably correct
auditing over private data generated by many parties.

2.2 Privacy-preserving blockchains
Bitcoin, a decentralized cryptocurrency released in 2009,
was the first blockchain [37]. Many companies have ex-
plored using a blockchain to record the transfer of assets.
These systems are marked by the following characteris-
tics: (1) Multiple, possibly distrusting participants, all
with write permissions and no single point of failure or
control; (2) A consensus protocol to construct an append-
only, globally ordered log with a chain of hashes to pre-
vent tampering with the past; and (3) Digitally signed
transactions to indicate intent to transfer ownership.

In Bitcoin and most other blockchains, all transactions
are public: every participant receives each transaction,
and can verify all the details. Users create pseudonyms
by generating one-time use public keys for payment ad-
dresses, but transaction amounts and the links between
transactions are still globally visible. Confidential Trans-
actions [34] and Confidential Assets [17, 42] are exten-
sions to Bitcoin which blind the assets and amounts in
transactions while still ensuring that all participants can
validate transactions. Though these systems hide assets
and amounts, they leak the transaction graph and do not
support private auditing—an auditor would require ac-
cess to all plain-text transactions in order to ensure com-
pleteness. The transaction graph alone leaks substantial
information [36, 38, 45, 46]; for example, the FBI fol-
lowed linked transactions to trace bitcoins and used this
as evidence in court [28]. zkLedger provides stronger
transaction privacy and private auditing, but at the cost
of scalability. Transactions in zkLedger are sized order
the number of participants in the whole system, requiring
more time to produce and verify as the number of par-
ticipants grows. This makes zkLedger more suitable to
ledgers with fewer participants who require more privacy.

Solidus [16] is a distributed ledger system that uses
Oblivious RAM to hide the transaction graph and trans-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 67

action amount between bank customers. While this con-
struction also provides private transactions, Solidus can
only support auditing by revealing all of the keys used in
the system to an auditor, and opening transactions. zk-
Ledger achieves performance similar to Solidus while
providing private auditing.

R3’s Corda [22], and Digital Asset Holding’s Global
Synchronization Log (GSL) [23] are distributed ledgers
geared towards financial institutions that rely on trusted
third parties to pass through information. In Corda, no-
taries verify transactions and maintain privacy of partici-
pants, while GSL segments its ledger, only storing a hash
of the values globally and limiting access to fine-grained
transaction data. Neither support private auditing.

Another approach is that of Zerocash [47], and its re-
lated implementation Zcash [51], an anonymous cryp-
tocurrency based on Bitcoin. Zerocash uses zk-SNARKs
[7] to hide transaction amounts, participants, and the
transaction graph. The zk-SNARKs as used in Zcash
can be extended to handle policies to enforce regulations,
KYC/AML laws, and taxes [27]. These policies do not
support arbitrary queries, but instead put limits on the
new types of transactions that can take place. These ideas
have not yet been implemented in a practical system.

zk-SNARKs are quite efficient for some statements
but unfortunately, the price of this efficiency is paid in
setup assumptions: as of now, all concretely efficient
zk-SNARKs require a trusted third party for setup. The
consequences of incorrect or compromised setup are po-
tentially disastrous: an adversary who can learn the secret
randomness used during setup can make fraudulent proofs
of false statements that are indistinguishable from proofs
of true statements. In our setting (international bank-
ing), such proofs would permit unrestricted creation or
destruction of financial assets or liabilities. There may
not even be a viable party to perform the one-time trusted
setup. For example, Russia might not trust the Federal
Reserve or the European Central Bank, or it might not
be politically expedient to be seen as doing so. While it
is possible to mitigate this concern, e.g., by distributing
the setup between multiple parties [8, 11, 12], this process
is onerous and expensive. Ideally, the financial integrity
of the system would not rely on trusted setup at all. We
choose to base consensus-critical portions of zkLedger’s
design on standard NIZKs.

3 zkLedger Overview
3.1 Architecture

System participants. There are n participants which we
call banks that issue transactions to transfer digital assets,
Bank1, . . . ,Bankn and an auditor Auditor, that verifies

certain operational aspects of transactions performed by
the banks (e.g. “is a particular bank Banki solvent?”).
These roles are not distinct; a bank could also audit. A
Depositor or set of Depositors can issue and withdraw
assets from the system; for example, the European Cen-
tral Bank might issue 1M C to Banki in the system. Is-
suance and withdrawal of all assets are controlled by the
Depositors and are global, public events.

Transactions. Banks exchange assets by creating trans-
fer transactions, whose details are hidden. A transfer
transaction captures an event where Banki is transferring
v shares of asset t to Bank j. Our scheme supports a bank
transferring to multiple other banks, but for simplicity we
assume there is one spending and one receiving bank in
each transaction. Banks determine the details of a trans-
fer transaction outside of zkLedger, perhaps through an
exchange. We assume they use encrypted channels.

Append-only ledger. Banks submit transactions to an
append-only ledger, which globally orders all valid trans-
actions. If a digital asset only exists on the ledger, then
transfer on the ledger is change in legal custody of the dig-
ital assets, not merely a record of ownership change, and
an Auditor is guaranteed a Bank is not hiding assets. This
ledger could be maintained by a trusted third party, by the
banks themselves, or via a blockchain like Ethereum or
Bitcoin. Maintaining a fault-tolerant, globally ordered log
is outside the scope of this paper, but can be done using
standard techniques [15, 30, 39].

3.2 Cryptographic building blocks

Commitment schemes. To protect their privacy partici-
pant banks do not broadcast payment details, such as the
transaction amount, in plain. Instead the banks post hid-
ing commitments to the append-only ledger; in particular,
zkLedger uses Pedersen commitments [41]. Let G be a
cyclic group with s = |G| elements, and let g and h be two
random generators of G. Then a Pedersen commitment to
an integer v ∈ {0,1, . . . ,s−1} is formed as follows: pick
commitment randomness r, and return the commitment
cm := COMM(v,r) = gvhr.

Pedersen commitments are perfectly hiding: the com-
mitment cm reveals nothing about the committed value v.
In a similar way, the commitments are also computation-
ally binding: if an adversary can open a commitment cm
in two different ways (for the same r, two different values
v and v′), then the same adversary can be used to compute
logh(g) and thus break the discrete logarithm problem in
G. In zkLedger we choose G to be the group of points on
the elliptic curve secp256k1.

A very useful property of Pedersen commitments is
that they are additively homomorphic. If cm1 and cm2 are

68 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Use Commitment
Cache to prove answer

0 $
1 €
2 $

TX DB

Commitment Cache

Bank of America

13:05:58 2/17/18

13:05:59 2/17/18

13:06:01 2/17/18

Add transaction
Notify of new transaction

Determine
trade

details

Commitment Cache

Auditor

Notify of new transaction

TX DB

Commitment Cache

JPMorgan

Respond
to Audit Audit

Use Commitment
Cache to verify audit

Bank of America Goldman Sachs JP Morgan

transaction commitments and proofs

Figure 1: Overall zkLed-
ger system design showing
the interactions between the
three main entities (banks,
auditor, and the shared
ledger) in our system. Each
bank maintains private state,
consisting of the transaction
database for transactions the
bank originated, and the
bank’s secret key.

two commitments to values v1 and v2, using commitment
randomness r1 and r2, respectively, then cm := cm1 ·cm2
is a commitment to v1 + v2 using randomness r1 + r2, as
cm=(gv1hr1) ·(gv2hr2)= gv1+v2 hr1+r2 . To speed up trans-
action generation and auditing zkLedger makes extensive
use of the ability to additively combine commitments.

Public-key encryption. Every bank i also generates a
Schnorr signature keypair keypair consisting of a secret
key ski and public key pki := hski , and distributes the
public key pki to all other system participants.

Non-interactive zero-knowledge proofs. To make
privacy-preserving assertions about payment details zk-
Ledger relies on non-interactive zero-knowledge proofs
(NIZKs) [9]. In brief, zero-knowledge proofs concern
two parties: the prover, who holds some private data, and
the verifier, who wishes to be convinced of some property
about this private data. For example, the prover might
know the opening of a commitment cm, and wish to con-
vince the verifier that the committed value v is in some
range, e.g., 0 ≤ v < 106. Using NIZKs, the prover can
produce a binary string π , the proof, that simultaneously
persuades the verifier, yet does not reveal anything else
about v. Verifying π does not require any interaction
between the prover and the verifier, and the prover can
append π to the ledger, where it can be verified by any
party of the system.

In theory, NIZK proof systems exist for all properties
in NP whereas the practical feasibility of NIZKs is highly-
dependent on the complexity of the property at hand. In
particular, algebraic properties in cyclic groups, such as,
knowledge of discrete logarithm, equality of values com-
mitted in Pedersen commitments, or similar have very
efficient NIZK proof systems. The design of zkLedger is
carefully structured so that all NIZK proofs have particu-
larly efficient constructions.

3.3 Security Goals
The goals of zkLedger are to hide the amounts, partici-
pants, and links between transactions while maintaining a
verifiable transaction ledger, and for the Auditor to receive
reliable answers to its queries. Specifically, zkLedger lets
banks issue hidden transfer transactions which are still
publicly verifiable by all other participants; every partici-
pant can confirm a transaction conserves assets and assets
are only transferred with the spending bank’s authority.
For example, if Banki transfers 10,000 C to Bank j, both
the banks and amount are hidden. The asset (C) and time
of the transaction are not hidden. zkLedger also hides the
transaction graph, meaning which previous transaction(s)
supplied the 10,000 C to Banki in the first place.

An Auditor can query a Bank about its contents on the
ledger, for example “How many euros does Bank j hold?”
A bank should be able to produce commitments which
will convince the auditor that the bank’s answer to the
auditing query is correct, meaning consistent with the
transactions on the ledger. zkLedger ensures that if a bank
gives the Auditor an answer that is inconsistent with the
ledger, the Auditor will catch such attempt of cheating
with high probability (and of course, a trustworthy answer
must always be accepted).

3.4 Threat model
zkLedger does not assume that banks will behave
honestly—they can attempt to steal assets, hide assets,
manipulate their account balances, or lie to auditors. We
assume banks can arbitrarily collude. zkLedger keeps the
amounts and participants of transactions private as long
as neither the spender nor receiver in a transaction collude
with an observer, like the Auditor. We assume that the
ledger does not omit transactions and is available. zkLed-
ger does not protect against an adversary who observes
traffic on the network; for example, if only two banks
are exchanging messages, it’s reasonable to assume the
transactions in the ledger involve those banks. Nothing

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 69

beyond what is necessarily leaked by an audit is revealed.
However, frequent auditing might reveal transaction con-
tents; e.g. if an auditor asks for banks’ assets after every
transaction.

4 Design
The challenge in creating zkLedger is to practically sup-
port complete, confidential auditing—an Auditor should
not be able to see individual bank transactions, but a Bank
should not be able to hide assets from the Auditor dur-
ing an audit, and the auditor should be able to detect an
incorrect answer.

Figure 1 shows a general overview of zkLedger. There
are banks which determine transactions out of band and
then settle them by appending transactions to the ledger.
The ledger makes sure all banks and any auditors see
new transactions. Each bank and auditor maintains a
commitment cache, which are commitments to summed
values used to make creating transactions and responding
to audits faster. Each bank also has private stores of plain-
text transaction data.

The rest of this section describes the zkLedger trans-
action format, how banks create transactions, and how a
bank can answer a simple query from the auditor.

4.1 Transactions
The ledger in zkLedger is a table where transactions cor-
respond to rows, and Banks correspond to columns. Each
transaction has an entry for each Bank. Figure 2 shows a
ledger with n banks. Each entry in a transaction includes
a commitment to a value which is the amount of the asset
that is being debited or credited to the bank. For exam-
ple, if Banki wants to transfer 100 shares of an asset to
Bank j, i’s entry in the transaction would contain a com-
mitment to -100 and j’s would contain a commitment to
100. All other entries in the transaction would contain
commitments to 0, since none of the other bank balances
were changed. This scheme has the nice property that
an outside observer can look at a bank’s entire column
and know that this represents the entirety of the bank’s
holdings.

Hiding amounts. As described in §3.2, zkLedger does
not include the value in plain-text in the transaction. In-
stead, zkLedger uses Pedersen commitments to commit
to the value in transfer transactions. This makes value
commitments completely indistinguishable—an outside
observer cannot tell the difference between a commitment
to a positive value, a negative value, or 0. Recall that a
commitment to a value v is cm := COMM(v,r) = gvhr.
If desired, a prover can reveal v and r to a verifier who
knows cm and the verifier can confirm this is consistent.

Since a transaction in zkLedger contains an entry for
every Bank, there is a size-n vector ~cm committing to
values in ~v. Each commitment cmk uses a fresh com-
mitment randomness rk. Most of the entries will contain
commitments to 0, for banks that are not involved with the
transaction, but this is not apparent to an outside observer.

zkLedger maintains the following financial invariants:

• A transfer transaction cannot create or destroy assets

• The spending bank must give consent to the transfer
and must actually own enough of the particular asset to
execute this transaction

In a public blockchain, the validators could simply
confirm that these things are true by looking at the history
of transactions and the current transaction, and making
sure the spending bank has the funds to spend. However,
in zkLedger these values are not public. Instead, we
create a set of proofs that the spender can create to prove
the invariants are maintained. The spender can create
a transaction without interacting with any of the other
banks.

First, zkLedger introduces a Proof of Balance (πB).
This is a proof that the transaction conserves assets; no
assets are created or destroyed (of course, public is-
suance and withdrawal transactions do not have such
proofs). More formally, the committed values should
satisfy ∑

n
k=1 vk = 0. To prove this, the prover chooses the

rk carefully: it should also be the case that ∑
n
k=1 rk = 0.

If this is true and the values also sum to 0, then the ver-
ifier can check to make sure that ∏

n
k=1 cmk = 1 for the

commitments in the row.
Next, zkLedger must ensure that the spending bank

actually has the assets to transfer. To do this, zkLedger in-
troduces a Proof of Assets (πA). Other privacy-preserving
blockchain systems use Unspent Transaction Outputs,
or UTXOs, to show proof of assets and prevent double
spending. For example, if Alice wants to send a coin to
Bob, she chooses one of her coins, creates a new trans-
action addressing the coin to Bob, and includes a pointer
to the previous transaction where she received the coin.
This previous transaction is an output. All of the valida-
tors in the system maintain the invariant that outputs can
only be spent once. Unfortunately, in systems without zk-
SNARKs, this leaks the transaction graph. In zkLedger, a
bank proves it has assets by creating a commitment to the
sum of the values for the asset in its column, including
this transaction. If the sum is greater than or equal to 0,
then the bank has assets to transfer. Note that this is true
since the bank’s column represents all the assets it has
received or spent, and the Pedersen commitments can be
homomorphically added in columns as well as in rows. In

70 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

order to produce a proof with the correct sum, the bank
must have seen every previous transaction. This implies
that banks must create transactions serially. In its own
entry where the value is negative, the bank includes proof
of knowledge of secret key to show that it authorized the
transaction. This requires creating a disjunctive proof—
either the committed value for entry i has vi ≥ 0, or the
creator of the transaction knows the secret key for Banki.

Range proofs. Because commitment values are in an
elliptic curve group and rely on modulus, we need to make
sure that the commited values are within an acceptable
range. To see why, note that if N is the order of the
group, then COMM(v,r) = COMM(v+N,r); there is no
way to distinguish between the two. Without a check
to make sure the commited value is within the range
[0,N − 1], a malicious bank could undetectably create
assets. To address this, we use range proofs as described
in Confidential Assets [42], which uses Borromean ring
signatures [35]. zkLedger supports asset value amounts
up to a trillion. Range proofs are the most expensive
part of the transaction; as described, our scheme requires
two range proofs—one for the commitment value, and
another for the sum of assets in the column. We can
squash the two range proofs down to one range proof by
introducing an auxiliary commitment, cm′i. cm′i is either
a re-commitment to the value in cmi or the sum of the
values in the column up to row m, ∑

m
k=0 vk, which can be

achieved by computing the product of the commitments
in the column, ∏

m
k=0 cmk. Then, we can do one range

proof on the value in cm′i. Either this is the spending
bank, in which case cm′i must be a commitment to the
sum, or it is another bank which is receiving funds or not
involved, in which case cm′i could be either (and it does
not matter which it is).

This satisfies the financial invariants described above.
However, a particular design choice we made in zkLedger
is that a spending bank can create a transaction spending
its own assets without interacting with other banks. This
means that a malicious bank could create transactions
which maintain financial invariants but are ill-formed. We
will address this problem after describing how auditing
works.

Once created, a bank broadcasts the transaction, and
it will be appended to the ledger. If the banks are main-
taining the ledger, each bank is responsible for validating
the transaction before accepting it to the ledger. If a third
party is maintaining the ledger, then the third party should
verify the proofs in a transaction before accepting it.

Example transaction. Figure 2 shows a transaction
where Bank of America is transferring one million euros
to Goldman Sachs. Bank of America creates the transfer

transaction, publishing the transaction id, timestamp, and
asset type (euros) publicly. Bank of America commits to
the amount deducted from its own assets, −1,000,000,
in its own entry and 1,000,000 in Goldman Sachs’s en-
try. For every other bank, Bank of America commits to
0. This serves to hide the banks involved in the transfer;
no one except Bank of America can distinguish between
the commitments to determine which are commiting to
nonzero values. Bank of America then broadcasts the
transaction to the ledger. The ledger maintainer validates
the transaction and appends it to the ledger. Once ac-
cepted to the ledger, this serves as a complete transfer
of 1,000,000 euros from Bank of America to Goldman
Sachs.

4.2 Auditing Protocol
The Auditor has a copy of the ledger and interacts with
the banks to calculate functions on their private data, in
order to get a view of the financial system represented by
the ledger.

The Auditor audits Banki by issuing a query to Banki,
for example, “How many euros do you hold at time t?”.
Banki responds to the auditor with an answer and a proof
that the answer is consistent with the transactions on the
ledger. The Auditor multiplies the commitments on the
ledger in Banki’s column for euros, and verifies the proof
and answer with the total. This is a commitment to the
the total amount of euros Banki holds.

The key insight here is that given this table construction,
the Auditor can read bank i’s column and know that it
is seeing every asset transfer involving i. There is no
way for i to “hide” assets on the ledger without actually
transferring assets and giving control to another bank. In
contrast, during a traditional audit, a bank could simply
not show the auditor some of its balance sheet.

Banks could collude to hold assets for each other tem-
porarily; for example Bank j might transfer assets to
Banki and take them back later. For that time period,
the assets would be part of Banki’s holdings. But banks
cannot collude after an Auditor poses a query because
the Auditor has already specified the time t at which the
query applies. Any transfer would necessarily have to be
after t. So at this point, it is too late for a malicious bank
to create a new transaction transferring assets to another
bank.

As described above, a bank can create a transaction
transferring its own assets without any interaction. This
is common with most blockchain systems, where only
the signature of the sender is required to create a valid
transaction. There is no in-protocol way for a receiver to
object to a transfer. Given our table construction, every
bank is affected by every transaction, because a bank must

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 71

Metadata Bank1 Bank2 Bank3 . . . Bankn
ID Asset Time (Bank of America) (Goldman Sachs) (JPMorgan) . . . (Citigroup)

1 e 13:06:01 COMM(−106,r1) COMM(106,r2) COMM(0,r3) · · · COMM(0,rn)
2/17/18 Token1 Token2 Token2 · · · Tokenn

πA
1 ,π

B
1 ,π

C
1 πA

2 ,π
B
2 ,π

C
2 πA

3 ,π
B
3 ,π

C
3 · · · πA

n ,π
B
n ,π

C
n

Figure 2: Contents of the ledger pertaining to a transaction that sends 106 euros from Bank1 to Bank2. Note that while asset type (euro) is visible
as part of the metadata, the transaction amount (106 e) and participating institutions (Bank of America and Goldman Sachs) remain private. We
use Pedersen commitments, so the commitment part of the row has values g−106

hr1 , g106
hr2 ,and hr3 , . . . , hrn . Similarly, audit tokens pictured

have values (pk1)
r1 , (pk2)

r2 , For each bank Banki, the corresponding column also includes proof-of-assets πA
i , proof-of-balance πB

i , and
proof-of-consistency πC

i .

total all of the commitments in its column to respond to
the Auditor—even commitments for transactions in which
it was not involved. A malicious Banki could create a
transaction and not inform the another Bank j of the r j
used in its entry, even if it is not transferring assets to
Bank j. Bank j would be unable to respond to the Auditor
because it would not be able to open up the product of the
commitments in its column.

In order to prove the integrity of a transfer transaction,
zkLedger must ensure an additional invariant:

• All banks have enough information in the transaction
to open up commitments for the Auditor

zkLedger does this by requiring the spending bank to
include a publicly verifiable Token in every entry. This
is defined as Tokenk := (pkk)

rk . Bankk uses this token to
open up the product of its commitments for the Auditor,
without needing to know rk.
Using audit tokens. Consider a query for a sum of values
in a bank’s column. One way of answering this query
would be to reveal ∑vk and ∑rk. Then the auditor would
simply check that these plain values are consistent with
the homomorphically computed value ∏cmk = g∑vk h∑rk .

However, a bank does not necessarily know all the
commitment randomnesses rk (in particular, these values
are unknown for any transaction that the bank was not
party to), so the naive approach does not work.

One approach could be to ask the preparer of the trans-
action (i.e. the sender) to encrypt rk so that the non-
participating bank Bankk can decrypt it. To prevent the
sending bank from placing a “garbage” ciphertext on the
ledger (and thus making Bankk fail the auditor’s queries),
one would need a zero-knowledge proof of consistency
between the encrypted value and the commitment. Con-
structing a concretely efficient proof for this statement is
non-trivial: in a nutshell, standard encryption schemes
(e.g. ElGamal) embed plain-text in a group element, while
Pedersen commitments would have this value in the expo-
nent.

Our insight is that Bankk does not need to open ∑rk
to prove that ∑vk is correct. Instead, suppose that Bankk

wants to claim that s = g∑vk h∑rk opens up to a value
∑vk. To do so, the bank computes s′ = s/g∑vk = h∑rk and
t = ∏k Tokenk = hsk∑rk . Note that the auditor can also
compute the values of s′ and t from the ledger and the
claimed answer ∑vk.

It suffices for the bank to prove that logs′ t = logh pk.
Observe that both logarithms evaluate to sk so a bank can
produce this proof without knowing ∑ri. Moreover, if
this equation holds then t1/sk = s′ = s/g∑v, but if the ∑v
was incorrect then knowledge of sk would reveal a linear
relationship between g and h, which is ruled out by our
security assumption.

To show that the r in the Tokenk is the same as the
r in rk, we require an additional Proof of Consistency
(πC). This is a zero-knowledge proof asserting that for
each k the value rk used to form cmk and Tokenk is the
same. (See Appendix B for details of how such proof is
constructed.)

Note that audit tokens are only useful to the bank open-
ing its commitment; though public, a malicious bank
cannot use another bank’s Token to successfully open an
incorrect result or learn information about other bank’s
transactions.

4.3 Final transaction construction
For a transfer transaction in row m, each entry i contains
the following items:
• Commitment (cmi): (gvihri) a Pedersen commitment

to the value we are transferring.
• Audit Token (Tokeni): (pki)

ri . This is used to answer
audits without knowing the randomness used in the
commitment.

• Proof of Balance (πB): a zero-knowledge proof assert-
ing that the committed values satisfy ∑

n
k=1 vk = 0.

• Proof of Assets (πA): a new commitment cm′i, corre-
sponding token Token′i, and a zero-knowledge proof
asserting that either cm′i is a re-commitment of the
value in cmi or a recommitment to the sum of the val-
ues in ∏

m
j=0 cm j, and cm′i is in range [0,240). If the

committed value in cmi is negative, the proof asserts
bank i consented to the transfer.

72 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Proof of Consistency (πC): two zero-knowledge
proofs asserting the randomness used in cmi and Tokeni
are the same, and the randomness used in cm′i and
Token′i are the same. This is to prevent a malicious
bank from adding data to the ledger that would stop
another bank from being able to open its commitments
for the Auditor.
Transactions may contain additional metadata in plain-

text or not. For example, banks might want to include
encrypted account numbers, addresses, or identifying in-
formation on behalf of a customer to satisfy the Travel
Rule specified in the Bank Secrecy Act of 1970 [1]. zk-
Ledger supports auditing over metadata in the transaction
as well, but it does not have a way to publicly verify
additional metadata.

4.4 Adding or removing banks
zkLedger can support dynamically adding or removing
banks if done so publicly. The participants (or another
authority) append a signed transaction to the ledger indi-
cating which banks, and thus columns, should be added
or removed. For example, to add a new bank to the
ledger shown in Figure 2, the involved banks would ap-
pend a transaction to the ledger indicating an intent to
add Bankn+1. From that point forward, all transactions
should contain n+ 1 entries. The Proof of Assets for
Bankn+1’s entry in each transaction will start at the row
where Bankn+1 was added. Similarly, if a bank is re-
moved, later transactions should not include entries for
that bank. Since all participants can see which banks
were added or removed, they can adjust their proofs and
verifications accordingly.

4.5 Optimizations
zkLedger employs several optimizations to make produc-
ing and verifying these proofs faster, and to support faster
auditing. First, caching the product of the commitments
in a bank’s column improves auditing and proof creation
speed. Each bank stores a rolling product of commitments
by row and by asset so that it can quickly produce proofs
of assets and answer queries from auditors. Using these
caches, a bank can quickly answer an auditor’s query on
a subset of rows in the ledger.

Most transactions in zkLedger do not include every
bank. Every bank can pre-generate many range proofs
for the value 0. We speedup transaction throughput by
parallelizing range proof generation and validation.

5 Auditing
Auditing is a critical component of the financial system,
and regulators use various techniques to measure systemic
financial risk. Through the use of sums, means, ratios,

variance, co-variance, and standard deviation, an auditor
in zkLedger can determine the following, among other
measurements:
• Leverage ratios. zkLedger can show how much of an

asset a bank has on its books compared to its other
holdings. This is helpful to estimate counterparty risk.

• Concentration. Regulators use a measure called the
Herfindahl-Hirschman Index (HHI) to measure how
competitive an industry is [29].

• Real-time price indexes. Auditors can get a sense of
the price of assets that are traded over-the-counter and
thus not tracked through exchanges.
Natively, zkLedger supports sums, which means linear

combinations of values stored in the ledger. This comes
from the additive structure of Pedersen commitments.
But zkLedger also supports a more general query model,
which can be considered in two parts: A map step and a
reduce step.
Basic auditing. Consider the basic example where an
auditor wants to determine how much of an asset a bank
has on its books. As described in §4.2, the auditor will
filter the rows by asset, multiply the entries in the bank’s
column, and then ask the bank to open the commitment
product. This only requires one round of communica-
tion between the auditor and the bank and the messages
are a constant size, independent of the number of rows.
Because of zkLedger’s commitment caches, this is very
fast.
Map/reduce. An auditor can issue more complex queries
that might require the exchange of more data or might
require the participants to look at most of the rows in the
ledger. Let’s consider an auditor which wants to know the
mean transaction size for a given bank and asset. An au-
ditor cannot verify a bank’s answer by simply totaling the
bank’s column of commitments and dividing the opened
value by the number of rows, because such a computation
would have an incorrect denominator. Namely, when the
bank is not involved in a transaction, its column in the
row will be commitment to 0, and should be discounted.
In order to determine the correct denominator, the auditor
and the bank run the following protocol:
1. Filter. The bank will filter the rows by asset.
2. Produce new commitments. For each row, the bank

will commit to a single bit b, 1 or 0, depending on if
the bank was involved in the transaction or not, and cre-
ate a proof that the bank has done this recommitment
correctly. Crucially, the auditor cannot distinguish
between these commitments and so the bank’s trans-
actions are not revealed. We call this act of producing
new commitments the map step. The map step also
requires producing proofs that the new values were

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 73

correctly computed; in our example, for each transac-
tion, the bank would produce a NIZK proof that b = 1
if and only if the transaction value was not equal to 0.

3. Compute number of non-zero transactions. The
bank computes the homomorphic sum of the new com-
mitments to bits~b and opens it to reveal how many
transactions were non-zero. This is the reduce step.
This is the correct denominator to compute the mean
transaction size. The auditor cannot tell anything about
the values in~b beyond what is revealed by the sum.

4. Respond to auditor. The bank then sends the auditor
the sum of the values in its column, the vector of bit
commitments and corresponding NIZK proofs, the
number of its non-zero transactions n, and the sum of
the r values in the commitments.

5. Verification. The auditor verifies the map step by
verifying the commitments were done correctly, and
verifies the reduce step and the number of non-zero
transactions by confirming that the product of the vec-
tor of bit commitments is gnh∑

N
k=1 rk .

6. Compute answer. The auditor computes the mean
from the sum of the bank’s column and the number of
non-zero transactions.
An auditor could ask a bank for outlier transactions

using a similar technique. For each row, the bank will
commit to a bit b where b = 1 if a transaction’s value for
that bank is outside a specified range. As when computing
the mean, the auditor can verify these commitments were
produced correctly and obtain the sum. The bank can then
open only the transactions where b = 1, and the auditor
knows exactly how many transactions should be opened.

More complex auditing queries require multiple map
and reduce computations. For example, here is how
an auditor can learn the variance of transaction values
v1, . . . ,vN :

1. Compute the average transaction value. Execute
the protocol described above to compute the number
of non-zero transactions n, and their average value v̄.

2. Apply the squaring map. For each entry vi in its row,
the bank produces a fresh commitment cm′i to v2

i and
sends these commitments to the auditor. The bank also
supplies NIZK proofs that the value hidden in each
cm′i is exactly the square of the value vi committed to
on the ledger.

3. Apply the reduce step. The auditor computes the
product of the commitments cm′i, and the bank opens
up this commitment as V = v2

1 + · · ·+ v2
N by revealing

R = ∑
N
i=1 ri. The auditor confirms that the product of

the commitments is equal to gV hR.

The auditor now computes the variance σ as follows:
σ2 = 1

n ∑vi 6=0(vi− v̄)2 = 1
nV − v̄2.

We note that whereas the square mapping used above
corresponds to the second moment (variance), zkLedger
can also compute higher statistical moments (e.g. skew-
ness and kurtosis) using similar techniques and using
cubing and fourth power mappings, respectively. See Ap-
pendix A for a list of measurements zkLedger supports.

zkLedger can support limited information release by
using more complex reduce mappings. For example, in-
stead of releasing the sum of values, the bank can produce
a commitment to the rounded sum of values (e.g. to the
first two decimal places), and use range proofs, also im-
plemented in zkLedger, to show that the rounding was
done correctly. Revealing just the order of magnitude of
the quantity at hand lets the parties balance the granularity
of information disclosure.
6 Implementation
To evaluate zkLedger’s design, we implemented a pro-
totype of zkLedger in Go. Our prototype uses a modi-
fied version of the btcec library [2] that contains the pa-
rameters and methods to compute with the elliptic curve
secp256k1. We use Go’s built-in SHA-256 implementa-
tion for our cryptographic hash function, and determin-
istically pick g and h by applying point decompression
to the “nothing-up-my-sleeve” strings SHA256(0) and
SHA256(1). Our prototype consists of approximately
3,200 lines of code, of which 40% implement crypto-
graphic tools used by zkLedger (zero-knowledge proofs,
range proofs, etc).

The implementation of the curve in zkLedger uses Go’s
big.Int type, which we make no effort to compress or
serialize in an efficient way. A more optimized imple-
mentation could compress curve points. Our range proofs
implement the protocol used in Confidential Assets [42].
Our NIZKs are based on Generalized Schnorr Proofs,
which are three move interactive protocols; to make them
non-interactive we apply the Fiat-Shamir heuristic [26],
where we instantiate the random oracle using the SHA-
256 hash function. Our prototype implementation does
not implement the complex queries described in §5, and
thus we do not evaluate them in §7.

7 Evaluation
Our evaluation answers the following questions:
• How expensive is it to store, prove and verify the differ-

ent proofs in zkLedger? (§7.2)
• How does auditing scale with the size of the ledger?

(§7.3)
• How does zkLedger scale with the number of banks?

(§7.4)

74 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Component Create Verify Size

2k Commitment 0.5 ms 0.5 ms 64 B
2k Consistency 0.7 ms 0.8 ms 224 B
k Disjunctive 0.9 ms 0.9 ms 288 B
k Range 4.7 ms 3.5 ms 3936 B

Table 1: Number of each proof component in a transaction for k banks.
Size of and time to create and verify the components with 12 cores. The
range proof create and verify benefit from the additional cores.

7.1 Experimental setup

Microbenchmarks. We run microbenchmarks on a 12
core Intel machine with i7-X980 3.33 GHz CPUs and
24GB of RAM, running 64-bit Linux 4.4.0 on Ubuntu
16.04.3. Each microbenchmark runs the same code a
Bank runs to create and validate transactions.

Distributed experiment. We run the distributed experi-
ments on a set of 12 virtual machines each with 4 cores of
Intel Xeon E5-2640 2.5 GHz processors, 24GB of RAM,
and the same software setup as above. There is one au-
ditor, one server providing the service of the ledger, and
a varying number of banks, one per server. Servers com-
municate using the net/rpc Go package over TCP. All
experiments use Go version 1.9.

7.2 Proof overhead in zkLedger
Table 1 shows the time to prove and verify the proofs in a
transaction in zkLedger. There are two commitments, two
consistency proofs, and one each of the disjunctive and
range proofs in a transaction entry. There is a transaction
entry per Bank. Table 1 also shows the sizes of the various
proofs, in bytes. These sizes are estimated based on the
size of the underlying fields in the struct in memory;
these proofs could be further compressed. Range proofs
dominate the size of the transactions.

The left graph in Figure 3 shows the time it takes to
create and verify a transaction varying the number of
overall banks, which increases the number of entries per
transaction. This indicates that as we increase the number
of banks, both transaction creation and verification times
per bank increase linearly, but parallelization helps. Prov-
ing and validating range proofs dominates transaction
creation and verification, but this cost is also highly paral-
lelizable. 12 cores gives a 2.8× speedup when creating a
transaction with 20 banks; a bank can create or validate a
transaction for up to 20 banks in less than 200ms.

As described in §4.1, zkLedger uses Borromean ring
signatures to prove that a value is in a certain range, and
supports values up to 240. Reducing the supported range
of values would reduce range proof cost since that cost is
linear in the number of bits in the size of the range. There
are also newer proof systems, such as Bulletproofs, which

might create much smaller range proofs [13]. We plan to
evaluate zkLedger with Bulletproofs in future work.

7.3 Cost of auditing ledgers
The left graph in Figure 4 shows that for certain func-
tions, the time to audit is independent of the number of
transactions in the ledger. This is because the Auditor
and Banks maintain commitment caches, which already
have the commitment product necessary to prove to the
auditor the sum of the values in its column. The audit
function is measuring the Herfindhal-Hirschman Index,
so the auditor communicates with each bank.

When the auditor cannot use a commitment cache, per-
haps because it was offline, it must process the whole
ledger to compute the commitment product. This also
applies to more complex auditing like the types described
in §5, when the auditor has to verify recommitments for
every row in the ledger. These costs are shown in the
middle graph in Figure 4. This graph shows how long it
takes the auditor to compute the Herfindahl-Hirschman
Index on a ledger of varying sizes without using the com-
mitment caches, so the auditor must process every row of
the ledger. In these measurements, the auditor does not
verify each row. As expected, this time increases linearly
with the number of rows. This indicates that maintaining
commitment caches is important for real-time auditing.
However, even without commitment caches, auditing time
is reasonable: 3.5 seconds for 100K transactions. This
suggests the complex auditing queries, in which the au-
ditor computes a similar set of operations per row, will
also be on the order of many seconds. zkLedger currently
only maintains commitment product caches per asset per
bank, but could maintain more.

For a fixed size ledger, this audit function costs order
the number of banks. The right graph in Figure 4 demon-
strates the auditing costs of computing the Herfindahl-
Hirschman Index on a ledger of 2000 transactions as we
vary the number of banks, both with and without com-
mitment caches. The auditor audits the banks in parallel.
Auditing cost for this function grows slightly with the
number of banks, since more banks increase the variabil-
ity in parallel auditing and the auditor must wait for the
last bank to respond before computing the final answer.

In these figures, each point is the mean of running the
auditing query 20 times, with error bars representing one
standard deviation from the mean.

7.4 Scaling with more banks
There are two significant costs that grow with the number
of banks in zkLedger: a serial step to create transactions
that increases linearly, and verifying transactions which
increases quadratically with the number of banks. As

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 75

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

m
s
)

number of banks

verify-1
create-1
verify-12

create-12

 0

 200

 400

 600

 800

 1000

 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

number of banks

complete transactions

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

number of banks

all banks transacting
one bank transacting

Figure 3: Transaction creation and verification time for one bank (left), varying the number of entries in the transaction. Single-threaded and
multi-threaded performance, with 12 threads. Time to fully process a transaction including creation, broadcast to ledger, banks and auditor, and
verification by all parties (middle). Throughput (right) varying the number of banks.

 0

 2

 4

 6

 8

 10

 12

0K 20K 40K 60K 80K 100K

A
u

d
it
in

g
 t

im
e

 (
m

s
)

Transactions in ledger

online auditor

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0K 20K 40K 60K 80K 100K

Transactions in ledger

offline auditor

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10

Number of banks

offline auditor

online auditor

Figure 4: Time to audit ledgers of different sizes (4 banks), and with a varying number of banks (2000 row ledger). Audit time is independent of the
size of the ledger (left) thanks to commitment caches maintained by the online auditor. When commitment cache optimization is turned off (middle)
the audit time is linear in the size of the ledger. Audit time grows with the number of banks (right) and is much higher without commitment caches.

described in §4.1, a bank needs to use its entry from
transaction n−1 to create transaction n. So though a bank
can use many cores to produce the proofs for a single
transaction in parallel, multiple banks cannot produce
different transactions in parallel. In zkLedger, banks start
creating transaction n before seeing n− 1 but the bank
cannot complete the transaction until n−1 is accepted to
the ledger and verified, causing an inherent bottleneck.

The second major cost is around verification. Every
bank must verify every transaction, so the more banks,
the larger each transaction and thus the more work that
needs to be done by each bank. The middle graph in
Figure 3 measures the time it takes one bank to create
and all participants in zkLedger to completely process
a transaction. One bank creates a transaction and sends
it to the ledger, which then broadcasts the transaction to
all banks and an online auditor. The auditor and every
bank verify the transaction. As we increase the number
of banks, work increases quadratically; however, banks
can verify transactions in parallel so the time to process
transactions only increases linearly. The right graph in
Figure 3 shows that as we surmised, zkLedger’s through-
put worsens with more banks. The one bank transacting
line in this graph is the same data as the middle graph.

Since range proofs dominate the costs of transaction
creation and verification, we are optimistic that a faster
range proof implementation will directly improve perfor-
mance. zkLedger’s current performance is comparable
to Solidus, a privacy-preserving distributed ledger which
achieves 3-4 transactions per second with online valida-
tion but, unlike zkLedger, does not support auditing.

8 Future work
zkLedger focuses on providing provably correct auditing
over private transaction data, but zkLedger does not have
a way to recover if the distributed ledger is corrupted. In
this case, the parties maintaining the ledger would have
to come together to recreate historical transactions. zk-
Ledger also does not provide recourse if a bank commits
an unintended transaction to the ledger. A future ver-
sion of zkLedger might provide rectifying transactions or
participant agreed-upon rollback.

9 Conclusion
zkLedger is the first distributed ledger system to provide
strong transaction privacy, public verifiability, and com-
plete, provably correct auditing. zkLedger supports a rich
set of auditing queries which are useful to measure the
financial health of a market. We developed a design using
non-interactive zero-knowledge proofs to prove transac-
tions maintain financial invariants and to support auditing.
Our evaluation shows that zkLedger has reasonable per-
formance for transaction settlement and auditing.

10 Acknowledgements
We thank Alexander Chernyakhovsky, Thaddeus Dryja,
David Lazar, Ronald L. Rivest, C.J. Williams, and our
shepherd and reviewers for helpful comments. The re-
search leading to these results has received funding from:
the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under grant agreement
CCF-0939370; and the Ethics and Governance of Artifi-
cial Intelligence Fund.

76 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Bank secrecy act of 1970, October 1970. 12 U.S.C. 103.
[2] Package btcec implements support for the elliptic curves

needed for Bitcoin., July 2017. https://godoc.org/
github.com/btcsuite/btcd/btcec.

[3] ABBE, E. A., KHANDANI, A. E., AND LO, A. W.
Privacy-preserving methods for sharing financial risk ex-
posures. The American Economic Review 102, 3 (2012),
65–70.

[4] ARASU, A., BLANAS, S., EGURO, K., KAUSHIK, R.,
KOSSMANN, D., RAMAMURTHY, R., AND VENKATE-
SAN, R. Orthogonal security with cipherbase. In CIDR
(2013).

[5] BAJAJ, S., AND SION, R. Trusteddb: A trusted hardware-
based database with privacy and data confidentiality. IEEE
Transactions on Knowledge and Data Engineering 26, 3
(2014), 752–765.

[6] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding
applications from an untrusted cloud with haven. ACM
Transactions on Computer Systems (TOCS) 33, 3 (2015),
8.

[7] BEN-SASSON, E., CHIESA, A., GENKIN, D., TROMER,
E., AND VIRZA, M. SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In Advances
in Cryptology–CRYPTO 2013. Springer, 2013, pp. 90–108.

[8] BEN-SASSON, E., CHIESA, A., GREEN, M., TROMER,
E., AND VIRZA, M. Secure sampling of public parameters
for succinct zero knowledge proofs. In Proceedings of the
2015 IEEE Symposium on Security and Privacy (2015),
SP ’15, pp. 287–304.

[9] BLUM, M., FELDMAN, P., AND MICALI, S. Non-
interactive zero-knowledge and its applications. In Pro-
ceedings of the 20th Annual ACM Symposium on Theory
of Computing (1988), STOC ’88, pp. 103–112.

[10] BOGDANOV, D., TALVISTE, R., AND WILLEMSON, J.
Deploying secure multi-party computation for financial
data analysis. In International Conference on Financial
Cryptography and Data Security (2012), Springer, pp. 57–
64.

[11] BOWE, S., GABIZON, A., AND GREEN, M. A multi-
party protocol for constructing the public parameters of
the Pinocchio zk-SNARK. Cryptology ePrint Archive,
Report 2017/602, 2017.

[12] BOWE, S., GABIZON, A., AND MIERS, I. Scalable multi-
party computation for zk-SNARK parameters in the ran-
dom beacon model. Cryptology ePrint Archive, Report
2017/1050, 2017.

[13] BÜNZ, B., BOOTLE, J., BONEH, D., POELSTRA, A.,
AND MAXWELL, G. Bulletproofs: Short proofs for Con-
fidential Transactions and more. In Security and Privacy
(SP), 2018 IEEE Symposium on (2018), IEEE.

[14] BURKHART, M., STRASSER, M., MANY, D., AND DIM-
ITROPOULOS, X. Sepia: Privacy-preserving aggregation
of multi-domain network events and statistics. Network 1,
101101 (2010).

[15] CASTRO, M., AND LISKOV, B. Practical byzantine fault
tolerance. In OSDI (1999), vol. 99, pp. 173–186.

[16] CECCHETTI, E., ZHANG, F., JI, Y., KOSBA, A., JUELS,
A., AND SHI, E. Solidus: Confidential distributed ledger
transactions via pvorm.

[17] CHAIN, I. Confidential assets. https:
//blog.chain.com/hidden-in-plain-
sight-transacting-privately-on-a-
blockchain-835ab75c01cb.

[18] CORRIGAN-GIBBS, H., AND BONEH, D. Prio: Private,
robust, and scalable computation of aggregate statistics.
arXiv preprint arXiv:1703.06255 (2017).

[19] COUNCIL, F. R. Developments in audit 2016/2017
full report, 2017. http://www.frc.org.uk/
getattachment/915c15a4-dbc7-4223-b8ae-
cad53dbcca17/Developments-in-Audit-
2016-17-Full-report.pdf.

[20] CRAMER, R., DAMGÅRD, I., AND SCHOENMAKERS,
B. Proofs of partial knowledge and simplified design of
witness hiding protocols. In Advances in Cryptology -
CRYPTO ’94, 14th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 21-25,
1994, Proceedings (1994), pp. 174–187.

[21] DAGHER, G. G., BÜNZ, B., BONNEAU, J., CLARK, J.,
AND BONEH, D. Provisions: Privacy-preserving proofs
of solvency for Bitcoin exchanges. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Com-
munications Security (Denver, CO, 2015), ACM, pp. 720–
731.

[22] Corda, 2017. https://github.com/corda/
corda.

[23] Digital asset holdings, 2017. http://digitalasset.
com.

[24] Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation).
Official Journal of the European Union L119 (May 2016),
1–88.

[25] FELDMAN, A. J., ZELLER, W. P., FREEDMAN, M. J.,
AND FELTEN, E. W. Sporc: Group collaboration us-
ing untrusted cloud resources. In OSDI (2010), vol. 10,
pp. 337–350.

[26] FIAT, A., AND SHAMIR, A. How to prove yourself:
practical solutions to identification and signature problems.
In Proceedings of the 6th Annual International Cryptology
Conference (1987), CRYPTO ’87, pp. 186–194.

[27] GARMAN, C., GREEN, M., AND MIERS, I. Accountable
privacy for decentralized anonymous payments. Cryp-
tology ePrint Archive, Report 2016/061, 2016. http:
//eprint.iacr.org/2016/061.

[28] GREENBERG, A. Fbi says it’s seized $28.5 million in
bitcoins from ross ulbricht, alleged owner of silk road.
Forbes 25 (2013).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 77

https://godoc.org/github.com/btcsuite/btcd/btcec
https://godoc.org/github.com/btcsuite/btcd/btcec
https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
http://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
http://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
http://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
http://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
https://github.com/corda/corda
https://github.com/corda/corda
http://digitalasset.com
http://digitalasset.com
http://eprint.iacr.org/2016/061
http://eprint.iacr.org/2016/061

[29] HERFINDAHL, O. C. Concentration in the steel industry.
PhD thesis, Columbia University New York, 1950.

[30] LAMPORT, L., ET AL. Paxos made simple. ACM Sigact
News 32, 4 (2001), 18–25.

[31] LI, J., KROHN, M. N., MAZIERES, D., AND SHASHA,
D. E. Secure untrusted data repository (sundr). In OSDI
(2004), vol. 4, pp. 9–9.

[32] MAHAJAN, P., SETTY, S., LEE, S., CLEMENT, A.,
ALVISI, L., DAHLIN, M., AND WALFISH, M. Depot:
Cloud storage with minimal trust. ACM Transactions on
Computer Systems (TOCS) 29, 4 (2011), 12.

[33] MAURER, U. Unifying zero-knowledge proofs of knowl-
edge. Proceedings of the 2nd International Conference on
Cryptology in Africa (2009), 272–286.

[34] MAXWELL, G. Confidential transactions. https:
//people.xiph.org/˜greg/confidential_
values.txt (Accessed 8/2017) (2015).

[35] MAXWELL, G., AND POELSTRA, A. Borromean ring
signatures. https://raw.githubusercontent.
com/Blockstream/borromean_paper/
master/borromean_draft_0.01_34241bb.
pdf (Accessed 6/2017) (2015).

[36] MEIKLEJOHN, S., POMAROLE, M., JORDAN, G.,
LEVCHENKO, K., MCCOY, D., VOELKER, G. M., AND

SAVAGE, S. A fistful of bitcoins: characterizing payments
among men with no names. In Proceedings of the 2013
conference on Internet measurement conference (2013),
ACM, pp. 127–140.

[37] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash
system, 2008.

[38] OBER, M., KATZENBEISSER, S., AND HAMACHER, K.
Structure and anonymity of the bitcoin transaction graph.
Future internet 5, 2 (2013), 237–250.

[39] ONGARO, D., AND OUSTERHOUT, J. K. In search of an
understandable consensus algorithm. In USENIX Annual
Technical Conference (2014), pp. 305–319.

[40] PAPADIMITRIOU, A., BHAGWAN, R., CHANDRAN, N.,
RAMJEE, R., HAEBERLEN, A., SINGH, H., MODI, A.,
AND BADRINARAYANAN, S. Big data analytics over
encrypted datasets with seabed. In OSDI (2016), pp. 587–
602.

[41] PEDERSEN, T. P. Non-interactive and information-
theoretic secure verifiable secret sharing. In Proceedings
of the 11th Annual International Cryptology Conference
(1992), CRYPTO ’91, pp. 129–140.

[42] POELSTRA, A., BACK, A., FRIEDENBACH, M.,
MAXWELL, G., AND WUILLE, P. Confidential assets,
2017. 4th Workshop on Bitcoin and Blockchain Research.

[43] POPA, R. A., REDFIELD, C., ZELDOVICH, N., AND BAL-
AKRISHNAN, H. CryptDB: protecting confidentiality with
encrypted query processing. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles
(2011), ACM, pp. 85–100.

[44] POPA, R. A., STARK, E., HELFER, J., VALDEZ, S., ZEL-
DOVICH, N., KAASHOEK, M. F., AND BALAKRISHNAN,

H. Building web applications on top of encrypted data
using mylar. In NSDI (2014), pp. 157–172.

[45] REID, F., AND HARRIGAN, M. An analysis of anonymity
in the bitcoin system. In Security and privacy in social
networks. Springer, 2013, pp. 197–223.

[46] RON, D., AND SHAMIR, A. Quantitative analysis of
the full bitcoin transaction graph. In International Confer-
ence on Financial Cryptography and Data Security (2013),
Springer, pp. 6–24.

[47] SASSON, E. B., CHIESA, A., GARMAN, C., GREEN,
M., MIERS, I., TROMER, E., AND VIRZA, M. Zerocash:
Decentralized anonymous payments from Bitcoin. In Se-
curity and Privacy (SP), 2014 IEEE Symposium on (2014),
IEEE, pp. 459–474.

[48] SCHNORR, C.-P. Efficient signature generation by smart
cards. Journal of cryptology 4, 3 (1991), 161–174.

[49] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS,
C., PEINADO, M., MAINAR-RUIZ, G., AND RUSSI-
NOVICH, M. Vc3: Trustworthy data analytics in the cloud
using sgx. In Security and Privacy (SP), 2015 IEEE Sym-
posium on (2015), IEEE, pp. 38–54.

[50] TU, S., KAASHOEK, M. F., MADDEN, S., AND ZEL-
DOVICH, N. Processing analytical queries over encrypted
data. In Proceedings of the VLDB Endowment (2013),
vol. 6, VLDB Endowment, pp. 289–300.

[51] Zcash, 2017. http://z.cash.
[52] ZHENG, W., DAVE, A., BEEKMAN, J. G., POPA, R. A.,

GONZALEZ, J. E., AND STOICA, I. Opaque: An oblivious
and encrypted distributed analytics platform. In NSDI
(2017), pp. 283–298.

A Auditing Queries
Figure 5 is a list of the types of measurements zkLedger
supports, including the estimated running time and the
data beyond the measurement that is leaked. For example,
as described in §5, computing transaction size variance
requires leaking the mean transaction size and number of
transactions per bank.

B Zero-knowledge proofs and privacy
guarantees

To build our zero-knowledge protocols we rely on the
following general result of Maurer (Theorem 3, [33]):

Theorem B.1. Let (H1,?) and (H2,⊗) be two (not-
necessarily commutative) groups and f : H1→ H2 be a
group homomorphism: f (x? y) = f (x)⊗ f (y). Let ` ∈ Z,
u ∈ H1, C ⊂ Z be such that:
1. gcd(c1− c2, `) = 1 for all c1,c2 ∈ C (with c1 6= c2),

and
2. f (u) = z`.
There exists a 2-extractable Σ-protocol for language
L := {z : ∃w s.t. z = f (w)}. Moreover, a protocol con-

78 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://people. xiph.org/~greg/confidential_values.txt
https://people. xiph.org/~greg/confidential_values.txt
https://people. xiph.org/~greg/confidential_values.txt
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
http://z.cash

Measurement Time Additional information leaked

Sum total of asset(s) per bank O(1) none
Outlier transactions per bank O(n) none
Concentration O(k) Sum totals per bank
Ratio holdings O(k) Sum totals per bank, number of transactions per bank
Mean transaction size per bank O(kn) Number of transactions per bank
Variance, skew, kurtosis O(kn) Mean per bank, number of transactions per bank
Real-time price averages O(kn) Number of transactions and average per bank over time period t

Figure 5: Types of supported auditing queries, their running time to audit based on the number of banks k and the number of rows in the ledger n,
and a description of what information is leaked to the auditor.

sisting of s rounds is proof-of-knowledge if 1/|C |s is negli-
gible, and zero-knowledge if |C | is polynomially bounded.

Using Theorem B.1 we can now unify the treatment
of most of the zero-knowledge proofs used in our sys-
tem. For example, the consistency proofs πC rely on the
following result:

Theorem B.2. Let G be an order-r cyclic group and
g,h,pk be any three elements of G. There exists a
2-extractable Σ-protocol for language Laux := {(cm,
Token) : ∃v,r s.t. cm= gvhr ∧Token= pkr}.

Proof. Consider H1 = Zr×Zr, defining the group opera-
tion to be component-wise addition, and let H2 =G×G,
similarly defining group operation to be component-
wise. Then f (x,y) := (gxhy,pky) is a group homomor-
phism between H1 and H2. Indeed, f (x1 + x2,y1 + y2) =
(gx1+x2hy1+y2 ,pky1+y2) = f (x1,y1)⊗ f (x2,y2). Further-
more, setting ` = r and u = (0,0) we have that for all
z ∈H2 the following holds: z` = (1,1) = f (u). Therefore,
we can apply Theorem B.1 and conclude that Laux has a
2-extractable Σ-protocol.

To summarize, the three proofs in zkLedger (see Sec-
tion 4.3) that relate commitments cmi :=: gvihri and audit
tokens Tokeni := (pki)

ri have the following form:
• Proof of Assets (πA). This proof consists of a new

commitment cm′i, together with an audit token Token′i,
and a zero-knowledge proof asserting that either cm′i is
a re-commitment of the value in cmi or a recommitment
to the sum of the values in ∏

m
j=0 cm j. To create this

proof zkLedger relies on Theorem B.1 for constituent
proofs; as these are Sigma-protocols we apply the stan-
dard OR-composition [20] to get the final disjunctive
zero-knowledge proof. To prove that the commited
value is in the range we use the range proofs in Confi-
dential Assets [42]. We are investigating more recent
proof systems (e.g. Bulletproofs [13]) to further reduce
the proof size.

• Proof of Balance (πB). In our implementation this
proof is an empty string: the prover simply chooses the

commitment randomness subject to condition ∑ri = 0.
With such a choice the auditor homomorphically adds
the commitments and checks that this addition results
in the neutral element of the group ∏cmi = g∑vih∑ri =
g0h0 = 1.

• Proof of Consistency (πC). We use two proofs derived
from Theorem B.2 to assert that the randomness used
in cmi and Tokeni are the same, and the randomness
used in cm′i and Token′i are the same.

C Privacy in the combined system
Pedersen commitments provide information-theoretic pri-
vacy. In zkLedger Pedersen commitments are published
together with authentication tokens and zero-knowledge
proofs. We note that zero-knowledge proofs indeed don’t
spoil the information-theoretic privacy of committed val-
ues: the output of the zero-knowledge proof simulator
is identical to the output produced by parties in the sys-
tem. However, when combining Pedersen commitments
and authentication tokens, the privacy guarantees become
computational as we now explain.

The commitment, audit token, and public key
triple (cm,Token) is of the form (gvhr,pkr,pk) =
(gvhr,hsk·r,hsk), and these three values uniquely deter-
mine the v. That is, if an adversary could break the dis-
crete logarithm problem, it could solve for sk, use that and
value of Token to infer r, and finally recover v. That said,
under the Decisional Diffie-Hellman (DDH) assumption,
no information is leaked. Furthermore, the DDH assump-
tion is widely assumed to hold in zkLedger’s elliptic curve
group.

Recall, that DDH holds if no polynomially-bounded
adversary can distinguish between tuples of the form
(h,ha,hb,hab) and (h,ha,hb,hc) for a randomly chosen
generator h and exponents a,b,c. Assume that a state-
ful adversary AzkL, when given input (g,h,pk) is able to
produce two values v1 and v2 such that it can distinguish
commitments (and associated audit tokens) to v1 from
commitments (and audit tokens) to v2, i.e. the adversary
is able to distinguish the distributions (gv1hr,hsk·r,hsk)

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 79

and (gv2hr,hsk·r,hsk). We now show how to use AzkL to
construct an adversary ADDH breaking the DDH assump-
tions.

After receiving its challenge (h,x,y,z), where (x,y,z)
is distributed either as (ha,hb,hab) or as (ha,hb,hc), the
adversary ADDH proceeds as follows. It samples a random
generator g and calls AzkL on input (g,h,x), x now serving
the role of the bank’s public key. When AzkL returns
two values v1 and v2, the DDH adversary ADDH picks a
random k ∈ {1,2} and prepares cmk = gvk y, Token = z
and sends (cmk,Token) to AzkL. Finally, if AzkL’s guess
for k is correct, ADDH responds that the DDH challenge
was of the form (h,ha,hb,hab) (i.e. a DDH quadruple),
otherwise it responds that the DDH challenge was of the

form (h,ha,hb,hc) (i.e. a random quadruple).
Note that when ADDH’s challenge is a DDH quadru-

ple, the zkLedger adversary AzkL is run on a distribution
it expects. In particular, all of its inputs are correctly
formed with respect to sk= a and r = b. Whereas, when
ADDH’s challenge is a random quadruple, the inputs to
AzkL have information-theoretically no information about
the committed value: indeed, Token= hc is unrelated to
cm = gvhb. Therefore, if the zkLedger adversary AzkL

wins the commitment hiding game with non-negligible
advantage, so does ADDH in the DDH game. Note that
the proof extends to the multiple entry case by a standard
hybrid argument.

80 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Exploiting a Natural Network Effect for Scalable, Fine-grained Clock
Synchronization

Yilong Geng1, Shiyu Liu1, Zi Yin1, Ashish Naik2,
Balaji Prabhakar1, Mendel Rosunblum1, and Amin Vahdat2

1Stanford University, 2Google Inc.

Abstract

Nanosecond-level clock synchronization can be an en-
abler of a new spectrum of timing- and delay-critical
applications in data centers. However, the popular
clock synchronization algorithm, NTP, can only achieve
millisecond-level accuracy. Current solutions for achiev-
ing a synchronization accuracy of 10s-100s of nanosec-
onds require specially designed hardware throughout
the network for combatting random network delays and
component noise or to exploit clock synchronization in-
herent in Ethernet standards for the PHY.

In this paper, we present HUYGENS, a software clock
synchronization system that uses a synchronization net-
work and leverages three key ideas. First, coded probes
identify and reject impure probe data—data captured by
probes which suffer queuing delays, random jitter, and
NIC timestamp noise. Next, HUYGENS processes the pu-
rified data with Support Vector Machines, a widely-used
and powerful classifier, to accurately estimate one-way
propagation times and achieve clock synchronization to
within 100 nanoseconds. Finally, HUYGENS exploits a
natural network effect—the idea that a group of pair-wise
synchronized clocks must be transitively synchronized—
to detect and correct synchronization errors even further.

Through evaluation of two hardware testbeds, we
quantify the imprecision of existing clock synchroniza-
tion across server-pairs, and the effect of temperature on
clock speeds. We find the discrepancy between clock fre-
quencies is typically 5-10µs/sec, but it can be as much
as 30µs/sec. We show that HUYGENS achieves synchro-
nization to within a few 10s of nanoseconds under vary-
ing loads, with a negligible overhead upon link band-
width due to probes. Because HUYGENS is implemented
in software running on standard hardware, it can be read-
ily deployed in current data centers.

1 Introduction

Synchronizing clocks in a distributed system has been
a long-standing important problem. Accurate clocks
enable applications to operate on a common time axis
across the different nodes, which, in turn, enables key
functions like consistency, event ordering, causality and
the scheduling of tasks and resources with precise tim-
ing. An early paper by Lamport [13] frames the question
of ordering events in distributed systems and proposes a
solution known for obtaining partial orders using “vir-
tual clocks,” and Liskov [16] describes many fundamen-
tal uses of synchronized clocks in distributed systems.

Our work is motivated by several compelling new
applications and the possibility of obtaining very fine-
grained clock sychronization at an accuracy and cost
that is much less than provided by current solutions.
For example, in finance and e-commerce, clock syn-
chronization is crucial for determining transaction or-
der: a trading platform needs to match bids and offers
in the order in which they were placed, even if they en-
tered the trading platform from different gateways. In
distributed databases, accurate clock synchronization al-
lows a database to enforce external consistency [8] and
improves the throughput and latency of the database. In
software-defined networks, the ability to schedule tasks
with precise timing would enforce an ordering of for-
warding rule updates so that routing loops can be avoided
[18]. In network congestion control, the ability to send
traffic during time slots assigned by a central arbiter
helps achieve high bandwidth and near-zero queueing
delays [28]. Indeed, precisely synchronized clocks can
help to revise the “clockless” assumption underlying the
design of distributed systems and change the way such
systems are built.

Consider distributed databases as an example. Span-
ner [8] provides external consistency1 at a global scale

1A database is said to be externally consistent if it can ensure for
each transaction A that commits before another transaction B starts, A
is serialized before B.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 81

using clocks synchronized to within T units of time,
typically a few milliseconds. In order to achieve ex-
ternal consistency, a write-transaction in Spanner has
to wait out the clock uncertainty period, T , before re-
leasing locks on the relevant records and committing.
Spanner can afford this wait time because T is com-
parable to the delay of the two-phase-commit protocol
across globally distributed data centers. However, for
databases used by real-time, single data center applica-
tions, the millisecond-level clock uncertainty would fun-
damentally limit the database’s write latency, throughput
and performance. Thus, if a low latency database, for
example, RAMCloud [24], were to provide external con-
sistency by relying on clock synchronization, it would be
critical for T to be in the order of 10s of nanoseconds so
as not degrade the performance.

This relationship between clock synchronization and
database consistency can been seen in CockroachDB[1],
an open source scalable database. In CockroachDB, un-
certainty about clocks in the system can cause perfor-
mance degradation with read requests having to be re-
tried. That is, a read issued by server A with timestamp
t for a record at server B will be successful if the last
update of the record at B has a timestamp s, where s≤ t
or s > t +T . Else, clock uncertainty necessitates that A
retry the read with timestamp s. For example, in an ex-
perimental CockroachDB cluster of 32 servers we read
128 records, each updated every 25 ms. We found that
as the clock uncertainty T was reduced from 1 ms to 10
us and then to 100 ns, the retry rate fell from 99.30% to
4.74% and to 0.08% in an experiment with 10,000 reads
for each value of T .

Thus, while it is very desirable to have accurately syn-
chronized clocks in distributed systems, the following
reasons make it hard to achieve in practice. First, transac-
tion and network speeds have shortened inter-event times
to a degree which severely exposes clock synchroniza-
tion inaccuracies. The most commonly used clocks have
a quartz crystal oscillator, whose resonant frequency is
accurate to a few parts per million at its ideal operat-
ing temperature of 25-28◦C [34]. When the tempera-
ture at a clock varies (in either direction), the resonant
frequency decreases quadratically with the temperature
(see [34] for details). Thus, a quartz clock may drift
from true time at the rate of 6-10 microseconds/sec. But
the one-way delay (OWD), defined as the raw propaga-
tion (zero-queuing) time between sender and receiver,
in high-performance data centers is under 10 µs. So,
if the clocks at the sender and receiver are not fre-
quently and finely synchronized, packet timestamps are
rendered meaningless! Second, “path noise” has made
the nanosecond-level estimation of the OWD, a criti-
cal step in synchronizing clocks, exceedingly difficult.
Whereas large queuing delays can be determined and re-

moved from the OWD calculation, path noise—due to
small fluctuations in switching times, path asymmetries
(e.g., due to cables of different length) and clock times-
tamp noise, which is in the order of 10s–100s of ns is not
easy to estimate and remove from the OWD.

The most commonly used methods of estimating the
OWD are the Network Time Protocol (NTP) [21], the
Precision Time Protocol (PTP) [4], Pulse Per Second
(PPS) [25]—a GPS-based system, and the recently pro-
posed Data center Time Protocol (DTP) [14]. We re-
view these methods is more detail later; for now, we note
that they are either cheap and easy to deploy but per-
form poorly (NTP) or provide clock synchronization to
an accuracy of 10s–100s of nanoseconds in data center
settings but require hardware upgrades (PTP, DTP and
PPS) which impose significant capital and operational
costs that scale with the size of the network.

The algorithm we propose here, HUYGENS, achieves
clock synchronization to an accuracy of 10s of nanosec-
onds at scale, and works with current generation network
interface cards (NICs) and switches in data centers with-
out the need for any additional hardware. A crucial fea-
ture of HUYGENS is that it processes the transmit (Tx)
and receive (Rx) timestamps of probe packets exchanged
by a pair of clocks in bulk: over a 2 second interval
and simultaneously from multiple servers. This contrasts
with PTP, PPS and DTP which look at the Tx and Rx
timestamps of a single probe–ack pair individually (i.e.,
4 timestamps at a time). By processing the timestamps
in bulk, HUYGENS is able to fully exploit the power of
inference techniques like Support Vector Machines and
estimate both the “instantaneous time offset” between a
pair of clocks and their “relative frequency offset”. These
estimates enable HUYGENS to be not bound by rounding
errors arising from clock periods.
Contributions of the paper. The goal of our work is
to precisely synchronize clocks in data centers, thereby
making “timestamping guarantees” available to divers
applications as a fundamental primitive alongside band-
width, latency, privacy and security guarantees. We have
chosen to synchronize clocks (e.g. the PTP Hardware
Clocks, or PHCs [2]) in the NICs attached to servers. By
accurately synchronizing NIC clocks, we obtain glob-
ally accurate timestamps for data, protocol messages and
other transactions between different servers. NIC-to-
NIC probes encounter the minimum amount of noise
in the path propagation time as compared to server-to-
server probes which also suffer highly variable stack la-
tencies. Our main contributions are:
(1) A comprehensive and large-scale study of clock dis-
crepancies in real-world networks. The major findings
are: (i) pairwise clock rates can differ by as much as
30µs/sec; (ii) clock frequencies vary at time scales of
minutes due to temperature effects, but are fairly constant

82 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

over 2–4 second intervals; and (iii) a quantification of the
effect of queueing delays, path noise and path asymme-
try on clock synchronization.
(2) The HUYGENS algorithm and its real-time extension
HUYGENS-R, which can respectively be used by appli-
cations for aligning timestamps offline or for real-time
clock synchronization.
(3) A NetFPGA-based verification in a 128-server, 2-
stage Clos data center network shows that HUYGENS and
HUYGENS-R achieve less than 12–15ns average error
and under 30–45ns 99th percentile error at 40% network
load. At 90% load, the numbers increase to 16–23ns and
45–58ns, respectively.
(4) We propose a lightweight implementation of HUY-
GENS that runs “in-place” with the probe data. In a 40
Gbps data center testbed, HUYGENS only takes around
0.05% of the link bandwidth and less than 0.44% of a
server’s CPU time.

2 Literature survey

As mentioned in the Introduction, all methods of deter-
mining clock offsets involve estimating the OWD. In or-
der to estimate the OWD between clocks A and B, A
sends a probe packet to B containing the transmission
time of the probe. The OWD can either be estimated di-
rectly by determining the time spent by the probe at each
element en route from A to B (e.g., as in PTP), or by
estimating the RTT (where B sends a probe back to A).
In the latter case, assuming the OWD is equal in both
directions, halving the estimated RTT gives the OWD.
Using the estimate of the OWD and the probe’s transmit
time, B can work out the time at A and synchronize with
it. We survey the four methods mentioned previously for
estimating the OWD between a pair of clocks.
NTP. NTP [21] is a widely-used clock synchronization
protocol. It estimates the offset between two clocks by
considering multiple probe-echo pairs, picking the three
with the smallest RTTs, and taking half their average to
get the OWD. It achieves an accuracy of tens of millisec-
onds [23] to 10s of microseconds [26], depending on the
network type (e.g., wide-area vs data center).

NTP uses simple methods to process the probe data,
hence it only achieves a coarse-grained clock synchro-
nization. HUYGENS does stronger processing of the
same probe data to extract a much more refined estimate
of the offset between a pair of clocks. It then uses the
network effect to obtain a further 3x reduction in the es-
timation error.
PTP. PTP [4] uses hardware timestamps to counter stack
delays. It uses “transparent” switches which are able to
record the ingress and egress time of a packet to accu-
rately obtain packet dwell times at switches. With more
extensive hardware support at switches and a dedicated

network for carrying PTP packets the White Rabbit sys-
tem [22] can achieve sub-nanosecond precision. How-
ever, the accuracy in a conventional fully “PTP-enabled
network” ranges from a few tens to hundreds of nanosec-
onds [32]. If the network is not fully PTP-enabled, syn-
chronization accuracy can degrade by 1000x even when
the two clocks are only a few hops apart [32]. Detailed
tests conducted in [14] show that PTP performs poorly
under high load, corroborating similar findings in [32].
DTP. The DTP protocol [14] sidesteps the issue of esti-
mating time-varying queue sizes, stack times, and most
noise variables by making a clever observation: The
IEEE 802.3 Ethernet standards provide a natural clock
synchronization mechanism between the transmitter and
receiver PHYs at either end of a wire. Therefore, DTP
can achieve a very fine-grained clock synchronization
without increasing network traffic and its performance is
not load-dependent. It is limited by the clock-granularity
of the standard: for a 10Gbps network link the granular-
ity is 6.4ns, and since four timestamps are involved in
calculating OWD, a single hop synchronization accuracy
of 25.6ns can be achieved. DTP requires special extra
hardware at every PHY in the data center, necessitating a
fully “DTP-enabled network” for its deployment.
PPS. PPS obtains accurate (atomic) time using a GPS re-
ceiver antenna mounted on the roof of the data center. It
brings this signal to a multi-terminal distribution box us-
ing cables with precisely measured lengths. The multi-
terminal box amplifies and relays the clock over cables
(also with precisely known lengths) to NICs which are
capable of receiving PPS signals. This makes PPS pro-
hibitively expensive to deploy at scale, most installations
have a designated “stratum 1” zone with just a few (typ-
ically tens of) servers that have access to PPS.

In summary, current methods of synchronizing clocks
in a data center are either not accurate enough or require
hardware modifications to almost every element of a data
center, making them very expensive to deploy.

3 Our approach

The HUYGENS algorithm exploits some key aspects of
modern data centers2 and uses novel estimation algo-
rithms and signal processing techniques. We look at
these in turn.
Data center features. Most data centers employ a sym-
metric, multi-level, fat-tree switching fabric [30, 29]. By
symmetry we mean that the number of hops between any
pair of servers, A and B, is the same in both directions.
We do not require the paths to involve identically the

2Even though this paper is focused on clock synchronization in data
centers, we believe the principles extend to wide area networks, possi-
bly with a loss in synchronization accuracy.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 83

Networkpkt
1

pkt
2

pkt
1

pkt
2

pkt
1

pkt
2

pkt
1

pkt
2

s

>> s

<< s

≈ s

t

t

t

t

Figure 1: Coded probes

same switches in both directions.3 Symmetry essentially
equalizes the OWD between a pair of NICs in each direc-
tion, except for a small amount of “path noise” (quanti-
fied in Section 4). Furthermore, these propagation times
are small, well-bounded by 25–30µs. Abundant bisec-
tion bandwidth and multiple paths between any pair of
servers ensure that, even under 40-90% load, there is a
reasonably good chance probes can traverse a network
without encountering queueing delays. Finally, there are
many servers (and NICs), making it possible to synchro-
nize them in concert.
Algorithms and techniques. HUYGENS sets up a syn-
chronization network of probes between servers; each
server probes 10–20 others, regardless of the total num-
ber of servers in the network.
Coded probes. Naturally, probes which encounter no
queueing delays and no noise on the path convey the
most accurate OWDs. To automatically identify such
probes, we introduce coded probes: a pair of probe pack-
ets going from server i to j with a small inter-probe
transmission time spacing of s. If the spacing between
the probe-pair when they are received at server j is very
close to s, we deem them as “pure” and keep them both.
Else, they are impure and we reject them. In Figure 1 the
first two possibilities on the receiver side show impure
probes and the third shows pure probes. Coded probes
are very effective in weeding out bad probe data and they
improve synchronization accuracy by a factor of 4 or 5.4

Support Vector Machines. The filtered probe data is pro-
cessed by an SVM [9], a powerful and widely-used clas-
sifier in supervised learning. SVMs provide much more
accurate estimates of propagation times between a pair
of NICs than possible by the simpler processing meth-
ods employed by NTP and PTP. In Section 4 we shall
see that “path noise” is small in magnitude and patho-
logical in the sense that it has “negative-delay” compo-
nents. Thus, simple techniques such as estimating the

3In Section 4 we show that a real-world 40 Gbps network has highly
symmetric paths, for symmetry as defined here.

4The idea of using a pair of closely-spaced packets to determine the
available bandwidth on a path was introduced in [12], see also [10].
Whereas that use case needs the separation between probes to increase
in order to determine available bandwidth, we require no separation.

min-RTT or linear regression to process the probe data
do not work. They can filter out large delays but cannot
cope with small-magnitude path noise and are adversely
affected by the negative-delay components which artifi-
cally shrink the OWD. The combination of coded probes
and SVMs copes well with these problems.
Network effect.5 Even though a data center network in-
creases the path noise between clocks A and B because
of multiple hops, it can simultaneously increase the sig-
nal by providing other clocks and new, potentially non-
overlapping, paths for A and B to synchronize with them.
Therefore, it is better—more accurate and scalable—to
synchronize many clocks simultaneously than a pair of
them at a time, as explained below. A significant by-
product of using the network effect is that it is particu-
larly good at detecting and correcting path asymmetries.

A B20
(10)

A B

C

(a)
D

A B

C

A B

C

A B

C

D

A B

C

(b) (c)

20

-155

15

-17.52.5

16.7

-18.31.6

20
-155

25-15

10
-155

15-25

Figure 2: The Network Effect. How more clocks can help
identify and reduce synchronization errors

Consider Figure 2. In (a), after pair-wise synchroniza-
tion, clocks A and B believe that B is ahead of A by
20 units of time (A 20−→B). However, the truth (shown in
green) is that B is ahead of A by only 10 units of time.
A and B can never discover this error by themselves.
In (b), a third clock C has undergone pairwise synchro-
nization with A and B, and the resulting pairwise offsets
are shown on the directed edges. Going around the loop
A→B→C→A, we see that there is a loop offset surplus
of 10 units! This immediately tells all three clocks there
are errors in the pairwise synchronization. The bottom of
Figure 2 (b) shows two possible corrections to the pair-
wise estimates to remove the loop surplus. Of these two
choices, the HUYGENS algorithm will pick the one on the
right, A 16.7−→B−18.3−→C 1.6−→A. This is the minimum-norm so-
lution and evenly distributes the loop surplus of 10 onto
the 3 edges. Of course, if a fourth clock, D, joins the net-
work, the two loop surpluses, equal to 10 and 30, are re-
distributed according to the minimum-norm solution by

5Synchronization must be reflexive, symmetric and transitive; net-
work effect is a deliberate exploitation of the transitivity property.

84 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

HUYGENS and this ends up correcting the discrepancy
on edge A→B to its correct value of 10 units.

In general, the minimum-norm solution does not com-
pletely correct synchronization errors, nor does it evenly
distribute loop surpluses. Its effect is to significantly pull
in outlier errors (see Section 5).

The network effect is related to co-operative clock
synchronization algorithms in the wireless literature [31,
15, 17, 19]. In the wireless setting, synchronization is
viewed from the point of view of achieving consensus;
that is, nodes try to achieve a global consensus on time
by combining local information, and they use ”gossip al-
gorithms” to do so. Thus, a node exchanges informa-
tion on time with neighboring nodes and this informa-
tion gradually flows to the whole network with time syn-
chronization as the outcome. This approach is appropri-
ate in ad hoc wireless networks where nodes only know
their neighbors. However, convergence times can be long
and it can be hard to guarantee synchronization accuracy.
Like [31], HUYGENS uses the network effect to directly
verify and impose the transitivity property required of
synchronization. In the wired setting in which HUY-
GENS operates, far away nodes are connected via the syn-
chronization network, typically over a data center fabric.
Thus, the probes have to contend with potentially severe
network congestion, but the synchronization network can
be chosen and not be restricted by network connectivity
as in the ad hoc wireless case. The synchronization algo-
rithm can be central and hence very fast (one-shot matrix
multiplication—see Section 5) and yield provable syn-
chronization error reduction guarantees.

4 Clocks in the real-world

In this section we use two testbeds and empirically study
the degree to which pairs of clocks differ and drift with
respect to one another, the effect of temperature in alter-
ing clock frequencies, and a characterization of queueing
delays and path noise affecting the accurate measurement
of the end-to-end propagation time of probes.
Testbed T-40. This is a 3-stage Clos network, all links
running at 40Gbps. T-40 has 20 racks each with a top-
of-the-rack (TOR) switch, and a total of 237 servers with
roughly 12 servers per rack. There are 32 switches at
spine layer 1. Each TOR switch is connected to 8 of these
switches while each spine layer 1 switch is connected to
5 TOR switches. Thus, there is a 3:2 (12:8) oversub-
scription at the TOR switches. Each spine layer 1 switch
is connected to 8 spine layer 2 switches and vice versa
(there are 32 spine layer 2 switches). T-40 represents a
state-of-the-art data center.
Testbed T-1. T-1 is a 2-stage Clos network with all links
running at 1Gbps. It consists of 8 racks, each rack has a
1Gbps TOR switch and 16 logical servers. The 16 logi-

cal servers are built out of 4 Jetway network appliances
(JNA) [11], 4 logical servers per JNA, as explained be-
low. Each TOR switch has 16 downlinks and 8 uplinks,
each uplink connecting it to one of 8 logically distinct
spine switches. Thus, there is a 2:1 oversubscription at
the TOR switches. The 8 logically distinct spine switches
are built from 4 48-port 1Gbps physical switches using
VLAN configurations [33]. T-1 respresents a low-end
commodity data center.

For reasons of economy—in monetary, space and heat
dissipation terms—we use JNAs to build servers in T-1.
Each JNA has a 4-core Intel Celeron J1900 CPU, 8GB
RAM, 250GB of disk storage, and ten 1Gbps Ethernet
ports. Each Ethernet port has an Intel I211 NIC. The
logical servers in a single JNA share the CPU, the RAM
and the PCIe buses. Even though there can be 10 logical
servers per JNA (one per NIC), to avoid overwhelming
the CPU we build 4 logical servers per JNA. Each logical
server is built inside a Docker container [20], giving them
complete independence of operation. The servers imple-
ment a probing/responding application as well as various
workload traffic generation applications. The different
capabilities of T-40 and T-1 necessitated different prob-
ing and timestamping mechanisms, as explained below.
Probing. Recall that a probe is actually a pair of packets,
called coded probes. We use 64-byte UDP packets for
probing. Each server probes K other randomly chosen
servers once every T seconds. Probing is bidirectional:
servers which are probed send back probes every T sec-
onds. In T-40, K = 20 and T = 500µs, and in T-1, K = 10
and T = 4ms.
Timestamping. The receive timestamps in T-40 and T-
1 are recorded upon the receipt of the probes. In T-40,
the transmit timestamp is equal to the time the probe’s
TX completion descriptor is written back into the host
memory. The write-back time is often nearly equal to
the transmission time, but, occasionally, it can be a few
10s or 100s of nanoseconds after the probe transmit
time. This gives rise to a “negative-delay” timestamp
noise; i.e., noise which can lead to probe propagation
times strictly smaller than the absolute minimum possi-
ble. In T-1, the JNA’s architecture makes the write-back
approach perform much worse. Instead, the Intel I211
NIC in the JNA places the transmit start time of a probe
in its payload and forwards it to the receiving NIC, where
it is extracted.6

𝑇𝑋# 𝑅𝑋%

𝑡𝑥%𝑟𝑥#

𝑡 𝑟

Server	A Server	B

Figure 3: Signaling between clocks.

6This feature is not supported by the NICs in T-40.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 85

Signaling. Consider Figure 3. Let T and R be the abso-
lute times at which a probe was transmitted at NIC A and
received at NIC B. Let T XA and RXB be the correspond-
ing transmit and receive timestamps taken by the NICs.
Define ∆A = T XA−T and ∆B = RXB−R. Since R > T ,
we get RXB−∆B > T XA−∆A. Rearranging terms, we get

∆B−∆A < RXB−T XA. (1)
From a probe (or echo) in the reverse direction, we get

txB− rxA < ∆B−∆A < RXB−T XA. (2)
Thus, each probe gives either an upper bound or a

lower bound on the discrepancy between two clocks de-
pending on its direction; the tightest bounds come from
probes encountering zero queueing delay and negligible
noise. The discrepancy is time-varying due to different
clock frequencies.

Figure 4: Bounds on the discrepancy between clocks in T-40

4.1 Clock frequencies across servers
Figure 4 shows upper and lower bounds on ∆B−∆A in T-
40 plotted against the time at NIC clock A: each blue dot
is an upper bound and each green dot is a lower bound.
The following observations can be made:
1. The set of blue points delineating the “least upper
bound” of the data points lie on a straight line over short
timescales, 2 seconds in this case. This line is parallel
to the straight line on which the green dots delineating
the “greatest lower bound” lie. We refer to the region
between the lines as the “forbidden zone.” There are
a number of blue dots and green dots in the forbidden
zone. These are due to the “negative-delay” NIC times-
tamp noise mentioned previously. It is crucial to filter
out these points.
2. Since the dots on the lines bounding the forbidden
zone capture the smallest one-way propagation time of a
probe (equal only to wire and switching times), the spac-
ing between them (roughly equal to 1700 ns in Figure
4) is the smallest RTT between the two NICs. Assum-
ing symmetric paths in both directions, half of the spac-
ing will equal the smallest one-way propagation time
(roughly 850 ns).

3. The upper and lower bound lines have a non-zero
slope and intercept. The slope in Figure 4 is close to
−1.6µs/sec and it measures the “drift” in the frequencies
of the clocks at A and B. That is, when clock A measures
out one second of time, clock B would have measured out
1− (1.6× 10−6) second. The average of the two inter-
cepts is the offset between the two clocks: when clock
A’s time is 0, clock B’s time is roughly −93.3µs.
Remark. The slope captures the discrepancy in the clock
frequencies and represents the intrinsic pull away from
synchronism between the two clocks. When the clocks
are completely synchronized, the slope and the average
of the two intercepts should both be 0.

(a) 1-hop in T-40 (b) 3-hop in T-40 (c) 5-hop in T-40

(d) 1-hop in T-1 (e) 3-hop in T-1 (f) 3-hop in T-1

Figure 5: Examples of clock drifts

Figure 5 shows more examples of relative clock drifts
in T-40 and T-1. Figures 6 (a) and (b) show the his-
tograms of the drifts between pairs of clocks in T-40 and
T-1, respectively. The number of pairs considered in each
testbed and a numerical quantification of the data in Fig-
ure 6 is in Table 1. While most pair-wise clock drifts
are around 6-10µs/sec, the maximum can get as high as
30µs/sec.

−30 −20 −10 0 10 20 30

Clock drift (us/sec)

0

50

100

150

200

250

300

350

N
um

be
ro

fs
er

ve
rp

ai
rs

(a) T-40

−30 −20 −10 0 10 20 30

Clock drift (us/sec)

0

10

20

30

40

50

60

70

N
um

be
ro

fs
er

ve
rp

ai
rs

(b) T-1

Figure 6: Distribution of the relative frequency difference be-
tween pairs of clocks

Variation in clock frequencies due to temperature

When considering longer timescales, in the order of min-
utes, one can sometimes observe nonlinearities in the up-
per and lower bound curves, see Figure 7. This is due

86 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Testbed #Servers #Clock St.dev. Max abs.
pairs of slope of slope

(drift) (drift)
T-40 237 4740 4.5µs/sec 32.1µs/sec
T-1 128 1280 5.7µs/sec 16.5µs/sec

Table 1: Summary statistics of clock drift rates

to temperature changes which affect the resonance fre-
quency of the clocks. The temperature can change when
a NIC sends a lot of data or otherwise dissipates a lot
of power. The temperature of a NIC varies slowly with
time. Therefore, even though there is nonlinearity in the
order of minutes or longer, at timescales of 2-4 seconds
the upper and lower bound curves are essentially linear.
We shall approximate the nonlinear curves by piecewise
linear functions over 2-4 seconds.

(a) T-40 (b) T-1

Figure 7: Nonlinear drifts in clock frequencies

4.2 Queueing delays and path noise

1. Queueing delay. This is the total queueing delay on
the path and can be 100s of microseconds to a few mil-
liseconds, depending on the load. However, we shall see
that even at 90% loads there are enough points with zero
queueing delay (hence, on the boundary of the forbidden
zone) to accurately synchronize clocks.
2. Path noise. We distinguish two types of path noise.
Switching noise. Even under 0 load, a probe’s switch-
traversal time can be jittered due to random delays from
passing through multiple clock domains, input arbitra-
tion, or other hardware implementation reasons specific
to the switch (e.g., store-and-forward versus cut-through
switching). “Dark matter packets” are another source of
switch noise. These are protocol packets (e.g., spanning
tree protocol (STP) [5], SNMP [3], link-layer discovery
protocol (LLDP) [6]) not emitted by the end-hosts, hence
invisible to them. When probes queue behind them at
switches, small and random switching delays are added.
NIC timestamp noise. This is the discrepancy between
the timestamp reported by the NIC and the true time
that the probe was transmitted or received. This can be
caused by faulty hardware, or the way timestamping is
implemented in the NIC. As described in Section 4, the
latter can cause negative-delay, giving rise to points in

the forbidden zone.
Empirically, path noise larger than 50ns degrades per-

formance in T-40. In T-1 that number is 2µs. Packet
transmission times in switches, in the PHYs, etc, are 40
times longer on T-1 than T-40, and this corresponds with
an increase in noise magnitude.

4.3 Path symmetry

T-40 is a fat-tree network with 1, 3 and 5 hops between
server pairs. By investigating the statistics of the RTTs
between servers at different hop distances, we can test
the veracity of our path symmetry assumption. Recall
that path symmetry means that servers separated by a cer-
tain number of hops have more or less the same OWD,
regardless of the particular paths taken in the forward
and reverse direction to go between them.

1 hop 3 hops 5 hops
server-pairs 390 1779 6867
Ave. ZD-RTT 1570 ns 4881 ns 7130 ns
Min. ZD-RTT 1512 ns 4569 ns 6740 ns
Max. ZD-RTT 1650 ns 4993 ns 7253 ns

Table 2: Zero-delay-RTTs (ZD-RTTs) in T-40

In Table 2, we consider the zero-delay-RTT (ZD-RTT)
between server pairs at different hops from one another.
The forward and reverse routes between a pair of servers
in T-40 are arbitrary and not identical. Nevertheless, we
see from the minimum, average and maximum values of
the ZD-RTT that it is tightly clustered around the mean.
Since this was taken over a large number of server-pairs,
we see empirical evidence supporting path symmetry.

If asymmetry exists in a network, it will degrade the
overall synchronization accuracy by half the difference
in the forward and reverse path delays. Fortunately, the
network effect can be used to identify asymmetric paths
and potentially replace them with symmetric paths (or
paths that are less asymmetric).

5 The Huygens Algorithm

The Huygens algorithm synchronizes clocks in a net-
work every 2 seconds in a “progressive-batch-delayed”
fashion. Probe data gathered over the interval [0, 2) sec-
onds will be processed during the interval [2, 4) seconds
(hence batch and delayed). The algorithm completes the
processing before 4 seconds and corrections can be ap-
plied to the timestamps at 1 sec, the midpoint of the in-
terval [0, 2) seconds. Then we consider probe data in the
interval [2, 4) seconds, and so on. By joining the times at
the midpoints of all the intervals with straight lines, we
obtain the corrections at all times. Thus, the corrected
time is available as of a few seconds before the present

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 87

time (hence progressive).7

Coded probes. Presented informally previously, coded
probes are a pair of packets, P1 and P2, with transmit
timestamps t1 and t2 and receive timestamps r1 and r2,
respectively. A coded probe is “pure” if r2 > r1 and
|(r2− r1)− (t2− t1)| < ε , where ε > 0 is a prescribed
guard band. Else, it is “impure”. The timestamps of both
of the pure probes are retained, and those of both impure
probes are discarded. If either P1 and P2 is dropped, we
discard the coded pair.
Support Vector Machines. SVMs are a widely used and
powerful tool for linear and nonlinear classification in su-
pervised learning settings [9]. A linear SVM is supplied
with a collection of points (xi, li) for 1 ≤ i ≤ N, where
xi is a point in R2 and li is a binary label such as “upper
bound point” or “lower bound point”. It classifies points
of like label, separating them with a hyperplane of maxi-
mal margin; that is, a hyperplane which is at a maximum
distance from the closest point of either label in the data.

When used in our context, the SVM is given the up-
per and lower bound points derived from the probe data
between clocks A and B over a 2-second interval. If the
data is clean, i.e., if there are no points in the forbidden
zone (defined in Section 4.1) and there are enough points
with noise- and delay-free propagation time in both prob-
ing directions, the SVM will return a straight line with
slope αAB and intercept βAB.

We use soft-margin SVMs which can tolerate points
in the forbidden zone and other noise and delays. How-
ever, the performance of the SVM is sensitive to these
artifacts, and especially to points in the forbidden zone.
Therefore, even if the SVM returns a line in the noisy
case, it will not be an accurate estimate of the discrep-
ancy ∆B−∆A. For this reason we first treat the data with
the coded probe filter and extract pure probes to which
we apply the SVM. For example, in Figure 8 (a) the
SVM processes all probe data between a pair of clocks
in T-40 and it is clear that its estimation of the upper and
lower bound lines (the support vectors) are inaccurate. In
(b) we see the significant improvement from using coded
probes to filter out bad probe data.

(a) All coded probes (b) “Pure” coded probes

Figure 8: Effectiveness of coded probes. In T-40, coded
probes reduce synchronization error by 4-5x.

7In Section 8 we obtain a real-time extension of the HUYGENS.

5.1 Network Effect
Suppose there are n clocks, C1, ...,Cn, connected through
a data center fabric. WLOG let C1 be the “reference”
clock with which all clocks will be synchronized. At
time 0 a probe mesh is set up between the n clocks,
each one probing K others. This is done using messages
between the nodes and results in the “probing graph,”
G = (V,E). The “owner” of edge (i, j) is the node who
initiated the probing, ties broken at random. Once the
probe mesh has been set up, we construct the Refer-
ence Spanning Tree (RST) on G with C1 as the root in
a breadth-first fashion.

In every 2-second interval, we synchronize Ci to C1
at the midpoint of the interval.8 The midpoints of ad-
jacent intervals are then connected with straight lines to
obtain a piecewise linear synchronization of Ci with C1.
Accordingly, consider the interval [2 j,2(j+1)) seconds
for some j ≥ 0. For ease of notation, denote 2 j by L,
2(j+1) by R, and the midpoint 2 j+1 by M.

Iteration
1. Coded probes and SVMs. Timestamp data collected
during [L,R) is processed using the coded probes filter
and bad probes are discarded. For each edge (i, j) ∈ G,
where i is the owner of the edge, the filtered data is pro-
cessed by an SVM to yield the slope, αi j, and the inter-
cept, βi j of the hyperplane determined by the SVM. Let
(~α,~β) be the vectors of the αi, j and βi, j for (i, j) ∈ G.
The equations

α ji =
−αi j

1+αi j
and β ji =

−βi j

1+αi j
(3)

relate the slopes and intercepts in one direction of (i, j)
to the other.
2. Preliminary estimates at time M. Use the RST and
the (~α,~β) to obtain the preliminary, group-synchronized
time at clock Ci with respect to the reference clock’s time
of M1 sec. This is done as follows. First consider Ci to
be a neighbor of C1 on the RST. Then,

MP
i = M1 +α1iM1 +β1i.

Proceed inductively down the tree to obtain MP
j at each

clock C j when C1 equals M1.

3. Obtain ∆P
i j
4
= αi jMP

i +βi j for every i and j, with the
convention MP

1 = M1. Gather the ∆P
i j into a vector ∆P,

the “preliminary pair-wise clock discrepancy vector.”
4. Network effect: loop correction. Apply loop correc-
tion to ∆P to determine the degree of inconsistency in
the pair-wise clock estimates, and obtain ∆F , the “final
pair-wise clock discrepancy vector.”

∆
F =

[
I−AT (AAT)−1

A
]

∆
P,where the (4)

“loop-composition matrix”, A, is defined below.
5. Obtain the final estimates MF

i at Ci when the time at

8For concreteness, time instances are taken with reference to C1.

88 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C1 equals M1. For a neighbor Ci of C1 on the RST:
MF

i = M1 +∆F
1i.

Proceed inductively down the RST to obtain MF
j at each

clock C j when C1 equals M1.
End Iteration

Elaboration of Steps 2–4

Steps 2 and 3. In Step 2 preliminary midpoint times are
obtained using only the probe data on the edges of the
RST. These midpoint estimates are used in Step 3 to get
preliminary discrepancies, ∆P, between the clock-pairs
across all edges of the probing graph, G.
Step 4. Using equation (4), loop-wise correction is ap-
plied to ∆P to obtain the final pair-wise clock discrepancy
vector, ∆F . Given G = (V,E), the matrix A is obtained
as follows. The number of columns of A equals |E|, each
column corresponds with a directed edge (i→ j) ∈ E.
Each row of A represents a loop of G, traversed in a
particular direction. For example, suppose loop L is tra-
versed along edges (i→ j), (j→ k), (k→ l) and (l→ i).
Then, the row in A corresponding to loop L will be a 1
at columns corresponding to edges (i→ j), (j→ k) and
(k→ l), a −1 corresponding to column (i→ l), and 0
elsewhere. The number of rows of A equals the largest
set of linearly independent loops (represented in the row-
vector form described) in G.
Derivation of equation (4). The quantity A∆P gives the
total surplus in the preliminary pair-wise clock discrep-
ancy in each loop of A. For example, for loop L defined
above, this would equal:

∆
P
i j +∆

P
jk +∆

P
kl−∆

P
il
4
= yL.

Let Y = A∆P represent the vector of loop-wise surpluses.
In order to apply the loop-wise correction, we look
for a vector N which also solves Y = AN and posit
the correction to be ∆F = ∆P − N. Now, A has full
row rank, since the loops are all linearly independent.
Further, since the number of linearly independent loops
in G equals |E| − |V |+ 1 which is less than |E|, the
equation Y = AN is under-determined and has multiple
solutions. We look for the minimum-norm solution since
this is most likely the best explanation of the errors in
the loop-wise surpluses.9 Since the pseudo-inverse,
N = AT (AAT)−1Y = AT (AAT)−1A∆P, is well-known to
be the minimum-norm solution [27], we get

∆F = ∆P−N = [I−AT (AAT)−1A]∆P,
which is equation (4).10

9It is most likely that the loop-wise surpluses are due to a lot of
small errors on the edges rather than a few large ones.

10Under a Gaussian assumption on the noise in the discrepancy vec-
tor ∆P, we’ve shown that the standard deviation of the noise in ∆F is a
factor 1√

K
of the noise in ∆P. Numerically, this means a reduction of

the errors by 68.4% and 77.6% when K = 10 and 20, respectively. Due
to a shortage of space, we omit the proof here.

Remark. The minimum-norm solution gives the opti-
mal (Maximum Likelihood) estimate of edge errors if
they were distributed as independent and identically dis-
tributed (IID) Gaussians before applying the network ef-
fect. Even when edge errors are not IID Gaussians,
the minimum-norm solution ensures that the edge er-
rors after the network effect are closer to Gaussian with
a much smaller variance (1√

K
of the pre-network-effect

variance). Most importantly, this is true whether the ini-
tial edge errors occured due to significant path asymme-
tries (which can be large and systematic) or due to path
noise (which is typically small and nearly zero mean).

Figure 9 illustrates the point. In a network of 256
nodes, each probing 10 other nodes, we see the network
effect reduces the standard deviation of edge errors (af-
ter coded probes and SVMs) in two cases: (a) the edge
errors are typically small but some times can be as large
as 100 ns, and (b) distribted uniformly between -100 ns
and 100 ns. In both cases the errors after appying the
minimum-norm solution are clustered around 0 in a bell-
shaped distribution.

−150 −100 −50 0 50 100 150
Edge error (ns)

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
ro

fe
dg

es

×107 Before network effect

−150 −100 −50 0 50 100 150
Edge error (ns)

0.0

0.2

0.4

0.6

0.8

1.0 ×107 After network effect

(a) Network effect eliminates large edge errors

−150 −100 −50 0 50 100 150
Edge error (ns)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
ro

fe
dg

es

×106 Before network effect

−150 −100 −50 0 50 100 150
Edge error (ns)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ×106 After network effect

(b) Network effect compresses uniformly distributed edge
errors

Figure 9: Examples of network effect: N=256, K = 10, collec-
tive results across 10000 runs

6 Implementation and Evaluation

The probing phase of HUYGENS is obviously distributed:
it must occur along the edges of G. Many of the other
basic operations can also by implemented distributedly
at the sensing nodes, hence significantly reducing data
movement overheads. Or, they can be implemented on
a dedicated computing system separate from the sensing
system. We describe the distributed implementation.

6.1 A lightweight, scalable implementation
We implement HUYGENS as an “in-place” distributed
system, making it lightweight and scalable. There are

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 89

three main components—the master, the slaves and the
sensors. A global master node initiates the probing phase
and runs loop-wise correction (Steps 2–5). There is a
sensor and a slave node at each server for conducting
probing, data collection, coded probe filtering and run-
ning SVMs. The sensor sends the probes and collects
timestamps, the slave runs all the computations. This
implementation eliminates overheads due to data trans-
fer and makes HUYGENS scalable because each sensor–
slave combination only needs to send the α- and β -
values to the master node and not the probe data.
Probing bandwidth and CPU overhead. Probing at the
rates we have implemented (see Probing in Section 4),
HUYGENS takes 0.05% of the bandwidth at each node in
T-40 and 0.25% of the bandwidth at each node in T-1.
The fact that HUYGENS takes a much smaller percent-
age of the bandwidth in T-40 than in T-1 is due to an
important property: it sends roughly the same number of
probes per unit time regardless of the line rate.

The CPU overhead imposed by HUYGENS is negligi-
ble. On an 2.8 GHz Intel i5 (5575R) CPU, using only one
core and running SVM for 2 seconds probe data from one
edge takes less than 7ms. Therefore, the in-place dis-
tributed implementation would take less than 0.44% of
CPU time in a modern 32-core server even when K = 20.

6.2 Evaluation
We run experiments on T-1 to evaluate: (i) the accuracy
of HUYGENS using NetFPGAs, (ii) the efficacy of the
network effect, and (iii) HUYGENS’ performance under
very high network load.
Network load. We use the traffic generator in [7]: each
server requests files simultaneously from a random num-
ber (30% 1, 50% 2 and 20% 4) of other servers, called
the “fanout” of the request. The gap between adjacent re-
quests are independent exponentials with load-dependent
rate. The file sizes are distributed according to a heavy-
tailed distribution in the range [10KB, 30MB] with an
average file size of 2.4MB. This traffic pattern can mimic
a combination of single flow file transfers (fanout = 1)
and RPC style incast traffic (fanout > 1).

Evaluation Methodology

NetFPGA-CML boards provide two natural ways to ver-
ify HUYGENS’ accuracy in synchronizing clocks:
(i) Single FPGA. Each NetFPGA has four 1GE ports
connected to a common clock. We take two of these
ports, say P1 and P2, and make them independent servers
by attaching a separate Docker container to each. P1 and
P2 then become two additional servers in the 128-server
T-1 testbed. Using HUYGENS we obtain the “discrep-
ancy” in the clocks at P1 and P2, whereas the ground truth
is that there is 0 discrepancy since P1 and P2 have the
same clock.

Remark. To make it more difficult for HUYGENS to
synchronize P1 and P2, we do not allow them to directly
probe each other. They are at least 2 or 3 hops away on
the RST.
(ii) Different FPGAs. This time P1 and P2 are ports on
different FPGAs, with clocks C1 and C2, say. They can be
synchronized using HUYGENS on the T-1 testbed. They
can also be synchronized using a direct channel by con-
necting the GPIO pins on the two NetFPGAs using cop-
per jumper wires. The direct channel provides us with an
essentially noise- and delay-free, short RTT11 signaling
method between C1 and C2. The pin-to-pin signals are
sent and echoed between the NetFPGAs every 10ms. We
process the TX and RX timestamps of the pin-to-pin sig-
nals using a linear regression and obtain the discrepancy
between C1 and C2 using the direct channel.

In both (i) and (ii), the HUYGENS probe data is pro-
cessed using the algorithm described in Section 5. We
take C1 (the clock at P1) as the root of the RST. C2 is
then another node on the RST and HUYGENS gives a
preliminary and a final estimate of its midpoint in a 2
second probing interval with respect to C1’s midpoint (as
described in Steps 2–5). This is compared to the ground
truth or direct channel discrepancy between C1 and C2.
Even though (i) gives us a ground truth comparison, we
use (ii) because it gives a sense of the degree of syn-
chonization possible between two different clocks that
are connected directly.

7 Verification

We consider a 10-minute experiment.12 For the single
FPGA comparison, we obtain HUYGENS’ preliminary
and final estimates of the midpoint times at C2 in succes-
sive 2-second intervals with respect to C1. We compare
these estimates with the ground truth discrepancy, which
is 0. There are 300 2-second intervals in total; we report
the average and the 99th percentile discrepancies. In the
case of different FPGAs, we compare the estimates from
HUYGENS with the estimate from the direct channel. Ta-
ble 3 contains the results.

Single NetFPGA Different NetFPGAs
Prelim Final Prelim Final

(net effect) (net effect)
Mean of 41.4 11.2 47.8 13.4abs. error (ns)

99th percentile 91.0 22.0 92.1 30.2of abs. error (ns)

Table 3: HUYGENS synchronization accuracy: 16-hour exper-
iment in T-1 at 40% load with K = 10

We see that the network effect (loop-wise correc-
tion) is quite powerful, yielding a 3-4x improvement in

11The RTT between the FPGAs is 8 clock cycles (64ns) or smaller.
12Section 8 presents results from a 16 hour run.

90 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the accuracy of clock synchronization. The most com-
pelling demonstration is the single FPGA comparison in
which the ground truth is unambiguously 0. The dif-
ferent FPGA comparison shows HUYGENS with loop
correction obtains the same performance as an almost
error-free, direct connection between the two clocks even
though in HUYGENS the clocks are connected through a
network of intermediaries.

Figure 10 shows a 2 minute sample trajectory of the
errors as well as the distribution of the errors over 10
minutes in the same FPGA comparison.

0 20 40 60 80 100 120

Time (sec)

−40

−20

0

20

40

E
rr

or
(n

s)

Error

(a) A 2 min zoom-in

−40 −20 0 20 40

Error (ns)

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
ro

fs
am

pl
in

g
po

in
ts

(b) Distribution of errors

Figure 10: HUYGENS vs ground truth for 2 ports on the same
NetFPGA: 16-hour experiment at 40% load with K = 10

7.1 The network effect

We consider the benefit of the network effect by increas-
ing K from 2 to 12. Under an assumed theoretical model,
it was stated in Section 5 that this would reduce the stan-
dard deviation of the clock synchronization error by a
factor 1√

K
. Figure 11 quantifies the benefit of the net-

work effect for the mean of the absolute error and the
99th percentile errors as K gets larger.

0 2 4 6 8 10 12

K

0

10

20

30

40

50

E
rr

or
(n

s)

mean
99th percentile

(a) Same NetFPGA

0 2 4 6 8 10 12

K

0

10

20

30

40

50

E
rr

or
(n

s)

mean
99th percentile

(b) Different NetFPGAs

Figure 11: Mean and 99th percentile synchronization error in
T-1 as K varies with 40% load

7.2 Performance under high load

Figure 12 shows the accuracy of HUYGENS under dif-
ferent network loads. As can be seen, even at 90% load
HUYGENS is still able to synchronize clocks with 99th

percentile error smaller than 60 nanoseconds. HUYGENS
is robust to very high network load for the following
reasons: (i) It applies intensive statistical procedures on
each 2 seconds of probe data; the 2 second interval hap-

pens to be long enough that, even at very high load, a
small number of probes go though empty queues, allow-
ing HUYGENS to obtain accurate estimates. (ii) HUY-
GENS takes advantage of the redundant connectivity in
the network: even if one probing pair is blocked due to
congestion, the two clocks in this probing pair will still
quite likely be able to reach other clocks and synchronize
with them. (iii) Loop-wise correction is able to identify
and compensate probing pairs which are badly affected
by high load. We couldn’t load T-1 at more than 90% be-
cause the switches in T-1 have shallow buffers and drop
large numbers of packets, leading to excessive TCP time-
outs.

0 10 20 30 40 50 60 70 80 90

Network load (%)

0

10

20

30

40

50

60

E
rr

or
(n

s)

mean
99th percentile

(a) Same NetFPGA

0 10 20 30 40 50 60 70 80 90

Network load (%)

0

10

20

30

40

50

60

E
rr

or
(n

s)

mean
99th percentile

(b) Different NetFPGAs

Figure 12: HUYGENS error at different loads in T-1, K = 10.

7.3 Comparision with NTP
Since NTP is a widely-used algorithm and does not re-
quire specialized hardware, it is worth comparing it to
HUYGENS on T-1. For fairness, we let NTP use the
same hardware timestamps as HUYGENS, although al-
most all real-world implementations of NTP use CPU
timestamps.

Load Method Single NetFPGA Different NetFPGAs
Mean of 99th percen- Mean of 99th percen-
abs. error tile of abs. abs. error tile of abs.

(ns) error (ns) (ns) error (ns)
0% HUYGENS 10.2 18.5 11.3 19.5

NTP 177.7 558.8 207.8 643.6
40% HUYGENS 11.2 22.0 13.4 30.2

NTP 77975.2 347638.4 93394.0 538329.9
80% HUYGENS 14.3 32.7 16.4 38.4

NTP 211011.7 778070.4 194353.5 688229.1

Table 4: A comparison of HUYGENS and NTP.

Table 4 shows that, even with hardware timestamps,
NTP’s error is 4 orders of magnitude larger than HUY-
GENS’s under medium to high network loads. Note that
although some implementations of NTP use a DAG-like
graph to synchronize a clock with clocks which are up-
stream on the DAG, this operation is local when com-
pared to the more global loop-wise correction step in the
network effect.

8 Real-time Huygens

We now extend HUYGENS to get a real-time version,
HUYGENS-R. Underlying this extension is the empiri-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 91

cal observation in Section 4 that clock frequencies are
slowly varying. Therefore, a linear extrapolation of the
estimates of HUYGENS over a few seconds will yield a
reasonably accurate real-time clock synchronization al-
gorithm.

The extension is best described using Figure 13. Con-
sider clocks C1 and Ci. Let Ik be the time interval
[2(k−1),2k). Step 5 of the HUYGENS algorithm yields
the final offset of the midpoint of each Ik at Ci from the
midpoint of the same interval at C1. For example, T2 +3
is the time at Ci when the time at C1 is 3 seconds; in gen-
eral, Tk +(2k−1) is the time at Ci when the time at C1 is
2k−1 seconds. By connecting the Tk with straight lines,
we get the HUYGENS offsets between Ci and C1 at all
times.

The green points, Ol , are the offsets between clocks
Ci and C1 for the real-time version. They are obtained as
shown in the figure: Ol lies on the line from Tl to Tl+1
when the time at C1 equals 2l+6. Thus, O1 is on the line
from T1 to T2 when C1’s time equals 8, etc. Connect the
successive points Ol and Ol+1 using straight lines to ob-
tain the green curve. This curve gives the HUYGENS-R
offsets between clocks Ci and C1 at all times after 8 sec-
onds. Since HUYGENS-R is an extrapolation of HUY-
GENS, it is not defined until some time after HUYGENS
has been operational. As defined above, the earliest time
at which HUYGENS-R can provide synchronized clocks
is when C1’s time equals 8 seconds.

0 2 4 6 8 10 12 14 16

T1
T2 T3 T4

T5
T6

T7 T8

O1

O2
O3

O4

O5

Time at C1

Time at Ci

- Time at C1

Figure 13: From HUYGENS to HUYGENS-R

Figure 14 quantifies the accuracy of HUYGENS-R us-
ing a single NetFPGA. In part (a) of the figure we see that
while HUYGENS-R’s errors are worse than HUYGENS’
errors, they are not much worse. Part (b) of the figure
gives a distribution of the errors. Under 40% load, the av-
erage value and the 99th percentile of the absolute error
are 14.1ns and 43.5ns for HUYGENS-R, slightly larger
than the corresponding numbers of 11.0ns and 22.7ns
for HUYGENS. These numbers increase to 22.1ns and
55.0ns respectively, versus 14.3ns and 32.7ns for HUY-
GENS under 80% network load.

Deployment. Even though HUYGENS and HUYGENS-R
work effectively at 90% load, the desire for “high avail-

0 20 40 60 80 100 120

Time (sec)

−30

−20

−10

0

10

20

30

E
rr

or
(n

s)

Offline Error
Real-time Error

(a) A 2 min zoom-in

−40 −20 0 20 40

Error (ns)

0

200

400

600

800

1000

1200

1400

1600

1800

N
um

be
ro

fs
am

pl
in

g
po

in
ts

(b) Distribution of errors

Figure 14: HUYGENS-R vs HUYGENS: 16-hour experiment
at 40% load with K = 10

ability” in practice may require the use of a dedicated
IEEE 802.1 QoS priority for the probes. This not only
isolates probe traffic (thereby ensuring that HUYGENS
and HUYGENS-R run at all loads), but by giving probe
traffic the highest priority, we can also reduce the effect
of queueing delays.

9 Conclusion

In this paper, we investigated the practicality of deploy-
ing accurate timestamping as a primitive service in data
center networks, in support of a number of higher-level
services such as consistency in replicated databases and
congestion control. We set out to achieve synchroniza-
tion accuracy at the granularity of tens of nanoseconds
for all servers in a data center with low overhead among
a number of dimensions, including host CPU, network
bandwidth, and deployment complexity. When com-
pared with existing approaches to clock synchroniza-
tion, we aimed to support currently functioning data cen-
ter deployments with no specialized hardware, except
NICs that support hardware timestamping (e.g., PHC).
With these goals, we introduced HUYGENS, a probe-
based, end-to-end clock synchronization algorithm. By
using coded probes, Support Vector Machines and the
network effect, HUYGENS achieves an accuracy of 10s
of nanoseconds even at high network load. HUYGENS
can scale to the whole data center since each server
only needs to probe a constant number (10–20) of other
servers and the resulting data can be processed in-place.
In particular, the parameters and the 2-second update
times HUYGENS uses remain the same regardless of the
number of servers. In a 40 Gbps data center testbed
HUYGENS only consumes around 0.05% of the servers
bandwidth and less than 0.44% of its CPU time. Since it
only requires hardware timestamping capability which is
widely-available in modern NICs, HUYGENS is ready for
deployment in current data centers. We are currently ex-
ploring the performance of HUYGENS in wide area set-
tings and are seeing promising results.

92 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] CockroachDB. https://github.com/cockroachdb/

cockroach. Accessed: 2017-9-22.

[2] PTP hardware clock infrastructure for Linux. https://www.

kernel.org/doc/Documentation/ptp/ptp.txt. Accessed:
2017-9-22.

[3] Simple Network Management Protocol. https://en.

wikipedia.org/wiki/Simple_Network_Management_

Protocol. Accessed: 2017-9-22.

[4] IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems. IEEE Stan-
dard 1588 (2008).

[5] IEEE Standard for Local and metropolitan area networks–Media
Access Control (MAC) Bridges and Virtual Bridged Local Area
Networks–Amendment 20: Shortest Path Bridging. IEEE Stan-
dard 802.1AQ (2012).

[6] IEEE Standard for Local and metropolitan area networks - Sta-
tion and Media Access Control Connectivity Discovery. IEEE
Standard 802.1AB (2016).

[7] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRID-
HARAN, M. Data center TCP (DCTCP). In ACM SIGCOMM
computer communication review (2010), vol. 40, ACM, pp. 63–
74.

[8] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W. C., KANTHAK, S., KOGAN,
E., LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE,
D., QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMA-
NIAK, M., TAYLOR, C., WANG, R., AND WOODFORD, D.
Spanner: Googles globally distributed database. ACM Transac-
tions on Computer Systems 31, 3 (2013), 8.

[9] CORTES, C., AND VAPNIK, V. Support-vector networks. Ma-
chine learning 20, 3 (1995), 273–297.

[10] JAIN, M., AND DOVROLIS, C. Ten fallacies and pitfalls on end-
to-end available bandwidth estimation. In Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement (2004),
ACM, pp. 272–277.

[11] JETWAY COMPUTER CORPORATION. Cableless & Fanless Em-
bedded Barebone Celeron J1900 / 10 Intel Gigabit LAN . http:
//www.jetwaycomputer.com/spec/JBC390F541AA.pdf, 11
2016. Accessed: 2017-9-22.

[12] KESHAV, S. The packet pair flow control protocol. International
Computer Science Institute, 1991.

[13] LAMPORT, L. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM 21, 7 (1978), 558–
565.

[14] LEE, K. S., WANG, H., SHRIVASTAV, V., AND WEATHER-
SPOON, H. Globally synchronized time via datacenter networks.
In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference (2016), ACM, pp. 454–467.

[15] LENG, M., AND WU, Y.-C. Distributed clock synchroniza-
tion for wireless sensor networks using belief propagation. IEEE
Transactions on Signal Processing 59, 11 (2011), 5404–5414.

[16] LISKOV, B. Practical uses of synchronized clocks in distributed
systems. Distributed Computing 6, 4 (1993), 211–219.

[17] MAGGS, M. K., O’KEEFE, S. G., AND THIEL, D. V. Consen-
sus clock synchronization for wireless sensor networks. IEEE
sensors Journal 12, 6 (2012), 2269–2277.

[18] MAHAJAN, R., AND WATTENHOFER, R. On consistent updates
in software defined networks. In Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks (2013), ACM, p. 20.

[19] MALLADA, E., MENG, X., HACK, M., ZHANG, L., AND
TANG, A. Skewless network clock synchronization without dis-
continuity: Convergence and performance. IEEE/ACM Transac-
tions on Networking (TON) 23, 5 (2015), 1619–1633.

[20] MERKEL, D. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal 2014, 239 (2014),
2.

[21] MILLS, D. L. Internet time synchronization: the network time
protocol. IEEE Transactions on communications 39, 10 (1991),
1482–1493.

[22] MOREIRA, P., SERRANO, J., WLOSTOWSKI, T., LOSCHMIDT,
P., AND GADERER, G. White rabbit: Sub-nanosecond timing
distribution over ethernet. In 2009 International Symposium on
Precision Clock Synchronization for Measurement, Control and
Communication (2009), IEEE, pp. 1–5.

[23] MURTA, C. D., TORRES JR, P. R., AND MOHAPATRA, P.
QRPp1-4: Characterizing Quality of Time and Topology in a
Time Synchronization Network. In IEEE Globecom 2006 (2006),
IEEE, pp. 1–5.

[24] OUSTERHOUT, J. K., AGRAWAL, P., ERICKSON, D.,
KOZYRAKIS, C., LEVERICH, J., MAZIRES, D., MITRA, S.,
NARAYANAN, A., PARULKAR, G. M., ROSENBLUM, M.,
RUMBLE, S. M., STRATMANN, E., AND STUTSMAN, R. The
case for ramclouds: scalable high-performance storage entirely
in dram. Operating Systems Review 43, 4 (2010), 92–105.

[25] PARKINSON, B. W. Progress in astronautics and aeronau-
tics: Global positioning system: Theory and applications, vol. 2.
AIAA, 1996.

[26] PÁSZTOR, A., AND VEITCH, D. Pc based precision timing with-
out gps. In ACM SIGMETRICS Performance Evaluation Review
(2002), vol. 30, ACM, pp. 1–10.

[27] PENROSE, R. A generalized inverse for matrices. In Mathemat-
ical proceedings of the Cambridge philosophical society (1955),
vol. 51, Cambridge Univ Press, pp. 406–413.

[28] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN, H., SHAH, D.,
AND FUGAL, H. Fastpass: A centralized zero-queue datacenter
network. In ACM SIGCOMM Computer Communication Review
(2014), vol. 44, ACM, pp. 307–318.

[29] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN,
A. C. Inside the social network’s (datacenter) network. In ACM
SIGCOMM Computer Communication Review (2015), vol. 45,
ACM, pp. 123–137.

[30] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMIS-
TEAD, A., BANNON, R., BOVING, S., DESAI, G., FELDER-
MAN, B., GERMANO, P., KANAGALA, A., PROVOST, J., SIM-
MONS, J., TANDA, E., WANDERER, J., HLZLE, U., STUART,
S., AND VAHDAT, A. Jupiter rising: A decade of clos topologies
and centralized control in google’s datacenter network. In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (2015), vol. 45, pp. 183–197.

[31] SOLIS, R., BORKAR, V. S., AND KUMAR, P. A new distributed
time synchronization protocol for multihop wireless networks. In
Decision and Control, 2006 45th IEEE Conference on (2006),
IEEE, pp. 2734–2739.

[32] WATT, S. T., ACHANTA, S., ABUBAKARI, H., SAGEN, E., KO-
RKMAZ, Z., AND AHMED, H. Understanding and applying pre-
cision time protocol. In 2015 Saudi Arabia Smart Grid (SASG)
(2015), IEEE, pp. 1–7.

[33] YUASA, H., SATAKE, T., CARDONA, M. J., FUJII, H., YA-
SUDA, A., YAMASHITA, K., SUZAKI, S., IKEZAWA, H.,
OHNO, M., MATSUZAKI, A., ET AL. Virtual LAN system,
July 4 2000. US Patent 6,085,238.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 93

[34] ZHOU, H., NICHOLLS, C., KUNZ, T., AND SCHWARTZ, H. Fre-
quency accuracy & stability dependencies of crystal oscillators.
Carleton University, Systems and Computer Engineering, Tech-
nical Report SCE-08-12 (2008).

94 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SnailTrail: Generalizing Critical Paths for Online Analysis of Distributed
Dataflows∗

strymon.systems.ethz.ch

Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki Kalavri,
Desislava Dimitrova, Sebastian Wicki, Zaheer Chothia, Timothy Roscoe

Systems Group, Department of Computer Science, ETH Zürich

firstname.lastname@inf.ethz.ch

Abstract
We rigorously generalize critical path analysis (CPA) to
long-running and streaming computations and present
SnailTrail, a system built on Timely Dataflow, which
applies our analysis to a range of popular distributed
dataflow engines. Our technique uses the novel metric
of critical participation, computed on time-based snap-
shots of execution traces, that provides immediate in-
sights into specific parts of the computation. This allows
SnailTrail to work online in real-time, rather than re-
quiring complete offline traces as with traditional CPA.
It is thus applicable to scenarios like model training in
machine learning, and sensor stream processing.
SnailTrail assumes only a highly general model of

dataflow computation (which we define) and we show
it can be applied to systems as diverse as Spark, Flink,
TensorFlow, and Timely Dataflow itself. We further
show with examples from all four of these systems that
SnailTrail is fast and scalable, and that critical partici-
pation can deliver performance analysis and insights not
available using prior techniques.

1 Introduction

We present a generalization of Critical Path Analysis
(CPA) to online performance characterization of long-
running, distributed dataflow computations.

Existing tools which aggregate performance informa-
tion from servers and software components into visual
analysis and statistics [2, 30] can be useful in showing
what each part of the system is doing at any point in time,
but are less helpful in explaining which components in a
complex distributed system need improvement to reduce
end-to-end latency.

On the other hand, tools which capture detailed indi-
vidual traces through a system, such as Splunk [9] and

∗This work was partially supported by the Swiss National Science
Foundation, Google Inc., and Amadeus SA.

VMware LogInsight [3], can isolate specific instances
of performance loss, but lack a “big picture” view of
what really matters to performance over a long (possibly
continuous) computation on a varying workload.

In this paper, we show that the design space for useful
performance analysis of so-called “big data” systems is
much richer than currently available tools would suggest.

Critical Path Analysis is a proven technique for gain-
ing insight into the performance of a set of interacting
processes [36], and we review the basic idea in Section 2.
However, CPA is not directly applicable to long-running
and streaming computations for two reasons. Firstly, it
requires a complete execution trace to exist before anal-
ysis can start. In modern systems, such a trace may be
very large or, in the case of stream processing, unbounded.
Secondly, in a continuous computation, there exist many
critical paths (as we show later on), which also change
over time, and there is no established methodology for
choosing one of them. It is therefore important to ag-
gregate the paths both spatially (across the distributed
computation) and temporally (as an evolving picture of
the system’s performance).

According to prior work [5, 37], the accuracy of CPA
increases with the number of critical paths considered.
However, existing approaches require full path material-
ization in order to aggregate information from multiple
critical paths. Thus, they restrict analysis to k critical
paths, where k is much smaller than the total number of
paths in the trace. In open-ended computations where
analysis is performed on trace snapshots and all paths
are of equal length, materializing all paths is impractical,
especially if the analysis needs to keep up with real time.
For instance, in our experiments, the number of paths in a
10-sec snapshot of Spark traces is in the order of 1021.

This paper’s first contributions (in Section 3) are defi-
nitions of Transient Critical Path, a modification of clas-
sical critical path applicable to continuous unbounded
computations, and Critical Participation (CP), a metric
which captures the importance of an execution activity

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 95

http://strymon.systems.ethz.ch

0 50 100 150
Snapshot

0.0

0.1

0.2

0.3

0.4

0.5
C

P

0 50 100 150
Snapshot

%
w

ei
gh

t
Driver scheduling

Figure 1: CP-based (left) and conventional profiling
(right) summaries of Spark’s driver activity on BDB [1]
from [27] for 64 s snapshots. Spikes indicate coordination
between workers and the driver.

in the transient critical paths of computation, and which
can be used to generate new time-varying performance
summaries. The CP metric can be computed online and
aggregates information from all paths in a snapshot with-
out the need to materialize any path.

Our next contribution (in Section 4) is a model for
the execution of distributed dataflow programs suffi-
ciently general to capture the execution (and logging) of
commonly-used systems—Spark, Flink, TensorFlow, and
Timely Dataflow—and detailed enough for us to define
Transient Critical Paths and CP over each of these.

We then show (in Section 5) an algorithm to compute
CP online, in real time, and describe SnailTrail, a
system built (itself as a Timely Dataflow program) to
do this on traces from the four dataflow systems listed
above. In Section 7 we evaluate SnailTrail’s perfor-
mance, demonstrate online critical path analysis using
all four reference systems with a variety of applications
and workloads, and show how CP is more informative
than existing methods, such as conventional profiling and
single-path critical path analysis (Sections 7.4 and 7.5).

Figure 1 gives a flavor of how CP compares with con-
ventional profiling techniques. The key difference is that
our approach highlights activities that contribute signifi-
cantly to the performance of the system, while discarding
processing time that lies outside the critical path.

We believe SnailTrail is the first system for online
real-time critical path analysis of long-running and stream-
ing computations.

2 Critical Path Analysis background

CPA has been successfully applied to high-performance
parallel applications like MPI programs [11, 32], and the
basic concepts also apply to the distributed dataflow sys-
tems we target in this paper. In this section we review

classical CPA applied to batch computations as a prelude
to our extension of CPA to online and continuous com-
putations in the next section. Table 1 summarizes the
notation we use in this section and the rest of this paper.

We view distributed computation as executed by indi-
vidual system workers that perform activities (e.g. data
transformations or communication). The critical path
is defined as the sequence of activities with the longest
duration throughout the execution. More formally:

Definition 1 Activity: a logical operation performed at
any level of the software stack, and associated with two
timestamps [start,end], start ≤ end, that denote the
start and end of its execution with respect to a clock C.

An activity can be either an operation performed by a
worker (worker activity) or a message transfer between
two workers (communication activity). Typically, worker
activities correspond to the execution of some code, but
can also be I/O operations performed by the worker (e.g.
reads/writes to/from disk). Communication activities cor-
respond to worker interactions, e.g. message passing.

Different systems have different concepts (threads,
VMs, etc.) corresponding to workers. For consistency,
we define workers as follows:

Definition 2 Worker: a logical execution unit that per-
forms an ordered sequence of activities with respect to a
clock C.

We require that no two activities of the same worker
ai:[starti,endi] and a j:[start j,end j] (where i ,
j) can overlap in time, i.e. either endi ≤ start j or
starti ≥ end j.

Central to CPA is the Program Activity Graph (PAG):

Definition 3 Program Activity Graph: A PAG G = (V,E)
is a directed labeled acyclic graph where:

• V is the set of vertices. A vertex v ∈ V represents an
event corresponding to the start or end of an activity.
Each vertex v has a timestamp v[t] and a worker id
v[w].

• E ≡ Ew ∪ Ec ⊂ V ×V, Ew ∩ Ec = ∅, is the set of di-
rected edges. An edge e = (vi,v j) ∈ E represents an
activity a:[start,end], where vi[t] = start and
v j[t] = end. An edge e has a type e[p] and a weight
e[w] indicating the activity duration in time units,
so that e[w] = v j[t] - vi[t] = end - start ≥ 0. An
edge e ∈ Ew denotes a worker activity whereas an
edge e ∈ Ec denotes a communication activity.

The direction of an edge e = (v1,v2) ∈ E from node
v1 ∈ V to node v2 ∈ V denotes a happened-before rela-
tionship between the nodes [24]. The critical path is then
defined as the longest path in the program activity graph:

96 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Symbol Description

a:[start,end] Activity a with start and end
timestamps

G Activity graph
G[ts,te] Snapshot of activity graph G in the

time interval [ts,te]∏te
ts

(e) Projection of edge e on the time
interval [ts,te]

v[w] Worker id of vertex v
v[t] Timestamp t of vertex v
e[w] Weight w of edge e
e[p] Type p of edge e
||~p|| Total weight of edges in path ~p
Ew Set of worker activities
Ec Set of communication activities

c(e) transient path centrality of edge e
CPe critical participation of edge e

Table 1: Notation used throughout this paper

Definition 4 Critical Path: Given a program activity
graph G = (V,E), the critical path is a path ~p ∈ G such
that @~p′ ∈ G : ||~p′|| > ||~p||, where ||~p|| =

∑
∀e ∈ ~p e[w] and

||~p′|| =
∑
∀e ∈ ~p′ e[w] is the sum of all edge weights in ~p

and ~p′ respectively.

3 Online Critical Path Analysis

Offline processing in traditional CPA is not feasible for
long-running or continuous computations like streaming
applications or machine learning model training. In these
cases, neither the program activity graph nor the critical
path can be defined as in Section 2.

Instead, we define online CPA on PAG snapshots, per-
forming it on user-defined time windows: slices of the
PAG that contain activities within a specified time interval.
This enables not only performance analysis of running
applications, but also targeting specific parts of the com-
putation like the model training phase in a TensorFlow
program or a specific time window in a Flink stream.

To achieve this, we show here how to define a time-
based program activity graph snapshot and a transient
critical path on this graph. We then define the critical
participation performance metric, and we provide the
intuition behind it in Section 3.3.

3.1 Transient Critical Paths
To retrieve a snapshot of the PAG, we first assign activities
to time windows. Given an edge in a graph, we call its
corresponding edge in a snapshot an edge projection:

Definition 5 Edge Projection: Let e = (vi,v j) be an edge
of an activity graph G = (V,E), where e ∈ E and vi,v j ∈ V.
Let also [ts, te], ts ≤ te, be a time interval with respect to
a clock C. Let us be a copy of vi with us[t] = ts and ue a
copy of v j with ue[t] = te. The projection of e on [ts, te] is
an edge of the same type as e and is defined only whenever[
vi[t],v j[t]

]
overlaps with [ts, te] as follows:

te∏
ts

(e) =

(
argmax

[t]
(vi,us),argmin

[t]
(v j,ue)

)
Activities entirely within the time interval [ts, te] are

unchanged by the projection, whereas activities that strad-
dle the boundaries are truncated to fit the interval. We can
now define a snapshot as follows:

Definition 6 PAG Snapshot: Let G = (V,E) be a program
activity graph, and [ts, te], ts ≤ te, be a time interval with
respect to a clock C. The snapshot of G in [ts, te] is a
directed labeled acyclic graph G[ts,te] = (V′,E′) that is
constructed by projecting all edges of G on [ts, te].

The snapshot G[ts,te] is that part of the PAG which can
be observed in the time window [ts, te]. Figure 2a shows
this applied to the activity timelines of two worker threads,
w1 and w2, with time flowing left to right. The complete
PAG is shown at the top with the critical path in red.
Below is the projection of the PAG into the interval [ts, te].
The activities straddling the window (e.g.

∏te
ts

(b,g) =

(b′,g′)) are projected to fit in the snapshot.
The key observation is that we cannot define a single

critical path in a PAG snapshot since there exist multiple
longest paths with the same total weight: te− ts. All paths
starting at ts and ending at te are potentially parts of the
evolving global critical path. For this reason, we define
the notion of transient critical path:

Definition 7 Transient Critical Path: Let G[ts,te] = (V,E)
be the snapshot of an activity graph G in the time
interval [ts, te]. We define the set of paths P on G[ts,te] as
P ≡ {~p ⊆ E | @ ~p′ : ||~p′|| > ||~p||}, where ~p denotes a
path in G[ts,te], and ||~p|| denotes the total weight of all
edges in ~p, i.e., ||~p|| =

∑
∀e ∈ ~p e[w].

Any path ~p ∈P is a transient critical path of the activity
graph G in the time interval [ts, te].

Figure 2b shows all six transient critical paths for the
snapshot in Figure 2a. Since each could potentially par-
ticipate in the evolving global critical path, we need a
metric that can aggregate information from all paths and
rank activities according to their impact on computation
performance. In offline CPA such a ranking is trivial since
there is only one critical path for the entire computation.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 97

ts te

w1

w2

w1

w2

a b c d e

f g h i

b’ c’ d’ e’

f’ g’ h’ i’

t=k t=k+1

(a) Program activity timelines of a distributed execution with
two workers. The vertical lines divide the timeline into intervals
of one time unit. The critical path is highlighted in red in the
top timeline. The bottom timeline shows the PAG snapshot into
the time interval [ts, te].
b’ c’ d’ e’

g’ h’

b’ c’ d’

g’ h’ i’

c’ d’ e’

g’ h’f’

c’ d’

g’ h’f’ i’

b’

g’ h’ i’g’ h’f’ i’

(b) Transient critical paths for the graph snapshot of Figure 2a.

Figure 2: A program activity graph, its snapshot in the
interval [ts, te], and its transient critical paths.

Since all transient paths can potentially be part of the
evolving global critical path, an activity that appears on
many transient paths is more likely to be critical and
should be ranked high. In Figure 2b, edge (d′, i′) appears
in two paths, while edge (g′,h′) belongs to all six. The
performance metric we define next incorporates this in-
formation and ranks activities based on their potential
contribution to the global critical path.

3.2 Critical Participation (CP metric)

Given the duration of an activity e[w] and the total length
||~p|| of the critical path ~p, the participation of e to ~p is
defined as:

qe =
e[w]
||~p||
∈ [0,1] (1)

and is easily computed for all activities in a single ~p pass.
We correspondingly define average critical participa-

tion (CP) of an activity e in a transient critical path as:

CPe =

∑i=N
i=1 qi

e

N
∈ [0,1] (2)

where qi
e is the participation of e to the i-th transient

critical path (given by Eq. 1), and N is the total number
of transient critical paths in the graph snapshot.

A straightforward way to compute CPe is to material-
ize all N transient paths and compute the participation
of each activity in every path. However, path material-
ization is not viable in an online setting because a single
graph snapshot might contain too many paths to maintain.
Instead, we exploit the fact that the CP of an activity ac-
tually depends on the total number of transient paths this
activity belongs to. Hence, we define the transient path
centrality as follows:

Definition 8 Transient Path Centrality: Let P =

{~p1, ~p2, ..., ~pN} be the set of N transient paths of snap-
shot G[ts,te] with length ||~p|| = te − ts. The transient path
centrality of an edge e ∈G[ts,te] is defined as

c(e) =

N∑
i=1

ci(e), where ci(e) =

0 : e < ~pi

1 : e ∈ ~pi

The following holds:

CPe =

∑i=N
i=1 qi

e

N
=

c(e)
N
·

e[w]
||~p||

(3)

Eq. 31 indicates that the computation of CPe can be
reduced to the computation of c(e), which requires no
path materialization and can be performed in parallel for
all edges in G[ts,te]. Section 5 provides an algorithm for
transient path centrality and CP without materialization.
Note that we can normalize by the number of paths N and
their length ||~p|| because of Definition 7 guaranteeing that
all paths have the same length.

We can now compute the transient path centrality and
critical participation for the example in Figure 2. For
instance, c(d′, i′) = 2 and c(g′,h′) = 6. Respectively, since
te− ts = 5 and N = 6, CP(d′,i′) = 0.066 and CP(g′,h′) = 0.2.

The CP of Eq. 2 can be generalized for activities of a
specific type c as: ∑

∀e:e[p]=c

CPe (4)

and the following holds1:∑
∀c ∈ G

∑
∀e:e[p]=c

CPe = 1 (5)

Intuitively, Eq. 5 states that the estimated contribution
of an activity type, e.g., serialization, to the critical path
of the computation is normalized over the contribution of
all other activity types in the same snapshot.

1We provide proofs of Eqs. 3 and 5 in the Appendix A.3.

98 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.3 Comparison with existing methods

Figure 3 illustrates by example a comparison of CP-based
performance analysis with two existing methods: conven-
tional profiling and traditional critical path analysis.

Conventional profiling summaries aggregate activity
durations by type or by worker timeline. Such summaries
provide information on how much time (i) a program
spends on a certain activity type (e.g. serialization) or (ii)
a worker spends executing an activity type as compared
to other workers. Since conventional profiling summaries
rely solely on durations and do not capture execution
dependencies, they cannot reveal bottlenecks and execu-
tion barriers. Conventional profiling in the execution of
Figure 3 would rank activities (a,b) and (c,d) high since
they both have a duration of 3 time units, larger than all
other activities. However, optimizing those activities can-
not result into any performance benefit for the parallel
computation as they are both followed by a waiting state
(denoted with a dashed line).

On the other hand, CPA captures execution dependen-
cies and can accurately pinpoint activities which influence
performance. However, traditional CPA is not directly ap-
plicable in a continuous computation as the critical path is
not known by just inspecting a snapshot of the execution
traces. In a snapshot like the one of Figure 3, all paths
starting at si and finishing at ei have equal length in time
units, thus traditional CPA would choose one of them at
random. We have highlighted such a path in Figure 3 in
red color. Although this randomly selected path does not
contain the activities (a,b) and (c,d), whose optimization
would certainly not improve the latency of the computa-
tion, it misses several important activities, such as (x,u)
and (v,z), whose optimization would do so.

The CP metric overcomes the limitations of both con-
ventional profiling and traditional CPA by ranking activi-
ties based on their potential contribution to the evolving
critical path of the computation, which in turn reflects
potential benefits from optimization.

Given a snapshot and no knowledge of the execution
timelines outside of it, any path between the si and ei
points in Figure 3 is equally probable to be part of the
critical path. CP is a fairer metric compared to existing
methods in that it aggregates an activity’s contribution
over all transient critical paths and normalizes by the
number of paths and the activity’s duration. The more
paths an activity contributes to, the higher the probability
it is a part of the evolving critical path and, hence, the
higher its CP metric is. In Figure 3, activities (a,b) and
(c,d) do not contribute to any path and thus have zero
transient path centrality and CP values. On the other
hand, activities (x,u), (u,v), and (v,z) will be ranked as
top-three by CP, since they participate in six, nine, and
six transient critical paths respectively.

ts te

w1

w2

w3

96

0

0

6

t=k t=k+1

u v

a b

dc

x z

s1

s2

s3

e1

e2

e3

Figure 3: A program activity graph snapshot with three
workers. The vertical lines divide the timeline into inter-
vals of one time unit. A randomly chosen critical path
is highlighted in red. Edge annotations correspond to
transient path centrality (Definition 8).

In Section 7.4 we empirically compare CP-based per-
formance summaries to conventional profiling and tradi-
tional CPA, and demonstrate how the results of the latter
can be misleading. Further, in Section 7.5, we show how
CP can detect and help optimize execution bottlenecks
like the one represented by activity (u,v) in Figure 3.

4 Applicability to dataflow systems

Here we show the applicability of our applicability to a
range of modern dataflow systems. We provide details on
the model assumptions and the instrumentation require-
ments in the Appendix.

Spark, Flink, TensorFlow, and Timely are superficially
different, but actually similar with regard to CPA: all
execute dataflow programs expressed as directed graphs
whose vertices are operators (e.g. map, reduce) and whose
edges denote data dependencies. During runtime, a logi-
cal dataflow graph is executed by one or more workers,
which can be threads or processes in a machine or a clus-
ter. Each worker has a copy of the graph and processes a
partition of the input data in parallel with other workers.

4.1 Activity types
We define a small set of activity types we use to classify
both the activity of a worker at any given point in time,
and communication of data between workers/operators.
We consider the following types of worker activities:

Data Processing: The worker is computing on data in an
operator, which usually has a unique ID. We also include
low-level (de)compression operations.

Scheduling: Deciding which operator a worker will exe-
cute. In Spark and Flink, scheduling is done by special
workers (the Driver and the JobManager).

Barrier Processing: The worker is processing informa-
tion which coordinates the computation (e.g distributed
progress tracking in Timely or watermarks in Flink).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 99

Buffer Management: The worker is managing buffers
between operators (e.g. Flink’s FIFO queues) or buffering
data moving to/from disk (e.g. Spark). The activity may
include copying data into/out of buffers, locking, recy-
cling buffers (e.g. Flink) and dynamically allocating them
(e.g. Timely).

Serialization: Data is being (un)marshaled, an operation
common to all dataflow systems when messages are sent
between processes and/or machines.

Waiting: The worker is waiting on some message (data
or control) from another worker, and is therefore either
spinning (as in Timely) or blocked on an RPC (as in Ten-
sorFlow). Waiting in our model is always a consequence
of other, concurrent, activities [21], and so is a key ele-
ment of critical path analysis: a worker does not produce
anything useful while waiting, and so waiting activities
can never be on the critical path.

I/O: The worker is waiting on an external (uninstru-
mented) system, (e.g. Spark waiting for HDFS, or Flink
spilling large state to disk). I/O activities have no spe-
cial meaning, but capture cases where performance of the
reference system is limited by an external system.

Unknown: Anything else: gaps in trace records and any
worker activity not captured by the instrumentation. A
large number of unknown activities usually indicates in-
adequate instrumentation [21].

In contrast, interaction between workers is modeled as
a communication activity, which captures either: (i) appli-
cation data exchange over a communication channel, or
(ii) control messages conveying metadata about worker
state or progress and exchanged between pairs of workers
(as in Timely) or through a master (as in Spark, Flink).

4.2 Instrumenting specific systems

We applied our approach to Spark, TensorFlow, Flink,
and Timely Dataflow, mapping each to our taxonomy of
activities. In some cases we used existing instrumentation,
whereas in others we added our own. Space precludes a
full discussion of either the structure of these systems or
their instrumentation; we provide only brief summaries
here and we give more details in [21].

Timely Dataflow [26] required us to add explicit in-
strumentation, and was the first system we addressed (in
part because SnailTrail is written in Timely). Timely’s
progress tracking corresponds to our “barrier” activity, dis-
crete (de)serialization is performed on both data records
and control messages, and Timely’s cooperative schedul-
ing means that any otherwise unclassified worker activity
corresponds to “scheduling”.

Apache Flink [10] adopts (unlike Timely) a master-
slave architecture for coordination. We treat Flink’s

Figure 4: SnailTrail overview.

JobManager, TaskManagers, and Tasks all as work-
ers, and Flink’s runtime has clear activities correspond-
ing to buffer management and serialization. Schedul-
ing is performed in the JobManager, barrier process-
ing corresponds to the watermark mechanism, and con-
trol messages correspond to communication between the
JobManager and TaskManagers.

TensorFlow [4] has its own instrumentation based on
“Timeline” objects, which we reuse unchanged. While
enough to generate meaningful results, it also shows how
even a well-considered logging system can easily omit
information vital for sophisticated performance analysis.

Spark [38] also has native instrumentation which we
use to model both the Spark driver and executors as
workers. The logs provide information on the lineage
of Resilient Distributed Datasets (RDDs) facilitating con-
struction of the PAG. Since executor scheduling is not
instrumented, we assume greedily that a task is started on
the most recently used thread, which aligns with Spark’s
observed behavior.

5 SnailTrail system implementation

CP is implemented in SnailTrail, itself a data-parallel
streaming application written in Rust using Timely
Dataflow (Figure 4). It reads streams of activity traces via
sockets, files, or message queues from a reference appli-
cation and outputs a stream of performance summaries.
SnailTrail operates in four pipeline stages: it (i) in-
gests logs, (ii) slices the stream(s) into windows [ts, te]
and constructs PAG snapshots, (iii) computes the CP of
the snapshots, and (iv) outputs the summaries we show in
Section 6.

Traces are sent to SnailTrail which ingests a stream
S of performance events corresponding to vertices in the
activity graph. The snapshots are constructed using Algo-
rithm 1. First, SnailTrail extracts from S the events in

100 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the time window [ts, te] (line 1). These are then grouped
by the worker that recorded them (line 2). Each group
corresponds to a worker timeline in Figure 2a. Then,
SnailTrail sorts the events in each timeline by time
(line 4), and scans each timeline in turn to create the set
of edges Ew (line 6) that correspond to worker activities
(cf. Section 4.1). Meanwhile, communication activities
are partially initialized based on send and receive at
each worker (line 7). Then (line 8), partial edges are
grouped by the attributes

(
wsrc

id ,w
dst
id ,cid

)
; note that wsrc

id is
the sender worker id, wdst

id is receiver id, and cid is gener-
ated to uniquely identify a message. These pairs of partial
edges are concatenated to create the final communication
edges in Ec, and the output is the union of sets Ew and Ec
(line 9).

Algorithm 1: Graph Snapshot Construction

Input :A stream S of logs and a window [ts, te];
Output :The graph snapshot G[ts,te];

1 let S [ts,te] be the logged events from S in [ts, te];
2 group events in S [ts,te] by worker;
3 for each worker timeline in S [ts,te] do
4 sort events by time;
5 scan events and generate:
6 (a) the set Ew of edges for worker activities;
7 (b) a set Eh of half edges for send and receive

events;

8 group half edges in Eh by
(
wsrc

id ,wdst
id ,cid

)
and create the set

Ec of edges for communication activities;
9 return Ew∪Ec

Algorithm 1 requires two shuffles of the incoming log
stream: one on worker id (before line 2), and a second
on the triple

(
wsrc

id ,w
dst
id ,cid

)
(before line 8). The most

expensive step is sorting the timeline (line 4), requiring
O

(
|T | · log |T |

)
time, where |T | is the number of events

in the timeline. Parallelism is limited by the number of
workers in the reference system (usually many more than
SnailTrail) and the density of the graph. We emphasize
that edges in the PAG represent real happened-before
dependencies given by the instrumentation. More details
in the way edges are created in lines 6-7 are given in the
Appendix along with a discussion on clock alignment.

For each graph snapshot, the CP metric is computed
using Algorithm 2. SnailTrail collects ‘start’ and ‘end’
nodes (lines 1-2) as seeds to traverse G[ts,te]. Vs (resp. Ve)
includes the node(s) with the minimum (resp. maximum)
timestamp v[t] in G[ts,te]. Typically, |Vs| = |Ve| = `, where
` is the number of timelines, and so all nodes in Vs have
timestamp ts whereas all nodes in Ve have timestamp te.

Algorithm 2 computes the transient path centrality c(e)
of Eq. 3 for all edges in G[ts,te]. Observe that c(e) = c1 ·c2,
where c1 is the number of paths from the source of e

to any node in Vs, and c2 is the number of paths from
the destination of e to any node in Ve. The algorithm
thus performs two simple traversals of G[ts,te] in parallel,
computing c1 and c2 for each edge (lines 3-4). Each
traversal outputs pairs (e,ci) and these are finally grouped
by e to give CP values (lines 6-7).

Note that, while traversing G[ts,te], we visit each edge
in G[ts,te] only once by propagating the final value c1 (resp.
c2) from each edge to all its adjacent edges. This reduces
the intermediate results of the computation significantly.
We compute the CP according to Equation 3, which does
not require path materialization.

Algorithm 2 requires two partitions of G[ts,te]: one on
source, and one on destination ids. Worst-case time com-
plexity is O(d), where d is the diameter of G[ts,te] in num-
ber of edges, i.e., the maximum number of edges in any
transient critical path.

Algorithm 2: Critical Participation (CP Metric)

Input :An activity graph snapshot G[ts,te] = (V,E);
Output :A set S = {(e,CP) | e ∈G[ts,te]} of CP values;

1 let Vs ≡ {v ∈ V | @v′ ∈ V : v′[t] < v[t]}; //start nodes
2 let Ve ≡ {v ∈ V | @v′ ∈ V : v′[t] > v[t]}; //end nodes
//Both traversals are performed in parallel

3 traverse G[ts,te] starting from Vs, and count the total number
of times each edge is visited, let c1;

4 traverse G[ts,te] backwards, starting from Ve, and count the
total number of times each edge is visited, let c2;

5 S = ∅;
6 for each edge e ∈ E do
7 S = S ∪{(e, c1 · c2 · e[w]

N · (te−ts))}

8 return S

Performance summaries are constructed by user-
defined groupings on the edge attributes and summing CP
values over each group.
SnailTrail’s accuracy depends on the quality of the

instrumentation. A more complete set of dependencies
increases the accuracy of the CP metric. We leave a
worst-case error bound analysis for future work.

6 CP-based performance summaries

The CP metric provides an indication of an activity’s con-
tribution to the evolving critical path. SnailTrail can
be configured to generate different types of performance
summaries using the CP metric. Each summary type tar-
gets a specific aspect of an application’s performance and
is designed to reveal a certain type of bottleneck. In partic-
ular, SnailTrail provides four performance summaries
which can answer four types of questions: (i) Which activ-
ity type is on the critical path? (ii) Is there data skew? (iii)
Is there computation skew? (iv) Is there communication

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 101

0 5 10 15
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0
C

P

DataMessage
Unknown
Buffer

Deserialization
Serialization
Processing

(a) Activity

0 5 10 15
Snapshot

0.00

0.05

0.10

0.15

C
P

(b) Straggler

0 5 10 15
Snapshot

0.00

0.02

0.04

0.06

C
P

Flatmap Count

(c) Operator

0 1 2 3 4 5 6 7 8 9 10 11 12
Worker

0
1
2
3
4
5
6
7
8
9

10
11
12

W
or

ke
r

(d) Communication

Figure 5: Examples of SnailTrail summary types for the Dhalion [18] benchmark on Flink with 1s snapshots.

skew? The performance summaries not only indicate po-
tential bottlenecks, but also provide immediate actionable
feedback on which activities to optimize, which workers
are overloaded, which dataflow operator to re-scale, and
how to minimize network communication.

Figure 5 shows examples of the four summary types for
the Dhalion [18] benchmark on Flink with 1s snapshots.
In the rest of this section, we describe each summary
type in detail and we discuss how to use them in practical
scenarios to improve an application’s performance.

Activity summary. Is the fault-tolerance mechanism in
the critical path when taking frequent checkpoints? Is
coordination among parallel workers an overhead when
increasing the application’s parallelism? An activity sum-
mary can answer this sort of questions about an applica-
tion’s performance. This summary plots the proportional
CP value of selected activity types with respect to the
other activity types in a given snapshot. Activity reveal
bottlenecks inherent to the system or its configuration.
Having a ranking of activity types based on their critical
participation essentially gives us an indication on which
activities have the higher potential for optimization ben-
efit. For example, if we find that serialization is on the
critical path, we might want to try a different serializa-
tion library. The activity summary ranking can also help
us choose good configurations for our application, like
how to adjust the checkpoint interval or the parallelism.
The activity summary of Figure 5 shows that serialization
and processing have the higher potential for optimization.
Activity summaries can be configured to plot selected
activities only, as in Figure 1 where we only show the
Spark driver’s scheduling.

Straggler summary. Is there data skew? If so, which
worker is the straggler? SnailTrail can answer these
questions with a straggler summary, which plots the criti-
cal participation of a worker’s timeline in a certain snap-
shot. The straggler summary relies on the observation that
if a worker is a straggler then many transient critical paths
pass through its timeline. Hence, we can compare how

how critical a worker’s activities are as compared to the
other workers in the computation and reveal computation
imbalance. This ranking can serve as input to a work-
stealing algorithm or guide a data re-distribution tech-
nique. The straggler summary of Figure 5 clearly shows
one straggler worker in the Flink job. In Section 7.5, we
look closer into detecting skew with SnailTrail.

Operator summary. Will re-scaling my dataflow im-
prove performance? And if yes, which operator in the
dataflow to re-scale? An operator summary plots the crit-
ical participation of each operator’s processing activity in
a snapshot, normalized by the number of parallel workers
executing the operator. This summary reveals bottlenecks
in the dataflow caused by resource underprovising and
serves as a good indicator for scaling decisions. Tradi-
tional profiling methods fail to detect that an operator
might be limiting the end-to-end throughput of a dataflow
even if its parallel tasks are perfectly balanced. Such
bottlenecks are hard to detect by looking at traditional
metrics such as queue sizes, throughput, and backpres-
sure. The operator summary of Figure 5 shows that both
operators have similar critical participation, thus the par-
allelism of the job is properly configured. In Section 7.5,
we present a detailed use-case where operator summaries
guide scaling decisions for streaming applications.

Communication summary. Is there communication
skew? And if yes, which communication channels to opti-
mize? A communication summary plots the critical partic-
ipation of communication activities between each pair of
workers within a given snapshot. Contrary to traditional
communication summaries, this CP-based summary does
not rely on communication frequency or absolute mes-
sage sizes. Instead, it ranks communication edges by
their critical importance: the more often a communication
edge belongs to a transient critical path, the higher it will
be ranked by the summary. Communication summaries
can be used to minimize network delays and optimize
distributed task placement. If we find that a pair of work-
ers’ communication is commonly on the critical path, it

102 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is probably a good idea to physically deploy these two
workers on the same machine. For example, the commu-
nication summary of Figure 5 indicates that colocating
worker 5 with workers 11-13 could benefit performance.

7 Evaluation

To show generality, we evaluate SnailTrail analyzing
four different reference systems: Timely Dataflow (ver-
sion 0.1.15), Apache Flink (1.2.0), Apache Spark (2.1.0),
and TensorFlow (1.0.1). Our evaluation is divided into
four categories. First, in Section 7.2 we show the instru-
mentation SnailTrail needs does not cause significant
impact on the performance of reference systems. Second,
in Section 7.3 we investigate SnailTrail’s performance
and show it can deliver results in real time with high
throughput and low latency. Third, we compare the qual-
ity of SnailTrail’s analysis and the utility of the CP
metric with both conventional profiling and traditional
critical path analysis (Section 7.4). Finally, we present use
cases for SnailTrail with analysis results (Section 7.5).

7.1 Experimental setting
SnailTrail uses the latest Rust version of Timely
Dataflow [25] compiled with Rust 1.17.0. In all experi-
ments, SnailTrail ran on an Intel Xeon E5-4640 2.40
GHz machine with 32 cores (64 threads) and 512G RAM
running Debian 7.8 (“wheezy”), and was configured to
produce results by ingesting execution traces from a ref-
erence system on a different cluster.

Benchmarks. We compare SnailTrail to existing
approaches with several traces generated by Flink,
Spark, and TensorFlow using the following bench-
marks. For Flink, we use the Yahoo Streaming Bench-
mark (YSB) [12] and the WordCount benchmark of
Dhalion [18]. For Spark, we use YSB and, for Tensor-
Flow, we use the AlexNet [23] program on ImageNet [29].
To evaluate SnailTrail performance we use Flink (con-
figured with 48 parallel tasks) running a real-world ses-
sionization program on a 10min window of operational
logs from a large industrial datacenter. This generates
a trace with a median number of 30K events per sec-
ond (around 7.5M events for a 256s snapshot, the largest
we used). We also show the instrumentation overhead
in Flink, with the same sessionization experiment, and
Timely, using a PageRank computation with 16 parallel
workers on a random graph.

7.2 Instrumentation Overhead
SnailTrail relies on tracing functionality in the refer-
ence system, and this incurs performance overhead. To

Base-
line

INFO
log

Instru-
mented

0

1

2

3

4

5

P
ro

ce
ss

in
g

la
te

nc
y

[s
]

Base-
line

Instru-
mented

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Figure 6: Latency with and without instrumentation for
Flink (left) and Timely (right)

evaluate the overhead of the instrumentation we added,
we implemented a streaming analytic job, sessionization,
in Flink and an iterative graph computation, PageRank, in
Timely, and measured performance with tracing enabled
and disabled. For TensorFlow and Spark we use their
existing, and somewhat incomplete, tracing facilities.

Figure 6 shows box-and-whisker plots of processing
latency for Flink and Timely implementations. Individual
bars correspond to the cases where logging is completely
turned off (baseline), the default logging level (info), and
our detailed tracing (instrumented).

Flink shows a statistically significant difference of
9.7 % (±1.43%) additional mean latency, or 203ms
(±29.9µs) in absolute terms, at 95% confidence. This
overhead is negligible, given that Flink typically runs
with logging enabled in production deployments.

For Timely, there is a statistically significant difference
of 13.9 % (±5.5%) increase in the mean latency, or 319µs
(±126.2µs) in absolute terms, at 95% confidence.

Experiments with Spark and TensorFlow showed no
discernible overhead for collecting the traces required by
SnailTrail. Overall, we argue that performance penal-
ties around 10% are an acceptable tradeoff for greater in-
sight, and could be additionally amortized in some cases.

7.3 SnailTrail Performance
We evaluate SnailTrail’s performance to demonstrate
that (i) it always operates online and thus provides feed-
back to the running reference applications in real-time and
(ii) its analysis scales to large deployments of reference
applications without violating this online requirement.

Latency. We require SnailTrail to be capable of con-
structing the PAG and computing the CP metric for a
snapshot of size x secs in less than x secs. The number of
events in a snapshot depends on (i) the snapshot duration
and (ii) the instrumentation granularity of the reference
system. For this experiment, we vary the number of events

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 103

snapshot
1 2 4 8 16 32 64 128 256

size
latency 0.06 0.14 0.29 0.62 1.40 2.93 5.91 13.16 24.84
#events 0.03 0.06 0.12 0.24 0.48 0.94 1.91 3.76 7.5

Table 2: SnailTrail’s median latency per snapshot (s)
for the online analysis of different snapshot intervals (s).
The last row shows the median number of events (mil-
lions) per snapshot.

snapshot
1 2 4 8 16 32 64 128 256

size
throughput 1.2 1.2 1.2 1.1 1.1 1.0 0.8 0.5 0.4

latency 0.7 1.4 3.2 7.1 10.1 10.2 16.8 24.9 30.8

Table 3: SnailTrail’s maximum achieved throughput
(millions of processed events per second) and correspond-
ing latency per snapshot (s) for the online analysis of
different snapshot intervals (s).

in the snapshot by increasing its duration from 1s to 256s
(in powers of 2) and we run SnailTrail on the Flink
sessionization job trace, which is the densest one we have.
Note that the public Spark traces from real-world cloud
deployments [27] are not as dense as the ones generated
by the Flink streaming computations we run.

We show median latency and number of events per
snapshot in Table 2; SnailTrail is always capable of
operating online and its latency increases almost linearly
with the snapshot duration. Specifically, it can process 1s
of input logs in 6ms and 256s of input logs in under 25s.

Throughput. To evaluate SnailTrail’s throughput, we
interleave the processing of multiple snapshots to increase
the number of events sent to the system. Table 3 shows
the maximum achieved throughput (number of processed
events per second) while respecting the online require-
ment and the corresponding latency for processing an
input snapshot, including PAG construction and CP com-
putation. For 1s snapshots, SnailTrail can process 1.2
million events per second; a throughput two orders of
magnitude larger than the event rate we observed in all
log files we have, including the Spark traces from [27].
SnailTrail comfortably keeps up with all tested work-
loads: the time to process a snapshot is always smaller
than the snapshot’s duration. Throughput decreases when
increasing the snapshot size since the PAG gets bigger.

7.4 Comparison with existing methods
We examine how useful the CP-based summaries pro-
duced by SnailTrail are in practice, as compared to
the weight-based summaries produced by conventional
profiling, where activities are simply ranked by their total

0 100 200
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

C
P

0 100 200
Snapshot

Si
ng

le
pa

th
C

P

ControlMessage
Scheduling
DataMessage
BarrierProcessing

Input
Deserialization
Unknown

Buffer
Processing
Serialization

Figure 7: CP-based (left) and single-path (right) sum-
maries for Flink on YSB (1s snapshots).

0 5 10 15
Snapshot

0.0

0.2

0.4

0.6

0.8

C
P

0 5 10 15
Snapshot

%
w

ei
gh

t

Processing Scheduling

Figure 8: CP-based (left) and conventional profiling
(right) summaries for Spark on YSB [12] (8s snapshots).

duration, and the single-path summaries, where CP is
computed on a single transient critical path (in this exper-
iment selected at random). We show examples of such
summaries in Figures, 7, 8, and 9 for Flink, Spark, and
TensorFlow, along with the configuration of each system.

First note that single-path summaries correspond to a
straight-forward application of traditional CPA on trace
snapshots where only a single path is chosen at random.
The plot on the right of Figure 7 exhibits high variation
because different transient critical paths may consist of
completely different activities, even within the same graph
snapshot. In contrast, CP is a fairer metric that avoids this
misleading critical activity “switching” by aggregating
information from all transient critical paths in a snapshot.

Conventional profiling summaries are different from
CP-based summaries in that they do not account for over-
lapping activities, thus, they overestimate the participation
of activities in the critical path (e.g., the processing ac-
tivity in the right plot of Figure 8), resulting in activity
durations that may even exceed the total duration of the
snapshot. The CP-based summary of Figure 8 overcomes
this problem and highlights the overhead of global co-
ordination in micro-batch systems (driver’s scheduling
activity), a known result also pointed out in Drizzle [34].
SnailTrail is also different to traditional profiling in

its ability to focus on different parts of a long-running

104 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Processing Communication
0.0

0.2

0.4

0.6

0.8

1.0
C

P

Processing Communication

%
w

ei
gh

t
Conv2D
LRN
Unknown

Mul
SquaredDifference
MatMul

Accumulated
DataMessage

Figure 9: CP-based (left) and conventional profiling
(right) summaries for the accuracy phase of AlexNet on
TensorFlow (16 threads).

computation. This feature is particularly useful in ma-
chine learning, where program phases have diverse per-
formance characteristics. As an example, Figure 9 shows
CP-based and conventional summaries for the accuracy
phase of the AlexNet image processing application on
TensorFlow with 16 workers. We plot processing and
communication as separate bars for convenience and we
further break down processing into the different operators
appearing in this computation phase. The conventional
summary overestimates the participation of communica-
tion and underestimates the importance of the Conv2D
operator, which is the most critical one according to the
CP-based summary. Processing in the conventional sum-
mary is dominated by the unknown activity type due to
limited instrumentation in TensorFlow (see [21]).

7.5 SnailTrail in practice

We select Apache Flink as the representative streaming
system and demonstrate SnailTrail in action. We de-
scribe two use-cases and give examples of how the CP-
based summaries can be used to understand and improve
application performance of long-running computations.

Detecting skew. To demonstrate straggler summaries in
action, we use the benchmark of [18]. The benchmark
contains a WordCount application and a data generator.
The data generator can be configured with a skewness
percentage. We experiment with 30%, 50%, and 80%
skewness. We configure the parallelism to be equal to
4 for all operators and we generate straggler summaries
and conventional summaries shown in Figure 10. For
small skew percentage, the conventional summaries fail
to detect any imbalance and essentially indicate uniform
load across workers. For higher skew percentages (50-
80%) they indeed reveal a skew problem, yet they are

unable to indicate a single worker as the straggler. Instead,
they attribute the imbalance problem to several workers.
On the other hand, the CP-based straggler summaries
consistently and accurately detect the straggler worker,
even for low skew percentage.

Optimizing operator parallelism. We now demonsrate
how SnailTrail can guide scaling decisions for stream-
ing applications. We use Dhalion’s [18] benchmark again
and initially under-provision the flatmap stage. We con-
figure four parallel workers for the source, two parallel
workers for the flatmap, and four parallel workers for the
count operator. Figure 11 (left) shows the operator and
conventional profiling summaries for this configuration.
We see that the operator summary detects that the flatmap
workers are bottlenecks. On the other hand, the conven-
tional summary shows a negligible difference between
the parallel workers’ processing. In addition, we gather
metrics from Flink’s web interface. Using those, we can
observe backpressure, yet we have no indication of the
cause. We next decrease the source’s input rate, by chang-
ing its parallelism to one worker. Note that slowing down
the source is a common system reaction to backpressure.
Figure 11 (middle) shows the operator and conventional
profiling summaries after this change. Notice how slow-
ing down the source does not solve the problem and how
the operator summary still provides more accurate infor-
mation than the conventional one. The operator summary
essentially indicates that the flatmap operator has a high
CP value and needs to be re-scaled. Figure 11 (right)
shows the summaries after applying a parallelism of four
to all operators. Checking Flink’s web interface again we
see that backpressure disappears.

8 Related Work

There exists abundant literature on performance analysis,
characterization, and debugging of distributed systems,
although we know of no prior work to perform online
critical path analysis for long running computations, or
applicable across a broad range of execution models. We
distinguish three main areas of related work:

Critical Path Analysis: Yang et al. [36] first applied
CPA to distributed and parallel applications, defined the
PAG, gave a distributed algorithm for CPA, and showed its
benefits over traditional profiling. CPA and related tech-
niques have since been used to analyze distributed pro-
grams like MPI applications [32, 8] and web services [13],
in all cases using offline traces. Algorithms to compute
the k longest (near-critical) paths in a computation are
given in [6].

The first online method for computing critical path
profiles seems to be [22], where performance traces are
piggybacked on data messages exchanged by processes at

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 105

0 20 40
Snapshot

0.00

0.05

0.10

0.15
C

P

0 20 40
Snapshot

%
w

ei
gh

t

0 20 40
Snapshot

0.0

0.1

0.2

0.3

C
P

0 20 40
Snapshot

%
w

ei
gh

t

0 10 20 30
Snapshot

0.00

0.05

0.10

0.15

0.20

C
P

0 10 20 30
Snapshot

%
w

ei
gh

t

Figure 10: Straggler and conventional profiling summaries for the benchmark of [18] on Flink and different skewness
percentage. The data generator has been configured with 30% (left), 50% (middle), and 80% (right) skeweness.

0 20 40
Snapshot

0.000

0.025

0.050

0.075

0.100

0.125

C
P

0 20 40
Snapshot

%
w

ei
gh

t

Count Flatmap

0 20 40
Snapshot

0.000

0.025

0.050

0.075

0.100

0.125

C
P

0 20 40
Snapshot

%
w

ei
gh

t

Count Flatmap

0 20 40
Snapshot

0.00

0.02

0.04

0.06

C
P

0 20 40
Snapshot

%
w

ei
gh

t

Count Flatmap

Figure 11: Operator and conventional profiling summaries for the benchmark of [18] on Flink and different configu-
rations of operator parallelism. The source, flatmap, and count operators are configured with parallelism 4-2-4 (left),
1-2-4 (middle), and 4-4-4 (right).

runtime. However, the proposed algorithm is too expen-
sive to construct the full PAG and is thus limited to a small
number of user-selected activities. A nice feature of [22]
is combining online CPA with dynamic instrumentation
to selectively enable trace points on demand. [31] extends
the analysis of [22] to the full software stack, and [17]
uses this information for adaptive scheduling. Sonata [20]
pinpoints critical activities in the spirit of CPA. It supports
offline analysis of MapReduce jobs through identifying
correlations between tasks, resources and job phases.

Dataflow Performance Analysis: [28] employs blocked
time analysis to dataflow, a ‘what-if’ approach quanti-
fying performance improvement assuming a resource is
infinitely fast. Blocked time analysis is performed offline
and assums staged batch execution. It can only identify
bottlenecks due to network and disk and does not provide
insights into the interdependence of parallel tasks and op-
erators. An alternative approach in Storm [33]) is based
on the Actor Model [7] rather than CPA. HiTune [16] and
Theia [19] focus on Hadoop profiling; in particular, on
cluster resource utilzation and task progress monitoring.

Distributed Systems Profiling: A comprehensive
overview of prior work in distributed profiling is [39],
which also introduces Stitch, a tool for profiling multi-
level software stacks using traces. Like SnailTrail,
Stitch requires no domain knowledge of the reference
system, but its Flow Reconstruction Principle assumes
logged events are sufficient to reconstruct the execution
flow. SnailTrail in contrast does not assume this, and
indeed yields insights for the better instrumentation of

dataflow systems. VScope [35] targets online anomaly
detection and root-cause analysis in large clusters. Finally,
we note that capturing dependencies between activities
in dataflows is similar to causal profiling in Coz [15].
Coz does not focus on distributed dataflows, but does
work non-intrusively without instrumentation, and may
be applicable to SnailTrail.

9 Conclusion

Online critical path analysis represents a new level of
sophistication for performance analysis of distributed sys-
tems, and SnailTrail shows its applicability to a range
of different engines and applications. Looking forward,
SnailTrail’s online operation suggests uses beyond pro-
viding real-time information to system administrators:
SnailTrail’s performance summaries could serve as im-
mediate feedback for applications to perform automatic
reconfiguration, dynamic scaling, or adaptive scheduling.

The code in SnailTrail has been released as open
source2.

Acknowledgments

We thank Ralf Sager for working on some intitial ideas of this
paper, Frank McSherry and the anonymous NSDI reviewers
for their comments, and Raluca Ada Popa for shepherding the
paper. Vasiliki Kalavri is supported by an ETH Postdoctoral
Fellowship.

2https://github.com/strymon-system/snailtrail

106 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] BigData benchmark. https://amplab.cs.
berkeley.edu/benchmark/. (accessed: Septem-
ber 2017).

[2] Nagios. https://www.nagios.org. (accessed:
September 2017).

[3] VMware LogInsight. http://www.vmware.com/
products/vrealize-log-insight.html. (ac-
cessed: September 2017).

[4] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,
Isard, M., et al. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Savannah, Georgia,
USA (2016).

[5] Alexander, C., Reese, D., and Harden, J. C. Near-
critical path analysis of program activity graphs. In
International Workshop on Modeling, Analysis, and
Simulation On Computer and Telecommunication
Systems (1994).

[6] Alexander, C. A., Reese, D. S., Harden, J. C., and
Brightwell, R. B. Near-critical path analysis: A
tool for parallel program optimization. In Southern
Symposium on Computing (1998).

[7] Bedini, I., Sakr, S., Theeten, B., Sala, A., and Co-
gan, P. Modeling performance of a parallel stream-
ing engine: Bridging theory and costs. In ICPE
(2013).

[8] Böhme, D., de Supinski, B. R., Geimer, M., Schulz,
M., andWolf, F. Scalable critical-path based per-
formance analysis. In IEEE International Parallel
and Distributed Processing Symposium (2012).

[9] Carasso, D. Exploring Splunk. Evolved Technolo-
gist Press, 2012.

[10] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V.,
Haridi, S., and Tzoumas, K. Apache Flink: Stream
and batch processing in a single engine. Data Engi-
neering 38, 4 (2015).

[11] Chen, J., and Clapp, R. M. Critical-path candidates:
scalable performance modeling for MPI workloads.
In IEEE International Symposium on Performance
Analysis of Systems and Software (2015).

[12] Chintapalli, S., Dagit, D., Evans, B., Farivar, R.,
Graves, T., Holderbaugh, M., Liu, Z., Nusbaum, K.,
Patil, K., Peng, B., and Poulosky, P. Benchmarking

streaming computation engines: Storm, Flink and
Spark Streaming. In 2016 IEEE International Par-
allel and Distributed Processing Symposium Work-
shops, IPDPS Workshops 2016, Chicago, IL, USA,
May 23-27, 2016 (2016), pp. 1789–1792.

[13] Chow, M., Meisner, D., Flinn, J., Peek, D., and
Wenisch, T. F. The mystery machine: End-to-end
performance analysis of large-scale internet services.
In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2014), OSDI’14, USENIX
Association, pp. 217–231.

[14] Corbett, J. C., Dean, J., Epstein, M., Fikes, A.,
Frost, C., Furman, J. J., Ghemawat, S., Gubarev, A.,
Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S.,
Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura,
D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito,
Y., Szymaniak, M., Taylor, C., Wang, R., andWood-
ford, D. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 251–264.

[15] Curtsinger, C., and Berger, E. D. Coz: Finding
code that counts with causal profiling. In Proceed-
ings of the 25th Symposium on Operating Systems
Principles (New York, NY, USA, 2015), SOSP ’15,
ACM, pp. 184–197.

[16] Dai, J., Huang, J., Huang, S., Huang, B., and Liu,
Y. Hitune: Dataflow-based performance analysis for
big data cloud. In Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical Confer-
ence (Berkeley, CA, USA, 2011), USENIXATC’11,
USENIX Association, pp. 7–7.

[17] Dooley, I., and Kalé, L. V. Detecting and using
critical paths at runtime in message driven parallel
programs. In IEEE International Symposium on
Parallel and Distributed Processing (2010).

[18] Floratou, A., Agrawal, A., Graham, B., Rao, S.,
and Ramasamy, K. Dhalion: Self-regulating stream
processing in heron. Proc. VLDB Endow. 10, 12
(Aug. 2017), 1825–1836.

[19] Garduno, E., Kavulya, S. P., Tan, J., Gandhi, R.,
and Narasimhan, P. Theia: Visual signatures for
problem diagnosis in large hadoop clusters. In Pro-
ceedings of the 26th International Conference on
Large Installation System Administration: Strate-
gies, Tools, and Techniques (Berkeley, CA, USA,
2012), lisa’12, USENIX Association, pp. 33–42.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 107

https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://www.nagios.org
http://www.vmware.com/products/vrealize-log-insight.html
http://www.vmware.com/products/vrealize-log-insight.html

[20] Guo, Q., Li, Y., Liu, T., Wang, K., Chen, G., Bao,
X., and Tang, W. Correlation-based performance
analysis for full-system mapreduce optimization. In
Proceedings of the 2013 IEEE International Confer-
ence on Big Data, 6-9 October 2013, Santa Clara,
CA, USA (2013), pp. 753–761.

[21] Hoffmann, M., Lattuada, A., Liagouris, J., Kalavri,
V., Dimitrova, D., Wicki, S., Chothia, Z., and
Roscoe, T. Snailtrail: Generalizing critical paths
for online analysis of distributed dataflows. Tech.
rep., ETH Zurich, 2018.

[22] Hollingsworth, J. K. An online computation of
critical path profiling. In SIGMETRICS Symposium
on Parallel and Distributed Tools (1996).

[23] Krizhevsky, A., Sutskever, I., andHinton, G. E. Im-
ageNet classification with deep convolutional neu-
ral networks. In Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Asso-
ciates, Inc., 2012, pp. 1097–1105.

[24] Lamport, L. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM 21, 7 (July
1978), 558–565.

[25] McSherry, F. A modular implementation
of timely dataflow in Rust (accessed: April
2017). https://github.com/frankmcsherry/
timely-dataflow.

[26] Murray, D. G., McSherry, F., Isaacs, R., Isard, M.,
Barham, P., and Abadi, M. Naiad: a timely dataflow
system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (2013),
ACM, pp. 439–455.

[27] Ousterhout, K. Spark performance analysis (ac-
cessed: April 2017). https://kayousterhout.
github.io/trace-analysis/.

[28] Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker,
S., and Chun, B.-G. Making sense of performance
in data analytics frameworks. In NSDI (2015).

[29] Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei,
L. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision
(IJCV) 115, 3 (2015), 211–252.

[30] Sacerdoti, F. D., Katz, M. J., Massie, M. L., and
Culler, D. E. Wide area cluster monitoring with
ganglia. In 2003 IEEE International Conference

on Cluster Computing (CLUSTER 2003), 1-4 De-
cember 2003, Kowloon, Hong Kong, China (2003),
p. 289.

[31] Saidi, A. G., Binkert, N. L., Reinhardt, S. K., and
Mudge, T. N. Full-system critical path analysis.
In IEEE International Symposium on Performance
Analysis of Systems and Software (2008).

[32] Schulz, M. Extracting critical path graphs from
MPI applications. IEEE International Conference
on Cluster Computing (2005).

[33] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy,
K., Patel, J. M., Kulkarni, S., Jackson, J., Gade,
K., Fu, M., Donham, J., Bhagat, N., Mittal, S., and
Ryaboy, D. Storm@Twitter. In Proceedings of the
2014 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2014),
SIGMOD ’14, ACM, pp. 147–156.

[34] Venkataraman, S., Panda, A., Ousterhout, K., Gh-
odsi, A., Franklin, M. J., Recht, B., and Stoica, I.
Drizzle: Fast and Adaptable Stream Processing at
Scale. In Proceedings of the 26th Symposium on
Operating Systems Principles (2017).

[35] Wang, C., Rayan, I. A., Eisenhauer, G., Schwan, K.,
Talwar, V., Wolf, M., and Huneycutt, C. Vscope:
Middleware for troubleshooting time-sensitive data
center applications. In Proceedings of the 13th In-
ternational Middleware Conference (New York, NY,
USA, 2012), Middleware ’12, Springer-Verlag New
York, Inc., pp. 121–141.

[36] Yang, C.-Q., and Miller, B. P. Critical path anal-
ysis for the execution of parallel and distributed
programs. In IEEE International Conference on
Distributed Computing Systems (1988).

[37] Yen, S. H., Du, D. H., and Ghanta, S. Efficient algo-
rithms for extracting the k most critical paths in tim-
ing analysis. In Proceedings of the 26th ACM/IEEE
Design Automation Conference (1989), DAC ’89,
pp. 649–654.

[38] Zaharia, M., Chowdhury, M., Das, T., Dave, A.,
Ma, J., McCauley, M., Franklin, M. J., Shenker, S.,
and Stoica, I. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster comput-
ing. In Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation
(2012), USENIX Association, pp. 2–2.

[39] Zhao, X., Rodrigues, K., Luo, Y., Yuan, D., and
Stumm, M. Non-intrusive performance profiling for
entire software stacks based on the flow reconstruc-
tion principle. In Proceedings of the 12th USENIX

108 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/frankmcsherry/timely-dataflow
https://github.com/frankmcsherry/timely-dataflow
https://kayousterhout.github.io/trace-analysis/
https://kayousterhout.github.io/trace-analysis/

Conference on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2016), OSDI’16,
USENIX Association, pp. 603–618.

A Appendix

A.1 Model assumptions
We support both synchronous and asynchronous execu-
tion in shared-nothing and shared-memory architectures.
Most dataflow systems use asynchronous computations
on shared-nothing clusters, but sometimes synchronous
computation is supported (e.g. in TensorFlow), and sys-
tem workers can share state (e.g. in Timely). Specifically,
our model is consistent with respect to critical path analy-
sis under two assumptions:

Assumption 1 (Message-based Interaction). Every inter-
action between operators in the dataflow must occur via
message exchange, even if executed by the same worker.

Note this assumption does not preclude shared-memory
systems. Operators in the reference dataflow may share
state as long as any modification to this state is appropri-
ately instrumented to trigger a ‘virtual’ message exchange
between the workers sharing that state. We use this ap-
proach in instrumenting shared state in Timely Dataflow,
for example.

Assumption 2 (Waiting State Termination). Every wait-
ing activity in a worker’s timeline is terminated by an
incoming message, either from the same or a different
worker.

In other words, a worker in a waiting state cannot
start performing activities unprompted without receiv-
ing a message. In the activity graph, a waiting edge’s end
node must correspond to that of a communication activity,
i.e., a receive.

A.2 Instrumentation requirements
An activity may consist of sub-operations spanning multi-
ple levels of the stack from user code to OS and network
protocols. A given system can be instrumented at different
levels of granularity, depending on the use-case: a multi-
layered activity tracking approach enables more detailed
performance analysis but introduces higher overhead. We
allow this choice, but require that any instrumentation
of the reference system satisfy two properties, without
which the transient critical paths are ill-defined. The first
states that any event having prior events must be caused
by an activity earlier in time, i.e. any “out-of-the-blue”
events in (ts, te] indicate insufficient instrumentation:

Property 1 (Minimum in-degree) Let G[ts,te] = (V,E) be
the snapshot of activity graph G in time interval [ts,te].
Let also Vs ≡ {v ∈ V | @v′ ∈ V : v′[t] < v[t]} be a set of
vertices in G[ts,te]. A vertex v ∈ V \Vs has in-degree at
least one.

The second states that at no point do all system work-
ers perform waiting activities while no communication
activity is occurring. Such behavior would imply dead-
lock, and so any such points in the activity graph of a
non-blocked computation indicates insufficient instrumen-
tation:

Property 2 (Communication Existence) Let G[ts,te] =

(V,E) be the snapshot of an activity graph G in [ts, te],
and τ ∈ [ts, te] be a point in time. Let S ≡ {e = (vi,v j) ∈
Ew ⊆ E | e[p] = Waiting, vi[t] ≤ τ ≤ v j[t]}. If |S | = Nτ,
where Nτ is the number of active workers of the reference
system at time τ, then ∃e′ = (vk,vm) ∈ Ec ⊆ E for which
vk[t] ≤ τ ≤ vm[t].

These two properties can also checked efficiently on-
line to inform users when the ingested activity logs are
incomplete. For example, instrumentation (or associated
log preprocessing) can guarantee that no waiting activities
are created as long as the corresponding communication
activity, which caused the waiting activity to end, has not
been observed.

A.3 Proofs for Equations of Section 3.2

First, we provide a proof for Eq. 3:

CPe =

∑i=N
i=1 qi

e
N =

c(e) · e[w]
N(te−ts) ∈ [0,1]

Recall that e is an activity edge in the PAG snapshot,
N is the total number of transient critical paths in the
snapshot, qi

e is ratio of the activity’s duration to the total
duration of the i-th transient critical path (the ratio is 0 if
the activity edge is not part of the i-th path), 0 ≤ c(e) ≤ N
is the number of transient critical paths the activity e
belongs to, e[w] is the weight of the activity e, i.e., its
duration, and [ts, te] is the snapshot window size.

Without loss of generality, we assume that the transient
critical paths ~pi the activity edge e belongs to are
numbered from i = 1 to i = c(e). Then:

CPe =

∑i=N
i=1 qi

e
N =

∑i=N
i=1

e[w]
|| ~pi ||

N =

∑i=c(e)
i=1

e[w]
|| ~pi ||

N + 0 =

∑i=c(e)
i=1

e[w]
|| ~pi ||

N

All transient critical paths in the snapshot have the
same length ||~pi|| (in time units), which is equal to the
duration of the snapshot te− ts. Hence:

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 109

CPe =

∑i=c(e)
i=1

e[w]
te−ts

N =

∑i=c(e)
i=1 e[w]

N·(te−ts) =
c(e)·e[w]
N·(te−ts)

Now we provide the proof for Eq. 5:∑
∀c ∈ G

∑
∀e:e[p]=c CPe = 1

Recall that c denotes an activity type, e.g., serialization,
and e[p] is the type of the activity edge e in the snapshot
G[ts,te]. We have:

∑
∀c∈G

∑
∀e:e[p]=c CPe =

∑
∀e∈G CPe =

∑
∀e∈G

∑i=N
i=1 qi

e
N =

=
∑
∀e∈G

∑i=c(e)
i=1

e[w]
|| ~pi ||

+0

N =
∑
∀e∈G

∑i=c(e)
i=1

e[w]
|| ~pi ||

N =

=

∑
∀e∈G

∑i=c(e)
i=1

e[w]
te−ts

N =

∑
∀e∈G

∑i=c(e)
i=1 e[w]

N·(te−ts) =
N·(te−ts)
N·(te−ts) = 1

since
∑
∀e∈G

∑i=c(e)
i=1 e[w] denotes the sum of the weights

(durations) of all activity edges that comprise all N tran-
sient critical paths in the snapshot, which is equal to
N · (te− ts).

A.4 Clock alignment
Computing critical paths only needs logical time, i.e. the
happens-before relationship between events. In practice
we are using wall-clock time as a stand-in for Lamport
timestamps [24] to establish partial ordering of events.
Performance statistics such as summaries, however, do
require real time.

A practical system for critical path analysis must there-
fore address issues of clock drift (where clocks on differ-
ent nodes run at different rates) and clock skew (where
two clocks differ in their values at a particular time).

Clock drift only affects activities running on the same
thread with durations greater than the drift. Even a drift
of 10 seconds/day translates to 0.1ms inaccuracy for activ-
ities taking around a second, which is probably tolerable.
Clock skew is not an issue for activities timestamped by
the same thread, but might be for communication activi-
ties.

In SnailTrail, we assume that the trend toward
strong clock synchronization in datacenters [14] means
that clock skew is not, in practice, a significant problem
for our analysis. If it were to become an issue, we would
have to consider adding Lamport clocks and other mecha-
nisms for detecting and correcting for clock skew.

110 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Balancing on the edge: transport affinity without network state

João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek and Raul Landa
Fastly

Abstract
Content delivery networks and edge peering facilities
have unique operating constraints which require novel
approaches to load balancing. Contrary to traditional,
centralized datacenter networks, physical space is heav-
ily constrained. This limitation drives both the need for
greater efficiency, maximizing the ability to absorb de-
nial of service attacks and flash crowds at the edge, and
seamless failover, minimizing the impact of maintenance
on service availability.

This paper introduces Faild, a distributed load bal-
ancer which runs on commodity hardware and achieves
graceful failover without relying on network state, pro-
viding a cost-effective and scalable alternative to exist-
ing proposals. Faild allows any individual component
of the edge network to be removed from service with-
out breaking existing connections, a property which has
proved instrumental in sustaining the growth of a large
global edge network over the past four years. As a con-
sequence of this operational experience, we further doc-
ument unexpected protocol interactions stemming from
misconfigured devices in the wild which have significant
ramifications for transport protocol design.

1 Introduction
While economies of scale have increasingly centralized
compute and storage, user expectations dictate that con-
tent and even logic be pushed further towards the edge of
the network. This centrifugal relationship has increased
the relevance of Points of Presence (POPs) as an inter-
mediary between cloud hosted services and end-users.

As a design pattern, POPs were pioneered by Content
Delivery Networks (CDNs) intent on improving perfor-
mance for traditional HTTP caching and DNS resolution.
They have since evolved to encompass a much wider set
of application layer services such as media processing
(e.g. video and image optimization), security (e.g. appli-
cation layer firewalls) and business logic (e.g. authen-

tication and authorization; paywalls; request routing).
The common thread uniting these edge cloud services is
that they are latency sensitive and must therefore be ge-
ographically distributed across POPs rather than merely
centralized within availability regions.

Today, edge cloud providers deploy hundreds of POPs
[31, 39], with individual POPs able to deliver upwards
of a terabit per second of bandwidth whilst handling
millions of requests per second. How traffic is dis-
tributed across available hosts within a POP has a sig-
nificant impact on the performance and availability of
a large number of Internet services. Load balancing in
this context differs significantly from traditional data-
center environments, and as a result existing solutions
[15, 16, 17, 22, 27] are not readily applicable.

The defining constraint in the architecture of a POP
is that physical space is at a premium [39]. POPs are
typically set up in colocation facilities, often in regions
where few alternatives exist, if any. The resulting inelas-
tic price dynamics impose a strong economic incentive
to minimize POP hardware in an effort to reduce capi-
tal expenditure. Load balancing under such constraints
exacerbates the following concerns:

Efficiency. The physical build of POPs must be de-
signed to maximize the number of service requests that
a given number of hosts can process. Proposals that
rely on dedicated hardware appliances or VM instances
[15, 16, 17, 27] are not cost-efficient, since they con-
sume scarce resources without increasing the number of
requests that a POP can service.

Resilience. POPs provide a critical service at a fixed
capacity, and are therefore attractive targets for denial-
of-service attacks. Load balancing proposals which rely
on flow state or incur significant per-flow overhead [15,
16, 17, 22, 27] are vulnerable to exhaustion attacks, and
pose a threat to business continuity.

Gracefulness. Owing to the higher processing den-
sity of POPs, individual components within a POP rep-
resent a much larger proportion of total system capacity

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 111

when compared with traditional cloud environments. It is
therefore vital that all system components can be brought
in and out of service gracefully, without disrupting active
flows. To our knowledge, no existing load balancer en-
sures seamless addition and removal of every element of
its architecture, including hosts, switches and peers.

The primary contribution of this paper is to describe
the design and implementation of a load-balancer which
achieves all of the above goals. Faild provides trans-
port affinity (seamless transport-layer failover) with min-
imal processing overhead. It synthesizes two distinct ap-
proaches leveraging hardware processing on commodity
switches where possible, and pushing out flow handling
to efficient software implementations when necessary.

A load balancing solution operating further down the
network stack would be oblivious to how packets relate
to ongoing transport connections, and therefore unable to
ensure graceful draining, i.e. bringing a system compo-
nent out of production without affecting service traffic.
On the other hand, operating above the transport layer
requires per-session state tracking, which is at odds with
our requirement for robustness against resource exhaus-
tion attacks. A key insight in this paper is that since
end hosts track flows themselves, this trade-off is not
binding: by performing host mapping on switches and
re-purposing the connection tracking functions that end-
hosts already perform, a load-balancer can retain trans-
port affinity without the burden of maintaining network
state. Although many of the specific techniques used by
Faild have been used in isolation in other contexts (see
Sec. 7), Faild brings them together in a novel way that
directly addresses the needs of edge clouds and CDNs.

Our final contribution is to provide insight into the tri-
als and tribulations of operating Faild over the past four
years at a large1 edge cloud provider. We document
where reality fell short of our original design assump-
tions - from network equipment shortcomings to unex-
pected middlebox behavior - and how these quirks may
affect future protocols to come.

The remainder of this paper is organized as follows.
Sec. 2 expands upon the engineering requirements of
edge load balancing. Sec. 3 describes the design of Faild,
and Sec. 4 details its current implementation. Sec. 5
evaluates the system in practice, and Sec. 6 describes
some of the lessons we learned by developing it and de-
ploying it on production. We present relevant related
work in Sec. 7, and conclude with Sec. 8.

2 Background and motivation
While the architecture of a POP bears superficial resem-
blance to traditional datacenter environments, their goals
differ, and as a result the set of constraints they impose

140+ POPs globally; 7+ million RPS and 4+ Tbps of client traffic.

diverge. This section expands upon the requirements pre-
sented in Sec. 1 and highlights the idiosyncrasies of load
balancing within POPs.

High request processing density. Ideally, all avail-
able power and space in the POP would be devoted exclu-
sively to hosts. This proves unfeasible except for the very
smallest POPs. As the number of hosts in the POP in-
creases, directly connecting them to upstream providers
becomes 1) logistically impractical for providers; 2) pro-
hibitively expensive for intra-POP traffic; and eventually
3) physically impossible due to lack of ports. Network
devices are therefore required to both reduce the number
of interconnects required towards providers and ensure
connectivity between hosts2. Our preferred POP topol-
ogy maximizes power and space cost-benefit for hosts by
collapsing all load balancing functions into just two lay-
ers: one for switches and one for hosts. A POP hence
consists of a minimal number of switches, each one con-
nected to all hosts and providing them with consolidated
BGP sessions and Internet connectivity. This deviates
from a common design pattern in datacenters, which re-
lies on Clos-like topologies [6, 33].

Traditional hardware solutions e.g. [1, 3] are un-
desirable both due to their low power/space efficiency
and poor horizontal scalability. Software-based solutions
[15, 27] on the other hand perform poorly given the lower
throughput and higher latency of packet processing on
general purpose hardware. For example, Maglev [15]
claims a 10 Gbps limit per load balancing host. Our
most common POP build has 4 switches fully meshed
with 32 hosts using 25 Gbps NICs. Since each host has a
rated capacity of 40 Gbps in order to ensure operational
stability, this results in a reference POP throughput of
1.28 Tbps. This alone would require over 100 Maglev
hosts to load balance, which greatly exceeds the num-
ber of target hosts. Even if future advancements made it
possible to substantially reduce the number of software
load balancers required per target host, deploying load
balancing functions in hosts would prevent using the full
bisection bandwidth offered by the physical POP topol-
ogy, further impacting request processing density.

Traffic surges. POP load balancers must be designed
to gracefully withstand traffic surges of hundreds of
times their usual loads, as well as DDoS attacks.

Highly optimized stateful solutions such as SilkRoad
[22] can scale to ten million simultaneous connections
by using hashing to scale per-connection state manage-
ment and storing this state in the ASIC SRAM mem-
ory of switches with a programmable data plane. In
our experience however POPs are routinely subjected to
SYN floods largely exceeding this number, and the in-
tensity and frequency of these attacks is suppressed only

2Facebook EdgeFabric [31] and Google Espresso [39] rely on simi-
lar architectures to provide a capacity-aware, SDN-based edge peering.

112 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

when they fail to inflict economic harm. While software-
based solutions like Maglev [15] and Duet [17] are less
memory-constrained than SilkRoad, they are still subject
to degraded performance as the connection count rises.

A commonly deployed alternative to stateful load
balancing is to rely on Equal Cost Multipath (ECMP)
[18, 38] to simply hash inbound connections to ac-
tive hosts. While ECMP results in connection resets
when re-hashing, many operators tolerate this given they
more often operate under high load than high churn.
Flashcrowds and DDoS in particular make statelessness
an engineering necessity for edge load balancing, rather
than a design choice.

All Planned maintenance Faults

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Failovers per day (average)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l

C
D

F

(a) Average host drain event
rate per POP per day

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Failovers per minute (worst case)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l

C
D

F

(b) Worst case host drain event
rate per POP per minute

Figure 1: Drain events for one month, for all POPs

Host churn. While horizontally scaled services in a
datacenter may comprise tens or hundreds of thousands
of instances, POPs will typically have tens of nodes. As a
result, the relative service impact of removing and adding
hosts is much greater. Similarly, POPs are directly ex-
posed to a much more diverse set of peers (via IXPs, In-
ternet exchange points).

Without support for graceful failover, churn across the
set of hosts and providers can disrupt traffic in a manner
which is observable by customers, consequently increas-
ing the operational expense for support and deployment.
The need to remove hosts for software upgrades in partic-
ular is further exacerbated in edge networks due to their
pivotal role in securing cloud services. Often edge net-
works will provide TLS termination and interface with a
much wider set of clients, which increases the churn due
to important software upgrades. Fig. 1 shows the average
and worst case rate for hosts being drained across POPs
over the course of a month. The average daily drain rate
is not neglible given the size of a POP - this will include
both planned, automated maintenances and software or
hardware faults. Multiple concurrent drain events, how-
ever are relatively rare, since automated upgrades will
be halted in the presence of unplanned events. In our
environment switches are almost as frequently upgraded
as hosts, given we run a custom control plane stack and

there are frequent adjustments to the set of BGP peers.
Software load balancers [15, 16, 17, 27] can grace-

fully drain service hosts, but not the load balancers them-
selves since they maintain per-flow state. Hence, it is
normally not possible to remove a load balancer instance
from service without disrupting ongoing connections un-
less state is synchronized across all instances, which in
itself is non-trivial and hence rarely supported. Further-
more, routing changes within a POP or peer churn may
cause flows to be hashed to different load balancer in-
stances, thereby disrupting existing flows.

3 Design
Building on the stated goals from previous sections, we
now turn our attention to designing an efficient, stateless
and graceful load balancing system. Faild attains these
goals by relying on the socket information that hosts are
required to maintain, allowing network devices to remain
oblivious to TCP connection state. Similarly to other
load balancing architectures [15, 17, 19, 27], Faild uses
ECMP to hash flow tuples and load balance service traf-
fic. Correspondingly, services are application layer ab-
stractions advertised to the Internet using sets of virtual
IP addresses (VIP sets). Sec. 3.1 explores how Faild
couples ECMP and MAC address rewriting to approxi-
mate consistent hashing. We then describe how this can
be leveraged to enable graceful host failover in Sec. 3.2
and discuss host-side packet processing in Sec. 3.3.

3.1 Consistent hashing
We define consistent hashing as the ability to change
from load balancing over a baseline host set B to balanc-
ing over a failover host set F with only traffic destined
to hosts in a removal host set R of hosts in B but not in
F being affected. Only flows terminating on R (the set
of hosts being drained) are affected; ongoing flows ter-
minating on hosts in the common set C of hosts found in
both B and F remain unaffected.

In Faild, switches implement platform agnostic con-
sistent hashing by maintaining a fixed set of virtual nex-
thops, forcing the switch to perform an ARP lookup in-
stead. By not manipulating the routing table, we avoid
rehashing events which would otherwise reset existing
connections. Faild maps each service (set of VIPs) to
a set of ECMP nexthops, and each ECMP nexthop to a
MAC address. It is this transitive association between
services and MAC addresses that determines the load
balancing configuration.

Draining a switch can be achieved by instructing it
to withdraw route advertisements for all services from
all BGP sessions with its upstream providers. This will
redirect traffic flowing through it towards neighboring
switches, which would still advertise the withdrawn pre-
fixes. The only requirement for this process to be grace-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 113

Switch

Server

Controller

Legend

Healthcheck

Custom protocol

Agent

Application

A

MAC address format

Agent

Application

B

Agent

Application

C

ARP table

IP address
xx:xx:xx:xx:xx:a10.0.1.A

10.0.2.A xx:xx:xx:xx:xx:a

MAC address

xx:xx:xx:xx:xx:c10.0.1.B
10.0.2.B xx:xx:xx:xx:xx:a

10.0.2.C xx:xx:xx:xx:xx:c
xx:xx:xx:xx:xx:c10.0.1.C

FIB

Destination prefix
10.0.1.A192.168.0.0/24

192.168.0.0/24 10.0.2.A
10.0.1.B192.168.0.0/24

192.168.0.0/24 10.0.2.B
10.0.1.C192.168.0.0/24

192.168.0.0/24 10.0.2.C

Next hop IP

Healthcheck passing

Healthcheck failing

xx:xx:xx:xx:xx:c Target host

Figure 2: Custom routing protocol based on ARP table
manipulation. The routing table remains static while the
ARP table is adjusted to point at healthy hosts. Addi-
tional nexthops ensure even distribution of traffic when
some hosts are unavailable.

ful is that all switches are configured to hash identically,
so that all switches allocate flows to the same hosts.

A constraint of implementing consistent hashing in
this manner is that the granularity with which traffic can
be re-balanced is now directly tied to the number of nex-
thops used. If we only allocate one nexthop per host,
removing a host from service would potentially double
the amount of traffic towards a healthy neighbor. To
avoid this, we can use more nexthops to provide finer-
grained control, as illustrated in Fig. 2. In this example
having two virtual nexthops per host is enough ensure
that healthy hosts in the POP have an equal number of
ARP entries directed at them when withdrawing B from
production. In our implementation, we greedily reassign
ARP entries to the hosts with the fewest mapped entries.
Faild can approximate uniform load balancing by allo-
cating a large number of ECMP nexthops to a smaller
number of hosts. In practice we are constrained by the
maximum number of ECMP nexthops supported by the
underlying hardware (see Sec. 6.2).

Although switch vendors have recently started to pro-
vide consistent hashing natively [2, 4], Faild provides its
own implementation for two important benefits. Firstly,
by not relying on vendor implementations we lower the
entry-level cost of eligible switches for use in our POP

designs. More importantly, controlling the consistent
hashing logic allows us to signal to target hosts whether
the connections hashed onto them may have previously
been hashed onto different hosts. This is crucial to use
host TCP connection state to achieve transport affinity,
as we show in Sec. 3.2.

In the example in Fig. 2, if the ECMP nexthops as-
sociated with B are re-allocated to other hosts in the
pool, all ongoing connections towards host B will be ter-
minated. Within large datacenters this problem is usu-
ally dealt with by using application-aware load balancers
that track flow state and map new connections to healthy
hosts, maintaining this mapping until completion. This
approach runs counter to our goal of maximizing over-
all system capacity. In order to retain efficiency, we must
push the equivalent functionality down towards the hosts.

3.2 Encoding failover decisions
Host draining cannot be implemented on switches alone,
since they are layer 2/3 entities with no visibility of what
flows are in progress towards each host at any given time.
Instead, Faild distributes the responsibility for host drain-
ing across both the switch controller and hosts.

On the switch, a controller is responsible for using
consistent hashing to steer traffic towards hosts in the
failover set F . Hosts in F redirect traffic for ongoing
connections back to their original destination in R, so
that they continue to be served until their natural con-
clusion. Rather than relying on proprietary mechanisms,
Faild implements detour routing when draining by ex-
tending the semantics of MAC addresses to encode load
balancing state and its associated routing decisions, in
addition to network interface identification.

Any host f in F can forward ongoing connections to
their original host r in R if they ascertain the identity of
this host. Conceptually, this can be done by annotating
all drained traffic sent to f with the host r responsible for
handling connections which were active before the drain
episode started.

On baseline conditions all traffic for host r will be sent
to MAC addresses with r:r suffix, and all hosts will re-
ceive the load assigned to them by the baseline distribu-
tion. Hence, in the baseline state the last two octets for all
MAC addresses installed in the switch ARP table will be
identical, signaling that all flows should be processed by
their baseline host. In practice, switches forward frames
to hosts based on the last identifier only.

Now consider host r being drained. Fig. 3 revisits
the ARP table for the example in Fig. 2, this time using
MAC addresses which reflect a host being drained from
service, rather than simply removed. Faild will update
all MAC addresses in the switch forwarding table that
have suffixes of the form r:X by re-writing the penulti-
mate octet to denote the failover host f . Hence, ECMP

114 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Controller

MAC address format

ARP table

IP address
xx:xx:xx:xx:a:a10.0.1.A

10.0.2.A xx:xx:xx:xx:a:a

MAC address

xx:xx:xx:xx:c:b10.0.1.B
10.0.2.B xx:xx:xx:xx:a:b

10.0.2.C xx:xx:xx:xx:c:c
xx:xx:xx:xx:c:c10.0.1.C

FIB

Destination prefix
10.0.1.A192.168.0.0/24

192.168.0.0/24 10.0.2.A
10.0.1.B192.168.0.0/24

192.168.0.0/24 10.0.2.B
10.0.1.C192.168.0.0/24

192.168.0.0/24 10.0.2.C

Next hop IP

xx:xx:xx:xx:c:b Previous target

Current target

Figure 3: ARP table during draining of host B. The
destination MAC address now encodes the drained host
alongside the failover host.

nexthops previously mapped to MAC addresses with an
r:r suffix will now have an f:r suffix and traffic will be
failed over to the correct host f in F .

By rewriting the ARP table in the switch, Faild can
specify, for each IP nexthop mapped to a host r in R, the
failover host f in F that will process new incoming re-
quests. This improves upon alternative techniques such
as switch-native consistent hashing: by appropriately se-
lecting MAC addresses, Faild can inform a given host b
which flows correspond to its baseline ECMP nexthops
(if b ∈C for a given nexthop, the MAC address used will
have a b:b suffix) and which ones correspond to failed-
over ECMP nexthops (if r ∈ R and f ∈ F for a given
nexthop, the MAC address used will have a f:r suffix).
Such an explicit signaling is not achievable with switch-
based implementations of consistent hashing.

3.3 Host-side processing
The method by which Faild steers traffic means we can
no longer rely on routing protocols such as BGP and
OSPF. Faild removes this responsibility from the rout-
ing layer, instead pushing it down to the data link layer.
This is done using a controller that exchanges informa-
tion with agents running on hosts and manipulates the
ARP table on the switch. A host must therefore run an
agent which is responsible for health checking local ser-
vices, and is able to drain hosts if their associated ser-
vice becomes degraded, non-responsive or placed under
maintenance. Since this agent provides intelligent con-
trol over MAC-to-IP bindings, Faild switches do not use
either ARP or IPv6 ND protocols.

Having received failover state information down from
the switch, hosts can decide whether to process traffic
locally or whether to forward it to a drained host. This
not only removes the need for maintaining flow state
within the network, but also distributes the computa-
tional cost of load balancing across a set of nodes which

Current target

xx:xx:xx:xx:a:b

Match
previous?

SYN packet?

Local socket?

 Redirect

xx:xx:xx:xx:b:b

Process

Destination MAC address

1

3

2

3

4

Previous target

Match
previous?

SYN packet?

Local socket?

 Redirect

Process

5

6

A B

Destination MAC address

Figure 4: Receive-side packet processing example for
traffic draining from host B towards host A. Packets fil-
tered through host A are only accepted if they belong to
a new connection, or if they match a local socket.

are more numerous and possess greater processing capa-
bilities than switches. This computational cost is further
reduced by implementing all of the receive-side process-
ing as a single purpose kernel module, which efficiently
processes inbound packets according to the destination
MAC address (see Fig. 4).

When processing a frame, the kernel module receive
handler at host h first determines whether the MAC ad-
dress used is of the form h:h where h matches its own
identifier. If so, packet processing is handed over to the
local network stack, since we are operating as a baseline
host (h ∈ B). Otherwise, the MAC address in the frame
will be of the form h:r, where h ∈ F and r ∈ R (h is the
failover host for r for this ECMP nexthop). The mod-
ule must then verify whether the packet inside the frame
belongs to a new connection, as signaled by the SYN
flag in the TCP header (step 2), or to an existing con-
nection, which can be verified by performing a lookup
against the local socket table (step 3). If none of these
conditions are met, the packet is redirected to the drain
target r of the request by rewriting its destination MAC
address to have a r:r suffix and returning the packet to
a Faild switch. The same processing logic is applied at
r (step 5). In this case, a r:r MAC address suffix indi-
cates a locally maintained connection, and the frame will
be immediately accepted. Outbound packets always fol-
low the direct path towards their destination, resulting in
asymmetrical packet forwarding during draining.

4 Implementation
This section details implementation specific nuances of
Faild on both the switch and host.

4.1 Switch controller
The switch controller is implemented in approximately
3500 LOC of Python code and runs as a userspace dae-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 115

mon on the control plane of a commodity switch built on
merchant silicon. While we use a proprietary vendor API
to access and configure data plane lookup tables, most of
the functionality could be implemented in a portable way
using OpenFlow [21], P4 [9] or SAI [5]. The controller
operates on three tables:
• the routing table, by configuring VIP prefixes for

each of the services to be load balanced and mapping
them to the corresponding group of ECMP next-hops;
• the ARP table, by mapping each nexthop to the ap-

propriate virtual MAC address as hosts are added or re-
moved from the service pool; and
• the bridging table, by mapping each virtual MAC

address to an outbound interface. Given the MAC ad-
dresses are virtual, there is no opportunity for learning
what egress ports they map to. Instead, the controller
must statically construct this mapping in order to avoid
flooding traffic over all ports. This mapping can be pro-
vided via configuration, or autoconfigured using a cus-
tom protocol (e.g. LLDP discovery).

The switch controller also has the responsibility of
keeping track of agent health checks, as well as ensur-
ing that load is evenly distributed across available hosts.
Despite its statelessness, a controller can use its logically
centralized view of network health to implement a va-
riety of load balancing strategies. Currently, agents en-
code three possible states for a health checked service:
up, down, disabled. Operationally, there is an important
distinction to be made between the disabled and down
service states, since the former denotes an intentional
withdrawal from service. While the underlying mechan-
ics used to drain the host are the same in either case, a
rapid sequence of downed hosts may be a symptom of a
cascading failure, at which point a controller may decide
to lock itself and fall back to standard ECMP.

Routing a packet of a load balanced connection re-
quires up to two sequential lookups. The first is the rout-
ing table lookup, normally performed in TCAM, to re-
solve the destination IP address to a group of ECMP nex-
thops. The second involves the computation of a hash on
the packet five tuples and the resolution to an entry of the
nexthop group, normally stored on on-chip SRAM.

ECMP lookup table size does not adversely affect
available space in the TCAM given that exact match
lookups are executed on on-chip SRAM [10]. Hence,
whereas supporting more services or fragmenting the
VIP prefixes used will lead to an increase in TCAM
footprint, adding more hosts or assigning more MAC
addresses to each host will only require an increase in
SRAM footprint. Faild leverages the lower cost and
greater abundance of SRAM over TCAM to achieve im-
proved horizontal scalability and decouple it from mem-
ory limitations.

4.2 Host agent
The host runs both a kernel module (1250 LOC in C)
and a userspace daemon (2000 LOC in Python). The
userspace daemon is responsible for configuring VIPs lo-
cally, executing healthchecks and relaying service health
upstream to switch controllers. The kernel module is re-
sponsible for processing incoming packets with a Faild
virtual MAC address as a destination. Depending on the
address and the local socket table, the module will either
deliver the packet locally or redirect the packet towards
the alternate host encoded in the destination MAC.

In addition to the processing described in Fig. 4, the
kernel module must add each of the secondary MAC ad-
dresses to the NIC unicast address filter using a standard
kernel network driver API function. The NIC driver im-
plements this function by adding the MAC address to the
NIC’s unicast perfect match filter. If this filter table is
full, the NIC will resort to either using a hash-based fil-
ter, or by enabling unicast promiscuous mode, depending
on the particular NIC model in use.

A further implementation nuance of the kernel module
is in ensuring correct SYN cookie support. SYN cook-
ies [8, 14] are vital in defending against large scale SYN
floods. The difficulty when we are sending SYN cook-
ies is that returning ACK packets will not match a local
socket. As a result, we cannot determine whether they
belong to a 3-way handshake for a connection that we
ourselves sent a SYN cookie for and hence should be de-
livered locally, or whether they are regular ACKs for a
drained host connection and hence should be forwarded.

Fortunately, there is a solution for this that is both sim-
ple and elegant. The Linux kernel enables SYN cook-
ies automatically upon listen queue overflow. We check
whether the listening socket on the local host has recently
seen a listen queue overflow, and if so, we execute a SYN
cookie validation on the ACK field. If the validation suc-
ceeds we deliver the packet locally and we forward the
packet otherwise. Since a SYN cookie is a hash of a set
of connection-related fields as well as some secret data
and is designed to be nontrivial to forge, we are unlikely
to accept an arbitrary ACK value as a valid SYN cookie.
We are also unlikely to accept a SYN cookie generated
by another host in the POP as a valid SYN cookie since
each host uses a distinct secret hash seed.

5 Evaluation
In this section we evaluate the efficiency, resilience and
gracefulness of Faild (see Sec. 1). In particular, we show
that Faild can drain any system component without im-
pacting end-to-end traffic (Sec. 5.1); can drain hosts in
a timely manner (Sec. 5.2); does not induce a signif-
icant latency increase when detouring drained connec-
tions (Sec. 5.3); does not impose significant CPU over-

116 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

head on hosts (Sec. 5.4); and can achieve good load dis-
tributions across available hosts (Sec. 5.5).

All results presented were collected by means of ac-
tive and passive measurements on our smallest produc-
tion POP deployments, composed of only two switches
and eight hosts. Despite occupying only half a rack, this
particular instantiation of our POP design can scale up
to 400 Gbps of throughput and handle up to 320k re-
quests per second (RPS). Larger POPs can span up to
four switches and 64 hosts.

5.1 Graceful failover
Sec. 3.1 claimed Faild maintains transport affinity when
draining switches, allowing switches to be removed from
operation without impacting established TCP connec-
tions. This is demonstrated in Fig. 5, that shows off-
peak draining and refill of a Faild switch in a production
POP. This POP only comprises two switches, both multi-
homed to the same set of providers. The drain and refill
events are visible in the graph at the top, in which all in-
bound traffic from one switch is initially shifted to the
other and then shifted back. The other graphs highlight
that both the number of requests served by POP hosts and
the rate of reset packets (RST) and retransmissions they
generate remain unchanged. The graceful removal and
addition of one switch confirms that both switches must
be applying the same hashing function.

Drained switch Failover switch Hosts Mean

0

1

2

3

In
b

ou
nd

tr
affi

c
[G

bp
s]

Drain Refill

2k

3k

4k

R
eq

s/
se

c

0.02

0.03

0.04

R
es

et
s

[%
]

0 5 10 15 20 25 30
Time [min]

0.10

0.25

0.40

R
et

ra
ns

[%
]

Figure 5: Graceful draining and refill of a switch

We proceed to demonstrate host draining. With all
other components in steady state, the withdrawal of a
single host from service should trigger Faild to redis-
tribute traffic equally across all seven neighbors. This
is observable in the top graph of Fig. 6, which shows
the rate of requests handled by each host of a POP as a
host is drained and refilled. We can make two impor-

tant observations. First, upon disabling a host, the rate
of VIP-related requests decreases rapidly and eventually
converges to zero, on a timespan depending on the dis-
tribution of flow sizes active on the host when drained.
Similarly, upon the host being re-enabled, the rate of re-
quests rapidly converge to pre-draining values. Second,
enabling and disabling a host does not cause any increase
in RST and retransmission rates on any host. This vali-
dates that both events did not cause packets being deliv-
ered to incorrect hosts or dropped.

Drained host Failover hosts Mean

0

1k

2k

3k

4k

5k

T
hr

ou
gh

pu
t

[r
eq

s/
se

c] Enabled Disabled Enabled

Drain Refill

0.00

0.01

0.02

0.03

0.04

R
es

et
s

[%
]

0 10 20 30 40 50 60
Time [min]

0.0

0.1

0.2

0.3

0.4

R
et

ra
ns

m
is

si
on

s
[%

]

Figure 6: Host failover. Host d, in red, is drained and
then refilled; traffic is shifted towards failover hosts f ∈
F , in grey, and then shifted back to d.

5.2 Switch reconfiguration time
As discussed in Sec. 3.1, Faild implements host drain-
ing by means of a user space application running on
the switch that updates the ARP table. For benchmark-
ing purposes, we repurposed this application to perform
batch ARP table updates of varying sizes. This was
carried out multiple times on two models of production
switches, referred to as switch A and B, equipped with
different ASICs. Fig. 7 plots the measured time as a
function of the number of ARP entries to be updated.

Roughly, we observe that overall reconfiguration time
scales linearly with the number of updates. Even in the
worst case scenario, requiring 1024 ARP entries to be
updated, the 95th percentile is 119ms for switch A and
134ms for switch B. These values are low enough to en-
sure that, for the foreseeable future, Faild does not hinder
our ability to react to host liveness in a timely manner.
This is particularly true given ARP updates are atomic,
and therefore service traffic is not disrupted during re-
configuration.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 117

50th percentile 95th percentile

0 200 400 600 800 1000
Number of ARP entries

0

25

50

75

100

125

150

T
im

e
[m

s]

(a) Switch A

0 200 400 600 800 1000
Number of ARP entries

0

25

50

75

100

125

150

T
im

e
[m

s]
(b) Switch B

Figure 7: ARP table reconfiguration time

5.3 Detour-induced latency
Unfortunately, common debugging tools (e.g. ping,
traceroute and nc) are not useful to measure the latency
induced by detour routing during draining. This is be-
cause TCP SYN packets are never detour routed, and
ICMP echo request packets do not trigger a lookup in
the host socket table, which is crucial to obtain a realistic
approximation of system behavior.

To measure detour routing latency we built a simple
active measurement tool that runs on a non-Faild server
q. The tool generates a stream of non-SYN TCP packets
having a destination MAC address suffix f:r that spec-
ifies a node r as the drained host and f as its failover
host. Since these are not TCP SYN packets, they trigger
a lookup in the socket table when received by f . Since
these packets do not correspond to an ongoing TCP con-
nection, the lookup will not return a match, resulting in
a detour through host r. When r attempts to process the
packet it will not find a matching socket either, and will
subsequently generate an RST packet and send it to q. By
measuring the time between the generation of the non-
SYN and RST packets q can measure the round trip la-
tency. The direct round trip latency between q and f is
measured using the same tool, but in this case the desti-
nation MAC address is set with two identical last octets,
which causes f to reply directly with a RST packet.

The subsequent results are plotted in Fig. 8a, that
shows the empirical CDF of RTT in steady-state and
draining phases. Introducing a single hop detour induces
a very low increase in end-to-end latency: the 50th per-
centile of the latency differential is 14 µs, the 95th per-
centile is 14.6 µs, and the 99th percentile is 19.52 µs.
It should be noted that this small additional latency is
observed only during a host draining phase and only by
flows terminated at hosts being drained. In contrast, soft-
ware load balancers add a latency between 50µs and 1ms
[17, 15] to all packets they process.

5.4 Host overhead
In order to measure the overhead incurred by the kernel
component of Faild, we instrumented hosts to periodi-

40 60 80 100 120 140 160 180
Round Trip Time [µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Steady state

Draining

(a) CDF of RTT

Steady state

Drain

0.0 0.1 0.2 0.3 0.4 0.5

CPU utilization [%]

Refill

E
st

im
at

ed
P

D
F

(b) PDF of CPU utilization

Figure 8: Draining microbenchmarks

cally collect stack traces on each CPU and count how
many of those traces included function calls attributed
to Faild. These counts are then normalized using the
total number of traces collected. Since hosts run on
GNU/Linux, we collected traces at 999 Hz to avoid syn-
chronization with the 1 kHz timer interrupt frequency.

Fig. 8b shows the estimated probability density for the
CPU utilization of the Faild kernel module calculated us-
ing Gaussian kernel density estimation [32]. We model
the distribution for each one of three phases: steady-
state, draining and refill. Data referring to host draining
and host refill was collected over the first two minutes
after the transition was triggered.

In steady-state we can observe that CPU utilization is
very low, averaging approximately 0.1%. The utiliza-
tion remains approximately constant as draining begins,
and during the drain event itself. A noticeable increase
occurs when we revert the draining operation and shift
traffic back to the drained host, which we denote as re-
filling. At this point the kernel module receives a large
number of packets in which the last two octets of the des-
tination MAC address differ, which requires a lookup in
the socket table to be able to trigger detour forwarding in
case of a miss. In spite of the increased workload, the av-
erage CPU utilization remains remarkably low, peaking
at 0.5% for a very small subset of samples. In general,
the expected utilization during refill is 0.22%.

Our two minute measurement cut-off is justified be-
cause flows usually terminate quickly after a drain event
starts. To verify this, we measured the distribution of
flow completion times from different vantage points on
our network. The resulting distributions for three of our
POPs in distinct geographic regions are plotted in Fig.
9. While these results are biased towards our customer
base and the configuration settings for their applications,
they provide us with a feel for the underlying properties
of flows in flight. Our analysis shows that most flows
are short: between 60% and 70% of flows last less than
10 seconds and between 78% and 85% last less than 1
minute. Host overhead is therefore not only small to be-
gin with, but also decays rapidly over time.

118 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 4 6 8 10
Flow completion time [min]

0.6

0.7

0.8

0.9

1.0
C

um
ul

at
iv

e
pr

ob
ab

ili
ty

HTTP

HTTPS

(a) By service

0 2 4 6 8 10
Flow completion time [min]

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

North America

Europe

Asia

(b) By region

Figure 9: Distribution of flow completion time

5.5 Load balancing accuracy
In order to achieve good load distributions, 1) switches
must provide a good enough hardware implementation of
ECMP hashing; and 2) the mix of inbound traffic must be
such that ECMP will provide sufficiently homogeneous
traffic balancing. We validate these two requirements.

0.9 1.0 1.1
0.00

0.05

0.10

0.15

0.20

P
ro

ba
bi

lit
y

de
ns

it
y

0.9 1.0 1.1
Host Load Max/Avg

(a) Switch A and B

0 50 100 150 200 250
Rank of nexthop

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

H
os

t
L

oa
d

M
ax

/A
vg

Perfect

Measured

(b) Switch C

Figure 10: Granularity of ECMP load balancing

To measure load balancing quality we sample two
hosts, each one from a POP equipped with a different
switch model, and assign the same number of nexthops
to each. By measuring the traffic volume served by ei-
ther host at 5 minute intervals over a 24h period, we can
calculate the actual fraction of traffic volume served by
each host normalized by the average amount of traffic
served by all hosts for each interval. Fig. 10a shows
the distribution of this fraction for both switch models;
the density concentration around unity shows that load
balancing quality is good for both switches used in pro-
duction. As shown in Sec. 6.3, this does not always hold
(e.g. Switch C, Fig. 10b).

6 Operational experience
Faild derives much of its elegance from a core set of sim-
plifying assumptions. This section revisits our assump-
tions in light of our operational experience and highlights
their practical implications.

6.1 Recursive draining and POP upgrades
A limitation of the stateless architecture of Faild is that
hosts that are actively forwarding drained traffic cannot
be drained themselves. If any nexthops have MAC ad-
dresses with a f:r suffix (indicating that traffic for r is
already being failed over to f), failing over host f to host
g would imply updating these suffixes to have the form
g:f, and the previous draining indirection from r to f
would be lost. If f were still forwarding ongoing connec-
tions for r at this point, they would be reset by g as they
would not have an associated open socket. This type of
recursive draining fails because it cannot be effectively
represented with our current MAC address encoding, and
this means that Faild is unable to recover when a host that
is already forwarding drained traffic fails.

While trivial to address by further overloading MAC
address semantics, in practice this shortcoming is not a
concern. For one, it is mitigated trivially by waiting for
drained traffic to decay naturally. As long as the av-
erage time between failover reconfigurations is greater
than the time needed for ongoing connections to end nat-
urally once a draining episode is started, no customer
traffic will be affected. Since edge traffic is preponder-
antly composed of small objects, flow completion time is
low and drained traffic decay is fast, as observed in Fig.
9. Additionally, the probability for overlapping draining
episodes is correspondingly low. As shown in Fig. 1,
every one of our POPs had a worst-case draining rate of
5 events per minute or lower at the 99.9th percentile, ir-
respective of underlying event cause. In our experience,
the benefits of recursive draining do not justify the result-
ing increase in operational complexity.

Faild can implement seamless addition of hosts sim-
ply by draining an appropriate number of ECMP nex-
thops to the new hosts being deployed. However, instead
of updating all MAC addresses with suffixes r:r associ-
ated with a drained host r, the ECMP nexthops to be re-
allocated are chosen from the entire forwarding table in
such a way that the resulting configuration is balanced.
After a host f is inserted, and once draining traffic has
subsided, addresses with f:X suffixes can be re-labeled
as f:f to distinguish the change as permanent. In order
to simplify the addition of hosts to a POP, Faild switches
are configured to use the maximum number of nexthops
supported by the hardware, which are then allocated to
the initial number of hosts in a balanced manner.

6.2 Scalability challenges
When scaling Faild to larger POPs, the main bottle-
neck in a single-layer topology will be the port den-
sity of switches; this can be mitigated by using alter-
native topologies with multiple switch layers. However,
a challenge arises when performing ARP table updates
on switches running Faild but not directly connected to

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 119

hosts: bridging table changes need to be synchronized.
This can be achieved with either custom agents running
on switches or using e.g. LLDP discovery.

Although our MAC address encoding limits POP size
to 256 hosts, we have yet to come close to this limit.
The tight latency bounds crucial for edge clouds push
for geographically diverse POPs with a small number
of high-end servers, counterbalancing the economies of
scale driving conventional datacenter deployments. It
would however be simple to extend the host encoding
in MAC addresses to support larger POPs.

A further challenge arises when the maximum number
of ECMP nexthops supported by the underlying switch
hardware is insufficient to provide adequate load balanc-
ing. Recent commodity switches provide 2048+ nex-
thops, which we have found to be sufficient for our needs.

The current layer 2 architecture is attractive because
it is efficient and widely supported and tested. Further-
more, IPv6 is trivially supported and kernel packet pro-
cessing on the hosts is simpler than alternative encapsu-
lation methods. If necessary however Faild can operate
in the network layer without significant modifications.
By simply using IP-in-IP ECMP nexthops bound with
host IP addresses and with statically configured ARP
tables, all the benefits that we have described become
available in a layer 3 architecture.

6.3 ECMP hashing assumptions
While ECMP hashing plays an important role in most
load balancing solutions [17, 27], it is central to Faild.
Our original design and subsequent analysis make nu-
merous assumptions which were empirically validated in
Sec. 5. This, however, is a reflection of our own selec-
tion bias rather than representative for all switch mod-
els. While evaluating various hardware options, we came
across numerous implementation flaws.

Uneven hashing. Some switches under evaluation
were incapable of hashing evenly. The worst example
was a switch that, when configured with 256 ECMP nex-
thops for a given destination, hashes traffic according to
the ranked load distribution in Fig. 10b. For this particu-
lar switch model, the most and least heavily loaded of the
256 ECMP nexthops differ in allocated traffic share by a
factor of approximately six. The impact of this cannot be
understated, given that it is uncommon for customers to
rigorously evaluate hashing, and instead rely on vendor
claims to drive capacity planning. As a result, it is likely
that many commercial networks reliant on ECMP are far
more prone to overloading capacity than they realize.

Unusable nexthops. Some switches also have odd re-
strictions on the number of usable ECMP nexthops for
any given destination. In particular, one model we tested
appears to only support ECMP nexthop set sizes that are
of the form {1,2, . . . ,15}× 2n, presumably because of

hardware limitations. Configuring an ECMP route with
a nexthop count not of this form will result on the next
lower number of nexthops of this form to be used. For
example, configuring this switch with an ECMP route
with 63 nexthops will cause only 60 (i.e. 15×22) of the
nexthops to be used, and 3 of the nexthops will thus re-
ceive no traffic at all. As a result, a switch may hash
evenly amongst internal buckets, and yet still lead to a
skew in load distribution because of a mismatch in how
these buckets map to nexthops.

Hash polarization. For a Faild instance with multi-
ple ingress switches, each switch should be configured
to hash in the same manner. If this is not the case, an
external routing change may divert a flow through a dif-
ferent switch, which in turn may hash the flow onto a
different host leading to TCP connection resets.

Vendors however can make such hash polarization im-
possible to achieve in practice. ECMP hash polarization
is often configured unintentionally by omission, and can
lead to poor performance in networks employing multi-
ple levels of ECMP routing, as it leads to correlation be-
tween ECMP nexthop decisions made at different levels
of the network hierarchy. Some vendors have addressed
this potential misconfiguration by introducing additional
sources of entropy into their ECMP hashing functions.

Unfortunately we found that many switch models in-
clude the index of the ingress interface of a packet in that
packet’s ECMP nexthop hash computation, and in one
particular case, we found that line-card boot order was
used to seed the ECMP hashing function. If the hardware
vendor does not provide a knob to disable such behavior,
hash polarization is rendered impossible, which has dire
consequences for our use case.

6.4 Protocol assumptions
One might expect that, in the absence of routing changes,
packets belonging to the same flow follow a single net-
work path. This however assumes that any load balanc-
ing along the path, including that applied by Faild itself,
is consistent across all packets within a flow. This section
reviews cases where this does not hold.

Inbound fragmentation. If we receive a TCP seg-
ment that has been fragmented by either the originating
client or an intermediate router, its additional fragments
will not contain the TCP port numbers for the connec-
tion, which will cause the receiving switch to hash the
initial fragment and the set of additional fragments to dif-
ferent hosts in the POP.

IPv4-speaking clients that use IPv4 Path MTU Discov-
ery [23] transmit TCP segments that have the IPv4 Don’t-
Fragment bit set, and will therefore not be fragmented
by intermediate routers. Anecdotally, virtually all IPv4
clients we see traffic from implement Path MTU Discov-
ery and transmit TCP segments that are unfragmented

120 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and have the IPv4 Don’t-Fragment bit set. In IPv6 pack-
ets are never fragmented by intermediate routers [12],
and fragmented IPv6 TCP segments belonging to estab-
lished connections are exceedingly rare. Considering
this, we continue to allow switches to use port numbers
for hashing, as this does not appear to cause operational
problems. Nevertheless, a possible mitigation for this
problem is to configure Faild switches to exclude the re-
ceived segment’s TCP port numbers in its packet hash
computation. This would allow successful defragmenta-
tion and processing of received TCP segments, but could
harm load balancing evenness.

Outbound fragmentation. Inevitably we will receive
ICMPv4 Fragmentation Needed or ICMPv6 Packet Too
Big messages in response to outgoing TCP segments des-
tined for a network (or link) that uses an MTU lower than
the segment size. As noted in [11], such ICMP mes-
sages, and ICMP errors in general, are not guaranteed to
ECMP-hash back to the same host as the one that was
handling the corresponding TCP session. Faild handles
this by having hosts that receive certain ICMP messages
from upstream switches rebroadcast these messages to
all hosts in the local POP, and by processing received
ICMP messages that were rebroadcast in this manner as
if they were unicast to the local host. This ensures that
the host that was handling the TCP session correspond-
ing to an inbound ICMP message will receive and pro-
cess a copy of that ICMP message. Given this is a po-
tential denial-of-service vector, we also implemented a
mechanism for rate limiting broadcasts.

ECN. In 2015 we experienced an increase in reports
of connection resets coinciding with Apple enabling Ex-
plicit Congestion Notification [28] by default on iOS and
OS X. Further investigation revealed that this did not af-
fect all users; it was dependent on network path.

Prior to the deprecation of the IPv4 Type of Service
field and its redefinition as the Differentiated Services
field by RFC 2474 [24], and the reservation of the last
two bits of the DS octet for ECN by RFC 3168 [28], it
was explicitly permitted by the IPv4 router requirements
RFC [7] to involve the second-to-last bit of the TOS/DS
octet in routing decisions, and at least one major operator
in the US and several operators outside the US appeared
to have deployed network devices which take this bit into
account in ECMP nexthop selection. Given that this can
cause packets for a single ECN-using flow to follow dif-
ferent paths, there is the potential for trouble if such a
flow hits a POP where Faild is operating across multiple
switches which do not support hash polarization.

Given we are still phasing out switches which do not
support hash polarization from our network, we decided
instead to disable ECN negotiation entirely. The expec-
tation that all packets within a flow follow the same path
however is likely to be broken for ECN for a much longer

period of time, as devices hashing on ECN bits are em-
bedded in networks with long hardware refresh cycles.

SYN proxies. More recently, we uncovered a simi-
lar lack of packet affinity between our POPs and a ma-
jor cloud provider which had deployed a SYN proxy for
their enterprise platform. In this case, a software proxy
undertakes the responsibility of establishing outbound
connections, and then passes the established flow to the
proxied host. In practice, this results in separate route
lookups - one for the SYN handshake, and another for the
subsequent data. While this corner case appears similar
on the surface to ECN, it is much harder to work around.
After extended discussions with the cloud provider in
question, it was decided that it would be simpler to use
BGP to pin an ingress path until we could upgrade our
contingent switches to support hash polarization.

7 Related work
We now review how existing proposals fall short of the
load balancing requirements for POP deployments. A
comparative summary is provided in Table 1.

Consistent hashing ECMP provided by recent
switches (e.g. [2, 4]) is a typical solution adopted by
CDNs to achieve stateless load balancing but does not
make it possible to gracefully add and remove hosts.

Ananta [27] and Maglev [15] propose the use of soft-
ware load balancers, with the latter improving packet
throughput through batch processing, poll mode NIC
drivers and zero copy operations (also adopted by [13,
29]). Despite these improvements, both require per-flow
state to provide connection persistence.

Duet [17] and Rubik [16] combine the ECMP capabil-
ity of commodity switches with a software load balancer
to address the performance bottleneck of general purpose
hardware. They configure routing for heavy hitting VIPs
directly on switches, and relegate less popular VIPs to-
wards software load balancers. Although both add cur-
sory support for migrating flow state between switches
and software load balancers, this proves impractical to
implement. For one, the approach assumes that the
ECMP hash function and seed used on the switches can
be replicated on load balancer instances. This however is
typically proprietary knowledge which equipment manu-
facturers are unwilling or unable to disclose [30]. Even if
this were not the case, the resulting implementation can
still lead to flow disruption, as demonstrated in motivat-
ing the design decisions of SilkRoad [22].

SilkRoad [22] implements connection tracking in pro-
grammable switches by storing compressed flow state in
SRAM memory, which can be potentially overrun. It
also supports graceful draining of hosts without the high
latency and low throughput of software load balancers, at
the cost of requiring the switch control plane to execute a

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 121

Table 1: L4 load balancers: suitability comparison for POP deployment

System Low latency No dedicated HW Stateless Host draining Switch draining In production
Consistent ECMP [2, 4] 3 3 3 7 3 3

Ananta [27], Maglev [15] 7 7 7 3 7 3

Duet [17], Rubik [16] 3 7 partial 3 partial 7

SilkRoad [22] 3 3 7 3 7 7

Beamer [25] 7 7 3 3 3 7

Faild 3 3 3 3 3 3

table insertion for each received SYN. As a result of both
these features, SilkRoad is vulnerable to resource ex-
haustion attacks and therefore not an appropriate match
for load balancing within a POP. SilkRoad eliminates the
need for load balancer instances to be deployed on hosts,
but in doing so hinders the ability to drain switches.

The closest approach to Faild is Beamer [26, 25].
Beamer also implements consistent hashing by mapping
a fixed number of buckets to hosts and uses detouring
to drain hosts without keeping per-flow state, but is pre-
dated by Faild on both counts [34, 35, 36, 37]. How-
ever, whereas Faild does not require any additional hard-
ware, Beamer requires dedicated hosts to run controllers
and load balancer instances, making it unsuitable for de-
ployment within a POP. Finally, the design of Faild is
informed by years of operational experience. In addition
to the benefits provided by Beamer, it provides explicit
support for SYN cookies and maintains correct operation
when facing anomalous cross-layer protocol interactions
(e.g. inbound/outbound packet fragmentation).

A number of techniques used in Faild have also been
used singularly albeit in different contexts and for dif-
ferent purposes. Extending MAC address semantics to
implement switch-to-host signaling was used in [20] to
allow switch forwarding based on application layer infor-
mation. Mapping a large number of virtual nexthops to a
much smaller number of physical nexthops was used in
[40] to implement weighted multipath forwarding. Faild
is unique in using these mechanisms to achieve graceful,
stateless load balancing and having been validated exten-
sively in production.

8 Conclusion
This paper revisits load balancing in the context of
edge clouds, which are orders of magnitude more dense
than datacenter-based cloud computing environments.
Stripped of virtually unbounded physical space, even in-
dividual failures can have a noticeable impact on avail-
ability and cost becomes primarily driven by efficiency.

In light of these issues, this paper proposed Faild,
a stateless, distributed load balancing system which
supports transport affinity, hence allowing the graceful
failover of any individual component. Constrained to
commodity hardware, Faild redefines the semantics of

existing network primitives and rethinks the allocation
of load balancing functions across network components.
We demonstrate that commodity switches can be lever-
aged to perform fast, stateless load balancing, while re-
taining the ability to signal failover forwarding informa-
tion toward the hosts.

In optimizing our design for cost, we inadvertently
implemented all functions necessary to achieve grace-
ful failover. A key insight in this paper is that all state
needed for graceful failover is readily accessible within
the host kernel itself. Previous load balancers rely on ad-
ditional per-flow state to track the allocation of flows to
hosts: a costly, unscalable design pattern which is prone
to resource exhaustion attacks. Faild instead inspects ex-
isting socket state to determine whether to failover traffic
to neighboring hosts. Our results show that this is seam-
less to clients while incurring negligible CPU overhead
and minimal delay. By keeping a tight focus on solving
the engineering challenges of edge clouds, Faild com-
bines well-known techniques in a novel way to achieve
graceful addition and removal of any component with-
out requiring per-flow state beyond that already present
in the service hosts themselves.

This paper reflects our collective experience in scal-
ing Faild over the past four years to handle in excess of
seven million requests per second for some of the most
popular content on the Internet. While the core design
principles of Faild have fared remarkably well, we have
strived to document cases where our assumptions proved
overly optimistic. In exposing hardware limitations and
unintuitive protocol interactions, we hope that with time
these issues may begin to be addressed by a wider com-
munity.

Acknowledgments

We would like to thank our shepherd KyoungSoo Park
and the anonymous reviewers for their feedback.

Faild was originally conceived by Artur Bergman and
Tyler McMullen, and owes much to the many engineers
at Fastly who contributed to its implementation and op-
eration over the past four years.

122 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] A10 Networks. https://www.a10networks.com/.

[2] Broadcom Smart-Hash. https://docs.broadcom.com/

docs/12358326.

[3] F5 Networks. https://f5.com/.

[4] Juniper Networks - Understanding the Use of Resilient Hash-
ing to Minimize Flow Remapping in Trunk/ECMP Groups.
http://www.juniper.net/techpubs/en_US/junos15.1/

topics/concept/resilient-hashing-qfx-series.html.

[5] Switch Abstraction Interface. https://github.com/

opencomputeproject/SAI/.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commod-
ity data center network architecture. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM ’08).

[7] F. Baker. Requirements for IP Version 4 Routers. IETF RFC
1812 (Proposed Standard), June 1995.

[8] D. J. Bernstein. SYN cookies. http://cr.yp.to/

syncookies.html.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and
D. Walker. P4: Programming Protocol-independent Packet Pro-
cessors. SIGCOMM Comput. Commun. Rev., 44(3):87–95, July
2014.

[10] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamor-
phosis: fast programmable match-action processing in hardware
for SDN. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’13).

[11] M. Byerly, M. Hite, and J. Jaeggli. Close Encounters of the ICMP
Type 2 Kind (Near Misses with ICMPv6 Packet Too Big (PTB)).
IETF RFC 7690 (Informational), Jan. 2016.

[12] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. IETF RFC 2460 (Draft Standard), Dec. 1998.

[13] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks:
Exploiting parallelism to scale software routers. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles (SOSP ’09).

[14] W. Eddy. TCP SYN Flooding Attacks and Common Mitigations.
IETF RFC 4987 (Informational), Aug. 2007.

[15] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov,
E. Mann-Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and
J. D. Hosein. Maglev: A fast and reliable software network load
balancer. In Proceedings of the 13th Usenix Conference on Net-
worked Systems Design and Implementation (NSDI ’16).

[16] R. Gandhi, Y. C. Hu, C. kok Koh, H. Liu, and M. Zhang. Rubik:
Unlocking the power of locality and end-point flexibility in cloud
scale load balancing. In USENIX Annual Technical Conference
(USENIX ATC ’15).

[17] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang. Duet: Cloud scale load balancing with hardware and
software. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’14).

[18] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm.
IETF RFC 2992 (Informational), Nov. 2000.

[19] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford. Ef-
ficient traffic splitting on commodity switches. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT ’15).

[20] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freed-
man. Be fast, cheap and in control with SwitchKV. In Pro-
ceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation, (NSDI ’16).

[21] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: En-
abling innovation in campus networks. SIGCOMM Comput.
Commun. Rev., 38(2):69–74, Mar. 2008.

[22] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad: Making
stateful Layer-4 load balancing fast and cheap using switching
ASICs. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’17).

[23] J. Mogul and S. Deering. Path MTU discovery. IETF RFC 1191
(Draft Standard), Nov. 1990.

[24] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers. IETF RFC 2474 (Proposed Standard), Dec. 1998.

[25] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu. Stateless
datacenter load-balancing with Beamer. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
’18).

[26] V. Olteanu and C. Raiciu. Datacenter scale load balancing for
multipath transport. In Proceedings of the 2016 Workshop on
Hot Topics in Middleboxes and Network Function Virtualization
(HotMiddlebox ’16).

[27] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and
N. Karri. Ananta: Cloud scale load balancing. In Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’13).

[28] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Ex-
plicit Congestion Notification (ECN) to IP. IETF RFC 3168 (Pro-
posed Standard), Sept. 2001.

[29] L. Rizzo. netmap: A novel framework for fast packet I/O. In
2012 USENIX Annual Technical Conference (USENIX ATC ’12).

[30] L. Saino. Hashing on broken assumptions. In NANOG
’70. https://www.nanog.org/sites/default/files/1_

Saino_Hashing_On_Broken_Assumptions.pdf, June 6th,
2017.

[31] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha,
I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng. En-
gineering egress with edge fabric: Steering oceans of content to
the world. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’17).

[32] B. W. Silverman. Density estimation for statistics and data anal-
ysis. Chapman and Hall, London, 1986.

[33] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,
A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat. Jupiter rising: A decade
of Clos topologies and centralized control in Google’s datacenter
network. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’15).

[34] J. Taveira Araújo. Communication continuation during content
node failover. US Patent 9,678,841. Filed May 30th, 2014, Issued
Jun. 13th, 2017.

[35] J. Taveira Araújo. Failover handling in a content node of a content
delivery network. US Patent 9,569,318. Filed May 30th, 2014,
Issued Feb. 14th, 2017.

[36] J. Taveira Araújo. Scaling networks through software. In USENIX
SREcon ’15.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 123

[37] J. Taveira Araújo, L. Saino, and L. Buytenhek. Building and
scaling the Fastly network, part 2: balancing requests. https:

//www.fastly.com/blog/building-and-scaling-

fastly-network-part-2-balancing-requests/, Dec
2016.

[38] D. Thaler and C. Hopps. Multipath Issues in Unicast and Multi-
cast Next-Hop Selection. IETF RFC 2991 (Informational), Nov.
2000.

[39] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman,
G. Baldus, M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin,
C. Rice, B. Rogan, A. Singh, B. Tanaka, M. Verma, P. Sood,
M. Tariq, M. Tierney, D. Trumic, V. Valancius, C. Ying, M. Kalla-
halla, B. Koley, and A. Vahdat. Taking the edge off with Espresso:
Scale, reliability and programmability for global Internet peering.
In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17).

[40] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh,
and A. Vahdat. WCMP: Weighted Cost Multipathing for im-
proved fairness in data centers. In Proceedings of the Ninth Eu-
ropean Conference on Computer Systems (EuroSys ’14).

124 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Stateless Datacenter Load-balancing with Beamer
Vladimir Olteanu, Alexandru Agache, Andrei Voinescu and Costin Raiciu

University Politehnica of Bucharest

Abstract
Datacenter load balancers (or muxes) steer traffic des-
tined to a given service across a dynamic set of backend
machines. To ensure consistent load balancing decisions
when backends come or leave, existing solutions make a
load balancing decision per connection and then store it as
per-connection state to be used for future packets. While
simple to implement, per-connection state is brittle: SYN-
flood attacks easily fill state memory, preventing muxes
from keeping state for good connections.

We present Beamer, a datacenter load-balancer that is
designed to ensure stateless mux operation. The key idea
is to leverage the connection state already stored in back-
end servers to ensure that connections are never dropped
under churn: when a server receives a mid-connection
packet for which it doesn’t have state, it forwards it to
another server that should have state for the packet.

Stateless load balancing brings many benefits: our
software implementation of Beamer is twice faster than
Google’s Maglev, the state of the art software load bal-
ancer, and can process 40Gbps of HTTP uplink traffic
on 7 cores. Beamer is simple to deploy both in soft-
ware and in hardware as our P4 implementation shows.
Finally, Beamer allows arbitrary scale-out and scale-in
events without dropping any connections.

1 Introduction
Load balancing is an indispensable tool in modern dat-

acenters: Internet traffic must be evenly spread across the
servers that deal with client requests, and even internal
datacenter traffic between different services is load bal-
anced to ensure independent scaling and management of
the different services in the datacenter.

Existing load balancer solutions can load balance TCP
and UDP traffic at datacenter scale at different price points
[26, 13, 9, 22, 15, 31, 12, 18]. However, they all keep
per-flow state: after a load balancer decides which server
should handle a connection, that decision is “remem-
bered” locally and used to handle future packets of the
same connection. Keeping per-flow state should ensure
that ongoing connections do not break when servers and
muxes come or go, but has fundamental limits:
• Standard scaling events that include both muxes and

servers break many ongoing connections.
• SYN flood attacks prevent muxes from keeping

“good” connection state, negating its benefits.
• Running stateful load-balancers in software with

many flows reduces throughput by 40% (§6.1).

In this paper we design, implement and test Beamer,
a stateless and scalable datacenter load balancer that
supports not only TCP, but also Multipath TCP [27]. The
key idea behind Beamer is daisy chaining that uses the
per-connection state already held by servers to forward
occasional stray connections to their respective owners.

Our prototype implementation can forward 33 million
minimum-sized packets per second on a ten core server,
twice as fast as Maglev [9], the state of the art load bal-
ancer for TCP traffic. Our stateless design allows us to
cheaply run Beamer in hardware too, as shown by our P4
implementation (§5). Beamer can scale almost arbitrarily
because each load balancer acts completely independently
and holds no per-connection state. Our experiments show
that Beamer is not only fast, but also extremely robust to
mux and server addition, removal or failures as well as
heavy SYN flood attacks.

2 Background
Services in datacenters are assigned public IP addresses

called VIPs (virtual IP). For each VIP, the administrator
configures a list of private addresses called DIPs (direct
IPs) of the destination servers. The job of the load bal-
ancer is to load balance connections destined to the VIPs
across all the DIPs. Hardware load balancing appliances
have long been around and are still in use in many lo-
cations; however they are difficult to upgrade or modify
and rather expensive. Traditional app-level proxies such
as HAProxy or Squid that terminate the client’s TCP con-
nection and open a new one to the server are also not de-
sirable because their performance is quite low.

A raft of load balancers based on commodity hardware
have been proposed that seek to address the shortcom-
ings of existing solutions [26, 9, 13, 12, 18, 22, 15, 31].
Their goal is to process packets as cheaply as possible,
while balancing load evenly across a dynamically chang-
ing population of backend servers and ensuring connec-
tion affinity: all packets of a connection should reach the
same server.

Almost all existing load balancers follow the same ar-
chitecture introduced by Ananta [26] and we provide a
brief description in Figure 1. In Ananta, load balancing
is performed using a combination of routing (Equal Cost
Multipath) and software muxes running on commodity
x86 boxes. All muxes speak BGP to the border datacen-
ter router and announce the VIPs they are in charge of as
accessible in one hop. The border router then uses equal-
cost multipath routing (ECMP) to split the traffic equally

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 125

MUX1	 MUX2	 …	

Server	 Server	 Server	 …	

Border	 	
router	

ECMP	
VIP	 VIP	

DIP1	 DIP2	 DIP3	

1 C	 VIP	
srcIP	 dstIP	

2

3 MUX2	 DIP3	 C	 VIP	

payload	

4 VIP	 C	
C	 VIP	

Figure 1: Load balancing: traffic to the VIP address
is load-balanced across a pool of servers, each with
a DIP address. Return traffic bypasses the muxes.

MUX	

Server	

Client	

1SYN	

2SYN	

3 SYN/ACK	

X

Figure 2: Mux and server
disagree over the status of a
connection.

A	

Add	 mux	 2	 and	 server	 B	

MUX	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

A	

MUX	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

B	

MUX	 2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

X

Higher	 load	

Figure 3: Scale out: stateful
load balancers break TCP con-
nections.

to these muxes. When a connection starts (i.e. a SYN
packet arrives at a mux), a hash function is applied on the
five-tuple and a server is chosen based on this hash. If a
single server is added to the DIP pool, the assignment of
some existing connections to servers will change; at the
very least, the new server must receive an equal fraction
of all ongoing connections. That is why, once a mapping
of connection to DIP is chosen, it is stored locally by the
mux to ensure all future packets will go to the same DIP.

Upon leaving the mux, the original packet is encapsu-
lated and sent to the DIP. The receiving server first decap-
sulates the packet, changes the destination address from
VIP to DIP, and then processes it in the regular TCP stack.
When the reply packet is generated, the source address is
changed from DIP to VIP and the packet is sent directly
to the client, bypassing the mux to reduce its load (this is
Direct Source Return, or DSR).

3 Limits of stateful load balancing
A key design decision of all existing load balancers is

to keep a small amount of per-connection state to ensure
connection affinity: once a connection is assigned to a
backend, the mux will remember this decision until the
connection finishes or a timer fires.

While per-connection state works well in the average
case, it has a number of fundamental limitations which re-
duce its effectiveness in practice. First, because the mux
only sees one direction of traffic, state kept by the mux
can differ from the server’s state for the same connection;
the worst case here is the muxes’ inability to cope with
SYN flood attacks. Secondly, even in the absence of SYN
floods, connections will be broken in scale-out or scale-in
(or failure) events where both the mux set and the DIPs
change simultaneously; such events happen naturally. Fi-
nally, software muxes’ forwarding performance decreases
with many active connections (see §6). We discuss these
issues next.
State mismatch between mux and server. Consider the
simple example in Figure 2: a client starts a TCP con-
nection by sending a SYN packet, which is seen by a

mux and then redirected to a server, and the mux saves
the chosen mapping locally. The server replies with a
SYN/ACK packet which never reaches its destination be-
cause the client is now disconnected. The server will send
this packet a few times until it terminates the connection;
the mux however is not aware of the reverse path unreach-
ability and will maintain the state for minutes.

SYN flood attacks, where attackers send many SYN
packets with spoofed IP source addresses [8], cause sim-
ilar problems. During a SYN flood, the SYN/ACKs sent
by the server never reach their destination, but both the
server and the mux install connection state. SYN-cookies
[8] are the standard protection against SYN flood at-
tacks: when the number of half-open connections reaches
a threshold, the server stops keeping state upon receiv-
ing a SYN, encoding the state in the SYN/ACK packet it
sends to the client. When legitimate customers reply with
the third ACK to finalize the connection handshake, the
server uses the information from the ACK number (a re-
flection of its initial sequence number) and the timestamp
(the echo reply field) in conjunction with local informa-
tion to check if this is a valid connection; if so, it creates
an established connection directly.

SYN cookies help the server shed unwanted state, but
have no positive effect at the mux: the mux is forced to
allocate state for every SYN it sees. Under a SYN flood
attack, the servers will function normally but the muxes’
connection memory will be overloaded to the point where
they will behave as if they have no connection state, and
thus DIP churn will break connections.

Ensuring state synchronization and defending against
SYN floods at muxes is far from trivial: at the very least it
requires muxes to keep more state (i.e. is the server send-
ing SYN cookies or not?) and examine both directions of
traffic; another cleaner solution is for the mux to terminate
TCP. All solutions limit scalability.
Connection failures during scaling events. Even with-
out SYN floods, keeping mux state does not guarantee
connection affinity. Figure 3 shows a datacenter service
that is running with one mux and one server. As load in-
creases, one more mux and server are added. The border

126 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

router now routes half the connections it sent to mux 1 to
mux 2, as the blue flow in our example. Mux 2 does not
have state for the blue flow, and it simply hashes it, as-
signs it to B and remembers the mapping for future pack-
ets. B receives packets from an unknown connection so
it resets it. Such failures happen even when the border
router uses resilient hashing and when all muxes use the
same hash function. The necessary condition, though, is
that both the mux set and the server set changes in quick
succession, but such sequences of events occur naturally
in datacenters during scale out and scale in events.

4 Beamer: stateless load-balancing
Using per-flow state at muxes fails to provide connec-

tion affinity in many cases. Can we do better without
keeping flow state in the muxes? This is our goal here.

To achieve it, we leverage the per-flow state servers
already maintain for their active connections. As an ex-
ample, consider server B in Fig. 3: it receives a packet
belonging to the blue connection, for which it does not
have an entry in the open connections table; the default
behaviour is to reset the blue connection. If B knew that
server A might have state for this connection, it could sim-
ply forward all packets it doesn’t have state for, including
the blue connection, to A, where they could be processed
normally. We call such forwarding between servers daisy
chaining and it is the core of Beamer.

The architecture of Beamer mirrors that in Figure 1: our
muxes run BGP (Quagga) and announce the same VIP
to border routers. ECMP at the routers spreads packets
across the muxes, which direct traffic to servers; finally
the servers respond directly to clients. To build a scalable
distributed system around daisy chaining, Beamer uses
three key ingredients:
• Stable hashing (§4.1), a novel hashing algorithm that

reduces the amount of churn in DIP pool changes to
the bare minimum, while ensuring near-perfect load
balancing and ease of deployment.
• A fault-tolerant control plane(§4.5) that scalably dis-

seminates data plane configurations to all muxes.
• An in-band signaling mechanism that gives servers

enough information for daisy chaining, without re-
quiring synchronization (§4.2).

4.1 Stable hashing
Beamer muxes hash packets independently to decide

the server that should process them. A good hashing algo-
rithm must satisfy the following properties: it should load
balance traffic well, it should ensure connection affinity
under DIPs churn, and it should be fast.

A strawman hashing algorithm is to chose the target
server by computing hash(5tuple)%N, where N is the
number of DIPs; this is what routers use for ECMP. This
mechanism spreads load fairly evenly and as long as the
set of DIPs doesn’t change, and mux failures or additions
do not impact the flow-to-DIP allocations. Unfortunately,
when a single server fails (or is added), most connections
will break because the modulus N changes.

Consistent hashing [19], rendezvous hashing [30] and
Maglev hashing [9] all offer both good load balancing and
minimize or at least reduce disruption under churn. On the
downside, in all these algorithms each server is in charge
of many discontiguous parts of the hash space; this means
the mux must match five-tuple hashes against many rules,
reducing performance (for software deployments) or in-
creasing hardware cost (for hardware ones). These algo-
rithms target wide-area distributed systems and thus strive
to reduce (mux) coordination. In datacenters, however,
we can easily add lightweight coordination which enables
a simple and near-optimal hash algorithm.

Beamer implements stable hashing, an extensible hash-
ing approach that can be used to implement all the algo-
rithms above. Stable hashing adds a level of indirection:
connections are hashed against a fixed number of buck-
ets, and each bucket can be mapped by the operator to
any server. Before the load balancing service starts for a
certain VIP, the operator chooses a fixed number of buck-
ets B that is strictly larger than N, the maximum number
of DIPs that will serve that VIP (e.g. B=100N). Each
bucket is assigned to a single server at any time, and each
server may have multiple buckets assigned to it. The num-
ber of buckets B and the bucket to server assignments
are known by all muxes, and they are disseminated via
a separate control plane mechanism (see §4.5). When a
packet arrives, muxes hash it to a bucket by computing
b=hash(5tuple)%B, and then forward the packet to
the server currently assigned bucket b. As B is constant
by construction, server churn does not affect the hashing
result: a connection always hashes to the same bucket,
regardless of the number of active DIPs.

Bucket-to-server mappings are changed on server fail-
ure or explicitly by the administrator for load-balancing
and maintenance purposes. These mappings are stored
in reliable distributed storage (Apache ZooKeeper [16] in
our implementation); muxes retrieve the latest version be-
fore they start handling traffic. As changes to the bucket-
to-DIP mappings are rare, this mechanism has low com-
munication overhead and scales to datacenter-sizes (§6.4).

We show an example of stable hashing in Figure 4.
The administrator has configured four buckets; muxes
first hash flows into these buckets to find the destination

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 127

MUX	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	

b)	 Server	 B	 fails	

Fixed	 number	
of	 buckets	

MUX	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	

B	 C	 X	
X	

hash	

A	 B	 C	 A	 A	 C	 C	 A	

A	 B	 C	

a)	 Stable	 hashing	 with	 	
	 	 	 	 	 three	 servers	

A	

hash	

Figure 4: Stable hashing is resilient to
server failures.

������

����������

������

Figure 5: Hashing algorithms
comparison

MUX	 2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

MUX	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

B	 A	 B	
a)  Buckets	 belong	 to	 	
	 	 	 	 	 	 server	 A	

b)	 Buckets	 moved	 to	 B,	
Inconsistent	 mappings.	

A	 A	 A	 A	 A	
MUX	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 A	 A	
MUX	 2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 B	 A	 B	 B	

A	

A	

Figure 6: Daisy chaining allows server
addition or removal without disrupting
ongoing connections.

server. When server B fails, the controller will move the
third bucket from B to C; the mapping is then stored in
ZooKeeper and disseminated to all muxes. After the map-
ping is updated, flows initially going to A or C are unaf-
fected, and flows destined for B are now sent to C. Only
the blue connection, handled by B, is affected.

Our bucket-to-server mappings are managed centrally
by the controller. The controller has the freedom to im-
plement any bucket-to-server mapping strategy to mim-
ick consistent hashing, rendezvous hashing or Maglev. In
our implementation we chose a greedy assignment algo-
rithm that aims to maximize the contiguous bucket ranges
assigned to muxes; this is very useful especially when
Beamer is deployed in hardware, because it can use fewer
TCAM rules to implement its dataplane functionality. To
provide intuition about why this is the case, in Fig. 5 we
show how 47 buckets are assigned to 5 servers using the
three algorithms, where each server is shown in a different
colour: the bigger the fragmentation, the higher the cost
to match packets against packets in the dataplane. Beamer
is the least fragmented, followed by Consistent and Ma-
glev. When servers come and go, bucket assignments to
servers will also become fragmented even with Beamer;
Beamer runs a periodic defragmentation process to avoid
this issue (see §4.5).

Our stateless design ensures that mux churn has no im-
pact on connections: as soon as BGP reconverges to the
new configuration, load will be spread equally across all
muxes and no connections will be broken.

4.2 Daisy chaining
There is a natural amount of churn of servers behind

a VIP, be it for load balancing purposes or for planned
maintenance. To implement such a handover, all our con-
troller has to do is to map to the new server the buckets
belonging to the old server and store the new mappings in
ZooKeeper. The muxes will then learn the new mapping
and start sending the bucket traffic to the new server. For
a truly smooth migration, however, there are two compli-
cations that need to be taken in account: existing connec-
tions will be broken and there might be inconsistencies

when some muxes use the new mappings while others are
using the old ones.

To solve both issues we use daisy chaining, a transi-
tory period where both the new server and the old one are
active and servicing flows that hit the migrated bucket(s).
We aim to move all new connections to the new server,
and process ongoing connections by forwarding them to
the old server even if they arrive at the new server.

We give an example in Fig. 6 where we migrate three
buckets between servers A and B. Initially, both muxes
have the same mappings for all buckets. Daisy chaining
starts when the controller migrates the buckets from A to
B by storing the new mapping in ZooKeeper and marking
A as the previous DIP, along with the timestamp of the up-
date. Note that the muxes save the previous DIP for each
bucket, as well as the time the reallocation took place.
To see how daisy chaining comes into play, let us con-
sider the way packets are processed upon reception by the
server. If the incoming packet is a SYN (TCP or MPTCP),
a valid SYN-cookie ACK, or it belongs to a local connec-
tion, then we can process it locally. Otherwise, the packet
could belong to a connection that has been previously es-
tablished on another server. In this case, we want to daisy-
chain packets back to the appropriate server, but only for
a limited time.

To enable this, packets destined to ports lower than
1024 (higher numbers are used for MPTCP load balanc-
ing, see §4.4) also carry the previous DIP and the times-
tamp of the change (or 0 when there is none). We always
save locally the highest timestamp seen for the bucket the
packet is hashed to, and enable daisy chaining to the pre-
vious DIP when current time is smaller then the times-
tamp plus the daisy chaining interval. Thus, packets are
redirected to the appropriate destination as long as daisy
chaining is active. Otherwise, they are dropped and a RST
is sent back to the source.

Daisy chaining adds robustness to our whole design.
Consider what happens if the two muxes in Fig. 6 tem-
porarily disagree on the server now in charge of the three
buckets. Flows that hit mux 1 are load balanced accord-
ing to the old mapping and will be directed to A, who

128 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

will simply process them locally (the black connection).
Meanwhile, B will locally service the red connection, but
will daisy chain the blue connection to A (the previous
DIP) because it doesn’t have state for it. When mux 1 fi-
nally updates its state, the black connection will be sent to
B, and daisy chained back to A (assuming the rule is still
active). After all the muxes have updated their state, A
will only receive packets related to ongoing connections,
which will quickly drop in number. While in principle
daisy chaining can be left running forever, we try to avoid
migrating buckets that are being daisy chained. That is
why our Linux kernel implementation uses a hard timeout
of four minutes for daisy chaining.

There is one subtle corner case where daisy chaining
still doesn’t protect against broken connections, and we
exemplify in figure 6. Consider the red connection that is
being serviced by B after mux 2 updates its configuration;
if this connection is sent to mux 1 (e.g. via ECMP churn
in BGP), mux 1 will send it to server A which will reset
it. To avoid this problem, packets also carry the genera-
tion number for the dataplane information, and all servers
remember the highest generation number they have seen.
In this example, server A will receive packets from B (and
possibly from other muxes) with generation 2 and will re-
member 2 as the latest generation. When A receives a
mid-connection packet that can not be daisy chained and
for which it has no state, it will check if the generation
number from the mux equals the highest generation num-
ber seen; if yes, the connection will be reset. If not, the
server silently discards the packet. This will force the
client to retransmit the packet, and in the meantime the
stale mux mappings will be updated to the latest genera-
tion, solving the issue. Note that, if the border router uses
resilient hashing, the mechanism above becomes nearly
superfluous.

4.3 Mux data plane algorithm
The mux data plane algorithm pseudocode is shown

in Fig.7. Lines 3-9 handle regular TCP traffic: first the
bucket b is found together with the current and previous
DIPs for bucket b. After that, the packet is encapsulated
and sent to the current DIP. The algorithm is very sim-
ple, requiring a hash and one memory lookup in the buck-
ets matrix (all three columns easily fit in one cache line).
The remaining code in the mux performs Multipath TCP
(MPTCP) [27] traffic load balancing equally cheaply: a
single lookup is needed and the packet is encapsulated and
sent to the appropriate DIP (see §4.4).

The simplicity of the mux is key to good performance:
on one core our prototype can handle around 5-6Mpps,
and around 33Mpps on an ten core Xeon box.

1 packet* mux(packet* p){
2 if (p->dst_port<1024){
3 gen = buckets.version
4 b = hash(5-tuple)%B;
5 dip = buckets[b][0];
6 pdip = buckets[b][1];
7 ts = buckets[b][2];
8
9 return encapsulate(mux,dip,pdip,ts,gen,p);
10 }
11 else {
12 dip = id[p->dst_port];
13 return encapsulate(mux,dip,p);
14 }
15 }

Figure 7: Mux data plane pseudocode

4.4 Handling Multipath TCP
MPTCP deployment on mobiles is spreading: all IOS-

based phones have it, as do top-end Android devices such
as Galaxy S7 / S8. None of the existing datacenter load
balancers support MPTCP, unfortunately, and this is a bar-
rier to server-side deployment. This is because load bal-
ancing MPTCP is more difficult than regular TCP.

An MPTCP connection contains one or more subflows,
and it starts when its first subflow is created. Each subflow
looks very much like an independent TCP connection to
the network, with the exception that its segments carry
MPTCP-specific options. When load balancing MPTCP,
all subflows of the same connection must be sent to the
same DIP. Existing datacenter load balancers (e.g. Ananta
[26], Maglev [9], SilkRoad [22], Duet [13]) treat MPTCP
subflows as independent TCP connections, thus the DIP
for each subflow will be decided independently, sending
them to different servers most times, and breaking sec-
ondary subflows.

In MPTCP, after the initial subflow is setup, each end-
point computes the token—a unique identifier its peer
has assigned to this connection. This token is embedded
in the handshake of additional subflows within the same
MPTCP connection and helps the remote end find the ap-
propriate connection to bind the subflow to.

If one follows the mux state design approach, imple-
menting MPTCP support requires storing the server-token
TB to DIP mapping in some shared memory all muxes can
access, but this poses two problems: first, since only the
DIP knows the token, it should update the shared mem-
ory when a new connection is created; secondly, having a
shared memory access for each additional subflow would
be prohibitive from a performance point of view.

We propose a stateless solution that leverages the mo-
bility support available in MPTCP to ensure that sec-
ondary subflows can be forwarded to the correct server.
We use the destination port in SYN JOIN packets to en-
code the server identifier. This is shown in Fig. 8: when

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 129

LT
E	
in
te
rf
ac
e	

W
ifi
	 in
te
rf
ac
e	

VIP	
SYN	 (MPC)	 to	 VIP,	 80	

SYN/ACK	 (TB)	

ACK	 to	 VIP,80	

ACK	 (ADD_ADDRESS	 VIP
,1050)	

SYN	 (JOIN,	 TB)	 to	 VIP,	 1050	

SYN/ACK	 (JOIN
)	

ACK	 to	 VIP,1050	

A	 B	

Used	 for	 OS	 	
demulNplexing	

Used	 for	 Beamer	
load	 balancing	

Used	 for	 OS	 	
demulNplexing	

Figure 8: Load balancing MPTCP statelessly. Beamer
uses address advertisement to embed the server identifier
in the destination port of secondary subflows.

receiving TCP SYN or MPTCP initial subflow SYN pack-
ets, the port number is used to find the listening socket.
However, SYN JOIN packets (handshake of secondary
subflow) contain a token (TB) that servers use to find the
existing MPTCP connection [11]; the destination port is
not used by the stack and we use it for Beamer.

Before deployment, Beamer assigns each server a
unique identifier in the 1025-65535 range. We reserve
port numbers (1-1024) for actual services, and utilize the
remaining port numbers to encode server identifiers for
secondary subflows. MPTCP allows endpoints to send
add address options that specify another address/port
combination of the endpoint to be used in future subflows.
We use this functionality as shown in Fig. 8: whenever a
new MPTCP connection is established (i.e. the third ACK
of the first subflow is received), servers send an ACK with
add address option to the client with the VIP address
and the server identifier as port number. The client re-
members this new address/port combination and will send
subsequent subflows to it.

To handle MPTCP secondary subflows correctly, our
mux (Fig. 7) treats traffic differently depending on the
packet’s destination port: traffic to ports greater than 1024
are treated as secondary subflows and directed to the ap-
propriate servers. As each server has exactly one port
associated to it, our solution can support at most 64K
servers for each VIP. The muxes use another indirection
table called id, that simply maps port numbers to DIP
addresses (identified with Di here, see Fig. 9).

Note that we only need daisy chaining to redirect initial
subflows of MPTCP connections or plain TCP connec-
tions. Secondary subflows are sent directly to the appro-
priate server (uniquely identified by the port).

4.5 Beamer control plane
We have designed our control plane to be scalable and

reliable and built it on top of ZooKeeper. ZooKeeper
ensures reliability by maintaining multiple copies of the

data and using a version of two-phase commit to keep
the copies in sync. Users can create hierarchies of nodes,
where each node has a unique name and can have data
associated to it, as well as a number of child nodes.

We show the operation of our control plane by detailing
how the most important operations are implemented. The
controller is the only machine that writes information into
ZooKeeper and muxes only read ZooKeeper information.
Servers do not interact with ZooKeeper at all. The node
hierarchy used by Beamer is shown in Fig. 11.

When a new Beamer instance is created, the con-
troller creates a high level node (called in this example
“beamer”) and a “config” child node holding the basic
configuration information including the VIP and the to-
tal number of buckets. Next, the operator can add DIPs to
the load balancer instance by specifying the DIP address,
an identifier (unique within an instance) and a weight.

The bucket-to-server assignments are stored in the
“mux ring”, while the “dips” node contains DIP-related
metadata, which is not read by the muxes.
Creating a DIP. To add a DIP, the controller will add
an entry for the DIP in the “dips” node, and then in the
“id” node. ZooKeeper guarantees that all individual op-
erations are atomic. If the controller or its connection to
ZooKeeper crashes at any point, it checks the “dips” node
for any in-progress DIP additions. If a DIP is not repre-
sented in the “id” node, it is added there as well.
Load balancing is run after one or more DIPs are added,
before they are removed or after their weight is changed.
The assignment algorithm runs in a loop, aiming to bal-
ance load properly while reducing daisy chaining:
• Select the most overloaded server A and underloaded

server B, where load is the ratio between assigned
buckets and weight.

• Find the maximum number of buckets n such that, if
transferred from A to B, A’s load would not fall under
the average, and B’s load would not rise above.

• Select the n buckets that have been in A’s pool for
the longest time, and move them from A to B.

To move buckets between two servers, the controller sim-
ply updates the mux ring (see below). Our greedy bucket-
to-DIP assignment algorithm will cause fragmentation
when the DIP set is altered and buckets are reassigned to
ensure good balancing. Beamer includes a defragmenta-
tion algorithm (see Appendix) that runs when fragmenta-
tion exceeds a threshold.
Removing a DIP begins by setting its weight to zero. Af-
ter running the load balancing algorithm, the “dips” entry
is removed.
Updating mux dataplane configuration safely. The
muxes load the dataplane configuration from the

130 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DIP	 PDIP	 TS	

D1	 D5	 100	

D6	 D0	 200	

D1	 D5	 100	

…	 …	 …	

DIP	

D1	

D6	

…	

id	
buckets	

B	
en

tr
ie
s	

64
K	
en

tr
ie
s	

Figure 9: Mux data structures

mux ring

gen1

latest_gen

latest_blob

blob0 Timestamp
D1, #buckets, list
D2, #buckets, list
…

0

2

DIP PDIP TS

D1 D5 100

D1 D5 100

… … …

log0

gen0 gen2

Figure 10: Mux configuration informa-
tion stored in ZooKeeper

beamer	 config	

bucket	
count	 VIP	

mux_ring	

id	

141.85.37.8	 6.4M	
DIP1,	 id1,	 weight1	
DIP2,	 id2,	 weight2	
…	

DIPS	

Figure 11: Controller informa-
tion stored in ZooKeeper

“mux ring” node in ZooKeeper, as shown in Fig. 10.
The dataplane information is stored in several generation
nodes, that have logs, which capture incremental updates
to bucket ownership. Optionally, a generation node may
also have a blob, which is an entire snapshot of the data-
plane. The logs and blobs are compressed using zlib [1],
and may span multiple nodes1.

The blob contains the same data structure used by the
muxes to forward packets. When it starts up, the mux first
reads the values of “latest blob” (the newest generation
that contains a blob, in this case “gen0”). The mux reads
the blob from “gen0” and obtains a functional forwarding
table. If the “latest gen” node has a value greater than the
latest blob, the mux reads all the generations in ascending
generation number order and applies the deltas contained
therein. The mux now has an up-to-date forwarding table
and can process packets.

ZooKeeper allows clients to register watches on nodes
and it delivers notifications when the nodes’ data is up-
dated. We leverage this functionality to inform muxes that
the forwarding information has changed: all muxes regis-
ter watches for the “latest gen“ node; when it changes, the
muxes will fetch and apply the new deltas.

Finally, the controller updates the mux ring informa-
tion with the following algorithm: a) create a new genera-
tion node and store the updates to the bucket-to-server as-
signments, and b) update the “latest gen” node to inform
the muxes of the new version. The controller also creates
blobs by applying the deltas in the same way the muxes
do, creating the blob nodes under the current generation
and then updating the “latest blob” entry.
Safety. The controller algorithm above does not require
any synchronization between muxes or the controller be-
yond ZooKeeper interactions. To ensure correctness, it
maintains the following invariants: a) Muxes only read
ZooKeeper information; they never update it. Configura-
tion information is only written by the fault-tolerant con-
troller; b) State updates are atomic from the muxes’ point
of view: they occur when the “latest gen” node is changed

1ZooKeeper nodes have a maximum size of 1MB.

In
gr
es
s	

Eg
re
ss
	

Match	 Ac/on	

*	 b	 =	 CRC32	
(5tuple)	

HASH	 table	

Match	 Ac/on	

*	 b	 =	 b%B	

MODULO	 table	

Match	
b	

Ac/on	

0	 Encap(D1,D5,100)	

1	 Encap(D6,D0,200)	

…	 …	

BUCKETS	 table	

Match	
TCP.DST	

Ac/on	

1024	 Encap(D1)	
1025	 Encap(D2)	
…	 …	

ID	 table	

TCP.DST<=1024	
AND	 b	 is	 set	

Figure 12: P4 implementation of a Beamer mux.

(an atomic ZooKeeper operation), which only occurs after
the controller has finished writing the data pertaining to
the newest generation; and c) Generations with an iden-
tifier smaller than “latest blob” can be safely deleted by
the controller since muxes do not need them to have an
up-to-date version of the dataplane.

5 Implementation
Beamer servers run a kernel module (1300LOC) that

handles decapsulation, address mangling and daisy-
chaining. We have also patched the MPTCP Linux kernel
implementation (version 0.90) to advertise the server ID
for subsequent subflows (a few tens of lines of code). Our
controller is implemented in 2100 lines of Java.

We have implemented Beamer muxes both in software
and hardware (P4). The software mux runs a Click con-
figuration atop the FastClick suite [4]. FastClick enables
scaling to multiple cores, sets thread to core affinities and
directly assigns NIC queue interrupts to cores.
Software mux. The core of the software mux is a Click
element we have developed that implements our mux al-
gorithm and acts as a ZooKeeper client to receive state up-
dates. To improve performance, our design is completely
lock free, which we achieve by carefully ordering the way
we update the buckets matrix during updates.
Our hardware mux implementation is based on P4 [5]
and is shown in Fig. 12. It contains two match-action

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 131

��

��

��

��

��

���

���

��� ���� ���� ���� ����������

�
�
�
�
�
��
��
��

�
��
�
�
�
�

���������������

���������
������

���������������
�����������������

Figure 13: Forwarding performance
vs. packet size (one core). Beamer
outperforms stateful design 2-3x.

��

��

���

���

���

���

���

���

�� ��� ���� �� ����

�
�
�
�
�
��
��
��

�
��
�
�
�
�

�����������������

�����������������
����������������

Figure 14: Forwarding performance
(ten-core Xeon, 4 x 10Gbps). Beamer
forwards 40Gbps with 128B packets.

��

����

��

����

��

����

��

����

��

�� ��� ���� �� ��� ����

�
�
��
�
�
�
�
�
��
��
�
�
�
�

������������������

Figure 15: Software mux perfor-
mance decreases with more active
connections.

tables, one for the bucket-to-server mappings and one for
the id-to-server mappings. The control part of the mux
simply directs packets to one of these tables based on their
destination port. The tables are populated by a software
control plane that speaks to ZooKeeper.

The biggest challenge is computing the hash of the 5-
tuple that is needed for lookup in the buckets table in the
ingress stage of the pipeline: we can use the stock CRC32
function to compute it, but the checksum is calculated
only in the egress stage. Since we cannot compute the
CRC manually, we “recirculate” the packet instead: when
the packet first enters the pipeline, its hash is calculated
and stored as metadata “b” and the packet is resubmitted
to the ingress port. To compute the modulus we add one
more table with a single default entry where the modu-
lus in computed in the action. Finally, the packet hits the
buckets table and is encapsulated.

6 Evaluation

The purpose of our evaluation is to test the perfor-
mance, correctness, fault tolerance and deployability of
our prototype implementation. We used our local testbed
containing 20 Xeon-class servers connected directly to an
48-port 10Gbps BGP router to test dataplane performance
and perform microbenchmarks of our control plane. We
ran experiments on Amazon EC2 to show that our con-
troller can scale to a large Beamer instance with one hun-
dred muxes, 64K DIPs and 6.4 million buckets. In the
appendix we also evaluate stable hashing.

Our results show that Beamer is simultaneously fast
and robust: no connections are ever dropped, in contrast
to stateful approaches, Beamer’s dataplane performance
is twice that of the best existing software solution, and
our mux introduces negligible latency when underloaded
(100µs). The control plane experiments highlight the ro-
bustness and scalability of our design.

6.1 Micro-benchmarks
We first tested our software mux in isolation handling

1000 buckets. The server used for testing has a ten core
Intel Xeon processor running at 2.7GHz, 16GB of RAM
and a ten gigabit NIC using the 82599 Intel chipset. Our
traffic generator is based on the pkt-gen utility from the
netmap [29] suite. The generator can saturate a 10Gbps
link with minimum sized packets. In each experiment we
generate packets of a single size and we measure perfor-
mance at the receiver using pkt-gen.

The source code of previous datacenter load balancers
including Ananta and Maglev is not publicly available. To
compare against such solutions, we implemented Stateful,
a version of our mux that uses a hash table to store per flow
load balancing decisions. We use Stateful to understand
the performance of stateful load balancers.

The results are shown in Fig. 13. First, we note that
the stateful design, running with 1 million active flows
(a typical load seen in production [22]), is significantly
slower than Beamer, because flow table lookups and in-
sertions are comparatively expensive and result in cache-
thrashing. Fig. 15 shows performance as a function of the
number of active flows. Throughput drops from 3.9Mpps
with one thousand active flows to 2.3Mpps with 100 mil-
lion active flows. The performance results presented in
the Maglev paper ([9], Fig. 8) are comparable to those
of Stateful: 2.8Mpps per core and 12Mpps for six cores.
Beamer forwards 6Mpps per core, twice faster.

To see how Beamer scales, we also increased the num-
ber of cores it uses to service the single NIC while spread-
ing the NIC queues across the cores. With at least two
cores, the Beamer software mux achieves line rate for all
packet sizes. Note that the maximum throughput with 64B
packets is lower than the expected 14.88Mpps because of
the overhead of the encapsulation we use: our mux adds
an IP-in-IP encapsulation header (20B) to all packets, and
an IP option (16B) to packets to ports smaller than 1024.

Finally, we installed four ten gigabit NICs into a Xeon
server with ten cores at 2.5GHZ per socket. The per-core
forwarding performance on this machine is 10% slower

132 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

than in the above experiments because the CPU is 10%
slower. This setup allows us to test just how much traffic
a software mux can handle if it uses all its resources.

We used four clients and four servers each with one
10Gbps NIC to saturate our MUX with 64B packets. We
also varied the number of buckets to see how our design
copes with larger server populations. Per core throughput
with 64B packets drops to 5.6Mpps when the mux han-
dles 100K buckets, and to 5.1Mpps when there are 1M
buckets. The results are due to decreased cache locality
when the memory needed to store the bucket information
increases. A mux implementation could coalesce neigh-
bouring buckets that point to the same server to reduce the
number of effective buckets, thus increasing performance.

The total throughput per mux is shown in Fig.14: our
mux can forward 23 to 33Mpps per server, or 20 to
30Gbps depending on the number of buckets. With 128B
packets the mux saturates all interfaces (40Gbps).
Performance with real traffic. We used MAWI [21]
traces to estimate the throughput of our mux in realistic
traffic conditions, and to estimate how many web servers
could be handled by a single mux. We built a replay tool
that takes packet sizes from MAWI HTTP uplink traffic
and generates such packets as quickly as possible.

We measured the performance of a mux with four
10Gbps NICs installed: our mux can forward 36Gbps of
HTTP uplink traffic, saturating all links (considering our
encapsulation overheads at the mux) while using 7 of the
10 cores of the machine.

In the MAWI traces, server-to-client traffic is 15 times
larger than client to server traffic, so one mux can load
balance a pool of servers that together serve 540Gbps
of downlink traffic. HTTP servers running custom made
stacks can serve static content at 60Gbps [20]; however
most servers will serve much less than that because con-
tent is dynamic. We expect one server to source around
1-10Gbps of traffic, and expect that a single software mux
could cater for 50-500 servers.
Implementation overheads. We measure the server over-
head introduced by our kernel module that decapsulates
packets and implements daisy chaining. To this end we
ran a 10Gbps iperf connection between a client and a
Beamer server and measured its CPU usage with and
without our kernel module. The vanilla server has an av-
erage CPU utilization of 7%, and of 9% with our module
installed; this overhead is negligible in practice.
Latency. Our software mux achieves high throughput,
but have we sacrificed packet latency in our pursuit of
speed? We setup an experiment where our mux is run-
ning on a single core and processing 64B packets sent
at different rates. In parallel, we run a ping with high

frequency between two idle machines. The echo request
packet passes through the mux, and the reply is sent di-
rectly to the source. We show a CDF of ping latency
measurements for different packet rates in Figure 16. As
long as the CPU is not fully utilized, both median and
worst-case packet latencies stay below 0.2ms. When we
overload the mux with 6.6Mpps (600Kpps more than its
achievable throughput), the ping latency jumps to 1.5ms
and 14% of packets are dropped. This latency is a worst
case and is explained by the time it takes one core to pro-
cess all the packets stored in the 10 receive queues used
by netmap (one queue per core, 256 packets per queue).
P4 dataplane. We do not have access to a Tofino switch
yet, so we resort to both software deployment and NetF-
PGA deployment to test our P4 prototype.

We first ran our P4 mux in the behavioural model
switch on one of our Linux machines and measured its
performance: the switch can only sustain 55Mbps of iperf
throughput with 1500B packets, and around 4.5Kpps with
minimum-sized packets. Any performance measurements
with this switch are therefore irrelevant; we do, however,
use it to check the correctness of our implementation and
interoperability with our controller and the Click-based
software mux.

Our NetFPGA implementation of the P4 switch uses
P4-NetFPGA [2]. To enable our prototype to compile we
had to make a number of modifications. First, we up-
graded our code to P4-16 which simplified our code be-
cause actions can compute checksums, so we don’t need
to recirculate packets anymore. Next, running on hard-
ware imposes constraints on table actions, limiting the
bitsize of action parameters. To avoid these problems we
broke up bigger tables into cascading smaller tables which
satisfy the constraints. The decomposition is done such
that we maintain consistency even if concurrent tables are
not modified simultaneously.

We tested our implementation with Vivado’s xsim
2016.4 simulator, injecting a batch of packets, verify-
ing they are processed correctly, and measuring the time
needed by the switch. The simulator reports that it takes
154 µs to process 10000 packets with 100B packets; this
means the P4 mux can handle around 60Mpps. Deploying
this prototype on actual hardware is ongoing work.

6.2 Scalability and robustness
Handling mux churn. One of the major benefits of soft-
ware load balancing is the ability to add capacity when
demand increases. This means setting up a new mux
and sending a BGP announcement for the VIPs it serves.
As soon as the announcement propagates to the border
routers, they start hashing traffic to the new mux.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 133

��

���

���

���

���

����

����� ���� ���� �� �� �� ���

��������

�
�
�

�
��
�

�����������������

�������
�������

�������
��������

Figure 16: Mux latency is less than
0.3ms: when not fully loaded.

��

��

���

���

���

���

���

���

�� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�

��
�

��
�
�

�
�
��
�
�
�
�
�
��
��
�
�
�
�

��������

Figure 17: Beamer handles failures
and mux churn smoothly.

��

��

��

��

��

���

���

�� ��� ���� ���� ���� ���� ����

������������

�
�
��
�
�
�
�
�
��
��
�
�
�
�

��������

Figure 18: Beamer spreads traffic
evenly across all active servers.

To emulate a real datacenter setup, we use an IBM 8264
RackSwitch as the border router and setup five clients and
six servers, each with one 10Gbps interface. Clients open
several iperf connections each to the VIP of the server,
and we plot their added throughput in Figure 17. We be-
gin the experiment with a P4 switch running alone and
load balancing all traffic; the performance is terrible, just
55Mbps. Next, we add three software muxes a minute
apart: the graph shows the few seconds it takes the muxes
to setup a BGP session, announce the VIP, and to the
router to install the route and start using it. Traffic scales
organically as we add more muxes. Connections change
muxes, yet they are not affected since our muxes are state-
less. The P4 and Click muxes behave the same way, and
are interchangeable.

We start simulating mux failures: first we kill a Click
mux at 240s by bringing its network interface down, and
throughput drops to 20Gbps. Next we kill the P4 mux:
total throughput suffers until BGP discovers the failure
and reconverges, then it recovers to 20Gbps. During the
experiment not a single iperf connection is broken.

We conclude that Beamer handles mux churn smoothly,
and that it is trivial to create a heterogeneous deployment
with both software and hardware muxes.
Handling server churn. We want to see how Beamer bal-
ances server traffic when servers are added or removed.
We generate 64B packets from a single machine and send
them directly to one mux (using two cores). The ex-
periments start with a single server receiving all traffic,
and then we keep adding servers every 30 seconds using
the controller’s command-line interface. The controller
moves buckets between servers to evenly balance the traf-
fic across all servers by updating ZooKeeper data, as de-
tailed in §4.5. When all the changes are ready, the con-
troller “commits” the change by updating the current gen-
eration node, and the mux updates its state. Figure 18
shows the throughput received by each server as a func-
tion of time: changes are almost instantaneous, and traffic
is evenly balanced across all active servers.
Connection affinity. We now use TCP clients to estimate
the ability of Beamer and Stateful to provide connection

affinity in different scenarios. In all experiments, we have
7 clients each open 100 persistent HTTP connections and
continuously downloading 1MB files over each of them,
in a loop, from servers in a Beamer cluster.

In our first experiment, we begin with two muxes and
8 servers and then perform a scale-down event: we first
remove some servers, wait for 30s and then remove one
mux. The number of broken connections is shown below.

DIPs removed 0 1 2 4
Stateful 0 54± 7 103± 14 214± 48
Beamer 0 0 0 0

As expected Stateful behaves poorly: it drops 7%-30% of
the active connections when 1 to 4 servers are removed.
After the DIP is removed, traffic is still sent correctly be-
cause there is state in both muxes. However, when one
mux is removed, its state (for half of the connections hit-
ting the removed DIP) is lost, and these will be hashed by
the remaining mux to the other servers, which will reply
with RST messages. In contrast, Beamer does not drop
any connection because daisy chaining keeps forwarding
packets to the removed DIP.
SYN flood. In our second experiment we use a similar
setup, but only remove servers, keeping the mux set con-
stant. In the absence of a SYN flood attack both State-
ful and Beamer provide perfect connection affinity, as ex-
pected. We then started a SYN flood attack (1Mpps) run-
ning in parallel to our 7 clients; we show the number of
dropped connections below:

DIPs removed 0 1 2 4
Stateful 0 87± 2 184± 8 351± 21
Beamer 0 0 0 0

Stateful performs rather poorly in this SYN flood attack,
because the state its muxes keep for its real clients is
flushed out by the aggressive attack. In contrast, Beamer’s
performance is not affected. Finally, we measured the ef-
fect of the SYN flood on the servers themselves, finding
there was little impact: the average server utilization in-
creased by 1% during the attack, and the flow completion
times increased from 1ms to 1.3ms in the median and from
1.4ms to 1.7ms at the 99%.

134 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

����

��

���

����

�����

�� ���� ���� ���� ���� ����

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

��
�
�

��
�
�

��
�
�

�
�
�

�
��
�

��������

������ ���

Figure 19: Flow completion times for
MPTCP clients using Beamer

����

��

���

����

�� ���� ���� ���� ���� ����

�
�

�
�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�
��

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��������

������ ���

Figure 20: Flow completion times for
MPTCP clients using Stateful.

��

���

����

����

����

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
�
��

�
�
�
�
��
��
�

��������

Figure 21: Outgoing traffic per server
with Beamer

6.3 Load balancing HTTP over MPTCP
In our next experiment we emulate over-the-air mo-

bile app updates. We setup four clients repeatedly down-
loading the same 100MB file using the siege tool from
the VIP handled by Beamer. Each client opens 10 par-
allel downloads, and runs in a closed loop: as soon as
one transfer finishes, it starts a new one. The clients
run MPTCP and have two virtual interfaces on the same
10Gbps physical interface.

We start the experiment with four muxes and one server
processing all the traffic. After every minute a new server
is added until we reach six servers. Next, we start killing
one mux every minute until there is a single mux running.

We plot the median and 99th percentile of client-
measured flow completion as a function of time in fig-
ure 19. The graph shows that adding servers drastically
reduces both the median flow completion time and espe-
cially the tail. The median drops from 10s when a single
server is used, to 1s when six servers are used. The 99th

percentile also drops from 50-100s with one server to a
couple of seconds with six servers. Notice the ten second
spikes in 99% FCT when muxes are killed: these are sub-
flows that were handled by the failed mux, and they stall
the entire MPTCP connection until they timeout and their
packets are reinjected on good subflows.

Figure 21 shows the cumulative number of packets
sent by each server and we can clearly see how initially
only one server is active, another quickly follows and
then more servers join one minute apart. The graph also
shows that Beamer does a good job spreading connections
equally across all active servers.

Finally, we wanted to check that daisy chaining works
as described. We plot the number of daisy chained packets
by each server in Figure 22. Note the different unit on the
y axis (thousands of packets instead of millions): daisy
chaining not only works, but it is also quite cheap. Daisy
chaining forwards a total of 30 thousand packets, most of
which are ACKs (total size is around 200KB).

Siege did not report any failed connections, but this
could be masked by MPTCP’s robustness to failures. We
looked at individual subflow statistics and found that no

subflows were reset; we did see numerous subflow time-
outs triggered by mux failures, however these are well
masked by MPTCP: when one subflow crossed a failed
mux, its packets get resent on other working subflows.

We ran the same experiment with Stateful to test its be-
haviour when handling MPTCP connections and under
mux failures. Packet traces show that, overall, less than
20% of MPTCP secondary subflows are created; this is
expected, since Stateful is oblivious to MPTCP and ran-
domly sends subflows to servers. With Stateful, MPTCP
connections have a single subflow most times and behave
like regular TCP. Without failures, FCTs should be similar
to MPTCP/Beamer since the total achievable network ca-
pacity is the same. The FCT results in Figure 20 confirm
our expectations: median FCTs are similar, however the
99th percentile is much higher. This is because MPTCP
does a much better job of pooling the available network
capacity than TCP does, thus reducing the outlier FCTs.
Also note the huge spikes when DIPs are added or muxes
are removed: this is Siege timing out on a connection after
many retransmission attempts.

6.4 Controller scalability
Stable hashing works great as long as the centralized

allocation of buckets to servers scales to large deploy-
ments. In this section we evaluate whether our controller
can scale to many muxes and by extension to a large data-
center. To stress the controller we generate the maximum
number of DIPs for a single VIP supported by our solu-
tion (64K), and create 100 buckets for each DIP, resulting
in a total of 6.4 million buckets. We deploy our system in
Amazon EC2 as follows: ZooKeeper runs on three VMs,
one VM runs our controller, and one hundred VMs run
our mux. According to our benchmarks in §6.1, one hun-
dred muxes should easily be able to load balance traffic
for 64K typical HTTP servers.

First, we want to see how long it takes to perform con-
trol plane operations on the maximum load balancer in-
stance we can support. We have stress-tested the con-
troller and run each operation multiple times with differ-
ent numbers of pre-existing DIPs, randomized bucket-to-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 135

��
��
��
��
��
��
��
��
��
��

���

�� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
�
��
�
�

�
�
�
��

�
��
�

��������

Figure 22: Packets daisy chained per
server.

DIPs Add (sec) Rm (sec)
1 0.63 0.58
10 0.57 0.57
100 0.69 0.67
640 0.87 1.58
6400 6.9 2.25
16000 8.1 3.2
32000 9.8 9.7

Figure 23: Duration of con-
trol plane ops on the largest
Beamer instance

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096 8192

C
D

F
 (

%
)

Latency (ms)

6.4K DIPs 16K DIPs 32K DIPs

Figure 24: Time to propagate a controller
update from ZooKeeper to all the muxes.

DIP assignments 2, and recorded the maximum comple-
tion time. The results are provided in table 23, showing
that the Beamer controller performs large config changes
in a few seconds.

Next, we measured the time it takes since the controller
commits a new generation until all muxes download and
start using it. Fig. 24 shows a CDF of the propaga-
tion time as measured at the muxes for three large config
changes (adding 6.4K, 16K or 32K servers); the results
show that even for 32K servers, all muxes use the new
dataplane rules in a few seconds. Smaller updates are in-
stalled in tens to hundreds of milliseconds.

Finally, we note that all operations generated negligible
amounts of control traffic; the largest ones (the addition
or removal of 32K DIPs) incurred less than 1GB of traffic
(10MB per mux).

7 Related work
Almost all existing solutions for datacenter load bal-

ancing keep per-flow state at muxes. Software solutions
include Ananta [26], Maglev[9], IPVS[31] and GLB[15]
while hardware ones include Duet [13] and SilkRoad
[22]. Resilient hashing [6] takes a similar approach on
switches and routers to avoid the pitfalls of ECMP. To al-
low scale in/out without affecting client traffic, stateful
designs could use flow state migration, which is very ex-
pensive: OpenNF [14] or Split Merge [28] offer migration
guarantees and strong consistency but at a steep perfor-
mance cost (Kpps speeds).

A parallel effort to ours is Faild[3], a commercial state-
less load balancer that works within a single L2 domain
using ARP rewriting; this reduces its applicability to small
clusters. Kablan et al.[17] propose to store per-flow state
in a distributed key-value storage solution such as RAM-
Cloud [25] instead of keeping it in memory; however its
performance is limited to 4.6Mpps per box, eight times
slower than Beamer.

2Updates to the dataplane are stored in a compressed format and hav-
ing randomized bucket assignments yields near-worst-case compression
ratios.

Load balancing within a single OpenFlow switch has
been examined in [24, 32]. Orthogonal to existing load
balancing solutions, Rubik[12] uses locality to reduce
bandwidth overhead of load balancing while Niagara [18]
offers an SDN-based solution to improve network-wide
traffic splitting using few OpenFlow rules.

Paasch et. al [7] discuss the problems posed by MPTCP
traffic to datacenter load balancers. Their analysis focuses
on ensuring SYN(MPC) and SYN(JOIN) packets reach
the same server, and it assumes muxes keep per flow state
after the initial decision has been made. Duchene et. al
[10] propose to load balance secondary MPTCP subflows
by using IPv6 addresses; Beamer could easily implement
this solution if both the client and the datacenter have IPv6
enabled and a working IPv6 path between them. Finally,
Olteanu et al. propose [23] to load balance MPTCP traffic
by encoding the server identifier in the TCP timestamp
option; unfortunately this solution does not work if the
client does not support or enable timestamps, and supports
a smaller number of servers (8192) per VIP.

8 Conclusions
We have presented Beamer, the first stateless

datacenter-scale load balancer solution that can handle
both TCP and Multipath TCP traffic. Beamer muxes
treat TCP and MPTCP traffic uniformly, allowing them
to reach speeds of 6Mpps per core and 33Mpps per box,
twice faster than the fastest existing TCP load balancer,
Maglev [9]. A Beamer mux can saturate four 10Gbps
NICs with real HTTP uplink traffic using just 7 cores.

Daisy chaining enables Beamer to provide connection
affinity despite DIP and mux failure, removal and addi-
tion. In contrast to stateful designs, Beamer handles SYN
flood attacks seamlessly.

Beamer is available as open-source software at
https://github.com/Beamer-LB.

Acknowledgements
This work was partly funded by the SSICLOPS and

SUPERFLUIDITY H2020 projects.

136 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Beamer-LB

References
[1] zlib. https://www.zlib.net/.

[2] P4 to NetFPGA project. https://github.
com/NetFPGA/P4-NetFPGA-public/wiki,
February 2018.

[3] J. T. Araujo, L. Saino, L. Buytenhek, and R. Landa.
Balancing on the edge: Transport affinity without
network state. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
18), Renton, WA, 2018. USENIX Association.

[4] T. Barbette, C. Soldani, and L. Mathy. Fast
userspace packet processing. In Proceedings of
the Eleventh ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems,
ANCS ’15, pages 5–16, Washington, DC, USA,
2015. IEEE Computer Society.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, and D. Walker. P4: Program-
ming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., 44(3):87–95, Jul
2014.

[6] Brad Matthews and Puneet Agarwal. Resilient
Hashing for Load Balancing of Traffic Flows. US
Patent Application: US20130003549 A1, Jan 2013.

[7] Christoph Paasch, Christoph and Greenway,
G. and Ford, Alan. Multipath TCP be-
hind Layer-4 loadbalancers (internet draft).
https://tools.ietf.org/html/draft-paasch-mptcp-
loadbalancer-00, Sep 2015.

[8] W. M. Eddy. Defenses Against TCP SYN Flooding
Attacks. The Internet Protocol Journal, 9(4), Dec
2006.

[9] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev:
A fast and reliable software network load balancer.
In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 523–
535, Santa Clara, CA, Mar 2016. USENIX Associa-
tion.

[10] Fabien Duchene and Vladimir Olteanu and
Olivier Bonaventure and Costin Raiciu and
Alan Ford. Multipath TCP Load Balancing.
https://tools.ietf.org/html/draft-duchene-mptcp-
load-balancing-01, July 2017.

[11] Ford, Alan and Raiciu, Costin and Handley, Mark
and Bonaventure, Olivier. RFC6824: TCP Exten-
sions for Multipath Operation with Multiple Ad-
dresses. https://tools.ietf.org/html/
rfc6824.

[12] R. Gandhi, Y. C. Hu, C.-K. Koh, H. Liu, and
M. Zhang. Rubik: Unlocking the power of locality
and end-point flexibility in cloud scale load balanc-
ing. In Usenix Annual Technical Conference, 2015.

[13] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud scale load bal-
ancing with hardware and software. In SIGCOMM,
2014.

[14] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella.
OpenNF: Enabling Innovation in Network Function
Control. In SIGCOMM, 2014.

[15] GitHub Engineering. Introducing the GitHub Load
Balancer. https://githubengineering.
com/introducing-glb/, September 2016.

[16] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference,
USENIXATC’10, pages 11–11, Berkeley, CA, USA,
2010. USENIX Association.

[17] M. Kablan, A. Alsudais, E. Keller, and F. Le. State-
less network functions: Breaking the tight coupling
of state and processing. In 14th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 97–112, Boston, MA, 2017.
USENIX Association.

[18] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and
J. Rexford. Efficient traffic splitting on commodity
switches. In CONEXT, 2015.

[19] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In Proceed-
ings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 654–663,
New York, NY, USA, 1997. ACM.

[20] I. Marinos, R. N. Watson, and M. Handley. Network
stack specialization for performance. In Proceedings
of the 2014 ACM Conference on SIGCOMM, SIG-
COMM ’14, pages 175–186, New York, NY, USA,
2014. ACM.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 137

https://www.zlib.net/
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://tools.ietf.org/html/rfc6824
https://tools.ietf.org/html/rfc6824
https://githubengineering.com/introducing-glb/
https://githubengineering.com/introducing-glb/

[21] MAWI Working Group Traffic Archive. http://
mawi.wide.ad.jp/mawi/.

[22] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu.
Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching asics. In Proceedings of
the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages
15–28, New York, NY, USA, 2017. ACM.

[23] V. Olteanu and C. Raiciu. Datacenter scale load bal-
ancing for multipath transport. In Proceedings of
the 2016 Workshop on Hot Topics in Middleboxes
and Network Function Virtualization, HotMIddle-
box ’16, pages 20–25, New York, NY, USA, 2016.
ACM.

[24] V. A. Olteanu, F. Huici, and C. Raiciu. Lost in net-
work address translation: Lessons from scaling the
world’s simplest middlebox. In Proceedings of the
2015 ACM SIGCOMM Workshop on Hot Topics in
Middleboxes and Network Function Virtualization,
HotMiddlebox ’15, pages 19–24, New York, NY,
USA, 2015. ACM.

[25] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ouster-
hout, and M. Rosenblum. Fast crash recovery in
ramcloud. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP
’11, pages 29–41, New York, NY, USA, 2011. ACM.

[26] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Green-
berg, D. A. Maltz, R. Kern, H. Kumar, M. Zikos,
H. Wu, C. Kim, and N. Karri. Ananta: Cloud scale
load balancing. In SIGCOMM, 2013.

[27] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
hard can it be? designing and implementing a de-
ployable multipath TCP. In NSDI, 2012.

[28] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In NSDI, 2013.

[29] L. Rizzo. netmap: A novel framework for fast packet
i/o. In Proc. USENIX Annual Technical Conference,
2012.

[30] D. G. Thaler and C. V. Ravishankar. Using name-
based mappings to increase hit rates. IEEE/ACM
Trans. Netw., 6(1):1–14, Feb 1998.

[31] The Linux Foundation. The IP Virtual
Server Netfilter module for kernel 2.6.

http : / / www . linuxvirtualserver .
org/software/ipvs.html, February 2011.

[32] R. Wang, D. Butnariu, and J. Rexford. Openflow-
based server load balancing gone wild. In HotICE,
2011.

Appendix
A1. Defragmentation

There is a three-way trade-off between load balancing,
fragmentation and churn. Beamer prioritizes load balanc-
ing, ensuring near-perfect balancing at all times. This
means that we can either end up with fragmented bucket
ranges assigned to servers (which will increase dataplane
matching costs, especially for hardware dataplanes such
as P4) or move buckets to reduce fragmentation but create
daisy chaining traffic in the meantime.

Defragmentation is therefore necessary to ensure
servers get a contiguous range of buckets, as this will re-
duce the number of rules needed in the mux dataplane.
Beamer implements an algorithm that reduces fragmen-
tation progressively, while keeping daisy-chaining costs
small. The algorithm has two parameters: a target frag-
mentation rate (fr ≥ 1, target average number of rules
per DIP), and bmax, the maximum number of buckets
that can be moved per server, per iteration.

The defragmentation algorithm has two phases: it first
selects a target mapping and then it iteratively moves to-
wards this target. The target mapping is computed when-
ever the DIP set changes, and this triggers a second im-
plementation phase that includes a number of iterations
where at most bmax buckets per server are moved in each
iteration; iterations are spread in time (one iteration every
4 minutes). The second phase stops whenever the target
defragmentation rate is reached. While heuristic, the al-
gorithm performs really well in practice.

The target mapping is computed greedily: starting at
bucket offset 0, the controller selects the server which
can take over a contiguous range while causing the least
amount of churn. After every step, the offset is then incre-
mented past the newly-allocated range.

start = 0
while (start < #buckets) {
select DIP A s.t. churn of assigning A

at position start is minimized.
target(A) = {start, start+#buckets(A)}
start += #buckets(A)

}

During each iteration of the second stage (pseudocode
below), the controller performs a subset of the realloca-
tions prescribed by the target mapping. It performs no

138 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
http://www.linuxvirtualserver.org/software/ipvs.html
http://www.linuxvirtualserver.org/software/ipvs.html

Hashing algo. Imbalance Min. data
plane rules

Server churn
1% 5%

Consistent[19] 2.27 9K 0 0
Maglev[9] 1.01 65K 2.3% 3.3%
Stable Hashing 1.01 1K 0 0

Table 1: Hashing comparison, N=1000 and B=65537

more than bmax reallocations per DIP, while keeping the
number of buckets constant for each DIP. (I.e. the number
of buckets allocated to each DIP is the same as the number
of buckets allocated away from it.)

let G = (V, E) be a directed multigraph, where
vertices are DIPs and edges are bucket
reassignments

for each DIP in V
DIP.budget = bmax

while (G.has_cycles) {
select cycle C
for each realloc in C.edges {

perform(realloc)
E.remove(realloc)

}
for each DIP in C.vertices {

DIP.budget -= 1
if (DIP.budget == 0)

V.remove(DIP)
}

}

A.2 Stable hashing evaluation
Table 1 shows the performance of Stable hashing

against our implementations of the classical consistent
hashing algorithm [19] and Maglev [9]. We used 1000
servers and 65537 buckets (the params are from the Ma-
glev paper, §5.3, for fair comparison). We first measured
the imbalance—the ratio between the maximum and av-
erage load—finding that Maglev and Stable have near-
perfect load balancing, while Consistent hashing places
twice more load on one unlucky server.

We next computed the minimum number of range rules
we need to use in a hardware data plane to perform match-
ing: algorithms that assign consecutive buckets to the
same server will utilize fewer rules and are better. This
is the case for Stable, where we only need one rule per
server; Maglev, in comparison, needs as many rules as
buckets, two orders of magnitude more than Stable. Con-
sistent falls somewhere in the middle. Finally, we looked
at the number of “innocent” connections that are disrupted
when we remove a number of nodes; both Consistent and
Stable have no collateral damage, while Maglev breaks
2.3%-3.3% of ongoing connections.

A.3 Defragmentation evaluation
Stable hashing can enable very cheap hardware imple-

mentation with one rule per server, but this is only the

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

F
ra

g
m

e
n

ta
ti
o

n

Total buckets migrated (million)

Figure 25: Defragmentating bucket-to-DIP assignments
to reduce the number of data plane rules.

case when all the buckets assigned to one DIP are contigu-
ous. As servers come and go, even a perfect distribution
can end up fragmenting the buckets, with each server in
charge of many small ranges; this would require propor-
tionally more rules to implement in hardware.

To avoid this effect, especially for hardware deploy-
ments, we can use the defragmentation described above:
when the average number of rules per server increases be-
yond a given threshold, the defragmentation algorithm is
invoked, reassigning buckets to remove fragmentation as
described in §4.5.

We show a run of our defragmentation algorithm in Fig-
ure 25 starting from a worst case scenario where all buck-
ets assigned to a DIP are scattered, and each DIP needs
100 rules to match its buckets. The figure shows how
the fragmentation (number of rules needed per DIP) de-
creases as the algorithm migrates more buckets to reduce
fragmentation.

The cost of defragmentation is daisy chaining, which is
proportional to the number of buckets “moved” between
servers. In the worst case when we move all buckets,
Beamer will duplicate the incoming traffic for a brief pe-
riod of time. To avoid creating congestion, the defragmen-
tation algorithm moves slowly, migrating a few buckets at
a time and then waiting for daisy chaining to end; this
ensures that overall load increases only marginally.

We also note that defragmentation is only needed infre-
quently. We start with a fresh cluster containing 10K DIPs
(1M buckets) and perform a number of control plane op-
erations and show the resulting fragmentation in the table
below. Even after large control plane operations, Frag-
mentation only increases slightly, and in some cases (like
doubling or halving the cluster) it stays perfect. So in nor-
mal operation, we expect a cluster to slowly become more
fragmented, reducing the need for defragmentation.

servers Added Removed
0.1% 1.01 1.01
10% 2 2.1
33% 1.5 2
50% 1.33 1
100% 1 N/A

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 139

Larry: Practical Network Reconfigurability in the Data Center

Andromachi Chatzieleftheriou, Sergey Legtchenko, Hugh Williams, Antony Rowstron
Microsoft Research

Abstract

Modern data center (DC) applications require high cross-
rack network bandwidth and ultra-low, predictable end-
to-end latency. It is hard to meet these requirements in
traditional DC networks where the bandwidth between
a Top-of-Rack (ToR) switch and the rest of the DC is
typically oversubscribed.

Larry is a network design that allows racks to dynam-
ically adapt their bandwidth to the aggregation switches
as a function of the traffic demand. Larry reconfigures
the network topology to enable racks with high demand
to use underutilized uplinks from their neighbors. Oper-
ating at the physical layer, Larry has a predictably low
traffic forwarding overhead that is adapted to latency
sensitive applications. Larry is effective even when de-
ployed on a small set of racks (e.g., 4) because rack traf-
fic demand is not correlated in many DC workloads. It
can be deployed incrementally and transparently co-exist
with existing non-reconfigurable racks. Our prototype
uses a 40 Gbps electrical circuit switch we have built,
with a simply local control plane. Using multiple work-
loads, we show that Larry improves tail latency by to
2.3x for the same network cost.

1 Introduction

There is a rapid adoption of high bandwidth networking
in the DC. It is now common to deploy 40 Gbps to the
server [59], and 50-100 Gbps is becoming popular [1].
An increasing number of applications are capable of con-
suming that bandwidth [22, 24, 34, 36, 42, 51] and re-
quire low and predictable latency [24, 41, 59]. Emerging
techniques such as disaggregation of DRAM and non-
volatile memory are also sensitive to latency and packet
queuing [26]. This is a challenge because a large frac-
tion of the traffic for these applications is not rack lo-
cal [44,59], and rack uplink bandwidth is typically over-
subscribed [28,47] which leads to rack-level congestion.

This paper presents Larry, a network design that ad-
dresses rack uplink congestion by dynamically adapting
the aggregate uplink bandwidth of the rack to its traf-
fic demand. For that, racks with congested uplinks use
spare uplink bandwidth from physically adjacent racks.
Larry targets workloads in which rack traffic is bursty
and loosely correlated across racks, and we observe these
properties in traces from our DCs.

Using local resources for traffic offloading has been
first proposed by GRIN [18]. However, GRIN offloads
traffic through multiple hops at layers 2 or 3. This typi-
cally adds 200-500 ns per hop even in cut-through mode
and without queuing [6, 26, 60]. For some applications
that require round trip times of a few microseconds [24,
26], this could represent a non-negligible latency over-
head. In contrast, Larry is reconfigured at the physical
layer, and only adds a predictable end-to-end forwarding
overhead of a few nanoseconds. This local reconfigura-
bility differentiates Larry from prior work on fully recon-
figurable networks [23,25,27,29,30,39,40,43,50,54–56].
These systems typically redesign the entire DC network,
making them efficient, but hard to deploy in practice, es-
pecially in existing data centers.

Larry uses a custom electrical circuit switch and ex-
ploits unused ports on the ToRs. Larry is designed
for small-scale deployments of physically adjacent racks
(e.g., 4 to 6) called rack sets. In a rack set, the ports
used on each ToR to connect to the aggregation switches
are instead connected to the circuit switch. The cir-
cuit switch is then connected to the set of aggregation
switches that would have been connected to the ToRs.
Any non-cabled ToR ports are also connected to the cir-
cuit switch. This does not change the number of uplinks
to the aggregation switches, but creates a network re-
configurable at the physical layer and local to the rack
set. Once configured, traffic between ToRs and aggre-
gation switches is transparently forwarded by the circuit
switches at the physical layer. Within the rack set, a rack
with high traffic demand can hence forward its traffic

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 141

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F
o

f
w

o
rk

lo
ad

s

Normalized 99th percentile FCT

8 racks

4 racks

2 racks

Figure 1: Impact of local reconfigurability on tail FCT.

through underutilized uplinks on other racks. The prop-
erties of our design are the following:
Incremental Deployment. The smallest unit of deploy-
ment is the rack set. Therefore, if a cloud provider suffers
from congestion in a specific service (e.g., storage racks),
local reconfiguration can be deployed only on the racks
used for that service.
Transparency. Larry works with the DC network in
place: any existing global controllers see links failing
and being established, as reconfiguration occurs at the
physical layer. No reconfiguration-specific routing state
is needed outside the rack set and reconfiguration events
are only visible to ToR and aggregation switches. We use
off-the-shelf ToR and aggregation switches, and no soft-
ware or hardware changes are required on the servers to
use the extra uplink bandwidth.
Cost efficiency. All the racks in the rack set are physi-
cally close to each other, which allows, even at 100 Gbps,
to use cheaper passive cables for all additional connectiv-
ity. No extra connectivity is required in the rest of the DC
network. Further, our circuit switch design uses simple,
commercially available crosspoint ASICs [7].
Low latency. The crosspoint ASIC forwards the incom-
ing signal from the high-speed serial data link without
processing any packets, hence the forwarding latency of
the circuit switch is within a few nanoseconds [7].

Our evaluation shows that uplink reconfiguration can
be done with low overhead and augmenting a traditional
oversubscribed topology with Larry increases the perfor-
mance per dollar by up to 2.3x.

The rest of the paper is organized as follows. Sec-
tion 2 describes the benefits and challenges of local re-
configurability. Section 3 details the design of Larry that
implements local reconfigurability at the physical layer.
Section 4 discusses the practicality of our approach. Sec-
tion 5 evaluates our design. Finally, Section 6 presents
the related work and Section 7 concludes.

2 Local Reconfigurability

We now describe the benefits and challenges of local re-
configurability.

2.1 Is Local Reconfigurability Useful?
Local reconfigurability reduces rack uplink congestion
by using underutilized uplink bandwidth from a small set
of adjacent racks. We now show that some key DC work-
loads do exhibit low traffic correlation across racks and
can benefit from local reconfigurability. For our analysis,
we assume that any uplink can be used by any rack in a
rack set composed of m physically adjacent racks. We
also assume that the core network is fully provisioned.
These optimistic assumptions allow to estimate an upper
bound on the performance of local reconfigurability and
will be refined in latter sections.

We use two DC traces and show that they exhibit low
rack traffic correlation. The first trace contains all files
accessed by a large-scale cloud service over a week in
mid-2016. The traces do not differentiate between local
accesses to disk and remote accesses over the network.
To measure the impact of data transfers on the network,
we simulate a small local write-back cache at the com-
pute node to which all accesses are made. Files that have
not been accessed for more than a day are de-staged to
the DC storage tier over the network. On a cache miss,
a file is read from the storage tier over the network. We
group the network transfers by rack, then form groups of
eight randomly selected racks1. For every group of racks,
we replay all the network transfers between the storage
tier and the cache in a flow-based simulator that com-
putes the flow completion times (FCT) assuming max-
min fairness bandwidth allocation and one flow per file
access.

In the simulated topology, each rack is provisioned
with u uplinks, such that a rack set with m racks has u×m
uplinks. In the rack set, at any point in time, each rack
gets a subset of the uplinks that is proportional to its de-
mand. We compute the tail FCT for each sub-trace for
u = 4 and m = 1,2,4,8 and use m = 1 (all racks are in-
dependent) as a baseline. Figure 1 shows the CDF of the
99th percentile FCT for all the simulated sub-traces for
different rack set sizes, normalized to the baseline. We
can see that tail FCT is improved for all rack set sizes,
showing that local reconfigurability reduces congestion.
The results also show that for this workload, there is only
a marginal benefit of having rack sets larger than 4 racks.

The second trace was obtained from the authors
of [27], and covers four clusters from a large cloud
provider. As described in [27], the clusters have between
100 and 2,500 racks and run a mix of workloads. The
results qualitatively show a similar trend: when operat-
ing at a scale of 4 to 8 racks, local reconfigurability can
reduce most of the uplink bandwidth congestion during
peak demand.

Notably, in the first trace, demand is not correlated de-

1The trace lacks rack placement information.

142 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

congestion

R 1 R 2 R 3 R 4
Idle Idle

R1 and R2 demand 4 uplinks each.

ToR ToR ToR ToR

(a) Congestion in ToR-to-ToR topology.

Rack 1

Server…

Rack 2

Server…

NIC interface 1

NIC interface 2

ToRToR

(b) Cross-rack GRIN.

Rack 1

Server…

Rack 2

Server

ToR 2ToR 1
…

…

#server cables to ToR 1, same to ToR2

(c) Servers connected to neighboring ToR.

Figure 2: Challenges of implementing local reconfigurability at layers 2 or 3.

spite the fact that all racks host the same workload (stor-
age). This suggests that rack traffic decorrelation is a
property of the workload. We hence expect the analysis
to hold if racks were chosen according to their physical
proximity. Other studies of workloads [28, 40, 44] show
the skew at rack-level. In the public cloud, services and
applications are used by a large number of clients with
decorrelated demand, and services often use several gen-
erations of rack hardware. We expect that local reconfig-
urability can be beneficial to a number of key workloads
in that context.

2.2 Design Challenges
Several network designs can enable local reconfigurabil-
ity. This section discusses the challenges of implement-
ing local reconfigurability at layer 2, thereby motivating
the use of layer 1 circuit switching. The number of ag-
gregations switch ports connected to the core network
per rack is the same for all described designs.

Local reconfigurability can be implemented at layer 2
by enabling non-shortest path routing between ToR and
aggregation switches. This can be done by either adding
extra packet switches between ToRs and the aggregation
layer, or by interconnecting spare ToR ports in a multi-
hop topology. Figure 2(a) shows one simple example
of the latter, with four ToRs interconnected into a ring
topology2. A Software-Defined Network (SDN) con-
troller monitors the uplink bandwidth usage and balances
traffic in the rack set. However, this introduces extra for-
warding latency as store-and-forward packet switching
adds approximately 1 µs per hop. Cut-through packet
forwarding reduces the latency down to 200 to 500 ns
per hop [6, 26, 60] but is not supported by all switches.
Gao et al [26] describe emergent applications with a 3µs
round trip latency budget, for which extra packet for-
warding could increase round trip latency by 30% or
more. In addition, for ToR-to-ToR topologies, there will
be worst case scenarios with fate sharing of the ToR-to-
ToR links leading to congestion. In Figure 2(a), racks
have two uplinks, but each of 1 and 2 demands 4 up-

2Alternative topologies are also possible.

links. These racks hence forward half of their demand
to the idle racks 3 and 4. This causes congestion on the
ToR-to-ToR links such that 1 and 2 cannot use all the
available uplink bandwidth. Finally, this increases the
unpredictability of the network, as the latency of a flow
depends on the uplink through which it is forwarded, and
its throughput is impacted by flows from other racks on
the ToR-to-ToR links. In the control plane, this requires
custom routing, fine-grain bandwidth management and
consistent updates to sets of SDN-enabled switches. This
increases the probability of software bugs in the con-
troller [46] and reconfiguration latency [31].

GRIN [18] implements local reconfigurability within
a rack by interconnecting spare ports on servers’ NICs
and allowing a busy server to forward traffic through idle
servers in the rack. This approach can be extended to en-
able local reconfigurability across racks by interconnect-
ing servers on neighboring racks as shown in Figure 2(b).
In addition to the extra hop latency, the flexibility is lim-
ited by the number of spare ports per NIC. At 40 Gbps
per port and beyond, NICs with more than two ports (or
multiple NICs per server) are not common, which limits
the approach to pairs of servers. Packet forwarding and
traffic prioritization between NIC ports need to be done
in hardware, which is not supported by all NICs.

Finally, avoiding extra latency is possible with extra
cables and ports at ToR or aggregation switches. For ex-
ample, spare NIC ports on the servers can be connected
to neighboring ToRs, as proposed by Liu et al [40] (see
Figure 2(c)). However, in that case, the number of ports
required for server connectivity increases by at least a
factor of p (if p-port NICs are used) and it is unlikely that
ToRs have enough spare ports. Alternatively, all spare
ports on the ToRs can be connected directly to aggrega-
tion switches, which either requires additional aggrega-
tion switches and extra optical cables, or increased over-
subscription at the aggregation layer.

3 Overview of Larry

We enable low, predictable forwarding latency by en-
suring that any extra forwarding is done at the physical

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 143

…Aggregation Switch 1 Aggregation Switch n

ToR 2

Circuit Switch 1 Circuit Switch 2

ToR m

L

ToR 1

Circuit Switch m

m ToRs:

R

Server
Server

Server
Server

ToR ToR…
Circuit switch

Core Switch

Aggregation Switch Aggregation Switch

Core Switch…
…

…

…
D

S

Rack Set

Figure 3: Architecture overview.

layer. We achieve this by using a reconfigurable fabric at
the rack set that operates at the physical layer and allows
uplinks to be migrated from one rack to another. The fab-
ric enables racks to adapt their uplink bandwidth while
appearing as a collection of independent racks to the rest
of the DC. Uplinks are used to forward all the traffic from
the ToRs to the aggregation switches. When a ToR is ex-
periencing congestion to the core network, a local con-
troller can physically migrate uplinks to that ToR from a
non-congested ToR in the rack set. For example, the ToR
could have 8 uplinks, and then have 2 additional uplinks
migrated to it. The packet-switched network literally ob-
serves the two uplinks as disconnecting, and then con-
necting to the new ToR. We use Equal-Cost Multi-Path
(ECMP) routing on the ToRs and aggregation switches
to balance traffic across uplinks [33]. This is done at the
flow granularity, such that for each packet, the switches
hash the TCP five tuple to determine the port for the next
hop. Uplink migration is enabled by deploying a custom
low-cost low-radix electrical circuit switch in each rack
to complement the existing ToR packet switches.

3.1 The circuit switch

An electrical circuit switch forwards the electrical signal
received on one port through a circuit established to an-
other port on the switch. The switching cannot be done
per packet: once established, a circuit is expected to ex-
ist for hundreds of milliseconds or longer. The circuit
switch does no packet header inspection or buffering, as a
result the latency of transferring the signal from one port
to another is on the order of 2 ns [7]. This is low enough
to be transparent to the upper layers of the network. The
packet switches connected to the circuit switch are un-
aware of its presence, and perceive the link as being a
cable. A relatively simple hardware design using cross-
point ASICs [2, 7, 10] available today can have up to 48
100 Gbps ports. Section 5.1 describes the design of a
prototype switch we have built.
Cost. The hardware architecture of crosspoint ASICs
is typically simpler than merchant silicon. Crosspoint
ASICs have no packet buffers or packet processing logic.

In addition to that, because they do not need to pro-
cess packets, the incoming signal from the high-speed
serial data link does not need to be de-multiplexed to
lower speed lanes, as done in packet switches. Cross-
point ASICs hence do not require SerDes at the inputs
and outputs3 which are typically challenging to design
at high speed rates [15]. The switch core itself is hence
simpler and switching is done at the line rate. In equiv-
alent manufacturing processes, crosspoint ASICs should
take less die area and have a lower power consumption
for the same number of I/O lanes.

While the cost of the switch depends on the cost of its
ASIC, it is harder to do a fair comparison of packet- and
circuit- switches due to the cost of the other components,
the difference of production volume, etc. Section 5.2.3
includes a sensitivity analysis on cost.

3.2 The reconfigurable fabric

Figure 3 shows the topology of a reconfigurable fabric
that connects a set of racks to the aggregation switches.
Each rack contains a set of servers connected to an un-
modified ToR. ToRs and aggregation switches operate at
layer 2 and above. For simplicity, in this section we as-
sume that the reconfiguration is done by a single large
circuit switch, as depicted on the left-hand side of Fig-
ure 3. In practice using a single circuit switch has scal-
ing and deployment issues, and we distribute the circuit
switch using one small-radix circuit switch per rack. The
circuit switches are interconnected as shown on the right-
hand side of Figure 3. We will describe this in more de-
tail in the next section.

In a traditional network design, a ToR is connected
to all the servers in the rack and has several (e.g., 8)
uplinks connected to the aggregation switches. In our
design, only a fraction of these uplinks is directly con-
nected to the aggregation switches. We keep at least two
(full green lines in Figure 3) to ensure the rack is still
connected to the core if an aggregation switch fails while
no uplinks are available through the circuit switch. The

3A SerDes is a pair of functional blocks that convert data between
a fast serial link and slower parallel interfaces in each direction.

144 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

remaining ToR ports (e.g., 6), that would have been con-
nected to aggregation switches are instead connected to
the circuit switch. For each of these, a port on the circuit
switch is then connected to the aggregation switch. Fi-
nally, any unused ports on each ToR are also connected to
the circuit switch. Unused ports typically exist for topo-
logical reasons (e.g. due to oversubscription or mismatch
between the number of servers per rack and the switch
radix). The links from the circuit switch to the aggrega-
tion switches are active (optical) cables, and are shown as
gray double lines in Figure 3. All the links from the ToR
to the circuit switch use passive (copper) cables (dashed
blue in Figure 3). At current price points, this reduces
the cabling costs: at 100 Gbps, the transceivers account
for a large part of the cable cost. While transceiver costs
are currently dropping, passive cables are cheaper than
the active ones [45]. At 100 Gbps, passive cables are
available up to 5 m [16], which is long enough for rack
sets of at least 4 racks. As the data rate increases, the
loss of the passive cable is typically reduced by increas-
ing the thickness of the cable. We have successfully used
our 40 Gbps circuit switch prototype with long passive
cables to interconnect a row of 4 racks. An important as-
pect of our design is that all the extra connectivity is done
at lower cost using spare ToR ports, passive cables and
circuit switch ports. The number of aggregation switch
ports and active cables used in our design is the same as
in a traditional topology with the same level of oversub-
scription.

The circuit switch can connect any of its uplinks to the
aggregation switches to any ToR in the rack set. On the
circuit switch, the number of uplinks is lower than the
number of links to the ToRs. Therefore, a fraction of the
ToR ports will not be connected by a circuit to an ag-
gregation switch port at a given point in time. Such dis-
connected links have no PHY established and are seen as
disconnected ports by the ToR. These links are used by
the ToR to get extra bandwidth on demand. Consider a
scenario where each rack has on average 8 uplinks to the
aggregation switches, and this is not sufficient to satisfy
the demand on one rack. With the reconfigurable fab-
ric, any links that are underutilized on other racks in the
rack set can be migrated to the rack experiencing high de-
mand. The number of extra uplinks that can be migrated
is a function of demand across the racks, and is at most
the number of extra unused ports connected to the cir-
cuit switch from each ToR. More formally, if each rack
has on average U uplinks to the aggregation switches, a
ToR with S directly connected uplinks and L links to the
circuit switch will be able to have between S and S+L
uplinks (S ≤ U ≤ S+L). The uplink bandwidth alloca-
tion on each ToR is managed by a local controller that
monitors the set of ToRs in the rack set and reconfigures
the circuit switches through a separate control plane. We

will describe this in Section 3.4.
Physical layer reconfiguration enables low forwarding

latency on all uplinks regardless of their physical loca-
tion in the rack set. It also improves performance and
predictability: there is no fate sharing of uplinks by mul-
tiple racks in the rack set. So far, we considered for sim-
plicity that each rack set had a single large circuit switch.
However, this is unpractical as even at small scales (e.g.,
4 racks), the number of reconfigurable fabric ports ex-
ceeds the port count of the largest electrical circuit switch
capable of 100 Gbps. This makes the cost prohibitive.
Further, using a single circuit switch per rack set intro-
duces a single point of failure.

3.3 Distributing the circuit switch

To simplify deployment and management, we use one
circuit switch per rack. Each ToR needs to be attached
to all the circuit switches in the rack set. The links to
aggregation switches are distributed across the circuit
switches, ideally with (at least) one link to each aggre-
gation switch per circuit switch (see Figure 3 right hand
side). This reduces the flexibility compared to a sin-
gle large circuit switch: some pairs of ports cannot be
connected by a circuit. For example, a port attached to
one circuit switch cannot have a circuit to a port on an-
other circuit switch. Is this flexible enough to operate
efficiently?

To answer this, the key insight is that allowing any
pairs of ports to be connected provides more flexibility
than it is necessary for our design. The reconfigurable
fabric can be represented as a bipartite graph in which
vertices are ToR and aggregation switch ports and edges
are circuits established between them. As the traffic de-
mand changes, the circuit switch instantiates the bipartite
graph that is the best adapted to the demand. Intuitively,
since the graph is bipartite, there is no need to guarantee
that any two ports can be connected, but only that each
ToR has the required number of uplinks.

To show that the latter can always be achieved, we de-
note L the number of links from each ToR to the circuit
switches and R the number of links from each circuit
switch to the aggregation switches (see right hand side
of Figure 3). We have L ≥ m because each ToR is con-
nected to every circuit switch and there is one per rack.
In addition to that, as described in the previous section,
on each circuit switch the number of links to the ToRs
is equal or higher to the number of links to the aggrega-
tion switches, i.e. L ≥ R. Intuitively, these constraints
over L mean that: (i) an uplink on a circuit switch can
be connected to any ToR in the rack set and (ii) there are
enough ports to ToRs on each circuit switch to allow all
uplinks to be connected at the same time.

Therefore, for any uplink assignment in the rack set,

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 145

there exist a circuit configuration on the circuit switches
that will instantiate the assignment. Furthermore, this
configuration can be easily found. Intuitively, if each
circuit switch is associated with a color, this problem
can be expressed as an edge f-coloring of the bipartite
graph [57]. The f-coloring problem is NP-complete in
general, however f-coloring of bipartite graphs can be
done in polynomial time [57]. It means that our set of
circuit switches can instantiate any uplink assignment.
In the evaluation, we show that our fabric achieves the
performance of a single large circuit switch.

The number of ports required on each ToR and circuit
switch is shown in Figure 3 (right hand side). On a ToR,
our design needs D+S+L ports: D to servers in the rack,
S directly attached to aggregation switches and L to the
circuit switches. On a circuit switch, L+R ports are re-
quired: L to the ToRs in the rack set and R to aggregation
switches. For example, assuming both 32-port ToR and
circuit switches, D = 16 ports to servers and S = 2 static
uplinks per ToR, our design can scale to m= 14 racks per
rack set. In this case, the limiting factor is the number of
ports on the 32-port ToRs, because half of the ToR ports
are used for in-rack connectivity. In practice, assuming a
standard hot-/cold-aisle DC layout, we are limited to 4-6
racks by 5 m passive cables. For the rest of the paper, we
conservatively consider rack sets with 4 racks only.

3.4 Controller

Each rack set has an independent lightweight controller
that monitors the network load within the rack set, de-
cides when to migrate the uplinks and manages the re-
configuration. The controller and circuit switches com-
municate through a control plane. In the prototype,
we use a pre-existing management switch connected to
board management controllers in the rack [14]. The con-
troller can specify a new port mapping for each circuit
switch, and read out the current port mapping. To ease
deployment, the controller is designed as a soft-state pro-
cess. When started, it is provided with a rack set config-
uration that describes the racks, circuit switches, ToRs
and aggregation switches associated with the rack set. It
then reads the current mapping from each circuit switch.

A key property of this controller is that it is local: it
requires no global information from the core network. It
only relies on the information that comes from the ToRs
in the rack set, not even from the aggregation switches.
We assume that ToRs enable a mechanism to query per
port traffic statistics, e.g., OpenFlow [12]. This design
simplifies deployment and reduces the impact on any ex-
isting global SDN controllers used in the core data center
network. We assume that the core network is configured
such that any flow-granularity traffic management is or-
thogonal to our design, but we do need the core network

to use a mechanism, e.g., ECMP, to efficiently spread the
network load across all possible paths to a rack4.

When the controller migrates an uplink, there are two
approaches to handling this from the perspective of the
core network. The clean approach is to ensure no packet
loss, which can be done by signaling to the global con-
troller that the link will fail before it is remapped. The
global controller then removes all routes that currently
use the link. After that, the circuit switches are re-
configured and the PHYs are established over the new
circuits. We assume that the ToRs can report physical
layer changes to the rack set controller. When the new
link is established, it is reported to the global controller
that starts to route traffic over it. This approach can
be for example easily implemented using off-the-shelf
OpenFlow-enabled ToRs and aggregation switches [4,9].

The dirty approach is to allow rack set controllers to
operate independently without communicating with the
global controller. This relies on the existing core network
monitoring and management mechanisms to see the re-
configuration as a link failure followed by a link repair.
However, this can lead to a small number of packets be-
ing lost on the failed links. The reconfiguration typically
occurs when the link is not highly utilized. In the eval-
uation, we show that reconfiguration delays are low, and
links are reconfigured infrequently, suggesting that this
approach will not cause significant traffic disruption.

The goal of the controller is to migrate uplinks to de-
congest ToRs with high demand. We do not modify the
end-systems, and the controller has no global visibility,
so it has no understanding of potential future demand for
either egress or ingress traffic to the racks. We therefore
use a greedy algorithm that periodically classifies each
ToR in the rack set as being underutilized or potentially
congested. To do this, the controller uses per-port byte
count metrics obtained from the ToRs. This can be done
at a fine-granularity: our prototype shows that if the con-
troller is managing a rack set with 4 racks, polling all 4
ToRs every millisecond would generate only in the order
of 10 Mbps of traffic.

The algorithm takes uplinks from ToRs which are not
being utilized, and migrates them to ToRs that could
potentially use more bandwidth. The greedy algorithm
computes the aggregate uplink utilization for each ToR,
in terms of ingress and egress bandwidth. It then deter-
mines the number of links from the ToR to the aggrega-
tion switches required to support that demand, consider-
ing a link fully utilized at 85% of its nominal capacity. If
it determines that a ToR could support the workload with
one or more links fewer than it currently has, the ToR is
marked as underutilized. If all the links to the aggrega-
tion switches are fully utilized, it is marked as congested.

4For example by using groups of type select in OpenFlow 1.3 [12,
53].

146 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The controller knows the full topology of the rack set
and has a list of the circuit switches. For each circuit
switch, it greedily assigns an uplink from the most un-
derutilized ToR to the most overloaded ToR, records the
corresponding circuit configuration and re-computes the
link utilization. This happens until no more uplinks can
be reassigned, because either there are no more underuti-
lized uplinks, or all overloaded ToRs reached their max-
imum number of uplinks.

The controller is currently configured to be conserva-
tive to minimize the impact of reconfigurations on per-
formance. If all ToRs in the rack set are underutilized
no uplinks are migrated. If no ToRs are underutilized,
no uplinks are migrated even if other ToRs are congested
except if congestion is detected on a ToR that has less
than its fair share of the aggregation links attached to the
circuit switch. If so, we allocate the ToR the fair share of
links. This ensures that all ToRs get at least their base-
line uplink bandwidth under congestions across multiple
racks. The output of the algorithm is a circuit config-
uration for each circuit switch that instantiates the new
uplink assignment.

4 Discussion

This section discusses the feasibility of deploying Larry
in production DCs. We first focus on the features that
facilitate deployment:
Good failure resilience. A failure in one rack set does
not lead to failures in other rack sets or elsewhere in the
core network. The failure of the controller or any circuit
switch does not disconnect racks from the core network
as racks have direct connections to aggregation switches
and controller failures do not lead to inconsistent net-
work state. The rack set configuration state is stored in
persistent storage and the internal local state is soft. We
assume that a data center-wide service can monitor the
liveness of the controller, and restart it upon failure.
Transparency. The reconfiguration is scoped within a
rack set and is transparent to the end-systems. At the
physical layer, PHY loss and establishment events only
occur on the ToRs and aggregation switches. These
events are managed by a local rack set controller that
updates the mapping of links between the aggregation
switches and the rack set ToRs. Larry can operate with-
out modifications to the end-system operating system or
applications, or the firmware or hardware design of the
ToR or aggregation switches.
Support for incremental deployment. Larry does not
require any changes to the core network management
or operation. Existing cabling from the aggregation
switches to the racks can be used. Within a data cen-
ter, some sets of racks can have local reconfigurability
provisioned (e.g., storage racks), while other racks can

Figure 4: Prototype circuit switch.

be deployed without it. It is even possible, to retrospec-
tively fit this to deployed racks if needed.
Ease of deployment. State of the art reconfigurable
topologies can be hard to deploy and operate [48]. In
contrast, the sensitivity of Larry to environmental fac-
tors is negligible, and no specific operator experience is
required. Each rack needs a 1U slot for a production ver-
sion of the circuit switch.
Deployment Challenges. Larry requires extra cabling
across racks, which complicates rack provisioning. We
ensure that the additional cabling complexity is limited.
The cabling is scoped to a rack set and is symmetric:
all racks have the same number of extra cables to the
other racks in the rack set. Additional cables originate
on the ToRs and target the circuit switch. With a rack
set size of m it is feasible to have just m extra cables per
rack, where each cable carries multiple lanes similar to
original 100 Gbps cables that bonded ten 10 Gbps lanes.

The reconfigurability of the network in the rack set can
increase the link churn and create topological asymme-
try. Link churn and asymmetry exist in DCs today, and
prior work has already been done on efficient load bal-
ancing and neighbor discovery mechanisms to address
the associated challenges [20, 47]. Larry also increases
the routing state update rate on the switches. While
reconfiguration in the rack set is expected to be infre-
quent (see Section 5.2.4), this could induce overhead on
core network (T2) switches. Finally, the performance of
Larry can be improved by rethinking existing DC com-
ponents. In particular, the PHY negotiation mechanism
on the ToR and aggregation switches should be tuned to
minimize the link downtime.

5 Evaluation

Our evaluation aims to explore the benefits and over-
heads of deploying our design in a data center. We aim
to answer the following questions: (i) What are the over-
heads of reconfiguring the physical link? (ii) How does
Larry compare to static DC topologies with respect to
performance metrics and cost efficiency? and (iii) What
are the properties of the reconfigurable fabric?

For that, we first evaluate reconfiguration overheads

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 147

using a prototype circuit switch. Then, we explore the
properties of our design with data center workload traces
using discrete event simulation. Overall, our results show
that local reconfigurability improves the performance per
dollar of the network. The reconfiguration is infrequent,
mainly adapting the network to macro changes in the
workload and reconfiguration overheads are low.

5.1 Prototype

To demonstrate the viability of our design, we have built
a prototype circuit switch (see Figure 4). The circuit
switch has a 2U form factor with 40 front-facing QSFP+
ports. We use the M21605 asynchronous fully non-
blocking crosspoint switch ASIC from MACOM [7].
The ASIC supports up to 160 lanes at 10 Gbps per lane
and can connect any two lanes with an internal circuit.
Each QSFP+ port is internally connected to four lanes
on the crosspoint ASIC enabling 40 Gbps per port. The
crosspoint ASIC is controlled by custom firmware on an
ARM Cortex-M3 micro-controller on the switch. The
micro-controller has an Ethernet link to an external con-
trol plane and a parallel interface to the ASIC.

We emulate the egress/ingress traffic between a ToR
and its aggregation using two Arista 7050X packet
switches with 32 40 Gbps ports [3]. The packet switches
are both attached to the circuit switch and to each other
using passive copper cables. For traffic generation, we
connect 2 servers per packet switch. Each server has
a Mellanox ConnectX-3 40 Gbps NIC [5] and a dual
Intel Xeon E5-2660 v3 CPU at 2.6 GHz running Win-
dows Server 2016. All switches are connected to an Eth-
ernet control plane and controlled by a separate server.
The packet switches support OpenFlow and we use the
Floodlight OpenFlow controller to reconfigure the rout-
ing state of the switches during reconfiguration [13].

When we designed the switch, 100 Gbps network
components were not widely available. Today, this can
be implemented using for example the MAXP-37161
crosspoint ASIC that supports 25 Gbps per lane [8]. A
100 Gbps zQSFP+ port [17] uses 4 lanes so it is possi-
ble to build a circuit switch with 16 ports at 100 Gbps by
using four MAXP-37161 ASICs in parallel and routing
each lane of a zQSFP+ connector to a separate crosspoint
ASIC then back to another zQSFP+ connector. While
16 ports are enough to implement all the topologies de-
scribed in the evaluation, there exist up to 48-port cross-
point ASICs operating at the same bandwidth per lane.

5.1.1 Micro-benchmarks

We evaluate the reconfiguration overheads by measuring
the circuit switching time and its impact on throughput.
Switching time: We measure the time taken by the

-200

-100

0

100

200

300

0 20 40

Si
gn

al
 (

m
V

)

Time (ns)

Input lane 1 Input lane 2

18.3 ns

(a) Signal under reconfiguration.

0

10

20

30

40

0 1000 2000 3000 4000 5000

Th
ro

u
gh

p
u

t
(G

b
p

s)

Time (ms)

(b) TCP throughput on reconfiguration.

Figure 5: Prototype micro-benchmarks.

crosspoint ASIC to establish a circuit. For that, we con-
nect a high frequency oscilloscope to two spare ports on
the circuit switch. The oscilloscope measures the volt-
age output on lane 0 of each port. We use one of the
ports attached to a packet switch as a traffic generator.
We first set up a circuit between the packet switch and
the first port of the oscilloscope. We then connect the
packet switch to the second port and measure the time
taken by the signal to appear on the second port. Fig-
ure 5(a) shows the voltage generated by the signal over
time on both ports during reconfiguration. Initially, the
signal appears on the first port while the second port is
idle. After a transition period of 18.3 ns on average, the
signal appears on port 2, while port 1 becomes idle. We
ran the experiment 10 times and observed a reconfigura-
tion delay of 19.5 ns in the worst case, with a median of
18.27 ns. This is lower by about an order of magnitude or
more compared to other circuit switching proposals for
DC networks [27, 50] because electrical circuit switch-
ing requires no physical movement in the switch.
Throughput: We now measure the impact of adding up-
links on application throughput. We form two source-
destination pairs using the four servers such that traffic
for both pairs must traverse both packet switches. We
use NTttcp [11] to saturate the NIC bandwidth by creat-
ing 20 TCP flows, one per core, from each source to its
destination and measure the throughput at the destina-
tion with a 15 ms interval. Initially, there are no circuits
on the circuit switch, so packet switches can only use
one 40 Gbps link for all traffic. The link is fair-shared
across both source-destination pairs. We then set up a
circuit that creates an additional link between the packet
switches and configure them such that each source desti-

148 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0
20
40
60
80

100
120
140

5.3x 4x 3.2x 2.7x 2x 1.1x

Ta
il

FC
T

(s
)

Oversubscription

Static Larry

(a) Tail FCT.

0

0.5

1

1.5

2

2.5

3

5.3x 4x 3.2x 2.7x 2x 1.1xN
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Oversubscription

(b) Rack Throughput.

0

0.2

0.4

0.6

0.8

1

1.2

5.3x 4x 3.2x 2.7x 2x 1.1x

N
o

rm
al

iz
ed

 T
ai

l F
C

T

Oversubscription

(c) Tail FCT for all workloads.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

5.3x 4x 3.2x 2.7x 2x 1.1x

Ta
il

FC
T

(s
)

Oversubscription

Static Larry

(d) Tail FCT.

0

1

2

3

4

5.3x 4x 3.2x 2.7x 2x 1.1x

N
o

rm
al

iz
ed

 D
u

ra
ti

o
n

Oversubscription

Static Larry

Fully
provisioned

(e) Impact of queuing on experiment dura-
tion.

0

0.2

0.4

0.6

0.8

1

1.2

5.3x 4x 3.2x 2.7x 2x 1.1x

N
o

rm
al

iz
ed

 T
ai

l F
C

T

Oversubscription

(f) Tail FCT for all workloads.

Figure 6: Base performance with the Storage (top) and Production (bottom) workloads.

nation pair uses its own link. Figure 5(b) shows the re-
ceive throughput on one receiver over time. We can see
that the application is able to benefit from reconfigura-
tion and doubles its average throughput. This is achieved
transparently without modifications to packet switches or
servers. The reconfigurable uplink is similar to a physi-
cal cable: we observe no packet loss on any of the links,
and both uplinks achieve the same throughput.

5.2 Simulations

We now demonstrate that deploying our design in exist-
ing DCs offers performance and cost benefits. At the
high level, we aim to answer the question: what is the
benefit of adding Larry to a static topology?

To scale our evaluation to our traces, we use a sim-
ple flow-level simulator that represents each TCP flow
by a single flow in the topology graph. We obtained
the simulator that has been used in [21, 37, 38]. It has
been cross-validated with real hardware in the context
of storage [21] and offers a good trade-off between scal-
ability and accuracy. Each flow is routed through one
randomly chosen shortest path between the source and
the destination. Network components, including ToRs,
circuit switches and servers, are represented as vertices,
while edges simulate links. Each link is bidirectional,
has a bandwidth and keeps track of all the flows travers-
ing it at any time. The simulator computes the bandwidth
dedicated to each flow using max-min fairness. On flow
creation or completion, the throughputs of all impacted
flows are recomputed. Overall, this simulates the high-
level behavior of a typical TCP network with ECMP

routing. During reconfiguration, the topology graph is
updated, and all flow throughputs are recomputed. Un-
less otherwise stated we do not simulate the downtime on
links during reconfiguration as it typically occurs only a
few times per hour (see Section 5.2.4).
Topologies. Our baseline topology, denoted as static,
has m racks directly attached to aggregation switches.
The performance of the static topology depends on the
oversubscription at the ToRs. For Larry, we augment
the rack with a circuit switch and interconnect the circuit
and packet switches as described in Section 3. For both
topologies, we use 32-port 100 Gbps ToR and aggrega-
tion switches and have 32 servers per rack with 50 Gbps
per server as described in Section 3.3. We use rack sets
of 4 racks; the controller monitors traffic every 500 ms
and sets the link capacity threshold to 0.85. Evaluation
of alternative values showed no qualitative impact for the
examined workloads.
Performance metrics. The metrics of interest are FCT,
rack throughput and workload duration. The FCT is the
time span between the creation of the flow and its com-
pletion and directly impacts application performance. In
the following experiments, we focus on 99th percentile
FCT, denoted as tail FCT. We also measure the through-
put of each ToR every second by aggregating through-
puts of all the flows sent or received by the ToR and tak-
ing the maximum between ingress and egress through-
put. We compute the average throughput achieved by the
racks during the periods for which the rack is not idle. Fi-
nally, we measure the workload duration as the timespan
between the beginning of the first and the completion of
the last request. We now detail our evaluation workloads.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 149

5.2.1 Workloads

Storage (open loop workload). We use the traces de-
scribed in Section 2.2. The data written to the storage
tier is stored on 159 storage racks. For each rack, the
writes are controlled by the storage service and are hence
uniformly distributed over the day. Reads are very bursty
and dominate over writes during peaks.
Production (closed loop workload). We use the traces
from [27] as described in Section 2.2 that are representa-
tive of a typical production cluster. The traces contain the
number of bytes sent each second between ToR source
destination pairs, without flow- or request-level informa-
tion. We model this as a closed loop workload with at
most one outstanding request between each source des-
tination pair. For a source-destination pair, each second
in which x > 0 bytes were sent corresponds to a request.
The request is sent at a throughput of x Bps. For large
requests that exceed 200 MB we use multiple flows to
leverage ECMP across all the uplinks. In a topology pro-
visioned for peak, each request finishes within a second
and the achieved throughput equals the throughput ob-
served in the trace. We detect the fully provisioned band-
width for each workload by down-scaling the link band-
width to the minimal bandwidth that allows every request
to finish on time for a given workload. Then, we over-
subscribe the network and examine the impact on per-
formance. Namely, oversubscription introduces queuing
delays since there is only one outstanding request per
source destination pair. We generate multiple workloads
by mapping randomly selected rack-level traces to indi-
vidual racks in a rack set. Within a rack, requests are
randomly distributed across servers.

5.2.2 Base performance

We now compare our design to the static topology at dif-
ferent oversubscription ratios. We first describe the re-
sults for the Storage workloads shown in Figure 6. Fig-
ure 6(a) shows the tail FCT for both static and recon-
figurable topologies in function of the oversubscription
for one representative set of four racks. The tail FCT
is relatively high even for well-provisioned topologies,
showing that peak bandwidth demand can be high. As
expected, the tail FCT drops as the oversubscription de-
creases because both topologies get more network re-
sources. However, Larry has low tail FCT even when
oversubscription is high. For example, the tail FCT for
Larry with 3.2x oversubscription is about 64% lower
compared to a static topology with the same oversub-
scription. Despite the 3.2x oversubscription, it has about
42% lower tail FCT than the static topology with 2x over-
subscription and within 18% of a fully provisioned net-
work. At the highest oversubscription, Larry improves
tail FCT by a factor of 2.

This happens because Larry can reconfigure its topol-
ogy to efficiently allocate bandwidth to the traffic. Fig-
ure 6(b) shows the average rack throughput of Larry nor-
malized to the static topology in function of the over-
subscription ratio for the same workload. At the highest
oversubscription, the throughput per rack is 1.96 times
higher for Larry. As the oversubscription decreases, the
number of reconfigurable uplinks increases, which im-
proves performance compared to static topologies. How-
ever, eventually, the bandwidth per rack provisioned on
static topologies gets high enough to satisfy the demand,
and the reconfigurability makes less difference. Overall,
Larry has higher rack throughput for all oversubscrip-
tions and up to 2.7 times higher at 3.2x oversubscription.

Figure 6(c) examines the generality of our findings de-
picting 10th and 90th percentiles as error bars, 25th and
75th percentiles as the box and the median as the cross
in the box across all the workloads. The low variance
reveals that our observations are consistent across all the
simulations for the Storage workload.

We now focus on a representative Production work-
load. Figure 6(d) shows the tail FCT across different
oversubscription ratios. Like in the Storage workload,
we observe that reconfigurability improves tail FCT by
up to approximately a factor of 2. We attribute this be-
havior to reduced queuing of requests. Namely, due to
oversubscription, a delayed request can result in queuing
of subsequent requests, which delays the overall comple-
tion of the experiment. Figure 6(e) measures the duration
of the workload for Larry and static topologies normal-
ized to the actual duration in a non-blocking network.
Varying the oversubscription, we show that Larry man-
ages to complete the workload almost in time with up to
3.2x oversubscription while static topologies take much
longer to complete. Finally, Figure 6(f) shows the vari-
ance of our results across all the workloads, represented
as in Figure 6(c). We observe higher variance across
simulations because some workload instances have ex-
tremely low load. However, median values exhibit the
same trends as for the Storage workloads.

5.2.3 Performance per dollar

We now examine the performance per dollar of Larry. In-
tuitively, our design improves performance but requires
additional ports and cables at the rack level, and we aim
to determine whether its performance is worth the ex-
tra cost. We evaluate the deployment cost for the entire
data center network using a cost model from a large DC
provider that includes the volume costs of cables, mer-
chant silicon 5, and server NICs. Figures 7(a) and 7(b)
examine the tail FCT of two representative Storage and
Production workloads in function of the cost across static

5In the model, packet switch costs are per device and not per port.

150 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.3x

4x
3.2x

2.7x
2x

1.1x 1x

5.3x

4x
3.2x

2.7x 2x 1.1x
0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

Ta
il

FC
T

(s
)

Normalized Cost

Static

Larry

oversubscription

(a) Storage workload, tail FCT vs cost.

5.3x

2x
1.1x 1x

5.3x

2x 1.1x0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Ta
il

FC
T

(s
)

Normalized Cost

Static

Larry

(b) Production workload, tail FCT vs cost.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2

Larry

To
ta

l n
et

w
o

rk
 c

o
st

Circuit switch to packet switch per port cost ratio

Static topology with equivalent
tail FCT.

1.22

Larry has
better

tail FCT./$

(c) Varying circuit switch cost.

Figure 7: Performance as a function of cost.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
D

F
o

f
w

o
rk

lo
ad

s

Average reconfigurations per hour

(a) Reconfiguration frequency.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F
o

f
w

o
rk

lo
ad

s

Average fraction of modified circuits

(b) Circuit changes per reconfiguration.

0

0.2

0.4

0.6

0.8

1

0 1 10 100 1000 10000

N
o

rm
al

iz
ed

 T
ai

l F
C

T

Reconfiguration Delay (ms)

(c) Varying circuit downtime.

Figure 8: Reconfiguration overhead.

and reconfigurable topologies. Each data point refers to
different oversubscription, ranging from 1x to 5.3x in in-
creasing order from right to left (see the data labels). For
confidentiality reasons, we normalize the costs on the x-
axis to the cost of a fully provisioned topology. Based
on our estimations for the hardware costs, in this analy-
sis we assume a circuit switch to packet switch per port
cost ratio of 0.3. In both workloads, Larry has a better
performance per dollar than static topologies for over-
subscription ratios between 2x and 4x. For example, in
Figure 7(a) a static topology with 2x oversubscription
has a normalized cost of 0.68, which is approximately
the same cost as Larry with an oversubscription of 3.2x
that has 43% lower tail FCT. These oversubscription ra-
tios are common in current DCs, meaning that the per-
formance improvements described in Section 5.2.2 com-
pensates for the cost of adding reconfigurable hardware.

The cost of Larry depends on the cost of the circuit
switches. Figure 7(c) shows the total network cost of
Larry as a function of the circuit- to packet- switch per
port cost ratio, for 2.7x oversubscription, which is a sen-
sible design point in today’s DC topologies. We com-
pare it to the cost of a static topology with 1.1x oversub-
scription that has an equivalent 99th percentile FCT for a
representative Storage workload. We can see that if the
circuit switch port cost is below 1.22, Larry is cheaper
while offering the same performance. This means that
Larry remains cost-effective even if the circuit switch has
the same per port cost as a packet switch.

5.2.4 Properties of reconfiguration

We now focus on the Storage workloads and explore the
properties of the reconfiguration. Larry incurs overheads
in both control and data planes, so we first estimate the
reconfiguration frequency. Figure 8(a) shows the CDF of
the average reconfiguration frequency. The frequency is
only a few times per hour for all workloads. The high-
est rate is 9 reconfigurations per hour, for a median of 5.
This corresponds to one reconfiguration every 7 minutes
for the worst case observed. Furthermore, when recon-
figuration occurs, it only affects a small fraction of all
the circuits. Figure 8(b) shows the fraction of all cir-
cuits changed per reconfiguration. On average, about
22% of the circuits are modified, and 24% in the worst
case. This happens because of the conservative reconfig-
uration policy of the controller: reconfiguration happens
only when imbalance across racks is high.

We now evaluate the impact of the circuit downtime
on performance. The PHY negotiation delay is expected
to dominate over the circuit reconfiguration, hence we
conservatively vary the downtime between 1ms and 10s.
Figure 8(c) shows that downtimes up to one second have
low impact on the tail FCT because during peak demand
FCT is dominated by queuing at the 99th percentile.

We now vary the number of reconfigurable uplinks per
rack, focusing on 2x oversubscription. With this over-
subscription ratio, a rack has 8 uplinks, so the number
of reconfigurable uplinks is varied between 0 and 8, and

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 151

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 t
ai

l F
C

T

Fraction of reconfig. uplinks

(a) Restricting reconfigurability.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F
o

f
w

o
rk

lo
ad

s

Normalized tail FCT

Circuit sw.
per rack

Single
circuit sw.

(b) Distributing the circuit switch.

Figure 9: Design flexibility.

having 0 reconfigurable uplinks is equivalent to the static
topology. Figure 9(a) shows the tail FCT for each setup,
normalized to the tail FCT of the static topology with 2x
oversubscription. Larry efficiently reduces tail FCT with
as little as 2 reconfigurable uplinks per rack. This is be-
cause when a rack is congested, the other 3 are typically
not. They can hence give away 6 uplinks to the congested
rack, nearly doubling its aggregate uplink bandwidth.

Finally, to evaluate the overhead of using multiple cir-
cuit switches, we rerun all the Storage workloads using
our uplink assignment algorithm on single large circuit
switch. The algorithm then has no constraints on how
the circuits are assigned and assigns uplinks only based
on the traffic. Figure 9(b) shows how the tail FCT us-
ing a single switch compares to our design for all work-
loads. We can see that both lines overlap, showing that
our greedy algorithm efficiently allocates uplink band-
width in function of the rack demand.

6 Related Work

Local reconfigurability was described in GRIN [18] and
Subways [40], showing that network resources are likely
to be available locally in the DC. Both systems offload
traffic at layers 2 or 3, with oveheads described in 2.2.

There has been extensive prior work on network re-
configurability using optical circuit switches [25, 39, 43,
50,54,55], free-space optics [27,30] and 60GHz wireless
radios [23,29,58]. As in our design, packets sent by ToRs
are forwarded over a fabric reconfigurable at the physical
layer. Flat-tree is a DC network design can also adapt to
different workloads by dynamically changing the topol-
ogy between Clos [19] and random graphs [49] via small
port-count packet or circuit switches [56]. However,
these systems require substantial changes to the data
plane or/and control plane of the entire DC network.
Larry is not aiming to provide direct links between any
ToRs in the DC, or change DC-wide network properties.
Instead, it targets local uplink congestion on the ToRs. It
hence does not require a DC-wide controller and can be
deployed incrementally and transparently to the DC.

Flexibility can be achieved without reconfiguring the
network topology. Hedera and Swan perform traffic en-
gineering at the control plane [20, 32] and dynamically
redirect traffic though least congested paths in the net-
work. Expander topologies, such as Jellyfish [49] and
Xpander [52] directly interconnect ToRs via static links
and dynamically change the routing protocol in function
of the load [35]. Expander topologies are not transpar-
ent, incremental deployments. They require re-cabling
and custom routing policies for the entire DC network
(or a large fraction of it). Larry is orthogonal to these
designs and can interface with them if they are deployed.

ReacToR is a hybrid ToR switch design which com-
bines circuit and packet switching [39]. A local clas-
sifier directs high-bandwidth flows to a set of uplinks
connected core network circuit switches, while the rest
traffic is directed to packet switches. ReacToR relies
on host-side buffering of bursts until the circuits be-
come available. Given the recent trend towards increas-
ing server density per rack, XFabric proposes a hybrid
design for rack-scale computers, where intra-rack traf-
fic is forwarded by packet switches embedded on the
servers’ SoC over a circuit-switched physical layer [37].
Larry can be incrementally deployed without involving
changes to any existing network components.

7 Conclusion

DC applications increasingly have high bandwidth de-
mand and tight latency requirements cross rack. Larry is
a network design that dynamically adapts the aggregate
uplink bandwidth on the ToRs as a function of the rack
demand. It ensures a low and predictable forwarding la-
tency overhead by reconfiguring the network at the phys-
ical layer instead of re-routing traffic at layers 2 and 3.
Larry can be deployed incrementally in existing DCs at
the scale of a few racks, and transparently co-exist with
the DC-wide controllers. It is hence well-suited for tar-
geted deployments that improve the performance of spe-
cific tiers or services in existing DCs. We have built
a prototype that uses a custom 40 Gbps electrical cir-
cuit switch and a small local controller. Using workload
traces, we show that Larry improves the performance per
dollar of the traditional oversubscribed networks by up
to 2.3x.

Acknowledgments
We are grateful to Monia Ghobadi and Ratul Mahajan for
sharing their traces. We also thank our shepherd George
Porter and the anonymous reviewers for their helpful
feedback.

152 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 100 Gbps revenues dominate in the cloud. https:
//aka.ms/P27bgu.

[2] Analog Devices Digital Crosspoint
Switches. http://www.analog.com/

en/products/switches-multiplexers/

digital-crosspoint-switches.html.

[3] Arista 7050X Series. https://www.arista.

com/en/products/7050x-series.

[4] Arista 7160 Series. https://www.arista.

com/assets/data/pdf/Datasheets/

7160-Datasheet.pdf.

[5] ConnectX-3 User Manual. http://bit.ly/

2iA7Ken.

[6] Latency in Ethernet Switches. http://www.

plexxi.com/wp-content/uploads/2016/01/

Latency-in-Ethernet-Switches.pdf.

[7] Macom M21605 Crosspoint Switch Specifica-
tion. http://www.macom.com/products/

product-detail/M21605/.

[8] Macom MAXP-37161 Crosspoint Switch.
https://www.macom.com/products/

product-detail/MAXP-37161.

[9] Mellanox SN2000 Series. http://www.

mellanox.com/page/products_dyn?

product_family=251.

[10] Microsemi Digital Crosspoint Switches.
http://www.microsemi.com/products/

switches/digital-cross-point-switches.

[11] NTttcp Utility. https://

gallery.technet.microsoft.com/

NTttcp-Version-528-Now-f8b12769.

[12] OpenFlow Switch Specification. http://bit.ly/
2kk3Wyo.

[13] Project Floodlight. http://www.

projectfloodlight.org/floodlight/.

[14] Project Olympus Universal Motherboard. http:

//bit.ly/2jAeUOM.

[15] SerDes signal integrity challenges at 28Gbps and
beyond. http://bit.ly/2BiqCq8.

[16] zQSFP+ Cable Assembly, 5.0m Length. http://

bit.ly/2kk47FO.

[17] zQSFP+ Interconnect System. http:

//www.molex.com/molex/products/family?

key=zqsfp_interconnect_system.

[18] AGACHE, A., DEACONESCU, R., AND RAICIU,
C. Increasing Datacenter Network Utilisation with
GRIN. In Proceedings of the 12th USENIX Confer-
ence on Networked Systems Design and Implemen-
tation (2015), pp. 29–42.

[19] AL-FARES, M., LOUKISSAS, A., AND VAHDAT,
A. A Scalable, Commodity Data Center Network
Architecture. In Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication
(2008), pp. 63–74.

[20] AL-FARES, M., RADHAKRISHNAN, S., RAGHA-
VAN, B., HUANG, N., AND VAHDAT, A. Hedera:
Dynamic Flow Scheduling for Data Center Net-
works. In Proceedings of the 7th USENIX Confer-
ence on Networked Systems Design and Implemen-
tation (2010), pp. 19–19.

[21] BALAKRISHNAN, S., BLACK, R., DONNELLY,
A., ENGLAND, P., GLASS, A., HARPER, D.,
LEGTCHENKO, S., OGUS, A., PETERSON, E.,
AND ROWSTRON, A. Pelican: A Building Block
for Exascale Cold Data Storage. In Proceedings of
the 11th USENIX conference on Operating Systems
Design and Implementation (2014).

[22] CALDER, B., WANG, J., OGUS, A., NILAKAN-
TAN, N., SKJOLSVOLD, A., MCKELVIE, S., XU,
Y., SRIVASTAV, S., WU, J., SIMITCI, H., HARI-
DAS, J., UDDARAJU, C., KHATRI, H., EDWARDS,
A., BEDEKAR, V., MAINALI, S., ABBASI, R.,
AGARWAL, A., HAQ, M. F. U., HAQ, M. I. U.,
BHARDWAJ, D., DAYANAND, S., ADUSUMILLI,
A., MCNETT, M., SANKARAN, S., MANIVAN-
NAN, K., AND RIGAS, L. Windows azure stor-
age: A highly available cloud storage service with
strong consistency. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Prin-
ciples (2011), pp. 143–157.

[23] CUI, Y., XIAO, S., WANG, X., YANG, Z., ZHU,
C., LI, X., YANG, L., AND GE, N. Diamond:
Nesting the Data Center Network with Wireless
Rings in 3D Space. In Proceedings of the 13th
USENIX Symposium on Networked Systems Design
and Implementation (2016), pp. 657–669.

[24] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTIN-
GALE, E. B., RENZELMANN, M., SHAMIS, A.,
BADAM, A., AND CASTRO, M. No Compromises:
Distributed Transactions with Consistency, Avail-
ability, and Performance. In Proceedings of the
25th Symposium on Operating Systems Principles
(2015), pp. 54–70.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 153

https://aka.ms/P27bgu
https://aka.ms/P27bgu
http://www.analog.com/en/products/switches-multiplexers/digital-crosspoint-switches.html
http://www.analog.com/en/products/switches-multiplexers/digital-crosspoint-switches.html
http://www.analog.com/en/products/switches-multiplexers/digital-crosspoint-switches.html
https://www.arista.com/en/products/7050x-series
https://www.arista.com/en/products/7050x-series
https://www.arista.com/assets/data/pdf/Datasheets/7160-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7160-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7160-Datasheet.pdf
http://bit.ly/2iA7Ken
http://bit.ly/2iA7Ken
http://www.plexxi.com/wp-content/uploads/2016/01/Latency-in-Ethernet-Switches.pdf
http://www.plexxi.com/wp-content/uploads/2016/01/Latency-in-Ethernet-Switches.pdf
http://www.plexxi.com/wp-content/uploads/2016/01/Latency-in-Ethernet-Switches.pdf
http://www.macom.com/products/product-detail/M21605/
http://www.macom.com/products/product-detail/M21605/
https://www.macom.com/products/product-detail/MAXP-37161
https://www.macom.com/products/product-detail/MAXP-37161
http://www.mellanox.com/page/products_dyn?product_family=251
http://www.mellanox.com/page/products_dyn?product_family=251
http://www.mellanox.com/page/products_dyn?product_family=251
http://www.microsemi.com/products/switches/digital-cross-point-switches
http://www.microsemi.com/products/switches/digital-cross-point-switches
https://gallery.technet.microsoft.com/NTttcp-Version-528-Now-f8b12769
https://gallery.technet.microsoft.com/NTttcp-Version-528-Now-f8b12769
https://gallery.technet.microsoft.com/NTttcp-Version-528-Now-f8b12769
http://bit.ly/2kk3Wyo
http://bit.ly/2kk3Wyo
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://bit.ly/2jAeUOM
http://bit.ly/2jAeUOM
http://bit.ly/2BiqCq8
http://bit.ly/2kk47FO
http://bit.ly/2kk47FO
http://www.molex.com/molex/products/family?key=zqsfp_interconnect_system
http://www.molex.com/molex/products/family?key=zqsfp_interconnect_system
http://www.molex.com/molex/products/family?key=zqsfp_interconnect_system

[25] FARRINGTON, N., PORTER, G., RADHAKRISH-
NAN, S., BAZZAZ, H. H., SUBRAMANYA, V.,
FAINMAN, Y., PAPEN, G., AND VAHDAT, A. He-
lios: A Hybrid Electrical/Optical Switch Architec-
ture for Modular Data Centers. In Proceedings
of the ACM SIGCOMM 2010 Conference on Data
Communication (2010), pp. 339–350.

[26] GAO, P. X., NARAYAN, A., KARANDIKAR, S.,
CARREIRA, J., HAN, S., AGARWAL, R., RAT-
NASAMY, S., AND SHENKER, S. Network Re-
quirements for Resource Disaggregation. In Pro-
ceedings of the 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (2016),
pp. 249–264.

[27] GHOBADI, M., MAHAJAN, R., PHANISHAYEE,
A., DEVANUR, N., KULKARNI, J., RANADE, G.,
BLANCHE, P.-A., RASTEGARFAR, H., GLICK,
M., AND KILPER, D. ProjecToR: Agile Recon-
figurable Data Center Interconnect. In Proceedings
of the ACM SIGCOMM 2016 Conference on Data
Communication (2016), pp. 216–229.

[28] GREENBERG, A., HAMILTON, J. R., JAIN, N.,
KANDULA, S., KIM, C., LAHIRI, P., MALTZ,
D. A., PATEL, P., AND SENGUPTA, S. VL2: A
Scalable and Flexible Data Center Network. In Pro-
ceedings of the ACM SIGCOMM 2009 Conference
on Data Communication (2009), pp. 51–62.

[29] HALPERIN, D., KANDULA, S., PADHYE, J.,
BAHL, P., AND WETHERALL, D. Augmenting
Data Center Networks with Multi-gigabit Wireless
Links. In Proceedings of the ACM SIGCOMM
2011 Conference on Data Communication (2011),
pp. 38–49.

[30] HAMEDAZIMI, N., QAZI, Z., GUPTA, H.,
SEKAR, V., DAS, S. R., LONGTIN, J. P., SHAH,
H., AND TANWER, A. FireFly: A Reconfig-
urable Wireless Data Center Fabric Using Free-
space Optics. In Proceedings of the ACM SIG-
COMM 2014 Conference on Data Communication
(2014), pp. 319–330.

[31] HE, K., KHALID, J., GEMBER-JACOBSON, A.,
DAS, S., PRAKASH, C., AKELLA, A., LI, L. E.,
AND THOTTAN, M. Measuring Control Plane La-
tency in SDN-enabled Switches. In Proceedings of
the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research (2015), p. 25.

[32] HONG, C.-Y., KANDULA, S., MAHAJAN, R.,
ZHANG, M., GILL, V., NANDURI, M., AND WAT-
TENHOFER, R. Achieving High Utilization with
Software-driven WAN. In Proceedings of the ACM

SIGCOMM 2013 Conference on Data Communica-
tion (2013), pp. 15–26.

[33] HOPPS, C. Analysis of an Equal-Cost Multi-Path
Algorithm, 2000.

[34] KALIA, A., KAMINSKY, M., AND ANDERSEN,
D. G. FaSST: Fast, Scalable and Simple Dis-
tributed Transactions with Two-sided (RDMA)
datagram RPCs. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design
and Implementation (2016), pp. 185–201.

[35] KASSING, S., VALADARSKY, A., SHAHAF, G.,
SHAPIRA, M., AND SINGLA, A. Beyond fat-trees
without antennae, mirrors, and disco-balls. Pro-
ceedings of the ACM SIGCOMM 2017 Conference
on Data Communication (2017).

[36] KLIMOVIC, A., KOZYRAKIS, C., THERESKA, E.,
JOHN, B., AND KUMAR, S. Flash storage dis-
aggregation. In Proceedings of the Eleventh Eu-
ropean Conference on Computer Systems (2016),
ACM, p. 29.

[37] LEGTCHENKO, S., CHEN, N., CLETHEROE, D.,
ROWSTRON, A., WILLIAMS, H., AND ZHAO, X.
XFabric: A Reconfigurable In-Rack Network for
Rack-Scale Computers. In Proceedings of the 13th
USENIX Symposium on Networked Systems Design
and Implementation (2016), pp. 15–29.

[38] LEGTCHENKO, S., LI, X., ROWSTRON, A., DON-
NELLY, A., AND BLACK, R. Flamingo: Enabling
Evolvable HDD-based Near-Line Storage. In Pro-
ceedings of the 14th USENIX Conference on File
and Storage Technologies (2016), pp. 213–226.

[39] LIU, H., LU, F., FORENCICH, A., KAPOOR,
R., TEWARI, M., VOELKER, G. M., PAPEN,
G., SNOEREN, A. C., AND PORTER, G. Cir-
cuit Switching Under the Radar with REACToR.
In Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation
(2014), pp. 1–15.

[40] LIU, V., ZHUO, D., PETER, S., KRISHNA-
MURTHY, A., AND ANDERSON, T. Subways: A
Case for Redundant, Inexpensive Data Center Edge
Links. In Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Tech-
nologies (2015), pp. 27:1–27:13.

[41] MARANDI, P. J., GKANTSIDIS, C., JUNQUEIRA,
F., AND NARAYANAN, D. Filo: Consolidated Con-
sensus as a Cloud Service. In Proceedings of the
2016 USENIX Conference on Usenix Annual Tech-
nical Conference (2016), pp. 237–249.

154 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[42] MITCHELL, C., GENG, Y., AND LI, J. Using one-
sided rdma reads to build a fast, cpu-efficient key-
value store. In USENIX Annual Technical Confer-
ence (2013), pp. 103–114.

[43] PORTER, G., STRONG, R., FARRINGTON, N.,
FORENCICH, A., CHEN-SUN, P., ROSING, T.,
FAINMAN, Y., PAPEN, G., AND VAHDAT, A. In-
tegrating Microsecond Circuit Switching into the
Data Center. In Proceedings of the ACM SIG-
COMM 2013 Conference on Data Communication
(2013), pp. 447–458.

[44] ROY, A., ZENG, H., BAGGA, J., PORTER, G.,
AND SNOEREN, A. C. Inside the Social Net-
work’s (Datacenter) Network. In Proceedings of the
2015 ACM Conference on Special Interest Group
on Data Communication (2015), pp. 123–137.

[45] SCHMIDTKE, K. Facebook Network Architecture
and Its Impact on Interconnects. In Proceedings
of 23rd Annual Symposium on High-Performance
Interconnects (2015), IEEE.

[46] SCOTT, C., WUNDSAM, A., RAGHAVAN, B.,
PANDA, A., OR, A., LAI, J., HUANG, E., LIU,
Z., EL-HASSANY, A., WHITLOCK, S., ET AL.
Troubleshooting Blackbox SDN Control Software
with Minimal Causal Sequences. ACM SIGCOMM
Computer Communication Review 44, 4 (2015),
395–406.

[47] SINGH, A., ONG, J., AGARWAL, A., ANDERSON,
G., ARMISTEAD, A., BANNON, R., BOVING,
S., DESAI, G., FELDERMAN, B., GERMANO,
P., KANAGALA, A., PROVOST, J., SIMMONS, J.,
TANDA, E., WANDERER, J., HÖLZLE, U., STU-
ART, S., AND VAHDAT, A. Jupiter Rising: A
Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. In Proceedings
of the 2015 ACM Conference on Special Interest
Group on Data Communication (2015), pp. 183–
197.

[48] SINGLA, A. Fat-FREE Topologies. In Proceed-
ings of the 15th ACM Workshop on Hot Topics in
Networks (2016), pp. 64–70.

[49] SINGLA, A., HONG, C.-Y., POPA, L., AND GOD-
FREY, P. B. Jellyfish: Networking Data Centers,
Randomly. In Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Imple-
mentation (2012), vol. 12, pp. 17–17.

[50] SINGLA, A., SINGH, A., AND CHEN, Y. OSA:
An Optical Switching Architecture for Data Cen-
ter Networks with Unprecedented Flexibility. In

Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation
(2012), pp. 239–252.

[51] THERESKA, E., BALLANI, H., O’SHEA, G.,
KARAGIANNIS, T., ROWSTRON, A., TALPEY, T.,
BLACK, R., AND ZHU, T. IOFlow: a Software-
defined Storage Architecture. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles (2013), pp. 182–196.

[52] VALADARSKY, A., SHAHAF, G., DINITZ, M.,
AND SCHAPIRA, M. Xpander: Towards optimal-
performance datacenters. In CoNEXT (2016),
pp. 205–219.

[53] WANG, A., GUO, Y., HAO, F., LAKSHMAN, T.,
AND CHEN, S. Scotch: Elastically scaling up sdn
control-plane using vswitch based overlay. In Pro-
ceedings of the 10th ACM International on Con-
ference on Emerging Networking Experiments and
Technologies (2014), pp. 403–414.

[54] WANG, G., ANDERSEN, D. G., KAMINSKY, M.,
PAPAGIANNAKI, K., NG, T. E., KOZUCH, M.,
AND RYAN, M. c-Through: Part-time Optics in
Data Centers. In Proceedings of the ACM SIG-
COMM 2010 Conference on Data Communication
(2010), pp. 327–338.

[55] XIA, Y., SCHLANSKER, M., NG, T. S. E., AND
TOURRILHES, J. Enabling Topological Flexibility
for Data Centers Using OmniSwitch. In Proceed-
ings of the 7th USENIX Workshop on Hot Topics in
Cloud Computing (2015), pp. 4–4.

[56] XIA, Y., SUN, X. S., DZINAMARIRA, S., WU,
D., HUANG, X. S., AND NG, T. S. E. A tale of two
topologies: Exploring convertible data center net-
work architectures with flat-tree. In Proceedings of
the Conference of the ACM Special Interest Group
on Data Communication (2017), pp. 295–308.

[57] ZHOU, X., AND NISHIZEKI, T. Edge-coloring and
f-coloring for various classes of graphs. Journal
of Graph Algorithms and Applications 3, 1 (1999),
1–18.

[58] ZHOU, X., ZHANG, Z., ZHU, Y., LI, Y., KUMAR,
S., VAHDAT, A., ZHAO, B. Y., AND ZHENG, H.
Mirror Mirror on the Ceiling: Flexible Wireless
Links for Data Centers. ACM SIGCOMM Com-
puter Communication Review 42, 4 (2012), 443–
454.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 155

[59] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C.,
LIPSHTEYN, M., LIRON, Y., PADHYE, J., RAIN-
DEL, S., YAHIA, M. H., AND ZHANG, M. Con-
gestion Control for Large-scale RDMA Deploy-
ments. In ACM SIGCOMM Computer Communi-
cation Review (2015), vol. 45, ACM, pp. 523–536.

[60] ZILBERMAN, N., GROSVENOR, M., POPESCU,
D. A., MANIHATTY-BOJAN, N., ANTICHI, G.,
WÓJCIK, M., AND MOORE, A. W. Where Has
My Time Gone? In International Conference on
Passive and Active Network Measurement (2017),
Springer, pp. 201–214.

156 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Semi-Oblivious Traffic Engineering: The Road Not Taken

Praveen Kumar
Cornell

Yang Yuan
Cornell

Chris Yu
CMU

Nate Foster
Cornell

Robert Kleinberg
Cornell

Petr Lapukhov
Facebook

Chiun Lin Lim
Facebook

Robert Soulé
Università della Svizzera italiana

Abstract

Networks are expected to provide reliable performance
under a wide range of operating conditions, but existing
traffic engineering (TE) solutions optimize for perfor-
mance or robustness, but not both. A key factor that
impacts the quality of a TE system is the set of paths used
to carry traffic. Some systems rely on shortest paths,
which leads to excessive congestion in topologies with
bottleneck links, while others use paths that minimize
congestion, which are brittle and prone to failure. This
paper presents a system that uses a set of paths computed
using Räcke’s oblivious routing algorithm, as well as a
centralized controller to dynamically adapt sending rates.
Although oblivious routing and centralized TE have been
studied previously in isolation, their combination is novel
and powerful. We built a software framework to model
TE solutions and conducted extensive experiments across
a large number of topologies and scenarios, including the
production backbone of a large content provider and an
ISP. Our results show that semi-oblivious routing pro-
vides near-optimal performance and is far more robust
than state-of-the-art systems.

1 Introduction
Two roads diverged in a wood, and I –

I took the one less traveled by,

And that has made all the difference.

—Robert Frost

Networks are expected to provide good performance
even in the presence of unexpected traffic shifts and out-
right failures. But while there is extensive literature
on how to best route traffic through a network while
optimizing for objectives such as minimizing conges-
tion [3, 9, 13, 14, 15, 22, 24, 26, 47], current traffic engi-
neering (TE) solutions can perform poorly when operat-
ing conditions diverge from the expected [32, 42].

The tension between performance and reliability is not
merely a hypothetical concern. Leading technology com-
panies such as Google [18,24] and Microsoft [22,32] have

identified these properties as critical issues for their pri-
vate networks. For example, a central goal of Google’s
B4 system is to drive link utilization to 100%, but doing
this means that packet loss is “inevitable” when failures
occur [24]. Meanwhile a different study of availability at
Google identified “no more than a few minutes of down-
time per month” as a goal, where downtime is defined as
packet loss above 0.1%-2% [18].

Stepping back, one can see that there are two funda-
mental choices in the design of any TE system: (i) which
forwarding paths to use to carry traffic from sources to
destinations, and (ii) which sending rates to use to bal-
ance incoming traffic flows among those paths. Any TE
solution can be viewed in terms of these choices, but
there are also practical considerations that limit the kinds
of systems that can be deployed. For example, setting
up and tearing down end-to-end forwarding paths is a
relatively slow operation, especially in wide-area net-
works, which imposes a fundamental lower bound on
how quickly the network can react to dynamic changes
by modifying the set of forwarding paths [25]. On the
other hand, modifying the sending rates for an existing
set of forwarding paths is a relatively inexpensive opera-
tion that can be implemented almost instantaneously on
modern switches [32]. Another important consideration
is the size of the forwarding tables required to implement
a TE solution, as there are limits to how many paths can
be installed on each switch [7, 22, 42].

These considerations suggest that a key factor for
achieving reliable performance is to select a small set
of diverse forwarding paths that are able to route a range
of demands under a variety of failure scenarios. Unfor-
tunately, existing TE solutions fail to meet this challenge.
For example, using k-shortest paths works well in simple
settings but leads to excessive congestion in topologies
with shortcut links, which become bottlenecks. Using k-
edge-disjoint paths between pairs of nodes does not fare
much better, since paths between different node pairs still
contend for bandwidth on bottleneck links [24,32]. Using

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 157

s

t

Topology G(V,E)

Phase I

Path selection

s

t

T M [di j]
Paths Π

Phase II

Rate adaptation

s

t
1/2

1/6

1/3

Path weights wp

Figure 1: Semi-oblivious TE system model

a constraint solver to compute forwarding paths that opti-
mize for given scenarios and objectives effectively avoids
bottlenecks, but it can also “overfit” to specific scenarios,
yielding a brittle and error-prone solution. In addition,
it is difficult to impose a budget on the number of paths
used by the solver, and common heuristics for pruning
the set of paths degrade performance [42].

Our approach. We present Smore, a new TE system
based on two key ingredients. First, it uses a set of for-
warding paths computed using oblivious routing1 [38,39],
rather than shortest, edge-disjoint, or optimal paths, as in
current approaches [22, 24, 32]. The paths computed by
oblivious routing enjoy three important properties: they
are low-stretch, diverse, and naturally balance load. Sec-
ond, it dynamically adapts sending rates [9,22,26,28,47]
on those paths to fit current demands and react to fail-
ures. While these ideas have been explored in isola-
tion previously [3, 7, 20], their combination turns out to
be surprisingly powerful, and allows Smore to achieve
near-optimal performance. Our work is the first prac-
tical implementation and comprehensive evaluation of
this combined approach, called semi-oblivious routing.
Through extensive experiments with data from the pro-
duction networks of a large content provider (anonymized
as BigNet) and a major ISP, as well as large-scale simula-
tions, we demonstrate that Smore achieves performance
that is near-optimal, competitive with state-of-the-art so-
lutions [22, 24], and better than the worst-case scenarios
predicted in the literature. Smore also achieves a level of
robustness that improves on solutions explicitly designed
to be fault tolerant [32, 42].

Contributions. Our contributions are as follows:
1. We identify a general model for TE systems, and sur-

vey various approaches to wide-area TE (§2).
2. We present Smore’s design and discuss key properties

that affect performance and robustness (§3).
3. We demonstrate the deployability of Smore on a pro-

duction network, and develop a framework for model-
ing and evaluating TE systems (§4).

4. We conduct an extensive evaluation comparing Smore
with other systems in a variety of scenarios (§5-§6).

Overall, Smore is a promising approach to TE that is
based on solid theoretical foundations and offers attractive

1We use the term oblivious routing to refer to Räcke’s algorithm, and
not other demand-oblivious approaches.

Algorithm
Load balanced

Diverse Low-stretch
Capacity

aware

Globally

optimized

SPF / ECMP × × × X

CSPF X × × X

k-shortest paths (KSP) × × ? X

Edge-disjoint KSP × × X X

MCF X X × ×

Robust MCF [42] X X X ×

VLB [45] × × X ×

B4 [24] X X ? ?

Smore / Oblivious [39] X X X X

? : difficult to generalize without considering topology and/or demands.

Table 1: Properties of paths selected by different algorithms.

performance and robustness.

2 System Model and Related Work

This section develops a general model that captures the
essential behavior of TE systems and briefly surveys re-
lated work in the area.

Abstractly, a TE system can be characterized in terms
of two fundamental choices: which forwarding paths to
use to carry traffic, and how to spread traffic over those
paths. This is captured in the two phases of the model
shown in Fig. 1: (i) path selection and (ii) rate adap-

tion. The first phase maps the network topology to a
set of forwarding paths connecting each pair of nodes.
Typically this phase is executed only infrequently—e.g.,
when the topology changes—since updating end-to-end
forwarding paths is a relatively slow operation. In fact, in
a wide-area network it can take as long as several minutes
to update end-to-end paths due to the time required to up-
date switch TCAMs on multiple geo-distributed devices.
In the second phase, the system takes information about
current demands and failures, and generates a weighted
set of paths that describe how incoming flows should be
mapped onto those paths. Because updating path weights
is a relatively fast operation, this phase can be executed
continuously as conditions evolve. For example, the sys-
tem might update weights to rebalance load when de-
mands change, or set the weight of some paths to zero
when a link breaks. The main challenge studied in this
paper is how to design a TE system that selects a small
set of paths in the first phase that is able to flexibly handle
many different scenarios in the second phase.

2.1 Path Properties

The central thesis of this paper is that path selection
has a large impact on the performance and robustness of
TE systems. Even for systems that incorporate a dynamic
rate adaption phase to optimize for specific performance

158 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ed

ge
s

Capacity (log-scale)

Figure 2: Link capacities in two production WANs.

objectives, the set of paths selected is crucial as it defines
the state space for optimization. Desirable path properties
include:

A. low stretch for minimizing latency,
B. high diversity for ensuring robustness, and
C. good load balancing for achieving performance.

Unfortunately, current TE systems fail to guarantee at
least one of these properties, as shown in Table 1. For
example, approaches based on k-shortest paths (KSP)
fail to provide good load balancing properties in many
topologies due of two fundamental reasons. First, KSP
is not capacity-aware. Note that wide-area topologies
evolve over time to meet growing demands [18], leading
to heterogeneous link capacities as shown in Fig. 2. As
KSP does not consider capacities, it often over-utilizes
low-capacity links that lie on many shortest paths. Using
inverse of capacity as link weight is a common technique
to handle this, but it can lead to increased latency due to
capacity heterogeneity. Second, because KSP computes
paths between each pair of nodes independently, it does
not consider whether any given link is already heavily
used by other pairs of nodes. Hence, lacking this notion
of globally optimized path selection, even if one shifts
to using seemingly more diverse edge-disjoint k-shortest
paths, the union of paths for all node pairs may still over-
utilize bottleneck links.

In general, to achieve low stretch and good load balanc-
ing properties, a path selection algorithm must be capac-

ity aware and globally optimized. To illustrate, consider
the topology in Fig. 3 where unit flows arrive in the order
f1, f2, and f3. In Fig. 3a, we use the shortest paths to
route, as in KSP, and thus link (G,E) becomes congested.
In Fig. 3b, we greedily assign the shortest path with suffi-
cient capacity to each flow in order of arrival, as in CSPF,
which leads to a locally optimal but globally suboptimal
set of paths since some paths have high latency. Finally,
in Fig. 3c we depict the globally optimal set of paths.
The challenge is to compute a set of paths that closely ap-
proximates the performance of these optimal paths while
remaining feasible to implement in practice.

2.2 Related Work

The textbook approach to TE merges the two phases
in our model and frames it as a combinatorial optimiza-
tion problem: given a capacitated network and a set of
demands for flow between nodes, find an assignment of
flows to paths that optimizes for some criterion, such as

A

B

C

D

E

F

G

Weight of a link ∝ its depicted length. Each link has unit capacity.

f1

f2

f3
(a) Locally optimal,

capacity-unaware

A

B

C

D

E

F

G

(b) Locally optimal,
capacity-aware

A

B

C

D

E

F

G

(c) Globally optimal,
capacity-aware

Figure 3: Local vs. globally optimal path selection

minimizing the maximum link utilization (MLU). This is
known as the multi-commodity flow (MCF) problem in
the literature, and has been extensively studied. If flows
are restricted to use a single path between node pairs, then
the problem is NP-complete. But if fractional flows are
allowed, then optimal solutions can be found in strongly
polynomial time using linear programming (LP) [44].

Another approach, which has been widely used in prac-
tice, is to tune link weights in distributed routing proto-
cols, such as OSPF and ECMP, so they compute a good
set of forwarding paths [14, 15], and not perform any
rate adaptation. This approach is simple to implement as
it harnesses the capabilities of widely-deployed conven-
tional protocols, but optimizing link weights for ECMP
is NP-hard. Moreover, it often performs poorly when
failures occur, or during periods of re-convergence af-
ter link weights are modified to reflect new demands.
COYOTE [8] aims to improve performance of such dis-
tributed approaches by carefully manipulating the view
of each switch via fake protocol messages.

Several recent centralized TE systems explicitly de-
couple the phases of path selection and rate adaption.
SWAN [22] distributes flow across a subset of k-shortest
paths, using an LP formulation that reserves a small
amount of “scratch capacity” for configuration updates.
The system proposed by Suchara et al. [42] (henceforth
referred as “R-MCF”) performs a robust optimization that
incorporates failures into the LP formulation to compute
a diverse set of paths offline. It then uses a simple lo-
cal scheme to dynamically adapt sending rates at each
source. Recent work by Chang et al. [6] also used robust
optimization to validate designs that provide performance
and robustness guarantees that are better than worst-case
bounds. FFC [32] recommends (p,q) link-switch dis-
joint paths and spreads traffic based on an LP to ensure
resilience to up to k arbitrary failures. B4 [24] selects
paths greedily based on demands. It uses BwE [28] and
heuristic optimizations to divide flows onto paths to im-
prove utilization while ensuring fairness.

Another line of work has explored the space of oblivi-
ous approaches that provide strong guarantees in the pres-
ence of arbitrary demands [2,3,7]. Valiant Load Balanc-
ing (VLB) routes traffic via randomly selected intermedi-
ate nodes. Originally proposed as a way to balance load

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 159

in parallel computers [45], VLB has recently been applied
in a number of other settings including WANs [48]. How-
ever, the use of intermediate nodes increases path length,
which can dramatically increase latency—e.g., consider
routing traffic from New York to Seattle via Paris.

Oblivious routing, which generalizes VLB, computes a
probability distribution on low-stretch paths and forwards
traffic according to that distribution no matter what de-
mands occur when deployed—in other words, it is obliv-

ious to the demands. Remarkably, there exist oblivious
routing schemes whose congestion ratio is never worse
than O(logn) factor of optimal. One such scheme, pro-
posed in a breakthrough paper by Räcke [38], constructs
a set of tree-structured overlays and then uses these over-
lays to construct random forwarding paths. While the
O(logn) congestion ratio for oblivious routing is surpris-
ingly strong for a worst-case guarantee, it still requires
overprovisioning capacities by a significant amount. Ap-
plegate and Cohen [3] developed an LP formulation of
optimal oblivious routing. They showed that in contrast
to the O(logn) overprovisioning suggested by Räcke’s
result, in most cases, it is sufficient to overprovision the
capacity of each edge by a factor of 2 or less. While better
than the worst-case bounds, it is still not competitive with
the state-of-the-art. This lead us to explore augmenting
oblivious routing for path selection with dynamic rate
adaption in order to achieve better performance.

3 SMORE Design

Our design for Smore follows the two-phase system
model introduced in the preceding section: we use obliv-
ious routing (§3.1) to select forwarding paths, and we use
a constraint optimizer (§3.2) to continuously adapt the
sending rates on those paths. This approach ensures that
the paths used in Smore enjoy the properties discussed
in §2 by construction—i.e., they are low-stretch, diverse,
and load balanced.

Performing a robust, multi-objective optimization to
compute paths based on anticipated demands is chal-
lenging in practice in the presence of resource con-
straints [6, 32]. Moreover, if the actual conditions differ
from what was predicted—e.g., due to failures, or in an
ISP where customers may behave in ways that are diffi-
cult to anticipate—performance will suffer in general [3].
In contrast, because the paths in oblivious routing are
computed without knowledge of the demands, they avoid
overfitting to any specific scenario, which makes the sys-
tem naturally robust. Finally, Smore comes pre-equipped
with a simple mechanism for imposing a budget on the
total number of paths used, which allows it to degrade
gracefully in the presence of resource constraints, unlike
many other approaches.

3.1 Path selection

The core of Smore’s oblivious path selection is based
on a structure we call a routing tree that implicitly defines
a unique path for every node pair in the network G(V,E).
A routing tree comprises: (i) a logical treeT(Vt,Et)whose
leaves correspond to nodes of G, i.e., there is a one-to-one
mapping m′

V
: V → Vt , and (ii) a mapping mE : Et → E*

that assigns to each edge eT of T a corresponding path in
G, such that edges sharing a common endpoint in T are
mapped to paths sharing a common endpoint in G. One
can obtain a path PathT (u,v) from u to v in G by finding
the corresponding leaves m′

V
(u) and m′

V
(v) of T , identi-

fying the edges of the unique path in T that joins these
two leaves, and concatenating the corresponding physical
paths based on mE in G. Generalizing this idea, a ran-

domized routing tree (RRT) is a probability distribution
over routing trees. The corresponding oblivious routing
scheme computes a u−v path by first sampling a routing
tree T , then selecting the path PathT (u,v). One way to
think of oblivious routing is as a hierarchical generaliza-
tion of VLB, where the network is recursively partitioned
into progressively smaller subsets, and one routes from
u to v by finding the smallest subset in the hierarchy
that contains them both, and constructing a path through
a sequence of random intermediate destinations within
this subset. Räcke’s breakthrough discovery [39] was an
efficient, iterative algorithm for constructing RRTs.

We illustrate how the set of paths selected by Smore
have the required properties, in contrast to other well
known path selection algorithms, such as ECMP, KSP,
edge-disjoint k-shortest paths (EDKSP), VLB and MCF
using a representative WAN topology (Hibernia At-
lantic).2 Fig. 4 shows the paths selected by various
algorithms for all node pairs and uses a color-coding to
indicate load (i.e., the sum of weights of paths using each
link). The inset images show the latencies of paths se-
lected by each algorithm for different node pairs.

A. Smore’s paths have low stretch. The central ingredi-
ent in Räcke’s construction of RRTs is a reduction from
oblivious routing to the problem of computing low-stretch

routing trees, defined as follows. The input is an undi-
rected graph G whose edges are assigned positive lengths

ℓ(e) and weights w(e). The length of a path P, ℓ(P), is
defined to be the sum of its edge lengths, and the average
stretch of a routing tree T is defined to be the ratio of
weighted sums

stretch(T) =

∑
e=(u,v)w(e)ℓ(PathT (u,v))∑

e=(u,v)w(e)ℓ(e)
,

where both sums range over all edges of G. The problem
is to select T so as to minimize this quantity, which can be
interpreted as the (weighted) average amount by which we

2From the Internet Topology Zoo (ITZ) dataset [23]

160 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Halifax
Boston

KSP
0
100
200
300
400
500
600

Node Pairs0
50

100
150

RT
T

(m
s) MCF

0
100
200
300
400
500
600

Node Pairs0

100

200

RT
T

(m
s) Oblivious

0
100
200
300
400
500
600

Node Pairs0
50

100
150

RT
T

(m
s) VLB

0
100
200
300
400
500
600

Node Pairs0
50

100
150

RT
T

(m
s)

Figure 4: Figure showing sum of path weights for each link, for different path-selection algorithms. Inset shows length of

paths selected by each algorithm for different node pairs. x-axis has node pairs sorted by their geographical distances.

Risk0.0

0.5

1.0

Pr
ob

ab
ilit

y ECMP

Risk

Pr
ob

ab
ilit

y EDKSP

Risk
Pr
ob

ab
ilit

y KSP

0.25 0.5 0.75 1.0
Risk

0.0

0.5

1.0

Pr
ob

ab
ilit

y MCF

0.25 0.5 0.75 1.0
Risk

Pr
ob

ab
ilit

y Obliv.

0.25 0.5 0.75 1.0
Risk

Pr
ob

ab
ilit

y VLB

Figure 5: Distribution of risk (reuv) for Hibernia Atlantic.

inflate the length of an edge e when we join its endpoints
using the path determined by T .

For every instance of the low-stretch routing tree prob-
lem, there exists a solution with average stretch O(logn),
and a randomized algorithm, due to Fakcharoenphol, Rao,
and Talwar (FRT) [10], efficiently finds such a tree. The
algorithm works by computing all-pairs shortest paths in
G to define a metric space, then hierarchically decom-
posing this metric space into clusters of geometrically
decreasing diameter, each with a distinguished vertex
called the cluster center. The topology of the routing
tree is defined to be the Hasse diagram of this hierar-
chical decomposition ordered by inclusion, and the paths
associated to its edges are shortest paths between the cor-
responding cluster centers. Thus, to route from a source
u to a destination v, one constructs a path from u by bub-
bling up through the hierarchy, taking shortest paths to
centers of increasingly large clusters, until one reaches
the center of a cluster containing both u and v; let’s call
this center the least common ancestor (LCAu,v); then one
reverses this process to route from that cluster center to
v. If both u and v belong to a cluster C, then the length of
the path thus constructed is bounded by a constant times
the diameter of C. This explains why paths tend to avoid
the lengthy detours that can plague VLB, especially when
the source and destination are near one another as shown
in insets in Fig. 4. In practice, oblivious routing is of-
ten competitive with shortest-path based approaches in
terms of latency. Also note that while MCF optimizes for
congestion, it may pick long detours to avoid bottlenecks.

B. Smore uses diverse paths for robustness. VLB
achieves robustness by routing through random interme-
diaries, which avoids treating any particular link as crit-
ical. Oblivious routing generalizes VLB by allowing for

a hierarchy of random intermediate destinations rather
than just one. A u−v path is constructed by concatenat-
ing paths through a sequence of intermediate destinations
representing their ancestors in the sampled routing tree
T , up to and including LCAu,v . A well-chosen RRT
will have the property that the detour through LCAu,v

rarely consumes much more capacity than directly taking
a shortest path. This allows routing with RRTs to attain
aggregate utilization that is nearly as efficient as shortest-
path routing, worst-case load balancing that matches or
improves VLB, as well as good robustness properties.

One can quantify robustness by generalizing the con-
cept of a SRLG3 and grouping u−v paths, Π(u,v), by the
edges they share, such that an edge failure can break all
the paths in the shared risk group. We define risk, reuv , of
an edge e with respect to a node pair (u,v) as the fraction
of Π(u,v) paths using e. If e is not used by (u,v), then
reuv is undefined. For highest resilience, Π(u,v) con-
sists of pairwise edge-disjoint paths, and for any edge e,
reuv ≤

1
|Π(u,v) |

. A fragile Π(u,v) has paths sharing some
common edge e′, and re′uv = 1. Thus, low risk implies
high resilience to faults, and low impact on congestion
when reacting to failures as more paths are available to
share the load. A robust set of paths will have less high
risk edges. Fig. 5 shows the distribution of risk when
using up to 4 paths per node pair. Ideally, EDKSP should
have the entire mass at 0.25. But, a closer look at the
topology reveals that for most node pairs, only two edge-
disjoint paths exist, implying risk of 0.5 for all edges in
those paths, as illustrated in Fig. 6. KSP always finds 4
(u,v) paths which differ slightly and these differing edges
have low risk, but the significant number of overlapping
edges in these paths have high risk. Interestingly, the set
of paths computed using MCF also tend to be brittle. On
this topology, both oblivious routing and VLB compute
diverse sets of paths, and thus are robust to failures.

C. Smore’s paths are optimized for load-balancing.

Smore’s path selection algorithm is a capacity-aware iter-
ative algorithm that constructs a sequence of instances of
the low-stretch routing tree problem, with the same graph
topology but varying edge lengths, and solves each in-

3Shared Risk Link Groups (SRLGs) usually refer to links sharing a
common physical resource. If one link fails because of the shared
resource, other links in the group may fail too.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 161

Miami

Seattle

ECMP

risk = 1

Miami

Seattle

EDKSP

risk = 0.5

Miami

Seattle

KSP

Paths differ here

Miami

Seattle

MCF Miami

Seattle

Oblivious

risk = 0.5risk = 0.25

Miami

Seattle

VLB

Figure 6: Paths from Seattle to Miami in the Hibernia At-

lantic topology used by various TE schemes.

stance using FRT. In a given iteration, the root is selected
randomly and the length of each edge is multiplied by an
exponential function of the “cumulative usage”, relative
to capacity, of that edge in previously computed routing
trees4. The tree computed in each iteration is thus pe-
nalized for re-using edges that have been heavily utilized
in previous trees, and consequently, the ensemble of all
routing trees in the sequence (with suitable probabilities)
balances load among edges in a way that ensures O(logn)

congestion ratio regardless of the traffic matrix (TM).

To illustrate this, consider the nodes Boston and Hali-
fax in Fig. 4. There is a direct “shortcut” link connecting
these nodes, as well as a slightly longer path to the north.
Shortest path based algorithms overload the shorter link
and ignore the detour, while MCF balances load equally
on the two paths. Oblivious routing distributes load un-
equally, preferring the direct link but reducing its load by
using the detour for a fraction of traffic.

We note another interesting observation based on the
Seattle-Miami paths depicted in Fig. 6. Paths selected
by KSP are identical for most part, and the only variation
occurs at nodes in close proximity within the US north-
east. In our experience, this phenomenon occurs often,
and failures of such shared edges can adversely affect
performance. In contrast, oblivious routing and VLB se-
lect a more diverse set of paths which are edge-disjoint
with higher probability. Another intuitive way to look at
this is that most path selection algorithms compute paths
greedily for individual node pairs while oblivious routing
globally optimizes paths considering all pairs simulta-
neously, like MCF. For instance, even though EDKSP
computes diverse paths for individual pairs, when paths
for all pairs are considered together, the shortcut links can
become overloaded, as they may be used by many pairs.

4This is an instance of the multiplicative weights update method [4],
a general iterative method for solving programs such as packing and
covering LPs. The method has a tunable parameter ǫ which governs
the trade-off between the approximation accuracy and the number of
iterations required. Our implementation uses ǫ = 0.1.

Variable Definition

G(V, E) Input graph
Input Π The base set of paths allowed in G

D Predicted traffic matrix

Π(s, t) The set of all s to t paths in Π
d(s,t) Demand from s to t specified by D

Auxiliary cap(e) Capacity of link e

Ue Expected utilization of link e

Z Expected maximum link utilization
ep(P) End-points of path P

Output wP Weight of path P. (wP ∈ [0,1])

minimize Z

s.t. : ∀s, t ∈ V :
∑

P∈Π(s,t)

wP = 1

∀e ∈ E : Ue ≤ Z

Ue =

∑

P∈Π:e∈P

wP · dep(P)

cap(e)

∀P ∈ Π : wP ≥ 0

Table 2: Smore LP formulation for rate adaptation.

3.2 Rate adaptation

These observations on properties of paths selected by
oblivious routing motivate using a static set of paths while
dynamically adjusting the distribution of traffic over those
paths as the demand varies and/or network elements fail
and recover. This combination of a static set of paths and
time-varying adaptation of flow rates on those paths has
been called semi-oblivious routing [20]. From a worst-
case standpoint, this approach is not significantly better
than oblivious routing. Hajiaghayi et al. [20] proved that
any semi-oblivious routing scheme that uses polynomi-
ally many forwarding paths must suffer a congestion ratio
of Ω(logn/log (log (n))) in the worst case. However, the
proof of the lower bound involves constructing highly
unnatural TMs and topologies such as recursive series-
parallel graphs and grids satisfying specific properties. In
contrast, WAN topologies grow in a planned manner, and
capacities are augmented based on forecasted demands.
Hence, real-world topologies and TMs are implicitly cor-

related. This raises the question of whether it is possible
for semi-oblivious routing schemes to approach or match
the performance of optimal MCF in practice.

In Smore, we select the static set of paths, Π, using
Räcke’s algorithm to obtain a distribution over routing
trees, taking the union of the path sets defined by each
routing tree in the support of this distribution, pruning
this distribution to the paths with the highest weights to
respect path budget constraints, and then re-normalizing.
To distribute flow over paths, we solve a variation of
MCF using a linear program (LP). This is similar to the

162 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

usage of LP in SWAN and FFC, for instance, but with
different objective function and constraint set. In Smore
the LP formulation (Table 2) is used to minimize MLU by
balancing traffic over the allowed base set of paths. The
output variables wP express the relative weight of paths
for each source-destination pair. The constraints ensure
that the weights sum to 1 (i.e., all flows are assigned some
path) and that capacity constraints are respected.

4 Implementation

We discuss two implementations to understand and eval-
uate TE systems. First, we describe a real-world de-
ployment in a production WAN. We highlight a number
of practical issues that arose in that deployment (§4.1).
Second, we present an implementation using Yates [29],
a general framework for rapid prototyping and evaluation
of TE approaches (§4.2). We discuss how we calibrated
Yates’s simulator against a hardware testbed and the pro-
duction WAN.

4.1 IDN Deployment

To better understand the practical challenges associ-
ated with bringing Smore to production, we deployed a
TE system, which dynamically load-balances traffic over
a static set of paths, on BigNet’s inter-datacenter network
(IDN), which is similar to Google’s B4 [24] and Face-
book’s EBB [11].

Architecture. IDN consists of four identical planes
(topologies), each of which can be programmed inde-
pendently. The backbone routers at each datacenter site
are connected to an aggregation layer similar to Fat-
Cat [41], which distributes outgoing traffic across the
planes equally using ECMP. IDN employs a hybrid con-
trol model with distributed LSP agents as well as a cen-
tralized controller. It supports two traffic classes (high
and low priority) which can be managed using different
TE algorithms. This architecture facilitates experiment-
ing with different TE algorithms on a subset of planes
while the other planes provide a safe fallback.

Controller. The IDN controller allows the routes for
each plane to be updated every 15 seconds. The inputs
to the controller are obtained from a state snapshotter

service that captures the live state of the network includ-
ing: (i) configured components for IDN from a central
repository for network information [43], (ii) live link state
information from Open/R [12], (iii) any operational over-
rides (link, router, or plane drains), and (iv) real-time TM
estimated from sFlow [37] samples exported by routers.
When it receives a snapshot, the controller first computes
a new set of routes and splitting ratios and then sends
instructions to reconfigure the routers as needed.

0 20 40 60 80
Interval (hours)

0

500

1000

1500

2000

Ch
ur

n
(#

pa
th

s)

ECMP
CSPF

Optimal
FFC*

SMORE
Obliv.

(a) Path churn per TM

0 20 40 60 80
Interval (hours)

0

10

20

30

40

Ti
m

e
(s

ec
.)

ECMP
CSPF

Optimal
FFC*

SMORE
Obliv.

(b) Re-solver time per TM
Figure 7: Overhead of Optimal TE on BigNet’s LBN.

Path budget. The IDN controller maintains an MPLS

LSP mesh—i.e., a set of LSPs connecting every pair of
end points. For operational simplicity and to (indirectly)
bound the number of forwarding entries that must be
installed on routers, we limit the number of LSPs per
node pair to a fixed budget, typically 4.

Traffic splitting. To allow splitting traffic over differ-
ent LSPs, IDN supports programming up to 64 next-hop

groups on the ingress router for each pair of nodes. Mul-
tiple next-hop groups can map to the same path, and thus
we can split traffic among LSPs at granularities of up to
1
64 . Since packets are mapped to next-hop groups (and
paths) based on hashing header fields, packets belonging
to the same flow take the same path and avoid any issues
related to packet reordering in multipath transmission.

Failures. In the event of a failure, traffic is routed along
pre-programmed backup paths until the IDN controller
computes a new routing scheme. In addition to data-plane
faults, failures can also arise due to control-plane errors,
such as router misconfiguration or control-plane having
an inconsistent view of the network. We proactively test
resilience using a fault-injector that can introduce both
kinds of failures in a controlled manner.

State churn and update time. To quantify the opera-
tional overheads of different TE approaches, we measure
path churn and the time required to compute an updated
routing scheme. Churn is undesirable for several reasons:
it increases CPU and memory load on routers and adds
significant complexity to the management infrastructure.
Fig. 7a shows the number of paths that would be changed
every hour when running MCF and CSPF5. Likewise,
routing schemes that are expensive to compute impose a
burden on the controller. Fortunately, the LP that Smore
uses for rate adaptation is less complex than the LP used
to solve MCF—the time needed to solve each problem
instance is two orders of magnitude less than MCF (order
of 100ms vs. 10s), as shown in Fig. 7b, using Gurobi [19]
for optimization on a 16-core machine with 2.6 GHz CPU.
Furthermore, because Smore only updates path weights,
which takes just a few milliseconds, it is more responsive
than MCF, which requires updating whole paths, which
can take tens of seconds [24, 32].

5We implement a centralized version with 80% link capacities.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 163

0 10 20 30
Traffic Matrix

0.45

0.50

0.55

0.60

0.65

0.70

0.75
M

ax
 C

on
ge

st
io

n
MCF Sim
SPF Sim

MCF HW
SPF HW

PCC (SPF Sim, SPF HW): 0.996

PCC (MCF Sim, MCF HW): 0.997

SPF MCF Production

Ground
truth

Testbed Testbed Deployment

RMSE 0.006 0.006 0.06

RMSE: Root Mean Squared Error

PCC: Pearson Correlation Coefficient

Figure 8: Calibration: simulator vs. SDN testbed and LBN.

4.2 Yates Framework

We evaluate the performance of a wide range of TE
approaches under a variety of workloads and operational
scenarios using Yates [29], which consists of a TE
simulator and a SDN prototype. Although numerous
simulators and emulators have been proposed over the
years [5,21,30,34,36,46], Yates is designed specifically
to evaluate TE algorithms. With Yates, TE algorithms
are implemented as modules against a general interface.
Table 3 contains a partial list of TE algorithms that we
have implemented and made available under an open-
source license6. For clarity, we report results from only
a subset of these.

Simulator. Yates’s simulator can model diverse opera-
tional conditions and record detailed statistics. It requires
three inputs: (i) topology, (ii) a timeseries of actual TMs
to simulate network load, and (iii) corresponding pre-

dicted TMs. For each predicted TM, it computes the
routing scheme based on the algorithm (Optimal uses
actual TMs) and then simulates the flow of traffic where
each source generates traffic based on the actual TM. We
choose the fluid model [27] to simulate traffic owing to its
scalability without sacrificing accuracy of macroscopic
behavior. In case the actual TM is unsatisfiable using the
routing scheme, Yates still admits the entire demand at
each source. However, it assigns each flow its max-min
fair share at each oversubscribed link and drops any traffic
exceeding the flow’s fair share for that link.

SDN prototype. The prototype, which consists of a SDN
controller and an end-host agent, allows us to evaluate
different TE algorithms using an approach similar to cen-
tralized MPLS-TE. The controller manages the forward-
ing rules installed on OpenFlow-enabled switches, while
the end-host agent, implemented as a Linux kernel mod-
ule, splits flows and assigns them to paths at the source.
Although SDN allows us to easily implement the back-
end, it is not a requirement. It can be easily replaced with
other control mechanisms, such as PCEP [31].

Simulator calibration. For simulation results to be cred-

6http://github.com/cornell-netlab/yates

Throughput Congestion Loss Max Congestion

0.0

0.2

0.4

0.6

0.8

1.0
Optimal CSPF ECMP FFC* R-MCF Obliv. KSP+MCF SMORE

Time

M
et
ric

Figure 9: Expected performance on LBN over half a week.

ible, it is critical that they accurately correspond to re-
sults from real deployments. We validate the accuracy
of Yates’s simulator with: (i) a small-scale hardware
testbed, and (ii) BigNet’s large backbone network (LBN)
(§5). We use the SDN backend to emulate Internet2’s
Abilene backbone network [1] on a testbed of 12 switches
and replay traffic based on NetFlow traces collected from
the actual Abilene network. As shown in Fig. 8, the
simulation results closely match observed results in the
hardware testbed. We also implement a centralized ap-
proximation of the distributed TE algorithm used in pro-
duction in LBN. The network and demands are highly
dynamic, and the production TE scheme reacts to such
changes at a very fine time scale. As a result, we are able
to only approximate its behavior. Still, the values reported
by Yates closely match those seen in production.

5 BigNet WAN

We evaluate Smore in a production setting using multi-
ple criteria. For the setting, we use data from BigNet’s
large backbone network (LBN). LBN is one of the largest
global deployments and carries a mix of traffic ranging
from real-time video streaming and messaging to mas-
sive data synchronization globally. For criteria, we focus
on four key questions: How close is Smore to optimal
in terms of performance (§5.1)? What is the impact on
latency for not choosing strictly shortest paths (§5.2)?
How is performance impacted under failures (§5.3) and
other operational constraints (§5.4)? §6 explores whether
these results generalize to other settings, using large-scale
simulations over a diverse set of network scenarios.

Overview of BigNet’s WAN. The network models a
common content-provider design, with connections be-
tween several large datacenters across Asia, Europe, and
the US as well as connectivity to numerous Points-of-
Presence (PoPs) around the globe. The topology has
hundreds of routers and thousands of high-speed inter-
connecting links, varying vastly in capacity and latency.
This heterogeneity largely stems from the way the net-

164 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://github.com/cornell-netlab/yates

0.0 0.2 0.4 0.6 0.8 1.0
Congestion

0.0

0.2

0.4

0.6

0.8

1.0
Co

m
pl

em
en

ta
ry

 C
DF

 (f

ra
ct

io
n

of
 e

dg
es

)
ECMP
FFC*
R-MCF
Optimal
Obliv.
SMORE
KSP+MCF

(a) CCDF of link congestions. P(X ≥ x) = y

0.1 1.0 10.0 100.0
Expected Load

10−4

10−3

10−2

10−1

100

Co
m

pl
em

en
ta

ry
 C

DF

 (f
ra

ct
io

n
of

 e
dg

es
)

ECMP
FFC*
R-MCF
Optimal
Obliv.
SMORE
KSP+MCF

(b) CCDF of expected link loads.

50 100 150 200 250 300 350
RTT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 tr

af
fic

 d
el

iv
er

ed

CSPF
ECMP
FFC*
Obliv.

R-MCF
Optimal
KSP+MCF
SMORE

(c) CDF of latency.

Figure 10: BigNet LBN: predicted distribution of expected load, congestion and latency.

work evolved over many years. The topology exhibits
clustered structure, with clusters following geographic
constraints imposed by continents and links between clus-
ters running over transoceanic paths, similar to the topol-
ogy that we used for illustration in §3.

Traffic on LBN exhibits multiple strong diurnal pat-
terns, modulated by the activities of billions of users in
different time zones. Being a global system, different
parts of the network experience peak loads at different
times. Overall traffic patterns over the WAN can be split
into two major categories: (i) traffic between datacenters,
and (ii) traffic from datacenters to PoPs. Inter-datacenter
traffic typically consists of various replication workflows,
such as those related to cache consistency or bulk traf-
fic for Hadoop and database replication. A significant
amount of this traffic is delay tolerant, and could be
routed over non-shortest paths between the datacenters.
However, the traffic from datacenters to PoPs is latency
sensitive, as it represents content routed to BigNet users.

Methodology. We collect production data from LBN con-
sisting of accurate network topology, link capacities, link
latencies, aggregate site-to-site TMs, and paths used by
traffic in production. Using this data, we perform high-
fidelity simulations with Yates and present results based
on the statistics reported. Traffic with different latency
requirements are routed separately in production to avoid
excessive path stretch for latency-sensitive traffic. For
simplicity, we choose to route both types of traffic us-
ing the same TE scheme. Traffic on BigNet’s WAN is
growing at a rapid pace, and so the network also evolves
with it. We present results based on the network state and
demands for a month in late 2016.

5.1 Performance

For each hourly snapshot of the network under regular
operating conditions (i.e. without any failures), we mea-
sure various performance statistics (with a path budget
k = 4, same as reported in B4 [24]) using different TE ap-
proaches. Fig. 9 shows the (i) throughput normalized to
total demand, (ii) maximum congestion (fractional link
utilization), and (iii) normalized traffic dropped due to
congestion over a period of half a week. CSPF and Opti-

mal7 dynamically compute paths with sufficient capacity
for each flow, and thus avoid congestion. Remarkably,
only oblivious routing and Smore are able to achieve
100% throughput, while other centralized TE approaches
aren’t able to do so and introduce bottlenecks.

As expected, Optimal (which uses MCF to minimize
MLU) achieves the lowest maximum congestion, which
varies between 0.40 and 0.67 following a diurnal pat-
tern. We find that oblivious routing performance remains
within a factor of 2 as had been previously studied [3],
while Smore is closest to optimal with maximum con-
gestion within 16% of Optimal, on average and within
41% in the worst case.

Clearly, Smore’s path selection plays a crucial role in it
being so competitive. To gain further insight, we examine
the distribution of congestion and expected link utiliza-
tions, i.e., how much traffic each link would have carried
if packets weren’t dropped due to capacity constraints.
Figs. 10a and 10b show the corresponding complemen-
tary CDFs. We observe that ECMP8, FFC*9, R-MCF
and KSP+MCF (an approximation of SWAN’s path se-
lection and rate adaptation)10 scheduled ∼10% of links to
carry traffic exceeding their capacity—ECMP even over-
subscribed a link 80×! We find that these bottleneck links
usually appear in the shortest paths between many pairs of
nodes. In contrast, Räcke’s algorithm iteratively samples
paths while avoiding overloading any link, and Smore
load balances over these paths to reduce congestion even
further. On scaling up the demands, we do expect to
see congestion loss with all the approaches, including
Smore. From Fig. 10a, we also note that Smore main-
tains a lower congestion consistently for all links and has
a 95th-percentile congestion of 0.57—same as Optimal.

Even though FFC*, KSP+MCF and R-MCF dynami-
cally load balance traffic over a set of paths, they perform
suboptimally. This could be because the paths selected
under the budget constraint did not provide enough flexi-

7Optimal does not have any budget or other operational constraints.
8Using RTTs as link weights for computing shortest paths.
9Our implementation configures FFC to handle single link failures by
combining edge-disjoint k-shortest paths with fault-tolerance LP.
10We implement a version that uses k-shortest paths as tunnels and uses

MCF to assign path weights.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 165

2 4 8 16 32 64
Path budget

0.25

0.50

0.75

1.00
M

ax
 C

on
ge

st
io

n

CSPF
ECMP
FFC*

KSP+MCF
MCF
Obliv.

Optimal
R-MCF
SMORE

(a) Max congestion vs. path budget

2 4 8 16 32 64
Path budget

1
2
4
8

16
32
64

M
ax

 E
xp

ec
te

d
Lo

ad

CSPF
ECMP
FFC*

KSP+MCF
MCF
Obliv.

Optimal
R-MCF
SMORE

(b) Max expected load vs. path budget

1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

Path split quantum

0.25

0.50

0.75

1.00

M
ax

 C
on

ge
st

io
n

CSPF
ECMP
FFC*

KSP+MCF
MCF
Obliv.

Optimal
R-MCF
SMORE

(c) Performance with path split quantization
Figure 11: Performance with different operational parameters on BigNet’s LBN network.

bility to eliminate bottlenecks for any traffic splitting ra-
tio, and this was further exacerbated as the inadmissible
fraction of demands also contributed to congestion before
being dropped. To validate this, we measure performance
with increasing budget in Figs. 11a and 11b. KSP+MCF
and R-MCF, indeed, become near-optimal when the sets
of paths become diverse enough. However, FFC* doesn’t
improve beyond a point as the number of disjoint paths is
very limited. Even though the “working set” [22] of paths
for KSP+MCF is small, it needs 8× as many total number
of paths as Smore to achieve similar performance.

5.2 Latency

Fig. 10c shows the distribution of latency as a frac-
tion of total demand that is delivered within a given la-
tency11. To compute latency experienced by traffic along
a path, we simply sum the measured RTTs for each hop
along the path. TE approaches which route over shortest
paths while respecting capacity constraints, like CSPF,
have the least latency. Oblivious routing doesn’t ensure
that the shortest paths are necessarily selected. How-
ever, as we showed in §3.1, the paths computed have low
stretch. Smore uses the same set of low-stretch paths. In-
tuitively, longer paths can increase congestion as the same
set of packets contribute to congestion at more links. As
Smore optimizes for congestion, it also indirectly favors
shorter paths. We find that Smore is competitive with
other shortest-path based approaches. Even if we ignore
dropped traffic and normalize y−values in Fig. 10c with
throughput, the median latency for Smore (58.3ms) is
similar to KSP+MCF (62.7ms). We find that for any
node pair, Smore finds a path with latency within 1.09×
the shortest path, on average. Furthermore, if we include
factors such as buffering at routers, which depends on
congestion, we expect to see better latency for Smore as
it has better congestion guarantees.

5.3 Robustness

There is a trade-off between performance and robust-
ness, and often TE systems that optimize for performance

11Assuming dropped traffic has infinite latency, curves reach a maxi-
mum y-value equal to throughput.

Throughput Congestion Loss Max Congestion Failure Loss

0.0

0.2

0.4

0.6

0.8

1.0
Optimal CSPF ECMP FFC* R-MCF Obliv. KSP+MCF SMORE

Time
M
et
ric

Figure 12: Expected robustness on LBN over half a week.

tend to overfit and become brittle. In Fig. 12, we evalu-
ate the robustness of TE approaches to network failures.
Here, we fail a unique link every hour and note the impact
on performance. We implement a simple recovery mech-
anism which re-normalizes path weights to shift traffic
from failed paths on to unaffected paths, if available. The
recovery method is fast as it does not need setting up new
paths, and it decreases loss due to failure at the cost of
congestion. Usually, this increases throughput, but there
are exceptions as illustrated in §B.1. We see this with
R-MCF in Fig. 12. Optimal knows failures in advance
and reacts by setting up globally optimal paths instanta-
neously. FFC* is always able to find backup paths as it
uses disjoint paths, and thus avoids loss due to failure.
However, these paths are suboptimal for achieving the
best throughput as congestion causes packet drops.

Smore continues to deliver ∼100% throughput. Al-
though maximum congestion increases because of recov-
ery, Smore remains within 18% of Optimal, on average
and within 71% in the worst case. Smore’s high resilience
can be attributed to the fact that the paths it uses are di-
verse and have low risk, as we saw earlier in §3.1. This
ensures that, in most cases, Smore has sufficient options
to re-route traffic and load balance efficiently without
overloading any link.

5.4 Operational constraints

Various operational constraints need to be accounted
for while deploying a TE system. We describe one such
constraint—path-split quantization. So far, our evalu-

166 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ation has assumed that traffic could be split in arbitrary
proportions. This is usually not the case, and path weights
are quantized. Most routers support splitting by allowing
to specify a certain number, typically up to 64, of next-hop
groups [24]. This means that path weights should be mul-
tiples of the path-split quantum, 1

64 . Fig. 11c shows the
impact of quantization on performance (at path budget of
4). We approximate traffic split ratio generated by differ-
ent TE schemes to be multiples of the path-split quantum
using a greedy approach. Smore degrades gracefully
when quantization becomes restrictive and performs well
for practical settings when path-split quantum ≥ 1

64 .

6 Large-Scale Simulations

The evaluation on LBN in the preceding section showed
that Smore achieves near-optimal performance and ro-
bustness for the topology and workload in a large produc-
tion network. We also obtained similar results for exper-
iments conducted using data from a major ISP (omitted
from paper due to space constraints). In this section, we
show that these performance (§6.1) and robustness (§6.2)
results generalize to a wider range of scenarios.

Methodology. We evaluate 17 TE algorithms over 262
ISP and inter-DC WAN topologies using Yates. We
model a diverse set of operational conditions by varying
demands, failures, TM prediction, and path budget. We
present a subset of our experimental data that illustrates
our main results over the scenarios described next.

Topologies. We select 28 topologies, shown in §C, from
ITZ and other real-world networks, to overlap with ones
used to evaluate TE approaches in the literature [24, 26].

TM Generation. We use Yates to generate TMs based
on the gravity model [40], which assigns a weight wi to
each host i and assumes that i → j demand ∝ wi · wj .
We sample wi from a heavy-tailed Pareto distribution ob-
tained by fitting real-world TMs. We model diurnal and
weekly variations by randomly perturbing the Fourier co-
efficients of the observed time-series and temporal vari-
ations at a finer scale by using the Metropolis-Hastings
algorithm to sample from a Markov chain on the space of
TMs, whose stationary distribution is the gravity model
with Pareto-distributed weights described above. The
algorithm updates wi at each time step to model grad-
ual variation over time. The following experiments scale
TMs such that the minimum possible MLU for the first
TM is 0.4, which matches the average MLU observed in
traditional overprovisioned WANs [22,24].

TM Prediction. Yates offers a suite of algorithms to
predict future TMs. These include standard ML methods
such as linear regression, lasso/ridge regression, logis-
tic regression, random forest prediction etc., as well as
algebraic methods like FFT fit and polynomial fit. For

0.7 0.8 0.9 1.0
Normalized Capacity

SMORE
KSP+MCF

R-MCF
FFC*

Obliv.
ECMP

1.00
0.94

0.93
0.79

0.74
0.73

(a) Network capacity

1.00 1.25 1.50 1.75 2.00
Performance Ratio

0.0

0.5

1.0

CD
F

ECMP
Obliv.
R-MCF

KSP+MCF
FFC*
SMORE

(b) Performance ratio
Figure 13: Aggregate performance at base demand.

each pair of hosts, we perform an independent time se-
ries prediction where, at each time step t, the demand is
predicted using demands observed in [t − k, t). We opti-
mize the size of the sliding window (k) separately using
cross-validation. Regression and random forest models
are trained using the previous k time steps as k features.
FFT fit finds a function with a bounded number of non-
zero Fourier coefficients, while polynomial fit finds a
bounded-degree polynomial function that minimizes the
absolute difference between predicted and actual TMs
over the past k time steps. This best-fit function is evalu-
ated in the current time step to yield the predicted demand.
Finally, Yates exposes an error parameter to assess the
sensitivity of TE algorithms to inaccuracy in prediction.

6.1 Performance

We start by evaluating basic properties of TE ap-
proaches including the effective capacity of the network
and the performance ratio with respect to Optimal.

Network capacity. During normal operation, the MLU
of a network is usually below 1, meaning there is spare
capacity in the network. Given a routing scheme and
a TM, we can define network capacity as the factor by
which the TM can be scaled up before it experiences
congestion. This spare capacity could be used to handle
unexpected surges in traffic, or to schedule background
traffic. As Optimal minimizes MLU, it has the high-
est possible network capacity. Fig. 13a shows network
capacity for different TE approaches, normalized with re-
spect to Optimal. As expected, oblivious routing, which
can use up more bandwidth on more links to route the
same TM, is unable to admit a significant fraction of
TMs that Optimal can handle. We find that Smore has

the highest network capacity and is near-optimal owing
to efficient load balancing over a diverse set of paths.

Performance ratio. Another way to compare TE ap-
proaches is to measure how far they are from Optimal,
with respect to minimizing MLU for a given set of TMs.
Here, we follow the metric defined by Applegate and Co-
hen [3], but use throughput after accounting for conges-
tion loss, if any, instead of using the demand TM to com-
pute congestion and performance ratio. Fig. 13b com-
pares the distribution of performance ratio over various
topologies and TMs. We find that Smore and KSP+MCF

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 167

95.0% 99.0% 99.9% 99.99% 99.999%0.0
0.2
0.4
0.6
0.8
1.0

P(
T

>
x)

(a) base demand, single link failures

95.0% 99.0% 99.9% 99.99% 99.999%0.0
0.2
0.4
0.6
0.8
1.0

P(
T

>
x)

(b) 2× demand, single link failures

95.0% 99.0% 99.9% 99.99% 99.999%0.0
0.2
0.4
0.6
0.8
1.0

P(
T

>
x)

ECMP
R-MCF
FFC*

KSP+MCF
Obliv.
SMORE

(c) base demand, double link failures
Figure 14: Robustness: Probability of achieving a throughput SLA (x) under different conditions.

0.00 0.05 0.10 0.15
Failure Loss

0.6

0.8

1.0

CD
F

ECMP
Obliv.
R-MCF

KSP+MCF
FFC
SMORE

(a) Base demand: failure loss

0.00 0.05 0.10 0.15
Congestion Loss

0.6

0.8

1.0

CD
F

(b) 2× demand: congestion loss
Figure 15: Robustness: CDF of throughput loss

remain optimal in 75-80% of the cases but Smore has

closest to optimal performance ratio (§C.1).

6.2 Robustness

Similar to §5.3, we systematically inject failures in
the network to study the trade-off between performance
and robustness. Fig. 15 shows the distribution of loss
in throughput over all possible single link failures. With
base demands, failures are the main cause of loss. As
demand scales up, loss due to congestion becomes sig-
nificant. Smore performs better in both cases by being

more fault tolerant as well as spreading traffic evenly to

avoid congestion. Although TE approaches like FFC*
and R-MCF are designed to be fault tolerant, they do not
achieve the best throughput. This is because FFC* re-
lies on disjoint paths to be available to reroute traffic; the
number of such paths is limited in real-world topologies.
For instance, GÉANT’s topology has nodes with degree
1. These nodes have a single edge-disjoint path to any
other node; the failure of any edge along this path leads to
loss of traffic. Using (p,q) link-switch disjoint paths also
doesn’t improve the robustness much. Moreover, FFC*
is not congestion-optimal by design and incurs high loss
due to congestion as demands increase. R-MCF relies
on using a large number of paths for fault tolerance and
applying a budget deteriorates its performance [42].

Typically, SLAs refer to availability of a network in
terms of “nines”. This can also be translated in terms of
throughput and given a failure characteristic [17, 18, 33],
a network operator could be interested in questions such
as “what is the probability that throughput is greater than
99.9%?” Fig. 14 compares TE approaches on how likely
are they to achieve different levels of SLA under various
operational conditions. In addition to the scenario where
single link failures can happen with uniform probabil-
ity under regular load (Fig. 14a), we perform two more
experiments where we study robustness under increased

load (Fig. 14b), and concurrent failures (Fig. 14c). We
find that Smore consistently outperforms other TE ap-
proaches. Oblivious TE is robust under both single and
concurrent link failures at base demands, but its resilience
deteriorates for increased load. Smore benefits from the
robust set of paths selected by oblivious routing, and
also load balances efficiently even during increased load.
Thus, Smore is highly robust and achieves SLAs with

highest probability under diverse operational conditions.

7 Conclusion

In TE, there is a fundamental trade-off between perfor-
mance and robustness. Most systems are designed to
optimize for one or the other, but few manage to achieve
both. This challenge is further exacerbated by operational
restrictions such as the number of paths, overhead due to
churn, quantized splitting ratio imposed by hardware, etc.

This paper presents Smore, a new approach that navi-
gates these trade-offs by combining careful path selection
with dynamic weight adaptation. As shown through a
detailed evaluation on a production backbone network,
Smore achieves near-optimal performance in terms of
congestion and load balancing metrics, is competitive
with shortest-path based approaches in terms of latency,
and is also robust, allowing traffic to be re-routed around
failures without introducing bottlenecks while respect-
ing operational constraints. Our large-scale evaluation
shows that these performance and robustness guarantees
hold across a broader class of networks. More generally,
our experiences designing and implementing Smore sug-
gests lessons that are broadly applicable to TE systems
including the importance of capacity-aware and globally
optimized selection of low-stretch and diverse paths, as
well as the consideration of operational constraints when
building a practical TE system.

Acknowledgments. We would like to thank the anony-
mous NSDI reviewers and our shepherd Srikanth Kan-
dula for their valuable feedback. This work was partially
supported by NSF grant CCF-1637532 and ONR grant
N00014-15-1-2177. We are grateful to Omar Baldonado
and Sandeep Hebbani for their continued support, and
we thank Bruce Maggs, Ratul Mahajan, Nick McKeown,
Jennifer Rexford, Michael Schapira, Amin Vahdat and
Minlan Yu for helpful discussions.

168 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Historical Abilene Data. http://noc.net.internet2.

edu/i2network/live-network-status/historical-

abilene-data.html.

[2] Altin, A., Fortz, B., and Ümit, H. Oblivious OSPF Routing
with Weight Optimization under Polyhedral Demand Uncertainty.
Networks 60, 2 (2012), 132–139.

[3] Applegate, D., and Cohen, E. Making Intra-domain Routing
Robust to Changing and Uncertain Traffic Demands: Understand-
ing Fundamental Tradeoffs. In ACM SIGCOMM (2003).

[4] Arora, S., Hazan, E., and Kale, S. The Multiplicative Weights
Update Method: a Meta-Algorithm and Applications. Transac-

tions on Computers 8, 1 (2012), 121–164.

[5] Chang, X. Network Simulations with OPNET. In 31st Conference

on Winter Simulation (1999), ACM.

[6] Chang, Y., Rao, S., and Tawarmalani, M. Robust Validation
of Network Designs under Uncertain Demands and Failures. In
USENIX NSDI (2017).

[7] Chiesa, M., Kindler, G., and Schapira, M. Traffic Engi-
neering with Equal-Cost-MultiPath: An Algorithmic Perspective.
IEEE/ACM Transactions on Networking (2016).

[8] Chiesa, M., Rétvári, G., and Schapira, M. Lying Your Way to
Better Traffic Engineering. In ACM CoNEXT (2016).

[9] Elwalid, A., Jin, C., Low, S., and Widjaja, I. MATE: MPLS
Adaptive Traffic Engineering. In IEEE INFOCOM (2001).

[10] Fakcharoenphol, J., Rao, S., and Talwar, K. A Tight Bound
on Approximating Arbitrary Metrics by Tree Metrics. In 35th

STOC (2003), pp. 448–455.

[11] Building Express Backbone: Facebook’s new long-haul network.
http://code.facebook.com/posts/1782709872057497/

building-express-backbone-facebook-s-new-long-

haul-network.

[12] Introducing Open/R - a new modular routing platform.
http://code.facebook.com/posts/1142111519143652/

introducing-open-r-a-new-modular-routing-

platform.

[13] Fischer, S., Kammenhuber, N., and Feldmann, A. REPLEX:
Dynamic Traffic Engineering Based on Wardrop Routing Policies.
In ACM CoNEXT (2006).

[14] Fortz, B., Rexford, J., and Thorup, M. Traffic Engineering
with Traditional IP Routing Protocols. IEEE Communications

Magazine 40, 10 (Oct. 2002).

[15] Fortz, B., and Thorup, M. Internet Traffic Engineering by
Optimizing OSPF Weights. In IEEE INFOCOM (2000), vol. 2.

[16] Garg, N., and Könemann, J. Faster and Simpler Algorithms for
Multicommodity Flow and Other Fractional Packing Problems.
SICOMP 37, 2 (May 2007), 630–652.

[17] Gill, P., Jain, N., and Nagappan, N. Understanding Network
Failures in Data Centers: Measurement, Analysis, and Implica-
tions. ACM SIGCOMM CCR 41, 4 (2011).

[18] Govindan, R., Minei, I., Kallahalla, M., Koley, B., and
Vahdat, A. Evolve or Die: High-Availability Design Princi-
ples Drawn from Google’s Network Infrastructure. In ACM SIG-

COMM (2016).

[19] Gurobi Optimizer. http://www.gurobi.com.

[20] Hajiaghayi, M., Kleinberg, R., and Leighton, T. Semi-
oblivious Routing: Lower Bounds. In SODA (2007), pp. 929–938.

[21] Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., and
Kopena, J. Network Simulations with the ns-3 Simulator. SIG-

COMM demonstration 14 (2008).

[22] Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V.,
Nanduri, M., and Wattenhofer, R. Achieving High Utilization
with Software-Driven WAN. In ACM SIGCOMM (2013).

[23] The Internet Topology Zoo. http://www.topology-zoo.org.

[24] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh,
A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M., Zolla, J.,
Hölzle, U., Stuart, S., and Vahdat, A. B4: Experience with a
Globally Deployed Software Defined WAN. In ACM SIGCOMM

(2013).

[25] Jin, X., Liu, H., Gandhi, R., Kandula, S., Mahajan, R., Rex-
ford, J., Wattenhofer, R., and Zhang, M. Dionysus: Dynamic
Scheduling of Network Updates. In ACM SIGCOMM (2014).

[26] Kandula, S., Katabi, D., Davie, B., and Charny, A. Walking
the Tightrope: Responsive Yet Stable Traffic Engineering. In
ACM SIGCOMM (2005).

[27] Kelly, F., and Williams, R. Fluid Model for a Network Op-
erating under a Fair Bandwidth-Sharing Policy. The Annals of

Applied Probability 14, 3 (2004).

[28] Kumar, A., Jain, S., Naik, U., Raghuraman, A., Kasinadhuni,
N., Zermeno, E. C., Gunn, C. S., Ai, J., Carlin, B., Amarandei-
Stavila, M., et al. BwE: Flexible, Hierarchical Bandwidth
Allocation for WAN Distributed Computing. In ACM SIGCOMM

(2015).

[29] Kumar, P., Yu, C., Yuan, Y., Foster, N., Kleinberg, R., and
Soulé, R. YATES: Rapid Prototyping for Traffic Engineering
Systems. In ACM SOSR (2018).

[30] Lantz, B., Heller, B., and McKeown, N. A Network in a
Laptop: Rapid Prototyping for Software-Defined Networks. In
ACM HotNets (2010).

[31] Le Roux, J., and Vasseur, J. Path Computation Element (PCE)
Communication Protocol (PCEP). https://tools.ietf.org/
html/rfc5440, 2009.

[32] Liu, H. H., Kandula, S., Mahajan, R., Zhang, M., and Gel-
ernter, D. Traffic Engineering with Forward Fault Correction.
In ACM SIGCOMM (2014).

[33] Markopoulou, A., Iannaccone, G., Bhattacharyya, S.,
Chuah, C.-N., Ganjali, Y., and Diot, C. Characterization of
Failures in an Operational IP Backbone Network. IEEE/ACM

Transactions on Networking 16, 4 (2008), 749–762.

[34] McCanne, S., and Floyd, S. NS network simulator, 1995.

[35] Mitra, D., and Ramakrishnan, K. A Case Study of Multiser-
vice, Multipriority Traffic Engineering Design for Data Networks.
In IEEE GLOBECOM (1999), vol. 1.

[36] Cisco NetSim Network Simulator. http://www.boson.com/
netsim-cisco-network-simulator.

[37] Panchen, S., Phaal, P., and McKee, N. InMon Corporation’s
sFlow: A Method for Monitoring Traffic in Switched and Routed
Networks. https://tools.ietf.org/html/rfc3176, 2001.

[38] Räcke, H. Minimizing Congestion in General Networks. In 43rd

FOCS (2002), pp. 43–52.

[39] Räcke, H. Optimal Hierarchical Decompositions for Congestion
Minimization in Networks. In 40th STOC (2008), pp. 255–264.

[40] Roughan, M., Greenberg, A., Kalmanek, C., Rumsewicz, M.,
Yates, J., and Zhang, Y. Experience in Measuring Backbone
Traffic Variability: Models, Metrics, Measurements and Meaning.
In IMC (2002), ACM, pp. 91–92.

[41] Roy, A., Zeng, H., Bagga, J., Porter, G., and Snoeren, A. C.
Inside the Social Network’s (Datacenter) Network. In ACM SIG-

COMM (2015).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 169

http://noc.net.internet2.edu/i2network/live-network-status/historical-abilene-data.html
http://noc.net.internet2.edu/i2network/live-network-status/historical-abilene-data.html
http://noc.net.internet2.edu/i2network/live-network-status/historical-abilene-data.html
http://code.facebook.com/posts/1782709872057497/building-express-backbone-facebook-s-new-long-haul-network
http://code.facebook.com/posts/1782709872057497/building-express-backbone-facebook-s-new-long-haul-network
http://code.facebook.com/posts/1782709872057497/building-express-backbone-facebook-s-new-long-haul-network
http://code.facebook.com/posts/1142111519143652/introducing-open-r-a-new-modular-routing-platform
http://code.facebook.com/posts/1142111519143652/introducing-open-r-a-new-modular-routing-platform
http://code.facebook.com/posts/1142111519143652/introducing-open-r-a-new-modular-routing-platform
http://www.gurobi.com
http://www.topology-zoo.org
https://tools.ietf.org/html/rfc5440
https://tools.ietf.org/html/rfc5440
http://www.boson.com/netsim-cisco-network-simulator
http://www.boson.com/netsim-cisco-network-simulator
https://tools.ietf.org/html/rfc3176

[42] Suchara, M., Xu, D., Doverspike, R., Johnson, D., and Rex-
ford, J. Network Architecture for Joint Failure Recovery and
Traffic Engineering. In SIGMETRICS (2011), pp. 97–108.

[43] Sung, Y.-W. E., Tie, X., Wong, S. H., and Zeng, H. Robotron:
Top-down Network Management at Facebook Scale. In ACM

SIGCOMM (2016).

[44] Tardos, E. A Strongly Polynomial Algorithm to Solve Com-
binatorial Linear Programs. Operations Research 34, 2 (1986),
250–256.

[45] Valiant, L. A Scheme for Fast Parallel Communication. SICOMP

11, 2 (1982), 350–361.

[46] Varga, A., et al. The OMNeT++ Discrete Event Simulation
System. In European Simulation Multiconference (2001).

[47] Wang, H., Xie, H., Qiu, L., Yang, Y. R., Zhang, Y., and Green-
berg, A. COPE: Traffic Engineering in Dynamic Networks. In
ACM SIGCOMM (2006).

[48] Zhang-Shen, R., and McKeown, N. Designing a Fault-Tolerant
Network Using Valiant Load-Balancing. In IEEE INFOCOM

(Apr. 2008).

170 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Metron: NFV Service Chains at the True Speed of the Underlying Hardware

Georgios P. Katsikas1,3, Tom Barbette2, Dejan Kostić3, Rebecca Steinert1, Gerald Q. Maguire Jr.3

1RISE SICS, 2University of Liege, 3KTH Royal Institute of Technology

Abstract
In this paper we present Metron, a Network
Functions Virtualization (NFV) platform that achieves
high resource utilization by jointly exploiting the
underlying network and commodity servers’ resources.
This synergy allows Metron to: (i) offload part of
the packet processing logic to the network, (ii) use
smart tagging to setup and exploit the affinity of traffic
classes, and (iii) use tag-based hardware dispatching
to carry out the remaining packet processing at the
speed of the servers’ fastest cache(s), with zero inter-
core communication. Metron also introduces a novel
resource allocation scheme that minimizes the resource
allocation overhead for large-scale NFV deployments.
With commodity hardware assistance, Metron deeply
inspects traffic at 40 Gbps and realizes stateful network
functions at the speed of a 100 GbE network card on a
single server. Metron has 2.75-6.5x better efficiency than
OpenBox, a state of the art NFV system, while ensuring
key requirements such as elasticity, fine-grained load
balancing, and flexible traffic steering.

1 Introduction
Following the success of Software-Defined Networking
(SDN), Network Functions Virtualization (NFV) is
poised to dramatically change the way network services
are deployed. NFV advocates running chains of network
functions (NFs) implemented as software on top of
commodity hardware. This is in contrast with chaining
expensive, physical middleboxes, and brings numerous
benefits: (i) decreased capital expenditure and operating
costs for network service providers and (ii) facilitates the
deployment of exciting new services.

Achieving high performance (high throughput and low
latency with low variance) using commodity hardware
is a hard problem. As 100 Gbps switches and network
interface cards (NICs) are starting to be standardized
and deployed, maintaining high performance at the ever-
increasing data rates is vital for the success of NFV.

In an NFV service chain, packets move from one
physical or virtual server (hereafter simply called server)
to another to realize a programmable data plane.
The servers themselves are predominantly multi-core
machines. Different ways of structuring the NFs exist,
e.g., one per physical core or using multiple threads

 0

 1

 2

 3

OpenBox
11 Cores

Metron
4 Cores

Metron
11 Cores

La
te

nc
y

(m
s)

(a) Latency (ms).

 0
 10
 20
 30
 40

OpenBox
11 Cores

Metron
4 Cores

Metron
11 CoresTh

ro
ug

hp
ut

 (G
bp

s)

(b) Throughput (Gbps).

Figure 1: Thanks to zero inter-core transfers, Metron has
almost 3x better efficiency than the state of the art when
deeply inspecting (Firewall→DPI) traffic at 40 Gbps.

to leverage multiple cores within each NF. Network
functions range from simple stateless ones to complex,
such as deep packet inspection (DPI), and potentially
stateful (e.g., proxy) ones. Regardless of the deployment
model and NF types, every time a packet enters a server,
a fundamental problem occurs: how to locate the core
within the multi-core machine that is responsible for
handling this packet? This problem reoccurs every step
of the chain and can cause costly inter-core transfers.

Our work, Metron, eliminates unnecessary inter-core
transfers and in a 40-Gbps setup (Figure 1) achieves:
(i) about a factor of 3 better efficiency, (ii) lower,
predictable latency, and (iii) 2x higher throughput than
OpenBox [13], a state of the art NFV system.

1.1 NFV Processing Challenges
To identify the core that will process an incoming packet,
the NFV framework can typically only examine the
header fields. Here, there is a big mismatch between the
way modern servers are structured and the desired packet
dispatching functionality. Figure 2 shows three widely
used categories of packet processing models in NFV.

The first category (see Figure 2a), augments the weak
programmability of current NICs with a software layer
that acts as a programmable traffic dispatcher between
the hardware and the overlay NFs. E2 [59], with its
software component called SoftNIC [25], falls into this
category. SoftNIC requires at least one dedicated CPU
core for traffic dispatching and steering (see Figure 2a),
while the NFs run on other CPU cores. Earlier works,
such as ClickOS [49] and NetVM [29], also used
software switches on dedicated cores to dispatch packets
to virtual machines, but without the flexibility of E2.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 171

NF2
+ Tx

Rx +
NF1 Idle IdleNF1+

NF2+Rx Rx TxNF2Sw NF1 Idle

RSS

BypassBypass
NIC

User
space
Kernel Bypass

RSS

(a) Software switch
dispatching

(b) Pipeline dispatching
(with or without RSS)

(c) Rule or hash-based
hardware dispatching

Flow Director

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Out
In

Out
In

Out
InOr

2 inter-core transfers 1 inter-core transfer4 inter-core transfers

Hardware-assisted approachesSoftware-based approach

Figure 2: State of the art packet processing models either have too many inter-core packet transfers or load balancing
problems due to load imbalance and/or idle CPU cores. RSS stands for Receive Side Scaling.

Rather than having a shim layer between the NFs
and the NICs to select the next hop in a service chain,
the second category of packet processing models (see
Figure 2b) involves a pipeline of reception, processing,
and transmission threads, each on a different (set of)
core(s). If more than one reception core is required,
this model uses RSS [30] as described below. For
example, OpenNetVM [71], Flurries [70], and NFP [63]
(a parallel version of OpenNetVM) fall into this category.
Similar to E2, these works introduce programmability
by augmenting the reception and processing parts of the
pipeline with traffic steering abilities.

The last category of packet processing models relies
on two hardware features provided by a large fraction
of NIC vendors today. First, RSS uses a static function
to dispatch traffic to a set of CPU cores by hashing
the values of specific header fields. Second, NICs
can be programmed via a vendor specific “match-
action” API to dispatch traffic to specific cores (e.g.,
Intel’s Flow Director [31]). Unlike all previous models,
these approaches do not require dedicated dispatchers,
hence they offer higher performance. OpenBox 1 [13],
FastClick [6], SNF [36], and RouteBricks [18] use RSS,
while CoMb [62] uses Flow Director.

None of these schemes guarantee that the core that
receives the incoming packet will be the one processing
it. Flow hashing as in RSS can introduce serious load
imbalances under skewed (e.g., heavy flows with the
same hashes) workloads. Flow Director permits explicit
flow affinity, but suffers from the limited classification
capabilities of today’s commodity NICs. When there
is a mismatch, the packet is handed off to the correct
core. However, this requires transferring the packet via
DRAM or last level cache (LLC) to the target processing
core. This is a slow operation, as the LLC takes
several tens of cycles even for a cache hit! Our earlier
work [37] demonstrates that dramatic slowdowns occur

1Originally, OpenBox was built on top of Mininet and Click [42]
using Linux-based I/O. To fairly compare it against our work, we
accelerated OpenBox using FastClick’s DPDK engine and RSS [4].

due to this effect. In particular, an order of magnitude
better performance (both higher throughput and lower
latency variance) is possible if the correct core receives
the packet straight from the NIC, and the packet remains
in the core-specific L1 or L2 cache.

1.2 Metron Research Contributions
We present Metron, a system for NFV service chain
placement and request dispatching. To the best of our
knowledge, Metron is the first system that automatically
and dynamically leverages the joint features of the
network and server hardware to achieve high
performance. Metron eliminates inter-core transfers
(unlike recent work with 4 [59], 2 [70], or 1 [13]
inter-core transfers as shown in Figure 2), making it
possible to process packets potentially at L1 cache
speeds. Also, we overcome the load balancing issues
of “run-to-completion” approaches [18, 6, 13, 36], by
combining smart identification, tagging, and dispatching
techniques. We had to address a number of challenging
problems to realize our vision. First, making efficient
use of all the available hardware is hard because of the
in-machine request dispatching overheads (described
earlier). Second, discovering and dealing with the
heterogeneous network (switches, NICs) and server
hardware, in a generic way, is non-trivial from a
management perspective. Third, detecting and dealing
with load imbalances that reduce the performance of the
initially placed service chains requires rapid and stable
adaptation. We state our research contributions, while
dealing with the aforementioned challenges:
Contribution 1: We orchestrate programmable
network’s hardware to perform stateless processing
and packet classification. We deal with hardware
heterogeneity by building upon the unified management
abstractions of an industrial-grade SDN controller
(ONOS [7]). This allows Metron to leverage popular
management protocols, such as OpenFlow [50] and
P4 [11], and easily integrate future ones. We contributed
a new driver for programmable NICs and servers [35].

172 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Contribution 2: We overcome the network/server
architecture mismatch by instructing Metron to tag
packets as early as possible, enabling them to be quickly
and efficiently switched and dispatched throughout the
entire chain. To do so, Metron first uses SNF [36] to
identify the traffic classes of a service chain and produce
a synthesized NF that performs the equivalent work of
the entire chain (see §2.3.1). Then, Metron divides
the synthesized NF into stateless and stateful operations
(see §2.3.3) and instructs all available programmable
hardware (i.e., switches and NICs) to implement the
stateless operations, while dispatching incoming packets
to those CPU cores that execute their stateful operations.
Metron runs stateful NFs on general purpose servers,
while fully leveraging their generic processing power.
Contribution 3: We propose a way to efficiently
and quickly obtain the network state in order to
make fast placement decisions at low cost with high
accuracy (see §2.3.3). We devised a mechanism to
coordinate load balancing among servers and their CPU
cores, demonstrating that Metron provides comparable
elasticity with purely software-based approaches, but at
the true speed of the hardware (see §2.3.4).

Our evaluation shows that Metron realizes deep packet
inspection at 40 Gbps (§3.1.1) and stateful service chains
at the speed of a 100 GbE NIC on a single server (§3.1.2).
This results in up to 4.7x lower latency, up to 7.8x higher
throughput, and 2.75-6.5x better efficiency than the state
of the art. It is difficult to improve on this performance
unless we completely offload stateful chains to hardware,
which is impossible with today’s commodity hardware.

2 System Architecture
This section describes Metron’s system design, starting
with a high-level overview via an illustrative example
in §2.1. In §2.2 we describe the Metron data plane,
which is configured by the Metron controller (see §2.3).

2.1 Overview
To understand how Metron works, consider a simple
network consisting of two OpenFlow switches connected
to a server as shown at the bottom of Figure 3. Assume
that an operator wants to deploy a Firewall→DPI service
chain, as shown in Step 1 of Figure 3.

In Step 2, the Metron controller identifies the traffic
classes 2 of the service chain, by parsing the packet
processing graphs (each graph has a set of packet
processing elements as in [42, 59, 13]) of the input
NFs. In Step 3, Metron composes a single service
chain-level graph by synthesizing the read and write
operations of the individual graphs (see §2.3.1). Because
Metron detects the availability of resources (i.e., the

2Traffic class is a (set of) flow(s) treated identically by an NF chain.

(4.2, 8.2) Install software
operations

Metron Controller

Metron Agent

Firewall DPI

(2) Identify
traffic classes

(3) Synthesize HW read/write
operations and stateful SW
operations to run on servers

(1) Service chain description
from the application

Source
(5) Dispatch to
the correct core

(4.1, 8.1)
Install

OpenFlow rules
Core 1
Core 2

NFV Server
OpenFlow
Switches

(4) Install rules/software

(7) Split/merge
traffic classes to
rebalance load

(6) Collect
run-time load
statistics

Figure 3: Metron overview using an example NF chain.

OpenFlow switches) along the path to the server, it
associates stateless read and write operations with these
components and automatically translates these opera-
tions into OpenFlow rules (Step 4.1). The remaining,
potentially stateful, operations are translated into soft-
ware instructions targeting the Metron agent at the server
(Step 4.2). The key to Metron’s high performance
is exploiting hardware-based dispatching (Step 5) that
annotates the traffic classes matched by the OpenFlow
rules with tags that are subsequently matched by the
server’s NIC to identify the CPU core to execute the
stateful operations. In this way, Metron guarantees that
each traffic class will be processed by a single core,
thus eliminating costly inter-core communications. This
guarantee is maintained even when a CPU core becomes
overloaded (see §2.3.4) as the Metron agent reports run-
time statistics (Step 6) that allow the Metron controller
to rebalance the load (Step 7) by splitting traffic classes
into multiple groups that are dispatched to different cores
using different tags (Steps 8.1 and 8.2). We conclude this
overview with a survey of popular NFs; noting that in
Table 1 a substantial portion of these NFs can be (fully
or partially) offloaded to commodity hardware.

Table 1: Survey of popular NFs. The offloadability of
“Hybrid” NFs depends on the use case.

Network Function Offloadable
to Hardware

L2/L3 Switch, Router Yes
Firewall/Access Control List (ACL) Hybrid
Carrier Grade NA(P)T, IPv4 to IPv6 No

Broadband Remote Access Server Partially [17]
Evolved Packet Core Partially

Intrusion Detection/Prevention Partially [32]
Load Balancer Hybrid
Flow Monitor Yes

DDoS Detection/Prevention Yes [43]
Congestion Control (RED, ECN) Yes

Deep Packet Inspection (DPI) No
IP Security, Virtual Private Network Yes [61]

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 173

2.2 Metron Data Plane
The Metron data plane follows the master/slave approach
depicted in Figure 4. The master process is an
agent that interacts with (i) the underlying hardware
by establishing bindings with key components, such as
NICs, memory, and CPU cores and (ii) the Metron
controller through a dedicated channel.

Metron
Data Plane

Agent
Slaves

S2S1

Master Processing Blocks

Metron Controller

Monitor

C1 C2 ... CN

SK...

Tagging
Module

CPU NIC

Figure 4: The Metron data plane.

The key differentiator between Metron and earlier
NFV works is the tagging module shown in Figure 4.
This module exposes a map with tag types and values
that each NIC uses to interact with each CPU core of
a server; this map is advertised to the Metron controller.
The controller dynamically associates traffic classes with
specific tags in order to enforce a specific flow affinity,
thus controlling the distribution of the load. Most
importantly, this traffic steering mechanism is applied by
the hardware (i.e., NICs), hence Metron does not require
additional CPU cores (as E2 does) to perform this task,
thus packets are directly dispatched to the CPU core that
executes their specific packet processing graph. In §3,
we use a tagging scheme for trillions of service chains.

When the master boots, it configures the hardware and
registers with the controller by advertising the server’s
available resources and tags. Then, the master waits for
controller instructions. For example, the master executes
a deployment instruction by spawning a slave process
that is pinned to the requested core(s) and by passing the
processing graph to the slave. In the context of service
chaining, a Metron slave needs to execute multiple
processing graphs, each corresponding to a different
NF in the chain. Such graphs can be implemented
either in hardware or software. Earlier works implement
these graphs in software and use metadata to share
information among NFs and to define the next hop
in a chain. Although Metron supports this type of
software-based chaining, as shown in §1.1, this approach
introduces unnecessary overhead due to excessive inter-
core communication and potentially under-utilizes the
available hardware. Next, §2.3 explains how we
approach and solve this problem.

2.3 Metron Control Plane
Here, we describe the key design choices and properties
of the Metron controller.

2.3.1 Synthesis of Packet Processing Graphs
Given a set of input packet processing graphs, one
per NF, Metron combines them into a single service
chain graph. To ensure low latency, the Metron
controller adopts SNF [36]; a more aggressive variant of
OpenBox for merging packet processing graphs, which
provides a heuristic for solving the graph embedding
problem (see [68, 27, 15]) in the context of NFV.
Metron uses SNF to eliminate processing redundancy by
synthesizing those read and write operations that appear
in a service chain as an optimized equivalent packet
processing graph. SNF guarantees that each header field
is read/written only once, as a packet traverses the graph.

Another benefit of SNF’s integration into Metron is
the ability to encode all the individual traffic classes of
a service chain using a map of disjoint packet filters
(Φ) to a set of operations (Ω). In §2.3.4 we use this
feature to automatically scale packet processing in and
out, providing greater elasticity than available today.

2.3.2 Initial Resource Allocation
To allocate resources for the synthesized graph, we allow
application developers to input the CPU and network
load requirements of their service chains. Alternatively,
this information can be obtained by running a systematic
NFV profiler, such as SCC [37], or by using more generic
profilers, such as DProf [60]. Even in the absence
of accurate resource requirements, Metron dynamically
adapts to the input load as discussed in §2.3.4.

2.3.3 Placement
Metron needs to decide where to place the synthesized
packet processing graph. Such a decision is not simple,
because Metron not only considers servers but also the
network elements along the path to these servers.

Table 1 showed that a large fraction of NFs cannot
be implemented in commodity hardware today, mainly
because they require maintaining state. This means, that
the synthesized graph of such NFs cannot be completely
offloaded. To solve this, we designed a graph separation
module to traverse and split the synthesized graph into
two subgraphs. The first subgraph contains the packet
filters and operations that can be completely offloaded to
the network (we call this a stateless subgraph), while the
second (stateful) subgraph will be deployed on a server.
The average complexity of this task is O(logm), where
m is the number of vertices of the synthesized graph.

Given these two subgraphs, Metron needs to find a pair
of nodes (a server and a network element) that satisfy
two requirements: (i) the server has enough processing
capacity to accommodate the stateful subgraph and
(ii) the network element has enough capacity to store
the hardware instructions (e.g., rules) that encode the
stateless subgraph.

174 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Scalable Placement with Minimal Overhead
In large networks with a large number of servers and
switches, it is both expensive and risky to obtain load
information from all the nodes. This is expensive
because a large number of requests need to be sent
frequently and this would occupy bandwidth to each
node, generate costly interrupts to fetch the data, and
occupy additional bandwidth to return responses to the
controller. This is risky because the round-trip time
required to obtain the monitoring data is likely to
render this data stale, leading to herd behaviors and
suboptimal decisions. To make a placement decision
with minimal overhead, we use the simple, yet powerful,
opportunistic scheme of “the power of two random
choices” [52]. According to Mitzenmacher, this number
offers exponentially better load balancing than a single
random choice, while the additional gain of three random
choices only corresponds to a constant factor.

Metron queries the load of two randomly selected
servers and selects the least loaded of them, provided
that the necessary resource requirements (i.e., number
of NICs and CPU cores) can be met. If the first two
choices fail, then these two servers are removed from
the list and the process is repeated until a server is
found. Note that this scheme prioritizes deployments that
exhibit spatial correlation with respect to the processing
location because spreading this processing results in
lower performance, which is undesirable.

This server selection procedure also greatly simpli-
fies the second placement decision (i.e., the network
element(s) to offload processing to). Well designed
networks, such as datacenters, provision several fixed
shortest paths between ingress nodes (e.g., core switches)
and servers, where each server might be associated with
a single core switch [1, 2]. Given this, we find the most
suitable network element to offload the stateless graph,
using the following inputs: (i) the topology graph, (ii)
the server where the stateful subgraph will be deployed
(chosen by the server selection scheme), and (iii) the rule
capacity required to offload the stateless subgraph.
Handling Partial Offloading and Rule Priorities
Metron carefully treats the cases when (i) a stateless
subgraph contains rules with different priorities and
(ii) one or more rules of such a subgraph cannot be
offloaded to hardware. The latter can occur, e.g., due to
the hardware’s inability to match specific header fields.
In such a case, Metron will selectively offload only the
supported rules, while respecting rule priorities. To
exemplify these two cases, assume a service chain that
needs to be deployed on the topology shown in Figure 3.
Assume that this service chain implements four rules that
can be offloaded to the first programmable switch, while
the remaining part of the service chain will be deployed
on the server. If rule 3 cannot be offloaded and all of

the rules have the same priority, then Metron will offload
rules 1, 2, and 4. However, if these rules have, e.g.,
decreasing priorities (i.e., rule 3 has a higher priority than
rule 4), then Metron will offload only the first two rules,
to guarantee that the server applies rule 4 after rule 3.

2.3.4 Dynamic Scaling
In §2.3.1 we explained how Metron encodes a service
chain as a set of individual traffic classes, where each
traffic class is a set of packet filters mapped to write
operations. This abstraction gives great flexibility when
scaling a service chain in/out. As an example, when E2
detects an overloaded NF, it scales this NF by introducing
an additional (duplicate) instance of the entire NF and
then evenly splitting the flows across the two instances.
In contrast, Metron splits the traffic classes of this NF
across the two instances, such that each instance executes
the code responsible for each of its traffic classes (rather
than the code of the entire NF).

To trigger a scaling decision, Metron gathers port
statistics from key locations in the network in order to
detect load changes. Such a change results in Metron
asking for instantaneous CPU load and network statistics
from the affected service chains. Given this information,
Metron applies the following, globally orchestrated,
scaling strategy to react to load imbalances.
Traffic Class-level Scaling
We leverage a grouping technique when creating a
service chain’s traffic classes. A set of T traffic
classes {TC j

i | j ∈ [1,T]} that belong to service chain
i can be grouped together, if and only if their packet
filters {Φ

j
i | j ∈ [1,T]} are mapped to the same write

operations: ∀k, l ∈ [1,T],Ωk
i = Ωl

i
For example, an HTTP and an FTP traffic classes

heading to a NAT will both exhibit the same stateful
write operations from this NF, thus they can be grouped
together. The Metron controller has this information
available once the traffic classes of a service chain are
created (see §2.3.1). To dynamically scale out a group
of traffic classes, Metron needs to split this group into
two or more subgroups, where the first subgroup remains
on the same CPU core as the original group, while
the other subgroup(s) are deployed and scheduled on a
different (set of) CPU core(s). These new traffic classes
are annotated with different tags, such that the NIC at
the server can dispatch them to the appropriate CPU
cores. We call this mechanism “traffic class deflation” to
differentiate it from the opposite “traffic class inflation”
process, where two or more groups of traffic classes that
exhibit the same write operations are merged together,
when Metron detects low CPU utilization.

To simplify load balancing, while keeping a reason-
able degree of flexibility, the split and merge processes
always use a static factor of 2 (i.e., one group is split into

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 175

two, or two groups are merged into one). This decision
also minimizes the amount of state that Metron needs
to transfer across CPUs. A fully dynamic solution with
additional visibility into the load of each traffic class
would achieve better load distribution; however, such a
solution is considered impractical in the case of large
networks with potentially millions of traffic classes. Split
and merge operations may repeat until Metron can no
longer split/merge a traffic class. A single flow is an
example of non-splittable traffic class. The reaction time
of this strategy is mainly affected by the time required for
the controller to monitor and reconfigure the data plane.
In §3.2 we show how this strategy performs in practice.

Once an inflation/deflation decision has been made,
Metron needs to guarantee that the state of the affected
traffic classes (e.g., those being redirected to a different
CPU core in the case of inflation) will remain consistent.
To do so we adopt a scheme that quickly duplicates the
stateful tables of a group of traffic classes across the
involved CPU cores, when inflation occurs. Similarly,
we merge the stateful tables of two groups during the
deflation process. Although this scheme introduces
some redundancy (entries of migrated traffic classes
will still occupy space in the memory of the previous
CPU core until they expire), it offers a quick solution
to a problem that is beyond the scope of this work.
StateAlyzr [39], OpenNF [23], or the work by Olteanu
and Raiciu [54] could be integrated into Metron to
provide more efficient state management solutions.
Alternatively, state management could be delegated to a
remote distributed store as per Kablan, et al. [33].

2.3.5 Integrating Blackbox NFs
Some NF providers might not wish to disclose the
source code of their NFs. In this case we offer two
integration strategies: (i) partially synthesize a service
chain, while using DPDK ring buffers to interconnect
synthesized NFs with blackbox NFs and (ii) input only
an NF configuration (e.g., DPI rules, omitting DPI logic)
using Metron’s high-level API and let Metron use its own
data plane elements to realize this NF (see §3.1).

2.4 Routing (Updates) and Failures
To explain how Metron’s routing and dispatching works
and how Metron reacts to routing updates and failures,
we use the example shown in Figure 5. We assume
a software-defined 3 network on which the network
operator has deployed a routing application that routes
HTTP traffic 4 between source and destination (through
the path s1→s3). The routing is done using the
information shown within green dashed-dotted outlines.

3Metron can also operate in legacy networks by adding one or more
programmable switches before the NFV servers.

4We assume only HTTP traffic to keep the example simple.

Global Controller

NFV Server (srv1)

Advertised OF Rules on s1 and s3
Rs1: match HTTP_RULE action outPort 1
Rs3: match HTTP_RULE action outPort 2

Source

Core2:
Core1:

Metron NFV Controller Routing App

s1

s2

s3

Initial HTTP Path (Routing):

0

1

2

0 1

0 2

Metron Updates OF Rules on s1
R1’s1: match HTTP_RULE && ipSrcNet 10.0.0.0/8
 action tag X, outPort 1
R2’s1: match HTTP_RULE action tag Y, outPort 1

Metron HTTP Service Chain
 IP src in 10.0.0.0/8 → Monitor
 Remaining HTTP Traffic→IDS

Metron Updates OF Rules on s3
R1’s3: match tags X,Y && inPort 0 action outPort 3
R2’s3: match inPort 3 action untag, outPort 2

Metron Installs NIC Rules on srv1
R1’NIC: match tag X action Core 1
R2’NIC: match tag Y action Core 2

NIC

Advertised Paths to srv1
P1: s1→s3-----,,-1, (primary)
P2: s1→s2→s3 (secondary)

 HTTP_RULE: ethType IPv4 &&
 proto TCP &&

 src/dstPort 80

Metron Signaling:

1
Destination

3

Updated HTTP Path--(Metron):

Updated Metron Operations:
Initial Routing Operations:

Metron HTTP Policy:

Figure 5: Metron’s routing & CPU dispatching scheme.

A policy change forces the network operator to further
process the HTTP traffic before it reaches its destination.
Thus, she deploys an HTTP service chain (described by
the top box with dotted outline in Figure 5) using Metron.
When Metron boots it obtains the current routing
policy and paths for the HTTP traffic, as advertised by
the routing application. Next, the Metron controller
performs a set of updates (see the left-side boxes with
solid outlines, where OF stands for OpenFlow). The
updates focus on two aspects: (i) to extend the existing
HTTP rules (i.e., Rs1 and Rs3 at the bottom right box
with dashed-dotted outline) with rules that also perform
part of the service chain’s operations (i.e., R1′s1 and R2′s1)
and (ii) to tag the HTTP traffic classes to allow the NFV
server to dispatch them to different CPU cores.

In this example, Metron identifies two traffic classes
and tags them with tags X and Y. The tagging is applied
by the first switch (i.e., s1 as explained in §2.3.3) using
the rules R1′s1 and R2′s1 (top left box with solid outline).
The next switch (s3) uses the tags (i.e., rule R1′s3) to
redirect the HTTP traffic classes to the NFV server,
where Metron has installed NIC rules (i.e., R1′NIC and
R2′NIC) to dispatch packets with tags X and Y to CPU
cores 1 and 2 respectively. The first core executes a
monitoring NF, while the second core runs an intrusion
detection system (IDS) NF. After traversing the service
chain, the packets return to s3, where another Metron
rule (i.e., R2′s3) redirects them to their destination.

If not carefully addressed, a routing change or failure
might introduce inconsistencies. Metron avoids these
problems by using the paths to the NFV server (i.e.,
P1 and P2), as advertised by the routing application, to
precompute: (i) alternative switches that can be used
to offload part of a service chain’s packet processing
operations (see §2.3.3) and (ii) the actual rules to be
installed in these switches. In this example, a routing
change from path P1 to P2 (due to a routing update or

176 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a link failure between s1 and s3) will result in Metron
installing 2 additional rules in s2 (these rules follow same
logic with the rules in s3). Metron also updates the first
rule of s3 by changing the inPort value to 1 rather than 0.

Backup configurations are kept in Metron’s distributed
store and are replicated across all the Metron controller
instances in order to maintain a global network view.
When a routing change or failure occurs, Metron applies
the appropriate backup configuration. In §3.3 we show
that Metron can install 1000 rules in less than 200 ms,
hence quickly adapting to routing changes and failures,
even those requiring a large number of rule updates.

3 Evaluation
Implementation: We built the Metron controller on
top of ONOS [7, 56], an open source, industrial-grade
network operating system that is designed to scale well.
Key to our decision was the fact that ONOS exposes
unified abstractions for a large variety of network drivers
that cover popular network configuration protocols, such
as OpenFlow [50], P4 [11], NETCONF/YANG [20, 10],
SNMP [14], and REST. We extended ONOS with a
new driver that remotely monitors and configures NFV
servers and their NICs. This driver is available at [35].

Metron’s data plane extends FastClick [6]. We use the
Virtual Machine Device Queues (VMDq) of DPDK [19]
17.08 to implement the hardware dispatching based on
the values of the destination MAC address or VLAN ID
fields. Our prototype (available at [5]) uses the former
header field as a filter, because the large address space
of a MAC address provides unique tags for trillions 5 of
service chains. To scale to 100 Gbps, Metron instructs
the hardware classifier of a Mellanox NIC (§3.1.2).
Testbed: Our testbed consists of 3 identical servers,
each with a dual socket 16-core IntelrXeonr CPU E5-
2667 v3 clocked at 3.20 GHz. The cache sizes are: 2x32
KB L1 (instruction and data caches), 256 KB L2, and
20 MB L3. Hyper-threading is disabled and the OS is
the Ubuntu 16.04.2 distribution with Linux kernel v.4.4.
Each server has 2 dual-port 10 GbE Intel 82599 NICs.

We deploy a testbed with a NoviFlow 1132 OpenFlow
switch [53] with firmware version NW400.2.2 and we
attach 2 servers to this switch. The 4 ports of the first
server are connected to the first 4 ports of the switch
to inject traffic at 40 Gbps. Then, ports 5-8 of the
switch are connected to the 4 ports of the second server,
where traffic is processed by the NFV service chains
being tested and sent back to the origin server through
the switch. The last server is used to run the Metron
controller. In §3.3, we study how switch diversity
might affect Metron, by comparing the performance and
capacity of a NoviFlow 1132 switch with an HP 5130 EI

5A few thousands of tags were enough to conduct the study in §3.

Switch [28] with software version S5130-3106, and the
popular Open vSwitch [57] (OVS) software switch.

Each experiment was conducted 10 times and we
report the 10th, 50th (i.e., median), and 90th percentiles.

3.1 Metron Large-Scale Deployment
In this section we test Metron’s performance at scale,
focusing on two aspects: First, we stress Metron’s data
plane performance using complex service chains with a
large number of deeply-inspected (§3.1.1) and stateful
(§3.1.2) traffic classes at 40 and 100 Gbps respectively.
In §3.1.3 we test Metron’s placement on a set of
topologies with a large number of nodes, on which we
deploy hundreds to thousands of service chains.

3.1.1 Deep Packet Inspection at 40 Gbps
To test the overall system performance at scale, we
deploy a service chain of a campus firewall, followed by
a DPI. The firewall implements access control using a list
of 1000 rules, derived from an actual campus trace. The
output of the firewall is sent to a DPI NF that uses a set
of regular expressions similar to Snort (see [13]).

We compare Metron against two state of the art
systems: (i) an accelerated version of OpenBox based
on RSS and (ii) an emulated version of E2. In the
latter case, called “Pipeline Dispatcher”, we emulate
E2’s SoftNIC by using a dedicated CPU core (i.e., core
1) that dispatches packets to the remaining CPU cores of
the server (i.e., 2-16), where the NFs of the service chain
are executed. This is the reason that the graphs of the
emulated E2 in Figures 6 and 7 start from core two.

We injected a campus trace, obtained from University
of Liège, that exercises all the rules of the firewall at
40 Gbps and measured the performance of the three
approaches. Figure 6 visualizes the results. First, we
deploy only the firewall NF of this service chain to
quantify the overhead of running this NF in software,
as compared to an offloaded firewall (i.e., Metron). To
fairly compare Metron against the other two approaches,
we start a simple forwarding NF in the server, such that
all packets follow the exact same path (generator, switch,
server, switch, and sink) in all three experiments.

Figure 6a shows that OpenBox and the emulated E2
can realize this large firewall at line-rate. However, this is
only possible if more than half of the server’s CPU cores
are utilized. Specifically, OpenBox requires 9 cores,
while the emulated E2 requires 11 cores. In contrast,
Metron completely offloads the firewall to the switch,
hence easily realizing its ACL at line-rate; thus one core
of the server is enough to achieve maximum throughput.

Looking at the latency of the three approaches in
Figure 6b, it is evident that software-based dispatching
(yellow solid line with triangles) incurs a large
amount of unnecessary latency. Hardware dispatching

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 177

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

 FW - Metron
 FW - OpenBox RSS
 FW - Pipeline Dispatcher

 FW + DPI - Metron
 FW + DPI - OpenBox RSS
 FW + DPI - Pipeline Dispatcher

(a) Throughput (Gbps) versus number of cores.

 1

 4

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

La
te

nc
y

(m
s)

Number of CPU Cores

 FW - Metron
 FW - OpenBox RSS
 FW - Pipeline Dispatcher
 FW + DPI - Metron
 FW + DPI - OpenBox RSS
 FW + DPI - Pipeline Dispatcher

(b) Latency (ms) on a logarithmic scale versus number of cores.

Figure 6: Performance of a campus firewall with 1000 rules followed by a DPI at 40 Gbps, using: (i) Metron, (ii) an
accelerated version of OpenBox using RSS, and (iii) a software-based dispatcher emulating E2.

using RSS (green solid line with circles) achieves
substantially lower latency because it involves less
inter-core communication. However, since the firewall
executes heavy classification computations in software,
OpenBox still exhibits high latency that cannot be
decreased by simply increasing the number of cores.
Specifically, using 16 cores has comparable latency to 4
cores. In contrast, Metron achieves nearly constant low
latency (red solid line with squares) by exploiting the
switch’s ability to match a large number of rules at line-
rate. This latency is 2.9-4.7x lower than the latency of
the OpenBox and emulated E2 respectively, when each
system uses one core for processing the NF (emulated
E2 requires 2 cores in this case). At the full capacity
of the server, the latency among the three systems is
comparable; but Metron outperforms the emulated E2
and OpenBox by 30% and 19% respectively.

Next, we chain this firewall with a DPI NF in order
to realize the entire service chain. This chaining
further pushes the performance limits of the three
approaches as shown by the dashed lines in Figure 6.
In this case, Metron implements the DPI in software.
First, we observe that even at the full capacity of
the server, OpenBox and the emulated E2 can only
achieve at most 25 Gbps. This performance is more
than sufficient for a 10 Gbps deployment, hence some
operators might not need the complex machinery
of Metron. However, several studies indicate that
large networks have already migrated from 10 to 40
Gbps deployments [16], while 100 Gbps networks are
increasingly gaining traction [67]. In these higher data
rate environments, these alternatives would require more
than 16 CPU cores (and potentially more than one
machine) to have sufficient throughput, and are not
guaranteed to scale because of the heavy processing
requirements of large service chains.

Metron exploits the joint network and server capacity
to scale even complex NFs, such as DPI, at line-rate (red

dashed line with squares in Figure 6a). Most importantly,
Metron requires only 10 CPU cores in a single machine
to achieve this result, thus substantially shifting the
scaling point for large service chains. The latency results
further highlight Metron’s abilities. With 16 CPU cores,
the Metron server deeply inspects all packets for this
service chain at the cost of only 15.5% higher latency
than the latency required to realize only the firewall. At
the same time, OpenBox and the emulated E2 incur 35-
97% more latency than Metron, while achieving almost
half of Metron’s throughput. This difference increases
rapidly when fewer CPU cores are utilized. For example,
when each system uses one CPU core Metron achieves
75% lower latency than OpenBox and 358% lower
latency than the emulated E2 respectively.

3.1.2 Stateful Service Chaining at 100 Gbps
In this section we further stress the performance of
Metron, OpenBox, and the emulated E2 systems by
conducting an experiment at 100 Gbps. To achieve this
new performance target we use a different testbed. We
equipped two of our servers with a 100 GbE Mellanox
ConnectX-4 MT27700 card and connected them back-
to-back. The first server acts as a traffic generator and
receiver, while the second server is the device under test.

We analyzed 4 million packets from the campus
trace used in §3.1.1 and found 3117 distinct destination
IP addresses. Then, we implemented a standards-
compliant router and populated its routing table with
these addresses. The router was chained with two
stateful NFs: a NAPT and a load balancer (LB) that
implements a flow-based round robin policy. In this
scenario, Metron can only offload the routing table of
the router to the Mellanox NIC using DPDK’s flow
director. The remaining functions of the router (e.g.,
ARP handling, IP fragmentation, TTL decrement, etc.)
together with the stateful NFs (i.e., NAPT and LB) are
executed in software.

178 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

Forwarding RSS
Metron

OpenBox RSS
Pipeline Dispatcher

(a) Comparison of: (i) Metron, (ii) OpenBox with RSS, and (iii) a
software-based dispatcher emulating E2. “Forwarding RSS” shows the
forwarding speed of the server (i.e., no service chain).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

Metron
Metron w/o HW Offl. (O)
Metron w/o HW Disp. (D)
Metron w/o O and w/o D

(b) Metron’s hardware offloading (O) and hardware dispatching (D)
contributions to the overall system’s performance. The word "without"
is abbreviated as "w/o".

Figure 7: Throughput (Gbps) of a stateful service chain (Router→NAPT→LB) at 100 Gbps.

Metron vs. State of the art: The throughput achieved
by the three systems is shown in Figure 7a. For
comparison, we also show the throughput of the server
when a simple RSS-assisted forwarding NF is used to
send traffic back to its origin. These results show
a slow but linear increase of the throughput with an
increasing number of CPU cores for both OpenBox and
the emulated E2 approaches. Using linear regression on
the medians between 1 and 12 cores (the emulated E2
starts from 2 cores), we found that the throughput of
OpenBox increases by 5.37 Gbps with each additional
core, while the emulated E2 increased by 4.91 Gbps
per core. However, in both cases using more than 12
CPU cores does not bring further performance gains.
Specifically, the throughput of OpenBox plateaus around
67 Gbps, while the performance of the emulated E2
drops (from 53 to 41 Gbps). Moreover, with 13-16 cores,
the latency of the two systems increases (up to 56% for
OpenBox and up to 25% for the emulated E2); we omit
the latency graph due to space limitations.

In contrast, Metron achieves 75 Gbps throughput using
only a small fraction of the server’s CPU cores. Key
to this performance is Metron’s hardware dispatcher in
the NIC, which offers two advantages: (i) it saves CPU
cycles by performing the lookup operations of the router
and (ii) it load balances the traffic classes matched by
the hardware classifier across the available CPU cores.
Exploiting these advantages allows Metron (i.e., red
squares in Figure 7) to quickly match the performance
of the “Forwarding RSS” case (i.e., black points in
Figure 7a) using only two cores, despite running several
stateful operations (i.e., NAPT and LB). Moreover,
according to a performance report by Mellanox [51], our
NIC achieves line-rate throughput with frames greater
than 512 bytes. Therefore, the 75 Gbps limit reached in
this experiment with the campus trace is mainly due to
the large number of small frames (26.9% of the frames
are smaller than 100 bytes, while 11.8% of them are in

(100, 500]). Finally, Metron’s latency plateaus at a sub-
millisecond level, which is 21-38% lower than the lowest
latency achieved by the other two systems.
Dissecting Metron’s Performance: To quantify the
factors that contribute to Metron’s high performance,
we conducted an additional experiment using the same
testbed, input trace, and service chain. The results
are depicted in Figure 7b. Note that the red curves
(i.e., Metron’s throughput) in Figures 7a and 7b are
identical. The purpose of Figure 7b is to showcase
what performance penalties are expected when one starts
removing our key contributions from Metron, as follows:

1. Metron without hardware offloading (i.e., blue
triangles in Figure 7b). Hardware offloading
corresponds to Contribution 1 in §1.2;

2. Metron without hardware dispatching to the correct
core (purple rhombs in Figure 7b). Accurate
dispatching corresponds to Contribution 2 in §1.2;

3. Metron without both of the two contributions (gray
stars in Figure 7b).

Comparing “Metron” vs. “Metron w/o HW Offl.”
quantifies the benefits of Metron’s hardware offloading
feature. In the “Metron w/o HW Offl.” case input
packets are still dispatched to the correct core (using
the Flow Director component of the Mellanox NIC),
but each core executes the entire service chain logic in
software. The throughput achieved in this case (i.e., blue
triangles in Figure 7b) is comparable with the throughput
of the “OpenBox RSS” case shown in Figure 7a. A
key difference between these cases is that “Metron w/o
HW Offl.” performs the routing table lookup twice;
once in the NIC for traffic dispatching and the second in
software (to disable hardware offloading), after packets
are dispatched to the correct core. In contrast, OpenBox
uses RSS for dispatching and implements the routing
table only once in software. Neither of these cases
exploits the available capacity of the NIC to offload the
routing operations, thus costing CPU cycles.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 179

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Fat-tree k=4
16 Servers
200 Chains

Fat-tree k=8
128 Servers
1000 Chains

Fat-tree k=16
1024 Servers
10000 Chains

%
 r

el
at

iv
e

to
 U

ni
fo

rm
 P

la
ce

m
en

t

Uniform Metron Placements
Nearly-Uniform Metron Placements

Remaining Metron Placements

(a) Metron’s placement relative to the uniform placement policy.
Metron makes uniform or nearly uniform (with the least distance from
uniform) placement decisions with ∼90% median probability.

100

102

104

106

108

Fat-tree k=4
16 Servers
200 Chains

Fat-tree k=8
128 Servers
1000 Chains

Fat-tree k=16
1024 Servers
10000 ChainsB

an
dw

id
th

 R
eq

ui
re

m
en

ts
 (M

es
sa

ge
s) Metron Placement

Uniform Placement

(b) Bandwidth requirements on a logarithmic scale with increasing
number of servers and service chains. Metron requires orders of
magnitude less bandwidth than the uniform placement policy.

Figure 8: Placement performance and bandwidth requirements on three fat-tree topologies of increasing number of
servers (i.e., 16, 128, and 1024), when using (i) Metron or (ii) the uniform (equal number of CPU cores per server)
placement scheme to deploy a large number of service chains.

Next, the comparison between “Metron” and “Metron
w/o HW Disp.” cases highlights the cost of inter-core
communication. “Metron w/o HW Disp.” implements
the routing lookup in hardware (i.e., hardware offloading
is enabled), hence reducing the processing requirements
of the software part of the service chain. However, this
case exhibits a serious bottleneck compared to Metron,
as it requires a software component to (re-)classify input
packets to decide which CPU core processes them (i.e.,
software dispatching similar to the emulated E2 case in
Figure 7a). As shown in Figure 7, both “Metron w/o
HW Disp.” and the emulated E2 cases exhibit similar
performance degradation as their software dispatcher
communicates with an increasing number of CPU cores.
This degradation appears earlier for “Metron w/o HW
Disp.” (i.e., after 5 cores versus 12 cores for the emulated
E2 case). This is because “Metron w/o HW Disp.”
offloads part of the service chain’s processing to the NIC,
hence the inter-core communication bottleneck appears
sooner. In contrast, Metron exploits the ability of the
NIC to directly dispatch traffic to the correct core, thus
avoiding the need for a software dispatcher and the
concomitant inter-core communication.

Finally, the “Metron w/o O and w/o D” case in
Figure 7b shows the throughput attainable when both
hardware offloading and accurate dispatching features
are disabled. In this case, input packets are always
sent to an “incorrect” core (specifically the core where
the software dispatcher runs) and the entire service
chain runs in software. The inter-core communication
bottleneck manifests itself once again, this time after
using 9 or more cores.
Key Outcome: As explained in §2, Metron’s ability to
scale complex (i.e., DPI) and stateful (i.e., NAPT and
LB) NFs is due to the way that the incoming traffic
classes are identified, tagged, and dispatched to the CPU
cores in a load balanced fashion. Metron’s ability to

realize these service chains at the NIC’s hardware limit
with a single server is an important achievement.

3.1.3 Metron’s Placement in Large Networks
To verify that the performance of our placement scheme
(see §2.3.3) can be generalized to real and potentially
large networks, we conducted experiments that emulate
Metron’s service chain placement in datacenters, using
fat-tree topologies of increasing sizes (see Figure 8).
Our analytic study shows how close Metron’s placement
decisions are compared to uniform placement and what
bandwidth requirements each approach demands for a
large number of service chains. Note that the uniform
placement allocates equal number of CPUs from the
available servers, while a nearly uniform placement
exhibits the least distance from the uniform. Note
also that our approach is not restricted to datacenter
topologies; Metron’s placement is topology-agnostic.

Figure 8a compares Metron’s placement with the
uniform placement policies with increasing number of
servers (i.e., 16, 128, and 1024) and service chains (i.e.,
200, 1000, and 10000). The first of each set of bars
indicate that Metron’s placement decisions match the
uniform ones with ∼40% median probability, regardless
of the network’s size and number of service chains to be
placed. For 16 servers, the upper percentile indicates that
Metron makes a uniform decision with 70% probability.
According to the other two sets of bars, most of the
remaining decisions made by Metron fall very close to
uniform (i.e., middle set of bars), confirming that our
placement policy makes reasonably balanced decisions,
despite its “limited” randomness.

Figure 8b shows the bandwidth savings of our
placement policy, compared to the uniform one. To make
a uniform placement decision, a controller has to query
the CPU availability from all the available servers, thus,
incurring a communication overhead proportional to the

180 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

network size (which quickly becomes infeasible for large
networks). This overhead is shown by the second of
each set of bars in Figure 8b. To reduce this overhead,
we trade-off some accuracy in placement to minimize
Metron’s bandwidth requirements. The first of each set
of bars in Figure 8b shows that Metron requires orders
of magnitude less bandwidth than the uniform policy to
place a large number of service chains on these networks.
An indirect (but important) benefit of our low overhead
placement is that, by querying only 2 servers at a time,
we generate a minimal number of events at the servers,
hence preserving processing cycles for other tasks.

3.2 Metron’s Dynamic Scaling
Next, we evaluate Metron’s dynamic scaling strategy
(introduced in §2.3.4) using a scenario with a service
chain configuration taken from an Internet Service
Provider (ISP) [65], targeting a 10 Gbps network. The
service chain consists of an ACL with 725 rules,
followed by a NAPT gateway that interconnects the
ISP with the Internet while performing source and
destination address and port translation & routing.

We deployed this service chain on a single server
connected to our switch, to which a real trace was
injected at variable bitrates. The solid curve in Figure 9
shows the throughput corresponding to the rate at which
the trace was injected, while the dashed curve depicts the
throughput achieved by Metron. To highlight Metron’s
ability to provision resources on demand, we plot the
number of cores allocated by Metron over the course of
the experiment (yellow circles and right-hand scale).

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120 130
 0

 2

 4

 6

 8

 10

Th
ro

ug
hp

ut
 (G

bp
s)

A
llocated N

um
ber of C

P
U

 C
ores

Time (seconds)

Input Traffic
Metron Throughput

Metron CPU Allocation

Figure 9: Metron under dynamic workload. Blue arrows
indicate load spikes throughout the experiment.

The experiment begins with an allocation of 4 CPU
cores (precalculated based upon the initial injection rate).
Following this, the Metron controller makes dynamic
decisions based on monitoring data gathered from the
data plane and dynamically modifies the mapping of
traffic classes to tags (thus affecting load distribution). In
this experiment Metron requires between 1 and 6 CPU
cores to accommodate the input traffic. In some cases,
Metron fails to immediately adapt to sudden spikes,
thus we observe a slight lag in Metron’s reactions (e.g.,

as shown in the interval between 84 and 90 seconds).
This is because our scaling approach involves interaction
between the controller and the involved nodes (i.e., the
server and the switch) in order to establish the CPU
affinity of the traffic classes. To avoid overloading the
controller, this interaction occurs every 500 ms, which
contributes to the observed lag. However, Metron’s
throughput is not substantially affected by this lag (the
blue arrows indicate the upward spikes in load at 10,
17, 42, 70, and 97 seconds). As we confirm in §3.3.2,
Metron is able to quickly install the necessary rules to
enforce the traffic class affinity.

3.3 Deployment Micro-benchmarks
We benchmark how quickly Metron carries out important
control and data plane tasks, such as hardware and
software configuration, in a fully automated fashion.

3.3.1 Impact of Increasing # of Traffic Classes
To study the impact of increasingly complex service
chains on Metron’s deployment latency, we use a firewall
with an increasing number of rules (up to 4000, derived
from actual ISP firewalls [65]). We measure the time
between when a request to deploy this NF is issued by
an application and the actual NF deployment either in
hardware or in software.

In either case, the first task of Metron is to construct
and synthesize the packet processing graph of the service
chain (as per §2.3.1), as depicted in the first of each
group of bars (in black) in Figures 10a and 10b. This
latency is the dominant latency in both hardware and
software-based deployments (see the last set of bars in
each figure). Fortunately, this is a one time overhead for
each unique service chain; considering the importance of
generating such an optimized processing graph, Metron
precomputes and stores the synthesized graph for a given
input in its distributed database.

Apart from this fixed latency operation, a purely
hardware-based deployment, requires two additional
operations, as shown in Figure 10a. The first operation
is the automatic translation of the firewall’s synthesized
packet processing graph into hardware instructions
targeting our OpenFlow switch (the second bar in
each set of bars). This operation involves building a
classification tree that encodes all the conditions of the
firewall rules, therefore it has logarithmic complexity
with the number of traffic classes. For example, under
the specified experimental conditions, the median time
to encode a large firewall with 4000 traffic classes is
around 500 ms. The last operation in the hardware-based
deployment is the rule installation in the OpenFlow
switch (the third bar in each set of bars in Figure 10a).
Note that even entry-level OpenFlow switches, such as
the one used, can install thousands of rules per second;

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 181

 0.1

 1

 10

 100

 1000

 10000

5 10 100 500 1000 2000 3000 4000

La
te

nc
y

(m
s)

Number of Traffic Classes

Graph Construction + Synthesis
Rule Translation

 Rule Installation - NoviFlow 1132
Total Hardware Deployment

(a) Hardware-based deployment on a NoviFlow 1132 switch.

 0.1

 1

 10

 100

 1000

 10000

5 10 100 500 1000 2000 3000 4000

La
te

nc
y

(m
s)

Number of Traffic Classes

Graph Construction + Synthesis
Server Configuration

Total Software Deployment

(b) Software-based deployment on a 16-core Intel Xeon E5-2667.

Figure 10: Latency (ms) on a logarithmic scale for different Metron deployments with increasing complexity.

a more thorough study is provided in §3.3.2, where we
discuss the effects of hardware diversity on Metron.

For a purely software-based deployment of this same
service chain, we consider the time following graph
construction and synthesis until the chain is deployed
at a designated server. This latency is labeled “Server
Configuration” in Figure 10b. Note that it takes longer
per rule than for the corresponding hardware-based case
for a small number of traffic classes because there is a
fixed overhead to start a secondary DPDK process (i.e., a
Metron slave) at the server. This overhead is ∼180 ms as
can be seen from the case of 5 traffic classes. However,
the (median) deployment time is 0.471 ms/rule (versus
0.411 ms/rule for the hardware case shown in Table 2),
hence a large firewall deployment takes a comparable
amount of time either in software or hardware.

Overall, apart from the one-time precomputation
overhead for constructing and synthesizing a service
chain, the worst case deployment time of a firewall with
4000 traffic classes is less than 1200 ms, whereas only
100-200 ms is required for hundreds of traffic classes.

3.3.2 Diversity of Network Elements’ Capabilities
Network elements from different vendors and of different
price levels might offer different possibilities for NFV
offloading. In this section we repeat the hardware-based
deployment shown in Figure 10a, where we replace
the NoviFlow switch with either a hybrid HP 5130 El
hardware switch or the software-based OVS. Table 2
summarizes the results along with key characteristics
of these switches, as they affect Metron’s deployment
choices and performance.

The NoviFlow switch contains 55 OpenFlow tables,
each with a capacity of 4096 entries (i.e., 225280 rules
in total), while the HP switch offers a single OpenFlow
table with either 512/256 entries for IPv4/IPv6-based
rules or 16384 entries for L2 rules. The capacity of OVS
depends on the amount of memory that the host machine
provides; modern servers provide ample DRAM capacity
to store millions of rules.

The median rule installation speed of the NoviFlow
switch is substantially higher than HP (0.411 vs. 50.25
ms/rule), with the difference being more than two orders
of magnitude. However, this difference is partially
reflected in the price difference between the two switches
(approximately US$ 15000 vs. US$ 2000). OVS is open
source, achieves lower data plane performance, but
outperforms both hardware-based switches in terms of
median rule installation speed (0.263 ms/rule), when
running on the processor described for the testbed in §3.
This finding is confirmed by earlier studies [45, 46],
where the rule installation speed varied especially when
priorities are involved. In our test, Metron installed rules
of the same priority and we observed low variance.

In summary, today’s OpenFlow switches provide
Metron with fast median rule installation speed and
sufficient capacity at different price/performance levels.

Table 2: Comparison of 3 switches used by Metron. The
last column states their median rule installation speed.

Switch Capacity
(Rules)

Speed
(ms/rule)Model Type

NoviFlow
1132 [53]

HW 225280 0.411

HP 5130
El [28]

HW
256/512
/16384

50.250

OVS [57]
v2.5.2

SW
Memory
-bound

0.263

4 Related Work
Here, we discuss related efforts beyond the work
mentioned inline throughout this paper.
NFV Management: E2 [59] and Metron manage
service chains mapped to clusters of servers
interconnected via programmable switches. E2 only
partially exploits OpenFlow switches to perform traffic
steering. In contrast, Metron fully exploits the network
(i.e., OpenFlow switches and NICs) to both steer traffic

182 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and to offload and load balance NFV service chains,
while deliberately avoiding E2’s inter-core transfers.
NFV Consolidation: OpenBox [13] merges similar
packet processing elements into one, thus reducing
redundancy. SNF [36] eliminates processing redundancy
by synthesizing multiple NFs as an optimized equivalent
NF. Slick [3] and CoMb [62] propose NF consolidation
schemes, although these schemes reside higher in the
network stack. We integrated SNF into Metron, since
this is the most extensive consolidation scheme to date.
Metron effectively coordinates these optimized pipelines
at a large-scale, while exploiting the hardware.
Hardware Programmability: During the last decade,
there has been a large effort to increase hardware
programmability. OpenFlow [50] paved the way by
enriching the programmability of switches using simple
match-action rules. Increasingly, NICs are equipped with
hardware components, such as RSS and Flow Director,
for dispatching packets from NIC to CPU core.

In an attempt to overcome the static nature of the
above solutions, more flexible programmability models
have emerged. RMT [12] and its successor P4 [11]
are prime examples of protocol-independent packet
processors, while OpenState [8] and OPP [9] showed
how OpenFlow can become stateful with minimal but
essential modifications. FlexNIC [38] proposed a model
for additional programmability in future NICs.

All these works have made phenomenal progress
towards exposing hardware configuration knobs. Metron
acts as an umbrella to foster the integration of this
diverse set of programmable devices into a common
management plane. In fact, our prototype integrates
OpenFlow switches, DPDK-compatible NICs, and
servers. Thanks to ONOS’s abstractions, additional
network drivers can be easily integrated.
Hardware Offloading: Raumer et al. [61] offloaded
the cryptographic function of a virtual private network
(VPN) gateway into commodity NICs, for increased
performance. SwitchKV [48] offloads key-value
stores into OpenFlow switches. PacketShader [26],
Kargus [32], NBA [41], and APUNet [24] take advantage
of inexpensive but powerful graphical processing units
to offload and accelerate packet processing. We envision
these works as future components of Metron to extend its
offloading abilities.

ClickNP [47] showed how to achieve high
performance packet processing by completely migrating
NFV into reconfigurable, but specialized hardware. In
contrast, our philosophy is to explore the boundaries
of commodity hardware. Therefore, Metron performs
stateful processing in software but combines it with
smart offloading using commodity hardware.
Server-level Solutions: Flurries [70] builds atop
OpenNetVM [71] to provide software-based service

chains on a per-flow basis, while ClickOS [49] and
NetVM [29] offer NFs running in VMs. NFP [63]
extends OpenNetVM to allow NFs in a service chain
to be executed in parallel. Dysco [69] proposes a
distributed protocol for steering traffic across the NFs
of a service chain. NFVnice [44] and SCC [37,
34] are efficient NFV schedulers. Click-based [42]
approaches have proposed techniques to exploit multi-
core architectures [6, 64, 40]. None of these works
have explored the possibility of using hardware to
offload parts of a service chain, nor do they support our
optimized flow affinity approach.
Industrial Efforts: European Telecommunications
Standards Institute (ETSI) has been driving NFV
standardization during the last 5 years [21]. ETSI’s
specialized group [22] uses OpenStack [58] as an open
implementation of the current NFV standards, based on
a generic framework for managing compute, storage,
and network resources. CORD [55] and OPNFV [66]
also use OpenStack. The former re-architects the
central office as a datacenter, while the latter facilitates
the interoperability of NFV components across various
open source ecosystems. Metron and CORD share
common controller abstractions (i.e., ONOS); however,
we avoid OpenStack’s virtualization by integrating
native, DPDK-based solutions. Unlike CORD, our
controller leverages placement techniques with minimal
overhead (see §2.3.3 and §3.3) and sophisticated NF
consolidation (see §2.3.1) to achieve high performance.

5 Conclusion

We have presented Metron, an NFV platform that
fundamentally changes how service chains are
realized. Metron eliminates the need for costly inter-core
communication at the servers by delegating packet
processing and CPU core dispatching operations to
programmable hardware devices. Doing so offers
dramatic hardware efficiency and performance increases
over the state of the art. With commodity hardware
assistance, Metron fully exploits the processing capacity
of a single server, to deeply inspect traffic at 40 Gbps
and execute stateful service chains at the speed of a 100
GbE NIC.

6 Acknowledgments

We would like to thank our shepherd Vyas Sekar and
the anonymous reviewers for their insightful comments
on this paper. This work is financially supported by the
Swedish Foundation for Strategic Research. In addition,
this work was partially supported by the Wallenberg
Autonomous Systems Program (WASP).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 183

References
[1] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A

Scalable, Commodity Data Center Network Architecture. In
Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication (2008), pp. 63–74.

[2] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In Proceedings of the
7th USENIX Conference on Networked Systems Design and
Implementation (2010), NSDI’10.

[3] ANWER, B., BENSON, T., FEAMSTER, N., AND LEVIN, D.
Programming Slick Network Functions. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking
Research (2015), SOSR ’15, pp. 14:1–14:13.

[4] BARBETTE, T. Repository with DPDK extensions for OpenBox,
2018. https://github.com/tbarbette/fastclick/tree/
openbox.

[5] BARBETTE, T., AND KATSIKAS, G. P. Metron data plane,
2018. https://github.com/tbarbette/fastclick/tree/
metron.

[6] BARBETTE, T., SOLDANI, C., AND MATHY, L. Fast
Userspace Packet Processing. In Proceedings of the 11th
ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (2015), ANCS ’15, IEEE
Computer Society. http://dl.acm.org/citation.cfm?id=
2772722.2772727.

[7] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y.,
KOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B.,
RADOSLAVOV, P., SNOW, W., AND PARULKAR, G. ONOS:
Towards an Open, Distributed SDN OS. In Proceedings of the
3rd Workshop on Hot Topics in Software Defined Networking
(2014), HotSDN ’14, pp. 1–6.

[8] BIANCHI, G., BONOLA, M., CAPONE, A., AND CASCONE,
C. OpenState: Programming Platform-independent Stateful
Openflow Applications Inside the Switch. SIGCOMM Comput.
Commun. Rev. (2014).

[9] BIANCHI, G., BONOLA, M., PONTARELLI, S., SANVITO, D.,
CAPONE, A., AND CASCONE, C. Open Packet Processor: a
programmable architecture for wire speed platform-independent
stateful in-network processing. arXiv preprint arXiv:1605.01977
(2016).

[10] BJORKLUND, M. YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF). Internet Request
for Comments (RFC) 6020 (Proposed Standard), Oct. 2010.
https://www.rfc-editor.org/rfc/rfc6020.txt.

[11] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT,
A., VARGHESE, G., AND WALKER, D. P4: Programming
Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev. 44, 3 (July 2014), 87–95.

[12] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G.,
MCKEOWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ,
M. Forwarding Metamorphosis: Fast Programmable Match-
action Processing in Hardware for SDN. In Proceedings of the
ACM SIGCOMM 2013 Conference on (2013), pp. 99–110.

[13] BREMLER-BARR, A., HARCHOL, Y., AND HAY, D. OpenBox:
A Software-Defined Framework for Developing, Deploying,
and Managing Network Functions. In Proceedings of the
2016 Conference on ACM SIGCOMM 2016 Conference (2016),
SIGCOMM ’16, pp. 511–524.

[14] CASE, J., FEDOR, M., SCHOFFSTALL, M. L., AND DAVIN,
J. Simple Network Management Protocol (SNMP). Internet
Request for Comments (RFC) 1157, May 1990. http://
www.ietf.org/rfc/rfc1157.txt.

[15] CHOWDHURY, M., RAHMAN, M. R., AND BOUTABA, R.
ViNEYard: Virtual Network Embedding Algorithms with
Coordinated Node and Link Mapping. IEEE/ACM Trans. Netw.
20, 1 (Feb. 2012), 206–219.

[16] CISCO. Migrate to a 40-Gbps Data Center with Cisco QSFP
BiDi Technology, 2013. http://www.cisco.com/c/en/us/
products/collateral/switches/nexus-9000-series-
switches/white-paper-c11-729493.html.

[17] DIETZ, T., BIFULCO, R., MANCO, F., MARTINS, J., KOLBE,
H., AND HUICI, F. Enhancing the BRAS through virtualization.
In Proceedings of the 1st IEEE Conference on Network
Softwarization, NetSoft 2015 (2015), pp. 1–5.

[18] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,
FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND
RATNASAMY, S. RouteBricks: Exploiting Parallelism to Scale
Software Routers. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (2009), SOSP ’09,
pp. 15–28.

[19] DPDK. Data Plane Development Kit, 2018. http://dpdk.org.

[20] ENNS, R., BJORKLUND, M., SCHOENWAELDER, J., AND
BIERMAN, A. Network Configuration Protocol (NETCONF).
Internet Request for Comments (RFC) 6241 (Proposed Standard),
June 2011. Updated by RFC 7803, https://www.rfc-
editor.org/rfc/rfc6241.txt.

[21] EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE.
Network Functions Virtualisation, 2017. http://
www.etsi.org/technologies-clusters/technologies/
689-network-functions-virtualisation.

[22] EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE
(ETSI). Open Source NFV Management and Orchestration
(MANO) , 2018. https://osm.etsi.org/.

[23] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH, C.,
GRANDL, R., KHALID, J., DAS, S., AND AKELLA, A.
OpenNF: Enabling Innovation in Network Function Control.
In Proceedings of the 2014 ACM Conference on SIGCOMM
(2014), SIGCOMM ’14, pp. 163–174.

[24] GO, Y., ASIM JAMSHED, M., MOON, Y., HWANG, C., AND
PARK, K. APUNet: Revitalizing GPU as Packet Processing
Accelerator. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17) (2017), USENIX
Association, pp. 83–96.

[25] HAN, S., JANG, K., PANDA, A., PALKAR, S., HAN, D.,
AND RATNASAMY, S. SoftNIC: A Software NIC to Augment
Hardware. Tech. Rep. UCB/EECS-2015-155, EECS Department,
University of California, Berkeley, May 2015.

[26] HAN, S., JANG, K., PARK, K., AND MOON, S. PacketShader:
A GPU-accelerated Software Router. In Proceedings of the ACM
SIGCOMM 2010 Conference (2010), SIGCOMM ’10, pp. 195–
206.

[27] HE, J., ZHANG-SHEN, R., LI, Y., LEE, C.-Y., REXFORD,
J., AND CHIANG, M. DaVinci: Dynamically Adaptive Virtual
Networks for a Customized Internet. In Proceedings of the
2008 ACM CoNEXT Conference (New York, NY, USA, 2008),
CoNEXT ’08, ACM, pp. 15:1–15:12.

[28] HEWLETT PACKARD. HPE FlexNetwork 5130
EI Switch Series, Jan. 2017. https://
h50146.www5.hpe.com/products/networking/datasheet/
HP_5130EI_Switch_Series_J.pdf.

[29] HWANG, J., RAMAKRISHNAN, K. K., AND WOOD, T. NetVM:
High Performance and Flexible Networking Using Virtualization
on Commodity Platforms. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation
(2014), NSDI’14, pp. 445–458.

184 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/tbarbette/fastclick/tree/openbox
https://github.com/tbarbette/fastclick/tree/openbox
https://github.com/tbarbette/fastclick/tree/metron
https://github.com/tbarbette/fastclick/tree/metron
http://dl.acm.org/citation.cfm?id=2772722.2772727
http://dl.acm.org/citation.cfm?id=2772722.2772727
https://www.rfc-editor.org/rfc/rfc6020.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729493.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729493.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729493.html
http://dpdk.org
https://www.rfc-editor.org/rfc/rfc6241.txt
https://www.rfc-editor.org/rfc/rfc6241.txt
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation
https://osm.etsi.org/
https://h50146.www5.hpe.com/products/networking/datasheet/HP_5130EI_Switch_Series_J.pdf
https://h50146.www5.hpe.com/products/networking/datasheet/HP_5130EI_Switch_Series_J.pdf
https://h50146.www5.hpe.com/products/networking/datasheet/HP_5130EI_Switch_Series_J.pdf

[30] INTEL. Receive-Side Scaling (RSS), 2007. http:
//www.intel.com/content/dam/support/us/en/
documents/network/sb/318483001us2.pdf.

[31] INTEL. Ethernet Flow Director, 2018. http://www.intel.com/
content/www/us/en/ethernet-controllers/ethernet-
flow-director-video.html.

[32] JAMSHED, M. A., LEE, J., MOON, S., YUN, I., KIM, D., LEE,
S., YI, Y., AND PARK, K. Kargus: A Highly-scalable Software-
based Intrusion Detection System. In Proceedings of the 2012
ACM Conference on Computer and Communications Security
(2012), CCS ’12.

[33] KABLAN, M., ALSUDAIS, A., KELLER, E., AND LE, F.
Stateless Network Functions: Breaking the Tight Coupling
of State and Processing. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17)
(2017), pp. 97–112.

[34] KATSIKAS, G. P. Realizing High Performance NFV Service
Chains. Licentiate Thesis (Nov. 2016). TRITA-ICT 2016:35,
http://kth.diva-portal.org/smash/record.jsf?pid=
diva2%3A1044355&dswid=-1520.

[35] KATSIKAS, G. P. Metron controller’s southbound driver for
managing commodity servers, 2018. https://github.com/
gkatsikas/onos/tree/metron-driver.

[36] KATSIKAS, G. P., ENGUEHARD, M., KUŹNIAR, M.,
MAGUIRE JR., G. Q., AND KOSTIĆ, D. SNF: Synthesizing
high performance NFV service chains. PeerJ Computer Science
2 (Nov. 2016), e98. http://dx.doi.org/10.7717/peerj-
cs.98.

[37] KATSIKAS, G. P., MAGUIRE JR., G. Q., AND KOSTIĆ, D.
Profiling and accelerating commodity NFV service chains with
SCC. Journal of Systems and Software 127C (Feb. 2017), 12–27.
https://doi.org/10.1016/j.jss.2017.01.005.

[38] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDER-
SON, T., AND KRISHNAMURTHY, A. High Performance
Packet Processing with FlexNIC. In Proceedings of the
21st International Conference on Architectural Support for
Programming Languages and Operating Systems (2016),
ASPLOS ’16, pp. 67–81.

[39] KHALID, J., GEMBER-JACOBSON, A., MICHAEL, R.,
ABHASHKUMAR, A., AND AKELLA, A. Paving the Way for
NFV: Simplifying Middlebox Modifications Using StateAlyzr.
In Proceedings of the 13th USENIX Conference on Networked
Systems Design and Implementation (2016), NSDI’16, USENIX
Association, pp. 239–253.

[40] KIM, J., HUH, S., JANG, K., PARK, K., AND MOON, S. The
Power of Batching in the Click Modular Router. In Proceedings
of the Asia-Pacific Workshop on Systems (2012), APSYS ’12,
pp. 14:1–14:6.

[41] KIM, J., JANG, K., LEE, K., MA, S., SHIM, J., AND
MOON, S. NBA (Network Balancing Act): A High-performance
Packet Processing Framework for Heterogeneous Processors.
In Proceedings of the 10th European Conference on Computer
Systems (2015), EuroSys ’15.

[42] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The Click Modular Router. ACM Trans.
Comput. Syst. 18, 3 (Aug. 2000), 263–297.

[43] KRISHNAN, R., DURRANI, M., AND PHAAL, P. Real-time SDN
Analytics for DDoS mitigation, 2014.

[44] KULKARNI, S. G., ZHANG, W., HWANG, J., RAJAGOPALAN,
S., RAMAKRISHNAN, K. K., WOOD, T., ARUMAITHURAI, M.,
AND FU, X. NFVnice: Dynamic Backpressure and Scheduling
for NFV Service Chains. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (New
York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 71–84.

[45] KUŹNIAR, M., PEREŠÍNI, P., AND KOSTIĆ, D. What You
Need to Know About SDN Flow Tables. In Passive and Active
Measurement (PAM) (2015), vol. 8995 of Lecture Notes in
Computer Science, pp. 347–359. https://doi.org/10.1007/
978-3-319-15509-8_26.

[46] KUŹNIAR, M., PEREŠÍNI, P., KOSTIĆ, D., AND CANINI,
M. Methodology, Measurement and Analysis of Flow
Table Update Characteristics in Hardware OpenFlow Switches.
Computer Networks: The International Journal of Computer
and Telecommunications Networking, Elsevier, vol. 26 (2018).
https://doi.org/10.1016/j.comnet.2018.02.014.

[47] LI, B., TAN, K., LUO, L. L., PENG, Y., LUO, R., XU,
N., XIONG, Y., CHENG, P., AND CHEN, E. ClickNP:
Highly Flexible and High Performance Network Processing with
Reconfigurable Hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference (2016), SIGCOMM ’16, pp. 1–14.

[48] LI, X., SETHI, R., KAMINSKY, M., ANDERSEN, D. G.,
AND FREEDMAN, M. J. Be Fast, Cheap and in Control with
SwitchKV. In Proceedings of the 13th USENIX Conference
on Networked Systems Design and Implementation (2016),
NSDI’16, USENIX Association, pp. 31–44.

[49] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V.,
HONDA, M., BIFULCO, R., AND HUICI, F. ClickOS and the
Art of Network Function Virtualization. In Proceedings of the
11th USENIX Conference on Networked Systems Design and
Implementation (2014), NSDI’14, pp. 459–473.

[50] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar.
2008), 69–74.

[51] MELLANOX TECHNOLOGIES. Mellanox NIC’s
Performance Report with DPDK 17.05, 2017.
Document number MLNX-15-52365, Revision
1.0, 2017, http://fast.dpdk.org/doc/perf/
DPDK_17_05_Mellanox_NIC_performance_report.pdf.

[52] MITZENMACHER, M. The Power of Two Choices in
Randomized Load Balancing. IEEE Trans. Parallel Distrib. Syst.
12, 10 (Oct. 2001), 1094–1104.

[53] NOVIFLOW. NoviSwitch 1132 High Performance Open-
Flow Switch, 2013. https://noviflow.com/wp-content/
uploads/NoviSwitch-1132-Datasheet-V2_1.pdf.

[54] OLTEANU, V. A., AND RAICIU, C. Efficiently Migrating
Stateful Middleboxes. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (2012), SIGCOMM
’12, ACM, pp. 93–94.

[55] ON.LAB. Central Office Re-architected as a Datacenter (CORD),
2018. http://opencord.org/.

[56] ON.LAB. Open Network Operating System (ONOS), 2018.
http://onosproject.org/.

[57] OPEN VSWITCH. An Open Virtual Switch, 2018. http://
openvswitch.org.

[58] OPENSTACK. Open Source Cloud Computing Software, 2018.
https://www.openstack.org/.

[59] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A.,
RATNASAMY, S., RIZZO, L., AND SHENKER, S. E2: A
Framework for NFV Applications. In Proceedings of the 25th
Symposium on Operating Systems Principles (2015), SOSP ’15,
pp. 121–136.

[60] PESTEREV, A., ZELDOVICH, N., AND MORRIS, R. T. Locating
Cache Performance Bottlenecks Using Data Profiling. In
Proceedings of the 5th European Conference on Computer
Systems (2010), EuroSys ’10, pp. 335–348.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 185

http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/www/us/en/ethernet-controllers/ethernet-flow-director-video.html
http://www.intel.com/content/www/us/en/ethernet-controllers/ethernet-flow-director-video.html
http://www.intel.com/content/www/us/en/ethernet-controllers/ethernet-flow-director-video.html
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1044355&dswid=-1520
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1044355&dswid=-1520
https://github.com/gkatsikas/onos/tree/metron-driver
https://github.com/gkatsikas/onos/tree/metron-driver
http://dx.doi.org/10.7717/peerj-cs.98
http://dx.doi.org/10.7717/peerj-cs.98
https://doi.org/10.1016/j.jss.2017.01.005
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1016/j.comnet.2018.02.014
http://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf
http://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf
https://noviflow.com/wp-content/uploads/NoviSwitch-1132-Datasheet-V2_1.pdf
https://noviflow.com/wp-content/uploads/NoviSwitch-1132-Datasheet-V2_1.pdf
http://opencord.org/
http://onosproject.org/
http://openvswitch.org
http://openvswitch.org
https://www.openstack.org/

[61] RAUMER, D., GALLENMÜLLER, S., EMMERICH, P., MÄR-
DIAN, L., WOHLFART, F., AND CARLE, G. Efficient serving
of VPN endpoints on COTS server hardware. In 2016 IEEE 5th
International Conference on Cloud Networking (CloudNet’16)
(Pisa, Italy, Oct. 2016).

[62] SEKAR, V., EGI, N., RATNASAMY, S., REITER, M. K.,
AND SHI, G. Design and Implementation of a Consolidated
Middlebox Architecture. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation
(2012), NSDI’12.

[63] SUN, C., BI, J., ZHENG, Z., YU, H., AND HU, H. NFP:
Enabling Network Function Parallelism in NFV. In Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication (New York, NY, USA, 2017), SIGCOMM ’17,
ACM, pp. 43–56.

[64] SUN, W., AND RICCI, R. Fast and Flexible: Parallel Packet
Processing with GPUs and Click. In Proceedings of the 9th
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (Piscataway, NJ, USA, 2013), ANCS
’13, IEEE Press, pp. 25–36.

[65] TAYLOR, D. E., AND TURNER, J. S. ClassBench: A Packet
Classification Benchmark. IEEE/ACM Trans. Netw. 15, 3 (June
2007), 499–511.

[66] THE LINUX FOUNDATION. Open Platform for NFV (OPNFV),
2018. https://www.opnfv.org/.

[67] VIEJO, A. QLogic and Broadcom First to Demonstrate End-
to-End Interoperability for 25Gb and 100Gb Ethernet, 2015.
https://globenewswire.com/news-release/2015/01/
27/700249/10116850/en/QLogic-and-Broadcom-First-
to-Demonstrate-End-to-End-Interoperability-for-
25Gb-and-100Gb-Ethernet.html.

[68] YU, M., YI, Y., REXFORD, J., AND CHIANG, M. Rethinking
Virtual Network Embedding: Substrate Support for Path Splitting
and Migration. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar.
2008), 17–29.

[69] ZAVE, P., FERREIRA, R. A., ZOU, X. K., MORIMOTO, M.,
AND REXFORD, J. Dynamic Service Chaining with Dysco.
In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (New York, NY, USA, 2017),
SIGCOMM ’17, ACM, pp. 57–70.

[70] ZHANG, W., HWANG, J., RAJAGOPALAN, S., RAMAKRISH-
NAN, K., AND WOOD, T. Flurries: Countless Fine-Grained
NFs for Flexible Per-Flow Customization. In Proceedings of the
12th ACM International Conference on Emerging Networking
Experiments and Technologies (2016), CoNEXT ’16, pp. 3–17.

[71] ZHANG, W., LIU, G., ZHANG, W., SHAH, N., LOPREIATO,
P., TODESCHI, G., RAMAKRISHNAN, K., AND WOOD,
T. OpenNetVM: A Platform for High Performance Network
Service Chains. In Proceedings of the 2016 ACM SIGCOMM
Workshop on Hot Topics in Middleboxes and Network Function
Virtualization (August 2016), ACM.

186 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.opnfv.org/
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html

G-NET: Effective GPU Sharing in NFV Systems

Kai Zhang∗, Bingsheng He‡, Jiayu Hu†, Zeke Wang‡, Bei Hua†, Jiayi Meng†, Lishan Yang†

∗Fudan University ‡National University of Singapore
†University of Science and Technology of China

Abstract

Network Function Virtualization (NFV) virtualizes soft-
ware network functions to offer flexibility in their de-
sign, management and deployment. Although GPUs
have demonstrated their power in significantly acceler-
ating network functions, they have not been effectively
integrated into NFV systems for the following reasons.
First, GPUs are severely underutilized in NFV systems
with existing GPU virtualization approaches. Second,
data isolation in the GPU memory is not guaranteed.
Third, building an efficient network function on CPU-
GPU architectures demands huge development efforts.

In this paper, we propose G-NET, an NFV system
with a GPU virtualization scheme that supports spatial
GPU sharing, a service chain based GPU scheduler, and
a scheme to guarantee data isolation in the GPU. We
also develop an abstraction for building efficient network
functions on G-NET, which significantly reduces devel-
opment efforts. With our proposed design, G-NET en-
hances overall throughput by up to 70.8% and reduces
the latency by up to 44.3%, in comparison with existing
GPU virtualization solutions.

1 Introduction

Network Function Virtualization is a network architec-
ture for virtualizing the entire class of network functions
(NFs) on commodity off-the-shelf general-purpose hard-
ware. Studies show that NFs constitute 40–60% of the
appliances deployed in large-scale networks [36]. This
architecture revolutionized the deployment of middle-
boxes for its lower cost, higher flexibility, and higher
scalability. With the fast increasing data volume, the net-
working speed is also under rapid growth to meet the de-
mand for fast data transfer. Therefore, achieving high
performance is a critical requirement for NFV systems.

With the massive number of cores and high memory
bandwidth, GPUs are well known for the capability of

significantly accelerating NFs. Existing GPU-based NFs
include router [15], SSL proxy [20], SRTP proxy [47],
OpenFlow switch and IPsec gateway [15]. By form-
ing CPU and GPU processing in a pipeline, the het-
erogeneous architecture is capable of delivering a high
throughput in packet processing. Moreover, due to the
rise of deep learning and other data analytical applica-
tions, GPUs are widely deployed in data centers and
cloud services, e.g., Amazon EC2 GPU instance [2] and
Alibaba Cloud GPU server [1]. Therefore, GPUs serve
as a good candidate for building high-performance NFV
systems. However, GPUs still have not been widely and
effectively adopted in NFV systems. We identify the
main reasons as threefold.

GPU Underutilization: Although state-of-the-art GPU
virtualization techniques [39, 40, 45] enable multiple
VMs to utilize a GPU, a GPU can only be accessed by
a VM exclusively at a time, i.e., temporal sharing. Con-
sequently, VMs have to access the GPU in a round-robin
fashion. These virtualization approaches fit for GPU ker-
nels that can fully utilize the GPU, such as deep learn-
ing [46] and database queries [41]. In production sys-
tems such as cloud, the input network traffic volume of
an NF is generally much lower than the throughput that a
GPU can achieve. As a result, the workload of each ker-
nel in NFV systems is much lighter, which would result
in severe GPU underutilization. Batching more tasks can
be a feasible way to improve the GPU utilization, but it
would result in a much higher latency. This issue largely
blocks the adoption of GPUs in NFV systems as the over-
all throughput may be not enhanced or even degraded.

Lack of Support for Data Isolation: In a GPU-
accelerated NFV system, both packets and the data struc-
tures of NFs need to be transferred to the GPU memory
for GPU processing. When multiple NFs utilize a GPU
to accelerate packet processing, they may suffer from in-
formation leakage due to the vulnerabilities in current
GPU architectures [33]. As a result, a malicious NF may
eavesdrop the packets in the GPU memory or even ma-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 187

nipulate traffic of other NFs. As security is one of the
main requirements in NFV systems [16], the lack of the
system support for data isolation in the GPU memory
may cause concern for NFV users.

Demanding Significant Development Efforts: Build-
ing an efficient network function on heterogeneous CPU-
GPU architectures demands lots of development ef-
forts. First, the complex data flow in network process-
ing should be handled, including I/O operations, task
batching, and data transferring in the CPU-GPU pipeline.
Second, achieving the throughput and latency require-
ments needs to carefully adjust several parameters, such
as the GPU batch size and the number of CPU and GPU
threads. These parameters are highly relevant with the
hardware and workloads, which makes it hard for NF
deployment. All of the above efforts are repetitive and
time-consuming in NF development and deployment.

In this paper, we propose an NFV system called G-
NET to address the above issues and support efficient
executions of NFs on GPUs. The main idea of G-NET
is to spatially share a GPU among multiple NF instances
to enhance the overall system efficiency. To achieve this
goal, G-NET takes a holistic approach that encompasses
all aspects of GPU processing, including the CPU-GPU
processing pipeline, the GPU resource allocation, the
GPU kernel scheduling, and the GPU virtualization. The
proposed system not only achieves high efficiency but
also lightens the programming efforts. The main contri-
butions of this paper are as follows.

• A GPU-based NFV system, G-NET, that enables
NFs to effectively utilize GPUs with spatial sharing.

• A GPU scheduling scheme that aims at maximizing
the overall throughput of a service chain.

• A data isolation scheme to guarantee the data se-
curity in the GPU memory with both compile and
runtime check.

• An abstraction for building NFs, which significantly
reduces the development and deployment efforts.

Through experiments with a wide range of workloads,
we demonstrate that G-NET is capable of enhancing the
throughput of a service chain by up to 70.8% and reduc-
ing the latency by up to 44.3%, in comparison with the
temporal GPU sharing virtualization approach.

The roadmap of this paper is as follows. Section 2 in-
troduces the background of this research. Section 3 out-
lines the overall structure of G-NET. Section 4 describes
the virtualization scheme and data plane designs of G-
NET. Sections 5 and 6 describe the scheduling scheme
and the abstraction for NF development. Section 7 eval-
uates the prototype system, Section 8 discusses related
work, and Section 9 concludes the paper.

2 Background and Challenges

In this section, we review the background of adopting
GPUs in NFV systems and discuss the major challenges
in building a highly-efficient system.

2.1 Network Functions on Heterogeneous
CPU-GPU Architectures

GPUs are efficient at network processing because the
massive number of incoming packets offers sufficient
parallelism. Since CPUs and GPUs have different
architectural characteristics, they generally work in a
pipelined fashion to execute specific tasks for high ef-
ficiency [15, 48]. CPUs are usually in charge of per-
forming I/O operations, batching, and packet parsing.
The compute/memory-intensive tasks are offloaded to
GPUs for acceleration, such as cryptographic opera-
tions [20], deep packet inspection [19], and regular ex-
pression matching[42].

Take software router as an example, the data process-
ing flow is as follows. First, the CPU receives packets
from NICs, parses packet headers, extracts IP addresses,
and batches them in an input buffer. When a specified
batch size or a preset time limit is reached, the input
buffer is transferred to the GPU memory via PCIe, then a
GPU kernel is launched to lookup the IP addresses. Af-
ter the kernel completes processing, the GPU results, i.e.,
the NIC ports to be forwarded to, are transferred back to
the host memory. Based on the results, the CPU sends
out the packets in the batch.

A recent CPU optimization approach G-Opt [21]
achieves compatible performance with GPU-based im-
plementations. G-Opt utilizes group prefetching and
software pipelining to hide memory access latencies.
Comparing with GPU-based implementations, such opti-
mizations are time-consuming to apply, and they increase
the difficulty in reading and maintaining the code. More-
over, the optimizations have limited impact on compute-
intensive NFs [12], and the performance benefits may
depend on the degree of cache contention when running
concurrently with other processes.

In the following of this paper, we use NVIDIA CUDA
terminology in the GPU related techniques, which are
also applicable to OpenCL and GPUs from other ven-
dors.

2.2 GPU Virtualization in NFV Systems
We implement four NFs on CPU-GPU architectures,
including an L3 Router, a Firewall, a Network Intru-
sion Detection System (NIDS), and an IPsec gateway.
The implementation follows the state-of-the-art network
functions [19, 20, 15], where the GPU kernels are listed

188 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NF Kernel algorithm
Router DIR-24-8-BASIC [13]

Firewall Bit vector linear search [24] (188 rules)
NIDS Aho-Corasick algorithm [4] (147 rules)
IPsec AES-128 (CTR mode) and HMAC-SHA1

Table 1: GPU kernel algorithms of network functions.

No
rm

al
ize

d
Th

ro
ug

hp
ut

0

0.25

0.5

0.75

1

Router Firewall NIDS IPSec Gateway

Throughput of One Intel E5-2650 v4 CPU Core
Throughput of Nvidia TitanX GPU

840 Mpps 70 Mpps 64 Gbps 32 Gbps

Figure 1: The throughputs of a CPU core and a GPU
when forming a pipeline in GPU-accerated NFs (512-
byte packet).

in Table 1. In the implementation of the Firewall, bit vec-
tor linear search is used to perform fast packet classifica-
tion with multiple packet fields. For each field, we use
trie [8] for IP address lookup, interval tree [7] for match-
ing port range, and hash table for the protocol lookup.
Based on the implementations, we conduct several ex-
periments to evaluate the network functions and make
the following observations. Please refer to Sect. 7.1 for
the hardware and system configurations.

GPU is underutilized: In Figure 1, we show the
throughput of the four GPU kernels, where a GPU
demonstrates 840 Mpps for the L3 router, 70 Mpps for
the Firewall, 64 Gbps for the NIDS, and 32 Gbps for
the IPsec gateway. In cloud or enterprise networks, how-
ever, the traffic volume of an NF instance can be signif-
icantly lower than the GPU throughput. Consequently,
such high performance can be overprovision for many
production systems. Figure 1 also makes a comparison
of the normalized throughput between a CPU core and
a GPU when they form a pipeline in the NFs, where
the CPU core performs packet I/O and batching, and the
GPU performs the corresponding operations in Table 1.
As shown in the figure, the throughput of a CPU core is
significantly lower (5×-65×) than that of the GPU. As a
result, being allocated with only limited number of CPU
cores, an NF is unable to fully utilize a GPU. For the
above reasons, a GPU can be severely underutilized in
cloud or enterprise networks.

Temporal sharing leads to high latency: When only
one NF runs on a server, the GPU is exclusively ac-
cessed by the NF. By overlapping the CPU processing
and the GPU processing, the GPU timeline is shown in
Figure 2(1). With the adoption of virtualization tech-
niques [39, 40, 45] that enable temporal GPU sharing,
NFs are able to access the GPU in a round-robin fash-

A B C A

AA A A A

denotes the CPU batching time for kernel in

GPU Timeline

GPU Timeline

GPU Timeline

(1) Exclusive access

(2) Temporal sharing

(3) Spatial sharing
A
B
C

Figure 2: GPU execution with exclusive access, temporal
sharing, and spatial sharing.

(1) IPv4 Lookup

Pr
oc

es
sin

g
Ti

m
e

(u
s)

11

11.5

12

12.5

13

SM Number
1 3 5 7 9 11 13 15 17 19 21 23 25 27

10 Gbps 20 Gbps 30 Gbps 40 Gbps

(2) Firewall 5-Tuple Matching

Pr
oc

es
sin

g
Ti

m
e

(u
s)

0

125

250

375

500

SM Number
1 3 5 7 9 11 13 15 17 19 21 23 25 27

(3) AES-CTR & HMAC-SHA1

Pr
oc

es
sin

g
Ti

m
e

(u
s)

0

400

800

1,200

1,600

SM Number
1 3 5 7 9 11 13 15 17 19 21 23 25 27

(4) Aho-Corasick Algorithm

Pr
oc

es
sin

g
Ti

m
e

(u
s)

0

250

500

750

1,000

SM Number
1 3 5 7 9 11 13 15 17 19 21 23 25 27

Figure 3: GPU processing time with different number of
SMs (512-byte packet).

ion. To maintain the same throughput with exclusive ac-
cess, the GPU processing time of each NF should be re-
duced to allow multiple kernels utilizing the GPU. One
may expect to utilize more GPU resources to reduce the
GPU processing time. In Figure 3, we show that the GPU
processing time quickly converges with first few Stream-
ing Multiprocessors (SMs) allocated, and the reduction
is moderate or even unnoticeable with more SMs. This
is because that, with less than a certain number of jobs,
an SM has a relatively fixed processing time in handling
a specific task. As a result, although the batch size of an
SM becomes smaller by assigning more SMs, the over-
all processing time cannot be further reduced. Conse-
quently, temporal GPU sharing would not enhance the
throughput of NFs, but the longer batching time would
lead to a much higher latency. For instance, with another
two kernels B and C, the GPU timeline would be like
Figure 2(2), where the CPU batching time and the GPU
processing time become significantly longer.

2.3 Opportunities and Challenges of Spa-
tial GPU Sharing

With the lightweight kernels from multiple NFs, spa-
tial GPU sharing is promising in enhancing the GPU
efficiency. Spatial GPU sharing means multiple GPU

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 189

kernels run on a GPU simultaneously (shown in Fig-
ure 2(3)), with each kernel occupying a portion of GPU
cores. This technique has been proved to gain a signifi-
cant performance improvement on simulated GPU archi-
tectures [3, 26]. A recently-introduced GPU hardware
feature, Hyper-Q, exploits spatial GPU sharing. Adopt-
ing Hyper-Q in NFV systems faces several challenges.

Challenge 1: GPU virtualization. To run concurrently
on a GPU with Hyper-Q, the kernels are required to have
the same GPU context. Kernels of NFs in different VMs,
however, are unable to utilize the feature for their dif-
ferent GPU contexts. Existing GPU virtualization ap-
proaches [9, 39, 40] are designed for the situation that
the GPU is monopolized by one kernel at any instant,
which do not adopt Hyper-Q. Utilizing Hyper-Q in NFV
systems, therefore, demands a redesign of the GPU vir-
tualization approach.

Challenge 2: Isolation. As NFs might come from dif-
ferent vendors, data isolation is essential for ensuring
data security. With the same GPU context when utiliz-
ing Hyper-Q, all GPU memory regions are in the same
virtual address space. As runtimes such as CUDA and
OpenCL do not provide isolation among kernels from
the same context, an NF is able to access memory re-
gions allocated by other NFs. Consequently, utilizing the
Hyper-Q hardware feature may lead to security issues.

Challenge 3: GPU scheduling. Virtualization makes
an NF unaware of other coexisting NFs that share the
same GPU, making them lack of the global view in re-
source usage. With spatial GPU sharing, if every NF
tries to maximize its performance by using more GPU re-
sources, the performance of the service chain can be sig-
nificantly degraded due to resource contention. Existing
GPU scheduling schemes [10, 22, 41] focus on sporadic
GPU tasks and temporal GPU sharing, which mismatch
the requirements and characteristics of NFV systems.

3 G-NET - An Overview

We propose G-NET, an NFV system that addresses the
above challenges and effectively shares GPUs among
NFs. In this section, we make an overview on the ma-
jor techniques adopted in G-NET.

3.1 The G-NET Approach

To efficiently and safely share a GPU in an NFV environ-
ment, G-NET adopts the following major approaches.

Utilizing Hyper-Q in GPU virtualization: To enable
spatial GPU sharing, G-NET utilizes the Hyper-Q feature
in GPUs. We place a GPU management proxy in the
hypervisor, which creates a common GPU context for all
NFs. By utilizing the context to perform data transfer and

User NF

Abstraction

GPU

ManagerSchedulerSwitch

User NF

Abstraction

NIC

…
FrameworkFramework

Figure 4: System architecture.

kernel operations, multiple kernels from different NFs
can simultaneously run on the GPU.

isoPointer for data isolation: We implement iso-
Pointer, a software memory access checking layer for
GPU kernels. In G-NET, the GPU memory is accessed
with isoPointer, which behaves like regular pointers but
is able to check if the accessed memory address is legal,
i.e., whether it belongs to the current kernel. isoPointer
ensures the data isolation of NFs in the GPU memory.

Service chain based GPU scheduling: G-NET devel-
ops a service chain based GPU scheduling scheme that
aims at maximizing the throughput of a service chain.
Based on the workload of each NF, Scheduler calculates
the corresponding GPU resources for each NF kernel to
optimize the performance of the entire service chain. The
scheduling algorithm is capable of dynamically adapting
to workload changes at runtime.

Abstraction: We propose an abstraction for develop-
ing NFs. By generalizing the CPU-GPU pipelining, data
transfer, and multithreading in a framework, NF develop-
ers only need to implement a few NF-specific functions.
With the abstraction, the implementation efforts of an NF
are significantly reduced.

3.2 The Architecture of G-NET
The architecture of G-NET is shown in Figure 4. There
are three major functional units in the hypervisor layer
of G-NET: Switch, Manager, and Scheduler. Switch is
a virtual switch that performs packet I/O and forwards
network packets among NFs. Manager is the proxy for
GPU virtualization, which receives GPU execution re-
quests from NFs and performs the corresponding GPU
operations. Scheduler allocates GPU resources to opti-
mize the overall performance of a service chain.

G-NET adopts a holistic approach in which the NF
and the hypervisor work together to achieve spatial GPU
sharing. A framework is proposed to handle the data
flows and control flows in NF executions. Based on the
programming interfaces of the framework, developers
only need to implement NF-specific operations, which
significantly reduces the development efforts. The pro-
cessing data flow of an NF is shown in Figure 4. An NF
receives packets from Switch, which can be from a NIC

190 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Control Plane

C

GPU

Manager

NF1 NFn

Shared
Host

Buffer

Shared
Host

Buffer

Q C

Hypervisor

Figure 5: GPU virtualization in G-NET.

or other NFs. The NF batches jobs and utilizes Man-
ager to perform GPU data transfer, kernel launch, and
other operations. With the GPU processed results, the
NF sends packets out through Switch.

4 System Design and Implementation

This section presents the main techniques adopted in G-
NET, including the GPU virtualization approach, data
plane switching, and GPU memory isolation.

4.1 GPU Virtualization and Sharing

As a common GPU context is demanded for spatial GPU
sharing, GPU kernels launched in different VMs are un-
able to run simultaneously for their different contexts.
To address this issue, G-NET creates a GPU context in
the hypervisor and utilizes the context to execute GPU
operations for all NFs. In order to achieve the goal, we
virtualize at the GPU API level and adopt API remot-
ing [14, 37] in GPU virtualization. API remoting is a
virtualization scheme where device API calls in VMs are
forwarded to the hypervisor to perform the correspond-
ing operations. Figure 5 depicts our GPU virtualization
approach. Manager maintains a response queue for each
NF and a request queue that receives GPU requests from
all NFs. To perform a GPU operation, an NF sends a
message that includes the operation type and arguments
to Manager via the request queue. Manager receives
messages from NFs and performs the corresponding op-
erations in the common GPU context asynchronously, so
that it can serve other requests without waiting for their
completion. Each NF is mapped to a CUDA stream by
Manager, thus their operations run simultaneously in the
same GPU context.

G-NET adjusts the number of thread blocks and the
batch size of a kernel to achieve predictable performance
(details in Sect. 5). In G-NET, the NF framework and the
hypervisor work together to set these parameters. Upon
receiving a kernel launch request, Manager uses the
number of thread blocks that is calculated by Scheduler
to launch the corresponding kernel. If the resource allo-
cation scheme has been updated by Scheduler, Manager
sends the batch size information to the NF via the re-

Data Plane

Packets

NIC

Switch

NF1 NFn

Shared packet buffer

R T R T

Hypervisor

Figure 6: Data plane switching.

sponse queue after the kernel completes execution. Then
the framework in the NF uses the updated batch size to
launch subsequent kernels.

There are several challenges for Manager to share the
GPU. First, GPU kernels are located in VMs, which can-
not be directly called by Manager. Second, the argu-
ments should be set for launching a GPU kernel, but
user-defined types cannot be known in the hypervisor.
We utilize the CUDA driver API to address these is-
sues. Each NF passes the source file and the name of
its GPU kernel to Manager via a shared directory be-
tween the VM and the hypervisor. The hypervisor loads
the kernel with CUDA driver APIs cuModuleLoad and
cuModuleGetFunction and launches the kernel with cu-
LaunchKernel. Kernel arguments are stored in a shared
host memory region by NFs, whose pointer can be di-
rectly passed to the kernel in cuLaunchKernel. In this
way, Manager launches GPU kernels disregarding the
specific argument details, which will be parsed automat-
ically by the kernel itself.

For GPU operations such as kernel launch and PCIe
data transfer, data is frequently transferred between a
VM and the hypervisor. In G-NET, we develop a set of
schemes to eliminate the overheads. When an NF re-
quests to allocate a host memory region, Manager cre-
ates a shared memory region (shown in Figure 5) for each
NF to transfer data by only passing pointers. For the al-
location of the GPU memory, Manager directly passes
the GPU memory pointer back to the NF, which would
be passed back to perform PCIe data transfer or launch
GPU kernels.

4.2 Data Plane Switching

Figure 6 shows the data plane switching in G-NET.
Memory copy is known to have a huge overhead in high-
speed network processing. To enhance the overall per-
formance, we apply zero-copy principle in Switch to re-
duce the data transfer overhead of VM-to-NIC and VM-
to-VM. Two communication channels are employed to
move packets. One channel is a large shared memory
region that stores packets. Packets are directly written
into this memory region from NICs, allowing VMs to
read and write packets directly. The other channel is two

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 191

queues to pass packet pointers. Each VM has an input
queue to receive packets and an output queue to send
packets. As only packet pointers are transferred between
VMs, the data transfer overhead is significantly allevi-
ated.

There are two types of threads in Switch, which are
called as RX thread and TX thread. RX threads receive
packets from NICs. After analyzing packet headers, RX
threads distribute packets to corresponding NFs through
their input queues. An NF sends out packets by enqueue-
ing packet pointers in its output queue. A TX thread in
Switch is in charge of forwarding packets of one or sev-
eral output queues. Based on the service chain informa-
tion, a TX thread sends the dequeued packets out through
NICs or to the following NFs for further processing.

4.3 Isolation
To address the data security issue in GPUs, we develop
isoPointer, a mechanism to guarantee the data isolation
in the GPU device memory. isoPointer acts as a soft-
ware memory access checking layer that guarantees the
read and write operations in the GPU memory do not sur-
pass the bound of the legal memory space of an NF. An
isoPointer is implemented as a C++ class, which over-
loads the pointer operators, including dereference, pre-
increment, and post-increment. Each isoPointer instance
is associated with the base address and the size of a mem-
ory region. At runtime, dynamic checking is enforced to
ensure that the accessed memory address of an isoPointer
is within its memory region, i.e., [base, base+size].

Despite dynamic checking, we ensure that all mem-
ory accesses in an NF are based on isoPointer with static
checking. Static checking is performed on the source
code of each NF, which needs to guarantee two aspects.
First, an isoPointer can only be returned from system
interfaces or passed as arguments, and no isoPointer is
initiated or modified by users. Second, the types of all
pointers in the GPU source code are isoPointer. This
is performed with type checking, a mature technique in
compiler. With both static and dynamic checking, G-
NET guarantees data isolation in the GPU memory.

5 Resource Allocation and Scheduling

In this section, we introduce our GPU resource allocation
and scheduling schemes. The main goal of the schedul-
ing scheme is to maximize the throughput of a service
chain while meeting the latency requirement.

5.1 Resource Allocation
Unlike CPUs, GPUs behave as black boxes, which pro-
vide no hardware support for allocating cores to applica-

tions. Threads are frequently switched on and off GPU
cores when blocked by operations such as memory ac-
cess or synchronization. As a result, it is unable to pre-
cisely allocate a GPU core to a GPU thread. Moreover,
whether kernels can take advantage of Hyper-Q to spa-
tially share the GPU depends on the availability of the
GPU resources, including the registers and the shared
memory. When the resources to be taken by a ker-
nel exceed current available resources, the kernel would
be queued up to wait for the resources becoming avail-
able. Consequently, an improper GPU resource alloca-
tion scheme is detrimental to the overall performance.

G-NET uses SM as the basic unit in the allocation of
GPU computational resources. A thread block is a set
of threads that can only run on one SM. Modern GPUs
balance the number of thread blocks on SMs, where two
thread blocks are not supposed to be scheduled to run
on the same SM when there still exists available ones.
We utilize this feature and allow the same or a smaller
number of thread blocks as that of SMs to run on a GPU
simultaneously, so that each thread block executes exclu-
sively on one SM. By specifying the number of thread
blocks of a GPU kernel, an NF is allocated with an exact
number of SMs, and multiple GPU kernels can co-run
simultaneously.

We propose a GPU resource allocation scheme that
uses two parameters to achieve predictable performance:
the batch size and the number of SMs. The scheme is
based on a critical observation: there is only marginal
performance impact (< 7% in our experiments) from
thread blocks running on different SMs. When utilizing
more SMs with each SM being assigned with the same
load, the overall kernel execution time (w/o PCIe data
transfer) stays relatively stable. The main reasons for this
phenomenon are twofold. First, the memory bandwidth
of current GPUs is high (480 GB/s on NVIDIA Titan X
Pascal), which is sufficient for co-running several NFs
on 10 Gbps network. Second, SMs do not need to com-
pete for other resources such as register file or cache, as
each SM has its independent resources. Therefore, the
batch size of an SM controls its throughput and process-
ing time, while allocating more SMs can reap a near-
linear throughput improvement.

5.2 Performance Modeling

To achieve predictable performance by controlling the
batch size of an SM, we model the relationship between
the performance of an SM and the batch size with our
evaluation results. Figure 7 shows the GPU kernel exe-
cution time on one SM, the PCIe data transfer time, and
the corresponding throughputs of four NFs.

As shown in the figure, the throughput of GPU ker-
nels have different patterns, where the throughputs of

192 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(1) IPv4 Lookup

Th
ro

ug
hp

ut
 (M

pp
s)

0

225

450

675

900

Pr
oc

es
sin

g
Ti

m
e

(u
s)

0

23

45

68

90

Batch Size
2,000 18,000 34,000 50,000 66,000

GPU Kernel Execution Time PCIe Data Transfer Time GPU Kernel Throughput

(2) Firewall 5-Tuple Matching

Th
ro

ug
hp

ut
 (M

pp
s)

0

2

4

6

8

Pr
oc

es
sin

g
Ti

m
e

(u
s)

0

225

450

675

900

Batch Size
200 1,200 2,200 3,200 4,200 5,200

(3) AES-CTR & HMAC-SHA1
Th

ro
ug

hp
ut

 (M
pp

s)

0

1

1

2

3

Pr
oc

es
sin

g
Ti

m
e

(u
s)

0

500

1000

1500

2000

Batch Size
0 1024 2048 3072 4096

(4) Aho-Corasick Algorithm

Th
ro

ug
hp

ut
 (M

pp
s)

0

1

2

2

3
Pr

oc
es

sin
g

Ti
m

e
(u

s)

0

450

900

1350

1800

Batch Size
0 1024 2048 3072 4096

y = 0.001096x + 8.425

y = 0.000413x + 2.804

y = 0.136325x + 15.241

y = 0.005968x + 9.3574

Figure 7: GPU processing time and throughput on one
SM (Packet size: 512-byte; Thread block size: 1024).

NIDS and IPsec gateway increase and then drop in steps
with the increase of batch size. As the kernels reach the
highest throughputs before the first performance degra-
dation, we use the batch size in the first step to adjust the
SM throughput. The kernel execution time and the PCIe
data transfer time form a near-linear relationship with the
batch size (within the first step). Therefore, we adopt lin-
ear regression in the model. We use Lk = k1 ·B+ b1 to
describe the relationship between the batch size (B) and
the GPU kernel execution time (Lk), and Lm = k2 ·B+b2
is used to describe the relationship between the batch size
(B) and the PCIe data transfer time (Lm). As the kernel
execution time stays stable with different number of SMs
when the batch size assigned to each SM stays the same,
we can get the overall GPU execution time of a kernel as

L = Lk +Lm = k1 ·B0 +b1 + k2 ·B0 ·N +b2 (1)

, where N denotes the number of SMs, and B0 denotes the
batch size of each SM. The throughput can be derived as

T = N ·B0/L (2)

The parameters of the linear equations are relative
with hardware platform, number of rules installed (e.g.,
NIDS and Firewall), and packet size. In system deploy-
ment, we develop a tool called nBench to measure the
PCIe data transfer time and the kernel execution time
to derive the corresponding linear equations with locally
generated packets. With nBench, our system can be
quickly deployed on servers with different hardware and
software configurations by only profiling each NF once.

We have implemented several GPU-based NFs, and
we find that NFs can be classified into two main groups.
1) For NFs that inspect packet payloads, the performance

has a similar pattern with NIDS and IPsec gateway. The
length of the performance fluctuation step equals to the
thread block size of the GPU kernel (1024 in our eval-
uation). 2) For NFs that only inspect packet headers,
the performance exhibits the same pattern with Router
and Firewall. Therefore, this simple but effective perfor-
mance model can be applied to other NFs. Moreover,
in the G-NET implementation, our scheduling scheme
considers the potential model deviations (denote as C
in Sect. 5.3) in the resource allocation, making our ap-
proach more adaptive in practice.

5.3 Service Chain Based GPU Scheduling

The GPU scheduling in NFV systems has the follow-
ing specific aspects. (1) The packet arrival rate and the
packet processing cost of each NF are dramatically dif-
ferent. If each NF is allocated with the same amount of
resources, the NF with the heaviest load would degrade
the overall throughput [23]. (2) The workload of an NFV
system can be dynamically changing over time. For in-
stance, under malicious attack, the throughput of NIDS
should be immediately enhanced.

Based on the performance model, we propose a
scheduling scheme that aims at maximizing the through-
put of an entire service chain while meeting the latency
requirements of NFs. Different with the modeling en-
vironment, the scheduling scheme needs to consider the
costs brought by the implementation and hardware. First,
there is overhead in the communication between NFs
and Manager in performing GPU operations. Second, as
there are only one host-to-device (HtoD) and one device-
to-host (DtoH) DMA engine in current GPUs, the data
transfer of an NF has to be postponed if the required
DMA engine is occupied by other NFs. Third, the model
may have deviations. Our scheduling scheme takes these
overheads into consideration (denote by C), which works
as follows.

At runtime, Scheduler monitors the throughput of each
NF and progressively allocates GPU resources. We first
find the NF that achieves the lowest throughput (de-
note by T ′) in the service chain, then allocate all NFs
with enough GPU resources to meet the throughput T =
T ′ · (1+P), where P ∈ (0,1). If there are branches in
the service chain, we first allocate resources for NFs in
each branch. Then the sum of the throughputs of the
child branches is used as the throughput for their father
branch in resource allocation. This procedure repeats
until GPU resources are exhausted, which improves the
overall throughput by P in each round.

In each round, Scheduler calculates the minimum
number of SMs and the batch size to meet the latency and
throughput requirements of each NF. Starting from as-
signing one SM, the scheme checks if the current number

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 193

Buffer A-3

Buffer B-3

Buffer B-2

Buffer A-2

Buffer B-1

Buffer A-1

Post-
Processing

Post-
Processing

Pre-
Processing

Pre-
Processing

GPU

worker 1

worker 2

PCIE

launcher
Manager

Figure 8: The framework of a network function.

of SMs (denoted as N) is able to meet the schedulability
condition of an NF, i.e., achieving a latency lower than
the user-specified latency requirement L and a through-
put higher than the input speed T . According to Eq. 2, by
substituting N ·B0/T for L into Eq. 1, the minimum batch
size demanded to achieve the throughput T is derived as

B0 = dT · (b1 +b2 +C)/(N−T · (k1 + k2 ·N))e (3)

Then, the overall processing time can be calculated as

L0 = k1 ·B0 +b1 + k2 ·B0 ·N +b2 +C (4)

If L0 ≤ L, it means the NF can meet both its latency and
throughput requirements with N SMs and a batch size of
B0 ·N. If L0 > L, one more SM is allocated and the above
procedure is performed again. The procedure repeats un-
til no available SMs left in the GPU.

In G-NET, the scheduling scheme runs when the traffic
of an NF changes for more than 10%.

6 Abstraction and Framework for NFs

The implementation of NFs on CPU-GPU architectures
should be efficient and easy to scale up. In G-NET, we
propose an abstraction for NFs to reduce the develop-
ment efforts.

6.1 Framework
We generalize the CPU-GPU pipeline of network func-
tions as three main stages, namely Pre-processing, GPU
processing, and Post-processing. Figure 8 shows our
framework. The CPU is in charge of batching and packet
I/O in Pre-processing and Post-processing stages, and
the GPU is in charge of compute/memory-intensive op-
erations in the GPU processing stage. Our main design
choices are as follows.

Thread model in CPU-GPU pipelining: There are
two types of CPU threads in the pipeline. Worker
threads perform packet processing in Pre-processing and
Post-processing stages. To communicate with Manager
for GPU execution, a specific thread called launcher

is implemented to manage GPU operations including
data transfer and kernel execution. This avoids worker
threads waiting for the GPU operations and makes them
focus on processing continuously coming packets.

Buffer transfer among pipeline stages: We develop a
buffer transfer mechanism to prevent workers from be-
ing stalled when transferring data to the GPU. There are
three buffers in each pipeline. The launcher thread auto-
matically switches the buffer of the Pre-processing stage
when the Scheduler-specified batch size is reached. The
following two stages pass their buffers to the next stages
circularly after they complete their tasks.

Scale up: We scale up a network function when the
CPU becomes its bottleneck, i.e., launching more worker
threads to enhance the data processing capability. When
executing a GPU operation, the launcher passes the
thread id to Manager, which is mapped with a CUDA
stream for independent execution. With an independent
input and output queue for each worker, the design sim-
plifies NF management and enhances throughput.

6.2 Abstraction

Based on our framework, we propose an abstrac-
tion to mitigate the NF development efforts. The
abstraction mainly consists of five basic operations,
i.e., pre pkt handler, mem htod, set args, mem dtoh,
post pkt handler. Called by the framework in the Pre-
processing stage, pre pkt handler performs operations
including packet parsing and batching. The framework
manages the number of jobs in the batch, and develop-
ers only need to batch a job in the position of batch-
>job num in the buffer. Before the framework launches
the GPU kernel for a batch, mem htod and set args are
called to transfer data from the host memory to the GPU
memory and set arguments for the GPU kernel. Please
note that the order of the arguments should be consis-
tent with the GPU kernel function in set args. Then
the framework sends requests to Manager to launch the
specified GPU kernel. After kernel completes execution,
mem dtoh is called to transfer data from the GPU mem-
ory to the host memory. post pkt handler is called for
every packet after GPU processing.

As an example, Figure 9 demonstrates the major parts
of a router implemented with our abstraction. First, the
developer defines the specific batch structure (lines 1-
7). In a router, it includes the number of jobs in a
batch and the input and output buffers in the host and
the GPU memory. Each worker thread is allocated with a
batch structure for independent processing. With the ker-
nel init function (lines 8-11), developers install its kernel
by specifying its .cu kernel file and the kernel function
name (”iplookup”). Developers can also perform other
initialization operations in kernel init, such as building

194 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 struct my_batch {
2 uint64_t job_num;
3 isoPtr<uint32_t> host_ip;
4 isoPtr<uint32_t> dev_ip;
5 isoPtr<uint8_t> host_port;
6 isoPtr<uint8_t> dev_port;
7 }
8 void kernel_init(void) {
9 gInstallKernel("/pathto/router.cu", "iplookup");
10 build_routing_table();
11 }
12 void pre_pkt_handler(batch, pkt) {
13 batch->host_ip[batch->job_num] = dest_ip(pkt);
14 }
15 void memcpy_htod(batch) {
16 gMemcpyHtoD(batch->dev_ip, batch->host_ip,
17 batch->job_num * IP_SIZE);
18 }
19 void set_args(batch) {
20 gInstallArgNum(4);
21 gInstallArg(batch->dev_ip);
22 gInstallArg(batch->dev_port);
23 gInstallArg(batch->job_num);
24 gInstallArg(dev_lookup_table);
25 }
26 void memcpy_dtoh(batch) {
27 gMemcpyDtoH(batch->host_port, batch->dev_port,
28 batch->job_num * PORT_SIZE);
29 }
30 void post_pkt_handler(batch, pkt, pkt_idx) {
31 pkt->port = batch->host_port[pkt_idx];
32 }

Figure 9: The major parts of a router implemented with
G-NET APIs.

the routing table. The pre pkt handler (lines 12-14) of
the router extracts the destination IP address of a packet
and batches it in the host buffer. Functions mem htod
and mem dtoh transfer the ip address buffer into the GPU
memory and the port buffer into the host memory, respec-
tively. post pkt handler (lines 30-32) records the port
number which will be used by the framework to send the
packet out. With the abstraction, developers only need to
focus on the implementation of specific tasks of an NF,
reducing thousands of lines of development efforts.

Based on our abstraction, NFs can be developed by
different vendors, where the GPU kernel source code
should be provided so that the kernels can be loaded by
the Manager. If vendors that do not want to leak their
source code, they may have to deploy a whole package
of the G-NET system, including the NFs and the func-
tionalities in the hypervisor. A secure channel with cryp-
tographic operations can be built between NFs and the
Manager to pass the source code.

7 Experiment

7.1 Experimental Methodology
Experiment Platform: We conduct experiments on a
PC equipped with an Intel Xeon E5-2650 v4 processor
running at 2.2 GHz. The processor contains 12 physical
cores with hyper-threading enabled. The processor has

Th
ro

ug
hp

ut
 (G

bp
s)

0

2.4

4.8

7.2

9.6

12

Packet Size (Byte)
64 128 256 512 1024 1518

IPSec+NIDS Firewall+IPSec+NIDS
IPSec+NIDS+Router Firewall+IPSec+NIDS+Router

Figure 10: System throughput of G-NET.

an integrated memory controller installed with 4×16 GB
2400 MHz DDR4 memory. An NVIDIA Titan X Pas-
cal GPU is deployed, which has 28 streaming multipro-
cessors and a total of 3584 cores. An Intel XL710 dual
port 40 GbE NIC is used for network I/O, and DPDK
17.02.1 is used as the driver. The operating system is 64-
bit CentOS 7.3.1611 with Linux kernel 3.8.0-30. Docker
17.03.0-ce is used as our virtualization platform. Each
NF runs in a Docker instance, while Manager, Switch,
and Scheduler run on the host.

Service Chains: We implement four network func-
tions on G-NET, i.e., Router, Firewall, NIDS, IPsec gate-
way, as listed in Table 1. Composed by the NFs, four
service chains are used to evaluate the performance of G-
NET: (Sa) IPsec + NIDS; (Sb) Firewall + IPsec + NIDS;
(Sc) IPsec + NIDS + Router; (Sd) Firewall + IPsec +
NIDS + Router.

7.2 System Throughput

Figure 10 shows the throughput of G-NET for the four
service chains. We set one millisecond as the latency
requirement for the GPU execution of each NF, as we
aim at evaluating the maximum throughput of G-NET.
With the service chain Sa that has two NFs, the system
throughput reaches up to 11.8 Gbps with the maximum
ethernet frame size 1518-byte. For the service chain Sd
with four NFs, the system achieves a throughput of 9.1
Gbps.

As depicted in the figure, the system throughput in-
creases with the size of packet. When the packet size is
small, the input data volume of service chains is limited
by the nontrivial per-packet processing overhead, includ-
ing switching, batching, and packet header parsing. The
main overhead comes from packet switching. Switching
a packet between two NFs includes at least two enqueue
and dequeue operations, and the packet header should be
inspected to determine its destination, which is known
to have severe performance issues [17, 27, 32, 34]. In
an NFV system with a service chain of multiple NFs,
the problem gets more pronounced as a packet needs to
be forwarded multiple times in the service chain. More-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 195

No
rm

al
ize

d
Th

ro
ug

hp
ut

0.5

0.75

1

1.25

1.5

Packet Size (Byte)
64 128 256 512 1024 1518

TemporalShare G-NET

0.5

0.75

1

1.25

1.5

Packet Size (Byte)
64 128 256 512 1024 1518

0.5

1

1.5

2

Packet Size (Byte)
64 128 256 512 1024 1518

No
rm

al
ize

d
Th

ro
ug

hp
ut

0.5

0.75

1

1.25

1.5

Packet Size (Byte)
64 128 256 512 1024 1518

(a) IPSec+NIDS (b) Firewall+IPSec+NIDS

(c) IPSec+NIDS+Router (d) Firewall+IPSec+NIDS+Router

Figure 11: Throughput comparison between G-NET and
TemporalShare. Performance is normalized to Temporal-
Share.

over, as the NFs in the system demand CPU cores for
packet processing, leaving Switch limited resources for
packet forwarding. Assigning the Switch with more
threads, however, would deprive the cores allocated for
the worker threads in NFs, resulting in overall perfor-
mance degradation.

7.3 Performance Improvement From Spa-
tial GPU Sharing

To evaluate the performance improvement with spatial
GPU sharing, we implement a TemporalShare mode in
G-NET for comparison. The TemporalShare mode repre-
sents existing GPU virtualization approaches, where ker-
nels from NFs access the GPU serially instead of being
executed simultaneously.

Figure 11 compares the throughput of G-NET and
TemporalShare. As shown in the figure, the spatial
GPU sharing in G-NET significantly enhances the over-
all throughput. For the four service chains, the through-
put improvements reach up to 23.8%, 25.9%, 21.5%, and
70.8%, respectively. The throughput improvements for
the service chain with four NFs are higher than that of
service chains with less NFs. For a small number of
NFs, a fraction of the GPU kernels and PCIe data trans-
fer could overlap with TemporalShare, leading to less re-
source contention. When there are more NFs co-running
in the system, they can reap more benefits of spatial GPU
sharing for the fierce resource competition.

There are two main aspects that limit the performance
improvement by spatial GPU sharing. First, although

Figure 12: Data transfer conflicts in G-NET.

GPU kernels are able to utilize Hyper-Q to co-run on
a GPU, their PCIe data transfer have to be sequentially
performed. This is due to the limited number of DMA
engines. Figure 12 plots the trace of G-NET with IPsec
gateway and NIDS, which demonstrates the concur-
rent kernel executions with spatial GPU sharing and the
DMA data transfer conflicts. The delays in NFs caused
by the data transfer conflicts are marked as bold black
lines in the figure. As shown in the figure, NFs spend a
significant amount of time in waiting for the HtoD DMA
engine when it is occupied by other NFs. The system
performance could be further unleashed when hardware
vendors equip GPUs with more DMA engines for par-
allel data transfer. Second, the bottleneck of G-NET on
current evaluation platform lies in the CPU. Our GPU
provides abundant computational resources, which is un-
able to be matched by the CPU. For instance, with four
NFs, each NF can only be assigned with two physical
cores, resulting in low packet processing capability. For
workloads with large packets, the batching operations
that perform memcpy on packet payloads limit the overall
performance. Instead, the switching overhead becomes
the main factor that affects the overall performance for
workloads with small packets. It is our future work to
investigate how to further reduce this overhead.

7.4 Evaluation of Scheduling Schemes
To evaluate the effectiveness of the GPU scheduling in
G-NET, we use two other scheduling schemes for com-
parison, i.e., FairShare and Uncohare. Different with the
scheduling scheme of G-NET, the SMs are evenly parti-
tioned among all NFs in the FairShare mode. In the Un-
coShare mode, Scheduler is disabled, and each NF tries
to use as many GPU resources as possible.

The throughput improvements of G-NET over Fair-
Share and UncoShare are shown in Figure 13 and Fig-
ure 14, respectively. For the four service chains, the aver-
age throughput improvements of G-NET are 16.7-34.0%
over FairShare and 50.8-130.1% over UncoShare. The
throughput improvements over UncoShare are higher
than that of FairShare for the following reasons. In the
FairShare mode, although the GPU resources are parti-

196 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FairShare

Th
ro

ug
hp

ut

Im
pr

ov
em

en
t

0
0.1
0.2
0.3
0.4
0.5
0.6

Packet Size (Byte)

64 128 256 512 1024 1518

IPSec+NIDS IPSec+NIDS+Router
Firewall+IPSec+NIDS Firewall+IPSec+NIDS+Router

Figure 13: Throughput improvements in G-NET over
FairShare GPU scheduling.

UncoShare

Th
ro

ug
hp

ut

Im
pr

ov
em

en
t

0

0.4

0.8

1.2

1.6

2

Packet Size (Byte)

64 128 256 512 1024 1518

IPSec+NIDS IPSec+NIDS+Router
Firewall+IPSec+NIDS Firewall+IPSec+NIDS+Router

Figure 14: Throughput improvements in G-NET over
UncoShare GPU scheduling.

tioned among the NFs, they are still able to co-run their
GPU kernels simultaneously. In the UncoShare mode,
however, each NF tries to use as many resources (SMs)
as possible. This may exhaust the GPU resources, mak-
ing part of the GPU kernels cannot run together. More-
over, the performance of a kernel can be degraded due
to the interference of kernels running on the same SMs.
To conclude, our scheduling scheme demonstrates very
high efficiency in enhancing the performance of the ser-
vice chains.

7.5 The Overhead of IsoPointer

To guarantee the isolation of different NFs, G-NET uses
IsoPointer to check, validate, and restrict GPU memory
accesses. These management activities may add some
runtime overhead to NF executions.

We measure the overhead by comparing the perfor-
mance of G-NET with and without IsoPointer under two

N
or

m
al

iz
ed

Th

ro
ug

hp
ut

0

0.25

0.5

0.75

1

Router Firewall NIDS IPSec SC-2 SC-3 SC-4

w/o Isolation w/ Isolation

Figure 15: Overhead of IsoPointer.

C
D

F

0

0.25

0.5

0.75

1

Round Trip Time (microsecond)
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

NIDS IPSec+NIDS
Firewall+IPSec+NIDS Firewall+IPSec+NIDS+Router

Figure 16: System latency of four service chains.

No
rm

al
ize

d
La

te
nc

y

0.5

0.75

1

1.25

1.5

IPSec+NIDS Firewall+ 
IPSec+NIDS

Firewall+IPSec+ 
NIDS+Router

0.5

0.75

1

1.25

1.5

IPSec+NIDS Firewall+ 
IPSec+NIDS

Firewall+IPSec+ 
NIDS+Router

G-NET TemporalShare

(a) 50th percentile latency (b) 95th percentile latency

Figure 17: Latency comparison with TemporalShare.

groups of workloads. The first group consists of the solo
executions of the NFs, and the second group comprises
service chains with 2-4 NFs. The results are presented
in Figure 15, where SC-k denotes a service chain with k
NFs. We report the performance of service chain Sb for
SC-3, as the measured overheads of Sb and Sc are sim-
ilar. As shown in the figure, the overhead of IsoPointer
ranges from 2.8% to 4.5%, which is negligibly low.

7.6 Latency

We evaluate system processing latency by measuring the
time elapsed from sending a packet to the NFV system
to receiving the processed packet. The client keeps send-
ing packets with source IP address increasing by one for
each packet. By sample logging the sending/receiving
time and the IP address, the round trip latency can be
calculated as the time elapsed between the queries and
responses with matched IP addresses.

Figure 16 shows the Cumulative Distribution Function
(CDF) of the packet round trip latency with four service
chains. The latency is measured by setting the maximum
GPU execution time of each NF as one millisecond, as
it demonstrates the system latency with the maximum
throughput. As shown in the figure, the latency of one
NF is low and stable. With two to four NFs, the service
chains show piecewise CDFs, where latencies are clus-
tered into three or more areas. The main reason for this
phenomenon is the PCIe data transfer conflict. As there
are only one HtoD and one DtoH DMA engine in cur-
rent GPUs, a kernel would be postponed for execution

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 197

if other NFs are utilizing the engine, leading to higher
processing latency. If data is transferred while other NFs
are running GPU kernels, they will overlap with no per-
formance loss. Therefore, different degrees of resource
competition in NF executions lead to the several clus-
ters of latency distribution in the CDF. The latency in
G-NET mainly comes from three parts, i.e., GPU pro-
cessing, batching, and packet switching. With a lower
input network speed, the latency would decrease for the
lower batching time and GPU processing time.

Figure 17 compares the latency of G-NET with Tem-
poralShare. With temporal GPU sharing, the 50th per-
centile latency is around 20% higher than that of G-NET,
and the 95th percentile latency is 25.5%-44.3% higher
than that of G-NET. It is worth noting that the through-
put of TemporalShare is lower than G-NET (shown in
Figure 11). Without spatial GPU sharing, both the ker-
nel execution and the PCIe data transfer are serialized,
resulting in low throughputs and high latencies.

8 Related Work

GPU Accelerated Network Functions: There are a
class of work that utilize GPUs in accelerating network
functions, including router [15], SSL reverse proxy [20],
NIDS [19], and NDN system [42]. APUnet [12] studies
NF performance on several architectures, which demon-
strates the capability of GPUs in efficient packet process-
ing and identifies the overhead in PCIe data transfer.

Network Function Virtualization: Recent NFV sys-
tems that are built with high performance data plane in-
clude NetVM [18] and ClickNP [25]. NetVM is a CPU-
based NFV framework that implements zero-copy data
transfer among VMs, which inspires the design of Switch
in G-NET. NFVnice [23] is an NF scheduling framework
that maximizes the performance of a service chain by al-
locating CPU time to NFs based on their packet arrival
rate and the required computational cost. The goal of the
CPU resource allocation in NFVnice is the same with
that of the GPU resource allocation in G-NET. ClickNP
and Emu [28] accelerate the data plane of network func-
tions with FPGA. Same with G-NET, they also provide
high-level languages to mitigate the development efforts.
NFP [38] is a CPU-based NFV framework that exploits
the opportunity of NF parallel execution to improve NFV
performance. On the control plane, there is a class of
work [6, 11, 29] focus on flexible and easy NF deploy-
ment including automatic NF placement, dynamic scal-
ing, and NF migration.

GPU Virtualization: GPU virtualization approaches
are generally classified into three major classes, namely,
I/O pass-through [2], API remoting [14, 37], and hy-
brid [9]. Recent work includes alleviating the overhead
of GPU virtualization [39, 40] and resolving the memory

capacity limitation [45]. These systems do not explore
the spatial GPU sharing, as most of them assume a ker-
nel would saturate GPU resources.

GPU Sharing: Recent work on GPU multitasking
studies spatial GPU sharing [3] and simultaneous mul-
tikernel [43, 44] with simulation. [31] shows that spa-
tial GPU sharing has better performance when there is
resource contention among kernels. Instead, simultane-
ous multikernel, which allows kernels to run on the same
SM, has advantage for kernels with complimentary re-
source demands [31]. NF kernels have similar opera-
tions in packet processing, making spatial sharing a bet-
ter choice.

Isolation: For the implementation of IsoPointer, G-
NET adopts a similar technique with ActivePointer [35],
which intercepts GPU memory accesses for address
translation. Paradice [5] proposes a data isolation
scheme in paravirtualization, which guarantees that the
CPU code of a VM can only access its own host and
device memory. Different with G-NET, Paradice is un-
able to prohibit malicious GPU code from accessing il-
legal GPU memory regions. Instead of virtualization,
NetBricks [30] utilizes type checking and safe runtimes
to provide data isolation for CPU-based NFs. This ap-
proach discards the flexibility brought by virtualization,
such as NF migration and the ability to run on different
software/hardware platforms. Moreover, we find the per-
formance penalties caused by virtualization is negligibly
low in G-NET (only around 4%).

9 Conclusion

We propose G-NET, an NFV system that exploits spatial
GPU sharing. With a service chain based GPU schedul-
ing scheme to optimize the overall throughput, a data
isolation scheme to guarantee data security in the GPU
memory, and an abstraction to significantly reduce de-
velopment efforts, G-NET enables effective and efficient
adoption of GPUs in NFV systems. Through extensive
experiments, G-NET significantly enhances the through-
put by up to 70.8% and reduces latency by up to 44.3%
for GPU-based NFV systems.

10 Acknowledgement

We would like to thank our shepherd KyoungSoo Park
and anonymous reviewers of NSDI’18 for their insight-
ful comments and suggestions. We also acknowledge
the support of NVIDIA Corporation with the donation
of the Titan X Pascal GPU used for this research. This
work was supported in part by a MoE AcRF Tier 2 grant
(MOE2017-T2-1-122) in Singapore, NSFC (Grant No.
61732004, 61370080) and the Shanghai Innovation Ac-
tion Project (Grant No. 16DZ1100200) in China.

198 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Alihpc. "https://hpc.aliyun.com/product/gpu_bare_

metal/".

[2] Amazon high performance computing cloud using GPU. "http:
//aws.amazon.com/hpc/".

[3] ADRIAENS, J. T., COMPTON, K., KIM, N. S., AND SCHULTE,
M. J. The Case for GPGPU Spatial Multitasking. In HPCA
(2012), pp. 1–12.

[4] AHO, A. V., AND CORASICK, M. J. Efficient String Matching:
An Aid to Bibliographic Search. Communications of the ACM
18, 6 (1975), 333–340.

[5] AMIRI SANI, A., BOOS, K., QIN, S., AND ZHONG, L. I/O Par-
avirtualization at the Device File Boundary. In ASPLOS (2014),
pp. 319–332.

[6] BREMLER-BARR, A., HARCHOL, Y., AND HAY, D. OpenBox:
A Software-Defined Framework for Developing, Deploying, and
Managing Network Functions. In SIGCOMM (2016), pp. 511–
524.

[7] CORMEN, T. H., STEIN, C., RIVEST, R. L., AND LEISERSON,
C. E. Introduction to Algorithms, 3rd ed. 2009.

[8] DE LA BRIANDAIS, R. File Searching Using Variable Length
Keys. In Western Joint Computer Conference (1959), pp. 295–
298.

[9] DOWTY, M., AND SUGERMAN, J. GPU Virtualization on
VMware’s Hosted I/O Architecture. In SIGOPS Oper. Syst. Rev.
(2009), pp. 73–82.

[10] ELLIOTT, G. A., AND ANDERSON, J. H. Globally Scheduled
Real-time Multiprocessor Systems with GPUs. Real-Time Syst.
(2012), 34–74.

[11] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH, C.,
GRANDL, R., KHALID, J., DAS, S., AND AKELLA, A.
OpenNF: Enabling Innovation in Network Function Control. In
SIGCOMM (2014), pp. 163–174.

[12] GO, Y., JAMSHED, M. A., MOON, Y., HWANG, C., AND PARK,
K. APUNet: Revitalizing GPU as Packet Processing Accelerator.
In NSDI (2017), pp. 83–96.

[13] GUPTA, P., LIN, S., AND MCKEOWN, N. Routing lookups
in hardware at memory access speeds. In INFOCOM (1998),
pp. 1240–1247.

[14] GUPTA, V., SCHWAN, K., TOLIA, N., TALWAR, V., AND RAN-
GANATHAN, P. Pegasus: Coordinated Scheduling for Virtualized
Accelerator-based Systems. In USENIX ATC (2011).

[15] HAN, S., JANG, K., PARK, K., AND MOON, S. PacketShader:
A GPU-Accelerated Software Router. In SIGCOMM (2010).

[16] HAWILO, H., SHAMI, A., MIRAHMADI, M., AND ASAL, R.
NFV: state of the art, challenges, and implementation in next gen-
eration mobile networks (vEPC). IEEE Network 28, 6 (2014),
18–26.

[17] HONDA, M., HUICI, F., LETTIERI, G., AND RIZZO, L.
mSwitch: A Highly-scalable, Modular Software Switch. In SOSR
(2015), pp. 1:1–1:13.

[18] HWANG, J., RAMAKRISHNAN, K. K., AND WOOD, T. NetVM:
High Performance and Flexible Networking Using Virtualization
on Commodity Platforms. In NSDI (2014), pp. 445–458.

[19] JAMSHED, M. A., LEE, J., MOON, S., YUN, I., KIM, D., LEE,
S., YI, Y., AND PARK, K. Kargus: A Highly-scalable Software-
based Intrusion Detection System. In CCS (2012), pp. 317–328.

[20] JANG, K., HAN, S., HAN, S., MOON, S., AND PARK, K.
SSLshader: Cheap SSL Acceleration with Commodity Proces-
sors. In NSDI (2011).

[21] KALIA, A., ZHOU, D., KAMINSKY, M., AND ANDERSEN,
D. G. Raising the Bar for Using GPUs in Software Packet Pro-
cessing. In NSDI (2015), pp. 409–423.

[22] KATO, S., LAKSHMANAN, K., RAJKUMAR, R., AND
ISHIKAWA, Y. TimeGraph: GPU Scheduling for Real-time
Multi-tasking Environments. In USENIX ATC (2011).

[23] KULKARNI, S. G., ZHANG, W., HWANG, J., RAJAGOPALAN,
S., RAMAKRISHNAN, K. K., WOOD, T., ARUMAITHURAI, M.,
AND FU, X. NFVnice: Dynamic Backpressure and Scheduling
for NFV Service Chains. In SIGCOMM (2017), pp. 71–84.

[24] LAKSHMAN, T. V., AND STILIADIS, D. High-speed Policy-
based Packet Forwarding Using Efficient Multi-dimensional
Range Matching. In SIGCOMM (1998), pp. 203–214.

[25] LI, B., TAN, K., LUO, L. L., PENG, Y., LUO, R., XU, N.,
XIONG, Y., CHENG, P., AND CHEN, E. ClickNP: Highly Flex-
ible and High Performance Network Processing with Reconfig-
urable Hardware. In SIGCOMM (2016), pp. 1–14.

[26] LIANG, Y., HUYNH, H. P., RUPNOW, K., GOH, R. S. M., AND
CHEN, D. Efficient GPU Spatial-Temporal Multitasking. IEEE
Transactions on Parallel and Distributed Systems 26 (2015),
748–760.

[27] MOLNÁR, L., PONGRÁCZ, G., ENYEDI, G., KIS, Z. L.,
CSIKOR, L., JUHÁSZ, F., KŐRÖSI, A., AND RÉTVÁRI, G. Dat-
aplane Specialization for High-performance OpenFlow Software
Switching. In SIGCOMM (2016), pp. 43–56.

[28] N, S., S, G., D, G., M, W., J, S., R, C., L, M., P, B., R, S.,
R, M., P, C., P, P., J, C., AW, M., AND N, Z. Emu: Rapid
Prototyping of Networking Services. In USENIX ATC (2017),
pp. 459–471.

[29] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A., RAT-
NASAMY, S., RIZZO, L., AND SHENKER, S. E2: A Framework
for NFV Applications. In SOSP (2015), pp. 121–136.

[30] PANDA, A., HAN, S., JANG, K., WALLS, M., RATNASAMY,
S., AND SHENKER, S. NetBricks: Taking the V out of NFV. In
OSDI (2016), pp. 203–216.

[31] PARK, J. J. K., PARK, Y., AND MAHLKE, S. Dynamic Resource
Management for Efficient Utilization of Multitasking GPUs. In
ASPLOS (2017), pp. 527–540.

[32] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E., ZHOU,
A., RAJAHALME, J., GROSS, J., WANG, A., STRINGER, J.,
SHELAR, P., AMIDON, K., AND CASADO, M. The Design and
Implementation of Open vSwitch. In NSDI (2015), pp. 117–130.

[33] PIETRO, R. D., LOMBARDI, F., AND VILLANI, A. CUDA
Leaks: A Detailed Hack for CUDA and a (Partial) Fix. ACM
Trans. Embed. Comput. Syst. 15 (2016), 15:1–15:25.

[34] RIZZO, L., AND LETTIERI, G. VALE, a Switched Ethernet for
Virtual Machines. In CoNEXT (2012), pp. 61–72.

[35] SHAHAR, S., BERGMAN, S., AND SILBERSTEIN, M. Active-
Pointers: A Case for Software Address Translation on GPUs. In
ISCA (2016), pp. 596–608.

[36] SHERRY, J., AND RATNASAMY, S. A Survey of Enterprise Mid-
dlebox Deployments. Tech. rep., 2012.

[37] SHI, L., CHEN, H., SUN, J., AND LI, K. vCUDA: GPU-
Accelerated High-Performance Computing in Virtual Machines.
IEEE Transactions on Computers 61, 6 (2012), 804–816.

[38] SUN, C., BI, J., ZHENG, Z., YU, H., AND HU, H. NFP: En-
abling Network Function Parallelism in NFV. In SIGCOMM
(2017), pp. 539–552.

[39] SUZUKI, Y., KATO, S., YAMADA, H., AND KONO, K. GPUvm:
Why Not Virtualizing GPUs at the Hypervisor? In USENIX ATC
(2014), pp. 109–120.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 199

[40] TIAN, K., DONG, Y., AND COWPERTHWAITE, D. A Full GPU
Virtualization Solution with Mediated Pass-Through. In USENIX
ATC (2014), pp. 121–132.

[41] WANG, K., ZHANG, K., YUAN, Y., MA, S., LEE, R., DING,
X., AND ZHANG, X. Concurrent Analytical Query Processing
with GPUs. VLDB (2014), 1011–1022.

[42] WANG, Y., ZU, Y., ZHANG, T., PENG, K., DONG, Q., LIU, B.,
MENG, W., DAI, H., TIAN, X., XU, Z., WU, H., AND YANG,
D. Wire Speed Name Lookup: A GPU-based Approach. In NSDI
(2013), pp. 199–212.

[43] WANG, Z., YANG, J., MELHEM, R., CHILDERS, B., ZHANG,
Y., AND GUO, M. Simultaneous Multikernel GPU: Multi-
tasking throughput processors via fine-grained sharing. In HPCA
(2016), pp. 358–369.

[44] XU, Q., JEON, H., KIM, K., RO, W. W., AND ANNAVARAM,
M. Warped-slicer: Efficient intra-SM Slicing Through Dynamic
Resource Partitioning for GPU Multiprogramming. In ISCA
(2016), pp. 230–242.

[45] XUE, M., TIAN, K., DONG, Y., MA, J., WANG, J., QI, Z., HE,
B., AND GUAN, H. gScale: Scaling up GPU Virtualization with
Dynamic Sharing of Graphics Memory Space. In USENIX ATC
(2016), pp. 579–590.

[46] ZHANG, H., ZHENG, Z., XU, S., DAI, W., HO, Q., LIANG, X.,
HU, Z., WEI, J., XIE, P., AND XING, E. P. Poseidon: An Effi-
cient Communication Architecture for Distributed Deep Learning
on GPU Clusters. In USENIX ATC (2017), pp. 181–193.

[47] ZHANG, K., HU, J., AND HUA, B. A Holistic Approach to
Build Real-time Stream Processing System with GPU. JPDC 83,
C (2015), 44–57.

[48] ZHANG, K., WANG, K., YUAN, Y., GUO, L., LEE, R., AND
ZHANG, X. Mega-KV: A Case for GPUs to Maximize the
Throughput of In-memory Key-value Stores. VLDB (2015),
1226–1237.

200 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SafeBricks: Shielding Network Functions in the Cloud

Rishabh Poddar
UC Berkeley

Chang Lan
UC Berkeley

Raluca Ada Popa
UC Berkeley

Sylvia Ratnasamy
UC Berkeley

Abstract
With the advent of network function virtualization
(NFV), outsourcing network processing to the cloud is
growing in popularity amongst enterprises and organiza-
tions. Such outsourcing, however, poses a threat to the
security of the client’s traffic because the cloud is notori-
ously susceptible to attacks.

We present SafeBricks, a system that shields generic
network functions (NFs) from an untrusted cloud.
SafeBricks ensures that only encrypted traffic is exposed
to the cloud provider, and preserves the integrity of
both traffic and the NFs. At the same time, it enables
clients to reduce their trust in NF implementations by
enforcing least privilege across NFs deployed in a chain.
SafeBricks does not require changes to TLS, and safe-
guards the interests of NF vendors as well by shielding
NF code and rulesets from both clients and the cloud.
To achieve its aims, SafeBricks leverages a combination
of hardware enclaves and language-based enforcement.
SafeBricks is practical, and its overheads range between
∼0–15% across applications.

1 Introduction
Modern networks consist of a wide range of appli-
ances that implement advanced network functions be-
yond merely forwarding packets, such as scanning for
security issues (e.g., firewalls, IDSes) or improving per-
formance (e.g., WAN optimizers, web caches). Tradi-
tionally, these network functions (or NFs) have been de-
ployed as dedicated hardware devices. In recent years,
however, both industry and academia have proposed the
replacement of the devices with software implementa-
tions running in virtual machines [55,62], a model called
Network Function Virtualization (NFV). Inevitably, the
advent of NFV has spurred the growth of a new industry
wherein third-parties offer traffic processing capabilities
as a cloud service to customers [4, 51, 62, 79]. Such a
service model enables enterprises to outsource NFs from
their networks entirely to the third-party service, bring-
ing the benefits of cloud computing and reducing costs.

However, outsourcing NFs to the cloud poses new
challenges to enterprise networks—security.
Need to protect traffic from the cloud. By allowing the
cloud provider to process enterprise traffic, enterprises
end up granting to the cloud the ability to see their sensi-
tive traffic and tamper with NF processing. While the

NFs
NF vendors

Enterprise

NF code

Traffic

To destination

NFs,
rules

Cloud provider

Figure 1: Model for outsourced NFs.

cloud itself might be a benign entity, it is vulnerable
to hackers [56], subpoenas [24, 45, 75], and insider at-
tacks [10, 54, 77]. This is doubly worrisome because not
only does network traffic contain sensitive information,
but some NFs are also designed to protect enterprises
against intrusions which an attacker could try to disrupt.
Need to protect traffic from NF. What complicates mat-
ters further is that often, an enterprise must also trust
another party with its traffic: NF vendors. This is the
case when enterprises procure proprietary NF implemen-
tations and rulesets from NF vendors [8, 22, 51] instead
of using their own, as shown in Figure 1. While such
NFs typically need access only to specific portions of the
traffic (e.g., IP firewalls only need read access to packet
headers), the enterprise by default entrusts the NFs with
both read/write access over entire packets.
Need to protect NF source code. This model threat-
ens the security of the NF vendors as well, who have a
business interest in maintaining the privacy of their code
and rulesets (often baked into the source code) from both
the cloud and the enterprise. NFs have traditionally been
shipped as hardware devices, so being shipped as soft-
ware now exposes them further to untrusted platforms
(e.g., it is possible to reverse binaries).

The question is: how can we design an NF processing
framework that meets all these security goals?

There has been little prior work in this space, con-
sisting of mostly two approaches. Cryptographic ap-
proaches such as BlindBox [63] and Embark [38] are sig-
nificantly limited in functionality, supporting only simple
functions such as = and >. They are unable to support
more sophisticated operations such as regular expres-
sions (needed in common NFs such as intrusion detection
systems) or process custom NF code. Least-privilege ap-
proaches such as mcTLS [48] aim to give each NF access
to only part of the packet and are designed for hardware
middleboxes; however, when used in the cloud setting,
they provide weak guarantees because the cloud receives
the union of the permissions of all middleboxes, which
often, is everything. Neither of these approaches protects

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 201

the NF source code, and both require significant changes
to TLS, which is an impediment to adoption.

We present SafeBricks, a system for outsourcing NFs
that provides protection with respect to the three security
needs above. SafeBricks addresses the discussed lim-
itations of prior work by supporting generic NF func-
tionality with significantly stronger security guarantees,
without requiring changes to TLS. It builds upon Net-
Bricks [53], a framework for building and executing ar-
bitrary NFs that uses a safe language and runtime, Rust.

To overcome the limited functionality of crypto-
graphic approaches, SafeBricks shields [9] traffic pro-
cessing from the cloud by executing the NFs within hard-
ware enclaves (e.g., Intel SGX [43]). This approach
promises that neither an administrator with root privi-
leges nor a compromised operating system can observe
enclave-protected data in unencrypted form, or tamper
with the enclave’s execution. Enclaves have already been
used to shield general-purpose computation from the
cloud provider [3, 9, 30, 59]. Applying them to network
processing is a natural next step, as recent proposals have
pointed out (see §11).

While this idea is simple, designing a system that pro-
vides protection with respect to the three security goals
above, and simultaneously maintains good performance,
is far more challenging.

First, general-purpose approaches result in a large
trusted computing base (TCB) inside the enclaves (up to
millions of LoC), any vulnerability in which can result
in information leakage. In SafeBricks, we investigate
how to partition the code stack of NF applications (from
packet capture to processing) and choose a boundary that
reduces the code within the trusted domain without com-
promising security.

Second, partitioning an application is likely to result
in transitions between enclave and non-enclave code.
These transitions are expensive, introducing a high run-
time overhead due to the cost of saving/restoring the state
of the secure environment. Consequently, there is a ten-
sion between TCB size and the overall performance of
the application: the lesser code the enclave contains, the
more transitions it is likely to make to non-enclave code.
In SafeBricks, we address these challenges simultane-
ously by developing an architecture that leverages shared
memory and splits computation across enclave and non-
enclave threads (while verifying the work of the non-
enclave threads) without performing transitions.

Third, NFV deployments typically comprise multiple
NFs running in a chain, isolated via VMs or contain-
ers for safety. In our setting, the straightforward way of
achieving this isolation would be to deploy each NF in
a separate enclave. However, as we discuss in §6, such
an architecture can result in a system that is ∼2–16×
slower than the baseline. Instead, SafeBricks supports

chains of NFs within the same enclave. To isolate them,
SafeBricks leverages the semantics of the Rust language.

Nevertheless, this strategy introduces a new difficulty:
all NFs must be assembled using a trusted compiler.
Though the client enterprise is the natural site for build-
ing the NFs safely, doing so would leak the source code
of the NFs to the client, which is undesirable for the NF
vendors. To address this challenge, SafeBricks runs in
an enclave at the cloud a meta-functionality: a compiler
that creates an encrypted binary, and a loader that runs
this binary in a separate enclave. Using the remote attes-
tation feature of hardware enclaves, both the NF vendors
and the client can verify that the agreed-upon compiler
and loader are running in an enclave, before the vendors
share the NF code and the client shares data and traffic.

Finally, none of the above satisfies our requirement
for enforcing least privilege across NFs: each NF still
has access to entire packets. SafeBricks enforces least
privilege by (i) exposing an API to the client for spec-
ifying the privileges of each NF, and (ii) ensuring that
the SafeBricks framework mediates all NF accesses to
packets, both reads and writes. To enforce the latter,
SafeBricks leverages the safety guarantees of Rust.

We evaluate SafeBricks across four different NF ap-
plications using both synthetic and real traffic. Our eval-
uation shows that the performance impact of SafeBricks
is reasonable, ranging between ∼0–15% across NFs.

2 Model and Threat Model
As shown in Figure 1, there are four types of parties in
our setting: (1) a cloud provider that hosts the outsourced
NFs; (2) a client enterprise outsourcing its traffic pro-
cessing to the cloud; (3) two endpoints that communi-
cate over the network, at least one of which is within the
enterprise; and (4) NF vendors that supply the code and
rulesets for network functions.

The client enterprise contains a gateway (as shown
in Figure 2) which is trusted. The endpoints are trusted
only with their communication.

The core of SafeBricks’s design builds on the abstract
notion of a hardware enclave. Our implementation uses
Intel SGX [43], a popular hardware enclave, but few de-
sign decisions are tailored to SGX. We provide some rel-
evant background on hardware enclaves, and then define
the threat models for the cloud and the NF vendors.

2.1 Hardware enclaves
Hardware enclaves aim to provide an isolated execution
environment that preserves the confidentiality and in-
tegrity of code and data within the enclave. An important
feature of hardware enclaves is remote attestation.
Remote attestation. This procedure allows a remote
client system to cryptographically verify that specific
software has been securely loaded into an enclave, us-

202 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing CPU-based attestation [2]. When a client requests
remote attestation, the enclave generates a report signed
by the processor that contains a hash measurement of the
enclave. As part of the attestation, the enclave can also
bootstrap a secure channel with the client by generating
a public key and returning it with the signed report.

Intel SGX. Intel Software Guard Extensions [43] is a set
of ISA extensions that enables the creation of hardware
enclaves. Software running outside the enclave, includ-
ing privileged software such as the kernel or hypervisor,
cannot access or tamper with enclave memory.

2.2 Threat model for the cloud and enclaves
Our threat model for the cloud provider is similar to prior
works [3,9,59] that build on hardware enclaves. Enclaves
strive to provide an abstract security guarantee so that
systems like SafeBricks can build on them in a black-
box manner; however, current implementations do not
yet fully achieve this guarantee as we discuss below.
Abstract enclave assumption. The attacker cannot ob-
serve any information about the protected code and data
in the enclave, and the remote attestation procedure es-
tablishes a secure connection between the correct parties
and loads the desired code into the enclave.
Attacker capabilities. Except the out-of-scope attacks
described below, we consider an attacker that can com-
promise the software stack of the cloud provider outside
the enclave, which includes privileged software such as
the hypervisor and kernel. In particular, whenever the
enclave exits or invokes code outside the enclave, the at-
tacker can instead run arbitrary code and/or respond with
arbitrary data to the enclave. For example, the OS can
mount an Iago attack [15] and respond incorrectly to sys-
tem calls. Note that this threat model implies that the
attacker can observe communication between hardware
enclaves as well as communication on the network.
Out-of-scope attacks. In short, all attacks that violate
the abstract enclave assumption above are out of scope
for SafeBricks. For example, we consider as out of scope
all hardware and side-channel attacks, as well as assume
that the enclave manufacturer (e.g., Intel) is trusted. Intel
SGX’s current implementation does not fully achieve the
enclave assumption above because it suffers from side-
channel attacks, including those based on access pattern
leakage amongst others [12, 14, 17, 26, 28, 39, 47, 60, 73,
74]. While these are important issues with SGX, we
treat them as out of scope for SafeBricks because so-
lutions to these are orthogonal and complementary to
our contribution here. Recently, a number of solutions
have been proposed for solving or mitigating these at-
tacks [16, 18, 27, 65, 66].

2.3 Threat model for network functions
Each NF is trusted only with the permissions given to
it by the enterprise for specific packet fields. That is,

if the enterprise gives a NAT read/write permissions for
the IP header, the NF is trusted to not leak the header
to unauthorized entities and to modify it correctly. At
the same time, if the NAT attempts to access the packet
payload, then SafeBricks must prevent it from doing so.

3 SafeBricks: End-to-end Architecture
APLOMB [62] discusses in detail the architecture for
outsourcing NF processing to the cloud by redirecting
client traffic, as well as the merits of this architecture.
Here, we focus on how SafeBricks enhances this archi-
tecture with protection against cloud attackers and TLS
compatibility, while maintaining performance.

SafeBricks supports three typical architectures consid-
ered in the cloud outsourcing model [38, 62], as shown
in Figure 2. These architectures have different merits or
constraints, and are useful for different cases.

Let S be the source endpoint, G the client gateway, CP
the cloud provider running NFs using SafeBricks (SB),
and D the destination endpoint. Let G1 be the gateway
near the source, and G2 be the gateway near the destina-
tion. Note that in the Direct architecture, an enclave in
the cloud plays the role of G2, and in the Bounce archi-
tecture, a single gateway plays both G1 and G2. CP runs
hardware enclaves; code and data are decrypted inside
enclaves, but remain encrypted outside. D could either
be an external site or an endpoint in another enterprise.
1. Bounce: In the bounce architecture, SB tunnels pro-

cessed traffic to G over the secure channel. G then
forwards the processed traffic to the destination. The
response from D is similarly redirected by G to SB
before forwarding it to S. The bounce setup is the
simplest in that it does not place any added burden on
SB or D from a functionality and security perspective.
However, it inflates the latency between S and D as a
result of bouncing the processed traffic to G.

2. Direct: The direct architecture alleviates the latency
added by the bounce setup. SB directly forwards
the enterprise traffic to D after processing it with-
out bouncing it off the gateway. However, this setup
comes at the cost of security: since there is no se-
cure channel between SB and D over which traffic can
be tunneled, SB must necessarily send the processed
packets to D in the clear, revealing the headers to CP.
If S and D use TLS, CP will not see the payload.

3. Enterprise-to-enterprise: If S and D belong to the
same enterprise or to enterprises that trust each other,
it is possible to have the combined benefits of the
bounce and direct architecture. SB tunnels the pro-
cessed traffic to G2, so CP does not see any headers
at any time. At the same time, this approach does not
suffer from the bounce setup’s latency.
Though not the focus of this work, it is worth men-

tioning that SafeBricks can also be used in a local cloud

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 203

External site

GatewaySource

Client enterprise

Cloud provider SafeBricks ServerGateway

TLS
Tunneled

GatewaySource

Client enterprise Dest. enterprise

Enterprise-to-enterprise architectureDirect architecture

External site

GatewaySource

Client enterprise

Cloud provider

SafeBricks

Bounce architecture

SafeBricks G

Figure 2: End-to-end system architecture

deployment in which the NFs run within the client enter-
prise. This benefits the client by providing SafeBricks’s
isolation and least privilege for NFs, as well as protec-
tion against administrators of the local cloud (although
the gateway administrators need to remain trusted).

3.1 Overview of the communication protocol

Our protocol for handling connections is the same for all
architectures, as we now explain in terms of G1 and G2.

System bootstrap. The client enterprise first sets up and
verifies the enclaves in the cloud as explained in §7. As
part of this process, the gateways are able to set up a set
of IPSec tunnels with the cloud in a secure way (such as
installing certificates to avoid the risk of a man-in-the-
middle attack). To load-balance flows at the cloud server
via receive-side scaling (RSS), the number of IPSec tun-
nels depends on the number of ports at the server.

As with all such interception systems, the source
endpoints need to be configured to allow interception.
The most common approach is to use an interception
proxy [34], in which the sources’ browsers accept certifi-
cates from the proxy which can now terminate the TLS
connection. Another approach is to install a browser plu-
gin at the client endpoints, which sends the TLS ses-
sion keys to the gateway [29] over a secure channel.
SafeBricks supports both these approaches.

Upon a new TLS connection from a source. G1 termi-
nates the connection as described above and informs G2,
which starts the TLS connection to the destination.

Packet processing. G1 intercepts the TLS traffic from
S, decrypts it, and tunnels it over an IPSec connection.
Packets from the same flow are sent on the same IPSec
connection. Note that as part of this process, the entire
packet (including the header) is encrypted and encapsu-
lated in a new header. We use AES in GCM mode as
the IPSec encryption algorithm, which includes packet
authentication. SB receives the packets, decrypts, and
processes them. It then tunnels the packets over IPSec
to G2. G2 terminates the IPSec tunnel and forwards the
traffic over TLS to the destination server.

4 Background
Before delving into the design of SafeBricks, we provide
a brief overview of NetBricks and some additional details
on Intel SGX relevant to our system.

4.1 Intel SGX
Illegal enclave instructions. SGX does not allow in-
structions within an enclave that result in a change of
privilege levels (e.g., system calls) or cause a VMEXIT.
Applications that need to perform such instructions must
exit the enclave and transfer control to host software.
Memory architecture. Enclave pages reside in a pro-
tected memory region called the enclave page cache
(EPC), whose size is limited to ∼94MB in current hard-
ware. EPC pages are decrypted when loaded into cache
lines, and integrity-protected when swapped to DRAM.

4.2 NetBricks
The NetBricks framework [53] enables the development
of arbitrary NFs by exposing a small set of customizable
programming abstractions (or operators) to developers.
In this respect, NetBricks is similar to Click [37], which
also enables developers to write NFs by composing vari-
ous packet processing elements. However, we choose to
build our system atop NetBricks instead of Click for the
following reasons:
• Unlike Click, the behavior of NetBricks’ operators

can be heavily customized via user-defined functions
(UDFs). This allows us to protect a small number of
operators within the enclave (with NetBricks), which
are then composed into NFs, as opposed to routinely
adding new Click modules.

• More importantly, NetBricks builds upon a safe lan-
guage and runtime, Rust, to provide isolation between
NFs chained together in the same process. In §6, we
describe how SafeBricks extends these guarantees to
provide least privilege across NFs inexpensively.

• NetBricks’ zero-copy semantics also improve perfor-
mance substantially [53].

We now briefly describe some features of NetBricks rel-
evant to the design of our system.
Programming abstractions. To construct an NF, the
developer specifies a directed graph consisting of Net-
Bricks’ operators as nodes. For example, the parse
operator casts packet buffers into protocol structures;
transform modifies packet buffers; and filter drops
packets based on a UDF. All nodes in the NF graph pro-
cess packets in batches.
Execution environment. The NetBricks scheduler im-
plements policies to decide the order in which different
nodes process their packets. Chains of NFs are run in
a single process by composing their directed graphs to-

204 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NICs

DPDK

Poll for I/O

Glue code (untrusted)

Glue code (trusted)

Host I/O interface

SchedulerProgramming
abstractions

State abstractions SafeBricks
enclave
(trusted)

SafeBricks
host

(untrusted)

Controller

Enclave I/O interface

Logger

Figure 3: SafeBricks framework: White boxes denote exist-
ing NetBricks components, light grey boxes denote modified
components, and dark grey boxes denote new components.

gether as function calls, instead of running each NF sep-
arately in a container or VM. For isolation between NFs,
NetBricks relies on a safe language and runtime, Rust.

Packet I/O. NetBricks builds on top of DPDK [32], a
fast packet I/O library. DPDK polls packets from the
network devices, buffers them in pools of memory, and
maintains a queue of pointers to the packet buffers. NF
instances query DPDK via an I/O interface to retrieve
pointers to the next batch of packet buffers, and process
them in-place without performing any copies.

5 SafeBricks: Framework Design
We now describe how we build our system on top of Net-
Bricks (while redesigning some parts of it). Figure 3
shows the overall design of the framework, highlighting
the components modified or introduced by SafeBricks.
Our goal in this section is to reduce the size of the TCB
while minimizing the overhead of transitions between the
enclave and the host. However, these two goals are often
at odds with each other—the lesser code the enclave con-
tains, the more transitions it makes to outside code. We
now describe how our design balances both these aims.

5.1 Partitioning NetBricks
We carefully split NetBricks into two components—
enclave code and host code.
SafeBricks enclave. At a bare minimum, the enclave
should include the programming and state abstractions
of NetBricks. However, during execution, the NetBricks
scheduler takes decisions regarding which node to pro-
cess next in the directed graph representing the NF (as
described in §4.2). These decisions are frequent—every
time a node is done processing a batch of packets, it sur-
renders control to the scheduler. As a result, excluding
the scheduler from the TCB would result in a large num-

ber of enclave transitions per packet batch. Hence, we
include the scheduler in our TCB as well.
SafeBricks host. The remaining components of Net-
Bricks (mostly pertaining to packet I/O) together form
the SafeBricks host. As described in §4.2, NFs in Net-
Bricks directly access the packet buffers allocated by the
packet capture library (DPDK) without copying them.
Simply excluding DPDK from the enclave without other
modifications is not a viable option because it would gain
access to the packets once they are decrypted. On the
other hand, including DPDK within the enclave would
drastically inflate the size of the TCB by ∼516K LoC.

We circumvent this issue by introducing two new op-
erators in NetBricks: toEnclave and toHost. The
toEnclave operator polls the I/O interface for point-
ers to packet buffers, reads the encrypted buffers from
DPDK-allocated memory and decrypts them inside the
enclave. Once the processing is complete, the toHost
operator re-encrypts the packet buffers and returns them
outside the enclave into DPDK’s memory pool.

More concretely, toEnclave and toHost implement
endpoints of the IPSec tunnel. As a result, even if the
host attacker attempts Iago attacks [15] such as modify-
ing packet buffers or queues outside the enclave, these
will be detected by the authenticity provided by IPSec.

Excluding DPDK from the TCB enables us to remove
NetBricks’ I/O module from the TCB as well. The mod-
ule interfaces with the packet capture library and is used
by the NFs to poll DPDK for packets (Figure 3).

5.2 Packet I/O avoiding enclave transitions
Every receive or send operation for a batch of packets
results in an invocation of the I/O interface. Since we
exclude the packet capture library from the TCB, every
such invocation necessarily results in an enclave transi-
tion. Batch processing of packets alleviates the overhead
of these transitions to some extent, but as we show in
§9.2.1, it is far from being a perfect solution.

Prior works [3,50] have also explored the reduction of
enclave transitions, albeit in a different context—they al-
low enclave threads to delegate system calls to the host
with the help of shared queues. In a similar spirit, we
propose an alternative design point that allows enclave
code to receive and send packet batches from the host
via shared memory, without the need for enclave transi-
tions. To do so, we (i) introduce an additional trusted
I/O module within the enclave (called EnclaveIO) that
exposes the I/O APIs transparently to the rest of enclave
code, and (ii) modify the NetBricks I/O interface outside
the enclave (HostIO) to appropriately interface with the
EnclaveIO module.

SafeBricks allocates two lockless circular queues
(recvq and sendq) on heap memory outside the en-
clave during the application’s initialization, one for re-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 205

HostIO
NICs

recv queue

EnclaveIO

send queue
SafeBricks enclave SafeBricks host

toEnclave

toHost

NF graph

Figure 4: Packet I/O via shared memory.

ceiving pointers to packet buffers and the other for send-
ing. HostIO busy polls DPDK for incoming packets
and populates recvq with the buffer addresses. Enclave
code queries the EnclaveIO module which in turn reads
the packet buffer addresses directly from recvq without
having to exit the enclave. To send packets, EnclaveIO
pushes the packet buffer addresses into sendq. HostIO
consumes the buffers asynchronously from this queue,
and finally invokes the I/O interface to emit the packets
to the network. Figure 4 illustrates the approach.

This mechanism doesn’t result in any enclave transi-
tions because (i) enclave code can readily access mem-
ory outside the enclave, and (ii) the queue management is
asynchronous—the HostIO module and the SafeBricks
enclave (containing EnclaveIO) run in separate threads.

5.3 System calls and other illegal instructions
As described in §4.1, SGX allows neither system calls
within enclaves nor instructions that could lead to a
VMEXIT (such as rdtsc, used for reading the times-
tamp counter). There exist a set of general-purpose sys-
tems [3, 9, 30, 50, 67, 72] that add support for such sys-
tem calls to enclave applications, at the expense of added
complexity and/or a significant increase in TCB.

We note that many NFs simply do not make system
calls or execute instructions that require VM exits, and
those made are typically only of a few types: such as
I/O for maintaining logs, or timestamp measurements us-
ing rdtsc. For example, no application in the NetBricks
or Bess source trees [11, 49] implements system calls.
This is due to the high-performance goal of NFs, aim-
ing to run exclusively in user-space [32, 33, 52, 57, 70].
The same extends to user-space implementations of net-
working stacks as well, which are gaining in popular-
ity [20, 35, 40, 41, 46]. Therefore, instead of exposing
an exhaustive API within the enclave for these instruc-
tions, SafeBricks focuses only on the operations essential
for NFs and executes them without the need for enclave
transitions. SafeBricks does not expose any other system
calls or illegal instructions that would require enclave ex-
its to NFs within the enclave.
Logging. Instead of allowing NFs to write to files, we
expose a new state abstraction in SafeBricks that en-
ables them to directly push logs to queues allocated in
heap memory outside the enclave (similar to how we per-
form packet I/O). During system initialization, the Log-
ger module allocates a queue in non-enclave heap per
NF that logs information. NFs can push log entries to the

respective queue by invoking the Logger module. Host
code asynchronously reads the logs off these queues and
writes them to files.

However, since this heap memory is untrusted and vis-
ible outside the enclave, we need to take additional steps
to ensure the security of the logs (as they contain sensi-
tive packet information). We encrypt and chain together
log entries via authentication tags, a fairly standard tech-
nique. The Logger module encrypts each log item Li
as Ci = Enc(id||Li), where id identifies the NF. It then
computes the authentication tag Ti =Auth(Ci||Ti−1), and
pushes (Ci,Ti) to the log queue. Including the previous
tag in the computation ensures that host code cannot ar-
bitrarily drop or reorder log items. The Logger module
maintains the root authentication tag within the enclave.
Verifiers can later validate the log by obtaining the latest
tag from the enclave over a secure channel and replay-
ing the log. We note that by itself, the approach doesn’t
prevent rollback attacks on the logs; however, techniques
for avoiding such attacks exist and can be deployed in a
complementary fashion [69].
Timestamps. SafeBricks relies on the HostIO module
to capture the timestamp per incoming packet batch and
write it to a slot in the packet buffer reserved for exter-
nal metadata. NFs that need timestamps for their func-
tionality simply read it off the packets. This approach
also reduces latency when chains of NFs are deployed
together, as the cost of measuring the timestamp is borne
only once. Though it is possible to ensure the monotonic-
ity of timestamps, SafeBricks does not guarantee that the
timestamps are correct—this is unavoidable in the cur-
rent SGX implementation as the reporting module is not
trusted hardware.

5.4 Execution model
SafeBricks runs the NFs in a multi-threaded enclave,
each enclave thread affinitized to a core. We note that our
shared memory mechanism for packet I/O adds extra bur-
den on system resources compared to vanilla NetBricks,
as it requires an extra thread for running the HostIO
module. This cost, however, gets amortized by mapping
a single HostIO instance to multiple enclave threads.

6 SafeBricks: NF Isolation, Least Privilege
SafeBricks gives enterprises the flexibility to source NFs
from different vendors and deploy them together on the
same platform, while isolating them from each other and
controlling which parts of a packet each NF is able to
read or write. For example, consider a chained NF con-
figuration wherein traffic is first passed through a fire-
wall, then a DPI, and finally a NAT. The firewall ap-
plication only needs read access to packet headers; the
DPI needs read access to headers and payload; while
the NAT needs read and write access to packet headers.

206 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SafeBricks ensures that each NF is given only the mini-
mum level of access to each packet as required for their
functions, e.g., the firewall is unable to write to packet
headers, or read/write to the payload. In other words,
SafeBricks isolates NFs from one another while enforc-
ing the principle of least privilege amongst them.

6.1 Strawman scheme
The importance of least privilege access to traffic has
been recognized before in mcTLS [48], which relies on
physical isolation of NFs and enforces least privilege by
encrypting and authenticating each field of the packet
separately using different keys. Each NF is given the
keys only for fields that it needs access to. To allow read
access, the NF is given the encryption keys; for writes,
the NF is given the authentication keys as well. Packets
are re-encrypted before being transferred from one NF
to the other. In the mcTLS model, NFs are isolated by
virtue of being deployed on separate systems (hardware
or VMs). Correspondingly in our setting, it suffices to
run each NF concurrently in a separate enclave isolating
their address spaces, as shown on the left of Figure 5.

Such an approach, however, eliminates much of the
performance benefits of the underlying NetBricks frame-
work. In addition to adding significant overheads due to
repeated re-encryption of packets, it requires packets to
cross core boundaries between NF enclaves (for enclaves
affinitized to separate cores). Together, this can result in
a system that is up to ∼2–16× slower (as we show in
§9.2.3). Instead, it would be ideal to keep all NFs in the
same enclave and isolate them efficiently within.

6.2 NF isolation in NetBricks
Before describing how SafeBricks enforces least privi-
lege across NFs, we revisit crucial properties of the Rust
language that form the basis of our design.

The NetBricks framework provides isolation between
NFs running in the same address space by building on
a safe language, Rust [7, 53]. Rust’s type system and
runtime provide four properties crucial for memory iso-
lation: (i) they check bounds on array accesses, (ii) pro-
hibit pointer arithmetic, (iii) prohibit accesses to null ob-
jects, and (iv) disallow unsafe type casts.

In addition to memory isolation, NFs also require
packet isolation; i.e., NFs should not be able to access
packets once they’ve been forwarded. NetBricks relies
on Rust’s unique types [7,25] to isolate packets. Rust en-
forces an ownership model in which only a unique refer-
ence exists for each object in memory. Variables acquire
sole ownership of the objects they are bound to. When an
object is transferred to a new variable, the original bind-
ing is destroyed. Rust also allows variables to temporar-
ily borrow objects without destroying the original bind-
ing. By harnessing Rust’s ownership model, NetBricks
ensures that once an NF is done processing a packet, its

SafeBricks Controller

FW DPI NAT

D E

FW

Enclave 1
(core 1)

D E
DPI

D E
NAT

D E

Enclave (one thread per core)
NetBricks strawman SafeBricks

Enclave 2
(core 2)

Enclave 3
(core 3)

D EDecryption Encryption

Figure 5: Strawman approach for enforcing least privilege ver-
sus SafeBricks. Solid arrows indicates packet transfers. Dotted
arrows indicate interaction between NFs and the Controller.

pub fn chain<T:'static + Node>(input:T, pmap:HashMap) -> Node {
let input = input.toEnclave()

.wList(pmap.get(’firewall’));
let mut chain = firewall(input)

.wList(pmap.get(’dpi’));
chain = dpi(chain)

.wList(pmap.get(’nat’));
return nat(chain)

.toHost(); }

Figure 6: Code for chaining NFs together (firewall, DPI, and
NAT), generated automatically by SafeBricks from a configura-
tion file. Lines in magenta represent code added by SafeBricks
over and above NetBricks to enforce least privilege across NFs.

ownership is transferred to the next NF and the previous
NF can no longer access the packet.

Taken together, the properties of NetBricks suffice for
the purpose of running NFs safely within the same ad-
dress space. However, they do not provide the desired
security, as we explain next.

6.3 Isolating NFs within the same enclave
The properties of NetBricks do not satisfy the require-
ments of our threat model for the following reasons:
• The isolation guarantees only hold if NFs are built

using a compiler that enforces the safety properties
above. In our model, however, enterprises may source
NFs from various vendors that compiled them in their
own way and lack incentive to enforce these properties.

• Each NF still receives ownership of entire packets, in-
stead of limited read / write access to specific fields.

We now describe how SafeBricks addresses both issues.
6.3.1 Ensuring memory safety
SafeBricks needs to ensure that NFs are built using a
compiler that prohibits unsafe operations inside NFs. In-
stead of trusting NF providers, SafeBricks ensures that a
trusted compiler gets access to the raw source code of all
the NFs which it can then build in a trusted environment.

This strategy is seemingly in conflict with the confi-
dentiality of NF rules. In §7 we show how SafeBricks
performs this compilation such that neither the enterprise
nor the cloud learns the source code of the NFs.
6.3.2 Enforcing least privilege
SafeBricks extends NetBricks’ memory safety guaran-
tees by interposing on its packet ownership model. In-
stead of transferring packets across NFs, SafeBricks in-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 207

troduces a Controller module that mediates NF access to
packets as depicted in Figure 5 (right).
Controlling access to packets. The Controller holds
ownership of packet buffers, and NFs can only borrow
packet fields (or different fragments of the data buffers)
by submitting requests to the Controller. To provide least
privilege, each packet in SafeBricks encapsulates a bit
vector of permissions. Each function in the packet API
exposed by the Controller is associated with a bit in the
permissions vector. Before lending the NF a reference
to the requested field, the Controller checks the corre-
sponding bit in the vector and answers the request only
if the bit is set. Otherwise, the call returns an error. Fur-
thermore, by controlling whether an API call returns a
mutable or an immutable reference, the framework also
disambiguates read access from writes. Rust’s type sys-
tem ensures that once the NF processing completes, the
binding between the reference and the field is destroyed,
and any later attempt by the NF to access the field will
result in a compilation error.
Setting packet permissions. SafeBricks updates the
permissions vector in packets with the help of a new
packet processing operator: wList (whitelist). Chained
NFs are interleaved with invocations of the wList oper-
ator that applies a given vector of permissions to each
packet batch before it’s processed by the next NF. Fig-
ure 6 illustrates the code for chaining NFs together
while enforcing least privilege. In §7, we describe how
SafeBricks generates this code automatically using a
configuration file supplied by the client enterprise.

We need to fulfill two more requirements for the guar-
antees to hold: (i) NFs should not be able to alter the
permissions vector during execution, and (ii) NFs should
not be able to parse packet buffers arbitrarily—for ex-
ample, an NF that has permissions only for IP head-
ers should not be able to incorrectly parse TCP head-
ers as IP, thereby circumventing the policy. SafeBricks
therefore does not expose these operations to NFs. NFs
in NetBricks invoke the parse operator to cast packet
buffers into protocol structures before processing them.
In contrast, SafeBricks mandates that packets be parsed
as required before being processed by NFs (not shown
in Figure 6 for simplicity). In §7, we describe how the
SafeBricks loader interleaves NFs with parse nodes and
stitches them together into a directed graph based on
enterprise-supplied configuration data.
Runtime overhead. The permissions vector leverages
portions of the packet buffers reserved for metadata, and
hence does not lead to any memory allocation overhead.
Setting and verifying permissions, however, lead to a
small overhead at runtime: setting the permissions vec-
tor before each NF via the wList operator increases the
depth of the NF graph, and verifying the permission adds
an extra check as all requests are mediated by the Con-

troller. As we see in §9.2.3, the impact on performance
is small for real applications.

7 SafeBricks: System Bootstrap Protocol
We now describe the protocol for bootstrapping the over-
all system. Instead of compiled binaries, SafeBricks
needs access to the raw source code of the NFs from
the providers so it can pass them through a trusted com-
piler, which ensures that NFs do not perform unsafe op-
erations and are confined to least privilege access. The
natural strategy is to have the client enterprise compile
these binaries and upload them to the cloud, as in prior
enclave-based systems such as Haven [9]. However, this
approach is problematic in our case because NF code is
proprietary and the client enterprise may not see it.

To address this problem, the idea in SafeBricks is to
run inside the enclave a meta-functionality: the enclave
assembles the NFs and compiles them using a trusted
compiler, and only then starts running the resulting code.
The key to why this works is that both the client enter-
prise and the NF vendors can invoke the remote attes-
tation procedure to check that the enclave is running an
agreed upon SafeBricks loader and compiler (both being
public code). In this way, (i) each NF vendor can ensure
that the enclave does not run some bad code that exfil-
trates the source code to an attacker, and (ii) the client
enterprise makes sure the NF vendor cannot change what
processing happens in the enclave. The bootstrap process
consists of two phases, assembly and deployment.

7.1 Phase 1: NF assembly
For assembly, SafeBricks uses a special enclave pro-
visioned with two trusted modules—a loader and a
compiler—that combine the NFs into a single binary.
Loader. The loader exposes a simple API that allows
the client enterprise to specify (i) encrypted NF source
codes, (ii) optionally, unencrypted NF source codes that
might be interspersed with the proprietary encrypted
NFs, (iii) a configuration file outlining the placement of
each NF in the directed graph (when chained together),
and (iv) a whitelist of permissions per NF indicating the
fields each NF is allowed to access.

For the first two, the loader exposes the following
API to the client: load(name, code, is_encrypted).
For the third, the client specifies the NF graph as a
set of edges: (namei → name j). For the fourth, the
client supplies a configuration file with a list of items of
type: (name, op, proto:field) where op ∈ [read,
write] and proto:field indicates a field within a pro-
tocol that access is given to. For example, for a firewall,
one such entry is (firewall, read, IP:src), in ad-
dition to entries for other fields of the IP header.

The loader decrypts the NFs and stitches them together
based on the specified graph, before invoking the com-

208 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NF code

Client
Enterprise

Loader

Assembly enclaveNF providers

Compiler

2

2

3 1 5

4

Code,
Rules

Code,
Rules

Config

5 Measu-
rement

Cloud platform

Deployment
enclave

NFs

6

7

Figure 7: SafeBricks’s NF assembly and deployment phases
during bootstrap. Locks indicate that the data is encrypted.

piler. (In §7.2, we discuss how the enclave obtains the
keys to decrypt this code.) In doing so, it adds the fol-
lowing additional nodes to the composite graph: (i) a
toEnclave node at the root of the graph, (ii) a toHost
node at the end of the graph, and (iii) parse nodes fol-
lowed by a wList node before each NF. The loader infers
the arguments to the parse and wList nodes automati-
cally from the configuration file. Thus, parse is run by
the trusted SafeBricks framework and not by an NF or the
client enterprise, ensuring that the packets are not parsed
in an unintended way.
Compiler. The compiler is a standard Rust compiler that
implements a lint prohibiting unsafe code inside the en-
clave, as discussed in §6.3. Since launching the compiled
binary requires OS support, the binary must be placed
into main memory where the OS can access it post com-
pilation. However, giving the OS access to the binary
unencrypted would violate NF confidentiality.

In order to maintain the privacy of NF code while still
allowing its execution by the OS, we take inspiration
from VC3 [59]. Similarly to VC3, our compiler links
the compiled NF code to a small amount of public code
NFload, and then encrypts the NF code because it will be
placed in main memory for the OS to load in the deploy-
ment enclave. We refer to the encrypted code as NFpriv.
Post compilation, NFload+NFpriv are loaded and run in a
separate deployment enclave by the OS. NFload will be
responsible for decrypting and interfacing with NFpriv
within the deployment enclave once it’s initialized.

The loader and compiler are generic modules indepen-
dent of the NFs. Hence, the NF providers need to audit
them only once, across all customer deployments.
Assembly protocol. Figure 7 illustrates the assembly
and deployment protocol. 1 The cloud provisions an
enclave with the SafeBricks loader and compiler mod-
ules. 2 Next, the client as well as the NF providers
verify that the loader and compiler have been securely
provisioned into the enclave using the remote attestation
feature of SGX, as described in §2.1. During the attesta-
tion, the enclave also returns a securely generated public
key to each NF provider. 3 Each provider then encrypts

the NF source code and rulesets with the received pub-
lic key and submits it to the client enterprise. 4 The
enterprise loads the encrypted source codes and rulesets
along with configuration files into the enclave via APIs
exposed by the loader module. 5 The loader decrypts
the source codes, stitches them together, and builds and
encrypts the assembled code using the compiler, produc-
ing NFload+ NFpriv. It then returns to the client a hash
measurement of the compiled code so that the client can
later verify it once it’s deployed in a separate enclave.

7.2 Phase 2: NF deployment

6 The loader finally requests the OS to deploy NFload+
NFpriv in a separate enclave on the cloud platform. It
attests the deployed enclave, establishes a secure chan-
nel with NFload, and transfers to it the decryption key
for NFpriv. NFload decrypts the private code and starts
execution. Note that since the assembly enclave attests
the deployment enclave and the NF vendors attested the
assembly enclave, the NF vendors are assured that the
deployment enclave will not send the decrypted binary
anywhere but merely run it. 7 The client then attests the
deployed enclave using the measurement it received at
the end of the assembly phase, after which it establishes
a secure channel of communication with the enclave.

8 Security Guarantees
We describe SafeBricks’s guarantees assuming the threat
model in §2, including the enclave assumption.

SafeBricks’s main benefit to confidentiality is that it
exposes only encrypted traffic to a cloud attacker, so the
attacker does not see the contents of the packets and is
limited to observing only packet sizes, timing, and NF
access patterns to packets and data. SafeBricks protects
in this manner the packet payload and, except in the di-
rect architecture, the header as well.

As with any system with complex processing, encryp-
tion does not mean perfect confidentiality because of the
existence of side-channels. In §2.2 we mentioned some
categories of side-channels that SafeBricks, and SGX in
general, does not protect against. In addition, there are
a few other SafeBricks-specific side channels. First, an
attacker in SafeBricks knows which (encrypted) packets
belong to which flow because each flow is affinitized to
an IPSec tunnel for scalability. If this issue is of con-
cern, it can be fixed by using a single tunnel for all flows
at the expense of performance. Second, an attacker can
measure the time taken by NFs to process a batch of
packets. This could leak information in some cases, e.g.,
whether an expensive regular expression was triggered
or not. This is a classical problem, already investigated
by prior work [6, 13, 78] with common solutions involv-
ing padding, i.e., bounding the running time of NFs by
executing dummy cycles. Third, an attacker can learn

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 209

the action taken by an NF, e.g., whether a connection
was dropped simply by noticing that fewer packets were
sent out. Like many other side-channels, this leakage can
also be removed via padding—for example, the gateways
could continue sending dummy traffic.

SafeBricks also protects the integrity of the traffic and
of the NF processing. A cloud attacker cannot drop, in-
sert, or modify packets, nor can it tamper with NF exe-
cution. Integrity of the NFs is guaranteed by SGX, while
the integrity of the traffic is guaranteed by the IPSec tun-
nels between the enclave and the client.

Via the isolation and least privilege design, SafeBricks
further ensures that each NF is confined to accessing only
parts of the packet the enterprise desires. For the NF
vendors, SafeBricks guarantees that NF source codes are
hidden from all untrusted parties, including the client en-
terprise, a cloud attacker or other NF vendors.

8.1 Comparison to prior approaches
Prior approaches leak significantly more information
about the traffic to the cloud provider than SafeBricks.
Cryptographic approaches. BlindBox [63] and Em-
bark [38] encrypt the traffic in a special way that allows
the cloud to match encrypted tokens against the traffic
and detect if a match occurs. In these schemes, the cloud
learns the offset at which any string from any rule in an
NF occurs in the packet, regardless of whether or not the
rule as a whole matched (rules often contain several such
strings). If the rule is known (as in public rulesets), the
attacker learns the exact string at that offset in the packet.
Even if the rule string is not known, the attacker learns its
frequency, which could lead to decryption via frequency
analysis. Assuming an enclave employing side-channel
protections as in §2.2, SafeBricks does not reveal this
information. The attacker does not know which rule or
part of a rule triggered on a packet. Moreover, BlindBox
and Embark do not protect against active attackers who
modify the traffic flow and, for example, drop packets.

We remark, however, that these prior approaches rely
on cryptography alone, and not on trusted hardware as
SafeBricks, which makes it much more challenging for
them to achieve the properties SafeBricks achieves.

mcTLS [48] aims to provide least privilege in a setting
where each NF is a separate hardware middlebox and be-
longs to a different trust perimeter. Running mcTLS in
the cloud in software, however, removes essentially all
its security guarantees: the cloud receives the union of
the permissions of all NFs, which often, is everything.

9 Evaluation
We now measure the impact of SafeBricks on NF perfor-
mance versus an insecure baseline. We also measure the
reduction in TCB size as a result of our design. We do
not discuss the performance of SafeBricks’s gateway as

the protocols it implements are well understood.

9.1 Setup
We evaluate the performance of SafeBricks using SGX
hardware on a single-socket server provisioned with an
Intel Xeon E3-1280 v5 CPU with 4 cores running at
3.7GHz. We disable hyperthreading for our experiments.
The server has 64GB of memory, and runs Ubuntu
14.04.1 LTS with Linux kernel version 4.4. The hard-
ware supports the SGX v1 instruction set which does not
allow dynamic page allocation. Further, the total enclave
page cache memory (EPC) available to all enclaves is
limited to∼94MB. For test traffic, we use another server
that runs a DPDK-based traffic generator and is directly
connected to the SGX machine via Intel XL710 40Gb
NICs. The SGX machine acts as the cloud, and the traf-
fic generator is both source and sink for the client traffic.

9.2 Performance
We evaluate the performance of SafeBricks using (i) syn-
thetic traces of different packet sizes, from 64B to 1KB,
and (ii) the ICTF 2010 trace [31], captured during a
wide-area security competition and commonly used in
academic research. We report throughput in millions of
packets per second (Mpps). In all experiments, we ex-
change traffic between the traffic generator and the SGX
machine over an encrypted tunnel (per §3). As a result,
the size of each packet exchanged between the enterprise
and the cloud increases by a fixed amount, equal to the
headers added by the IPSec protocol.

We compare SafeBricks against an insecure baseline
comprising vanilla NetBricks augmented with support
for the encrypted tunnel. The baseline represents a setup
in which traffic is sent to the cloud over an encrypted
channel (hence safe from network attackers), but lacks
the protection of SafeBricks at the cloud. Finally, we re-
port the median of 10 iterations for each experiment.
9.2.1 Framework overheads
We first measure the overhead introduced by SafeBricks
as a result of redesigning the core NetBricks framework.
To illustrate the benefits of our architecture, we also com-
pare the overheads of the strawman approach that per-
forms packet I/O via enclave transitions (per §5).

The net overhead of both approaches varies with the
complexity of NFs and the latency the NF introduces as
a result of packet processing. In this experiment, we use
CPU cycles as a proxy for NF complexity, and evaluate a
simple NF that first modifies each batch of packets by in-
terchanging the source and destination IP addresses, and
then loops for a given number of cycles. We use packet
batches of size 32 for both NetBricks and SafeBricks.

Figure 8 (left) presents the results with varying packet
sizes when the NF is deployed on a single core, and
Figure 8 (right) shows the performance for 64B packets
when the deployment is scaled to two cores. In the worst

210 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Complexity (cycles) Complexity (cycles) Complexity (cycles) Complexity (cycles)
1 100 1000 10K 1 100 1000 10K 1 100 1000 10K 1 100 1000 10K0

1

2

3

4

5
M

pp
s (

1
co

re
)

64B 256B 512B 1KB

Baseline SafeBricks SafeBricks (w/ transitions)

1 100 1000 10K
Complexity (cycles)

0

2

4

6

8

10

M
pp

s (
2

co
re

s)

Baseline
SafeBricks

Figure 8: (Left) SafeBricks framework performance on 1 core compared to the baseline across different packet sizes, and with
increasing NF complexity (i.e., processing time in CPU cycles). (Right) Performance with 64B packets and NFs on 2 cores.

case with 64B packets and a delay of 1 cycle, the over-
head introduced by SafeBricks is < 5%. As the process-
ing time begins to dominate (with increasing NF com-
plexity), the overhead of SafeBricks becomes negligible.

The results also confirm that the design of SafeBricks
outperforms the strawman approach, the overhead of
which is∼40% in the worst case. It’s worth noting, how-
ever, that the relative overhead of the strawman approach
decreases with larger packet sizes, as the rate of I/O falls.
9.2.2 Impact on real NFs
Unlike the simple NF in the previous experiment, real
NFs have varying state requirements. Since the sizes
of both the processor caches and enclave memory are
limited, the overheads of SafeBricks are also governed
by the memory access patterns of the NFs in addition
to their complexity. In particular, L3 cache misses are
more expensive for enclave applications because cache
lines need to be encrypted/decrypted before being evict-
ed/loaded. In this experiment, we characterize the effect
of state on the performance of SafeBricks by evaluating
the following sample applications:
• Firewall: We use a stateful firewall application that

linearly scans a list of access control rules and drops
connections if it finds a match. We evaluate it using a
ruleset we obtained from our department (643 rules).

• DPI: We use a simple deep packet inspection (DPI)
application that implements the Aho-Corasick pattern
matching algorithm [1] on incoming packets, similar
to the core signature matching component of the Snort
IDS [58]. We evaluate the DPI using patterns extracted
from the Snort Community ruleset [68].

• NAT: Our implementation is based on MazuNAT [42].
• Load balancer: We use a partial implementation of

Google’s Maglev [20], that spreads traffic between
backends using a consistent hashing lookup table.

Figure 9 shows the normalized overhead of SafeBricks
on application performance across different packet sizes
with synthetic traffic. Figure 12 summarizes the worst-
case results corresponding to 64B packets. Figure 12 also
presents the performance results with the ICTF trace.
Across applications, the overhead ranges between an ac-
ceptable ∼0–15% for both synthetic and real traffic, and

is a result of page faults triggered by L3 cache misses.
Impact of larger memory footprint. In the previous ex-
periment, the working sets of the applications exceeded
the L3 cache but remained less than the size of the EPC
(∼94MB). However, accessing memory beyond the EPC
is doubly expensive because evicted EPC pages need to
be encrypted and integrity-protected. We now assess the
impact of a large memory footprint using the DPI appli-
cation. The application builds a finite state machine over
all the patterns in the ruleset, and as such has a signifi-
cantly larger memory footprint than other NFs.

Figure 10 shows the results of our experiment using an
increasing number of rules from the Emerging Threats
ruleset [21] and the ICTF trace. At 18K rules, the work-
ing set of the DPI breached the ∼94MB EPC boundary
causing its performance to sharply deteriorate thereafter.

This experiment indicates the limits of SafeBricks
with regard to the nature of applications it can efficiently
support. However, we note that the ∼94MB limit is only
an artifact of existing hardware and isn’t fundamental to
SGX enclaves. The next generation of SGX machines is
likely to support larger EPC sizes.
9.2.3 Cost of NF isolation
We now evaluate the overhead as a result of our mech-
anisms for enforcing least privilege. Given a chain of
NFs, SafeBricks increases the overall depth of the NF
graph by one node per NF (§6.3). In this experiment, we
first measure this extra cost as a function of the length of
the NF chain. We then compare our approach against an
mcTLS-like strawman that relies on encryption for selec-
tively exposing packet fields to NFs (§6.1).
Effect of chain length. For this part of the experiment,
we use a simple NF that decrements the time-to-live
(TTL) field in the IP header of each packet, composed
together into chains of varying length. Before executing
subsequent NFs in the chain, SafeBricks whitelists ac-
cess to the TTL field in the permissions vector per packet.

Figure 11 compares the performance of SafeBricks
with and without least privilege. Since the NF is state-
less, in the absence of isolation SafeBricks does not
introduce any discernible overhead against the base-
line. With least privilege enforcement, the latency added

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 211

64 256 512 1024
Packet size (Bytes)

10%

20%

30%

40%
Th

ro
ug

hp
ut

 d
ec

lin
e

Firewall
Load balancer

NAT
DPI

Figure 9: Normalized overhead (Mpps)
across NFs for different packet sizes.

0 5K 10K 15K 20K 25K
No. of patterns

20%
40%
60%
80%

100%

Th
ro

ug
hp

ut
 d

ec
lin

e

94
 M

B

64
 M

B

8
M

B

Figure 10: DPI performance (Mpps) using
the ICTF trace, with increasing no. of rules.

1 2 3 4 5 6 7
No. of NFs (TTL chain)

1
2
3
4
5

M
pp

s

Baseline
SB (w/ isol.)

SB

Figure 11: Cost of least privilege
with increasing no. of NFs.

Synthetic (64B packets) ICTF trace
NF Baseline SB Baseline SB
Firewall 3.86 3.58 1.96 1.93
DPI 1.10 0.96 0.29 0.25
NAT 3.80 3.21 1.97 1.80
Maglev 3.59 3.04 1.92 1.73

Figure 12: Performance of sample NFs (Mpps)

Baseline

SB SB (w/ isol.)

Strawman

0.1
0.2
0.3
0.4
0.5

M
pp

s

DPI→NAT

Baseline

SB SB (w/ isol.)

Strawman

0.1
0.2
0.3
0.4
0.5

M
pp

s

FW→DPI→NAT

Figure 13: Cost of least privilege across NF chains (2 cores)

by the additional nodes increases as the length of the
chain increases. Consequently, the overhead climbs from
∼14–40% as the chain grows to a size of seven NFs. We
note that these numbers represent an upper bound on the
overhead of SafeBricks. As we show in the next part of
this experiment, the percentage overhead is much smaller
for real, more complex NFs.
Comparison with encryption-based strawman. We
now measure the performance of SafeBricks using a
chain of real NFs each of which accesses different parts
of packets—a firewall (given read permissions on packet
headers), a DPI (with read permissions on both headers
and payload), and a NAT (with read and write permis-
sions on packet headers). The NF implementations are
identical to the ones described in §9.2.2.

To quantify the benefit of our approach for enforc-
ing least privilege, we also compare SafeBricks to an
mcTLS-like strawman in which each NF in the chain is
run in a separate enclave (as described in §6.1). In all
setups (including the baseline), we allocate two cores for
running the NFs, and reserve one core for I/O.

Figure 13 shows the results with two different chains:
(i) a DPI followed by a NAT, and (ii) a firewall chained to
a DPI and then a NAT. In the former scenario, SafeBricks
results in an overhead of 15% in the absence of least priv-

ilege enforcement. With least privilege, the throughput
declines by a further 3%, confirming that the cost of en-
forcing least privilege across real NFs is minimal. In con-
trast, an mcTLS-like approach (with each NF running in
a separate enclave, affinitized to distinct cores) results in
a sharper decline of 2.2× the performance being bottle-
necked at the DPI along with the added encryption and
copying of packets as they move across NFs in different
enclaves. In the latter scenario with three NFs in a chain,
the performance of the strawman approach falls further,
by 16×. In this scenario, however, the NFs (and hence
enclaves) outnumbered the available cores in our setup,
leading to resource contention.

9.3 Comparison with BlindBox and Embark
Both SafeBricks and Embark tunnel packets to a third-
party service in the cloud. For the ICTF trace, IPSec tun-
neling inflates the bandwidth by 16% due to both encryp-
tion and encapsulation. Embark introduces a further 20-
byte overhead per IPv4 packet because it converts them
to IPv6, resulting in a net overhead of 21%. BlindBox,
in contrast, does not pay the cost of tunneling as it is
targeted at in-network DPI applications. However, the
BlindBox encryption protocol (also used by Embark for
DPI processing) inflates bandwidth consumption by up
to 5× in the worst case, unlike SafeBricks which only
uses standard encryption schemes.

As regards throughput, both Embark and BlindBox
are competitive with unencrypted baseline NFs and incur
negligible overhead, whereas SafeBricks impacts perfor-
mance by ∼0–15% across NFs due to its use of SGX
enclaves (§9.2.2). At the same time, both BlindBox and
Embark impact performance at the client considerably—
with BlindBox, client endpoints need to implement its
special encryption protocols over and above TLS and
take 30× longer to encrypt a packet; Embark centralizes
this overhead at the enterprise’s gateway instead. Clients
do not need to pay these costs with SafeBricks.

9.4 TCB size
SafeBricks involves the use of two types of enclaves: one
for assembling the NFs during system bootstrap (per §7),
and another for deploying the NFs. The assembly en-
clave primarily contains the Rust compiler, which is nec-

212 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

essarily part of the TCB of applications with or without
SafeBricks. The deployment enclave, on the other hand,
represents the TCB which we aim to reduce in redesign-
ing the NetBricks framework.

To evaluate the reduction in TCB, we thus com-
pare the size of the deployment enclave components in
SafeBricks with that of NetBricks. The size of the en-
clave binary in SafeBricks is ∼1MB. In comparison, the
aggregate size of NetBricks components is 21.3MB, rep-
resenting a TCB reduction of over 20×. The reduction
can largely be attributed to the exclusion of DPDK from
the TCB as a result of partitioning NetBricks, which it-
self comprises ∼516K LoC. Furthermore, by designing
for our specific use case, we avoid including a library OS
within our trust perimeter, the size of which can be as
large as 209MB (as in Haven [9]).

10 Limitations and Future Work
SafeBricks inherits three primary limitations owing to its
use of Intel SGX.

First, enclave memory is limited to ∼94MB in exist-
ing hardware, making SafeBricks impractical for appli-
cations with larger working sets. Exploring alternate ar-
chitectures that combine cryptographic approaches and
SGX, thereby reducing the memory burden on the en-
claves, is an interesting open problem in this context.

Second, SafeBricks is unsuitable for NFs relying on
operations that are illegal within SGX enclaves, such as
system calls and timestamps. Though SafeBricks sup-
ports timestamps, it can only ensure their monotonicity
and not correctness.

Third, SGX enclaves, and consequently SafeBricks,
are vulnerable to side-channel attacks (per §2.1). Though
a number of potential solutions have been proposed in re-
cent work [16,18,27,65,66], their impact on application
performance is often non-trivial. Investigating the viabil-
ity of these proposals in the NFV context, or developing
targeted solutions for NFs is potential future work.

11 Related Work
We divide related work largely into two categories:
(i) cryptographic approaches for securing NFs, and
(ii) proposals based on trusted hardware. We do not dis-
cuss the mcTLS protocol [48] further as we have already
compared SafeBricks with mcTLS in §6 and §8.
Cryptographic approaches. Recent systems propose
the use of cryptographic schemes that enable NFs to op-
erate directly over encrypted traffic [5, 38, 44, 63, 76].
When compared to SafeBricks, these approaches have
the advantage that they do not rely on trusted hardware.
However, this comes with two significant limitations.
(1) Their functionality is severely constrained, as dis-
cussed in §1, and hence are not applicable to a wide range
of NFs. To provide full functionality with cryptography,

one needs schemes such as fully-homomorphic encryp-
tion [23], which is orders of magnitude too slow. (2) Re-
garding security, we explained in §8 how these systems
leak more information to the cloud than SafeBricks.
Trusted hardware proposals for legacy applications.
Other work has shown how to use hardware enclaves to
run applications in the cloud without having to trust the
cloud provider [3,9,30,50,67,72]. The mandate of these
systems is to support arbitrary, legacy applications in-
stead of optimizing for any in particular. As a result,
some of these systems inflate the size of the TCB by in-
troducing a library OS within the enclave (to support ille-
gal enclave instructions), or impact performance because
of enclave transitions.
Trusted hardware proposals for network applica-
tions. Recent work has proposed the use of hardware
enclaves for securing network applications. Kim et al.
use SGX to enhance the security of Tor [61], and also
identify NFs as a potential use case [36]. Other propos-
als develop prototypes for specific functions: Coughlin
et al. [19] present a proof-of-concept Click element for
pattern matching within enclaves; and Shih et al. [64]
propose SGX for isolating the state of NFs, applying it
to a subset of the Snort IDS. In contrast, SafeBricks is
a general-purpose framework that additionally enforces
least privilege across NFs. At the same time, SafeBricks
balances the interests of NF vendors by maintaining the
confidentiality of NF code and rulesets.

Concurrent to our work, SGX-Box [29] and Shield-
Box [71] also propose frameworks for executing NFs
within enclaves. SGX-Box [29] does not explicitly han-
dle NF isolation or chaining; ShieldBox integrates SGX
with Click and isolates each NF in a separate enclave.
In such cases, ShieldBox reports a throughput decline
of up to 3×. SafeBricks, in contrast, avoids this over-
head by isolating NFs within the same enclave with the
help of language-based enforcement. However, unlike
SafeBricks, ShieldBox also supports NFs with system
calls by leveraging the Scone framework [3]. Both SGX-
Box and ShieldBox also allow NFs to access entire pack-
ets, while SafeBricks enforces least privilege.

Acknowledgments
We thank our shepherd, Emin Gün Sirer, and the anonymous
reviewers for their helpful comments. Aurojit Panda helped us
with NetBricks; Jethro Beekman helped us with his SGX SDK;
Assaf Araki and Intel supplied the SGX cluster; Jon Kuroda
helped us manage our testbed. We are also grateful to Chia-che
Tsai, Mona Vij, Amin Tootoonchian, Mihai Christodorescu,
Rohit Sinha, and Takeshi Mochida for valuable discussions and
feedback. This work was supported by the Intel/NSF CPS-
Security grants #1505773 and #20153754, the UC Berkeley
Center for Long-Term Cybersecurity, and gifts to the RISELab
from Ant Financial, Amazon Web Services, CapitalOne, Erics-
son, GE, Google, Huawei, Intel, IBM, Microsoft and VMware.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 213

References
[1] AHO, A. V., AND CORASICK, M. J. Efficient String Matching:

An Aid to Bibliographic Search. Commun. ACM (1975).

[2] ANATI, I., GUERON, S., JOHNSON, S. P., AND SCARLATA,
V. R. Innovative Technology for CPU Based Attestation and
Sealing. In Proceedings of the Workshop on Hardware and Ar-
chitectural Support for Security and Privacy (HASP) (2013).

[3] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH, T.,
MARTIN, A., PRIEBE, C., LIND, J., MUTHUKUMARAN, D.,
O’KEEFFE, D., STILLWELL, M. L., GOLTZSCHE, D., EYERS,
D., KAPITZA, R., PIETZUCH, P., AND FETZER, C. SCONE:
Secure Linux Containers with Intel SGX. In Proceedings of the
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI) (2016).

[4] Aryaka. http://www.aryaka.com/.

[5] ASGHAR, H. J., MELIS, L., SOLDANI, C., DE CRISTOFARO,
E., KAAFAR, M. A., AND MATHY, L. SplitBox: Toward Ef-
ficient Private Network Function Virtualization. In Proceedings
of the ACM SIGCOMM Workshop on Hot Topics in Middleboxes
and Network Function Virtualization (HotMiddlebox) (2016).

[6] ASKAROV, A., ZHANG, D., AND MYERS, A. C. Predictive
Black-box Mitigation of Timing Channels. In Proceedings of
the ACM Conference on Computer and Communications Secu-
rity (CCS) (2010).

[7] BALASUBRAMANIAN, A., BARANOWSKI, M. S., BURTSEV,
A., PANDA, A., RAKAMARIĆ, Z., AND RYZHYK, L. System
Programming in Rust: Beyond Safety. In Proceedings of the
Workshop on Hot Topics in Operating Systems (HotOS) (2017).

[8] Barracuda Networks. https://www.barracuda.com/.

[9] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding Ap-
plications from an Untrusted Cloud with Haven. In Proceedings
of the USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI) (2014).

[10] BEEBY, D. Rogue tax workers snooped on ex-spouses, family
members, 2010. https://goo.gl/WNKoCS.

[11] Berkeley Extensible Software Switch (BESS). http://span.
cs.berkeley.edu/bess.html.

[12] BRASSER, F., MÜLLER, U., DMITRIENKO, A., KOSTIAINEN,
K., CAPKUN, S., AND SADEGHI, A. Software Grand Exposure:
SGX Cache Attacks Are Practical. In Proceedings of the USENIX
Workshop on Offensive Technologies (WOOT) (2017).

[13] BRAUN, B. A., JANA, S., AND BONEH, D. Robust and
Efficient Elimination of Cache and Timing Side Channels.
arxiv:1506.00189 (2015).

[14] BULCK, J. V., WEICHBRODT, N., KAPITZA, R., PIESSENS, F.,
AND STRACKX, R. Telling Your Secrets without Page Faults:
Stealthy Page Table-Based Attacks on Enclaved Execution. In
Proceedings of the USENIX Security Symposium (USENIX Secu-
rity) (2017).

[15] CHECKOWAY, S., AND SHACHAM, H. Iago Attacks: Why the
System Call API is a Bad Untrusted RPC Interface. In Proceed-
ings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(2013).

[16] CHEN, S., ZHANG, X., REITER, M. K., AND ZHANG, Y. De-
tecting Privileged Side-Channel Attacks in Shielded Execution
with DéJà Vu. In Proceedings of the ACM Asia Conference on
Computer & Communications Security (AsiaCCS) (2017).

[17] COSTAN, V., AND DEVADAS, S. Intel SGX Explained. Cryptol-
ogy ePrint Archive, Report 2016/086 (2016). http://eprint.
iacr.org/2016/086.

[18] COSTAN, V., LEBEDEV, I., AND DEVADAS, S. Sanctum: Mini-
mal Hardware Extensions for Strong Software Isolation. In Pro-
ceedings of the USENIX Security Symposium (USENIX Security)
(2016).

[19] COUGHLIN, M., KELLER, E., AND WUSTROW, E. Trusted
Click: Overcoming Security Issues of NFV in the Cloud. In
Proceedings of the ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization
(SDN-NFV Security) (2017).

[20] EISENBUD, D. E., YI, C., CONTAVALLI, C., SMITH, C.,
KONONOV, R., MANN-HIELSCHER, E., CILINGIROGLU, A.,
CHEYNEY, B., SHANG, W., AND HOSEIN, J. D. Maglev: A
Fast and Reliable Software Network Load Balancer. In Proceed-
ings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2016).

[21] Emerging Threats Open Rulesets. https://rules.
emergingthreats.net/.

[22] Fortinet. https://www.fortinet.com/.

[23] GENTRY, C. Fully homomorphic encryption using ideal lattices.
In Proceedings of the ACM Symposium on Theory of Computing
(STOC) (2009).

[24] GOOGLE. Transparency Report. https://www.google.com/
transparencyreport/userdatarequests/US/.

[25] GORDON, C. S., PARKINSON, M. J., PARSONS, J., BROM-
FIELD, A., AND DUFFY, J. Uniqueness and Reference Im-
mutability for Safe Parallelism. In Proceedings of the ACM Inter-
national Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA) (2012).

[26] GÖTZFRIED, J., ECKERT, M., SCHINZEL, S., AND MÜLLER,
T. Cache Attacks on Intel SGX. In Proceedings of the European
Workshop on Systems Security (EuroSec) (2017).

[27] GRUSS, D., LETTNER, J., SCHUSTER, F., OHRIMENKO, O.,
HALLER, I., AND COSTA, M. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In
Proceedings of the USENIX Security Symposium (USENIX Secu-
rity) (2017).

[28] HÄHNEL, M., CUI, W., AND PEINADO, M. High-Resolution
Side Channels for Untrusted Operating Systems. In Proceedings
of the USENIX Annual Technical Conference (ATC) (2017).

[29] HAN, J., KIM, S., HA, J., AND HAN, D. SGX-Box: Enabling
Visibility on Encrypted Traffic Using a Secure Middlebox Mod-
ule. In Proceedings of the Asia-Pacific Workshop on Networking
(APNet) (2017).

[30] HUNT, T., ZHU, Z., XU, Y., PETER, S., AND WITCHEL, E.
Ryoan: A Distributed Sandbox for Untrusted Computation on
Secret Data. In Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI) (2016).

[31] ICTF data. https://ictf.cs.ucsb.edu/.

[32] Intel Data Plane Development Kit (DPDK). http://dpdk.org/.

[33] JAMSHED, M. A., MOON, Y., KIM, D., HAN, D., AND PARK,
K. mOS: A Reusable Networking Stack for Flow Monitoring
Middleboxes. In Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI) (2017).

[34] JARMOC, J. SSL/TLS Interception Proxies and Transitive Trust.
In Black Hat (2012).

[35] JEONG, E., WOOD, S., JAMSHED, M., JEONG, H., IHM, S.,
HAN, D., AND PARK, K. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (2014).

214 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.aryaka.com/
https://www.barracuda.com/
https://goo.gl/WNKoCS
http://span.cs.berkeley.edu/bess.html
http://span.cs.berkeley.edu/bess.html
http://eprint.iacr.org/2016/086
http://eprint.iacr.org/2016/086
https://rules.emergingthreats.net/
https://rules.emergingthreats.net/
https://www.fortinet.com/
https://www.google.com/transparencyreport/userdatarequests/US/
https://www.google.com/transparencyreport/userdatarequests/US/
https://ictf.cs.ucsb.edu/
http://dpdk.org/

[36] KIM, S., SHIN, Y., HA, J., KIM, T., AND HAN, D. A First
Step Towards Leveraging Commodity Trusted Execution Envi-
ronments for Network Applications. In Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets) (2015).

[37] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The Click Modular Router. ACM Trans-
actions on Computer Systems (TOCS) (2000).

[38] LAN, C., SHERRY, J., POPA, R. A., RATNASAMY, S., AND LIU,
Z. Embark: Securely Outsourcing Middleboxes to the Cloud. In
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI) (2016).

[39] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H., AND
PEINADO, M. Inferring Fine-grained Control Flow Inside SGX
Enclaves with Branch Shadowing. In Proceedings of the USENIX
Security Symposium (USENIX Security) (2017).

[40] LKL: Linux Kernel Library. https://lkl.github.io.

[41] lwIP: A lightweight TCP/IP stack. http://savannah.nongnu.
org/projects/lwip/.

[42] MazuNAT. https://github.com/kohler/click/blob/
master/conf/mazu-nat.click.

[43] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS,
C., SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR, U. In-
novative Instructions and Software Model for Isolated Execution.
In Proceedings of the Workshop on Hardware and Architectural
Support for Security and Privacy (HASP) (2013).

[44] MELIS, L., ASGHAR, H. J., DE CRISTOFARO, E., AND KAA-
FAR, M. A. Private Processing of Outsourced Network Func-
tions: Feasibility and Constructions. In Proceedings of the ACM
International Workshop on Security in Software Defined Net-
works & Network Function Virtualization (SDN-NFV Security)
(2016).

[45] MICROSOFT. Law Enforcement Requests Report.
https://www.microsoft.com/en-us/about/corporate-
responsibility/lerr.

[46] Mirage TCP/IP stack. https://github.com/mirage/mirage-
tcpip.

[47] MOGHIMI, A., IRAZOQUI, G., AND EISENBARTH, T.
Cachezoom: How SGX amplifies the power of cache attacks. In
Proceedings of the Conference on Cryptographic Hardware and
Embedded Systems (CHES) (2017).

[48] NAYLOR, D., SCHOMP, K., VARVELLO, M., LEONTIADIS,
I., BLACKBURN, J., LÓPEZ, D. R., PAPAGIANNAKI, K., RO-
DRIGUEZ RODRIGUEZ, P., AND STEENKISTE, P. Multi-Context
TLS (mcTLS): Enabling Secure In-Network Functionality in
TLS. In Proceedings of the ACM SIGCOMM Conference on Ap-
plications, Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM) (2015).

[49] NetBricks. http://netbricks.io.

[50] ORENBACH, M., LIFSHITS, P., MINKIN, M., AND SILBER-
STEIN, M. Eleos: ExitLess OS Services for SGX Enclaves. In
Proceedings of the ACM European Conference on Computer Sys-
tems (EuroSys) (2017).

[51] Palo Alto Networks. https://www.paloaltonetworks.com/.

[52] PALO ALTO NETWORKS. Virtualization Features. https://
goo.gl/ezntv6.

[53] PANDA, A., HAN, S., JANG, K., WALLS, M., RATNASAMY,
S., AND SHENKER, S. NetBricks: Taking the V out of NFV.
In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (2016).

[54] POULSEN, K. Five IRS employees charged with snooping on tax
returns, 2008. https://www.wired.com/2008/05/five-irs-
employ/.

[55] EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE.
NFV Whitepaper. https://portal.etsi.org/NFV/NFV_

White_Paper.pdf.

[56] PRIVACY RIGHTS CLEARINGHOUSE. Chronology of Data
Breaches. http://www.privacyrights.org/data-breach.

[57] RIZZO, L. Netmap: A Novel Framework for Fast Packet I/O. In
Proceedings of the USENIX Annual Technical Conference (ATC)
(2012).

[58] ROESCH, M. Snort - Lightweight Intrusion Detection for Net-
works. In Proceedings of the Large Installation System Adminis-
tration Conference (LISA) (1999).

[59] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C.,
PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH, M.
VC3: Trustworthy Data Analytics in the Cloud Using SGX. In
Proceedings of the IEEE Symposium on Security and Privacy
(IEEE S&P) (2015).

[60] SCHWARZ, M., WEISER, S., GRUSS, D., MAURICE, C., AND
MANGARD, S. Malware Guard Extension: Using SGX to Con-
ceal Cache Attacks. In Proceedings of the Conference on De-
tection of Intrusions and Malware & Vulnerability Assessment
(DIMVA) (2017).

[61] SEONGMIN KIM AND JUHYENG HAN AND JAEHYEONG HA
AND TAESOO KIM AND DONGSU HAN. Enhancing Security and
Privacy of Tor’s Ecosystem by Using Trusted Execution Environ-
ments. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (2017).

[62] SHERRY, J., HASAN, S., SCOTT, C., KRISHNAMURTHY, A.,
RATNASAMY, S., AND SEKAR, V. Making Middleboxes Some-
one else’s Problem: Network Processing As a Cloud Service. In
Proceedings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM) (2012).

[63] SHERRY, J., LAN, C., POPA, R. A., AND RATNASAMY, S.
BlindBox: Deep Packet Inspection over Encrypted Traffic. In
Proceedings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM) (2015).

[64] SHIH, M.-W., KUMAR, M., KIM, T., AND GAVRILOVSKA, A.
S-NFV: Securing NFV States by Using SGX. In Proceedings of
the ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization (SDN-NFV Secu-
rity) (2016).

[65] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Pro-
grams. In Proceedings of the Network and Distributed System
Security Symposium (NDSS) (2017).

[66] SHINDE, S., CHUA, Z. L., NARAYANAN, V., AND SAXENA, P.
Preventing Page Faults from Telling Your Secrets. In Proceedings
of the ACM Asia Conference on Computer & Communications
Security (AsiaCCS) (2016).

[67] SHINDE, S., TIEN, D. L., TOPLE, S., AND SAXENA, P.
Panoply: Low-TCB Linux Applications With SGX Enclaves.
In Proceedings of the Network and Distributed System Security
Symposium (NDSS) (2017).

[68] Snort Community Rulesets. https://www.snort.org/
downloads.

[69] STRACKX, R., AND PIESSENS, F. Ariadne: A Minimal Ap-
proach to State Continuity. In Proceedings of the USENIX Secu-
rity Symposium (USENIX Security) (2016).

[70] THE FAST DATA PROJECT. Vector packet processing. https:
//www.fd.io/technology.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 215

https://lkl.github.io
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
https://github.com/kohler/click/blob/master/conf/mazu-nat.click
https://github.com/kohler/click/blob/master/conf/mazu-nat.click
https://www.microsoft.com/en-us/about/corporate-responsibility/lerr
https://www.microsoft.com/en-us/about/corporate-responsibility/lerr
https://github.com/mirage/mirage-tcpip
https://github.com/mirage/mirage-tcpip
http://netbricks.io
https://www.paloaltonetworks.com/
https://goo.gl/ezntv6
https://goo.gl/ezntv6
https://www.wired.com/2008/05/five-irs-employ/
https://www.wired.com/2008/05/five-irs-employ/
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.privacyrights.org/data-breach
https://www.snort.org/downloads
https://www.snort.org/downloads
https://www.fd.io/technology
https://www.fd.io/technology

[71] TRACH, B., KROHMER, A., GREGOR, F., ARNAUTOV, S.,
BHATOTIA, P., AND FETZER, C. ShieldBox: Secure Middle-
boxes using Shielded Execution. In Proceedings of the ACM
Symposium on SDN Research (SOSR) (2018).

[72] TSAI, C.-C., PORTER, D. E., AND VIJ, M. Graphene-SGX: A
Practical Library OS for Unmodified Applications on SGX. In
Proceedings of the USENIX Annual Technical Conference (ATC)
(2017).

[73] WANG, W., CHEN, G., PAN, X., ZHANG, Y., WANG, X.,
BINDSCHAEDLER, V., TANG, H., AND GUNTER, C. A. Leaky
Cauldron on the Dark Land: Understanding Memory Side-
Channel Hazards in SGX. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS) (2017).

[74] XU, Y., CUI, W., AND PEINADO, M. Controlled-Channel At-
tacks: Deterministic Side Channels for Untrusted Operating Sys-
tems. In Proceedings of the IEEE Symposium on Security and
Privacy (IEEE S&P) (2015).

[75] YAHOO! Transparency Report. https://transparency.
yahoo.com/.

[76] YUAN, X., WANG, X., LIN, J., AND WANG, C. Privacy-
preserving Deep Packet Inspection in Outsourced Middleboxes.
In Proceedings of the IEEE International Conference on Com-
puter Communications (INFOCOM) (2016).

[77] ZETTER, K. Ex-Googler allegedly spied on user emails, chats,
2010. https://www.wired.com/2010/09/google-spy/.

[78] ZHANG, D., ASKAROV, A., AND MYERS, A. C. Predictive Mit-
igation of Timing Channels in Interactive Systems. In Proceed-
ings of the ACM Conference on Computer and Communications
Security (CCS) (2011).

[79] Zscaler. https://www.zscaler.com/.

216 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://transparency.yahoo.com/
https://transparency.yahoo.com/
https://www.wired.com/2010/09/google-spy/
https://www.zscaler.com/

Vesper: Measuring Time-to-Interactivity for Web Pages
Ravi Netravali†*, Vikram Nathan†*, James Mickens‡, Hari Balakrishnan†

†MIT CSAIL, ‡Harvard University

Abstract
Everyone agrees that web pages should load more
quickly. However, a good definition for “page load time”
is elusive. We argue that, for pages that care about user
interaction, load times should be defined with respect
to interactivity: a page is “loaded” when above-the-fold
content is visible, and the associated JavaScript event
handling state is functional. We define a new load time
metric, called Ready Index, which explicitly captures our
proposed notion of load time. Defining the metric is
straightforward, but actually measuring it is not, since
web developers do not explicitly annotate the JavaScript
state and the DOM elements which support interactiv-
ity. To solve this problem, we introduce Vesper, a tool
that rewrites a page’s JavaScript and HTML to automat-
ically discover the page’s interactive state. Armed with
Vesper, we compare Ready Index to prior load time met-
rics like Speed Index; across a variety of network con-
ditions, prior metrics underestimate or overestimate the
true load time for a page by 24%–64%. We introduce a
tool that optimizes a page for Ready Index, decreasing
the median time to page interactivity by 29%–32%.

1 INTRODUCTION

Users want web pages to load quickly [31, 40, 42]. Thus,
a vast array of techniques have been invented to de-
crease load times. For example, browser caches try to
satisfy network requests using local storage. CDNs [9,
27, 36] push servers near clients, so that cache misses
can be handled with minimal network latency. Cloud
browsers [4, 29, 34, 38] resolve a page’s dependency
graph on a proxy that has low-latency links to web
servers; this allows a client to download all objects in
a page using a single HTTP round-trip to the proxy.

All of these approaches try to reduce page load time.
However, an inconvenient truth remains: none of these
techniques directly optimize the speed with which a page
becomes interactive. Modern web pages have sophisti-
cated, dynamic GUIs that contain both visual and pro-
grammatic aspects. For example, many sites provide a
search feature via a text input with autocompletion sup-
port. From a user’s perspective, such a text input is
worthless if the associated HTML tags have not been
rendered; however, the text input is also crippled if the
JavaScript code that implements autocompletion has not
been fetched and evaluated. JavaScript code can also im-
plement animations or other visual effects that do not re-
ceive GUI inputs directly, but which are still necessary

* These authors contributed equally to this work.

Figure 1: For the Alexa US Top 500 sites, we observed
the median number of GUI event handlers to be 182.

for a page to be ready for user interaction. As shown in
Figure 1, pages often contain hundreds of event handlers
that drive interactivity.

In this paper, we propose a new definition for load time
that directly captures page interactivity. We define a page
to be fully loaded when:
(1) the visual content in the initial browser viewport1

has completely rendered, and
(2) for each interactive element in the initial view-

port, the browser has fetched and evaluated the
JavaScript and DOM state that supports the ele-
ment’s interactive functionality.

Prior definitions for page load time overdetermine or un-
derdetermine one or both of those conditions (§2), lead-
ing to inaccurate measurements of page interactivity. For
example, the traditional definition of page load time, as
represented by the JavaScript onload event, captures
when all of a page’s HTML, JavaScript, CSS, and images
have been fetched and evaluated; however, this definition
is overly conservative, since only a subset of that state
may be needed to allow a user to interact with the content
in the initial viewport. Newer metrics like above-the-fold
time [21] and Speed Index [14] measure the time that a
page needs to render the initial viewport. However, these
metrics do not capture whether the page has loaded crit-
ical JavaScript state (e.g., event handlers that respond to
GUI interactions, or timers that implement animations).

To accurately measure page interactivity, we must de-
termine when conditions (1) and (2) are satisfied. Deter-
mining when condition (1) has been satisfied is relatively
straightforward, since rendering progress can be mea-
sured using screenshots or the paint events that are emit-
ted by the browser’s debugger interface. However, deter-
mining when condition (2) has been satisfied is challeng-
ing. How does one precisely enumerate the JavaScript
state that supports interactivity? How does one determine
when this state is ready? To answer these questions, we
introduce a new measurement framework called Vesper.

1The viewport is the region of a page that the browser is currently
displaying. Content in the initial viewport is often called “above-the-
fold” content.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 217

(a) Loading the normal version of the page.

(b) Loading a version that optimizes for above-the-fold time.

(c) Loading a version that optimizes for Ready Time.
Figure 2: Timelines for loading amazon.com, indicat-
ing when critical interactive components become fully
interactive. Note that Ready Time best captures when
the site is interactive; furthermore, optimizing for Ready
Time is the best way to decrease the page’s time-to-
interactivity. The client used a 12 Mbit/s link with a 100
ms RTT (§5.1).

RTT PLT RT AFT

25 ms 1.5 (3.9) 1.1 (2.9) 0.8 (1.9)
50 ms 3.4 (7.2) 2.5 (5.8) 1.9 (4.7)
100 ms 6.1 (12.5) 3.9 (9.1) 2.9 (7.0)
200 ms 9.2 (20.6) 5.6 (12.8) 3.8 (8.9)

Figure 3: Median (95th percentile) load time estimates
in units of seconds. Each page in our 350 site corpus was
loaded over a 12 Mbit/s link.

Vesper rewrites a page’s JavaScript and HTML; when the
rewritten page loads, the page automatically logs paint
events as well as reads and writes to individual JavaScript
variables and DOM elements.2 By analyzing these logs,
Vesper generates a progressive load metric, called Ready
Index, which quantifies the fraction of the initial view-
port that is interactive (i.e., visible and functional) at
a given moment. Vesper also outputs a derived metric,
called Ready Time, which represents the exact time at
which all of the above-the-fold state is interactive.

Using a test corpus of 350 popular sites, we compared
our new load metrics to traditional ones. Figure 2(a) pro-
vides a concrete example of the results, showing the dif-

2Each HTML tag in a web page has a corresponding DOM element.
The DOM element is a special JavaScript object that JavaScript code
can use to manipulate the properties of the underlying HTML tag.

ferences between page load time (PLT), above-the-fold
time (AFT), and Ready Time (RT) for the amazon.com
homepage when loaded over a 12 Mbit/s link with a 100
ms RTT. AFT underestimates time-to-full-interactivity
by 2.56 seconds; PLT overestimates the time-to-full-
interactivity by 2.72 seconds. Web developers celebrate
the elimination of milliseconds of “load time,” claim-
ing that a slight decrease can result in millions of dol-
lars of extra income for a large site [6, 8, 41]. How-
ever, our results suggest that developers may be optimiz-
ing for the wrong definition of load time. As shown in
Figure 3, prior metrics inaccurately forecast time-to-full-
interactivity under a variety of network conditions, with
median inaccuracies of 24%–39%; as shown in our user
study (§6), users with interactive goals prefer websites
that actually prioritize the loading of interactive content.

The differences between load metrics are particularly
stark if a page’s dependency graph [25, 37] is deep, or
if a page’s clients are stuck behind high-latency links. In
these scenarios, the incremental interactivity of a slowly-
loading page is important: as the page trickles down
the wire, interactive HTML tags should become visible
and functional as soon as possible. This allows users to
meaningfully engage with the site, even if some content
is missing; incremental interactivity also minimizes the
time window for race conditions in which user inputs are
generated at the same time that JavaScript event handling
state is being loaded [30]. To enable developers to build
incrementally-interactive pages with low Ready Indices,
we extended Polaris [25], a JavaScript framework that
allows a page to explicitly schedule the order in which
objects are fetched and evaluated. We created a new Po-
laris scheduler that optimizes for Ready Index; the result-
ing scheduler improves RI by a median of 29%, and RT
by a median of 32%. Figure 2(c) demonstrates the sched-
uler’s performance on the amazon.com homepage. Im-
portantly, Figure 2(b) shows that optimizing for above-
the-fold time does not optimize for time-to-interactivity.

Of course, not all sites have interactive content, and
even interactive sites can be loaded by users who only
look at the content. In these situations, pages should op-
timize for the rendering speed of above-the-fold content.
Fortunately, our user study shows that pages which op-
timize for Ready Index will substantially reduce user-
perceived rendering delays too (§6). If desired, Vesper
enables developers to automatically optimize their pages
solely for rendering speed instead of Ready Index.

In summary, this paper has four contributions. First,
we define a new load metric called Ready Index which
quantifies a page’s interactive status (§3). Determining
how interactivity evolves over time is challenging. Thus,
our second contribution is a tool called Vesper that au-
tomates the measurement of Ready Index (§4). Our third
contribution is a study of Ready Index in 350 real pages.

218 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

By loading those pages in a variety of network condi-
tions, we explain the page characteristics that lead to
faster interactivity times (§5). Our fourth contribution is
an automated framework for optimizing a page’s Ready
Index or pure rendering speed; both optimizations are en-
abled by Vesper-collected data. User studies demonstrate
that pages which optimize for Ready Index provide better
support for immediate interactivity (§6).

2 BACKGROUND

In this section, we describe prior attempts to define “page
load time.” Each metric tracks a different set of page be-
haviors; thus, for a given page load, different metrics may
provide radically different estimates of the load time.

The Original Definition: The oldest metric is defined
with respect to the JavaScript onload event. A browser
fires that event when all of the external content in a
page’s static HTML file has been fetched and evalu-
ated. All image data must be present and rendered; all
JavaScript must be parsed and executed; all style files
must be processed and applied to the relevant HTML
tags; and so on. The load time for a page is defined as the
elapsed time between the navigationStart event
and the onload event. In the rest of the paper, we re-
fer to this load metric as PLT (“page load time”).

PLT was a useful metric in the early days of the web,
but modern web pages often dynamically fetch content
after the onload event has fired [12, 13]. PLT also pe-
nalizes web pages that have large amounts of statically-
declared below-the-fold content. Below-the-fold content
resides beneath the initial browser viewport, and can only
be revealed by user scrolling. PLT requires static below-
the-fold content to be fetched and evaluated before a
page load is considered done. However, from a user’s
perspective, a page can be ready even if its below-the-
fold content is initially missing: the interactivity of the
initial viewport content is the primary desideratum.

Time to First Paint: Time to First Paint (TTFP) mea-
sures when the browser has received enough page data
to render the first pixels in the viewport. Time to First
Meaningful Paint [33], or TTFMP, measures the time un-
til the biggest layout change, using the intuition that the
associated paint event is the one that matters most. TTFP
and TTFMP try to capture the earliest time that a human
could usefully interact with a page. For a given PLT, a
lower TTFP or TTFMP is better. However, decreasing a
page’s PLT is not guaranteed to lower the other metrics,
and vice versa [1]. For example, when the HTML parser
(which generates input for the rendering pipeline) hits a
<script> tag, the parser may need to synchronously
fetch and evaluate the JavaScript file before continuing
the HTML parse [25]. By pushing <script> tags to
the end of a page’s HTML, render times may improve;

however, careless deferral of JavaScript evaluation may
hurt interactivity, since event handlers will be registered
later, animation callbacks will start firing later, and so on.

Above-the-fold Time: This metric represents the time
that the browser needs to render the final state of all pix-
els in the initial browser viewport. Like TTFP, above-the-
fold time (AFT) is not guaranteed to move in lockstep
with PLT. Measuring AFT and TTFP requires a mech-
anism for tracking on-screen events. WebKit-derived
browsers like Chrome and Opera expose paint events via
their debugging interfaces. Rendering progress can also
be tracked using screenshots [16, 19].

If a web page contains animations, or videos that au-
tomatically start playing, a naı̈ve measurement of AFT
would conclude that the page never fully loaded. Thus,
AFT algorithms must distinguish between static pixels
that are expected to change a few times at most, and
dynamic pixels that are expected to change frequently,
even once the page has fully loaded. To differentiate be-
tween static and dynamic pixels, AFT algorithms use a
threshold number of pixel updates; a pixel which is up-
dated more often than the threshold is considered to be
dynamic. AFT is defined as the time that elapses until the
last change to a static pixel.

Speed Index: AFT fails to capture the progressive na-
ture of the rendering process. Consider two hypothetical
pages which have the same AFT, but different rendering
behavior: the first page updates the screen incrementally,
while the second page displays nothing until the very end
of the page load. Most users will prefer the first page,
even though both pages have the same AFT.

Speed Index [14] captures this preference by explic-
itly logging the progressive nature of page rendering. In-
tuitively speaking, Speed Index tracks the fraction of a
page which has not been rendered at any given time. By
integrating that function over time, Speed Index can pe-
nalize sites that leave large portions of the screen unren-
dered for long periods of time. More formally, a page’s
Speed Index is

∫ end
0 1− p(t)

100 dt, where end is the AFT
time, and p(t) is the percentage of static pixels at time
t that are set to their final value. A lower Speed Index is
better than a higher one.

Strictly speaking, a page’s Speed Index has units of
“percentage-of-visual-content-that-is-not-displayed mil-
liseconds.” For brevity, we abuse nomenclature and re-
port Speed Index results in units of just “milliseconds.”
However, a Speed Index cannot be directly compared to a
metric like AFT that is actually measured in units of time.
Also note that TTFP, AFT, and Speed Index do not con-
sider the load status of JavaScript state. As a result, these
metrics cannot determine (for example) when a button
that has been rendered has actually gone live as result of
the associated event handlers being registered.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 219

User-perceived PLT: This metric captures when a user
believes that a page render has finished [20, 35]. Un-
like Speed Index, User-perceived PLT is not defined
programmatically; instead, it is defined via user stud-
ies which empirically observe when humans think that
enough of a page has rendered for the page load to be
“finished.” Like Speed Index, User-perceived PLT ig-
nores page functionality (and thus page interactivity).
User-perceived PLT also cannot be automatically mea-
sured, which prevents developers from easily optimizing
for the metric.

TTI: Several commercial products claim to measure
a page’s time-to-interactivity (TTI) [28, 32]; however,
these products do not explicitly state how interactivity
is defined or measured. In contrast, Google is currently
working on an open standard for defining TTI [15]. The
standard’s definition of TTI is still in flux. The cur-
rent definition expresses interactivity in terms of time-
to-first-meaningful-paint, the number of in-flight net-
work requests, and the utilization of the browser’s main
thread (which is used to dispatch GUI events, execute
JavaScript event handlers, and render content). TTI de-
fines an “interactive window” as a period in which the
main thread runs no tasks that require more than 50 ms;
in other words, during an interactive window, the browser
can respond to user input in at most 50 ms. A page’s TTI
is the maximum of:
(1) the time when the DOMContentLoaded event

has fired, and
(2) the start time of the first interactive window that has

at most two network requests in flight for 5 consec-
utive seconds.

This definition for load time has several problems. First,
it could declare a page to be loaded even if the page has
not rendered all of the content in the initial viewport. Sec-
ond, condition (2) does not consider whether a network
request is for above-the-fold, interactive content; a win-
dow with many outstanding network requests may repre-
sent an interactive page if those network requests are for
below-the-fold state. Similarly, this TTI definition makes
no explicit reference to the JavaScript state that supports
above-the-fold event handlers, and the JavaScript state
that does not. User-perceived interactivity requires the
former state to be loaded, but not the latter.

Summary: Traditional metrics for load time fail to
capture important aspects of user-perceived page readi-
ness. PLT does not explicitly track rendering behavior,
and implicitly assumes that all JavaScript state is neces-
sary to make above-the-fold content usable. AFT, Speed
Index, User-perceived PLT, and TTFP/TTFMP consider
visual content, but are largely oblivious to the status of
JavaScript code—the code is important only to the extent

that it might update a pixel using DOM methods [23].
However, AFT, Speed Index, User-perceived PLT, and
TTFP/TTFMP completely ignore event handlers (and the
program state that event handlers manipulate). Conse-
quently, these metrics fail to capture the interactive com-
ponent of page usability. Google’s TTI also imprecisely
captures above-the-fold, interactive state.

3 READY INDEX

In this section, we formally define Ready Index (RI).
Like Speed Index, RI is a progressive metric that captures
incremental rendering updates. Unlike Speed Index, RI
also captures the progressive loading of JavaScript state
that supports interactivity.

Defining Functionality: Let T be an upper-bound on
the time that a browser needs to load a page’s above-the-
fold state, and make that state interactive. This upper-
bound does not need to be tight; in practice (§5), we use
a static value of 30 seconds.

Let E be the set of DOM elements that are visible in
the viewport at T . For each e∈ E, let h(e) be the set of all
event handlers that are attached to e at or before T . Let te
be the earliest time at which, for all handlers h∈ h(e), h’s
JavaScript function has been declared, and all JavaScript
state and DOM state that would be accessed by h’s execu-
tion has been loaded. Given those definitions, we express
the functionality progress of e as

F(e, t) =

{
0 t < te
1 t ≥ te

(1)

Intuitively speaking, Equation 1 states that a DOM node
is not functional until all of the necessary event han-
dlers have been attached to the node, and the browser
has loaded all of the state that the handlers would touch
if executed.

Defining Visibility: An element e may be the target of
multiple paint events, e.g., as the browser parses addi-
tional HTML and recalculates e’s position in the layout.
We assume that e is not fully visible until its last paint
completes. Let P(e) be the set of all paint events that up-
date e, and let Pt(e)⊆ P(e) be the paint events that have
occurred by time t. The visibility progress of e is

V (e, t) =
|Pt(e)|
|P(e)|

(2)

Similar to how Speed Index computes progressive ren-
dering scores for pixels [14], Equation 2 assumes that
each paint of e contributes equally to e’s visibility score.
Note that 0≤V (e, t)≤ 1.

Defining Readiness: Given the preceding definitions
for functionality and visibility, we define the readiness

220 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of an element e as

R(e, t) =
1
2

F(e, t)+
1
2

V (e, t) (3)

such that the functionality and visibility of e are equally
weighed,3 and 0≤R(e, t)≤ 1. The readiness of the entire
page is then defined as

R(t) = ∑
e∈E

A(e)R(e, t) (4)

where A(e) is the area (in pixels) that e has at time T .

Putting It All Together: An element e is fully ready
at time t if R(e, t) = 1, i.e., if e is both fully visible and
fully functional. A page’s Ready Time (RT) is thus the
smallest time at which all of the above-the-fold elements
are ready. A page’s Ready Index (RI) is the area above
the curve of the readiness progress function. Thus, RI is
equal to

RI =
∫ T

0
1− R(t)

R(T)
dt (5)

4 VESPER

Vesper is a tool that allows a web developer to determine
the RI and RT for a specific page. Vesper must satisfy
three design goals. First, Vesper must produce high cov-
erage, i.e., Vesper must identify all of a page’s interac-
tive, above-the-fold state. Second, Vesper’s instrumenta-
tion must have minimal overhead, such that instrumented
pages have RI and RT scores that are close to those of un-
modified pages. Ideally, Vesper would also be browser-
agnostic, i.e., capable of measuring a page’s RI and RT
without requiring changes to the underlying browser.

These design goals are in tension. To make Ves-
per browser-agnostic, Vesper should be implemented by
rewriting a page’s JavaScript code and HTML files, not
through modification of a browser’s JavaScript engine
and rendering pipeline; unfortunately, the most direct
way to track interactive state is via heavyweight instru-
mentation of all reads and writes that a page makes to
the JavaScript heap, the DOM, and the rendering bitmap.
Vesper resolves the design tension by splitting instru-
mentation and log analysis across two separate page
loads. Each load uses a differently-rewritten version of
a page, with the first version using heavyweight instru-
mentation, and the second version using lightweight in-
strumentation. As a result, the second page load injects
minimal timing distortion into the page’s true RI and RT
scores. Figure 4 provides an overview of Vesper’s two-
phase workflow. We provide more details in the remain-
der of this section.

3The use of equal weights reflects our assumption that functionality
and visibility are equally important. However, future empirical research
may suggest better weighting schemes.

4.1 Phase 1
The goal of this phase is to identify the subset of DOM
nodes and JavaScript state that support above-the-fold in-
teractivity.

Element Visibility: For most pages, only a subset of
all DOM nodes will have bounding boxes that overlap
with the initial viewport. Even if a node is above-the-
fold, it may not be visible, e.g., due to CSS styling which
hides the node. Vesper injects a JavaScript timer into the
page which runs at time T . When the timer function exe-
cutes, it traverses the DOM tree and records which nodes
are visible. In the rest of the section, we refer to this timer
as the Vesper timer.

Event Handlers: Developers make a DOM element
interactive by attaching one or more event handlers to
that element. For example, a <button> element does
nothing in response to clicks until JavaScript code regis-
ters onclick handlers for the element. To detect when
such handlers are added, Vesper shims the event registra-
tion interfaces [22]. There are two types of registration
mechanisms:
• DOM elements define JavaScript-accessible

properties and methods that support event
handler registration. For example, as-
signing a function f to a property like
DOMnode.onclick will make f an event
handler for clicks on that DOM node. Invoking
DOMnode.addEventListener("click",
f) has similar semantics. Vesper interposes on reg-
istration mechanisms by injecting new JavaScript
into a page that modifies the DOM prototypes [22];
the modified prototypes insert logging code into
the registration interfaces, such that each regis-
tered handler is added to a Vesper-maintained,
in-memory list of the page’s handlers.
• Event handlers can also be defined via HTML, e.g.,
. At
T , the Vesper timer iterates through the page’s
DOM tree, identifying event handlers that were
not registered via a JavaScript-level interface, and
adding those handlers to Vesper’s list.

The Vesper timer only adds a handler if the handler is
attached to a visible DOM element that resides within
the initial viewport.

Event Handler State: When a handler fires, it issues
reads and writes to program state. That state may belong
to JavaScript variables, or to DOM state like the con-
tents of a tag. As the handler executes, it may invoke
other functions, each of which may touch an additional
set of state. The aggregate set of state that the call chain
may touch is the functional state for the handler. Given
a DOM element e, we define e’s functional state as the

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 221

Page Load 1 Page Load 2

Instrument
page with:
1. Scout

2. Element
visibility logic

3. Event
handler
shims

Identify visible
elements

Store all
event

handlers

Fire handlers
for visible
elements

Instrument
original page to:
1. Take periodic
DOM Snapshots
2. Log required
state changes
for functionality

Log when each
element
becomes
functional

Log element
creation and

position

Capture paint
and layout

events Compute
visibility
progress

Compute
functionality

progress

Compute
RT and RI

Log reads /
writes to

page state
with Scout

Figure 4: Vesper’s two-phase approach for measuring RI and RT. Shaded boxes indicate steps that occur during a page
load. Clear boxes represent pre- and post-processing steps.

union of the functional state that belongs to each of e’s
event handlers.

If e resides within the initial viewport, then e is not
functional until two conditions have been satisfied:

1. all of e’s event handlers must be registered, and
2. all of e’s functional state must be loaded.

At any given moment during the page load, none, either,
or both of these conditions may be satisfied. For exam-
ple, if e’s event handlers are defined in a <script>
tag, but key functional state is defined by downstream
HTML or <script> tags, then after evaluation of the
first <script> tag, condition (1) is true, but condition
(2) is not.

To identify a page’s functional state, Vesper instru-
ments the HTML and JavaScript in a page, such that,
when the instrumented page loads, the page will log
all reads and writes to JavaScript variables and DOM
state. When the Vesper timer runs, it actively invokes the
event handlers that were captured by event registration
shimming. As those handlers fire, their call chains touch
functional state. By post-processing the page’s logs, and
looking for reads and writes that occurred after the Ves-
per timer began execution, Vesper can identify a page’s
functional state. In particular, Vesper can associate each
handler with its functional state, and each DOM element
with the union of the functional states of its handlers.

To fire the handlers for a specific event type like
click, the Vesper timer determines the minimally-
sized DOM subtree that contains all handlers for
the click event. Vesper then constructs a syn-
thetic click event, and invokes the built-in
DOMnode.dispatchEvent() method for each
leaf of the subtree. This approach ensures that synthetic
events follow the same dispatch path used by real events.

Some event types are logically related to a sin-
gle, high-level user interaction. For example, when
a user clicks a mouse button, her browser generates
mousedown, click, and mouseup events, in that or-
der. Vesper is aware of these semantic relationships, and
uses them to guide the generation of synthetic events, en-
suring a realistic sequence of handler firings.

Implementation: To instrument a page, Vesper could
modify the browser’s renderer and JavaScript engine to
track reads and writes to DOM objects and JavaScript
variables. However, our Vesper prototype leverages
Scout [25] instead. Scout is a browser-agnostic rewrit-
ing framework that instruments a page’s JavaScript and
HTML to log reads and writes. A browser-agnostic ap-
proach is useful because it allows Vesper to compare a
page’s Ready Index across different browser types (§5.4).

The instrumentation that tracks element visibility and
handler registration adds negligible overhead to the page
load process. However, tracking all reads and writes to
page state is more costly. Across the 350 pages in our
test corpus, we measured a Scout-induced load time in-
crease of 4.5% at the median, and 7.6% at the 95th per-
centile. Thus, trying to calculate RI and RT directly in
Phase 1 would lead to inflated estimates. To avoid this
problem, we use the outputs of Phase 1 as the inputs to
a second phase of instrumentation. This second phase is
more lightweight, and directly calculates RI and RT.

4.2 Phase 2
In Phase 1, Vesper discovers the DOM nodes and
JavaScript variables that support above-the-fold interac-
tivity. In Phase 2, Vesper tracks the rendering progress of
the above-the-fold DOM elements that were identified in
Phase 1. Vesper also tracks the rate at which functional
JavaScript state is created. This information is sufficient
to derive RI and RT.

4.2.1 Measuring Functionality Progress
A DOM element becomes functional when all of its
event handlers have been registered, and all of the func-
tional state for those handlers has been created. An el-
ement’s functional state may span both the JavaScript
heap and the DOM. Vesper uses different techniques to
detect when the two types of state become ready.

JavaScript state: By analyzing Scout logs from Phase
1, Vesper can determine when the last write to each
JavaScript variable occurs. The “last write” is defined as
a source code line and an execution count for that line.
The execution count represents the fact that a source code

222 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

line can be run multiple times, e.g., if it resides within a
loop body.

At the beginning of Phase 2, Vesper rewrites a page’s
original JavaScript code, injecting a logging statement
after each source code line that generates a final write
to functional JavaScript state. The logging statement up-
dates the execution count for the line, and only outputs a
log entry if the final write has been generated.

DOM state: An event handler’s functional state may
also contain DOM nodes. For example, a keypress
handler may assume the existence of a specific DOM
node whose properties will be modified by the handler.
At the beginning of Phase 2, Vesper rewrites a page’s
original HTML to output the creation time for each
DOM node. The rewriting is complicated by the fact that,
when a browser parses HTML, it does not trigger a syn-
chronous, JavaScript-visible event upon the creation of a
DOM node. Thus, Vesper rewrites a page’s HTML to in-
clude a new <script> tag after every original HTML
tag. The new <script> tag logs two things: the cre-
ation of the preceding DOM node, and the bounding
boxes of all DOM nodes which exist at that moment in
the HTML parse. The <script> tag then removes it-
self from the DOM tree (so that at any point in the HTML
parse, non-Vesper code that inspects the DOM tree will
see the original DOM tree which does not contain Ves-
per’s self-destructing tags). DOM snapshots using self-
destructing JavaScript tags are by far the most expen-
sive part of the Phase 2 instrumentation; however, they
only increase page load times by 1.9% at the median,
and 3.9% at the 95th percentile. Thus, we believe that
the overhead is acceptable.

After the initial HTML parse, DOM nodes may
be created by asynchronous event handlers. Vesper
logs such creations by interposing on DOM methods
like DOMnode.appendChild(). This interposition-
ing has negligible overhead and ensures that Vesper has
DOM snapshots after the initial HTML parse.

4.2.2 Measuring Visibility Progress
DOM snapshots allow Vesper to detect when elements
are created. However, a newly-created element will not
become visible until some point in the future, because the
construction of the DOM tree is earlier in the rendering
pipeline than the paint engine. Browsers do not expose
layout or paint events to JavaScript code. Fortunately,
Vesper can extract those events from the browser’s de-
bugging output [11]. Each layout or paint message con-
tains the bounding box and timestamp for the activ-
ity. Unfortunately, the message does not identify which
DOM nodes were affected by the paint; thus, Vesper
must derive the identities of those nodes.

After the Phase 2 page load is complete, Vesper col-
lates the DOM snapshots and the layout+paint debug-

ging events, using the following algorithm to determine
the layout and paint events that rendered a specific DOM
element e:

1. Vesper finds the first DOM snapshot that contains a
bounding box for e. Let that snapshot have a times-
tamp of td . Vesper searches for the layout event that
immediately precedes td and has a bounding box
that contains e’s bounding box. Vesper defines that
layout event L f irst to be the one which added e to
the layout tree.

2. Vesper then rolls forward through the log of paint
and layout events, starting at L f irst , and tracking all
paint events to e’s bounding box. That bounding box
may change during the page load process, but any
changes will be captured in the page’s DOM snap-
shots. Thus, Vesper can determine the appropriate
bounding box for e at any given time.

As described in Equation 2, each paint event contributes
equally towards e’s visibility score. For example, if e is
updated by four different paints, then e is 25% visible
after the first one, 50% visible after the second one, and
so on.

In summary, the output of the Phase 2 page load is
a trace of a page’s functionality progress and visibility
progress. Using that trace, and Equations 4 and 5, Vesper
determines the page’s RT and RI. Note that, for a given
version of a page (i.e., for a particular set of HTML, CSS,
and JavaScript files), Phase 1 only needs to run once, on
the server-side, with Phase 2 running during the live page
loads on clients in the wild.

4.3 Discussion
The PLT metric is natively supported by commodity
browsers, meaning that a page can measure its own
PLT simply by registering a handler for the onload
event. Newer metrics that lack native browser support re-
quire 1) browsers to install a special plugin (the SI ap-
proach [10]), or 2) page developers to rewrite content
(the approach used by our Vesper prototype). Vesper is
amenable to implementation via plugins or native sup-
port; either option would enable lower instrumentation
overhead, possibly allowing Vesper to collapse its two
phases into one.

As a practical concern, a rewriting-based implementa-
tion of Vesper must deal with the fact that a single page
often links to objects from multiple origins. For exam-
ple, a developer for foo.com will lack control over the
bytes in linked objects from bar.com. As described in
Section 5, our Vesper prototype uses Mahimahi [26], a
web replay tool, to record all of the content in a page;
Vesper rewrites the recorded content, and then replays
the modified content to a browser that runs on a machine
controlled by the foo.com developer. In this manner, as
with the browser plugin approach, a developer can mea-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 223

sure RI and RT for any page, regardless of whether the
developer owns all, some, or none of the page content.

All load metrics are sensitive to nondeterministic page
behavior. In the context of Vesper, such behavior may
result in a page having different interactive state across
different page loads. For example, an event handler
that branches on the return value of Math.random()
might access five different DOM nodes across five differ-
ent loads of the page. Even if a page’s state is determinis-
tic, Vesper’s synthetic event generation (§4.1) is not guar-
anteed to exhaustively explore all possible event han-
dler interleavings—instead, Vesper tests the most likely
event sequences based on how a realistic human user
would generate GUI events. Vesper could use symbolic
execution [7] to increase path coverage, but we believe
that Vesper’s current level of coverage is sufficiently
high for two reasons. First, from the empirical perspec-
tive, the pages in our large test corpus do not exhibit
nondeterminism that results in different functional state
across different loads. Second, the Vesper timer does not
fire synthetic events until a page is fully loaded; thus,
“unexpected” event-level race conditions arising from
partially-loaded content [30] should not arise.

5 EVALUATION

In this section, we compare RI and RT to three prior met-
rics for page load time (PLT, AFT, and Speed Index). We
do not evaluate Google’s TTI because the metric’s defi-
nition is still evolving.

Across a variety of network conditions, we find that
PLT overestimates the time that a page requires to be-
come interactive; in contrast, AFT and Speed Index un-
derestimate the time-to-interactivity (§5.2 and A.1.1).
These biases persist when browser caches are warm
(§A.1.2). Furthermore, the discrepancies between prior
metrics and our interactive metrics are large, with me-
dian and 95th percentile load time estimates often differ-
ing by multiple seconds (Figures 3 and 6). Thus, Ready
Index and Ready Time provide a fundamentally new way
of understanding how pages load.

5.1 Methodology

We evaluated the various load metrics using a test cor-
pus of 350 pages. The pages were selected from the
Alexa US Top 500 list [2]. We filtered out sites using
deprecated JavaScript statements that Scout [25] does
not rewrite. We also filtered sites that caused errors with
Speedline [19], a preexisting tool for capturing SI.

To measure PLT, we recorded the time between the
JavaScript navigationStart and onload events
(§2). RT and RI were measured with Vesper; we set T
to 30 seconds. We also used Vesper to measure AFT and

SI.4 Calibration experiments showed that Vesper’s esti-
mates of SI were within 2.1% of Speedline’s estimates at
the median, and within 3.9% at the 95th percentile.

Measuring PLT is non-invasive, since unmodified
pages will naturally fire the navigationStart and
onload events. Capturing the other metrics requires
new instrumentation, like DOM snapshots (§4.2.1). To
avoid measurement biases due to varying instrumenta-
tion overheads, each experimental trial loaded each page
five times, and in each of the five loads, we enabled all
of Vesper’s Phase 2 instrumentation, such that each load
metric could be calculated. Enabling all of the instrumen-
tation increased PLT by 1.9% at the median, and 3.9% at
the 95th percentile.

We used Mahimahi [26] to record the content in each
test page, and later replay the content via emulated net-
work links. With the exception of the mobile experiments
(§A.1.1), all experiments were performed on Amazon
EC2 instances running Ubuntu 14.04. Unless otherwise
specified, each page load used Google Chrome (v53)
with a cold browser cache and remote debugging enabled
so that we could track layout and paint events.

5.2 Cross-metric Comparisons
On computationally-powerful devices like desktops and
laptops, network latency (not bandwidth) is the primary
determinant of how quickly a page loads [1, 5, 25, 34].
So, our first set of tests used a t2.large EC2 VM with a
fixed bandwidth of 12 Mbit/s, but a minimum round-trip
latency that was drawn from the set {25 ms, 50 ms, 100
ms, 200 ms}. These emulated network conditions were
enforced by the Mahimahi web replay tool.

Figure 3 summarizes the results for PLT, RT, and AFT.
Recall that these metrics are non-progressive, i.e., they
express a page’s load time as a single number that repre-
sents when the browser has “completely” loaded the page
(for some definition of “completely”). As expected, PLT
is higher than RT because PLT requires all page state, in-
cluding below-the-fold state, to be loaded before a page
load is finished. Also as expected, AFT is lower than RT,
because AFT ignores the load status of JavaScript code
that is necessary to make visible elements functional.

The surprising aspect of the results is that the differ-
ences between the metrics are so noticeable. As shown in
Figures 2(a) and 3, the differences are large in terms of
percentage (24.0%–64.3%); more importantly, the differ-
ences are large in terms of absolute magnitude, equating
to hundreds or thousands of milliseconds. For example,
with a round-trip latency of 50 ms, RT and PLT differ by
roughly 900 ms at the median, and by 1.4 seconds at the
95th percentile. For the same round-trip latency, RT and

4To compute SI, Vesper only considers element visibility, assigning
zero weight to functionality.

224 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) 50 ms RTT (b) 100 ms RTT (c) 200 ms RTT
Figure 5: Comparing RT, PLT, and AFT. Results used emulated links with a bandwidth of 12 Mbit/s.

RTT Ready Index Speed Index

25 ms 714 (1522) 568 (1027)
50 ms 1759 (3846) 1325 (3183)

100 ms 2737 (6174) 2054 (4549)
200 ms 4252 (9719) 3071 (6913)

Figure 6: Median (95th percentile) load time estimates
(see Section 2 for a discussion of the units). Results used
our entire 350 page corpus. Content was loaded over a
12 Mbit/s link.

AFT differ by approximately 600 ms at the median, and
by 1.1 seconds at the 95th percentile.

The discrepancies increase as RTTs increase. This ob-
servation is important, because cellular and residential
networks often have RTTs that exceed 100 ms [3, 18].
For example, in our emulated network with an RTT of
100 ms, RT differed from PLT by 2.2 seconds at the me-
dian; RT differed from AFT by 1 second at the median.
From the perspective of a web developer, the differences
between RT and AFT are particularly important. Users
frequently assume that a visible element is also func-
tional. However, visibility does not necessarily imply
functionality, and interactions with partially-functional
elements can lead to race conditions and broken page be-
havior [30]. In Section 6, we describe how developers
can create incrementally-interactive pages that minimize
the window in which a visual element is not interactive.

Figure 5 compares the RT, PLT, and AFT values for
each page in our 350 site corpus. Pages are sorted along
the x-axis in ascending AFT order. Figure 5 vividly
demonstrates that PLT is an overly conservative defini-
tion for user-perceived notions of page readiness. The
spikiness of the RT line also demonstrates that pages
with similar AFT values often have very different RT
scores. For example, consider an emulated link with a
100 ms round-trip time. Sites 200 (mashable.com)
and 201 (overdrive.com) have AFT values of 3099
ms and 3129 ms, respectively. However, the sites have
RT values of 4418 ms and 3970 ms, a difference of over
400 ms. In Section 5.3, we explain how the relationships
between a page’s HTML, CSS, and JavaScript cause di-
vergences in RT and AFT.

Figures 6 and 7 compare the two progressive metrics.
The results mirror those for the non-progressive metrics.

A page’s SI is lower than its RI, because SI does not
consider the load status of JavaScript code that supports
interactivity. Furthermore, pages with similar SIs often
have much different RIs.

5.3 Case Studies
Figure 8 uses two randomly-selected pages to demon-
strate how interactivity evolves. Figure 8(a) describes the
homepage for Bank of America, whereas Figure 8(b) de-
scribes the homepage for WebMD. Using the terminol-
ogy from Section 3, each graph plots the visual progres-
sion of the page (∑e∈E V (e, t)A(e)) and the readiness pro-
gression of the page (R(t)); in the graphs, each data point
is normalized to the range [0.0,1.0]. At any given mo-
ment, a page’s readiness progression is less than or equal
to its visual progression, since visual progression does
not consider the status of functional state.

The gaps between the red and blue curves indicate the
existence of visible, interactive DOM elements that are
not yet functional. If users try to interact with such ele-
ments, then at best, nothing will happen; at worst, an in-
complete set of event handlers will interact with incom-
plete JavaScript and DOM state, leading to erroneous
page behavior. For example, the Bank of America site
contains a text input that supports autocompletion. With
RTTs of 100 ms and above, we encountered scenarios in
which the input was visible but not functional. In these
situations, we manually verified that a human user could
type into the text box, have no autosuggestions appear,
and then experience the text disappear and reappear with
autosuggestions as the page load completed.

Both the red and blue curves contain stalls, i.e.,
time periods in which no progress is made. For exam-
ple, both pages exhibit a lengthy stall in their visual
progression—for roughly a second, neither page updates
the screen. Both pages also contain stretches that lack
visual progress or readiness progress. During these win-
dows, a page is not executing any JavaScript code that
creates interactive state.

Functionality progression stalls when the <script>
tags supporting functionality have not been fetched, or
have been fetched but not evaluated. Visual progres-
sion may stall for a variety of reasons. For example, the
browser might be blocked on network fetches, waiting on

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 225

(a) 50 ms RTT (b) 100 ms RTT (c) 200 ms RTT
Figure 7: Comparing the progressive metrics (Ready Index versus Speed Index). Results used emulated links with a
bandwidth of 12 Mbit/s.

Speed Index: 1342 ms
Ready Index: 1967 ms

(a) https://www.bankofamerica.com

Speed Index: 1736 ms
Ready Index: 2093 ms

(b) http://www.webmd.com
Figure 8: Exploring how visibility and functionality evolve for two different pages. The client had a 12 Mbit/s link
with an RTT of 100 ms. Remember that a progressive metric like Ready Index is calculated by examining the area that
is above a curve.

HTML data so that new tags can be parsed and rendered.
Browsers also use a single thread for HTML parsing,
DOM node rendering, and JavaScript execution; thus, ex-
ecuting a <script> tag blocks parsing and rendering
of downstream HTML. As described in Section 6, devel-
opers can use automated tools to minimize these stalls
and improve a page’s Ready Time and Ready Index.

5.4 Other Page Load Scenarios
In Section A.1, we analyze how Ready Index evolves in
three additional scenarios: mobile page loads, page loads
that use a warm browser cache, and page loads on two
different browsers (namely, Chrome versus Opera). Due
to space restrictions, we merely provide a summary here:

Mobile page loads: Mobile page loads exhibit the
same trends that we observed on more powerful client
devices. For example, on a Nexus 5 phone running on
an emulated Verizon LTE cellular link, the median PLT
is 35.2% larger than the median RT; the median RI is
29.7% larger than the median Speed Index.

Warm cache loads: The results from earlier in this
section used cold caches. However, clients sometimes
have a warm cache for objects in a page to load. As ex-
pected, pages load faster (for all metrics) when caches
are warm. However, the general trends from Section 5.2
still hold. For example, on a desktop browser with a 12
Mbit/s, 100 ms RTT link, the median warm-cache PLT

is 38.2% larger than the median RT. The median RT is
26.0% larger than the median AFT.

Chrome vs. Opera: Since our Vesper implementation
is browser-agnostic, it can measure a single page’s load
metrics across different browser types. For example, we
compared RI on Chrome and Opera. With cold browser
caches and a 12 Mbit/s, 100 ms RTT link, Chrome’s RI
values were 6.5% lower at the median, and 11.9% lower
at the 95th percentile. Since Vesper’s logs contain low-
level information about reads and writes to interactive
state, browser vendors can use these logs to help optimize
the internal browser code that handles page loading.

6 OPTIMIZING FOR INTERACTIVITY

To minimize a page’s Ready Time and Ready Index,
browsers must fetch and evaluate objects in a way that
prioritizes interactivity. In particular, a browser should:

1. maximize utilization of the client’s network connec-
tion;

2. prioritize the fetching and evaluating of HTML files
that define above-the-fold DOM elements;

3. prioritize the fetching and evaluating of <script>
tags that generate interactive, above-the-fold state;
and

4. respect the semantic dependencies between a page’s
objects.

By maximizing network utilization (Goal (1)), a browser
minimizes the number of CPU stalls that occur due to
synchronous network fetches; ideally, a browser would

226 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: The dependency graph for priceline.com.
OPT-PLT assigns equal weights to all nodes. OPT-SI pri-
oritizes the shaded objects. OPT-RI prioritizes the ob-
jects with dashed outlines.

fetch each piece of content before that content is de-
sired by a parsing/evaluation engine. Goals (2) and (3)
directly follow from the definitions for page readiness in
Section 3. However, Goal (4) is in tension with the oth-
ers: fetching and evaluating objects in a way that satis-
fies Goals (1), (2), and (3) may break page functionality.
For example, two JavaScript libraries may have shared
state, like a variable that is written by the first library
and read by the second. Invalid reads and other prob-
lems will arise if a browser evaluates the two libraries
“out-of-order” with respect to the lexical order of their
<script> tags in the page’s HTML.

Web pages contain a variety of additional dependen-
cies that constrain the order in which objects can be
fetched and evaluated. Polaris [25] is a load optimizer
that uses Scout to extract all of these dependencies and
generate an explicit dependency graph (i.e., a partial or-
dering that specifies how certain objects must be loaded
before others). Polaris then rewrites the page so that the
page is self-assembling. The rewritten page uses a cus-
tom JavaScript library to schedule the fetching and eval-
uating of objects in a way that satisfies Goals (1) and (4).

At any given moment in a page load, the dynamic crit-
ical path is the path in the dependency graph that has the
largest number of unfetched objects. The default Polaris
scheduler prioritizes the fetching of objects along the dy-
namic critical path. This policy minimizes PLT, but may
increase or decrease RT, depending on whether interac-
tive, above-the-fold state is created by objects along the
dynamic critical path.

We created a new scheduling policy, called OPT-RI
(“optimize RI”), which prioritizes the loading of interac-
tive content. Let Ointeractive be the objects (e.g., HTML
files, JavaScript files) that Vesper identifies as generating
interactive, above-the-fold state. Given Ointeractive and
the dependency graph from Scout, OPT-RI assigns node
weights of zero to nodes that do not reside in Ointeractive;
for a node in Ointeractive, OPT-RI finds all of the above-
the-fold elements that the node affects, and then weights
the node by the fraction of the initial viewport area that
those elements cover. During the actual page load, the

OPT-RI scheduler prioritizes objects along the weighted
dynamic critical path.

We also defined OPT-SI, which only considers visual
progress. Nodes that do not lead to the creation of vis-
ible, above-the-fold DOM elements receive a weight of
zero. For each remaining node, OPT-SI finds the DOM
elements that the node influences, and assigns a node
weight that is proportional to the fraction of the view-
port that the elements cover. OPT-SI will not prioritize
JavaScript files that only define event handler state; how-
ever, OPT-SI will prioritize JavaScript files that dynam-
ically create above-the-fold content via DOM methods
like document.appendChild(). Figure 9 provides
an example of a real dependency graph, and the nodes
that are prioritized by the various schedulers.

Figure 10 compares the performance of the sched-
ulers. OPT-RI and OPT-SI reduce all load metrics, but
the targeted metrics decrease the most. Thus, sites that
want to decrease time-to-interactivity must explicitly tar-
get RI and RT, not preexisting metrics like SI and PLT.
For example, consider the search button in Figures 2(b)
and 2(c). OPT-RI makes the button interactive 1.5 sec-
onds earlier than OPT-SI. Differences of that magnitude
have significant impacts on user satisfaction and site rev-
enue [6, 8, 41].

As shown in Figure 10, OPT-RI reduces RI by a me-
dian of 29%, and RT by a median of 32%; PLT, AFT, and
SI also drop, but not as much (by 23%, 15%, and 12%,
respectively). Interestingly, the default Polaris scheduler
(OPT-PLT) improves PLT, RT, and RI, but actually hurts
AFT and SI by -4% and -7% at the median. The rea-
son is that JavaScript files often form long dependency
chains; evaluating one JavaScript file in the chain leads
to the fetching and evaluation of additional JavaScript
files. These long dependency chains tend to lie along
the dynamic critical paths that are preferentially explored
by OPT-PLT. By focusing on those chains, OPT-PLT in-
creases the speed at which event handling state is loaded.
However, this approach defers the loading of content in
short chains. Short chains often contain images, since im-
ages (unlike HTML, CSS, and JavaScript) cannot trigger
new object fetches. Deferring image loading hurts AFT
and SI, though RT and RI improve, and the likelihood of
broken user interactions (§5.2 and §5.3) decreases.

User Study 1: Do User-perceived Rendering Times
Actually Change? The results from Figure 10 pro-
grammatically compare OPT-PLT, OPT-SI, and OPT-RI.
We now evaluate how the differences between these op-
timization strategies are perceived by real users. We per-
formed a user study in which 73 people judged the load
times of 15 randomly-selected sites from our corpus,
each of which had three versions (one for each opti-
mization strategy). We used a standard methodology for
evaluating user-perceived load times [20, 35]. We pre-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 227

Weights PLT RT AFT SI RI
OPT-PLT 36% (51%) 13% (22%) -4% (5%) -7% (4%) 8% (17%)
OPT-RI 23% (34%) 32% (48%) 15% (26%) 12% (20%) 29% (35%)
OPT-SI 10% (19%) 18% (31%) 27% (39%) 18% (28%) 14% (23%)

Figure 10: Median (95th percentile) load time improvements using our custom Polaris schedulers and the default one
(OPT-PLT). Results used our entire 350-page corpus. Loads were performed on a desktop Chrome browser that had a
12 Mbit/s link with an RTT of 100 ms; the performance baseline was a regular (i.e., non-Polaris) page load. The best
scheduler for each load metric is highlighted.

sented each user with 10 randomly-selected pages that
employed a randomly-selected optimization target; we
injected a JavaScript keypress handler into each page,
so that users could press a key to log the time when they
believed the page to be fully loaded. In all of the user
studies, content was served from Mahimahi on a Mac-
book Pro, using an emulated 12 Mbit/s link with a 100
ms RTT.

Unsurprisingly, users believed that OPT-PLT resulted
in the slowest loads for all 15 pages. However, OPT-SI
did not categorically produce the lowest user-perceived
rendering times; users thought that OPT-RI was the
fastest for 4 pages, and OPT-SI was the fastest for
11. Across the study, median (95th percentile) user-
perceived rendering times with OPT-RI were within
4.7% (10.9%) of those with OPT-SI. Furthermore, the
performance of OPT-RI and OPT-SI were closer to each
other than to that of OPT-PLT. At the median (95th per-
centile), OPT-RI was 14.3% (25.3%) faster than OPT-
PLT, whereas OPT-SI was 17.4% (32.9%) faster.

These results indicate that a page that only wants to
decrease rendering delays should optimize for SI. How-
ever, optimizing for RI results in comparable decreases
in rendering time. Our next user study shows that op-
timizing for RI also decreases user-perceived time-to-
interactivity.
User Study 2: Does OPT-RI Help Interactive Sites?
Unlike the first user study, our second one asked users
to interact with five well-known landing pages: Ama-
zon, Macy’s, Food Network, Zillow, and Walmart. For
each site, users completed a site-specific task that normal
users would be likely to perform. For example, on the
Macy’s page, users were asked to hover over the “shop-
ping bag” icon until the page displayed a pop-up icon
that listed the items in the shopping bag. On the Walmart
site, users were asked to search for “towels” using the au-
tocompleting text input at the top of the page; they then
had to select the autocompleted suggestion. To avoid ori-
entation delays, users were shown all five pages and the
location of the relevant interactive elements at the begin-
ning of the study. This setup emulated users who were
returning to frequently-visited sites.

The study had 85 users interact with three different
versions of each page: a default page load, a load that
was optimized with OPT-SI, and one that was optimized

Load method Preference %
OPT-RI 83%
OPT-SI 4%

Default load 7%
None 6%

Figure 11: The results of our second user study. OPT-RI
leads to human-perceivable reductions in the completion
times for interactive tasks.

with OPT-RI. For each page, users were presented with
the three variations in a random order and were unaware
of which variant they were seeing. Users were asked to
select the variant that enabled them to complete the given
task the fastest; if users felt that there was no perceivable
difference between the loads, users could report “none.”

As shown in Figure 11, OPT-RI was overwhelmingly
preferred, with 83% of users believing that OPT-RI led
to the fastest time-to-interactivity. For example, on the
Macy’s page, OPT-RI made the shopping bag icon fully
interactive 1.6 seconds faster than the default page load,
and 2.1 seconds faster than the OPT-SI load. Time-to-
interactivity differences of these magnitudes are easily
perceived by humans. Thus, for pages with interactive,
high-priority content, OPT-RI is a valuable tool for re-
ducing time-to-interactivity (as well as the time needed
to fully render the page). Optimizing for interactivity is
particularly important for web browsing atop mobile de-
vices with poor network connectivity. In these scenarios,
users often desire to interact with pages as soon as rele-
vant content becomes visible [17].

7 CONCLUSION

A web page is not usable until its above-the-fold con-
tent is both visible and functional. In this paper, we de-
fine Ready Index, the first load time metric that explicitly
quantifies page interactivity. We introduce a new tool,
called Vesper, that automates the measurement of Ready
Index. Using a corpus of 350 pages, we show that Ready
Index captures interactivity better than prior metrics like
PLT and SI. We also present an automated page-rewriting
framework that uses Vesper to optimize a page for Ready
Index or pure rendering speed. User studies show that
pages which optimize for Ready Index support more im-
mediate user interactions with less user frustration.

228 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Jon
Howell for their helpful feedback. We also thank Tim
Dresser at Google for his insights about how Google’s
TTI metric is currently defined. This research was par-
tially supported by NSF grant 1407470 and by a Google
Research Award.

REFERENCES

[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-
gan, B. Greenstein, S. McDaniel, M. Piatek,
C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s
Data Compression Proxy for the Mobile Web. In
Proceedings of NSDI, 2015.

[2] Alexa. Top Sites in United States. http://www.
alexa.com/topsites/countries/US, 2018.

[3] M. Allman. Comments on Bufferbloat. SIG-
COMM Comput. Commun. Rev., 43(1):30–37, Jan-
uary 2012.

[4] Amazon. Silk Web Browser. https:
//docs.aws.amazon.com/silk/latest/developerguide/
introduction.html, 2018.

[5] M. Belshe. More Bandwidth Doesn’t Matter
(Much). Google. https://goo.gl/PFDGMi, April 8,
2010.

[6] J. Brutlag. Speed Matters. Google Research Blog.
https://research.googleblog.com/2009/06/speed-
matters.html, June 23, 2009.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and Automatic Generation of High-coverage
Tests for Complex Systems Programs. In Proceed-
ings of OSDI, 2008.

[8] K. Eaton. How One Second Could Cost
Amazon $1.6 Billion In Sales. https:
//www.fastcompany.com/1825005/how-one-
second-could-cost-amazon-16-billion-sales,
March 15, 2012.

[9] M. J. Freedman. Experiences with CoralCDN: A
Five-year Operational View. In Proceedings of
NSDI, 2010.

[10] Google. Perceptual Speed Index. https:
//developers.google.com/web/tools/lighthouse/
audits/speed-index, December 14, 2017.

[11] Google. Chrome Debugging Protocol. https:
//chromedevtools.github.io/devtools-protocol/,
2018.

[12] Google. Reduce the size of the above-the-fold
content. PageSpeed Tools Documentation.
https://developers.google.com/speed/docs/insights/
PrioritizeVisibleContent, January 9, 2018.

[13] Google. Remove Render-Blocking JavaScript.
PageSpeed Tools Documentation. https:
//developers.google.com/speed/docs/insights/
BlockingJS, January 25, 2018.

[14] Google. Speed Index: WebPagetest Documen-
tation. https://sites.google.com/a/webpagetest.
org/docs/using-webpagetest/metrics/speed-index,
2018.

[15] Google. Time to Interactive (TTI).
https://github.com/WPO-Foundation/webpagetest/
blob/master/docs/Metrics/TimeToInteractive.md,
January 12, 2018.

[16] Google. WebPagetest: Website Performance and
Optimization Test. https://www.webpagetest.org/,
2018.

[17] B. Greenstein. Delivering the Mobile Web to the
Next Billion Users. Keynote speech: Workshop on
Mobile Computing Systems and Applications (Hot-
Mobile), 2018.

[18] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen,
and O. Spatscheck. A Close Examination of Perfor-
mance and Power Characteristics of 4G LTE Net-
works. In Proceedings of MobiSys, 2012.

[19] P. Irish. Speedline. https://github.com/paulirish/
speedline, November 21, 2017.

[20] C. Kelton, J. Ryoo, A. Balasubramanian, and
S. Das. Improving User Perceived Page Load
Times Using Gaze. In Proceedings of NSDI, 2017.

[21] P. Meenan. How Fast is Your Web Site? ACM
Queue, 11(2), March 2013.

[22] J. Mickens, J. Elson, and J. Howell. Mugshot: De-
terministic Capture and Replay for Javascript Ap-
plications. In Proceedings of NSDI, 2010.

[23] Mozilla Developer Network. Document Object
Model (DOM). https://developer.mozilla.org/en-
US/docs/Web/API/Document Object Model, Au-
gust 29, 2017.

[24] Mozilla Developer Network. HTTP Caching
FAQ. https://developer.mozilla.org/en-US/docs/
Web/HTTP/Caching FAQ, January 4, 2018.

[25] R. Netravali, A. Goyal, J. Mickens, and H. Bal-
akrishnan. Polaris: Faster Page Loads Using Fine-
grained Dependency Tracking. In Proceedings of
NSDI, 2016.

[26] R. Netravali, A. Sivaraman, S. Das, A. Goyal,
K. Winstein, J. Mickens, and H. Balakrish-
nan. Mahimahi: Accurate Record-and-Replay for
HTTP. In Proceedings of USENIX ATC, 2015.

[27] E. Nygren, R. K. Sitaraman, and J. Sun. The Aka-
mai Network: A Platform for High-performance
Internet Applications. SIGOPS Oper. Syst. Rev.,
44(3), August 2010.

[28] D. Oksnevad. Time to Interact: A New Metric for
Measuring User Experience. https://blog.dotcom-
monitor.com/web-performance-tech-tips/time-to-
interact-new-metric-measuring-user-experience/,
February 3, 2014.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 229

[29] Opera. Opera Mini. http://www.opera.com/mobile/
mini, 2018.

[30] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby.
Race Detection for Web Applications. In Proceed-
ings of PLDI, 2012.

[31] T. Poss. How Does Load Speed Affect
Conversion Rate? Oracle: Modern Market-
ing Blog. https://blogs.oracle.com/marketingcloud/
how-does-load-speed-affect-conversion-rate, Jan-
uary 14, 2016.

[32] T. Russo. Why Your Website Dev Team
Should Care About Revenue. https://www.
bluetriangletech.com/performance-insider/your-
website-dev-team-should-care-about-revenue/,
June 10, 2016.

[33] K. Sakamoto. Time to First Meaningful Paint.
Chromium draft document. https://bit.ly/ttfmp-doc,
June 6, 2016.

[34] A. Sivakumar, S. Puzhavakath Narayanan,
V. Gopalakrishnan, S. Lee, S. Rao, and S. Sen.
PARCEL: Proxy Assisted BRowsing in Cellular
Networks for Energy and Latency Reduction. In
Proceedings of CoNEXT, 2014.

[35] M. Varvello, J. Blackburn, D. Naylor, and K. Papa-
giannaki. EYEORG: A Platform For Crowdsourc-
ing Web Quality Of Experience Measurements. In
Proceedings of CoNEXT, 2016.

[36] L. Wang, K. S. Park, R. Pang, V. Pai, and L. Pe-
terson. Reliability and Security in the CoDeeN
Content Distribution Network. In Proceedings of
USENIX ATC, 2004.

[37] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. Demystifying Page Load
Performance with WProf. In Proceedings of NSDI,
2013.

[38] X. S. Wang, A. Krishnamurthy, and D. Wetherall.
Speeding Up Web Page Loads with Shandian. In
Proceedings of NSDI, 2016.

[39] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic Forecasts Achieve High Throughput and
Low Delay over Cellular Networks. In Proceedings
of NSDI, 2013.

[40] S. Work. How Loading Time Affects Your Bottom
Line. Kissmetrics Blog. https://blog.kissmetrics.
com/loading-time/, April 28, 2011.

[41] Z. Yang. Every Millisecond Counts. https://www.
facebook.com/note.php?note id=122869103919,
August 28, 2009.

[42] W. Young. The Need For Speed: 7 Observa-
tions On The Impact Of Page Speed To The
Future Of Local Mobile Search. Search Engine
Land. http://searchengineland.com/need-speed-
7-observations-impact-page-speed-future-local-
mobile-search-243128, February 29, 2016.

A APPENDIX

A.1 Additional Evaluation Results
In this section, we elaborate on the experimental results
from Section 5.4, discussing how Ready Index applies
to mobile page loads (§A.1.1), warm cache page loads
(§A.1.2), and loads on different browser types (§A.1.3).

A.1.1 Mobile Page Loads
Mobile browsers run on devices with limited computa-
tional resources. As a result, mobile page loads are typi-
cally compute-bound, with less sensitivity to network la-
tency [5, 34]. To explore RI and RT on mobile devices,
we USB-tethered a Nexus 5 phone running Android
5.1.1 to a Linux desktop machine that ran Mahimahi.
Mahimahi emulated a Verizon LTE cellular link [39]
with a 100 ms RTT. The phone used Google Chrome
v53 to load pages from a test corpus. The corpus had the
same 350 sites from our standard corpus, but used the
mobile version of each site if such a version was avail-
able. Mobile sites are reformatted to fit within smaller
screens, and to contain fewer bytes to avoid expensive
fetches over cellular networks.

As shown in Figure 12, mobile page loads exhibit the
same trends that we observed on more powerful client
devices. For example, the median PLT is 35.2% larger
than the median RT; the median RI is 29.7% larger than
the median Speed Index. These differences persist even
when considering only the mobile-optimized pages in
our corpus. For that subset of pages, the median PLT is
27.4% larger than the median RT, and the median RI is
25.3% larger than the median Speed Index.

A.1.2 Browser Caching
Our prior experiments used cold browser caches, mean-
ing that, to load a particular site, a browser had to fetch
each of the constituent objects over the network. How-
ever, users often visit the same page multiple times; dif-
ferent sites also share objects. Thus, in practice, browsers
often have warm caches that allow some object fetches to
be satisfied locally.

To determine how warm caches affect page loads, we
examined the HTTP caching headers [24] for each ob-
ject in our corpus. For each object that was marked as
cacheable, we rewrote the headers to indicate that the
object would be cacheable forever. We then loaded each
page in our corpus twice, back to back; the first load pop-
ulated the cache, and the second one leveraged the pre-
warmed cache. Figure 13 shows the results for a desktop
browser which used a 12 Mbit/s link with a 100 ms RTT.

As expected, pages load faster when caches are warm.
However, the general trends from Section 5.2 still hold.
For example, the median PLT is 38.2% larger than the
median RT, which is 26.0% larger than the median AFT.
The correlations between various metrics also continue

230 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) RT vs. PLT vs. AFT (b) RI vs. SI
Figure 12: Comparing the load metrics for mobile pages loaded on a Nexus 5 phone. The network used an emulated
Verizon LTE link with a 100 ms RTT.

(a) RT vs. PLT vs. AFT (b) RI vs. SI
Figure 13: Page loads with warm browser caches. The desktop browser used a 12 Mbit/s link with a 100 ms RTT.

Figure 14: The Ready Index for each page in our corpus,
as measured on Chrome and Opera. Pages are sorted on
the x-axis by increasing Ready Index on Chrome. The
results were collected using cold browser caches and a
12 Mbit/s link with an RTT of 100 ms.

to be noisy. For example, SI increases from 1147 ms to
1168 ms between sites 134 (duckduckgo.com) and
135 (nexusmods.com); however, RI decreases from
1601 ms to 1228 ms.

A.1.3 Cross-Browser Comparisons
Different browsers are built in different ways. As shown
in Figure 14, those architectural variations impact page
load times. Figure 14 compares Ready Index on Chrome
v53 and Opera v42. Chrome and Opera both use the We-
bKit rendering engine and the V8 JavaScript runtime.

However, the browsers’ code is sufficiently different to
produce noticeable biases in RI values: Chrome’s RI val-
ues are 6.5% lower at the median, and 11.9% lower at the
95th percentile.

To understand the causes for such discrepancies, de-
velopers must analyze the steps that a browser takes
to load a page. Tools like WProf [37] and the built-in
Chrome debugger allow developers to examine coarse-
grained interactions between high-level activities like
HTML parsing, screen painting, and JavaScript execu-
tion. However, Vesper’s logs describe how interactive
state loads at the granularity of individual JavaScript
variables and DOM nodes. For example, Vesper allows
a developer to associate a dynamically-created text input
with the specific code that creates the input and regis-
ters event handlers for the input; Vesper also tracks the
JavaScript variables that are manipulated by the execu-
tion of the event handlers. None of this information is
explicitly annotated by developers, nor should it be: for
a large, frequently-changing site, humans should focus
on the correct implementation of desired features, not
the construction of low-level bookkeeping details about
data and code dependencies. Thus, automatic extraction
of these dependencies is crucial, since, as we demon-
strate in Section 6, a fine-grained understanding of those
dependencies is necessary to minimize a page’s time-to-
interactivity.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 231

Towards Battery-Free HD Video Streaming
Saman Naderiparizi, Mehrdad Hessar, Vamsi Talla, Shyamnath Gollakota and Joshua R. Smith

University of Washington

Abstract – Video streaming has traditionally been con-
sidered an extremely power-hungry operation. Existing
approaches optimize the camera and communication mod-
ules individually to minimize their power consumption.
However, designing a video streaming device requires
power-consuming hardware components and computa-
tionally intensive video codec algorithms that interface
the camera and the communication modules. For exam-
ple, monochrome HD video streaming at 60 fps requires
an ADC operating at a sampling rate of 55.3 MHz and
a video codec that can handle uncompressed data being
generated at 442 Mbps.

We present a novel architecture that enables HD video
streaming from a low-power, wearable camera to a nearby
mobile device. To achieve this, we present an “analog”
video backscatter technique that feeds analog pixels from
the photo-diodes directly to the backscatter hardware,
thereby eliminating power-consuming hardware compo-
nents, such as ADCs and codecs. To evaluate our design,
we simulate an ASIC, which achieves 60 fps 720p and
1080p HD video streaming for 321 µW and 806 µW, re-
spectively. This translates to 1000x to 10,000x lower
power than it used for existing digital video streaming
approaches. Our empirical results also show that we can
harvest sufficient energy to enable battery-free 30 fps
1080p video streaming at up to 8 feet. Finally, we design
and implement a proof-of-concept prototype with off-the-
shelf hardware components that successfully backscatters
720p HD video at 10 fps up to 16 feet.

1 Introduction
There has been recent interest in wearable cameras like
Snap Spectacles [16] for applications ranging from life-
casting, video blogging and live streaming concerts, polit-
ical events and even surgeries [18]. Unlike smartphones,
these wearable cameras have a spectacle form-factor and
hence must be both ultra-lightweight and cause no over-
heating during continuous operation. This has resulted

Figure 1: Target application. Our ultra-low-power HD streaming
architecture targets wearable cameras. We achieve this by performing
analog video backscatter from the wearable camera to a nearby mobile
device (e.g., smartphone).

in a trade-off between the usability of the device and its
streaming abilities since higher resolution video stream-
ing requires a bigger (and heavier) battery as well as
power-consuming communication and processing units.
For example, Snap Spectacle, while lightweight and us-
able, cannot stream live video [16] and can record only
up to one hundred 10-second videos (effectively less than
20 minutes) [16, 13] on a single charge.

In this paper, we ask the following question: Can we
design a low-power camera that can perform HD video
streaming to a nearby mobile device such as a smart-
phone? A positive answer would enable a wearable cam-
era that is lightweight, streams high quality video, and
is safe and comfortable to wear. Specifically, reducing
power consumption would reduce battery size, which in
turn addresses the key challenges of weight, battery life
and overheating. Finally, since users typically carry mo-
bile devices like smartphones that are comparatively not
as weight and power constrained, they can relay the video
from camera to the cloud infrastructure.

To understand this challenge, let us look at the dif-
ferent components of a video-streaming device: image

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 233

(a) Conventional camera design

(b) Our camera design approach

Figure 2: The amplifier, AGC, ADC and compression module con-
sume orders of magnitude more power than is available on a low-power
device. In our design, these power hungry modules have been delegated
to the reader, eliminating their power consumption overhead from the
wireless camera.

sensor, video compression and communication. Image
sensors have an optical lens, an array of photo-diodes
connected to amplifiers, and an ADC to translate analog
pixels into digital values. A video codec then performs
compression in the digital domain to produce compressed
video, which is then transmitted on the wireless medium.
Existing approaches optimize the camera and communi-
cation modules individually to minimize power consump-
tion. However, designing an efficient video streaming
device requires power-consuming hardware components
and video codec algorithms that interface to the camera
and communication modules. Specifically, optical lens
and photo-diode arrays can be designed to consume as lit-
tle as 1.2 µW [22]. Similarly, recent work on backscatter
can significantly lower the power consumption of commu-
nication to a few microwatts [26, 23] using custom ICs.
Interfacing camera hardware with backscatter, however,
requires ADCs and video codecs that significantly add to
power consumption.

Table 1 shows the sampling rate and data rate require-
ments for the ADC and video codec, respectively. HD
video streaming requires an ADC operating at a high
sampling rate of more than at least 10 MHz. While the
analog community has reduced ADC power consumption
at much lower sampling rates [46, 20], state-of-the-art
ADCs in the research community consume at least a few
milliwatts at the high sampling rates [34]. Additionally,
the high data rate requires the oscillator and video codec
to run at high clock frequencies, which proportionally
increases power consumption. Specifically, video codecs
at these data rates consume 100s of milliwatts to a few
watts of power [2].

We present a novel architecture that enables video
streaming on low-power devices. Instead of indepen-
dently optimizing the imaging and the communication
modules, we jointly design these components to signifi-
cantly reduce system power consumption. Our architec-

Figure 3: Sample HD video frame streamed with our analog video
backscatter design. Our prototype was placed 4 feet from the reader.

ture, shown in Fig. 2b, takes its inspiration from the Great
Seal Bug [5], which uses changes in a flexible metallic
membrane to reflect sound waves. Building on this idea,
we create the first “analog” video backscatter system. At
a high level, we feed analog pixels from the photo-diodes
directly to the backscatter antenna; we thus eliminate
power-hungry ADCs, amplifiers, AGCs and codecs.

Our intuition for an analog video backscatter approach
is to shift most of the power-hungry, analog-to-digital
conversion operations to the reader. Because analog sig-
nals are more susceptible to noise than digital ones, we
split the ADC conversion process into two phases, one
performed at the video camera, and one accomplished
at the reader. At the video camera, we convert analog
pixel voltage into a pulse that is discrete in amplitude but
continuous in time. This signal is sent via backscatter
from the camera to the reader. Avoiding the amplitude
representation in the wireless link provides better noise
immunity. The reader measures the continuous length
pulse it receives to produce a binary digital value. Philo-
sophically, the continuous-time, discrete amplitude pulse
representation used in the backscatter link resembles that
used in an extremely power-efficient biological nervous
system, which encodes information in spikes that do not
vary in amplitude but are continuous in time [45].

Specifically, our design synthesizes three key tech-
niques. First, we show how to interface pixels directly
to the backscatter hardware without using ADCs. To do,
this we transform analog pixel values into different pulse
widths using a passive ramp circuit and map these pulses
into pixels at the reader. Second, we achieve intra-frame
compression by leveraging the redundancy inherent in
typical images. Intuitively, the signal bandwidth is pro-
portional to the rate of change across adjacent pixels;
since videos tend to be redundant, the bandwidth of the
analog signal is inversely proportional to the redundancy
in the frame. Thus, by transmitting pixels consecutively,
we can implicitly perform compression and significantly
reduce wireless bandwidth. Finally, to achieve inter-frame
compression, we design a distributed algorithm that re-
duces the data the camera transmits while delegating most

234 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Raw digital video sampling and bitrate requirement
Frame Rate: 60 fps Frame Rate: 30 fps Frame Rate: 10 fps

Video Quality
Sampling
Rate
(MHz)

Data Rate
(Mbps)

Sampling
Rate
(MHz)

Data Rate
(Mbps)

Sampling
Rate
(MHz)

Data Rate
(Mbps)

1080p (1920x1080) 124.4 995.3 62.2 497.7 20.7 165.9
720p (1280x720) 55.3 442.4 18.4 221.2 9.2 73.7
480p (640x480) 18.4 147.4 9.2 73.7 3.1 24.58
360p (480x360) 10.4 82.9 5.2 41.5 1.7 13.8

inter-frame compression functionality to the reader. At a
high level, the camera performs averaging over blocks of
nearby pixels in the analog domain and transmits these av-
eraged values using our backscatter hardware. The reader
compares these averages with those from the previous
frame and requests only the blocks that have seen a sig-
nificant change in the average pixel value, thus reducing
transmission between subsequent video frames.

We implement a proof-of-concept prototype of our ana-
log backscatter design on an ultra-low-power FPGA plat-
form and a custom implementation of the backscatter
module. Because no HD camera currently provides ac-
cess to its raw pixel voltages, we connect the output of
a DAC converter to our backscatter hardware to emulate
the analog camera and stream raw analog video voltages
to our backscatter prototype. Fig. 3 shows a sample frame
from an HD video streamed with our backscatter camera.
More specifically, our findings are:

• We stream 720p HD video at 10 frames per second
up to 16 feet from the reader. The Effective Number of
Bits (ENOB) received for each pixel at distances below
six feet exceeds 7 bits. For all practical purposes, these
results are identical to the quality of the source HD video.
• Our inter and intra-frame compression algorithms re-
duces total bandwidth requirements by up to two orders of
magnitude compared to raw video. For example, for 720p
HD video at 10 fps, our design uses a wireless bandwidth
of only 0.98 MHz and 2.8 MHz in an average-case and
worst-case scenario video, respectively.

We design and simulate an ASIC implementation for
our system, taking into account power consumption for
the pixel array. Our results show that power consumption
for video streaming at 720p HD is 321 µW and 252 µW
for 60 and 30 fps, respectively. Power consumption at
1080p full-HD is 806 µW and 561 µW at 60 and 30 fps, re-
spectively. We run experiments with RF power harvesting
from the reader which shows that we can support 1080p
full-HD video streaming at 30 fps up to distances of 8 feet
from the reader. Our results demonstrate that we can
eliminate batteries and achieve HD video streaming on
battery-free devices using our analog video backscatter
approach.

2 A Case for Our Architecture

Fig. 2a shows the architecture of a traditional wireless
camera. Photodiodes’ output is first amplified by a low
noise amplifier (LNA) with automatic gain control (AGC).
The AGC adjusts the amplifier gain to ensure that the
output falls within the dynamic range of the analog to
digital converter (ADC). Next, the ADC converts the
analog voltage into discrete digital values. The video
codec then compresses these digital values, which are
transmitted on the wireless communication link.

Unfortunately, this architecture cannot be translated
to an ultra-low-power device. Although camera sensors
consisting of an array of photodiodes have been shown to
operate on as low as 1.2 µW of power [22] at 128×128
resolution, amplifiers, AGC, ADC and the compression
block require orders of magnitude higher power. Fur-
thermore, power consumption increases as we scale the
camera’s resolution and/or frame rate. A low resolution
144p video recorded at 10 fps requires an ADC sampling
at 368 KSPS to generate uncompressed data at 2.95 Mbps.
With the latest advancements in ADCs [33] and backscat-
ter communication [26], uncompressed data can be dig-
itally recorded using low-power ADCs and transmitted
using digital backscatter while consuming below 100 µW
of power, which is within the power budget of energy
harvesting platforms. However, as we scale the resolu-
tion to HD quality and higher, such as 1080p and 1440p,
the ADC sampling rate increases to 10-100 MHz, and
uncompressed data is generated at 100 Mbps to Gbps.
ADCs operating at such high sampling rates consume
at least a few mW [34]. Further, a compression block
that operates in real time on 100 Mbps to 1 Gbps of un-
compressed video consumes up to one Watt of power [2].
This power budget exceeds by orders of magnitude that
available on harvesting platforms. Thus, while existing
architectures might operate on harvested power for low-
resolution video by leveraging recent advancements in
low-power ADCs and digital backscatter, as we scale the
resolution and/or the frame rate of the wireless camera,
these architectures’ use of ADCs and compression block
drives up power consumption to levels beyond the realm
of battery-free devices.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 235

Figure 4: Architecture of the PWM converter.

3 System Design
In the rest of this section, we first describe our analog
video transmission scheme followed by the intra-frame
compression and finally the interactive distributed inter-
frame compression technique.

3.1 Analog Video Backscatter
Problem. At a high level, our design eliminates the ADC
on the camera to significantly reduce power consumption.
This limits us to working with analog voltage output from
the photodiodes. A naive approach would leverage the
existing analog backscatter technique used in wireless
microphones [48] to implement an analog backscatter
camera. In an analog backscatter system, sensor output
directly controls the gate of a field-effect transistor (FET)
connected to an antenna. As the output voltage of the
sensor varies, it changes the impedance of the FET which
amplitude modulates the RF signal backscattered by the
antenna. The reader decodes sensor information by de-
modulating the amplitude-modulated backscattered RF
signal. However, this approach cannot be translated to
a camera sensor. Photodiode output has a very limited
dynamic range (less than 100 mV under indoor lighting
conditions). These small voltage changes map to a very
small subset of radar cross-sections at the antenna [19].
As a result, the antenna backscatters a very weak signal.
Since wireless channel and receivers add noise, this ap-
proach results in a low SNR signal at the reader, which
limits the system to both poor signal quality and limited
operating range. One can potentially surmount this con-
straint by introducing a power-hungry amplifier and AGC,
but this would negate the power-saving potential of analog
backscatter.

Our solution. Instead of using amplitude modulation,
which is typical in existing backscatter systems [52, 26],
we use pulse width modulation (PWM) [24] to convert
the camera sensor’s analog output into the digital domain.
At a high level, PWM modulation converts analog input
voltage to different pulse widths. Specifically, the output
of PWM modulation is a square wave, where the duty cy-
cle of the output square wave is proportional to the analog
voltage of the input signal. PWM signal harmonics do not
encode any sensor information that is not already present
in the fundamental. The harmonics can be considered

a redundant representation of the fundamental. While
they may add robustness, they contain no additional in-
formation. Thus, without causing any information loss,
higher order components can be eliminated via harmonic
cancellation techniques introduced in prior work [47].

As we show next, a PWM converter can implemented
with passive RC components and a comparator, thereby
consuming very low power. Fig. 4 shows the PWM con-
verter architecture. The input is a square wave operating at
frequency f , which is determined by the camera’s frame
rate and resolution. First, the square wave is low-pass fil-
tered by an RC network to generate a triangular waveform,
as shown in the figure. This waveform is then compared
to the pixel value using a comparator. The comparator
outputs a zero when the triangular signal is less than the
pixel value and a one otherwise. Thus, the pulse width
generated changes with the pixel value: lower pixel val-
ues have a larger pulse duration, while higher pixel values
have a smaller pulse duration. We choose the minimum
and maximum voltages for the triangular signal to ensure
that the camera’s pixel output is always within this limits.

The final component in our hardware design is sub-
carrier modulation, which addresses the problem of self-
interference. Specifically, in addition to receiving the
backscatter signal, the receiver also receives a strong in-
terference from the transmitter. Since the sensor data is
centered at the carrier frequency, the receiver cannot de-
code the backscattered data in the presence of a strong,
in-band interferer. Existing backscatter communication
systems, such as RFID and Passive Wi-Fi, address this
problem using sub-carrier modulation. These systems use
a sub-carrier to shift the signal from the carrier to a fre-
quency offset ∆ f from the carrier frequency. The receiver
can then decode the backscattered signal by filtering out
of band interference. Another consideration in choosing
sub-carrier frequency is to avoid aliasing; sub-carrier fre-
quency should not be smaller than the effective bandwidth
of the analog signal.

Our PWM-based design integrates subcarrier modula-
tion. We implement this modulation with a simple XOR
gate. The sub-carrier can be approximated by a square
wave operating at ∆ f frequency. We input sub-carrier and
PWM output to an XOR gate to up-convert the PWM sig-
nal to a frequency offset ∆ f . Sub-carrier modulation ad-
dresses the problem of self-interference at the reader, and
as a result, the PWM backscattering wireless camera can
now operate at a high SNR and achieve broad operating
ranges. We show in §5.1 that our PWM backscatter wire-
less camera can operate at up to 16 feet for a 2.76 MHz
bandwidth 10 fps monochrome video signal in HD resolu-
tion. We also show in §6 that our camera system can work
at up to 150 feet for a 50 KHz video signal in 112×112
resolution, over a 4× improvement relative to the 3 kHz
bandwidth analog backscatter wireless microphone [50].

236 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Intra-frame compression for average/worst-case scenarios across 100 videos.

Frame Rate: 60 fps Frame Rate: 30 fps Frame Rate: 10 fps

Video
Resolution

Raw Data
Rate(Mbps)

Analog BW
(MHz)

Raw Data
Rate(Mbps)

Analog BW
(MHz)

Raw Data
Rate(Mbps)

Analog BW
(MHz)

1080p 995.3 10.8/30.5 497.6 5.6/18.7 165.8 1.9/9.3
720p 442.3 6.3/15.6 221.1 8/3.1 73.7 0.98/2.8
480p 147.4 3/6.7 73.7 1.6/3.3 24.5 0.53/1.4
360p 82.9 1.9/3.9 41.4 0.94/2.3 13.8 0.32/0.78

3.2 Intra-Frame Compression
There is significant redundancy in the pixel values of each
frame of uncompressed video. Redundancy occurs be-
cause natural video frames usually include objects larger
than a single pixel, which means that the colors of nearby
pixels are highly correlated. At the boundaries of objects
(edges), larger pixel variations can occur; conversely, in
the interior of an object, the amount of pixel variation is
considerably less than the theoretical maximum. The net
result of pixel correlations is a reduction in the informa-
tion needed to represent natural images to levels far below
the worst-case maximum. Traditional digital systems use
a video codec to reduce pixel value redundancy. Specifi-
cally, the ADC first digitizes the camera’s raw output at
the Nyquist rate determined by the resolution and frame
rate. The raw digital data stream is then fed to the video
codec, which implements compression algorithms.

In the absence of the ADC, our wireless camera trans-
mits analog video directly. However, we note that the
bandwidth of any analog signal is a function of the new
information contained in the signal. Inspired by analog
TV broadcast, which transmits pixel information in a
raster scan (left to right), we introduce and implement
a zig-zag pixel scanning technique: pixels are scanned
from left to right in odd rows and from right to left in
even rows. The intuition here is that neighboring pixels
have less variation, and the resulting signal would thus
occupy less bandwidth.

We evaluate how well zig-zag transmission performs in
terms of bandwidth reduction. We download one hundred
60 fps Full-HD (1080p) videos from [17] to use as our
baseline. These videos range from slow to fast moving
and contain movie action stunts, running animals, racing,
etc. To create video baselines at different resolutions and
frame rates, we resize and subsample these Full-HD video
streams. For each of the resulting video resolutions and
frame rates, we create an analog video by zig-zagging
the pixels as described above. We then apply low-pass
filters with different bandwidths on this analog signal and
report the minimum bandwidth at which the PSNR of the
resulting signal exceeds 30 dB. The bandwidth require-
ment reported in Table 2 shows the average/worst-case
scenario, i.e., the bandwidth that ensures the recovery of

average/worst-case videos with minimal quality degrada-
tion. We outline the uncompressed digital data rate for
reference. Compared to the digital uncompressed data
sampled at the Nyquist rate, the analog signal occupies
17.7–32.6x less bandwidth for the worst-case and 43–92x
for the average-case, demonstrating our intra-frame com-
pression technique’s capability. Fig. 5a shows the CDF
of effective bandwidth for our 30 fps 720p video dataset
and demonstrates that an average-case 30 fps 720p video
acheives up to a 71× improvement compared to raw digi-
tal video transmission.

Finally, we note that, compared to raster, a zig-zag
scan faces less discontinuity in pixel values: instead of
jumping from the last pixel in a row to the first pixel in the
next row, it continues at the same column in the next row,
thereby taking greater advantage of the video’s inherent
redundancy. This further lowers bandwidth utilization
in the wireless medium. As an example, on average,
zig-zag pixel scanning occupies ∼120KHz and ∼60KHz
less bandwidth than raster scanning in a 60 fps and 30 fps
720p video stream, respectively. Fig. 5b shows the CDF of
bandwidth improvement for zig-zag scanning over raster
in our one hundred 30 fps 720p videos dataset. The plot
makes clear that use of zig-zag pixel scanning provides
greater bandwidth efficiency than its raster counterpart.

3.3 Distributed Inter-Frame Compression

In addition to the redundancy within a single frame, raw
video output also has significant redundancy between con-
secutive frames. Existing digital architectures use a video
codec to compress the raw video prior to wireless trans-
mission to remove inter-frame redundancy and reduce
power and bandwidth. Our approach to address this chal-
lenge is to once again leverage the reader. Like backscat-
ter communication, where we move power-hungry com-
ponents (such as ADCs) to the reader, we also move
compression functionality to the reader. Specifically, our
design distributes the compression algorithm between
the reader and the camera. We delegate power-hungry
computation to the reader and leverage the fact that our
camera system can transmit super-pixels. A super-pixel
value is the average of a set of adjacent pixel values. A

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 237

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8

C
D

F

Effective Bandwidth (MHz)

(a) Effective bandwidth

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600

C
D

F

Bandwidth (KHz)

(b) Zig-zag vs. raster improvement

Figure 5: CDF of effective bandwidth for zig-zag pixel scanning
(a), and improvement it provides over raster scanning (b).

camera frame consists of an N ×N array of pixels, which
can be divided into smaller sections of n× n pixels. A
super-pixel corresponding to each section is the average
of all the pixels in the n× n frame section. The camera
sensor, a photodiode, outputs a current proportional to
the intensity of light. The camera uses a buffer stage at
the output to convert the current into an output voltage.
To compute the super-pixel, the camera first combines
the current from the set of pixels and then converts the
combined current into a voltage output, all in the analog
domain. We note that the averaging of close-by pixels is
supported by commercial cameras including the CentEye
Stonyman camera [4].

Instead of transmitting the entire N ×N pixel frame,
the camera transmits a lower resolution frame consisting
of n×n sized super-pixels (the average value of the pixels
in the n×n block), called the low-resolution frame or L
frame. Doing so reduces the data transmitted by the cam-
era by a factor of N2

n2 . The reader performs computation
on L frames and implements a change-driven compres-
sion technique. At a high level, the reader compares in
real time the incoming L frame with the previous L frame.
If a super-pixel value differs by more than a predeter-
mined threshold between frames, then the super-pixel has
sufficiently changed, and the reader asks the camera to
transmit all pixels corresponding to it. If the difference
does not cross the threshold, then the reader uses the pixel
values corresponding to the previous reconstructed frame
to synthesize the new frame and does not request new
pixel values. We call the frame that contains the pixel
values corresponding to the sufficiently changed super-
pixels, the super-pixel frame or S frame. In addition to
transmitting the S and L frames, the camera periodically
transmits uncompressed frames (I) to correct for potential
artifacts and errors that the compression process may have
accumulated.

In streaming camera applications, the communication
overhead of the reader requesting specific pixel values is
minimal and is implemented using a downlink similar to
prior 100-500 kbps designs [26, 44], where the receiver
at the camera uses a simple envelope detector to decode
the amplitude modulated signal from the reader. We note
that prior designs can achieve Mbps downlink transmis-
sions [42] as well as full-duplex backscatter [31], which
can be used to remove the downlink as a bottleneck.

Figure 6: Distributed compression. The sequence of frames and
pixels transmitted by the camera to the reader.

Fig. 6 shows the sequence of frames and pixels trans-
mitted by our camera. Between two I frames, the camera
transmits M low-resolution L frames and M super-pixel
S frames which contain pixel values corresponding to
super-pixels whose value differences exceed the thresh-
old between consecutive frames. The number of L and
S frames (M) transmitted between consecutive I frames
trades off between the overhead associated with transmis-
sion of full resolution frames and the artifacts and errors
the compression algorithm introduced. In our implemen-
tation of 10 fps HD video streaming, we transmit an I
frame after a transmission of every 80 L and S frames.

4 Implementation
We built our wireless camera using off-the-shelf compo-
nents on a custom-designed Printed Circuit Board (PCB).
We use the COTS prototype to evaluate the performance
of the wireless camera in various deployments. We then
present the application-specific integrated circuit (ASIC)
design of the wireless camera that we used to quantify the
power consumption for a range of video resolutions and
frame rates.

COTS implementation. Our wireless camera design
eliminates the power-hungry ADCs and video codecs
and consists only of the image sensor, PWM converter, a
digital block for camera control and sub-carrier modula-
tion, a backscatter switch and an antenna. We built two
hardware prototypes, one for the high definition (HD) and
another for the low-resolution version of the camera.

We built the low-resolution wireless camera using the
112× 112 grayscale random pixel access camera from
CentEye [4], which provides readout access to individual
analog pixels. We implement the digital control block
on a low-power Igloo Nano FPGA by Microsemi [7].
The analog output of the image sensor is fed to the
PWM converter built using passive RC components and a
Maxim NCX2200 comparator [10]. We set R1 = 83KΩ,
R2 = 213KΩ and C = 78pF in our PWM converter design
to support video frame rates of up to 13 fps. PWM con-
verter’s output acts as input to the FPGA. The FPGA per-
forms sub-carrier modulation at 1.024 MHz using an XOR
gate and outputs the sub-carrier modulated PWM signal
to the Analog Devices ADG919 switch which switches a
2 dBi dipole antenna between open and short impedance
states. The FPGA injects frame and line synchronization

238 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: HD wireless camera prototype. A laptop emulating an
analog output camera feeds raw pixel data into our backscatter prototype.
Then the PWM encoded pixels are backscattered to the reader.

patterns into the frames data before backscattering. We
use Barker codes [3] of length 11 and 13 for our frame
and line synchronization patterns, respectively. Barker
codes have a high-autocorrelation property that helps the
reader more efficiently detect the beginning of the frame
in the presence of noise.

We use Verilog to implement the digital state machine
for camera control and sub-carrier modulation. Verilog
design can be easily translated into ASIC using industry
standard EDA tools. We can further reduce our system’s
power consumption by using the distributed compression
technique. As described in §6, a camera deployed in a nor-
mal lab space can achieve an additional compression ratio
of around 30×, which proportionately reduces wireless
transmissions.

To develop an HD-resolution wireless camera, we need
access to the raw analog pixel outputs of an HD cam-
era. Currently, no camera on the market provides that
access. To circumvent this constraint, we download from
YouTube HD-resolution sample videos lasting 1 minute
each. We output the recorded digital images using a
USB interface to an analog converter (DAC) to simu-
late voltage levels corresponding to an HD quality image
sensor operating at 10 fps. Given the USB speeds, we
achieve the maximum frame rate of 10 fps. We feed the
voltage output to our PWM converter. Fig. 7 shows the
high-level block diagram of this implementation. For
the high-resolution version of the wireless camera, we
set R1 = 10KΩ, R2 = 100KΩ and C = 10pF and use an
LMV7219 comparator by Texas Instruments [8] in our
PWM converter. The digital block and other system com-
ponents were exactly the same as for the low-resolution
wireless camera described above except that sub-carrier
frequency is set to ∼10 MHz here to avoid aliasing.

ASIC Design. As noted, our design eliminates the power-
hungry LNA, AGC and ADC at the wireless camera by
delegating them to the reader to reduce wireless cam-
era power consumption by orders of magnitude. How-
ever, since commercially available Stonyman cameras
(like CentEye) and components (such as FPGA) are de-
signed for flexibility and ease of prototyping and are not
optimized for power, our COTS implementation cannot
achieve the full power savings from our design. There-
fore, we analyze the power consumption of an application-
specific integrated circuit (ASIC) implementation of our

Figure 8: Signal processing steps at the reader. Recov-
ering video from a PWM backscatter signal.

design for a range of video resolutions and frame rates.
An ASIC can integrate the image sensor, PWM converter,
digital core, oscillator and backscatter modulator onto a
small silicon chip. We implement our design in a TSMC
65 nm LP CMOS process.

We use Design Compiler by Synopsis [14] to synthe-
size transistor level from the behavioral model of our
digital core, which is written in Verilog. We custom-
design the PWM converter, oscillator and backscatter
modulator described in §3 in Cadence software and use
industry standard simulation tools to estimate power. To
support higher resolution and higher frame rate video, we
simply increase the operating frequency of the oscillator,
PWM converter and digital core. As an example, 360p at
60 fps requires a 10.4 MHz input clock, which consumes
a total of 42.4 µW in the digital core, PWM converter
and backscatter switch; a 1080p video at 60 fps requires
an ∼124.4 MHz input clock, which consumes 408 µW in
the digital core, PWM converter and backscatter switch.
To eliminate aliasing in all cases, we choose a sub-carrier
frequency equal to the input clock of each scenario. Note
that sub-carrier frequency cannot be lower than the effec-
tive bandwidth of the signal reported in Table 2.

We use existing designs to estimate the power consump-
tion of the image sensor for different video resolutions.
State-of-the-art image sensors consume 3.2pW/(f rame×
pixel) [51] for the pixels-only image sensor, which re-
sults in 33.2 µW for 360p resolution; this increases to
398 µW for 1080p resolution video at 60fps. Table 3
shows the power consumption of the ASIC version of
our wireless camera for different video resolution and
frame rates. Note that these results show power consump-
tion before inter-frame compression distributed across the
reader and camera, which could further reduce wireless
bandwidth and power consumption.

Reader Implementation. We implement the reader on
the X-300 USRP software-defined radio platform by Ettus
Research [15]. The reader uses a bi-static radar config-
uration with two 6 dBi circularly polarized antennas [1].
Its transmit antenna is connected to a UBX-160 daughter-
board, which transmits a single-tone signal. USRP output
power is set to 30 dBm using the RF5110 RF power am-
plifier [11]. The receive antenna is connected to another
UBX-160 daughter board configured as a receiver, which
down-converts the PWM modulated backscattered RF sig-
nal to baseband and samples it at 10 Msps. The digital
samples are transmitted to the PC via Ethernet.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 239

Table 3: Power consumption
Frame Rate: 60 fps Frame Rate: 30 fps Frame Rate: 10 fps

Video Quality Power (µW) Power (µW) Power (µW)
1080p (1920x1080) 806.50 560.63 167.77

720p (1280x720) 320.94 252.10 78.31
480p (640x480) 126.88 106.78 36.71
360p (480x360) 75.63 65.68 25.11

Fig. 8 shows block diagram of the signal processing
steps required to recover the transmitted video. For exam-
ple, for low-resolution video, the received data is centered
at an offset frequency of the 1.024 MHz; therefore, we
first filter the received data using a 500 order bandpass
filter centered at 1.024 MHz. Then, we down-convert the
signal to baseband using a quadrature down-conversion
mixer. Next, we correlate the received data with 13 and 11
bit Barker codes to determine the frame sync and line sync.
After locating frame and line sync pulses, we extract the
time periods corresponding to a row of PWM-modulated
pixel values and low-pass filter the signal with a 500 or-
der filter to remove out of band noise. We divide the row
in evenly spaced time intervals that corresponded to the
number of pixels in a single row of the image sensor. We
recover the pixel value by calculating the average voltage
of the signal, which corresponds to the duty cycle of the
PWM-modulated signal. We sequentially arrange recov-
ered pixel values into rows and columns to create video
frames. Finally, we run a histogram equalization algo-
rithm on the video to adjust frames intensity and enhance
output video contrast [21].

5 Evaluation
We now evaluate various aspects of our wireless camera
system. We start by characterizing the received video
quality from the camera as a function of its distance to
the reader. Next, we evaluate the performance of our
wireless camera while it is worn by a user under different
head positions and orientations. We then evaluate the
power available by harvesting energy from RF signals
transmitted by the reader to demonstrate the feasibility of
a battery-free wireless camera. Finally, we evaluate the
distributed interactive compression algorithm under two
different scenarios.

5.1 Operational Range
We deploy our high-definition wireless camera device in
a regular lab space. We use the USRP-based reader imple-
mentation (§4), which we set to transmit 23 dBm into a
6 dBi patch antenna. This is well below the 30 dBm max-
imum transmit power permitted by FCC in the 900 MHz
ISM band. We vary the distance between the reader and

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 6 8 10 12 14 16

E
N

O
B

Distance (in ft)

Figure 9: ENOB of the Received Video. ENOB of the received
video versus distance of our wireless camera prototype from the reader.

the wireless camera prototype from 4 to 16 feet and con-
figure the camera to repeatedly stream a 15-second video
using PWM backscatter communication. The 720p res-
olution video is streamed at 10 fps, and the pixel values
are encoded as 8-bit values in monochrome format. We
record the wirelessly received video at the reader and
measure the Signal to Noise Ratio (SNR). From that, we
calculate the Effective Number of Bits (ENOB) [27] at
the receiver.

We plot the ENOB of the video digitized by the reader
as a function of distance between the reader and the wire-
less camera in Fig. 9. The plot shows that up to 6 feet
from the reader, we achieve an ENOB greater than 7,
which indicates negligible degradation in quality of the
video, streamed using PWM backscatter. As the distance
between the reader and the camera increase the SNR
degrades, indicates a decrease in ENOB. Beyond the dis-
tance of 16 feet, we stop reliably receiving video frames.
A separation of 16 feet between the reader and wear-
able camera is more than sufficient for wearable cameras,
typically located a few feet away from readers such as
smartphones. For reference, Fig. 10 shows frames from
a 720p HD color video backscattered with our prototype
at different distances from the reader; this resulted in
different ENOB values.

We conclude the following: our analog video backscat-
ter approach is ideal for a wearable camera scenario since
the video is streamed to a nearby mobile device such as a
smartphone. In this scenario, the SNR is high; hence, qual-
ity degradation due to an analog approach is not severe.
Further, we gain significant power reduction benefits.

240 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Original Image (b) 7 Bits

(c) 4 Bits (d) 3 Bits

Figure 10: Effective Number of Bits (ENOB) versus video quality.
The frame corresponding to an ENOB of 3 (d) shows video quality
degradation.

5.2 Effect of Head Pose and Motion
We ask a participant to wear the antenna of our wireless
camera on his head and perform different head move-
ments and poses while standing around five feet from
a reader with fixed location on a table. The poses in-
cluded standing still, moving head left and right, rotating
head to the side, moving head up and down, and talking.
Hence, our evaluation includes scenarios with relative
mobility between the reader and camera; in fact, it also
includes cases where no line of sight communication ex-
ists between the reader and camera. We next, evaluate
our wireless camera for in-situ applications and assess
how movements and antenna contact with a body affect
video quality. We record the streaming video with the
reader and measure the SNR and ENOB as we did in §5.1.
Fig. 11 plots the ENOB of the received video for five
different poses and movements. This plot shows that we
can achieve sufficient ENOB while performing most of
these gestures, resulting in a high-quality video compared
to the original source video.

 0
 1
 2
 3
 4
 5
 6
 7
 8

Still Moving
 Left and Right

Rotation Talking Moving
 Up and Down

E
N

O
B

Figure 11: ENOB of received video under different head motions.

5.3 RF Power Harvesting
Next, we evaluate the feasibility of developing a battery-
free HD streaming camera that operates by harvesting
RF signals transmitted by the reader. We build an RF
harvester for the 900 MHz ISM band based on a state-of-

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 6 8 10 12 14 16

H
ar

ve
st

ed
 P

ow
er

(in
 u

W
)

Distance (in ft)

1080p @
 60fps

1080p @
 60fps 1080p @

 30fps 720p @
 60fps

720p @
 30fps 360p @

 30fps
480p @
 10fps

Figure 12: Power harvesting. We plot the average power harvested
by the battery-free hardware over different distances from the reader.

the-art RF harvester design [43]. The harvester consists
of a 2 dBi dipole antenna and a rectifier that converts
incoming RF signals into low-voltage DC output. The
low-voltage DC is amplified by a DC-DC converter to
generate the voltage levels to operate the image sensor
and digital control block. We measure the power available
at the output of the DC-DC converter.

We configure the reader to transmit a single tone at
30 dBm into a 6 dBi patch antenna and move the RF
harvester away from the reader. Fig. 12 plots available
power at the harvester as a function of distance. Based
on available power, we also plot in Fig. 12 the maximum
resolution and frame rate of the video that could be trans-
mitted by an RF-powered ASIC version of our wireless
camera. At close distances of 4 and 6 feet, we see suffi-
cient power available from RF energy harvesting to oper-
ate the wireless camera at 60 fps 1080p resolution. As the
distance increases, available power reduces, which lowers
resolution of video being continuously streamed from the
wireless camera. At 16 feet, the wireless camera contin-
uously streams video at 10 fps 480p resolution; beyond
this distance, the harvester does not provide sufficient
power to continuously power the wireless camera. Note
that Fig. 12 shows camera performance without using the
distributed inter-frame compression algorithm described
in §3.3. That algorithm, distributed across the wireless
camera and reader, reduces camera transmissions, which
lowers power consumption and consequently increases
operating distances.

5.4 Distributed Inter-Frame Compression
Evaluation

We consider two scenarios to evaluate our distributed
inter-frame compression (subsection 3.3). We analyze
HD video streamed from a fixed highway monitoring cam-
era and from an action camera mounted on a user riding
a motorcycle [9]. We evaluate the trade-off between the
compression ratio and PSNR under both static and dy-
namic video feeds using our design. We measure the Peak
Signal to Noise Ratio (PSNR) for different compression
ratios by varying the threshold at which we consider the
super-pixel (20 by 20 pixels) to have significantly changed.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 241

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

P
S

N
R

 (
dB

)

Compression Ratio

Moving Camera
 on Motorcycle

Static Camera

Figure 13: Evaluation of distributed inter-frame compression al-
gorithm for HD video. The plots show PSNR at different compression
ratio for two HD videos.

A higher threshold would result in higher compression
ratios but at the cost of a degraded PSNR. Fig. 13 shows
PSNR of the compressed video as a function of the com-
pression ratio for our distributed inter-frame compression
technique. For static cameras, we achieve a compression
ratio of at least 35× while maintaining a PSNR above
30 dB. For dynamic videos recorded from a motorcycle,
we achieve a compression ratio of 2× for a PSNR greater
than 30 dB. This is expected since mobile scenarios sig-
nificantly change majority of pixel values between frames,
resulting in lower compression using our approach. We
could address this by implementing a more complex com-
pression algorithm at the reader to track moving objects in
the frame and request specific pixel locations, achieving
compression levels similar to video codecs. Implement-
ing such complex compression algorithms, however, is
beyond the scope of this paper.

6 Low-Resolution Security Camera
So far, we have demonstrated how high-resolution video
offers a useful paradigm for a wearable camera system.
However, various other applications, such as security sys-
tems and smart homes, do not require high-resolution
video; lower resolution video would suffice for applica-
tions such as face detection. Specifically, wireless cam-
eras are increasingly popular for security and smart home
applications. In contrast to wearable camera applications,
these cameras require low-resolution but much longer
operating distances. To show that our design can extend
to such applications, we evaluate the operation range at
13 fps 112×112 resolution. Our IC design at this resolu-
tion consume less than 20 µW without accounting for any
distributed inter-frame compression saving.

To evaluate the range, we use a 13 fps 112×112 reso-
lution, gray-scale random pixel access camera from Cent-
Eye [4] as our image sensor. The camera has a photodiode
image sensor array, a trans-impedance buffer stage (to
convert photodiode current to voltage) and a low-noise
amplifier. It is extremely flexible, and the user can modify
various settings, such as gain of the amplifier stage and,
if desired, completely bypass the amplifier. We use this
unique camera feature to prototype our wireless camera,

Figure 14: Prototype of our low-resolution, video streaming
home security camera. Image of the analog camera, FPGA digital
core and pulse width modulated (PWM) backscatter, all implemented
using COTS components. The overall board measures 3.5 cm by 3.5 cm
by 3.5 cm.

which directly transmits analog values from the image sen-
sor (sans amplification) using PWM backscatter. Fig. 14
shows photographs of our wireless camera prototype. The
camera allows random access, i.e., any pixel on the cam-
era can be accessed at random by setting the correspond-
ing value in the row and column address registers. It can
also be configured to output a single pixel, two adjacent
pixels, or a super-pixel with sizes ranging from 2×2 to
7×7. We use the camera’s random access and super-pixel
functionality to implement our distributed inter-frame
compression algorithm. The power consumption of our
low-resolution, off-the-shelf analog video streaming pro-
totype is 2.36 mW. We emphasize that this off-the-shelf
camera is used only to demonstrate operational range; to
achieve the tens of microwatts power budget, we need to
use our ASIC design.

Deployment results. We deployed our wireless camera
system in the parking lot of an apartment complex. We
use the USRP-based reader implementation set to transmit
30 dBm into a 6 dBi patch antenna. We vary the distance
between the wireless camera prototype, and, the reader
and at each separation, we stream 20 seconds of video
from the camera to the reader. Simultaneously, we record
camera output using a high input impedance National In-
strument USB-6361 DAQ as the ground truth. We choose
the popular PSNR metric commonly used in video appli-
cations to compare the video wirelessly streamed to the
reader using PWM backscatter to the ground truth video
recorded at the camera using an NI DAQ. PSNR computes
the difference between the ground truth and wirelessly
received video.

We measure the PSNR of the received video to evalu-
ate the performance of the wireless camera under normal
lighting conditions (below 300 lux) at a frame rate of
13 fps. To evaluate how much our sole wireless commu-
nication method affects the quality of received video, we
consider PWM converter output as the ground truth for
PSNR measurement. Also, to isolate the impact of AGC,
which occurs at the reader, unaltered video received by
the reader prior to applying any AGC is compared to the
ground truth for PSNR measurement. Fig. 15 plots the
PSNR of the received video at the reader as a function of

242 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 20

 25

 30

 35

 40

 0 15 30 45 60 75 90 105 120 135 150
-90

-80

-70

-60

-50
P

S
N

R
 (

dB
)

R
S

S
I (

dB
m

)

Distance (in ft)

PSNR RSSI

Figure 15: Operational range of low-resolution security camera.

the separation between the reader and the wireless camera.
The plot shows that wireless camera streamed video at
an average PSNR greater than 24 dB to a reader up to a
distance of 150 feet away. Beyond 150 feet, the reader
does not reliably decode the sync pulses, which limits
the operating range of our wireless camera system. Thus,
our analog backscatter approach achieves significantly
longer range for low-resolution video compared to the
HD version of the camera due to the trade-off between
bandwidth/data rate and operating distances.

Applying our distributed inter-frame compression al-
gorithm to low resolution videos. We deploy this secu-
rity camera in a normal lab space and then implement
our distributed inter-frame compression technique on the
videos received. We evaluate the performance of our al-
gorithm for three different super pixels sizes, 3×3, 5×5
and 7×7 pixels, and plot results in Fig. 16. We achieve
a 29.4× data reduction using our distributed inter-frame
compression technique while maintaining a PSNR greater
than 30 dB.

 20

 30

 40

 50

 4 8 12 16 20 24 28 32

P
S

N
R

 (
dB

)

Compression Ratio

3x3 5x5 7x7

Figure 16: Distributed interactive compression with our low-
resolution security camera. PSNR of the compressed video as a func-
tion of compression parameters in a typical lab setting.

Face detection accuracy. Next, we demonstrate that the
quality of the video streamed from our low-resolution
COTS implementation is sufficient for detecting human
faces. Such a system can be used to detect human oc-
cupancy, grant access (such as Ring [12]), or set off an
alarm in case of an intruder. To evaluate the system, we
place the wireless camera at five different distances rang-
ing from 16 to 100 feet from the reader. We ask ten users
to walk around and perform gestures within 5 feet of the
camera. We stream a 2 minutes video at each location
at 13 fps and use the MATLAB implementation of the
Viola-Jones algorithm to analyze the approximately four
thousand video frames. Fig. 17 shows the accuracy of

 40

 60

 80

 100

 24 26 28 30 32 34

A
cc

ur
ac

y
(%

)

PSNR (dB)

Figure 17: Face detection with our low-resolution security cam-
era. We show the accuracy of face detection on the video streamed from
our wireless camera.

face detection as a function of the PSNR of the received
video: as the quality (PSNR) of the video improves, the
accuracy of face detection increases. We accurately detect
up to 95% of human faces when the PSNR exceeds 30 dB.

7 Related Work
Prior work falls in two different categories.

Backscatter communication. An early example of ana-
log backscatter was a gift by the Russians to the US em-
bassy in Moscow, which included a passive listening de-
vice. This spy device consisted of a sound-modulated
resonant cavity. The voice moved the diaphragm to mod-
ulate the cavity’s resonance frequency, which could be
detected by analyzing the RF signals reflected by the cav-
ity. [5]. A more recent example of analog backscatter is
a microphone-enabled, battery-free tag that amplitude-
modulates its antenna impedance using microphone out-
put [50, 48]. In contrast, we design the first analog video
backscatter system. Further, prior microphone designs
had a low data-rate compared to video streaming. Our
camera at 10 fps transmits about 9.2M pixels per second;
for a microphone, a few kilo-samples of audio transmis-
sion is sufficient to fully recover the voice. In addition,
our 13 fps 163K pixels per second camera operates at
more than four times the range of the microphone in [50]
due to pulse width modulation.

Ekhonet [53] optimizes the computational blocks be-
tween the sensor and the backscatter module to reduce the
power consumption of backscatter-based wireless sensors.
Our design builds on this work but differs from it in mul-
tiple ways: 1) prior work still uses ADCs and amplifiers
on the cameras to transform pixels into the digital domain
and hence cannot achieve streaming video on the limited
harvesting power budget. In contrast, we provide the first
architecture for battery-free video streaming by designing
an analog video backscatter solution.

Recent work on Wi-Fi and TV-based backscatter sys-
tems [25, 26, 23, 30, 42] can achieve megabits per second
of communication speed using a backscatter technique.
Integrating these designs with our video backscatter ap-
proach would prove a worthwhile engineering effort.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 243

Low-Power cameras. [41] introduces a self-powered
camera that can switch its photo diodes between energy
harvesting and photo capture mode. Despite being self-
powered, these cameras do not have wireless data trans-
mission capabilities. [49, 38, 40, 35, 36, 37] show that us-
ing off-the-shelf, low-resolution camera modules, one can
build battery-free wireless cameras that will capture still
images using the energy they harvested from RF waves,
including Wi-Fi and 900 MHz transmissions. Despite
their ability to transmit data wirelessly, they are heavily
duty cycled and cannot stream video. In particular, these
designs can send a new frame at most every ten seconds
when they are very close to the RF power source (within
about a foot) and once every few tens of minutes at longer
distances [49].

[32] presents a 90× 90 pixels image sensor with pix-
els that are sensitive to changes in the environment. If a
pixel receives sufficient illumination variation, the pixel
address will be stored in a FIFO, thus compressing the
image to the pixels that have significantly changed. De-
spite enabling image compression to occur at the image
sensor, this system does not stream live video. In addi-
tion, at this low resolution, it burns about 3 mW of power
when running at 30 fps. [28] introduces a 128×128 pixel
event-driven image sensor that emphasizes low latency
for detecting very fast moving scenes, so its power con-
sumption is orders of magnitude higher than our system’s.

[29] addresses the problem of conventional image sen-
sors’ power consumption not scaling well as their resolu-
tion and frame rate increases. In particular, the authors
propose to change the camera input clock and aggres-
sively switch the camera to standby mode based on de-
sired image quality. However, streaming video requires
addressing the power consumption of multiple compo-
nents, including camera, communication, and compres-
sion. Our work jointly integrates all these components to
achieve the first battery-free video streaming design.

Finally, [39] shows that a regular camera on wearable
devices burns more than 1200 mW, which limits the cam-
era’s operation time to less than two hours on a wearable
device. They instead design a low-power wearable vi-
sion system that looks for certain events to occur in the
field of view and turns on the primary imaging pipeline
when those events happen. The power and bandwidth
savings, however, are limited to the application and do
not address communication. In contrast, we present the
first battery-free video streaming application by jointly
optimizing both backscatter communication and camera
design and by eliminating power-consuming interfaces
such as ADCs and amplifiers.

8 Limitations and Conclusion
This paper takes a significant first step in designing video
streaming for battery-free devices. In this section, we
discuss limitations and a few avenues for future research.

Security. Our current implementation does not account
for security. However, to secure the wireless link between
the camera and reader, we can leverage the fact that our
digital core processes the PWM signal. Each wireless
camera can be assigned a unique pseudo random security
key. Based on this key, the camera’s digital core can
modulate the width of the PWM-encoded pixel value
using an XOR gate. The reader, which knows the security
key, can map the received data to the desired pixel values
by performing the analogous operation.

ASIC versus off-the-shelf. While existing works on
backscatter cameras focus on using off-the-shelf compo-
nents, they treat cameras and backscatter independently
and just interface the two. Thus, these works cannot
achieve video streaming and the low-power demonstrated
in this paper. Our key contributions are to make a case for
a joint camera and backscatter architecture and to design
the first analog video backscatter solution. However, this
holistic architecture cannot be achieved with off-the-shelf
components. The cost of building ICs in a research envi-
ronment is prohibitively high. We believe that we spec
out the IC design (in §4) in sufficient detail using industry
standard EDA tools to take it from the lab to industry.

Mobile device as reader. To support our design for HD
video streaming from wearable cameras, the smartphone
must support a backscatter reader. We can use RFID
readers that can be plugged into the headjack of the smart-
phone [6] to achieve this. In the future, we believe that
backscatter readers would be integrated into smartphones
to support video and other applications [23].

Enabling concurrent streaming. Our analog backscat-
ter camera design can use frequency division multiplexing
techniques to share the wireless medium across multiple
devices. The reader can coordinate communication by
assigning different frequency channels to each camera.
Multiple cameras can simultaneously backscatter on dif-
ferent channels by using different (assigned) frequency
offsets in our sideband modulation. However, evaluating
this approach is beyond the scope of this paper.

9 Acknowledgments.
We thank Kyle Jamieson and the anonymous reviewers
for their helpful feedback on the paper. Also, we thank
Ye Wang for his efforts in building a real-time demon-
stration of our low-resolution security camera. This work
was funded in part by NSF awards CNS-1407583, CNS-
1305072, CNS-1452494, CNS-1420654, Google Faculty
Research Awards and Sloan Fellowship.

244 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 6-dBi gain patch antenna. https://www.arcanten
na.com/index.php/product_documents/get/doc
ument/id/492/. Accessed: March 2017.

[2] Ambarella a9 ultra hd 4k camera soc product
brief. http://www.ambarella.com/uploads/docs
/A9-product-brief.pdf.

[3] Barker code. http://mathworld.wolfram.com/Ba
rkerCode.html. Accessed: September 2017.

[4] CentEye Stonyman image sensor datasheet.
http://www.centeye.com/products/current-cen
teye-vision-chips/. Accessed: March 2017.

[5] The great seal bug. http://counterespionage.c
om/the-great-seal-bug-part-1.html. Accessed:
March 2017.

[6] Head jack pluggable rfid reader for smart-
phones. http://www.rfidtagworld.com/product
s/Ear-Jack-reader-UHF_1056.html.

[7] IGLOO Nano FPGA datasheet. https:
//www.microsemi.com/document-portal/doc_
view/130695-ds0110-igloo-nano-low-power-f
lash-fpgas-datasheet. Accessed: March 2017.

[8] Lmv7219 comparator. http://www.ti.com/lit/d
s/symlink/lmv7219.pdfl. Accessed: September
2017.

[9] Moving camera on a motorcycle video clip.
https://www.youtube.com/watch?v=sHj3xSG-R_E
&t=376s.

[10] NCX2200I low power comparator datasheet.
http://www.nxp.com/documents/data_sheet/NCX
2200.pdf. Accessed: March 2017.

[11] RF5110 amplifier. http://www.rfmd.com/store/d
ownloads/dl/file/id/30508/5110g_product_dat
a_sheet.pdf. Accessed: March 2017.

[12] Ring video doorbell. https://ring.com/. Ac-
cessed: March 2017.

[13] Spectacles battery life. http://www.barrons.com/
articles/snapchat-spectacles-review-the-g
ood-the-bad-the-revolutionary-1487846715.

[14] Synopsis design complier. http://www.synopsys
.com/Tools/Implementation/RTLSynthesis/Des
ignCompiler/Pages/default.aspx.

[15] USRP X-300. https://www.ettus.com/product/
details/X300-KIT. Accessed: March 2017.

[16] Wearable spectacles. http://www.techradar.com/
reviews/snap-spectacles.

[17] Youtube website. http://www.youtube.com.

[18] H. R. Beard, A. J. Marquez-Lara, and K. S. Hamid.
Using wearable video technology to build a point-
of-view surgical education library. JAMA surgery,
151(8):771–772, 2016.

[19] S. R. Best and B. C. Kaanta. A tutorial on the re-
ceiving and scattering properties of antennas. IEEE
Antennas and Propagation Magazine, 51(5), 2009.

[20] L. Chen, X. Tang, A. Sanyal, Y. Yoon, J. Cong, and
N. Sun. A 0.7-v 0.6-uw 100− ks/s low-power sar
adc with statistical estimation-based noise reduction.
IEEE Journal of Solid-State Circuits, 52(5):1388–
1398, 2017.

[21] R. C. Gonzalez and R. E. Woods. Image processing,
volume 2. 2007.

[22] S. Hanson, Z. Foo, D. Blaauw, and D. Sylvester. A
0.5 v sub-microwatt cmos image sensor with pulse-
width modulation read-out. IEEE Journal of Solid-
State Circuits, 45(4):759–767, 2010.

[23] V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and
J. Smith. Inter-technology backscatter: Towards
internet connectivity for implanted devices. In
Proceedings of the 2016 Conference on ACM SIG-
COMM 2016 Conference, SIGCOMM ’16, pages
356–369, New York, NY, USA, 2016. ACM.

[24] K. Kapucu and C. Dehollain. A passive uhf rfid
system with a low-power capacitive sensor inter-
face. In RFID Technology and Applications Confer-
ence (RFID-TA), 2014 IEEE, pages 301–305. IEEE,
2014.

[25] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and
D. Wetherall. Wi-fi backscatter: Internet connectiv-
ity for rf-powered devices. In Proceedings of the
2014 ACM Conference on SIGCOMM, 2014.

[26] B. Kellogg, V. Talla, S. Gollakota, and J. Smith.
Passive wi-fi: Bringing low power to wi-fi transmis-
sions. In Usenix NSDI, 2016.

[27] W. Kester. Understand sinad, enob, snr, thd,
thd+ n, and sfdr so you don’t get lost in the
noise floor. MT-003 Tutorial, www. analog.
com/static/importedfiles/tutorials/MT-003. pdf, 2009.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 245

https://www.arcantenna.com/index.php/product_documents/get/document/id/492/
https://www.arcantenna.com/index.php/product_documents/get/document/id/492/
https://www.arcantenna.com/index.php/product_documents/get/document/id/492/
http://www.ambarella.com/uploads/docs/A9-product-brief.pdf
http://www.ambarella.com/uploads/docs/A9-product-brief.pdf
http://mathworld.wolfram.com/BarkerCode.html
http://mathworld.wolfram.com/BarkerCode.html
http://www.centeye.com/products/current-centeye-vision-chips/
http://www.centeye.com/products/current-centeye-vision-chips/
http://counterespionage.com/the-great-seal-bug-part-1.html
http://counterespionage.com/the-great-seal-bug-part-1.html
http://www.rfidtagworld.com/products/Ear-Jack-reader-UHF_1056.html
http://www.rfidtagworld.com/products/Ear-Jack-reader-UHF_1056.html
https://www.microsemi.com/document-portal/doc_view/130695-ds0110-igloo-nano-low-power-flash-fpgas-datasheet
https://www.microsemi.com/document-portal/doc_view/130695-ds0110-igloo-nano-low-power-flash-fpgas-datasheet
https://www.microsemi.com/document-portal/doc_view/130695-ds0110-igloo-nano-low-power-flash-fpgas-datasheet
https://www.microsemi.com/document-portal/doc_view/130695-ds0110-igloo-nano-low-power-flash-fpgas-datasheet
http://www.ti.com/lit/ds/symlink/lmv7219.pdfl
http://www.ti.com/lit/ds/symlink/lmv7219.pdfl
https://www.youtube.com/watch?v=sHj3xSG-R_E&t=376s
https://www.youtube.com/watch?v=sHj3xSG-R_E&t=376s
http://www.nxp.com/documents/data_sheet/NCX2200.pdf
http://www.nxp.com/documents/data_sheet/NCX2200.pdf
http://www.rfmd.com/store/downloads/dl/file/id/30508/5110g_product_data_sheet.pdf
http://www.rfmd.com/store/downloads/dl/file/id/30508/5110g_product_data_sheet.pdf
http://www.rfmd.com/store/downloads/dl/file/id/30508/5110g_product_data_sheet.pdf
https://ring.com/
http://www.barrons.com/articles/snapchat-spectacles-review-the-good-the-bad-the-revolutionary-1487846715
http://www.barrons.com/articles/snapchat-spectacles-review-the-good-the-bad-the-revolutionary-1487846715
http://www.barrons.com/articles/snapchat-spectacles-review-the-good-the-bad-the-revolutionary-1487846715
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
https://www.ettus.com/product/details/X300-KIT
https://www.ettus.com/product/details/X300-KIT
http://www.techradar.com/reviews/snap-spectacles
http://www.techradar.com/reviews/snap-spectacles
http://www.youtube.com

[28] J. A. Leñero-Bardallo, T. Serrano-Gotarredona,
and B. Linares-Barranco. A 3.6us latency asyn-
chronous frame-free event-driven dynamic-vision-
sensor. IEEE Journal of Solid-State Circuits,
46(6):1443–1455, 2011.

[29] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong,
and P. Bahl. Energy characterization and optimiza-
tion of image sensing toward continuous mobile
vision. In Proceeding of the 11th annual interna-
tional conference on Mobile systems, applications,
and services, pages 69–82. ACM, 2013.

[30] V. Liu, V. Talla, and S. Gollakota. Enabling in-
stantaneous feedback with full-duplex backscatter.
In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking,
MobiCom ’14.

[31] V. Liu, V. Talla, and S. Gollakota. Enabling instan-
taneous feedback with full-duplex backscatter. In
Proceedings of the 20th annual international confer-
ence on Mobile computing and networking, pages
67–78. ACM, 2014.

[32] U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs,
and R. Etienne-Cummings. Temporal change thresh-
old detection imager. In Solid-State Circuits Confer-
ence, 2005. Digest of Technical Papers. ISSCC. 2005
IEEE International, pages 362–603. IEEE, 2005.

[33] F. Michel and M. Steyaert. A 250mv 7.5 µw 61db
sndr cmos sc δσ modulator using a near-threshold-
voltage-biased cmos inverter technique. In Solid-
State Circuits Conference Digest of Technical Pa-
pers (ISSCC), 2011 IEEE International, pages 476–
478. IEEE, 2011.

[34] B. Murmann. Adc performance survey 1997-
2017. http://web.stanford.edu/~murmann/adcsu
rvey.html.

[35] S. Naderiparizi, Z. Kapetanovic, and J. R. Smith.
Battery-free connected machine vision with wisp-
cam. GetMobile: Mobile Computing and Communi-
cations, 20(1):10–13, 2016.

[36] S. Naderiparizi, Z. Kapetanovic, and J. R. Smith.
Wispcam: An rf-powered smart camera for ma-
chine vision applications. In Proceedings of the
4th International Workshop on Energy Harvesting
and Energy-Neutral Sensing Systems, pages 19–22.
ACM, 2016.

[37] S. Naderiparizi, Z. Kapetanovic, and J. R. Smith. Rf-
powered, backscatter-based cameras. In Antennas
and Propagation (EUCAP), 2017 11th European
Conference on, pages 346–349. IEEE, 2017.

[38] S. Naderiparizi, A. N. Parks, Z. Kapetanovic,
B. Ransford, and J. R. Smith. Wispcam: A battery-
free rfid camera. In RFID (RFID), 2015 IEEE In-
ternational Conference on, pages 166–173. IEEE,
2015.

[39] S. Naderiparizi, P. Zhang, M. Philipose, B. Priyan-
tha, J. Liu, and D. Ganesan. Glimpse: A pro-
grammable early-discard camera architecture for
continuous mobile vision. In Proceeding of the 15th
annual international conference on Mobile systems,
applications, and services. ACM, 2017.

[40] S. Naderiparizi, Y. Zhao, J. Youngquist, A. P. Sam-
ple, and J. R. Smith. Self-localizing battery-free
cameras. In Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiqui-
tous Computing, pages 445–449. ACM, 2015.

[41] S. K. Nayar, D. C. Sims, and M. Fridberg. Towards
self-powered cameras. In Computational Photogra-
phy (ICCP), 2015 IEEE International Conference
on, pages 1–10. IEEE, 2015.

[42] A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith.
Turbocharging ambient backscatter communication.
In Proceedings of the 2014 ACM Conference on
SIGCOMM, 2014.

[43] A. N. Parks, A. P. Sample, Y. Zhao, and J. R. Smith.
A wireless sensing platform utilizing ambient rf en-
ergy. In Biomedical Wireless Technologies, Net-
works, and Sensing Systems (BioWireleSS), 2013
IEEE Topical Conference on, pages 154–156. IEEE,
2013.

[44] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V.
Mamishev, and J. R. Smith. Design of an rfid-based
battery-free programmable sensing platform. IEEE
Transactions on Instrumentation and Measurement,
57(11):2608–2615, 2008.

[45] R. Sarpeshkar. Analog versus digital: extrapolating
from electronics to neurobiology. Neural computa-
tion, 10(7):1601–1638, 1998.

[46] M. D. Scott, B. E. Boser, and K. S. Pister. An ultra–
low power adc for distributed sensor networks. In
Solid-State Circuits Conference, 2002. ESSCIRC
2002. Proceedings of the 28th European, pages 255–
258. IEEE, 2002.

[47] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R.
Smith, and S. Gollakota. Lora backscatter: Enabling
the vision of ubiquitous connectivity. Proceedings
of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 1(3):105, 2017.

246 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://web.stanford.edu/~murmann/adcsurvey.html
http://web.stanford.edu/~murmann/adcsurvey.html

[48] V. Talla, B. Kellogg, S. Gollakota, and J. R. Smith.
Battery-free cell phone. ACM UBIComp, 2017.

[49] V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi,
S. Gollakota, and J. R. Smith. Powering the next
billion devices with wi-fi. In Proceedings of the
11th ACM Conference on Emerging Networking Ex-
periments and Technologies, CoNEXT ’15, pages
4:1–4:13, New York, NY, USA, 2015. ACM.

[50] V. Talla and J. R. Smith. Hybrid analog-digital
backscatter: A new approach for battery-free sens-
ing. In RFID (RFID), 2013 IEEE International
Conference on, pages 74–81. IEEE, 2013.

[51] F. Tang and A. Bermak. An 84 pw/frame per pixel
current-mode cmos image sensor with energy har-

vesting capability. IEEE Sensors Journal, 12(4):720–
726, 2012.

[52] A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gol-
lakota. Fm backscatter: Enabling connected cities
and smart fabrics. 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
17).

[53] P. Zhang, P. Hu, V. Pasikanti, and D. Ganesan.
Ekhonet: High speed ultra low-power backscat-
ter for next generation sensors. In Proceedings of
the 20th annual international conference on Mobile
computing and networking, pages 557–568. ACM,
2014.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 247

Prophecy: Accelerating Mobile Page Loads Using Final-state Write Logs
Ravi Netravali*, James Mickens†

*MIT CSAIL, †Harvard University

ABSTRACT

Web browsing on mobile devices is expensive in terms
of battery drainage and bandwidth consumption. Mobile
pages also frequently suffer from long load times due
to high-latency cellular connections. In this paper, we
introduce Prophecy, a new acceleration technology for
mobile pages. Prophecy simultaneously reduces energy
costs, bandwidth consumption, and page load times. In
Prophecy, web servers precompute the JavaScript heap
and the DOM tree for a page; when a mobile browser
requests the page, the server returns a write log that con-
tains a single write per JavaScript variable or DOM node.
The mobile browser replays the writes to quickly recon-
struct the final page state, eliding unnecessary interme-
diate computations. Prophecy’s server-side component
generates write logs by tracking low-level data flows be-
tween the JavaScript heap and the DOM. Using knowl-
edge of these flows, Prophecy enables optimizations that
are impossible for prior web accelerators; for example,
Prophecy can generate write logs that interleave DOM
construction and JavaScript heap construction, allowing
interactive page elements to become functional immedi-
ately after they become visible to the mobile user. Ex-
periments with real pages and real phones show that
Prophecy reduces median page load time by 53%, energy
expenditure by 36%, and bandwidth costs by 21%.

1 INTRODUCTION

Mobile browsing now generates more HTTP traffic than
desktop browsing [18]. On a smartphone, 63% of user
focus time, and 54% of overall CPU time, involves a
web browser [56]; mobile browsing is particularly im-
portant in developing nations, where smartphones are
often a user’s sole access mechanism for web con-
tent [12, 23]. So, mobile page loads are important to op-
timize along multiple axes: bandwidth consumption, en-
ergy consumption, and page load time. Reducing band-
width overhead allows users to browse more pages with-
out violating data plan limits. Reducing energy con-
sumption improves the overall lifetime of the device,
because web browsing is a significant drain on battery
power [8, 11, 48, 55, 56]. Improving page load time is
important because users are frustrated by pages that take
more than a few seconds to load [15, 17, 29, 50].

In this paper, we describe Prophecy, a new system for
improving all three aspects of a mobile page load. A
Prophecy web server precomputes much of the informa-
tion that a mobile browser would generate during a tra-
ditional page load. In particular, a Prophecy server pre-

computes the JavaScript state and the DOM state that
belongs to a loaded version of a frame. The precom-
puted JavaScript heap and DOM tree represent graphs
of objects; however, one of Prophecy’s key insights is
that this state should be transmitted to clients in the
form of write logs, not serialized graphs. At a high level,
a write log contains one write operation per variable
in the frame’s load-time state. By returning write logs
for each variable’s final state, instead of returning tra-
ditional, unprocessed HTML, CSS, and JavaScript, the
browser can elide slow, energy-intensive computations
involving JavaScript execution and graphical layout/ren-
dering. Conveniently, Prophecy’s write logs for a frame
are smaller than the frame’s original content, and can be
fetched in a single HTTP-level RTT. Thus, Prophecy’s
precomputation also decreases bandwidth consumption
and the number of round trips needed to build a frame.

Earlier attempts at applying precomputation to web
sites have suffered from significant practical limitations
(§6), in part because these systems used serialized graphs
instead of write logs. Serialized graphs hide data flows
that write logs capture; analyzing these data flows is
necessary to perform many optimizations. For example,
Prepack [16] cannot handle DOM state, and is unable to
elide computation for some kinds of common JavaScript
patterns. Shandian [51] does not support caching for the
majority of a page’s content, does not support immedi-
ate page interactivity (§3.5), and does not work on un-
modified commodity browsers; furthermore, Shandian
exposes all of a user’s cookies to a single proxy, rais-
ing significant privacy concerns. In contrast, Prophecy
works on commodity browsers, handles both DOM and
JavaScript state, preserves traditional same-origin poli-
cies about cookie security, and supports byte-granularity
caching (which is better than HTTP’s standard file-level
caching scheme). Prophecy can also prioritize the load-
ing of interactive state; this feature is important for sites
that load over high-latency links, and would otherwise
present users with rendered GUIs that may not actually
be functional. Many of Prophecy’s advantages are en-
abled by having fine-grained, variable-level understand-
ing of how a page load unfolds.

Experiments with a Nexus 6 phone, loading 350 web
pages on real WiFi and LTE networks, reveal Prophecy’s
significant benefits: median energy usage drops by 36%,
median bandwidth consumption decreases by 21%, and
median page load time decreases by 53% (2.8 seconds).
Prophecy also helps page loads on desktop browsers, re-
ducing median bandwidth usage by 18%, and median

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 249

page load time by 38% (0.8 seconds). These benefits
are 2.2×–4.6× better than those enabled by Polaris [36],
another state-of-the-art web accelerator. Thus, Prophecy
represents a significant advance in web optimization.

2 BACKGROUND

A single web page consists of one or more frames.
Each frame is defined by an associated HTML file. The
HTML describes a tree structure that connects individ-
ual HTML tags like <title> and <div>. Most kinds
of tags can embed visual style attributes directly in their
HTML text (e.g., <h1 style=’color:blue;’>).
However, best practice is for developers to place style
information in separate CSS files, so that a frame’s ba-
sic visual structure (as defined by HTML) can be de-
fined separately from a particular styling approach for
that structure.

Some tags, like <script> and , support a
src property which indicates the URL from which
the tag’s content should be downloaded. Alternatively,
the content for the tag can be inlined. For example,
a <script> tag can directly embed the associated
JavaScript code. CSS information can also be inlined us-
ing a <style> tag. Inlining a tag’s content eliminates
an HTTP-level RTT to fetch the associated data. How-
ever, inlining prevents a browser from caching the asso-
ciated object, since the browser cache interposes on ex-
plicit HTTP requests and responses, using the URL in
the HTTP request as the key for storing and retrieving
the associated object.

A frame uses JavaScript code to perform computa-
tion. JavaScript code is single-threaded and event-driven,
with managed memory allocation; so, between the ex-
ecution of event handlers, a frame’s only JavaScript
state resides in the managed heap. There are two
kinds of JavaScript objects: application-defined and na-
tive. Application-defined objects are composed of pure
JavaScript-level state. In contrast, native objects are
JavaScript wrappers around native code functionality
defined by the JavaScript engine, the HTML renderer,
or the network engine. Examples of native objects in-
clude RegExps (which implement regular expressions)
and XMLHttpRequests (which expose HTTP net-
work connections).

DOM nodes [34] are another important type of native
object. As the HTML parser scans a frame’s HTML, the
parser builds a native code representation of the HTML
tree; this tree is reflected into the JavaScript runtime
as the DOM tree. There is a 1-1 correspondence be-
tween HTML tags and DOM nodes. Using the DOM in-
terface, JavaScript code can programmatically add, re-
move, or update DOM nodes, changing the visual con-
tent which is shown to a user. DOM changes often re-
quire the browser to recalculate the layout and styles of

window&

document& a"

<head>" <body>"

<+tle>" <script>" <style>" <div>" "

b"

c()" d()"

<p>"" "
Figure 1: A simple frame’s JavaScript heap and DOM
tree. The JavaScript heap is red; the DOM tree is blue.

DOM nodes, and then repaint the DOM nodes. These
calculations are computationally expensive (and there-
fore energy-intensive as well) [8, 25, 27, 56].

As shown in Figure 1, native code objects like
the DOM tree can reference application-defined
objects, and vice versa. For example, a DOM
node becomes interactive via JavaScript calls like
DOMnode.addEventListener(eventType,
callback), where callback is an application-
defined JavaScript function which the browser will
invoke upon the reception of an event.

Browsers define two main types of client-side storage.
A cookie [5] is a small, per-origin file that can store up
to 4 KB of data. When a browser issues an HTTP re-
quest to origin X , the browser includes any cookie that
the browser stores on behalf of X . When the server re-
ceives the cookie, the server can generate personalized
content for the HTTP response. The server can also use
special HTTP response headers to modify the client-side
cookie. Cookies are often used to hold personal user in-
formation, so cookie sharing has privacy implications.

DOM storage is the other primary type of client-side
storage. DOM storage is also siloed per origin, but allows
each origin to store MBs of key/value data. DOM storage
can only be read and written by JavaScript code, and is
separate from the browser cache (which is automatically
managed by the browser itself).

3 DESIGN

Figure 2 shows the high-level design of Prophecy. Users
employ an unmodified browser to fetch and evaluate a
Prophecy page. A single page consists of one or more
frames; content providers who wish to accelerate their
frame loads must run server-side Prophecy code that han-
dles incoming HTTP requests for the relevant frames.
The server-side Prophecy code uses a headless browser1

to load the requested frame. The frame consists of in-
dividual objects like HTML files, JavaScript files, and
images; Prophecy rewrites HTML and JavaScript before
it is passed to the headless browser, injecting instru-

1A headless browser lacks a GUI, but otherwise performs the nor-
mal duties of a browser, parsing and rendering HTML, executing
JavaScript, and so on.

250 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Unmodified)
client))

browser)

b.com)

c.com)

a.com)

Prophecy)
rewriter)Instrumented)

HTML,)CSS,)
JavaScript)

Unmodified)
headless)
browser)

Prophecy)
log)

Prophecy)
frame)

generator)

Image)
prefetch)

list)

Final)DOM)
+)

CSS)styles)

Final)
JavaScript)
heap)

Prophecy)frame)loading)logic)

Figure 2: The Prophecy architecture.

mentation which tracks how the frame manipulates the
JavaScript heap and the DOM tree.

After the headless browser has loaded the frame,
Prophecy uses the resulting log to create a post-processed
version of the frame. The post-processed version con-
tains four items:
• a write log for the JavaScript heap, containing an

ordered set of writes that a client executes to recre-
ate the frame’s final heap state;
• a write log for the DOM, containing HTML tags

with precomputed styles, such that the client can
immediately resurrect the DOM with minimal lay-
out and rendering overheads;
• an image prefetch log, describing the images that

the browser should fetch in parallel with the con-
struction of the JavaScript heap and the DOM; and
• the Prophecy resurrection library, a small piece

of JavaScript code which orchestrates client-side re-
construction of the frame (§3.2), optimizing the re-
construction for a particular load metric (§3.5).

During a warm cache load (§3.3), the three logs are diffs
with respect to the client’s cached logs. By applying the
diffs and then executing the patched logs, a client fast-
forwards its view of the frame to the latest version.

3.1 Generating a Prophecy Frame
Prophecy enables web acceleration at the granularity of a
frame. However, web developers create the content for a
particular frame in a Prophecy-agnostic way, using a nor-
mal workflow to determine which objects (e.g., HTML,
CSS, JavaScript, and images) should belong in a frame.
The process of transforming the normal frame into a
Prophecy variant is handled automatically by Prophecy.
The transformation can happen online (i.e., at the time of
an HTTP request for the frame), or offline (i.e., before
such a request has arrived). In this section, we describe
the transformation process; later, we describe the trade-
offs between online and offline transformation (§3.4).

After fetching the frame’s HTML, Prophecy’s server-
side component loads the frame in a headless browser. As
the frame loads, Prophecy tracks the reads and writes that

the frame makes to the JavaScript heap and to the DOM.
Prophecy’s design is agnostic as to how this tracking
is implemented. Our concrete Prophecy prototype uses
Scout [36], a frame rewriting framework, to inject log-
ging instrumentation into the loaded frame, but Prophecy
is compatible with in-browser solutions that use a mod-
ified JavaScript engine and renderer to log the neces-
sary information. Regardless, once the frame has loaded,
Prophecy analyzes the reads and writes to create the three
logs which represent the Prophecy version of a frame.
The JavaScript write log: This log, expressed as a se-
ries of JavaScript statements, contains a single lhs =
rhs; statement for each JavaScript variable that was
live at the end of the frame load. The set of operations
in the write log is a subset of all writes observed in the
original log—only the final write to each variable in the
original log is preserved. The write log first creates top-
level global variables that are attached to the window
object (see Figure 1); then, the log iteratively builds ob-
jects at greater depths from the window object. The final
write log for the JavaScript heap does not create DOM
nodes, so any JavaScript object properties that refer to
DOM state are initially set to undefined.

The write log must pay special attention to func-
tions. In JavaScript, a function definition can be nested
within an outer function definition. The inner func-
tion becomes a closure, capturing the variable scope of
the outer function. To properly handle these functions,
Prophecy rewrites functions to explicitly expose their
closure scope [30, 32, 51]. At frame load time on the
server, this allows Prophecy’s write tracking to explic-
itly detect which writes involve a function’s closure state.
Later, when a mobile browser needs to recreate a clo-
sure function, the replayed write log can simply create
the function, then create the scope object, and then write
to the scope object’s variables.

The write log for the JavaScript heap does not con-
tain entries for native objects that belong to the DOM
tree. However, the write log does contain entries for the
other native objects in a frame. For example, the log
will contain entries for regular expressions (RegExps)
and timestamps (Dates). Generally speaking, the write
log creates native objects in the same way that it
creates normal objects, i.e., by calling lhs = new
ObjClass() and then assigning to the relevant proper-
ties via one or more statements of the form lhs.prop
= rhs. However, Prophecy does not attempt to capture
state for in-flight network requests associated with ob-
jects like XMLHttpRequests; instead, Prophecy waits
for such connections to terminate before initiating the
frame transformation process.
The DOM write log: Once Prophecy’s server-side
component has loaded a frame, Prophecy generates
an HTML string representation for the frame using

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 251

the browser’s predefined XMLSerializer interface.
Importantly, the HTML string that is returned by
XMLSerializer does not contain styling information
for individual tags; the string merely describes the
hierarchical tag structure. To extract the style infor-
mation, Prophecy iterates over the DOM tree, and
uses window.getComputedStyle(domNode)
to calculate each node’s style information.2 Prophecy
then augments the frame’s HTML string with explicit
style information for each tag. For example, a tag in
the augmented HTML string might look like <div
style=’border-bottom-color: rgb(255,
0, 0);border-left-color: rgb(255, 0,
0);’>. Prophecy modifies all CSS-related tags in the
augmented HTML string, deleting the bodies of inline
<style> tags, and setting the href attributes in
<link rel=’stylesheet’> tags to point to the
empty string (preventing a network fetch). Prophecy
also modifies the src attribute of <script> tags to
point to the empty string (since all JavaScript state will
be resurrected using the JavaScript write log).

The augmented HTML string is the write log for
the DOM, containing precomputed style information for
each DOM node. Note that the style data may have been
set by CSS rules, or by JavaScript code via the DOM
interface. Also, some of the DOM nodes in the write
log may have been dynamically created by JavaScript
(instead of being statically created by the frame’s orig-
inal HTML). Prophecy’s server-side component repre-
sents the DOM write log as a JavaScript string literal.

The image prefetch log: This log is a JavaScript array
that contains the URLs for the images in the loaded
frame. The associated tags may have been
statically declared in the frame’s HTML, or dynamically
injected via JavaScript. Note that the write log for the
DOM tree contains the associated tags; however,
as we explain in Section 3.2, the image prefetch list
allows the mobile browser to keep its network pipe busy
as the CPU is parsing HTML and evaluating JavaScript.

The Prophecy frame consists of the three logs from
above, and a small JavaScript library which uses the logs
to resurrect the frame (§3.2). Since the three logs are ex-
pressed as JavaScript variables, the Prophecy server can
just add those variables to the beginning of the resurrec-
tion library. So, the Prophecy frame only contains one
HTML tag—a single JavaScript tag with inline content.

3.2 Loading a Prophecy Frame
A mobile browser receives the Prophecy frame as an
HTTP response, and starts to execute the resurrection

2Prophecy uses additional logic to ensure that the extracted style
information includes any default tag styles that apply to the DOM node.
These default styles are not returned by getComputedStyle().

library. The library first issues asynchronous Image()
requests for the URLs in the image prefetch log. As the
browser fetches those images in the background, the res-
urrection library builds the frame in three phases.

Phase 1 (DOM Reconstruction): The resurrection li-
brary passes the DOM write log to the browser’s pre-
existing DOMParser interface. DOMParser returns a
document object, which is a special type of DOM node
that represents an entire DOM tree. The resurrection li-
brary updates the frame’s live DOM tree by splicing in
the <head> and <body>DOM subtrees from the newly
created document. After these splice operations com-
plete, the entire DOM tree has been updated; note that
the browser has avoided many of the traditional compu-
tational overheads associated with layout and rendering,
since the resurrection library injected a pre-styled DOM
tree which already contains the side effects of load-time
JavaScript calls to the DOM interface. As the browser
receives the asynchronously prefetched image data, the
browser injects the pixels into the live DOM tree as
normal, without assistance from the resurrection library;
note that the browser will not “double-fetch” an image if,
at DOM reconstruction time, the browser encounters an
 tag whose prefetch is still in-flight.

Phase 2 (JavaScript Heap Reconstruction): Next,
the resurrection library executes the assignments in the
write log for the JavaScript heap. Each write operation is
just a regular JavaScript assignment statement in the res-
urrection library’s code. Thus, the mobile browser natu-
rally recreates the heap as the browser executes the mid-
dle section of the library.

Phase 3 (Fixing Cross-references): At this point, the
DOM tree and the JavaScript heap are largely complete.
However, DOM objects can refer to JavaScript heap ob-
jects, and vice versa. For example, an application-defined
JavaScript object might have a property that refers to
a specific DOM node. As another example, the event
handler for (say) a mouse click is an application-defined
JavaScript function that must be attached to a DOM
node via DOMnode.addEventLister(evtType,
func). In Phase 3, the resurrection library fixes these
dangling references using information in the JavaScript
write log. During the initial logging of reads and
writes in the frame load (§3.1), Prophecy assigned a
unique id to each JavaScript object and DOM node that
the frame created. Now, at frame reconstruction time
on the mobile browser, the resurrection library uses
object ids to determine which object should be used
to resolve each dangling reference. As hinted above,
the library must resolve some dangling references in
DOM nodes by calling specific DOM functions like
addEventListener(). The library also needs to

252 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

invoke the relevant timer registration functions (e.g.,
setTimeout(delay, callback)) so that timers
are properly resurrected.3

At the end of Phase 3, the frame load is complete, having
skipped intermediate JavaScript computations, as well
as intermediate styling and layout computations for the
DOM tree. A final complication remains: what happens
if, post-load, the frame dynamically injects a new DOM
node into the DOM tree? Remember that Prophecy’s
write log for the DOM tree contains no inline <style>
data, nor does it contain href attributes for <link
rel=’stylesheet’> tags (§3.1). So, as currently
described, a Prophecy frame will not assign the proper
styles to a dynamically created DOM node.

To avoid this problem, the resurrection library contains
a string which stores all of the frame’s original CSS data.
The resurrection code also shims [31] DOM interfaces
like DOMnode.appendChild(c) which are used to
dynamically inject new DOM content. Upon the invoca-
tion of such a method, the Prophecy shim examines the
frame’s CSS rules (and the live style characteristics of the
DOM tree) to apply the appropriate inline styles to the
new DOM node. After applying those styles, Prophecy
can safely inject the DOM node into the DOM tree.

3.3 Caching, Personalization, and Cookies
To enable frame content to be personalized, we extend
the approach from Sections 3.1 and 3.2. At a high level,
when a server receives an HTTP request for a frame, the
server looks inside the request for a cookie that bears
a customization id. If the server does not find such a
cookie, then the server assumes that the mobile browser
has a cold cache; in this case, the server returns the
Prophecy frame as described in Section 3.1, placing a
cookie in the HTTP response which describes the frame’s
customization id. If the server does find a customiza-
tion id in the HTTP request, then the server assumes that
the client possesses cached write logs for the frame. The
server computes the write logs for the latest customiza-
tion version of the frame. The server then calculates the
diffs between the latest write logs and the ones that are
cached on the phone. Finally, the server returns the diffs
to the mobile browser. The mobile browser applies the
diffs to the cached write logs, and then recreates the
frame as described in Section 3.2.

To efficiently track the client-side versions of a frame,
the server must store some metadata for each frame:
• The server stores a baseline copy of the three write

logs for a frame. Denote those logs baselineJS,
baselineHT ML, and baselineimages. These logs cor-

3During the instrumented frame load on the server, Prophecy shims
timer registration interfaces to track timer state [31].

respond to a default version of the frame that has
not been customized.
• For each version v of the frame that has been

returned to a client, the server stores three
diffs, namely, diff (baselineJS,customizationv,JS),
diff (baselineHT ML,customizationv,HT ML), and
diff (baselineimages,customizationv,images). The
server stores these diffs in a per-frame table, using
v as the key.

“Customization” has a site-specific meaning. For exam-
ple, many sites return the same version of a frame to all
clients during some epoch tstart to tend . In this scenario, a
new version is generated at the start of a new epoch. In
contrast, if a site embeds unique, per-user content into a
frame, then a version corresponds to a particular set of
write logs that were sent to a particular user.

In the cold cache case, the server generates the appro-
priate write logs for the latest frame version v, and then
diffs the latest logs against the baseline logs. The server
stores the diffs in diffTable[v], and then returns the lat-
est write logs to the client as in Section 3.1, setting the
customization id in the HTTP response to v. The client
rebuilds the frame as in Section 3.2, and then stores the
three write logs in DOM storage.

In the warm cache scenario, the server extracts v
from the HTTP request, finds the associated diffs in
diffTable[v], and then applies the diffs to the baseline
versions of the write logs. This allows the server to
reconstruct the write logs that the client possesses for
the old copy of v. The server then generates the write
logs for the latest incarnation of v, and diffs the latest
write logs against the client-side ones. The server updates
diffTable[v] appropriately, and then returns the diffs to the
mobile browser. The mobile browser reads the cached
write logs from DOM storage, applies the diffs from the
server, and then rebuilds the frame using the latest write
logs. Finally, the browser caches the latest write logs in
DOM storage.

Note that the mobile phone and the server can get
out-of-sync with respect to cache state. For example,
the server might reboot or crash, and lose its per-frame
diffTables. The user of the mobile browser could also
delete the phone’s DOM storage or cookies. Fortunately,
desynchronization is only a performance issue, not a cor-
rectness one, because desynchronization can always be
handled by falling back to the cold cache protocol. For
example, suppose that a client clears its DOM storage,
but does not delete its cookie. The server will send diffs,
but then the client-side resurrection library will discover
that no locally-resident write logs exist. The library will
delete the cookie, and then refresh the page by call-
ing window.location.reload(), initiating a cold
cache frame load.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 253

To minimize the storage overhead for diffTable, each
frame’s baseline should share a non-trivial amount of
content with the various customized versions of the
frame. Choosing good baselines is easy for sites in
which, regardless of whether a user is logged in, the bulk
of the site content is the same. For frames with large
diffs between customized versions, and a large number
of versions, servers can minimize diffTable overhead by
breaking a single frame into multiple frames, such that
highly-customized content lives in frames that are al-
ways served using the cold cache protocol (and store no
server-side information in a diffTable). Less-customized
frames can enable support for warm Prophecy caches,
and communicate with the highly-dynamic frames using
postMessage().

For frames that enable the warm-cache protocol, the
server may have to periodically update the associated
baselines, to prevent diffs in diffTable from growing too
large as the latest frame content diverges from that in the
baselines. One simple pruning strategy is to generate a
new baseline once the associated diffs get too large in
terms of raw bytes, or as a percentage of the baseline ob-
ject’s size. After updating a baseline, the server must ei-
ther discard the associated diffs, or recalculate them with
respect to the new baseline.

3.4 Online versus Offline Transformation
Prophecy’s server-side code transforms a frame’s
HTML, CSS, JavaScript, and images into three write
logs. The transformation process can happen online or
offline. In the online scenario, the server receives an
HTTP request for a frame, and then loads and post-
processes the frame synchronously, generating the asso-
ciated write logs on-the-fly. In the offline scenario, the
server periodically updates the write logs for each frame,
so that, when a client requests a frame, the server already
possesses the relevant write logs.

Each approach has trade-offs. Offline processing re-
duces the client-perceived fetch time for the frame, since
the instrumented version of the regular frame does not
have to be analyzed in real time. However, offline pro-
cessing introduces problems of scaling and freshness if
each frame has many customized versions, or those ver-
sions change frequently. A frame with many customized
versions will require the server to generate and store
many different sets of write log diffs, some of which
may never be used if clients do not issue fetches for
the associated frame versions. If versions change fre-
quently, then the server must either frequently regener-
ate diffs (thereby increasing CPU overheads), or regener-
ate diffs less often (at the cost of returning stale versions
to clients). In contrast, online processing guarantees that
clients receive the latest version of a frame. Online pro-
cessing also avoids wasted storage dedicated to diffs that

A

B C

I%HGFE

D

J%

Figure 3: An example of how Prophecy determines the
interactive DOM subtree to build before the rest of the
DOM nodes are recreated. The shaded circles represent
DOM nodes that are 1) above-the-fold, and/or 2) are ma-
nipulated by the event handlers of above-the-fold DOM
nodes. The interactive subtree resides above the red line.

are never fetched. A single page that contains multiple
frames can use the most appropriate transformation pol-
icy for each frame.

3.5 Defining Load Time
To fully load a traditional frame, a browser must fetch
and evaluate the frame’s HTML, and then fetch and
evaluate the external objects that are referenced by
that HTML. The standard definition for a frame’s load
time requires all of the external objects to be fetched
and evaluated. A newer load metric, called Speed In-
dex [21], measures how quickly a browser renders a
frame’s above-the-fold4 visual content. Using write logs,
Prophecy improves frame-load time (FLT) by eliding
unnecessary intermediate computations and inlining all
non-image content. However, as described in Section 3.2,
Prophecy completely renders the DOM before con-
structing the JavaScript heap and then patching cross-
references between the two. So, Prophecy gives higher
priority to visual content, much like Speed Index (SI).

Both FLT and SI have disadvantages. FLT does not
capture the notion that users desire above-the-fold con-
tent to appear quickly, even if below-the-fold content
is still loading. However, at FLT time, all of a frame’s
content is ready; in contrast, SI ignores the fact that a
visible DOM element does not become interactive un-
til the element’s JavaScript event handler state has been
loaded. The difference between visibility and interactiv-
ity is especially apparent when a web page loads over
a high-latency link; in such scenarios (which are com-
mon on mobile devices), slow-loading JavaScript can
lead to <button> tags that do nothing when clicked, or
<input> tags that do not offer autocompletion sugges-
tions upon receiving user text. The median page in our
test corpus had 113 event handlers for GUI interactions,
so optimizing for interactivity is useful for many mobile
pages.

To optimize for interactivity, Prophecy can explic-

4Above-the-fold content refers to the visual portion of a frame that
lies within the browser GUI at the beginning of a frame load, before the
user has scrolled down.

254 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

itly target a newer load metric called Ready Index [37].
Ready Index (RI) declares a frame to be ready when its
above-the-fold content is both visible and interactive. To
optimize for RI, Prophecy feeds its server-side log of
reads and writes (§3.1) to Vesper [37]. Vesper uses load-
time read/write logs, as well as read/write logs generated
by active, Vesper-driven triggering of event handlers, to
identify the frame’s interactive state. The interactive state
consists of:
• the above-the-fold DOM nodes,
• the JavaScript state which defines the event handlers

for above-the-fold DOM nodes,
• the DOM state and the JavaScript state which is ma-

nipulated by those event handlers.
Given the DOM nodes in a frame’s interactive state,
Prophecy finds the minimal HTML subtree, rooted by the
top-level <html> tag, which contains all of the interac-
tive DOM nodes. Figure 3 shows an example of this in-
teractive DOM subtree. Prophecy then represents a frame
using two HTML write logs (one for the interactive sub-
tree, and one for the remaining HTML subtrees), and
two JavaScript write logs (one for the state which sup-
ports above-the-fold interactive DOM nodes, and another
write log for the remaining JavaScript state). Prophecy
keeps a single image prefetch log, but places above-the-
fold images first in the log. To load a frame on the client
browser, Prophecy first renders the above-the-fold DOM
nodes, and then builds the JavaScript state which sup-
ports interactivity for those DOM nodes. After patching
cross-references, the frame is interactive. Prophecy then
attaches the below-the-fold DOM nodes, creates the re-
maining JavaScript state, and patches a final set of cross-
references.

By optimizing for RI, Prophecy can minimize the like-
lihood that attempted user interactions will fail. How-
ever, Prophecy cannot eliminate all such problems. For
example, if a user issues GUI events before the first
set of write logs are applied, the events may race with
the browser’s creation of above-the-fold DOM elements
and interactive JavaScript state. Such race conditions are
present during regular, non-Prophecy page loads [40]; by
optimizing for RI, Prophecy reduces the size of the race
window, but does not completely eliminate it.

3.6 Privacy
A frame from origin X may embed content from a differ-
ent origin Y . For example, X’s frame may embed images
or JavaScript from Y . When the mobile browser sends
an HTTP request for X’s frame, the browser will only
include cookies from X , since the URL in the HTTP re-
quest has an origin of X . As Prophecy’s server-side code
loads the frame and generates the associated logs (§3.1),
the server from X will fetch content from Y . However, in
the HTTP requests that the server sends to Y , the server

will not include any of Y ’s cookies that reside on the
mobile browser—the server never received those cookies
from the client. This policy amounts to a “no third-party
cookie” approach. Variants of this policy are already be-
ing adopted by some browsers for privacy reasons, since
third party cookies enable users to be tracked across dif-
ferent sites [43]. So, in Prophecy, a server from X only
sees cookies that belong to X , and a frame load does not
send third party cookies to any external origin Y .

3.7 Discussion
Prophecy is compatible with transport protocols like
HTTP/2 [26] and QUIC [7] that pipeline HTTP requests,
leverage UDP instead of TCP to transmit data, or other-
wise try to optimize a browser’s HTTP-level network uti-
lization. Prophecy is also compatible with proxy-based
web accelerators like compression proxies [1, 44] or
split-browsers [3, 38, 39]. From the perspective of these
technologies, the content in a Prophecy frame is no dif-
ferent than the content in a non-Prophecy frame.

Prophecy is also compatible with HTTP/2’s server-
push feature [7]. Server-push allows a web server to
proactively send an HTTP object to a browser, pre-
warming the browser’s cache so that a subsequent fetch
for the object can be satisfied locally. Prophecy-enabled
frames use cookies to record the versions of locally-
DOM-cached frames (§3.3). So, imagine that a web
server would like to push frames. When the server re-
ceives an HTTP request for frame fi, the server can in-
spect the cookies in the request and determine, for some
different frame f j to push, whether to push a cold-cache
or warm-cache version of the frame.

A Prophecy web server does not track any informa-
tion about a client’s DOM storage (besides diffs for the
write logs that reside in that DOM storage). Since the
server does not track client-side DOM storage, the final
result of a frame load should not depend on the client’s
non-write-log DOM storage—this state will not be avail-
able to the server-side frame load that is used to generate
write logs. To the best of our knowledge, all web accel-
erators that use server-side load analysis [3, 38, 39, 51]
assume empty client-side DOM storage, since mirroring
all of that storage would be expensive, and developer best
practice is to use DOM storage as a soft-state cache.

4 IMPLEMENTATION

On the server-side, Prophecy uses a modified version
of Scout [36] to rewrite frame content and track reads
and writes to the JavaScript heap and the DOM tree.
Prophecy extends Scout’s JavaScript translator to rewrite
closure scopes (so that Prophecy can efficiently resurrect
closure functions). Prophecy also extends the translator
to log the classes of objects created via the new operator

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 255

(so that Prophecy can determine the appropriate instance
objects to create in the write log for the JavaScript heap).

When rewriting a frame’s HTML, Prophecy injects
JavaScript source code for a timer that fires in response
to the load event. This timer serializes the DOM as
described in Section 3.1, using XMLSerializer to
generate the basic HTML string, and using Beautiful
Soup [41] to parse and edit the string, e.g., to inject
precomputed CSS styles, and to extract the image src
URLs to place in the image prefetch log.

To support client-side caching, Prophecy servers use
the google-diff-patch-match library [20] to
generate diffs. The scaffolding for Prophecy’s server-side
logic is implemented as a portable CGI script for Apache.

On the client-side, Prophecy’s resurrection
code is 1.3 KB in size. The code uses the
google-diff-patch-match library [20] to
perform diffing, and a modified version of the
CSSUtilities framework [28] to apply styles
to dynamically-created DOM nodes (§3.2).

5 RESULTS

We evaluated Prophecy in both mobile and desktop set-
tings. Mobile page loads were performed on a Sony Xpe-
ria X (1.8 GHz hexa-core processor) and a Nexus 6
smartphone (2.7 GHz quad core processor); each phone
had 3 GB of RAM, and ran Android Nougat v7.1.1 and
Chrome v61. Prophecy’s performance was similar on
both phones, so we only show results for the Nexus 6
device. Desktop page loads were performed on a Lenovo
M91p desktop running GNU Linux 14.04. The desktop
machine had 8 processors with 8 GB of RAM, and used
Google Chrome v60 to load pages.

To create a reproducible test environment, we used
Mahimahi [38] to record the content in the Alexa Top 350
pages [2], and later replay that content to test browsers.
For pages which defined both a mobile version and a
desktop version, we recorded both. Later, at experiment
time, Mahimahi always returned the desktop version of a
page to the desktop browser; when possible, Mahimahi
returned the mobile version of a page to the mobile
browser. At replay time, Mahimahi used HTTP/2 for
pages that employed HTTP/2 at recording time. Server-
push events that were seen at recording time were applied
during replay.

The desktop machine hosted Mahimahi’s replay envi-
ronment. For experiments that involved desktop brows-
ing, all web traffic was forwarded over emulated
Mahimahi networks with link rates in {12,25,50}Mbps
and RTTs in {5,10,25} ms. We observed similar trends
across all of these desktop network conditions, so we
only present results for the 25 Mbps link with RTTs of
10 ms.

The mobile phone was connected to the desktop via
both USB tethering and a live wireless connection (Ver-
izon LTE or WiFi) with excellent signal strength. The
desktop ran the test driver, initiating mobile page loads
by sending commands through the USB connection.
HTTP and DNS traffic between the phone and Mahimahi
used the LTE or WiFi link. The live LTE connection had
RTTs of roughly 75 ms, and the live WiFi connection had
RTTs of roughly 15 ms.

In each of our experiments, we considered two ver-
sions of Prophecy: an offline version in which Prophecy
frames were computed before clients requested them,
and an online version in which the write logs were com-
puted on-demand, in the critical path of each HTTP re-
quest (§3.4). Throughout this section, we refer to the
offline version as Prophecy, and the online version as
Prophecy-online. We compared the versions to default
Chrome page loads, and to page loads that used Po-
laris [36], a state-of-the-art web accelerator. Polaris uses
a client-side JavaScript library to schedule the fetching
and evaluation of a page’s objects. Polaris improves page
load time through parallel use of the CPU and the net-
work, and by prioritizing the fetching of objects along
the dynamic critical path in a page’s dependency graph.
However, Polaris does not inline content or apply pre-
computation.

We evaluated each system on several metrics. Page
load time (PLT) is the page-level equivalent of FLT
(§3.5). In other words, PLT measures the time required
for a browser to fetch all of the content in all of a
page’s frames. We evaluated Prophecy using PLT in-
stead of FLT because PLT better captures a human’s
notion of a page being loaded when all of the page’s
frames are loaded. To measure PLT, we recorded the
time between the JavaScript navigationStart and
onload events. RI was computed using Vesper [37],
and SI was measured using Speedline [24]. In each ex-
periment, we loaded every page in our corpus 5 times
for each system listed above, recording the median value
for each load metric. Unless otherwise specified, all ex-
periments used cold browser caches and DNS caches. In
experiments with a mobile phone, energy savings were
recorded by directly connecting the phone’s battery leads
to a Monsoon power monitor [33].

5.1 Reducing PLT
Figure 4 illustrates Prophecy’s ability to reduce PLT for
both mobile devices and desktop machines. Prophecy’s
benefits are the largest on mobile devices; for example,
when using a phone to load a page over an LTE net-
work, Prophecy reduces median PLT by 53%, and 95th
percentile PLT by 67%. Prophecy helps mobile devices
more for two reasons.

256 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Mobile: 4G LTE cellular network (b) Mobile: Residential WiFi network (c) Desktop: 25 Mbps link, 10 ms RTT
Figure 4: Distribution of page load times with Prophecy, Prophecy-online, Polaris, and a default browser.

• First, mobile devices suffer from higher CPU over-
heads for page loads, compared to desktop ma-
chines [35, 52]. So, Prophecy’s elision of interme-
diate computation (including reflows and repaints)
is more impactful on mobile devices.
• PLT is much more sensitive to network latency than

to network bandwidth [1, 6, 46, 47]. Cellular links
typically exhibit higher latencies than wired or WiFi
links. Prophecy’s aggressive use of inlining allows
clients to fetch all frame content in a single HTTP-
level RTT. Such RTT elision unlocks disproportion-
ate benefits in cellular settings.

That being said, Prophecy enables impressive benefits for
desktop browsers too—median PLT decreased by 38%,
and 95th percentile PLT reduced by 45%.

Polaris elides no computation; in fact, client-side com-
putational costs are slightly higher due to the addition of
the JavaScript library which orchestrates object fetches
and evaluation. Polaris also inlines no content. So, even
though Polaris can keep the client’s network pipe full,
clients must fetch the same number of objects as in a
normal page load. Since browsers limit the number of
parallel HTTP requests that a page can make, Polaris
generally cannot overlap all requests, leading to serial
HTTP-level RTTs to build a frame. In contrast, Prophecy
uses a single HTTP-level RTT to build a frame. As a re-
sult of these differences, Polaris provides fewer benefits
than Prophecy. For example, on a mobile browser with
an LTE connection, Polaris reduces median PLT by 23%,
whereas Prophecy reduces median PLT by 53%.

As expected, PLT improvements with Prophecy-
online are lower than with Prophecy, since Prophecy-
online generates a frame’s write logs on-demand, upon
receiving a request for that frame. However, Prophecy-
online still reduces median PLT by 49% on the LTE con-
nection.

5.2 Reducing Bandwidth
Prophecy’s server-side frame transformations have dif-
ferent impacts on the size of JavaScript state, HTML
state, and image state:
• A Prophecy frame contains a write log which gener-

ates the final, precomputed JavaScript heap for the

Setting System Bandwidth Savings (KB)
Mobile Prophecy 262 (587)
Mobile Polaris -37 (-5)
Desktop Prophecy 336 (695)
Desktop Polaris -41 (-12)

Table 1: Median (95th percentile) per-page bandwidth
savings with Prophecy and Polaris. The baseline was the
bandwidth consumed by a normal page load. The aver-
age mobile page in our test corpus was 1519 KB large;
the average desktop page was 2388 KB in size.

frame. The JavaScript write log is typically smaller
than the frame’s original JavaScript source code;
although the write log must recreate the original
function declarations, the log can omit intermediate
function invocations that would incrementally cre-
ate frame state.
• The HTML write log for a frame consists of an aug-

mented HTML string that contains precomputed,
inline styles for the appropriate tags. The HTML
write log tends to be larger than a frame’s origi-
nal HTML string, since traditional CSS declarations
can often cover multiple tags with a single CSS rule.
• The image prefetch log does not change the size of

images. The log is simply a list of image URLs.
Table 1 depicts the overall bandwidth savings that
Prophecy enables; note that bandwidth savings are iden-
tical for Prophecy and Prophecy-online. Table 1 shows
that Prophecy’s large reductions in JavaScript size out-
weigh the small increases in HTML size, reducing over-
all bandwidth requirements by 21% in the mobile setting,
and 18% in the desktop setting. In contrast, Polaris in-
creases page size by a small amount. This is because a
Polaris page consist of a page’s original objects, plus the
client-side scheduler stub and scheduler metadata.

5.3 Energy savings
Figure 5 demonstrates that Prophecy significantly re-
duces the energy consumed during a mobile page load.
Median reductions in per-page energy usage are 36%
on an LTE network, and 30% on a WiFi network. For
both networks, Prophecy eliminates the same amount

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 257

Figure 5: Percent reduction in per-page energy usage
with Prophecy, Prophecy-online, and Polaris, relative to
a default page load. Bars show median values, and error
bars range from the 25th to the 75th percentiles. Results
were collected using a Nexus 6 smartphone.

of browser computation, the same number of HTTP-
level RTTs, and the same amount of HTTP-level trans-
fer bandwidth. However, LTE hardware consumes more
energy in the active state than WiFi hardware [46]; thus,
reducing network traffic saves more energy on an LTE
network than on a WiFi network.

Prophecy provides more energy reductions than
Prophecy-online—36% versus 31% for LTE, and 30%
versus 23% for WiFi. The reason is that, in Prophecy-
online, server-side request handling takes longer to com-
plete. As a result, the client-side phone must keep its net-
work hardware active for a longer period.

Polaris reduces energy usage by 14% on the LTE net-
work, and 10% on the WiFi network. Polaris keeps the
client’s network pipe full, decreasing the overall amount
of time that a phone must draw down battery power to
keep the network hardware on. However, because Polaris
elides no computation, Polaris cannot save as much en-
ergy as Prophecy.

5.4 Reductions in SI and RI
As described in Section 3.5, SI and RI only consider the
loading status of above-the-fold state. SI tracks the visual
rendering of above-the-fold content, whereas RI consid-
ers both visibility and functionality. Our exploration of
SI used Prophecy’s default configuration. In contrast, the
RI experiments used the version of Prophecy which ex-
plicitly optimizes for Ready Index (§3.5).

Speed Index: As shown in Figures 6a and 6b,
Prophecy actually reduces SI more than it reduces PLT.
For mobile browsing over an LTE network, the median
SI reduction is 61%; for desktop browsing over a 25
Mbps link with a 10 ms RTT, the reduction is 52%.
Recall that, by default, a Prophecy frame reconstructs
the entire DOM tree before resurrecting the JavaScript
heap (§3.1). Prioritizing DOM construction results in
better SI scores, since the browser totally dedicates the
CPU to rendering pre-computed HTML before replay-
ing the JavaScript write log. As with prior experiments,
the synchronous computational overheads of Prophecy-

online result in slightly worse performance compared to
Prophecy—57% SI reduction versus 61% in the mobile
scenario, and 45% SI reduction versus 52% in the desk-
top setting. However, the benefits are still significant, and
Prophecy-online has several advantages over Prophecy
with respect to server-side overheads (§3.4).

In the mobile setting, Polaris only reduces SI by a me-
dian of 10%. In the desktop setting, Polaris actually in-
creases SI by 2%. The reason is that Polaris’ client-side
scheduler is ignorant of which objects correspond to in-
teractive state—Polaris simply tries to load all objects as
quickly as possible. Reducing overall PLT is only weakly
correlated with reducing SI.

Ready Index: Figures 6c and 6d show that when
Prophecy explicitly optimizes for RI (§3.5), Prophecy re-
duces median RI by 43% in a mobile browsing scenario,
and 40% in a desktop setting. User studies indicate that,
when users load a page with the expectation of interac-
tion, optimizing for RI leads to happier users [37]. Of
course, not all sites have interactive content, or a typical
engagement pattern that involves immediate user input.
These sites can use the standard Prophecy configuration
and enjoy faster PLTs and SIs.

5.5 The Sources of Prophecy’s Benefits
Prophecy optimizes a frame load in several ways:
• Image prefetching: The resurrection library issues

asynchronous fetches for images before construct-
ing the DOM tree and the JavaScript heap. The
asynchronous fetches keep a client’s network pipe
busy as the CPU works on constructing the rest of
the frame.
• CSS precomputation: The DOM write log contains

precomputed CSS styles for all DOM nodes, in-
cluding ones that were dynamically injected by
JavaScript code. Precomputation reduces client-side
CPU overheads for styling, layout, and rendering.
• JavaScript write log: By only writing to each

JavaScript variable once, a browser avoids wasting
time and energy on unnecessary JavaScript compu-
tations.
• All content inlined: Prophecy consolidates all of the

frame content into a single inlined JavaScript file
which stores all of the information that is needed to
rebuild the frame. Thus, a browser can fetch the en-
tire frame in one HTTP-level round trip, as opposed
to needing multiple RTTs to fetch multiple objects.

To better understand how the individual optimizations af-
fect Prophecy’s performance, we loaded each page in our
corpus with a subset of the optimizations enabled. Our
experiments considered mobile browsing using LTE or
WiFi networks; we also tested a desktop browser with a
25 Mbps, 10 ms RTT link. In all scenarios, we used a
cold cache and measured PLT. In the mobile settings, we

258 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) 4G LTE cellular network (b) 25 Mbps link, 10 ms RTT (c) 4G LTE cellular network (d) 25 Mbps link, 10 ms RTT
Figure 6: Evaluating Prophecy using Speed Index and Ready Index.

(a) Breakdown of Prophecy’s page load time reductions.

(b) Breakdown of Prophecy’s energy savings.
Figure 7: Breakdown of the performance benefits en-
abled by individual optimizations. Optimization bars be-
gin with image prefetching, and incrementally add new
optimizations until “All content inlined,” which repre-
sents Prophecy’s default configuration.

also measured energy usage. Note that Prophecy’s band-
width savings are primarily from the JavaScript heap log;
image prefetching and CSS precomputation do not have
a significant impact on bandwidth usage (§5.2).

As shown in Figure 7, Prophecy’s largest reductions in
page load time and energy consumption are enabled by
the JavaScript write log optimization. The next most crit-
ical optimization is content inlining; saving round trips
not only reduces load time, but also reduces the amount
of time that a mobile device must actively listen to the
network (thereby reducing energy consumption).

5.6 Server-side overhead
When a Prophecy-online server receives a request for
a frame, the server must load the requested frame
and generate the necessary write logs on-demand.
If the client has a warm cache, then the server must
also calculate write log diffs on-demand. Figure 8

Figure 8: Prophecy-online’s impact on server response
throughput.

depicts the impact that these online calculations have
on server response throughput. We used the Apache
benchmarking tool ab [4] to scale client load and
measure response times. The server and ab ran on the
same machine, to isolate the computational overheads
of Prophecy-online. We evaluated five server-side
configurations: a default server which returned a
frame’s normal top-level HTML; Prophecy cold cache
and Prophecy cold cache v100000, in which
clients had cold caches, and the server had either
an empty diffTable or one that had 100,000 54
KB entries; and Prophecy warm cache v100 and
Prophecy warm cache v100000, in which clients had
warm caches and the server had the indicated number
of diffTable entries. For warm cache experiments,
we orchestrated ab so that all frame versions were
accessed with an equal random likelihood. In all ex-
periments, the baseline frame was the top-level frame
in the amazon.com homepage, and the diff was an
empirically-observed diff from two snapshots of the
frame that were captured a day apart.

As shown in Figure 8, the performance differences
grow as client load grows. Up to 6,500 concurrent re-
quests, all server variants are within 12.1% of each other,
but at 10,000 concurrent requests, the difference between
the default server and the warm-cache servers is 31.4%.
Performance overheads with Prophecy are mostly due to
online write log generation. Also note that the CPU over-
head of diffing, not the memory overhead of a diffTable,
leads to the degraded response throughput.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 259

(a) Mobile: 4G LTE cellular network

(b) Desktop: 25 Mbps link, 10 ms RTT
Figure 9: Distribution of warm cache page load times
with Prophecy, Prophecy-online, Polaris, and a default
browser. Warm cache page loads were performed 1 hour
after their cold cache counterparts.

5.7 Additional Results
Due to space restrictions, we defer a full discussion of
our remaining experiments to the appendix. Here, we
briefly summarize the results of those experiments:

Caching: Roughly 50% of users have an empty
browser cache for a particular page load [53, 54]. So,
load optimizers should provide benefits if caches are
warm or cold. The results in this section have assumed a
cold cache, but Section A.1 describes the performance
of Prophecy in warm cache scenarios. Unsurprisingly,
Prophecy’s benefits are smaller, but as shown in Figure 9,
the gains are still significant, with PLT decreasing by a
median of 43% in a mobile setting, and 34% in a desk-
top setting. Prophecy also maintains its performance ad-
vantages over Polaris with respect to SI, RI, bandwidth
consumption, and energy expenditure.

Non-landing pages: Our main test corpus consisted of
the landing pages for the Alexa Top 350 sites. We also
tested Prophecy on 200 interior pages that were linked to
by landing pages. As described in Section A.2, Prophecy
performs slightly better on interior pages, since they tend
to have more complicated structures than landing pages.

Diff sizes: We empirically analyzed snapshots of live
pages, measuring how large diffs would be for clients
with warm caches (Section A.3). For clients with a day-
old warm cache, the median diff size was 38 KB, with a
95th percentile size of 81 KB. So, diffs are small enough
for a server’s diffTable to store many of them.

6 RELATED WORK

6.1 Prepack
Prepack [16] is a JavaScript-to-JavaScript compiler.
Prepack scans the input JavaScript code for expressions
whose results are statically computable; Prepack replaces
those expressions with equivalent, shorter sequences that
represent the final output of the elided expressions. If
JavaScript code contains dynamic interactions with the
environment (e.g., via calls to Date()), Prepack leaves
those interactions in the transformed code, so that they
will be performed at runtime.

Prepack does not handle the DOM, or interactions
between HTML, CSS, and JavaScript. Prepack is also
unaware of important desiderata for web pages, like
object cacheability and personalization (§3.3), and in-
cremental interactivity (§3.5). Thus, Prepack is insuffi-
ciently powerful to act as a general-purpose web accel-
erator. Prepack’s ability to elide intermediate JavaScript
computations is shared by Prophecy, but Prophecy’s eli-
sion is more aggressive. Prepack uses symbolic exe-
cution [10, 14] and abstract interpretation [13] to al-
low the results of environmental interactions to live in
post-processed JavaScript as abstract values; in contrast,
Prophecy evaluates all environmental interactions on the
server-side, allowing all of the post-processed data to
be concrete. This aggressive elision is well-suited for
Prophecy’s goal of minimizing client-side power usage.
For example, if environmental interactions occur in a
loop, Prophecy only outputs the final results, whereas
Prepack often has to output an abstract, finalized-at-
runtime computation for each loop iteration.

6.2 Shandian
Shandian [51] uses a proxy to accelerate page loads. The
proxy uses a modified variant of Chrome to load a re-
quested page and generate two snapshots:
• The load-time snapshot is a serialized version of

(1) the page’s DOM nodes and (2) the subset of
the page’s CSS rules that are necessary to style the
DOM nodes. Importantly, the load-time snapshot
does not contain any JavaScript state (although the
serialized DOM nodes may contain the effects of
DOM calls made by JavaScript).
• The post-load snapshot contains JavaScript state

and the page’s full set of CSS rules.
A user employs a custom Shandian browser to load the
page. The browser fetches the load-time snapshot, de-
serializes it, and displays it. Later, the browser asyn-
chronously fetches and evaluates the post-load snapshot.

At the architectural level, the key difference between
Prophecy and Shandian is that Prophecy tracks fine-
grained reads and writes during a server-side page load.
Shandian does not. This design decision has cascading
ramifications for performance, deployability, and robust-

260 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ness, as described in great detail in Section A.4. For ex-
ample, Shandian cannot optimize for RI; more generally,
Shandian cannot interleave the resurrection of JavaScript
code and the DOM tree. The reason is that Shandian
lacks an understanding of how the JavaScript heap and
the DOM tree interact with each other, so Shandian can-
not make interleaved reconstruction safe. The specific
lack of write logs for the DOM tree and the JavaScript
heap also makes it difficult for Shandian to resurrect
state and support caching. JavaScript is a baroque, dy-
namic language, and the lack of write logs forces Shan-
dian’s resurrection logic to use complex, overly conser-
vative rules about (for example) which JavaScript state-
ments are idempotent and which ones are not. The com-
plicated logic requires in-browser support to get good
performance, and makes caching semantics sufficiently
hard to get right that Shandian does not try to support
caching for load-time state (and Shandian only supports
a limited form of caching for post-load state). In contrast,
Prophecy’s use of read/write tracking enables straightfor-
ward diff-based caching, safe interleaving of DOM con-
struction and JavaScript resurrection, and browser agnos-
ticism (since Prophecy’s write logs are just JavaScript
variables). Prophecy also enforces traditional privacy
policies for cookies, unlike Shandian (§A.4).

Shandian’s source code is not publicly available, and
there are no public Shandian proxies. So, we could
not perform an experimental comparison with Prophecy.
Based on the performance numbers in the Shandian pa-
per, we believe that Prophecy’s PLT savings are roughly
equivalent to those of Shandian, but Prophecy’s band-
width savings are roughly 20% better. The Shandian pa-
per did not evaluate energy consumption, but we be-
lieve that Prophecy will consume less energy due to a
simpler resurrection algorithm and less network traffic
at resurrection time. Prophecy provides these benefits
while enabling a constellation of important features (e.g.,
cacheability, optimization for interactivity) that Shandian
does not provide. We refer the interested reader to Sec-
tion A.4 for a more detailed discussion of Shandian.

6.3 Split browsers
In a split-browser system [38, 45, 46], a client fetches the
top-level HTML in a page via a remote proxy. The proxy
forwards the request to the appropriate web server. Upon
receiving the response, the proxy uses a headless browser
to load the page; as the proxy parses HTML, executes
JavaScript, and discovers external objects in the page,
the proxy fetches those objects and then forwards them
to the client. Since the proxy has fast, low-latency net-
work paths to origin servers, the time needed to resolve
a page’s dependency graph [11, 36] is mostly bound by
proxy/origin RTTs (which are small), not the last-mile
client/proxy RTTs (which may be large).

Prophecy is compatible with such approaches—a
Prophecy frame can be loaded by a split-browser proxy.
However, the only external objects that the proxy would
discover are images, since a Prophecy frame inlines the
(final effects of) external CSS and JavaScript objects.
Also note that the goal of a split-browser is to hide the
network latency associated with a client’s object fetches;
split browsers cannot identify client-side computations
that may be elided. Prophecy does find such computa-
tions, while also eliminating fetch RTTs via inlining.

6.4 Mobile web optimizations
Klotski [9] is a mobile web optimizer that uses server-
push (§3.7). When a browser fetches HTML for a par-
ticular page, the Klotski web server returns the HTML,
and also pushes high-priority objects which are refer-
enced by the page (and will later be requested by the
browser). Klotski identifies high-priority objects in an
offline phase using a utility function (e.g., that prior-
itizes above-the-fold content). Prophecy is compatible
with server-push, but at the granularity of entire frames,
not individual objects, since Prophecy inlines content
(§3.7). Inlining, combined with final-state patching, al-
lows Prophecy to both lower load time and decrease
energy consumption. In contrast, a Klotski page elides
no computation. VROOM [42] is similar to Klotski, ex-
cept that clients prefetch data instead of receiving server
pushes; a VROOM server uses link preload headers [22]
in returned HTTP responses to hint to clients which ob-
jects can be usefully prefetched.

AMP [19] accelerates mobile page loads by requiring
pages to be written in a restricted dialect of HTML, CSS,
and JavaScript that is faster to load. For example, AMP
forces all external <script> content to use the async
attribute so that the browser’s HTML parse can continue
as the JavaScript code is fetched in the background. AMP
forces a page to have at most one CSS file, which must
be an inlined <style> tag whose contents are less than
50 KB in size. Prophecy is designed to support arbitrary
pages that use arbitrary HTML, CSS, and JavaScript.
However, Prophecy can be applied to AMP pages since
those pages are just HTML, CSS, and JavaScript.

7 CONCLUSION

Prophecy is a new acceleration system for mobile page
loads. Prophecy uses precomputation to reduce (1) the
amount of state which must be transmitted to browsers,
and (2) the amount of computation that browsers must
perform to build the desired pages. Unlike current state-
of-the-art systems for precomputation, Prophecy han-
dles all kinds of page state, including DOM trees, and
supports critical features like object caching, incremen-
tal interactivity, and cookie privacy. Experiments show
that Prophecy enables substantial reductions in page load
time, bandwidth usage, and energy consumption.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 261

REFERENCES

[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-
gan, B. Greenstein, S. McDaniel, M. Piatek,
C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s
Data Compression Proxy for the Mobile Web. In
Proceedings of NSDI, 2015.

[2] Alexa. Top Sites in United States. http://www.
alexa.com/topsites/countries/US, 2018.

[3] Amazon. What Is Amazon Silk? https : / /
docs.aws.amazon.com/silk/latest/developerguide/
introduction.html, 2018.

[4] Apache Software Foundation. ab: Apache HTTP
server benchmarking tool. https://httpd.apache.org/
docs/2.4/programs/ab.html, 2018.

[5] A. Barth. HTTP State Management Mechanism.
RFC 6265. https : / / tools . ietf . org /html / rfc6265,
April 2011.

[6] M. Belshe. More Bandwidth Doesn’t Matter
(Much). Google. https://goo.gl/PFDGMi, April 8,
2010.

[7] M. Belshe, R. Peon, and M. Thomson. Hypertext
Transfer Protocol Version 2. RFC 7540. https://
tools.ietf.org/html/rfc7540, May 2015.

[8] D. H. Bui, Y. Liu, H. Kim, I. Shin, and F. Zhao. Re-
thinking Energy-Performance Trade-Off in Mobile
Web Page Loading. In Proceedings of Mobicom,
2015.

[9] M. Butkiewicz, D. Wang, Z. Wu, H. V. Mad-
hyastha, and V. Sekar. Klotski: Reprioritizing Web
Content to Improve User Experience on Mobile De-
vices. In Proceedings of NSDI, 2015.

[10] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and Automatic Generation of High-coverage
Tests for Complex Systems Programs. In Proceed-
ings of OSDI, 2008.

[11] Y. Cao, J. Nejati, M. Wajahat, A. Balasubrama-
nian, and A. Gandhi. Deconstructing the Energy
Consumption of the Mobile Page Load. In Pro-
ceedings of the 2017 ACM SIGMETRICS / Interna-
tional Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS, New York,
NY, USA, 2017. ACM.

[12] J. Chernofsky. Why emerging markets are dom-
inating mobile browsing. The Next Web. https:
//thenextweb.com/insider/2016/04/07/first-world-
problems-emerging-markets-dominating-mobile-
browsing/, April 7, 2016.

[13] P. Cousot and R. Cousot. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fix-
points. In Proceedings of POPL, 1977.

[14] P. D. Coward. Symbolic Execution Systems: A Re-
view. Software Engineering Journal, 3(6):229–239,
November 1988.

[15] T. Everts. New findings: For Top Ecommerce Sites,
Mobile Web Performance is Wildly Inconsistent.
https://blog.radware.com/applicationdelivery/wpo/
2014/10/2014- mobile- ecommerce- page- speed-
web-performance/, October 22, 2014.

[16] Facebook. Prepack: Partial evaluator for javascript.
https://prepack.io/, 2017.

[17] D. F. Galletta, R. Henry, S. McCoy, and P. Polak.
Web Site Delays: How Tolerant are Users? Journal
of the Association for Information Systems, 5(1),
2004.

[18] S. Gibbs. Mobile web browsing overtakes desk-
top for the first time. The Guardian. https :
/ / www. theguardian . com / technology / 2016 / nov /
02/mobile- web- browsing- desktop- smartphones-
tablets, November 2, 2016.

[19] Google. Accelerated Mobile Pages Project - AMP.
https://www.ampproject.org/, 2018.

[20] Google. google-diff-match-patch. https://github.
com/google/diff-match-patch, February 13, 2018.

[21] Google. Speed Index: WebPagetest Documen-
tation. https://sites.google.com/a/webpagetest.
org/docs/using-webpagetest/metrics/speed-index,
2018.

[22] I. Grigorik and Y. Weiss. Preload. https://www.w3.
org/TR/preload/, October 26, 2017.

[23] GSMA Intelligence. Global Mobile Trends 2017.
https://www.gsmaintelligence.com/research/?file=
3df1b7d57b1e63a0cbc3d585feb82dc2&download,
September 2017.

[24] P. Irish. Speedline. https://github.com/paulirish/
speedline, November 21, 2017.

[25] P. Irish. What forces layout/reflow. https : / /
gist.github.com/paulirish/5d52fb081b3570c81e3a,
February 6 2018.

[26] A. Langley, A. Riddoch, A. Wilk, A. Vicente,
C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett,
J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Ku-
lik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi. The QUIC
Transport Protocol: Design and Internet-Scale De-
ployment. In Proceedings of SIGCOMM, 2017.

[27] P. Lewis. Avoid Large, Complex Layouts
and Layout Thrashing. Google Developers.
https://developers.google.com/web/fundamentals/
performance / rendering / avoid - large - complex -
layouts-and-layout-thrashing, May 12, 2017.

[28] H. Lindqvist. CSSUtilities. http : / / www.
brothercake.com/site/resources/scripts/cssutilities/,
April 4, 2010.

[29] B. McQuade, D. Phan, and M. Vajolahi. Instant
Mobile Websites: Techniques and Best Practices.
Google I/O Conference presentation. http://goo.gl/
DfhPJT, May 16, 2013.

262 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[30] J. Mickens. Rivet: Browser-agnostic Remote De-
bugging for Web Applications. In Proceedings of
USENIX ATC, 2012.

[31] J. Mickens, J. Elson, and J. Howell. Mugshot: De-
terministic Capture and Replay for Javascript Ap-
plications. In Proceedings of NSDI, 2010.

[32] J. Mickens, J. Elson, J. Howell, and J. Lorch. Crom:
Faster Web Browsing Using Speculative Execution.
In Proceedings of NSDI, 2010.

[33] Monsoon Solutions Inc. Power monitor software.
http://msoon.github.io/powermonitor/, 2015.

[34] Mozilla Developer Network. Document Object
Model (DOM). https://developer.mozilla.org/en-
US/docs/Web/API/Document Object Model, Au-
gust 29, 2017.

[35] J. Nejati and A. Balasubramanian. An In-depth
Study of Mobile Browser Performance. In Proceed-
ings of WWW, 2016.

[36] R. Netravali, A. Goyal, J. Mickens, and H. Bal-
akrishnan. Polaris: Faster Page Loads Using Fine-
grained Dependency Tracking. In Proceedings of
NSDI, 2016.

[37] R. Netravali, V. Nathan, J. Mickens, and H. Bal-
akrishnan. Vesper: Measuring Time-to-Interactivity
for Modern Web Pages. In Proceedings of NSDI,
2018.

[38] R. Netravali, A. Sivaraman, S. Das, A. Goyal,
K. Winstein, J. Mickens, and H. Balakrish-
nan. Mahimahi: Accurate Record-and-Replay for
HTTP. In Proceedings of USENIX ATC, 2015.

[39] Opera. Opera Mini. http://www.opera.com/mobile/
mini, 2018.

[40] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby.
Race Detection for Web Applications. In Proceed-
ings of PLDI, 2012.

[41] L. Richardson. Beautiful Soup. http: / /www.
crummy.com/software /BeautifulSoup/, February
17, 2016.

[42] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and
H. V. Madhyastha. Vroom: Accelerating the Mo-
bile Web with Server-Aided Dependency Resolu-
tion. In Proceedings of SIGCOMM, 2017.

[43] S. Shankland. Ad industry attacks Safari’s effort to
protect your privacy. CNET. https://www.cnet.com/
news/ad-industry-attacks-safaris-effort-to-protect-
your-privacy/, September 15, 2017.

[44] S. Singh, H. V. Madhyastha, S. V. Krishnamurthy,
and R. Govindan. FlexiWeb: Network-Aware Com-
paction for Accelerating Mobile Web Transfers. In
Proceedings of Mobicom, 2015.

[45] A. Sivakumar, C. Jiang, Y. S. Nam, P. Shankara-
narayanan, V. Gopalakrishnan, S. Rao, S. Sen,
M. Thottethodi, and T. Vijaykumar. NutShell: Scal-
able Whittled Proxy Execution for Low-Latency

Web over Cellular Networks. In Proceedings of
MobiSys, 2017.

[46] A. Sivakumar, S. Puzhavakath Narayanan,
V. Gopalakrishnan, S. Lee, S. Rao, and S. Sen.
PARCEL: Proxy Assisted BRowsing in Cellular
Networks for Energy and Latency Reduction. In
Proceedings of CoNEXT, 2014.

[47] S. Sundaresan, N. Feamster, R. Teixeira, and
N. Magharei. Measuring and Mitigating Web Per-
formance Bottlenecks in Broadband Access Net-
works. In Proceedings of IMC, 2013.

[48] N. Thiagarajan, G. Aggarwal, A. Nicoara,
D. Boneh, and J. P. Singh. Who Killed My
Battery?: Analyzing Mobile Browser Energy
Consumption. In Proceedings of WWW, 2012.

[49] J. Vesuna, C. Scott, M. Buettner, M. Piatek, A. Kr-
ishnamurthy, and S. Shenker. Caching Doesn’t Im-
prove Mobile Web Performance (Much). In Pro-
ceedings of USENIX ATC, 2016.

[50] T. Vrountas. How Slow Mobile Page Speeds Are
Ruining Your Conversion Rates. https://instapage.
com/blog/optimizing-mobile-page-speed, August
5, 2017.

[51] X. S. Wang, A. Krishnamurthy, and D. Wetherall.
Speeding Up Web Page Loads with Shandian. In
Proceedings of NSDI, 2016.

[52] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie.
Why Are Web Browsers Slow on Smartphones? In
Proceedings of HotMobile, 2011.

[53] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie.
How Far Can Client-only Solutions Go for Mobile
Browser Speed? In Proceedings of WWW, 2012.

[54] YUI Team. Performance Research, Part 2: Browser
Cache Usage - Exposed! https://yuiblog.com/blog/
2007/01/04/performance-research-part-2/, January
4, 2007.

[55] Y. Zhu and V. J. Reddi. High-performance and
energy-efficient mobile web browsing on big/little
systems. In Proceedings of the IEEE International
Symposium on High Performance Computer Archi-
tecture (HPCA), 2013.

[56] Y. Zhu and V. J. Reddi. WebCore: Architectural
Support for Mobileweb Browsing. In Proceeding
of the International Symposium on Computer Ar-
chitecuture (ISCA), 2014.

A APPENDIX

A.1 Warm Browser Caches
The experiments in Section 5 assumed a cold browser
cache. Here, we explore the performance of Prophecy
when caches are warm, finding that Prophecy still un-
locks significant decreases in page load time, bandwidth
consumption, and energy expenditure.

For each page in our test corpus, we used Mahimahi

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 263

Setting System Bandwidth Savings (KB)
Mobile Prophecy 176 (441)
Mobile Polaris -37 (-5)
Desktop Prophecy 298 (571)
Desktop Polaris -41 (-12)

Table 2: Median (95th percentile) per-page bandwidth
savings with Prophecy and Polaris, using warm browser
caches. The baseline was the bandwidth consumed by a
default browser with a warm cache. The average warm
cache mobile page load in our test corpus consumed 664
KB; the average desktop page used 973 KB.

Update frequency Pages Frames
<= 1 hour 124 313
1-2 hours 77 114
2-4 hours 41 76
4-8 hours 19 20

8-24 hours 49 109
>= 24 hours 41 229

Table 3: Update frequencies for the pages and Prophecy
frames in our corpus.

to take several snapshots of the page. Each snapshot used
a different time separation from the initial snapshot: no
separation (i.e., a back-to-back load), 1 hour, 8 hours, and
24 hours. During an experiment which tested a particular
age for a browser cache, we loaded each page twice. Af-
ter clearing the browser cache, we loaded the page once
using the initial snapshot. We then immediately loaded
the later version of the page, recording the time of the
second, warm-cache page load. Below, we discuss results
for a 1 hour separation, but we observed similar trends
for the other time separations.

PLT reductions: Figure 9 corroborates prior caching
studies which found that mobile caching is less effec-
tive than desktop caching at reducing PLT [49]. How-
ever, Figure 9 demonstrates that Prophecy still provides
substantial benefits compared to both Polaris and a de-
fault page load. For example, Prophecy enables median
PLT reductions of 43% in the mobile setting, and 34% in
the desktop setting. An important reason for Prophecy’s
persistent benefit is that, even in a warm-cache Prophecy
frame (§3.3), Prophecy elides computation that must be
incurred by Polaris and a default page load.

Polaris’ gains drop to 15% in the mobile case, and
9% in the desktop setting. All of Polaris’ benefits derive
from the ability to cleverly schedule network fetches, and
overlap those fetches with computation. In a warm cache
scenario, a page issues fewer network requests, giving
Polaris fewer opportunities for optimization.

Bandwidth savings: Table 2 demonstrates that
Prophecy reduces per-page bandwidth consumption by

26% (176 KB) for mobile browsing, and 30% (298 KB)
for desktop browsing. The raw savings are less than
the cold cache scenarios for obvious reasons. However,
since Prophecy can cache at byte granularity, not file
granularity (§3.3), Prophecy downloads fewer network
bytes than either Polaris or a default load.

Energy savings: Prophecy’s energy savings decrease
in warm cache page loads. The reason is that caching is
more effective at reducing energy costs than page load
time [11]; having an object cached will always avoid the
battery drain associated with a network fetch, but may
not decrease PLT much if the cached object is not on the
critical path in the page’s dependency graph [11, 36]. Re-
gardless, Prophecy still provides substantial energy sav-
ings, reducing median and 95th percentile consumption
by 17% and 29% for an LTE network. Prophecy-online’s
energy savings are lower than Prophecy (12% and 21%),
but are higher than those of Polaris (6% and 12%).

A.2 Additional Sites
In addition to the 350 site corpus that we used for our
main experiments, we also evaluated Prophecy on two
additional sets of sites. First, using a web monkey, we
generated a list of 200 additional pages by performing
clicks on the pages in our original corpus; we gener-
ated 4 clicks per page, and then randomly selected 200
pages from the 1400 page list. These pages represented
interior pages for websites, rather than the landing pages
which are provided by the Alexa lists. We performed the
same PLT experiments as described in Section 5.1, load-
ing pages with a mobile phone over an LTE network. The
trends were similar to those in our primary corpus. Me-
dian speedups with Prophecy increased to 57%, while
Prophecy-online and Polaris accelerated PLT by 53%
and 26%, respectively.

We also performed experiments with 100 randomly
selected pages from the Alexa top 1000 list. The pages
were chosen from the latter part of the list, such that no
site was a member of our original corpus. For the new
set of pages, the median PLT for a default mobile load
was over 2 seconds slower than the median PLT in our
original corpus. Nevertheless, the basic trends from our
main experiments persisted. Prophecy reduced the me-
dian PLT by 51%, whereas Prophecy-online and Polaris
decreased PLT by 45% and 20%, respectively.

A.3 Diff Characteristics
To understand how large diffs would be in practice, we
recorded 6 versions of each page in our corpus: a base-
line version (at time t=0), and versions recorded at t val-
ues of 1 hour, 2 hours, 4 hours, 8 hours, and 24 hours.
We then computed Prophecy frames for each version of
each page. Finally, we computed diffs for each version of
each frame, comparing against the baseline frame from

264 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

t=0. The server’s diff calculations were fast: across all
versions of the page, the median computation time was
4.6 ms, and the 95th percentile time was 8.8 ms. The me-
dian size for the largest diff across all frame versions was
38 KB; the 95th percentile largest diff size was 81 KB.

As shown in Table 3, 35% of the pages in our cor-
pus require diff updates at least once an hour. In contrast,
12% of the pages do not require any diff updates within a
single day. Similarly, some frames must be updated fre-
quently, and some rarely change.

As a final exploration of diff behavior, we considered
personalized versions of a subset of the pages in our cor-
pus. We selected 20 pages from our corpus and created 2
different user profiles on each page. When possible, the
preferences for each profile were set to different values.
We then recorded three versions of each page: the de-
fault page (with no user logged in), the first user’s page,
and the second user’s page. We created Prophecy frames
for each version of each page, and compared each user’s
Prophecy frames to the default frames. The median diff
size across all frames was 15 KB, while the maximum
diff size was 31 KB. Many diffs were 0 KB, making the
average diff size 6 KB.

A.4 Detailed Discussion of Shandian
In Section 6.2, we provided a high-level comparison of
Shandian and Prophecy. Here, we provide more technical
detail about how Shandian works, and why we believe
that Prophecy’s write log approach is advantageous.

Robustness: Shandian’s load-time snapshot is just se-
rialized HTML and CSS. However, Shandian’s post-
load snapshot cannot contain the page’s unmodified
JavaScript code, since client-side execution of the code
would encounter a different DOM environment than
what would have been seen in a normal page load. Thus,
resurrecting the JavaScript state is challenging. Shan-
dian’s approach is to create a post-load snapshot which
contains (1) a serialized graph of JavaScript objects mi-
nus their methods, and (2) a set of JavaScript function
definitions that Shandian extracted from the page’s origi-
nal JavaScript code. Splicing this post-load state into the
client-side environment requires complex, subtle reason-
ing about idempotency and ordering. For example, in a
JavaScript program, a single function definition can be
evaluated multiple times, with each evaluation binding
to a different set of closure variables that are chosen us-
ing dynamic information. Some of the closure variables
may themselves be functions. Thus, Shandian requires
careful logic to generate a function evaluation order that
results in the desired final state; using the lexical order of
function definitions in the original source code is insuf-
ficient. Our personal experience writing JavaScript heap

serializers [30, 32] has convinced us that serialization-
based approaches are fragile and difficult to make cor-
rect. Prophecy’s ability to track writes dramatically sim-
plifies matters. With knowledge of the final state of each
function, object, and primitive property, Prophecy can
apply a straightforward three-pass algorithm to recreate
an interconnected DOM tree and JavaScript heap (§3.2).
Thus, we believe that a write log approach is simpler and
more robust than a serialization-based approach.

Liveness: Shandian lacks a fine-grained understand-
ing of interactions between the JavaScript heap and the
DOM, so Shandian cannot safely interleave DOM con-
struction and JavaScript evaluation. As a result, Shandian
must restore all JavaScript state at once, after the DOM
has been constructed. This limitation prevents Shandian
from making pages incrementally interactive (§3.5). De-
ferring JavaScript execution has other disadvantages, like
timer-based animations not starting until the associated
JavaScript code has been fetched and evaluated. In con-
trast, Prophecy can identify related clusters of DOM
nodes and JavaScript state, enabling safe, interleaved
construction of a page’s DOM tree and JavaScript heap.
Prophecy also returns all of the page state to the client
in a single HTTP round trip, unlike Shandian, which re-
quires multiple RTTs.

Deployability: Shandian requires modified client
browsers to parse Shandian’s special serialization format
for JavaScript state, CSS rules, and DOM state. In con-
trast, Prophecy logs are expressed using regular HTML
and JavaScript. Thus, Prophecy works on unmodified
browsers, improving deployability.

Caching: Shandian provides no caching support for
the content in the initial snapshot. So, if just a single byte
in the initial snapshot changes, the client must download
an entirely new snapshot, spending precious energy and
network bandwidth. Shandian supports caching for the
post-load data, but the content in that snapshot is depen-
dent on the content in the load-time snapshot! Thus, if
the load-time snapshot changes, then cached post-load
content is invalidated. In contrast, Prophecy provides a
straightforward caching scheme that supports byte-level
diffing (§3.3), maximizing the amount of cached content
that can be used to reconstruct new versions of a page.
Prophecy’s caching approach is naturally suggested by
Prophecy’s use of write logs—these write logs are easily
diffed using standard algorithms. In contrast, given Shan-
dian’s complex resurrection approach, it is not immedi-
ately clear how Shandian could be extended to support
traditional caching semantics.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 265

CSS: On the client browser, Shandian evaluates load-
time CSS rules twice: once during the initial load, and
again during the evaluation of a page’s post-load CSS.
As the Shandian paper states, the result is “additional
energy consumption and latencies.” We cannot quantify
the costs due to lack of access to a Shandian system.
Thus, we merely observe that Prophecy’s inlining of CSS
styles avoids all client-side CSS parsing for load-time
DOM nodes—the associated CSS rules are evaluated
zero times on the client. Note that, post-load, a Prophecy
page can immediately style dynamically-created DOM
nodes (§3.2). In contrast, Shandian will either have to
wait for post-load CSS styles to be fetched (which may

take a long time on a slow mobile link), or style the node
immediately, but possibly incorrectly (leading to broken
page state).

Privacy: In Shandian, a client-side browser ships
all cookies, regardless of their origin, to a proxy. This
scheme allows a proxy to load arbitrary personalized
content on behalf of a user, but risks privacy violations
if the proxy is intrinsically malicious, or becomes
subverted by an external malicious party. Prophecy only
exposes the cookies for origin X to servers from X .

266 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Salsify: Low-Latency Network Video Through Tighter Integration
Between a Video Codec and a Transport Protocol

Sadjad Fouladi◦ John Emmons◦ Emre Orbay◦

Catherine Wu+ Riad S. Wahby◦ Keith Winstein◦

◦Stanford University, +Saratoga High School

Abstract

Salsify is a new architecture for real-time Internet video
that tightly integrates a video codec and a network trans-
port protocol, allowing it to respond quickly to changing
network conditions and avoid provoking packet drops
and queueing delays. To do this, Salsify optimizes the
compressed length and transmission time of each frame,
based on a current estimate of the network’s capacity; in
contrast, existing systems generally control longer-term
metrics like frame rate or bit rate. Salsify’s per-frame
optimization strategy relies on a purely functional video
codec, which Salsify uses to explore alternative encodings
of each frame at different quality levels.

We developed a testbed for evaluating real-time video
systems end-to-end with reproducible video content and
network conditions. Salsify achieves lower video delay
and, over variable network paths, higher visual quality
than five existing systems: FaceTime, Hangouts, Skype,
and WebRTC’s reference implementation with and with-
out scalable video coding.

1 Introduction

Real-time video has long been a popular Internet
application—from the seminal schemes of the 1990s [26,
10] to today’s widely used videoconferencing systems,
such as FaceTime, Hangouts, Skype, and WebRTC. These
applications are used for person-to-person videoconfer-
encing, cloud video-gaming, teleoperation of robots and
vehicles, and any setting where video must be encoded
and sent with low latency over the network.

Today’s systems generally combine two components: a
transport protocol and a video codec. The transport sends
compressed video to the receiver, processes acknowledg-
ments and congestion signals, and estimates the average
data rate of the network path. It supplies this estimate to
the codec, a distinct module with its own internal control
loop. The codec selects encoding parameters (a frame rate
and quality setting) and generates a compressed video
stream with an average bit rate that approximates the
estimated network capacity.

In this paper, we explore and evaluate a different design
for real-time Internet video, based on a video codec that

Video delay Video quality
95th %ile vs. Salsify-1c SSIM vs. Salsify-1c

System (lower is better) (higher is better)

Salsify-1c [449 ms] [15.4 dB]
FaceTime 2.3× −2.1 dB
Hangouts 4.2× −4.2 dB
Skype 1.2× −6.9 dB
WebRTC 10.5× −2.0 dB
WebRTC (VP9-SVC) 7.9× −1.3 dB

Figure 1: Performance of Salsify (single-core version) and other
real-time Internet video systems over an emulated AT&T LTE
network path. Full results are in Section 5.

is integrated tightly into the rest of the application. This
system, known as Salsify, combines the transport proto-
col’s packet-by-packet congestion control with the video
codec’s frame-by-frame rate control into one algorithm.
This allows Salsify to avoid provoking in-network buffer
overflows or queueing delays, by matching its video trans-
missions to the network’s varying capacity.

Salsify’s video codec is implemented in a purely func-
tional style, which lets the application explore alternative
encodings of each video frame, at different quality levels,
to find one whose compressed length fits within the net-
work’s instantaneous capacity. Salsify eschews an explicit
bit rate or frame rate; it sends video frames when it thinks
the network can accommodate them.

No individual component of Salsify is exactly new or
was co-designed expressly to be part of the larger system.
The compressed video format (VP8 [36]) was finalized in
2008 and has been superseded by more efficient formats in
commercial videoconferencing programs (e.g., VP9 [14]
and H.265 [32]). Salsify’s purely functional implementa-
tion of a VP8 codec has been previously described [9], its
loss-recovery strategy is related to Mosh [38, 37], and its
rate-control scheme is based on Sprout [39].

Nonetheless, as a concrete system that integrates these
components in a way that responds quickly to network
variation without provoking packet loss or queueing de-
lay, Salsify outperforms the commercial state of the art—
Skype, FaceTime, Hangouts, and the WebRTC implemen-
tation in Google Chrome, with or without scalable video
coding—in terms of end-to-end video quality and delay
(Figure 1 gives a preview of results).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 267

These results suggest that improvements to video
codecs may have reached the point of diminishing returns
in this setting, but changes to the architecture of video
systems can still yield significant benefit. In separating
the codec and transport protocol at arm’s length—each
with its own rate-control algorithm working separately—
today’s applications reflect current engineering practice
in which codecs are treated largely as black boxes, at the
cost of a significant performance penalty. Salsify demon-
strates a way to integrate these components more tightly,
while preserving an abstraction boundary between them.

This paper proceeds as follows. Section 2 discusses
background information on real-time video systems and
related work. We describe the design and implementation
of Salsify in Section 3 and of our measurement testbed for
black-box video systems in Section 4. Section 5 presents
the results of the evaluation. We discuss the limitations of
the system and its evaluation in Section 6.

We also performed two user studies to estimate the
relative importance of quality and delay on the subjective
quality of experience (QoE) of real-time video systems.
These results are described more fully in Appendix A.

Salsify is open-source software, and the experiments
reported in this paper are intended to be reproducible. The
source code and raw data from the evaluation are available
at https://snr.stanford.edu/salsify.

2 Related work

Adaptive videoconferencing. Skype and similar pro-
grams perform adaptive real-time videoconferencing over
an Internet path, by sending user datagrams (UDP) that
contain compressed video. In addition to Skype, such
systems include FaceTime, Hangouts, and the WebRTC
system, currently in development to become an Internet
standard [1]. WebRTC’s reference implementation [35]
has been incorporated into major Web browsers.

These systems generally include a video codec and
transport protocol as independent subsystems, each with
its own rate-control logic and control loop. The transport
provides the codec with estimates of the network’s data
rate, and the video encoder selects parameters (including
a frame rate and bit rate) to match its average bit rate
to the network’s data rate. Salsify, by contrast, merges
the rate-control algorithm of each component into one,
leveraging the functional nature of the video codec to keep
the length of each compressed frame within the transport’s
instantaneous estimate of the network capacity.

Joint source-channel video coding. The IEEE multi-
media communities have extensively studied low-latency
real-time video transmission over digital packet networks
(a survey is available in Zhai & Katsaggelos [45]). The
bulk of this work targets heavily-multiplexed networks,
where data rates are treated as fixed or slowly varying,

and packet loss and queueing delay can be modeled as
random processes independent of the application’s own
behavior (e.g., [5]). In this context, prior work has focused
on combining source coding (video compression) with
channel coding (forward error correction) in order for the
application to gracefully survive packet drops and delays
caused by independent random processes [45].

Salsify is aimed at a different regime, more typical of
today’s Internet access networks, where packet drops and
queueing delays are influenced by how much data the ap-
plication chooses to send [39, 13], the bottleneck data rate
can decay quickly, and forward-error-correction schemes
are less effective in the face of bursty packet losses [33].
Salsify’s main contribution is not in combining video cod-
ing and error-correction coding to weather packet drops
that occur independently; it is in merging the rate-control
algorithms in the video codec and transport protocol to
avoid provoking packet drops (e.g., by overflowing router
buffers) and queueing delay with its own traffic.

Cross-layer schemes. Schemes like SoftCast [19] and
Apex [30] reach into the physical layer, by sending analog
wireless signals structured so that video quality degrades
gracefully when there is more noise or interference on
the wireless link. Much of the IEEE literature [45] also
concerns regimes where modulation modes and power
levels are under the application’s control. Salsify is also
designed to degrade gracefully when the network deterio-
rates, but Salsify isn’t a cross-layer scheme in the same
way—it does not reach into the physical layer. Like Skype,
FaceTime, etc., Salsify sends conventional UDP data-
grams over the Internet.

Low-latency transport protocols. Prior work has de-
signed several transport protocols and capacity-estimation
schemes for real-time applications [21, 18, 39, 17, 6].
These schemes are often evaluated with the assumption
that the application always has data available to the trans-
port, allowing it to run “full throttle”; e.g., Sprout’s eval-
uation made this assumption [39]. In the case of video
encoders that produce frames intermittently at a particular
frame rate and bit rate, this assumption has been criticized
as unrealistic [16]. Salsify’s transport protocol is based on
Sprout-EWMA [39], but enhanced to be video-aware: the
capacity-estimation scheme accounts for the intermittent
(frame-by-frame) data generated by the video codec.

Scalable or layered video coding. Several video for-
mats support scalable encoding, where the encoder pro-
duces multiple streams of compressed video: a base layer,
followed by one or more enhancement layers that improve
the quality of the lower layers in terms of frame rate, res-
olution, or visual quality. Scalable coding is part of the
H.262 (MPEG-2), MPEG-4 part 2, H.264 (MPEG-4 part
10 AVC) and VP9 systems. A real-time video application
may use scalable video coding to improve performance
over a variable network, because the application can dis-

268 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://snr.stanford.edu/salsify

card enhancement layers immediately in the event of con-
gestion, without waiting for the video codec to adapt.
(Improvements in quality, however, must wait for a coded
enhancement opportunity.) Scalability is particularly use-
ful in multiparty videoconferences, because it allows a
relay node to adapt a sender’s video stream to different
receiver network capacities by discarding enhancement
layers, without re-encoding. Salsify is aimed at unicast
situations; in this setting, we evaluated a contemporary
SVC system, VP9-SVC as part of WebRTC in Google
Chrome, and found that it did not improve markedly over
conventional WebRTC.

Measurement of real-time video systems. Prior work
has evaluated the performance of integrated videoconfer-
encing applications. Zhang and colleagues [46] varied
the characteristics of an emulated network path and mea-
sured how Skype varied its network throughput and video
frame rate. Xu and colleagues [41] used Skype and Hang-
outs to film a stopwatch application on the receiver com-
puter’s display, producing two clocks side-by-side on the
receiver’s screen to measure the one-way video delay.

Salsify complements this literature with an end-to-end
measurement of videoconferencing systems’ video qual-
ity as well as delay. From the perspective of the sending
computer, the testbed appears to be a USB webcam that
captures a repeatable video clip. On the receiving com-
puter, the HDMI display output is routed back to the
testbed. The system measures the end-to-end video qual-
ity and delay of every frame.

QoE-driven video transport. Recent work has fo-
cused on optimization approaches to delivery of adap-
tive video. Techniques include control-theoretic selection
of pre-encoded video chunks for a Netflix-like applica-
tion [44] and inferential approaches to selecting relays
and routings [20, 12]. Generally speaking, these systems
attempt to evaluate or maximize performance according to
a function that maps various metrics into a single quality
of experience (QoE) figure. Our evaluation includes two
user studies to calibrate a QoE metric and find the relative
impact of video delay and visual quality on quality of
experience in real-time video applications (a videochat
and a driving-simulation videogame).

Loss recovery. Existing systems use several techniques
to recover from packet loss. RTP and WebRTC applica-
tions sometimes retransmit the lost packet, and sometimes
re-encode missing slices of a video frame de novo [28, 25].
By contrast, Salsify’s functional video decoder retains old
states in memory until the sender gives permission to evict
them. If a network has exhibited recent packet loss, the en-
coder can start encoding new frames in a way that depends
only on an older state that the receiver has acknowledged,
allowing the frame to be decoded even if intervening
packets turn out to have been lost. This approach has been
described as “prophylactic retransmission” [37].

3 Design and Implementation

Real-time Internet video systems are built by combin-
ing two components: a transport protocol and a video
codec. In existing systems, these components operate
independently, occasionally communicating through a
standardized interface. For example, in WebRTC’s open-
source reference implementation, the video encoder reads
frames off the camera at a particular frame rate and com-
presses them, aiming for a particular average bit rate. The
transport protocol [17] updates the encoder’s frame rate
and target bit rate on a roughly one-second timescale.
WebRTC’s congestion response is generally reactive: if
the video codec produces a compressed frame that over-
shoots the network’s capacity, the transport will send it
(even though it will cause packet loss or bloated buffers),
but the WebRTC transport subsequently tells the codec
to pause encoding new frames until congestion clears.
Skype, FaceTime, and Hangouts work similarly.

Salsify’s architecture is more closely coupled. Instead
of allowing the video codec to free-run at a particular
frame rate and target bit rate, Salsify fuses the video
codec’s and transport protocol’s control loops into one.
This architecture allows the transport protocol to com-
municate network conditions to the video codec before
each frame is compressed, so that Salsify’s transmissions
match the network’s evolving capacity, and frames are
encoded when the network can accommodate them.

Salsify achieves this by exploiting its codec’s ability
to save and restore its internal state. Salsify’s transport
estimates the number of bytes that the network can safely
accept without dropping or excessively queueing frames.
Even if this number is known before encoding begins
for each frame, it is challenging to predict the encoder
parameters (quality settings) that cause a video encoder
to match a pre-specified frame length.

Instead, each time a frame is needed, Salsify tries en-
coding with two different sets of encoder parameters in
order to bracket the available capacity. The system exam-
ines the encoded sizes of the resulting compressed frames
and selects one to send, based on which more closely
matches the network capacity estimate. The state induced
by this frame is then restored and used as the basis for
both versions of the next coded frame. We implemented
two versions of Salsify: one that does the two encodings
serially on one core (Salsify-1c), and one in parallel on
two cores (Salsify-2c).

3.1 Salsify’s functional video codec

Salsify’s video codec is written in about 11,000 lines
of C++ and encodes/decodes video in Google’s VP8 for-
mat [36]. It differs from previous implementations of VP8
and other codecs in one key aspect: it exposes the internal

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 269

“state” of its encoder/decoder to the application in explicit
state-passing style (We previously described an earlier
version of this codec in ExCamera [9].)

The state includes copies of previous decoded frames,
known as reference images, and probability tables used
for entropy coding. At a resolution of 1280× 720, the
internal state of a VP8 decoder is about 4 MiB. To com-
press a new image, the video encoder takes advantage
of its similarities with the reference images in the state.
The video decoder can be modeled as an automaton, with
coded frames as the inputs that cause state transitions
between a source and target state. The automaton starts in
the source state, consumes the compressed frame, outputs
an image for display, and transitions to the target state.

In typical implementations, whether hardware or soft-
ware, this state is maintained internally by the en-
coder/decoder and is inaccessible to the application. The
encoder ingests a stream of raw images as the input, and
produces a compressed bitstream. When a frame is en-
coded, the internal state of the encoder changes and there
is no way to undo the operation and return to the previous
state. Salsify’s VP8 encoder and decoder, by contrast, are
pure functions with no side effects and all state maintained
externally. The interface is:

decode(state, frame)→ (state′, image)
encode(state, image, quality)→ frame

Using this interface, the application can explore dif-
ferent quality options for encoding each frame and start
decoding from a desired state. This allows Salsify to (1)
encode frames at a size and quality that matches the net-
work capacity and (2) efficiently recover from packet loss.

Encoding to match network capacity. Current video
encoders, including Salsify’s, are unable to compress a
single frame to accurately match a specified coded length.
Only after compressing a frame does the encoder discover
the resulting length with any precision. As a result, current
videoconferencing systems generally track the network’s
capacity in an average sense, by matching the encoder’s
average bit rate over time to the network’s data rate.

Salsify, by contrast, exploits the functional nature of
its video encoder to optimize the compressed length of
each individual frame, based on a current estimate of
the network’s capacity. Two compression levels are ex-
plored for each frame by running two encoders (serially
or in parallel), initialized with the same internal state but
with different quality settings. Salsify selects the resulting
frame that best matches the network conditions, delay-
ing the decision of which version to send until as late as
possible, after knowing the exact size of the compressed
frames. Since the encoder is implemented in explicit state-
passing style, it can be resynchronized to the state induced
by whichever version of the frame is chosen to be trans-
mitted. Salsify chooses the two quality settings for the

next frame based on surrounding (one higher, one lower)
whichever settings were successful in the previous frame.

There is also a third choice: not to send either version,
if both exceed the estimated network capacity. In this case,
the next frame will be encoded based on the same internal
state. Salsify is therefore able to vary the frame cadence
to accommodate the network, by skipping frames in a way
that other video applications cannot (conventional applica-
tions can only pause frames on input to the encoder—they
cannot skip a frame after it has been encoded without
causing corruption).

Loss recovery. Salsify’s loss recovery strategy con-
denses into picking the right source state for encoding
frames. In the absence of loss, the encoder produces a se-
quence of compressed frames, each one depending on the
target state resulting from the previous frame, even if that
frame has not yet been acknowledged as received—the
sender assumes that all the packets in flight will be deliv-
ered. Packet loss, however, causes incomplete or missing
frames at the receiver, putting its decoder in a different
state than the one assumed by the sender and corrupt-
ing the decoded video stream. To remedy this, when the
sender detects packet loss (via ACKs from the receiver,
§ 3.2), it resynchronizes the receiver’s state by creating
frames that depend on a state that the receiver has explic-
itly acknowledged (Algorithm 1.3 and Algorithm 2.3);
these frames will be usable by the receiver, even if in-
termediate packets are lost. This approach requires the
sender and receiver to save the sequence of target states
in memory, only deleting them when safe. Specifically,
upon receiving a frame based on some state, the receiver
discards all older ones; and when the sender receives an
ACK for some state, it discards all older ones.

In case of packet reordering, if a fragment for a new
frame is received before the current frame is complete, the
receiver still decodes the incomplete frame—which puts
its decoder in an invalid state—and moves on the next
frames. The sender recognizes this situation as packet loss
and handles it the same way. Packet reordering within the
fragments of a frame is not disruptive, as the receiver
first waits for all the fragments before reassembling and
decoding a frame.

3.2 Salsify’s transport protocol

We implemented Salsify’s transport protocol in about
2,000 lines of C++. The sender transmits compressed
video frames over UDP to the receiver, which replies with
acknowledgments. Each video frame is divided into one
or more MTU-sized fragments.

Other than the frame serial number and fragment index,
each frame’s header contains the hash of its source state,
and the hash of its target state. With these headers, a com-
pressed video frame becomes an idempotent operator that

270 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Salsify transport protocol
1: procedure ON-RECEIVING-ACK(ack)
2: set to values indicated by ack:

mean_interarrival_time,
known_receiver_codec_state,
num_packets_outstanding

3: if ack indicates loss then
4: /* enter loss recovery mode for next 5 seconds */
5: end if
6: max_frame_size←MTU × (100 ms /

mean_interarrival_time −
num_packets_outstanding)

7: end procedure

acts on the identified source state at the receiver, trans-
forming it into the identified target state, and producing
a picture for display in the process. The receiver stores
the target state in memory, in the case that the sender
wants to use that state for loss recovery. In reply to each
fragment, the receiver sends an acknowledgment message
that contains the frame number and the fragment index,
along with its current decoder hash.

The receiver treats the incoming packets as a packet
train [21, 18] to probe the network and maintains a
moving average of packet inter-arrival times, similar to
WebRTC [17, 6] and Sprout-EWMA [39]. This estimate is
communicated to the sender in the acknowledgment pack-
ets. However, the sender does not transmit continuously—
it pauses between frames. As a result, the inter-arrival
time between the last fragment of one frame and the first
fragment of the next frame is not as helpful an indicator of
the network capacity (Figure 2). This pause could give the
receiver an artificially pessimistic estimate of the network
because the application is not transmitting “full throttle.”
To account for this, the sender includes a grace period in
each fragment, which tells the receiver about the duration
between when the current and previous fragments were
sent. As fragment i is received, the receiver calculates the
smoothed inter-arrival time, τi, as

τi← α(Ti−Ti−1−grace-periodi)+(1−α)τi−1,

where Ti is the time fragment i is received. The value of
α is 0.1 in our implementation, approximating a moving
average over the last ten arrivals.

At the sender side, Salsify’s transport protocol esti-
mates the desired size of a frame based on the latest
average inter-arrival time reported by the receiver. To
calculate the target size at time step i, the sender first esti-
mates an upper bound for the number of packets already
in-flight, Ni, by subtracting the indices of the last-sent
packet and the last-acknowledged packet. Let τi be the
latest average inter-arrival time reported by the receiver
at i. If the sender aims to keep the end-to-end delay less
than d (set to 100 ms in our implementation) to preserve

interactivity, there can be no more than d/τi packets in
flight. Therefore, the target size is (d/τi−Ni) MTU-size
fragments (Algorithm 1.6). At the time of sending, the
sender will pick the largest frame that doesn’t exceed this
length. If both encoded versions are over this size, the
sender discards the frame and moves on to sending the
next frame. To be able to receive new feedback from the
receiver, if more than four frames are skipped in a row,
the sender sends the low quality version (Algorithm 2).

Algorithm 2 Salsify sender program
1: procedure SEND-NEXT-FRAME

2: image← NEXT-IMAGE-FROM-CAMERA

3: source_state← loss_recovery_mode

? known_receiver_codec_state

: last_sent_frame.target_codec_state

4: frame_lower_quality← ENCODE(
source_state, image,
last_sent_frame.quality − DECR)

5: frame_higher_quality← ENCODE(
source_state, image,
last_sent_frame.quality + INCR)

6: frame_to_send← SELECT-FRAME(
frame_lower_quality,
frame_higher_quality)

7: if frame_to_send 6= null then
8: SEND(frame_to_send)
9: consecutive_skip_count← 0

10: last_sent_frame← frame_to_send

11: end if
12: end procedure
13:
14: function SELECT-FRAME(lower, higher)
15: if higher.length < max_frame_size then
16: return higher

17: else if lower.length < max_frame_size or
consecutive_skip_count ≥ 4 then

18: return lower

19: else
20: consecutive_skip_count++
21: return null
22: end if
23: end function

4 Measurement testbed

To evaluate Salsify, we built an end-to-end measurement
testbed for real-time video systems that treats the sender
and receiver as black boxes, emulating a time-varying
network while measuring application-level video metrics
that affect quality of experience. This section describes
the testbed’s metrics and requirements (§4.1), its design
(§4.2), and its implementation (§4.3).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 271

Re
ce

ive
r

t₁ t₂ t₃ t₄ t₅
grace
period

frame i frame i+1
Se

nd
er

Figure 2: The receiver maintains a moving average of packet
inter-arrival times, tis. The sender includes the delay between
sent packets as a “grace period,” so the receiver can account for
the sender’s pauses between frames.

4.1 Requirements and metrics
Requirements. The testbed needs to present itself as a
webcam and supply a high-definition, 60 fps video clip in
a repeatable fashion to unmodified real-time video sys-
tems. At the same time, the testbed needs to emulate a
varying network link between the sender and receiver in
the system, with the time-varying behavior of the emu-
lated network synchronized to the test video. Finally, the
testbed needs to capture frames coming out of the dis-
play of an unmodified receiver, and quantify their quality
(relative to the source video) and delay.

Metrics. The measurement testbed uses two principal
metrics for evaluating the video quality and video delay
of a real-time video system. For quality, we use mean
structural similarity (SSIM) [34], a standard measure that
compares the received frame to the source video.

To measure interactive video delay, the testbed calcu-
lates the difference between the time that it supplies a
frame (acting as a webcam) and when the receiver dis-
plays the same frame (less the testbed’s inherent delay,
which we measure in §5.1).

For frames on the 60 fps webcam input that weren’t sent
or weren’t displayed by the receiver, we assign an arrival
time equal to the next frame shown. As a result, the delay
metric rewards systems that transmit with a higher frame
rate. The goal of this metric is to account for both the
frame rate chosen by a system, and the delay of the frames
it chooses to transmit. A system that transmits one frame
per hour, but those frames always arrive immediately, will
still be measured as having delay of up to an hour, even
though the rare frame that does get transmitted arrives
quickly. A system that transmits at 60 frames per second,
but on a one-hour tape delay, will also be represented as
having a large delay.

4.2 Design
Figure 3 outlines the testbed’s hardware arrangement. At
a high level, the testbed works by injecting video into a
sending client, simulating network conditions between

sender and receiver, and capturing the displayed video at
the receiving client. It then matches up frames injected
into the sender with frames captured from the receiver,
and computes the delay and quality.

Hardware. The sender and receiver are two comput-
ers running an unaltered version of the real-time video
application under test. Each endpoint’s video interface
to the testbed is a standard interface: For the sender, the
testbed emulates a UVC webcam device. For the receiver,
the testbed captures HDMI video output.

The measurement testbed also controls the network
connection between the sender and receiver. Each end-
point has an Ethernet connection to the testbed, which
bridges the endpoints to each other and to the Internet.

Video analysis. To compute video-related metrics, the
testbed logs the times when the sending machine is pre-
sented with each frame, captures the display output from
the receiver, and timestamps each arriving frame in hard-
ware to the same clock.

The testbed matches each frame captured from the re-
ceiver to a frame injected at the sender. To do so, the
testbed preprocesses the video to add two small barcodes,
in the upper-left and lower-right of each frame.1 Together,
the barcodes consume 3.6% of the frame area. Each bar-
code encodes a 64-bit random number that is unique over
the course of the video. An example frame is shown in fig-
ures 3 and 4. The quality and delay metrics are computed
in postprocessing by matching the barcodes on sent and
received frames, then comparing corresponding frames.

4.3 Implementation
The measurement testbed is a PC workstation with spe-
cialized hardware. To capture and play raw video, the
system uses a Blackmagic Design DeckLink 4K Extreme
12G card, which emits and captures HDMI video. The
DeckLink timestamps incoming and outgoing frames with
its own hardware clock. To convert outgoing video to the
UVC webcam interface, the testbed uses an Epiphan AV.io
HDMI-to-UVC converter. At a resolution of 1280×720
and 60 frames per second, raw video consumes 1.8 giga-
bits per second. The testbed uses two SSDs to simultane-
ously play back and capture raw video.

The measurement testbed computes SSIM using the
Xiph Daala tools package. For network emulation, we use
Cellsim [39], always starting the program synchronized
to the beginning of an experiment. To explore the sensi-
tivity to queueing behavior in the network, we configured
Cellsim with a DropTail queue with a dropping threshold
of 64, 256, or 1024 packets; ultimately we found applica-
tions were not sensitive to this parameter and conducted

1The two barcodes were designed to detect tearing within a frame,
when the receiver displays pieces of two different source frames at the
same time. In our evaluations, we did not see this occur.

272 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Video
System

AV.io

Measurement System

Sender Receiver

Network
Emulator

Figure 3: Testbed architecture. The system measures the performance of an unmodified real-time video system. It emulates a
webcam to supply a barcoded video clip to the sender. The sender transmits frames to the receiver via an Ethernet connection. The
measurement testbed interposes on the receiver’s network connection and controls network conditions using a network emulator
synchronized to the video. The receiver displays its output in a fullscreen window via HDMI, which the testbed captures. By matching
barcodes on sent and received frames, the testbed measures the video’s delay and quality, relative to the source. The measurement
testbed timestamps outgoing and incoming frames with a dedicated hardware clock, eliminating the effect of scheduling jitter in
measuring the timing of 60 fps video frames.

Figure 4: An example barcoded video frame sent by the mea-
surement testbed (§4.2). The barcodes each represent a 64-bit
random number that is unique over the course of the video.

remaining tests with a 256-packet buffer. The round-trip
delay was set to 40 ms for cellular traces. We developed
new software for barcoding, playing, capturing, and ana-
lyzing video. It comprises about 2,500 lines of C++.

5 Evaluation of Salsify

This evaluation answers the question: how does Salsify
compare with five popular real-time video systems in
terms of video delay and video quality when running over
a variety of real-world and synthetic network traces? In
sum, we find that, among the systems tested, Salsify gave
the best delay and quality by substantial margins over a
range of cellular traces; Salsify also performed compet-
itively on a synthetic intermittent link and an emulated
Wi-Fi link.

5.1 Setup, calibration, and method

Setup. We ran all experiments using the measurement
testbed described in Section 4. Figure 5 lists applications
and versions. Tests on macOS used late-model MacBook
Pro laptops running macOS Sierra. WebRTC (VP9-SVC)
was run on Chrome with command line arguments to
enable VP9 scalable video coding; the arguments were
suggested by video-compression engineers on the Chrome
team at Google.2 Tests on Linux used Ubuntu 16.10 on
desktop computers with recent Intel Xeon E3-1240v5
processors and 32 GiB of RAM. We tested Salsify using
the same Linux machine.

All machines were physically located in the same room
during experiments and were connected to each other
and the public Internet through gigabit Ethernet connec-
tions. Care was taken to ensure that no other compute- or
network-intensive processes were running on any of the
client machines while experiments were being performed.

Calibration. To calibrate the measurement testbed, we
ran a loopback experiment with no network: we connected
the testbed’s UVC output to the desktop computer de-
scribed above, configured that computer to display in-
coming frames fullscreen on its own HDMI output using
ffplay, and connected that output back to the testbed.

We found that the delay through the loopback connec-
tion was 4 frames, or about 67 ms; in all further exper-
iments we subtracted this intrinsic delay from the raw
results. The difference between the output and input im-
ages was negligible, with SSIM in excess of 25 dB, which

2The arguments were: out/Release/chrome --enable-webrtc-
vp9-svc-2sl-3tl --fake-variations-channel=canary --variations-server-
url=https://clients4.google.com/chrome-variations/seed .

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 273

Application Platform Version Configuration change

Skype macOS 7.42 Turned off Skype logo on the receiver.

FaceTime macOS 3.0 Blacked out self view in post-processing.

Hangouts Chrome (Linux) Chrome 55.0
Chrome 62.0 (Figure 6e)

Edited CSS to hide self view.

WebRTC Chrome (Linux)
Chrome 62.0, https://appr.tc
Chrome 55.0 (Figure 7)
Chrome 65.0 (Figure 8)

Edited CSS to hide self view.

WebRTC
(VP9-SVC)

Chrome (Linux) Chrome 62.0, https://appr.tc Edited CSS to hide self view.

Figure 5: Application versions tested. For each application, we slightly modified the receiver to eliminate extraneous display
elements that would have interfered with SSIM calculations. For WebRTC (VP9-SVC), we passed command-line arguments to
Chrome to enable the scalable video codec.

corresponds to 99.7% absolute similarity.
Method. For each experiment below, we evaluate each

system on the testbed using a specified network trace,
computing metrics as described in Section 4.1. The stim-
ulus is a ten minute, 60 fps, 1280× 720 video of three
people having a typical videoconference call. We prepro-
cessed this video as described in Section 4.2, labeling
each frame with a barcode. The network traces are long
enough to cover the whole length of the video.

5.2 Results
Experiment 1: variable cellular paths. In this exper-
iment, we measured Salsify and the other systems us-
ing the AT&T LTE, T-Mobile UMTS (“3G”), and Ver-
izon LTE cellular network traces distributed with the
Mahimahi network-emulation tool [27]. The experiment’s
duration is 10 minutes. The cellular traces vary through a
large range of network capacities over time: from more
than 20 Mbps to less than 100 kbps. The AT&T LTE and
T-Mobile traces were held out and not used in Salsify’s
development, although an earlier (8-core) version of Sal-
sify was previously evaluated on these traces before we
developed the current 1-core and 2-core versions.

Figures 6a, 6b and 6c show the results for each scheme
on each trace. Both the single-core (Salsify-1c) and dual-
core (Salsify-2c) versions of Salsify outperform all of
the competing schemes on both quality and delay (and
therefore, on either QoE model from the user study). We
saw little difference in performance between the serial and
parallel versions of Salsify; this suggests that having the
two video encoders run in parallel is not very important
on the PC workstation tested.

Salsify’s loss-recovery strategy requires the sender and
receiver keep a set of decoder states in memory, in order
to recover from a known state if loss occurs. After the
receiver acknowledges a state, or the sender sends a frame
based on a state, the other program discards the older

states. In our AT&T LTE trace experiment, Salsify-2c
sender kept 6 states on average, each 4 MiB in size, during
the course of its execution, while the receiver kept 3 states
at a time on average. Additionally, in the same experiment,
Salsify-2c picked the better-quality option in 50%, the
lower-quality option in 32%, and not sending the frame
at all in 18% of the opportunities to send a frame.

Figure 6f shows how the quality and delay of differ-
ent schemes vary during a one-minute period of AT&T
LTE trace where the network path was mostly steady in
capacity.

Experiment 2: intermittent link. In this experiment,
we evaluated Salsify’s method of loss resilience. We ran
each system on a two-state intermittent link. The link’s
capacity is 12 Mbps with no drops until a “failure” arrives,
which happens on average after five seconds (exponen-
tially distributed). During failure, all packets are dropped
until a “restore” event arrives, on average after 0.2 sec-
onds of failure. The experiment’s duration is 10 minutes.

Figure 6d shows the results for each scheme. The Sal-
sify schemes had the best quality, and their delay was
better than all schemes except Skype and WebRTC. Sal-
sify and WebRTC are both on the Pareto frontier of this
scenario; further tuning will be required to see if Salsify
can improve its delay without compromising quality.

Experiment 3: emulated Wi-Fi. In this experiment, we
evaluated Salsify and the other systems on a challenged
network path that, unlike the cellular traces, does not vary
its capacity with time. This emulated Wi-Fi network path
matches the behavior of a long-distance free-space Wi-
Fi hop, with the emulation parameters taken from [42],
including an average data rate of about 570 kbps and Pois-
son packet arrivals. Figure 6e shows the results. Salsify is
on the Pareto frontier, and WebRTC also performs well
when the network data rate does not vary with time.

Experiment 4: component analysis study. In this ex-
periment, we removed the new components implemented

274 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://appr.tc

8

10

12

14

16

18

5007001000200050007000

V
id

e
o

Q
ua

lit
y

(S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)Skype

Salsify-2c

FaceTime

Hangouts

Salsify-1c

WebRTC

Salsify (no grace period)

Salsify (conventional
transport and codec)

Salsify (conventional codec)

(a) Verizon LTE trace

8

9

10

11

12

13

14

15

16

200300500700100020005000

V
id

e
o

Q
ua

lit
y

(S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Skype

FaceTime

Hangouts

Salsify-1c Salsify-2c

WebRTC

(b) AT&T LTE trace

9

10

11

12

13

14

350050007000100001400018000

V
id

e
o

Q
ua

lit
y

(S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Skype

FaceTime

Hangouts

Salsify-1c

Salsify-2c

WebRTC

(c) T-Mobile UMTS trace

9

10

11

12

13

14

15

16

17

18

100200300500100020004000

V
id

e
o

Q
ua

lit
y

(S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

SkypeFaceTime

Hangouts

Salsify-1c
Salsify-2c

WebRTC

(d) Intermittent link

7

8

9

10

11

12

30050070010002000500015000

V
id

e
o

Q
ua

lit
y

(S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Skype
Hangouts

Salsify-1c
FaceTime

Salsify-2cWebRTC

Bette
r

(e) Constant-rate Wi-Fi link

6

8

10

12

14

16

18

20

5010020030050070010002000

V
id

e
o

Q
ua

lit
y

(S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC

Salsify-2c

Skype

Hangouts

FaceTime

(f) Evolution of quality and delay over a one-minute period

Figure 6: Figures (a)–(e) show the end-to-end video quality and video delay over four emulated networks. Salsify-1c and Salsify-2c
achieve better video quality (both on average and the “worse” tail at 25th percentile) and better video delay (both on average and the
worse tail at 95th percentile) than other systems for the three real-world network traces (AT&T, T-Mobile, Verizon). Salsify-1c and
Salsify-2c perform competitively on the artificially generated “intermittent link” network, which occasionally drops packets but is
otherwise a constant 12Mbps (§5), and an emulated constant-rate Wi-Fi link. The AT&T, T-Mobile, Wi-Fi, and and intermittent-link
scenarios were held out during development. Figure (f) shows the evolution of the quality and delay during a one-minute period of
the AT&T LTE trace when network capacity remained roughly constant.

in Salsify one-by-one to better understand their contri-
bution to the total performance of the system. First, we
removed the feature of Salsify’s transport protocol that
makes it video-aware: the “grace period” to account for
intermittent transmissions from the video codec. The per-
formance degradation of this configuration is shown in
Figure 6a as the “Salsify (no grace period) dot”; with-
out this component, Salsify underestimates the network
capacity and sends low-quality, low-bitrate video.

We then removed Salsify’s explicit state-passing-style
video codec, replacing it with a conventional codec where
the state is opaque to the application, and the appropriate

encoding parameters must be predicted upfront (instead
of choosing the best compressed version of each frame
after the fact). The codec predicted these parameters by
performing a binary search for the quality setting on a
decimated version of the original frame, attempting to hit
a target frame size and extrapolating the resulting size to
the full frame. The target size was selected using the same
transport protocol in normal Salsify. The result is also in
Figure 6a as “Salsify (conventional codec).”

As shown in the plot, Salsify’s performance is again
substantially reduced. This is a result of two factors: (1)
The transport no longer has access to a choice of frames at

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 275

0

1

2

3

4

5

6

7

8

0 5 10 15 20

Salsify

Skype

WebRTC

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

(a) Throughput

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

Salsify

Skype
WebRTC

F
ra

m
e

D
el

ay
 (

s)

Time (s)

(b) Frame delay

Figure 7: Salsify’s reacts more quickly to changes in network
conditions than other video systems. This is illustrated by com-
paring the performance of Skype, WebRTC, and Salsify over a
network path whose capacity decreases gradually to zero, then
back up again (instantaneous network capacity shown in gray).

transmission time; if the capacity estimate changed during
the time it took to compress the video frame, Salsify
will either incur delay or have missed an opportunity to
improve the quality of the video, and (2) it is challenging
for any codec to choose the appropriate quality settings
upfront to meet a target size; the encoder will be liable to
under- or overshoot its target.

Finally, we created an end-to-end system that emu-
lates the behavior of the conventional videoconferencing
systems, by removing the distinctive features of both Sal-
sify’s video codec and transport protocol. Rather than
operating frame by frame, the transport protocol in this
implementation estimates the network’s average data rate
and updates the quality settings of the video codec, once
every second. As the “Salsify (conventional transport and
codec) dot” in Figure 6a shows, this implementation has
a similar performance to Skype and WebRTC.

We conclude that each of Salsify’s distinctive features—
the video-aware transport protocol, purely functional
codec, and the frame-by-frame coupling between them
that merges the rate-control algorithms of each module—
contributes positively to the system’s overall performance.

Experiment 5: capacity ramp. In this experiment, we
evaluated how Salsify, Skype, and WebRTC handle a net-
work with a gradual decrease in data rate (to zero), then

a gradual resumption of network capacity. We created
the synthetic network trace depicted in light gray in Fig-
ures 7a and 7b. The experiment’s duration is 20 seconds.

Figure 7a shows the data transmission rate each scheme
tries to send through the link, versus time. Salsify’s
throughput smoothly decreases alongside link capacity,
then gracefully recovers. The result is that Salsify’s video
display recovers quickly after link capacity is restored, as
shown in Figure 7b.

In contrast, Skype reacts slowly to degraded network
capacity, and as a result induces loss on the link and a
standing queue, both of which delay the resulting video
for several seconds. WebRTC reacts to the loss of link
capacity, but ends up stuck in a bad mode after the network
is restored; the receiver displays only a handful of frames
(marked with blue dots) in the eight seconds after the link
begins to recover.

Experiment 6: one-second dropout experiment. In
this experiment, we compared the effect of packet loss on
Salsify-2c and WebRTC by introducing a single dropout
for 1 s while running each application on an emulated link
with a constant data rate of 500 kbps. All of the packets
that were scheduled to be delivered during the outage
were dropped. Figure 8 shows the results. After the net-
work is restored, WebRTC’s transport protocol retrans-
mits the packets that were lost during the outage, causing
a spike in delay before its video codec starts encoding
new frames of video (WebRTC’s baseline delay is also
considerably larger). Salsify does not have the same inde-
pendence between its video codec and transport protocol;
upon recovery of the network, Salsify’s functional video
codec can immediately encode new frames in terms of
reference images that are already present at the receiver.
This results in faster recovery from the dropout.

Experiment 7: sensitivity to queueing policy. In this
experiment, we quantified the performance impact of net-
work buffer size on Salsify, Hangouts, WebRTC, and Web-
RTC (VP9-SVC) for the Verizon-LTE network trace. The
plots in Figure 9 show the performance of each system
on the trace across various DropTail thresholds (at 64,
256, and 1024 MTU-sized packets). The performance of
the tested systems was not significantly influenced by the
choice of buffer size, perhaps because all schemes are
striving for low delay and therefore are unlikely to build
up a large-enough standing queue to see DropTail-induced
packet drops. We ran the remaining tests using the middle
setting (256 packets).

5.3 Modifications to systems under test

Although the testbed was designed to work with unmodi-
fied real-time video systems as long as the sender accepts
input on a USB webcam and the receiver displays output

276 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

Salsify-2c

WebRTCo
u
ta
g
e

F
ra

m
e

D
el

ay
 (

s)

Display Time (s)

o
u
ta
g
e

(a) Frame delay

9

10

11

12

13

14

15

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

Salsify-2c

WebRTC

o
u
ta
g
e

F
ra

m
e

Q
ua

lit
y

(S
S

IM
 d

B
)

Display Time (s)

(b) Frame quality

Figure 8: Comparison of the response of Salsify and WebRTC (implementation in Chrome 65) to a single loss event for one second,
while communicating over a network path with a constant data rate of 500 kbps. During the loss episode, all packets were dropped.
WebRTC displays frames out of a receiver-side buffer during the outage. In contrast to Salsify’s strategy of always encoding the most
recent video in terms of references available at the receiver, WebRTC’s transport protocol retransmits packets lost during the outage
before its video encoder starts encoding new frames. This causes a spike in the video delay and wide variations in the frame rate.

9

10

11

12

13

14

15

16

7001000200050007000

V
id

e
o

Q
ua

lit
y

(S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)
Salsify-2c

Hangouts

Salsify-1cWebRTC

(a) DropTail threshold = 64 packets.

9

10

11

12

13

14

15

16

7001000200050007000

V
id

e
o

Q
ua

lit
y

(S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)
Salsify-2c

Hangouts

Salsify-1c

WebRTC

(b) DropTail threshold = 256 packets.

9

10

11

12

13

14

15

16

7001000200050007000

V
id

e
o

Q
ua

lit
y

(S
S

IM
 d

B
)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Salsify-2c Salsify-1c
WebRTC

HangoutsBette
r

(c) DropTail threshold = 1024 packets.

Figure 9: Sensitivity to queueing policy. We measured per-
formance over the Verizon LTE network trace with different
in-network buffer sizes. The tested systems were not particular
sensitive to this parameter. We ran the other experiments with a
buffer size of 256 packets.

fullscreen via HDMI, in practice we found that to evaluate
the commercial systems fairly, small modifications were
needed. We describe these here.

FaceTime two-way video and self view. Unlike the
other video conferencing programs we tested, FaceTime

could not be configured to disable bidirectional video
transmission. We physically covered the webcam of the
receiver when evaluating FaceTime in order to minimize
the amount of data the receiver needed to send.

Also, like most video conferencing programs, Face-
Time provides a self-view window so users can see the
video they are sending. This cannot be disabled in Face-
Time and is present in the frames captured by our mea-
surement testbed. To prevent this from unfairly lowering
FaceTime’s SSIM score, we blacked out the self view win-
dow in post-processing (in both the sent and received raw
videos) before computing SSIM. These regions accounted
for approximately 4% of the total frame area.

Hangouts & WebRTC watermarks and self view.
By default, Google Hangouts and our reference Web-
RTC client (appr.tc) had several watermarks and self view
windows. Since these program run in the browser, we
modified their CSS files to remove these artifacts so we
could accurately measure SSIM.

Hangouts did not make P2P connections. Unlike all
the other systems we evaluated, Google Hangouts did not
make a direct UDP connection between the two client
machines. Rather, the clients communicated through a
Google relay server, still via UDP. We measured this
delay by pinging the Google server used by the client
machines. The round trip delay was < 20 ms in all cases
and ∼5 ms on average.

6 Limitations and Future Work

Salsify and its evaluation feature a number of important
limitations and opportunities for future work.

6.1 Limitations of Salsify
No audio. Salsify does not encode or transmit audio.
When testing other applications, we disabled audio to

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 277

avoid giving Salsify an unfair advantage. Adding audio
to a videoconferencing system creates a number of op-
portunities for future work in QoE optimization—e.g., it
is generally beneficial for the receiver to delay audio in
a buffer to allow uninterrupted playback in the face of
network jitter, even at the expense of some added delay.
To what extent should video be similarly delayed to keep
it in sync with the audio, and what are the right metrics to
evaluate any compromise along these axes?

Most codecs do not support save/restore of state. Sal-
sify includes a VP8 codec—an existing format that we did
not modify—with the addition that the codec is in a func-
tional style and allows the application to save and restore
its internal state. Conventional codecs, whether hardware
or software, do not support this interface, although we
are hopeful these results will encourage implementers to
expose such an interface. On power-constrained devices,
only hardware codecs are sufficiently power-efficient, so
we are hopeful that Salsify’s results will motivate hard-
ware codec implementers to expose state as Salsify does.

Improved conventional codecs could render Salsify’s
functional codec unnecessary. The benefit of Salsify’s
purely functional codec is principally in its ability to pro-
duce (by trial and error) compressed frames whose length
matches the transport protocol’s estimate of the network’s
instantaneous capacity. To the extent that conventional
codecs also grow this capability, the benefits of a func-
tional codec in this setting will shrink.

Benefits are strongest when the network path is most
variable. Salsify’s main contribution is in combining the
rate-control algorithms in the transport protocol and video
codec, and exploiting the functional codec to coax indi-
vidual compressed frames that match the network’s in-
stantaneous capacity, even when it is highly variable. On
network paths that exhibit such variability (e.g. cellular
networks while moving), Salsify demonstrated a signifi-
cant performance advantage over current applications. On
less-variable networks, Salsify’s performance was closer
to existing applications.

6.2 Limitations of the evaluation
Unidirectional video. Our experiments used a dedicated
sender and receiver, whereas a typical video call has bidi-
rectional video. This is because the testbed only has one
Blackmagic card (and pair of high-speed SSDs) and can-
not send and capture two video streams simultaneously.

The traces do not reflect multiple flows sharing the
same queue. To achieve a fair evaluation of each appli-
cation, we used the same test video and ran over a series of
reproducible network emulators. We did not evaluate the
schemes over “wild” real-world paths. The trace-based
network emulation replays the actual packet timings (in

both the forward and reverse direction) captured from cel-
lular networks. These traces capture several phenomena,
including the effect of multiple hops, ACK compression
in the reverse path, and cross traffic from other flows and
users sharing the network while the traces were recorded,
reducing the available data rate of the network path. How-
ever, the emulation does not capture cross traffic that
shares the same bottleneck queue as the application under
test. Generally speaking, no end-to-end application can
achieve low-latency video when the bottleneck queue is
shared with “bufferbloating” cross traffic [13].

7 Conclusion

In this paper, we presented Salsify, a new architecture
for real-time Internet video that tightly integrates a video
codec and a network transport protocol. Salsify improves
upon existing systems in three principal ways: (1) a video-
aware transport protocol achieves accurate estimates of
network capacity without a “full throttle” source, (2) a
functional video codec allows the application to experi-
ment with multiple settings for each frame to find the best
match to the network’s capacity, and (3) Salsify merges
the rate-control algorithms in the video codec and trans-
port protocol to avoid provoking packet drops and queue-
ing delay with its own traffic.

In an end-to-end evaluation, Salsify achieved lower
end-to-end video delay and higher quality when com-
pared with five existing systems: Skype, FaceTime, Hang-
outs, and WebRTC’s reference implementation with and
without scalable video coding (VP9-SVC).

It is notable that Salsify achieves superior visual quality
than other systems, as Salsify uses our own implementa-
tion of a VP8 codec—a largely superseded compression
scheme, and an unsophisticated encoder for that scheme.
The results suggest that further improvements to video
codecs may have reached the point of diminishing returns
in this setting, but changes to the architecture of video
systems can still yield significant benefit.

Acknowledgments

We thank the NSDI reviewers and our shepherd, Kyle
Jamieson, for their helpful comments and suggestions.
We are grateful to James Bankoski, Josh Bailey, Danner
Stodolsky, Timothy Terriberry, and Thomas Daede for
feedback throughout this project, and to the participants
in the user study. This work was supported by NSF grant
CNS-1528197, DARPA grant HR0011-15-2-0047, the
NSF Graduate Research Fellowship Program (JE), and by
Google, Huawei, VMware, Dropbox, Facebook, and the
Stanford Platform Lab.

278 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] ALVESTRAND, H. T. Overview: Real Time Protocols
for Browser-based Applications. Internet-Draft draft-
ietf-rtcweb-overview-16, Internet Engineering Task Force,
Nov. 2016. Work in Progress.

[2] CHEN, M., PONEC, M., SENGUPTA, S., LI, J., AND

CHOU, P. A. Utility maximization in peer-to-peer systems.
In ACM SIGMETRICS (June 2008).

[3] CHEN, X., CHEN, M., LI, B., ZHAO, Y., WU, Y., AND

LI, J. Celerity: A low-delay multi-party conferencing solu-
tion. IEEE Journal on Selected Areas in Communications
31, 9 (Sept. 2013), 155–164.

[4] CHENG, R., WU, W., CHEN, Y., AND LOU, Y. A cloud-
based transcoding framework for real-time mobile video
conferencing system. In IEEE MobileCloud (Apr. 2014).

[5] CHOU, P. A., AND MIAO, Z. Rate-distortion optimized
streaming of packetized media. IEEE Transactions on
Multimedia 8, 2 (April 2006), 390–404.

[6] CICCO, L. D., CARLUCCI, G., AND MASCOLO, S. Ex-
perimental investigation of the Google congestion control
for real-time flows. In ACM FhMN (Aug. 2013).

[7] ELMOKASHFI, A., MYAKOTNYKH, E., EVANG, J. M.,
KVALBEIN, A., AND CICIC, T. Geography matters: Build-
ing an efficient transport network for a better video confer-
encing experience. In CoNEXT (Dec. 2013).

[8] FENG, Y., LI, B., AND LI, B. Airlift: Video conferencing
as a cloud service. In IEEE ICNP (Feb. 2012).

[9] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BAL-
ASUBRAMANIAM, K. V., ZENG, W., BHALERAO, R.,
SIVARAMAN, A., PORTER, G., AND WINSTEIN, K. En-
coding, fast and slow: Low-latency video processing using
thousands of tiny threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’17)
(2017), USENIX Association, pp. 363–376.

[10] FREDERICK, R. Experiences with real-time software
video compression. In Proceedings of the Sixth Inter-
national Workshop on Packet Video (1994).

[11] FUND, F., WANG, C., LIU, Y., KORAKIS, T., ZINK, M.,
AND PANWAR, S. S. Performance of DASH and WebRTC
video services for mobile users. In IEEE PV (Dec. 2013).

[12] GANJAM, A., JIANG, J., LIU, X., SEKAR, V., SIDDIQUI,
F., STOICA, I., ZHAN, J., AND ZHANG, H. C3: Internet-
scale control plane for video quality optimization. In NSDI
(May 2015).

[13] GETTYS, J., AND NICHOLS, K. Bufferbloat: Dark buffers
in the Internet. Queue 9, 11 (Nov. 2011), 40:40–40:54.

[14] GRANGE, A., DE RIVAZ, P., AND HUNT, J. VP9 Bit-
stream & Decoding Process Specification version 0.6,
March 2016. http://www.webmproject.org/vp9/.

[15] HAJIESMAILI, M. H., MAK, L., WANG, Z., WU, C.,
CHEN, M., AND KHONSARI, A. Cost-effective low-delay
cloud video conferencing. In IEEE ICDCS (June 2015).

[16] HERMANNS, N., AND SARKER, Z. Congestion
control issues in real-time communication—“Sprout”
an example. Internet Congestion Control Research
Group. https://datatracker.ietf.org/meeting/88/materials/
slides-88-iccrg-3.

[17] HOLMER, S., LUNDIN, H., CARLUCCI, G., CICCO,
L. D., AND MASCOLO, S. A Google congestion con-
trol algorithm for real-time communication, 2015. draft-
alvestrand-rmcat-congestion-03.

[18] JAIN, M., AND DOVROLIS, C. End-to-end available band-
width: Measurement methodology, dynamics, and rela-
tion with TCP throughput. In Proceedings of the 2002
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (2002), SIG-
COMM ’02, ACM, pp. 295–308.

[19] JAKUBCZAK, S., AND KATABI, D. A cross-layer design
for scalable mobile video. In MobiComm (Sept. 2011).

[20] JIANG, J., DAS, R., ANANTHANARAYANAN, G., CHOU,
P. A., PADMANABHAN, V. N., SEKAR, V., DOMINIQUE,
E., GOLISZEWSKI, M., KUKOLECA, D., VAFIN, R., AND

ZHANG, H. VIA: Improving internet telephony call qual-
ity using predictive relay selection. In SIGCOMM (Aug.
2016).

[21] KESHAV, S. A control-theoretic approach to flow control.
In Proceedings of the Conference on Communications
Architecture & Protocols (1991), SIGCOMM ’91, ACM,
pp. 3–15.

[22] LI, J., CHOU, P. A., AND ZHANG, C. Mutualcast: An ef-
ficient mechanism for content distribution in a peer-to-peer
(P2P) network. Tech. Rep. MSR-TR-2004-98, Microsoft
Research, 2004.

[23] LIANG, C., ZHAO, M., AND LIU, Y. Optimal bandwidth
sharing in multiswarm multiparty P2P video-conferencing
systems. IEEE/ACM Trans. Networking 19, 6 (Dec. 2011),
1704–1716.

[24] LIU, X., DOBRIAN, F., MILNER, H., JIANG, J., SEKAR,
V., STOICA, I., AND ZHANG, H. A case for a coordinated
Internet video control plane. In SIGCOMM (Aug. 2012).

[25] LUMIAHO, L., AND NAGY, M., Oct. 2015. Er-
ror Resilience Mechanisms for WebRTC Video
Communications http://www.callstats.io/2015/10/30/
error-resilience-mechanisms-webrtc-video/.

[26] MCCANNE, S., AND JACOBSON, V. Vic: A flexible frame-
work for packet video. In Proceedings of the Third ACM
International Conference on Multimedia (1995), MULTI-
MEDIA ’95, ACM, pp. 511–522.

[27] NETRAVALI, R., SIVARAMAN, A., DAS, S., GOYAL, A.,
WINSTEIN, K., MICKENS, J., AND BALAKRISHNAN,
H. Mahimahi: Accurate record-and-replay for HTTP. In
USENIX Annual Technical Conference (2015), pp. 417–
429.

[28] OTT, J., AND WENGER, D. S. Extended RTP Profile
for Real-time Transport Control Protocol (RTCP)-Based
Feedback (RTP/AVPF). RFC 4585, July 2006.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 279

http://www.webmproject.org/vp9/
https://datatracker.ietf.org/meeting/88/materials/slides-88-iccrg-3
https://datatracker.ietf.org/meeting/88/materials/slides-88-iccrg-3
http://www.callstats.io/2015/10/30/error-resilience-mechanisms-webrtc-video/
http://www.callstats.io/2015/10/30/error-resilience-mechanisms-webrtc-video/

[29] PONEC, M., SENGUPTA, S., CHIN, M., LI, J., AND

CHOU, P. A. Multi-rate peer-to-peer video conferencing:
A distributed approach using scalable coding. In IEEE
ICME (June 2009).

[30] SEN, S., GILANI, S., SRINATH, S., SCHMITT, S., AND

BANERJEE, S. Design and implementation of an “ap-
proximate” communication system for wireless media ap-
plications. In Proceedings of the ACM SIGCOMM 2010
Conference (2010), SIGCOMM ’10, ACM, pp. 15–26.

[31] SEUNG, Y., LENG, Q., DONG, W., QIU, L., AND

ZHANG, Y. Randomized routing in multi-party internet
video conferencing. In IEEE IPCCC (Dec. 2014).

[32] SULLIVAN, G. J., OHM, J.-R., HAN, W.-J., AND WIE-
GAND, T. Overview of the high efficiency video coding
(HEVC) standard. IEEE Trans. Cir. and Sys. for Video
Technol. 22, 12 (Dec. 2012), 1649–1668.

[33] SWETT, I. QUIC FEC v1.
https://docs.google.com/document/d/
1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk.

[34] WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND SI-
MONCELLI, E. P. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on
image processing 13, 4 (2004), 600–612.

[35] WEBRTC.ORG. WebRTC Native Code. https://webrtc.org/
native-code.

[36] WILKINS, P., XU, Y., QUILLIO, L., BANKOSKI, J., SA-
LONEN, J., AND KOLESZAR, J. VP8 Data Format and
Decoding Guide. RFC 6386, Oct. 2015.

[37] WINSTEIN, K., AND BALAKRISHNAN, H. Mosh: A State-
of-the-Art Good Old-Fashioned Mobile Shell. In ;login:
(37, 4, August 2012).

[38] WINSTEIN, K., AND BALAKRISHNAN, H. Mosh: An in-
teractive remote shell for mobile clients. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12) (2012),
USENIX. Available at https://mosh.org., pp. 177–182.

[39] WINSTEIN, K., SIVARAMAN, A., AND BALAKRISHNAN,
H. Stochastic forecasts achieve high throughput and low
delay over cellular networks. In 10th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI ’13) (2013), USENIX, pp. 459–471.

[40] WU, Y., WU, C., LI, B., AND LAU, F. C. M. vSkyConf:
Cloud-assisted multi-party mobile video conferencing. In
ACM MCC (Aug. 2013).

[41] XU, Y., YU, C., LI, J., AND LIU, Y. Video telephony for
end-consumers: Measurement study of Google+, iChat,
and Skype. In IMC (Nov. 2012).

[42] YAN, F. Y., MA, J., HILL, G., RAGHAVAN, D., WAHBY,
R. S., LEVIS, P., AND WINSTEIN, K. Pantheon: the
training ground for Internet congestion-control research.
Measurement at http://pantheon.stanford.edu/result/1622/.

[43] YAP, K.-K., HUANG, T.-Y., YIAKOUMIS, Y., MCKE-
OWN, N., AND KATTI, S. Late-binding: how to lose fewer
packets during handoff. In Proceedings of the 2013 Work-
shop on Cellular Networks: Operations, Challenges, and
Future Design (2013), ACM, pp. 1–6.

[44] YIN, X., JINDAL, A., SEKAR, V., AND SINOPOLI, B.
A control-theoretic approach for dynamic adaptive video
streaming over HTTP. In SIGCOMM (Aug. 2015).

[45] ZHAI, F., AND KATSAGGELOS, A. Joint Source-Channel
Video Transmission. Morgan & Claypool, 2007. https:
//doi.org/10.2200/S00061ED1V01Y200707IVM010.

[46] ZHANG, X., XU, Y., HU, H., LIU, Y., GUO, Z., AND

WANG, Y. Modeling and analysis of Skype video calls:
Rate control and video quality. IEEE Trans. Multimedia
15, 6 (Oct. 2013), 1446–1457.

280 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk
https://webrtc.org/native-code
https://webrtc.org/native-code
https://mosh.org
http://pantheon.stanford.edu/result/1622/
https://doi.org/10.2200/S00061ED1V01Y200707IVM010
https://doi.org/10.2200/S00061ED1V01Y200707IVM010

A User studies to calibrate QoE metrics

As part of the development of Salsify, we conducted two
user studies to quantify the relative impact of video de-
lay and video quality on quality of experience (QoE) in
real-time video applications. These studies were approved
by the Institutional Review Board at Stanford University.
The participants were all Stanford graduate students and
were unpaid. In both studies, we varied video delay and
quality over the ranges observed in the comparative eval-
uation (Section 5). Our results show that small variations
in video delay greatly affect mean opinion score; video
quality also affects mean opinion score but less so.

In the first study, participants engaged in a simulated
long-distance video conference call with a partner. As part
of this study, we built a test jig that captured the audio
and video of both participants and played it to their part-
ner with a controlled amount of added delay and visual
quality degradation, achieved by encoding and then de-
coding the video with the x264 H.264 encoder at various
quality settings. Participants conversed for one minute on
each setting of delay and quality; after each one-minute
interval, participants scored their subjective quality of
experience on a scale from 1 (worst) to 5 (best). Twenty
participants performed this user study, and every partici-
pant experienced the same 12 video delay and video qual-
ity settings (SSIM dB × delay: {10dB, 14dB, 18dB}×
{300ms, 1200ms, 2200ms, 4200ms}).

The second user study put participants behind the
wheel of a race car in a simulated environment: a
PlayStation 4 playing the “Driveclub” videogame. Us-

ing a second test jig, the visual quality and the delay
between the PlayStation’s HDMI output and the par-
ticipant’s display were controlled. Participants drove
their simulated vehicle for 45 seconds on each qual-
ity and delay setting, then rated their quality of ex-
perience from 1 (worst) to 5 (best). Seventeen partic-
ipants performed this user study, and all participants
experienced the same 12 video delay and video qual-
ity settings (SSIM dB × delay: {8dB, 11dB, 14dB}×
{100ms, 300ms, 550ms, 1050ms}).

Results and interpretation. We used a two-
dimensional linear equation as our QoE model; the model
for each user study was fit using ordinary least squares.
The resultant best-fit lines (one for the videochat, and one
for the driving simulation) are shown in Figure 10. Us-
ing the learned coefficients from the videoconferencing
study, we predict that a 100 ms decrease in video delay
produces the same quality of experience improvement
as a 1.0 dB increase in visual quality (SSIM dB). Like-
wise, in the driving simulation we predict that a 100 ms
decrease in video delay is equivalent to a 1.9 dB increase
in visual quality. This suggests that in settings such as
teleoperation of vehicles, achieving low video delay is
more critical than increasing video quality, even more
than in person-to-person videoconferencing.

The equations for the best fit lines are given below.

QoE video call = −6.39 ·10−6×DELAY ms +

6.22 ·10−2×SSIM dB +3.30

QoE driving = −1.92 ·10−3×DELAY ms +

1.01 ·10−1×SSIM dB +2.67

(a) Video call (b) Driving simulation

Figure 10: The results of the two user studies. The data from each study were fit to a two-dimensional linear model—one for
videoconferencing, one for driving—using ordinary least squares. The upper plots project the learned bilinear models onto the
delay-QoE axes; similarly, the lower plots show the quality-QoE projection. We found that for a given delay, the quality has only a
small impact on the QoE (upper plots); conversely, for a given quality, the delay has a large impact on the QoE (lower plots).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 281

B Numerical evaluation results

Video Quality
(SSIM dB)

Video Delay
(ms)

System Trace p25 mean mean p95 Data

Salsify-1c

Verizon LTE

15.1 15.5 517.4 684.0
Salsify-2c 15.1 15.6 496.7 1256.8
FaceTime 15.0* 13.9 658.6 2044.2
Hangouts 9.8 10.4 560.9 1719.0
Skype 15.1* 14.1 1182.6 6600.2
WebRTC 13.2 13.7 973.0 4977.4
WebRTC (VP9-SVC) 13.6 14.1 1196.1 5411.9

Salsify-1c

AT&T LTE

15.0 15.4 349.1 448.5
Salsify-2c 15.0 15.4 282.1 362.4
FaceTime 12.6 13.3 469.4 1023.6
Hangouts 10.7 11.2 846.4 1862.4
Skype 8.2 8.5 322.1 557.4
WebRTC 12.4 13.4 934.7 4729.9
WebRTC (VP9-SVC) 13.5 14.1 775.2 3547.2

Salsify-1c

T-Mobile UMTS

13.0 13.2 840.1 3906.8
Salsify-2c 12.9 13.3 803.3 4129.4
FaceTime 8.8 10.5 1206.8 5699.6
Hangouts 8.5 9.4 1012.0 7096.9
Skype 11.1 11.8 1451.8 5745.9
WebRTC 10.4 11.5 1795.7 8685.5
WebRTC (VP9-SVC) 12.1 12.8 2585.2 18215.3

Salsify-1c

Intermittent Link

15.9 16.7 265.2 373.6
Salsify-2c 15.8 16.6 181.9 263.3
FaceTime 14.6 14.7 280.2 415.8
Hangouts 9.1 9.3 437.0 1771.4
Skype 15.5 15.7 128.4 229.7
WebRTC 16.0 16.1 155.8 169.1
WebRTC (VP9-SVC) 12.3 13.4 1735.2 3216.9

Salsify-1c

Emulated Wi-Fi Link

9.0 9.6 317.7 593.9
Salsify-2c 9.0 9.6 234.8 429.2
FaceTime 8.5 8.8 609.5 1080.2
Hangouts 8.2 8.4 514.4 980.5
Skype 7.5 7.8 250.9 495.1
WebRTC 10.0 10.2 315.2 721.0
WebRTC (VP9-SVC) 11.4 11.7 2512.4 14767.3

Figure 11: Summary of results of the evaluation (Section 5). The best results on each metric are highlighted. Two entries marked
with a * have a 25th-percentile SSIM that is higher than their mean SSIM; this indicates a skewed distribution of video quality.
In the PDF version of this paper, the icons in the data column link to the raw data for each item, within the repository at
https://github.com/excamera/salsify-results.

282 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/salsify-1-256.2017-09-19/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/salsify-2-256-2017-09-02/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/facetime/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/hangouts-256.2017-09-08/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/skype/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/apprtc-256.2017-09-07/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/Verizon-LTE-driving/apprtc-svc-2s-3t-256.2017-09-05/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/salsify-1/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/salsify2/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/facetime/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/hangouts/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/skype/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/apprtc-rerun-2017-09-07/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/ATT-LTE-driving/apprtc-svc-2s-3t/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/salsify-1/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/salsify2/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/facetime/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/hangouts/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/skype/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/apptrc/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/TMobile-UMTS-driving/apprtc-svc-2s-3t/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/salsify-1-onoff.2018-01-29/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/salsify-2-onoff.2018-01-29/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/facetime-on-off/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/hangouts-on-off/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/skype-on-off/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/apprtc-onoff.2018-01-29/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/12mbps/apprtc-svc-onoff.2018-01-29/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/salsify-1/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/salsify-2/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/facetime/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/hangouts/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/skype/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/apprtc-2/video3_720p60
https://github.com/excamera/salsify-results/tree/master/benchmarks/0.57mbps-poisson/apprtc-svc/video3_720p60
https://github.com/excamera/salsify-results

ResQ: Enabling SLOs in Network Function Virtualization

Amin Tootoonchian? Aurojit Panda¶‡ Chang Lan† Melvin Walls§

Katerina Argyraki• Sylvia Ratnasamy† Scott Shenker†‡

?Intel Labs †UC Berkeley ‡ICSI ¶NYU §Nefeli •EPFL

Abstract
Network Function Virtualization is allowing carriers to re-
place dedicated middleboxes with Network Functions (NFs)
consolidated on shared servers, but the question of how (and
even whether) one can achieve performance SLOs with soft-
ware packet processing remains open. A key challenge is
the high variability and unpredictability in throughput and
latency introduced when NFs are consolidated. We show that,
using processor cache isolation and with careful sizing of
I/O buffers, we can directly enforce a high degree of perfor-
mance isolation among consolidated NFs – for a wide range
of NFs, our technique caps the maximum throughput degra-
dation to 2.9% (compared to 44.3%), and the 95th percentile
latency degradation to 2.5% (compared to 24.5%). Building
on this, we present ResQ, a resource manager for NFV that
enforces performance SLOs for multi-tenant NFV clusters
in a resource efficient manner. ResQ achieves 60%-236%
better resource efficiency for enforcing SLOs that contain
contention-sensitive NFs compared to previous work.

1 Introduction
Modern networks are replete with dedicated “middlebox”
appliances that perform a wide variety of functions. In
recent years, operators have responded to the growing cost
of procuring and managing these appliances by adopting
Network Function Virtualization (NFV). In NFV, middlebox
functionality is implemented using software Network
Functions (henceforth NFs), which are deployed on racks of
commodity servers [18, 36, 38]. This approach offers several
advantages including lower costs, easier deployment, and
the ability to share infrastructure (e.g., servers) between NFs.

However, there is one oft-overlooked disadvantage to
the move to software. Because physical instantiations of
these functions relied on dedicated hardware; they had
well-understood performance properties which allowed
operators to offer performance SLOs [3, 7, 44]. Providing
performance guarantees is harder with software, particularly
when multiple NFs are consolidated on the same server.

While current NFV solutions [28, 41, 47, 49] typically
place NFs on dedicated cores, this is insufficient to ensure
performance isolation. Even when run on separate cores,
NFs share other processor resources such as the last-level
cache (LLC), memory, and I/O controllers (Figure 1),

Pr
oc

es
so

r ProcessorDDR DDR

RAMRAM

PCI-E PCI-E

NI
C

NIC

QPI

Server

… …Core

Core

Core

Core
LLC

IDI
iMC

DDR

QPI IIO

PCI-EQPI

Processor

Figure 1: High-level view of shared resources inside a server and CPU.
A typical NFV deployment consists of racks of servers interconnected
with a commodity fabric. Each server consists of a set of resources (CPU,
RAM, NIC) interconnected with standard interfaces (QPI, DDR, PCIe). A
modern general-purpose Intel CPU consists of a number of processor cores
all sharing the uncore that includes I/O controller (IIO), integrated memory
controller (iMC), last-level cache (LLC), and in-die interconnect (IDI).

collectively referred to as uncore resources [29]. NFs
contend for these uncore resources and, as we show, such
contention can degrade an NF’s throughput by as much as
40% compared to its performance when run in isolation (§2).

Providing performance guarantees in NFV essentially
boils down to solving the noisy neighbor problem, common
in multi-tenant environments [62]. Traditionally, this problem
has been addressed through resource partitioning. However,
in the NFV context, performance variability primarily stems
from contention for the LLC [10] and, until recently, no
mechanism existed to partition the LLC.1 This changed with
the introduction of processor features – e.g., Intel® Cache
Allocation Technology (CAT) [27] – that provides hardware
mechanisms for partitioning the LLC across cores.

CAT is a mechanism that opens the door to a new approach
for performance isolation in NFV. However, this mechanism
has neither been widely tested in nor applied to the NFV con-
text. Hence, in this paper, we study whether and how CAT can
be applied to support performance SLOs for NFV workloads.
More specifically, we explore the following two questions.

First, we evaluate whether CAT is sufficient to ensure per-
formance isolation across NFs? We show that CAT “out of
the box” does not provide predictable performance: instead,
some NFs’ performance continues to vary (by as much as
14.7%) depending on their neighboring NFs. This contradicts

1Instead, prior work on providing SLOs aimed to predict the impact of
contention on performance [10]. However, such prediction is difficult and,
as we show in §6.2, is no longer accurate with newer hardware and software.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 283

Application Description Mpps Instructions/Cycle L3 refs/Packet L3 hit rate Kilocycles/Packet

Efficuts [61] Efficuts classifier (32k rules) 1.224 0.63 10.23 99.92 1.72
EndRE [1] Click-based WAN optimizer 3.770 1.95 1.54 99.95 0.56
Firewall Click-based classifier (250 rules, sequential search) 0.366 0.59 1.59 99.44 5.74
IPsec Click-based IPsec tunnel using IPsec elements 0.442 3.31 5.13 99.83 4.75
LPM Click-based IP router pipeline with RadixIPLookup 5.475 1.92 3.87 99.80 0.38
MazuNAT Click-based NAT pipeline by Mazu Networks 2.698 1.53 12.14 99.92 0.78
Snort [53] Inline IDS (20k rules [16, 57]) with netmap for I/O 0.683 1.94 25.61 97.03 3.06
Stats Click-based flow stat collection with AggregateIPFlows 3.685 1.28 10.22 99.92 0.57
Suricata [46] Inline IDS (20k rules [16, 57]) with netmap for I/O 0.205 1.61 26.89 98.36 10.
vEPC Standalone software implementation of LTE core network - - - - -

Table 1: Characteristics of NFs used in this work. The performance is measured when the NF is run alone with exclusive access to 45 MB LLC with a
test traffic of min-sized packets sampled from a pool of 100k flows uniformly at random. Snort and Suricata use netmap while the rest use DPDK for
I/O. We do not report these statistics for vEPC due to constraints discussed in §4.1.

prior work [10, 63] which identified cache contention as
the main source of performance variability for NFs. Careful
investigation reveals the cause of this problem: poor buffer
management with Intel Data Direct I/O [31], a processor fea-
ture that enables direct NIC-to-LLC transfers (i.e., bypassing
memory), can lead to a leaky DMA problem in which packets
are unnecessarily evicted from LLC leading to variable
performance. We describe a simple buffer sizing policy that
avoids the leaky-DMA problem and show that, with this
policy, CAT is sufficient to ensure performance isolation
(with performance variability under 3% across all scenarios).

Next, having ensured the robustness of CAT as a
performance isolation knob given proper buffer sizing, we
turn to the question of how to apply CAT in a practical
system. The challenge here lies in designing a scheduler that
assigns resources to NFs in a manner that is accurate (no
SLO violations), efficient (minimizing resource use), and
scalable (so that decisions can be easily adapted to changing
workloads and infrastructure).

We develop ResQ, a cluster resource scheduler that
provides performance guarantees for NFV workloads. ResQ
computes the number of NF instances required to satisfy
SLO terms, and allocates LLC and cores to them. ResQ
balances accuracy and efficiency by first profiling NFs to
understand how their performance varies as a result of LLC
allocation. For scalability, ResQ uses a fastpath-slowpath
approach. We formulate the scheduling problem as a
mixed-integer linear program (MILP) that minimizes the
number of machines to guarantee SLOs. Solving this
MILP optimally is NP-hard and hence ResQ uses a greedy
approximation to schedule NFs upon admission. In the
background, it periodically computes a near-optimal solution,
and only moves from the greedy to this solution when doing
so would lead to a sufficiently large improvement.

We show that ResQ is accurate (with zero SLO violations
in our test scenarios), efficient (achieving between 60–236%
better resource efficiency compared to prior work based on
prediction [10]) and scalable (can profile and admit new
SLOs in under a minute).

To our knowledge, our work is the first to analyze the
efficacy of using CAT to solve the noisy neighbor problem
for a wide range of NFs and traffic types, and ResQ is the
first NFV scheduler to support performance SLOs, showing
that the benefits of NFV need not come with the loss of
what has traditionally been a vital part of carriers’ service
offerings. ResQ is open source and the code can be found
at https://github.com/netsys/resq.

The remainder of this paper is organized as follows:
we start by quantifying the impact of contention on NFV
workloads (§2) and then provide relevant background
information and elaborate on the problem we address
(§3). We study whether CAT is sufficient for performance
isolation in §4, then present the design and evaluation of
ResQ in §5 and §6 respectively. We discuss related work in
§7, and finally conclude.

2 Motivation
A reasonable first question to ask is whether the current
NFV approach of running multiple NFs on shared hardware
results in performance variability, i.e., does the noisy
neighbor problem matter in practice for NFV workloads.
We address this question by evaluating the effects of sharing
resources for a range of NFs (listed in Table 1), and by
comparing their throughput and latency when they are run
in isolation – i.e., on a dedicated server with no other NFs
– to their performance in a shared environment comprising
of a mix of 11 other NFs (see §4.1). In both cases, we run
the NF being evaluated on its own core and allocate the
same set of resource to it, thus avoiding any contention due
to core sharing. We repeat our measurements using both
small (64 B) packets and large (1518 B) packets, and send
sufficient traffic to saturate NF cores. We delay a more in
depth discussion of our experimental setup to §3.

We show the results of our comparison in Figure 2, which
shows the percent degradation in throughput and 95th per-
centile latency. Each bar shows the maximum performance
loss for an NF running on shared infrastructure when com-
pared to the isolated run. We observe that 7 of the NFs we test
demonstrate a performance degradation of more than 10%,

284 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/netsys/resq

while another 5 show a degradation of more than 20%. Some
suffer significant throughput (up to 44.3%) and latency degra-
dation (up to 24.5%) and we find that this holds for both small
and large-packet workloads. We also tested the effect of con-
tention on a virtual Evolved Packet Core (vEPC) system us-
ing a domain specific packet generator, and observed an 80%
degradation in throughput. The vEPC packet generator does
not measure latency, and as a result we do not include these re-
sults in Figure 2. Finally, we expect that NF degradation will
worsen as we increase the number of NFs that share a server.

In conclusion, we find that most NFs suffer significant
degradation due to resource contention – this holds for both
small and large packet traffic.

3 Background and Problem Definition
Next we present some background for our work, focusing in
particular on describing NFV workloads, identifying sources
of contention that affect network functions, evaluating
prior work in this area, and introducing the processor cache
isolation mechanism used by ResQ. Finally, we define the
NFV SLO enforcement problem that we address in the rest
of this paper.

3.1 NFV Workloads
NFV workloads consist of packet-processing applications,
canonically referred to as Network Functions (NFs); they
range from relatively simple with lightweight processing (e.g.,
NAT, firewall) to more heavyweight ones (e.g., vEPC [17]).
NFs may be chained together such that packets output from
one NF is steered to another. For example packets might first
be processed by a firewall and then a NAT.

NF performance can vary – even in the absence of the
noisy neighbor problems, and an individual NF running in iso-
lation will often display variance in performance across runs.
Work over the last decade has led to practices that have been
shown to improve performance stability for software packet
processors and are now widely understood and adopted [11,
13, 42]. The most significant ones include running NFs on
dedicated and isolated cores that use local memory and NICs
(NUMA affinity), maintaining interrupt-core affinity, dis-
abling power saving features (i.e., idle states, core and uncore
frequency scaling), and disabling transparent huge pages. We
adopt the same and, from here on, all our discussion of per-
formance predictability assumes that the above techniques
are already in use. As we shall show, these are necessary but
not sufficient – we still need to address contention for shared
resources, which is our focus in this paper.

3.2 Sources of Contention
Naı̈vely, one might believe that placing NFs on independent
cores ensures that they do not share resources.2 However,

2There may also be contention within the fabric connecting different
servers; that is outside the scope of this paper, but we envisage that standard
fabric QoS and provisioning mechanisms [6, 54] can be applied there.

in modern processors, cores share several resources.
Resources shared across cores include: PCI-e lanes and
CPU’s integrated I/O controller, and memory channels and
CPU’s integrated memory controller, and last-level cache
(LLC) as shown in Figure 1. Currently, most servers do not
oversubscribe PCIe lanes, and NICs do not contend for these
resources. While independent NFs might share PCIe lanes
when sharing NICs using SR-IOV [33] or through a software
switch [25], one can control contention for these resources
by rate limiting ingress traffic received by an interface. As a
result the main resource that NFs in shared infrastructure can
compete on are memory and LLC, and we study the effect
of both in this paper.

3.3 Prior Work (or Lack Thereof) in NFV
To our knowledge, the only work that analyzes the impact
of resource contention on NFV workloads is a work by
Dobrescu et al. [10]. That work proposes using a simple
model for predicting performance degradation due to
contention for the last level cache. However, as shown in
§6.2, the model is inaccurate when tested under newer
hardware and different workloads – e.g., we find that their
model overestimates the impact of contention by as much
as 13% (a relative error of 75%) for newer hardware and
workloads. In addition, that work focuses on predicting
degradation rather than meeting performance guarantees;
consequently, it does not discuss how one can enforce a
desired limit on the level of contention. In contrast, our work
focuses on enforcing SLOs using hardware mechanisms
such as CAT. As we show in §4, ResQ provides robust
performance guarantees for a variety of workloads.

Other work has looked at managing NFV jobs. This
includes works such as E2 [47], Stratos [20], OPNFV [36].
While these systems perform some basic allocation of
resources to NFs, none consider contention nor do they
aim to provide performance guarantees. ResQ can be
incorporated into these systems allowing them to provide
performance guarantees; ResQ is currently under evaluation
for adoption in one commercial orchestrator.

3.4 Hardware Cache Isolation
ResQ’s enforcement relies on recent processor QoS features
implemented in processors that enable monitoring and con-
trol of shared processor resources. For Intel processors, these
features are collectively known as the Intel Resource Director
Technology (RDT) which include Intel Cache Allocation
Technology (CAT) [30]3 and Cache Monitoring Technology
(CMT). They allow users to allocate or monitor the amount
of cache accessible to or used by threads, cores, or processes.

To monitor a set of processes or cores using CMT, the
kernel allocates a resource monitoring ID (RMID) which the
processor uses to collect usage statistics for them. The kernel

3Cache partitioning is also available in other server processors, for ex-
ample Qualcomm’s Amberwing processor [43] which is based on ARM64.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 285

De
gr

ad
at

io
n

(p
er

ce
nt

)

0

10

20

30

40

50

EffiCutsEndRE
Firewall IPsec LPM

MazuNATSnort Stats
Suricata

Throughput - 64B
Throughput - 1518B

(a) Maximum throughput drop

De
gr

ad
at

io
n

(p
er

ce
nt

)

0

6

12

18

24

30

EffiCuts EndRE
Firewall LPM Snort Stats

Suricata

Small packets
Large packets

(b) Maximum 95th percentile latency increase
Figure 2: Maximum performance degradation for minimum and MTU-sized packets without isolation. Due to interference, throughput and latency degrade
up to 44.3% and 24.5% respectively. Small and large packet trends are similar for all NFs. We do not measure latency for NFs that mangle packets in
a way incompatible with our traffic generator’s timestamp embedding (MazuNAT, IPSec), and vEPC whose domain-specific traffic generator does not
report latency. LPM and Snort do not exhibit sensitivity with large packets due to a testbed limitation: their cores were not saturated at line rate.

updates a core register with this RMID upon context switch
to bind the monitored entities to the RMID. Similarly, when
limiting the cache available to processes or cores, the kernel
first allocates a class of service identifier (CLOS). It then
updates a register to specify the amount of cache accessible
to a CLOS. Finally, the kernel can associate a CLOS with a
process by updating the appropriate register when switching
to the process. Linux allows users to specify the set of
processes to be monitored using a newly introduced RDT

interface. For the evaluation reported in this paper, we used
these features as implemented on the Xeon® processor E5 v4
family which allows users to specify up to 16 cache classes.
The processor we use for our evaluation allows us to enable
access to between 5%–100% of the cache, in 5% increments,
for each CLOS. To our knowledge ResQ is the first research
work that uses CAT to provide performance isolation in NFV.

3.5 Problem Definition

Our goal is to support performance SLOs for NFV work-
loads. The conjecture driving this paper is that CAT gives
us a powerful and practical knob to achieve this. To validate
this conjecture we must answer the following questions:

1. The crux of providing SLOs is knowing how to isolate
different NFs from a performance standpoint. Is CAT
sufficient to ensure performance isolation between NFs
or do we also have to consider contention for other
resources? We study this question in §4.

2. CAT is ultimately just a configuration knob and using
it in a practical system raises a number of questions: what
is a good scheduling algorithm that balances scalability
(scheduling decisions per second), accuracy (minimizing
SLO violations), and efficiency (minimizing use of
server resources)? What is the API for SLOs or contract
between NFs and the NFV scheduler? What information
do we need from NFs to make good scheduling decisions?
We address these through the design, implementation,
and evaluation of ResQ in §5 and §6.

4 Enforcing Performance Isolation
Dobrescu et al. [10] argued that the level of LLC contention
entirely determines NF performance degradation. This obser-
vation would lead one to believe that merely enabling CAT
– which controls the level of cache contention – is sufficient
to ensure performance isolation, i.e., ensure that one NF’s
performance is unchanged due to the actions of any other
colocated NF. In this section we evaluate this hypothesis,
and find that it does not hold; we then explain why this is
the case and present our strategy for mitigating this issue.

4.1 Experimental Setup
NF workloads. We ran our evaluation on a range of
NFs (see Table 1) including: NFs from the research
community (e.g., Efficuts [61], EndRE [1]) and industry
(e.g., Snort [53], Suricata [46], vEPC [17]); NFs with simple
(e.g., Firewall, LPM) and complex (e.g., Snort, Suricata)
packet processing; NFs with small (e.g., IPSec) and large
(e.g., Snort, Stats) working set sizes; NFs using netmap [52]
(e.g., Snort and Suricata) and DPDK [12] (e.g., Efficuts and
Click) for I/O; NFs that are standalone (e.g., Snort) and those
that are built on frameworks like Click (e.g., MazuNAT).
We also evaluated the impact of contention on an industrial
virtual Evolved Packet Core [17] system4 that implements
LTE core network functionality in software. Due to licensing
issues these tests were run on a different testbed, and made
use of a domain-specific commercial traffic generator.

Test setup and CAT configuration. We ran all our
evaluation on a server with an Intel Xeon E5-2695 v4
processor and dedicated 10 Gb/s and 40 Gb/s network ports.

We repeat the same experiments as in §2 after enabling
CAT. We evaluate two scenarios for each NF:
• Solo run, where we run the NF under test on a single core

and CAT is configured to allocate 5% of LLC to the NF
(the smallest allocation with CAT). We run no other NFs
run on the machine. This provides us with a baseline for

4Vendor name anonymized due to licensing requirements.

286 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

how the NF behaves with a specific LLC allocation but
no contention on the other resources.

• Shared runs, where the NF under test is run on a single core
and we use CAT to allocate 5% of LLC to the NF. We run
11 instances of a different competing NF on the remaining
cores, these instances share the remaining 95% of LLC. We
repeat this experiment to analyze the performance impact
of each type of competing NF, i.e., in each iteration we pick
a different NF from Table 1 to use as the competing NF.
Observe that in both cases, the NF under test is allocated

the same number of cores and the same amount of LLC. In
our experiments we measure the target NF’s performance in
terms of throughput and 95th percentile latency, and compute
performance degradation for shared runs compared to a solo
run.

NF Size Degradation LLC Miss Rate (%) Mem BW
(bytes) (%) NF TX RX Util. (%)

MazuNAT 64 2.4 65.5 0.02 8.49 31
1518 12.2 72.9 55.3 88.6 94

Stats 64 0.3 64.5 0.07 8.84 31
1518 14.7 73.1 63.5 89.1 99

Table 2: CAT does not sufficiently isolate NFs in shared runs with large
packets. The culprit is the high memory bandwidth utilization with large
packets which in turn is because the “leaky DMA” issue renders DDIO
ineffective. All numbers are the worst-case numbers for shared runs. TX/RX
LLC miss rate and memory bandwidth utilization are processor-scoped
whereas NF degradation and its LLC miss-rate are NF-scoped.

4.2 Is CAT Sufficient?
Surprisingly, our results were mixed and showed that
CAT is not always sufficient for providing performance
isolation: while CAT was successful at isolating NFs when
processing small (64 B) packets, where throughput and
latency degradation remained below 3%, it could not isolate
all NFs when large (1518 B) packets were used: we observed
degradation of up to 14.7% for some NFs (e.g., MazuNAT
and Stats). This is particularly surprising in light of the fact
that NFs process packets at a higher rate when small packets
are used, as a result, memory accesses should be more
frequent for smaller packets compared to larger packets, and
one would expect greater degradation for smaller packets.

We began our investigation into this anomalous result
by checking whether there was a difference in cache miss
rates between shared and solo runs. Unsurprisingly, we
found no noticeable difference and concluded that CAT was
functioning as expected. Next, we analyzed measurements
from other hardware counters in the platform and found
that memory bandwidth utilization increased substantially
in going from small to large packets (Table 2).

Can memory contention affect NF performance? To
answer this question, we first used the Intel Memory Latency
Checker (MLC) [32] to measure memory access latency as
a function of increasing memory bandwidth utilization. We
plot the memory access speed (i.e., inverse of the latency)

A
c
c
e
s
s
 s

p
e
e
d

 (
p

e
rc

e
n
t)

40

50

60

70

80

90

100

Memory bandwidth utilization (percent)

0 20 40 60 80 100

Figure 3: Memory access speed as a function of load. The memory access
latency increases linearly with load on memory controller up to around 90%
utilization.

in Figure 3 and find that with up to approximately 90% load
on memory channels, the memory access speed degrades
linearly with increase in load, and subsequently experiences
super-linear degradation dropping to 40% of the baseline
value.

Figure 4: Normalized NF throughput for a selection of NFs as a function of
memory load. The curves track the memory access speed curve (Figure 3)
very closely.

Next, we checked whether this observation meant that
NF performance would also degrade with increased memory
contention. We analyzed this by running NFs under the same
environment as was used for the solo runs and running MLC
on the other cores of the same server to generate memory
bandwidth load. We show the results for this experiment
in Figure 4 and find that the added memory contention
does lead to performance degradation for NFs; NFs like
MazuNAT are up to 50% slower with aggressive memory
contention. Note that this is a near worst-case degradation
in response to memory contention – MLC exhibits a more
aggressive memory access pattern when compared to
network functions (and most other applications).

What causes memory contention? We certainly did not
expect to see much memory traffic in our shared workload.
While a single core is capable of inducing around 12 GB/s traf-
fic on the memory controller, we expect cores running NFs to
generate a fraction of this load. That is because, cycles during
which the NF may access state are spaced out by cycles spent

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 287

on compute intensive portions of packet processing including
I/O, framework processing, and stateless portions of the NF
processing. To empirically validate this hypothesis, we wrote
a synthetic NF that accesses DRAM 1000 times per packet
and observe that it can only generate 2.5 GB/s of memory
traffic – we expect a realistic NF to generate far less traffic.

Furthermore, our processor is equipped with Intel Data
Direct I/O (DDIO) technology [31] which lets DMAs for
packet I/O interact with the last level cache rather than
going to DRAM. As a result, we did not expect packet I/O
to contribute to memory contention. However, given our
expectation that NF state accesses should be more frequent
with small packets (due to higher packet rates) we suspected
that some interaction with DDIO might be the root cause
of the substantial increase in DRAM traffic.

4.3 The Leaky DMA Problem
By default, DDIO is limited to using 10% of the LLC. When
a buffer that needs to be DMAed is not present in LLC, it is
first brought into the LLC resulting in memory traffic. We hy-
pothesized that this might be the cause of memory contention
in our system. Furthermore, DMA transfers are mediated by
the processor DMA engine (as opposed to a core), therefore,
cache misses during DMA are not included in the core-based
LLC counters we used when evaluating the efficacy of CAT
above. To test our hypothesis, we looked at CPU perfor-
mance counters that measure PCIe-sourced LLC references
and misses, and found that the I/O-related LLC miss-rates
increased from nearly 0% to around 60% on the TX path and
90% on the RX path when going from small packets to large
packets in the shared runs. This showed that DDIO is ineffec-
tive at preventing memory contention in our system, but why?

The LLC space used by DDIO cannot be partitioned using
CAT, and is shared across NFs. As a result, if the aggregate
number of packet buffers exceed DDIO’s LLC space then
packet I/O can contend for cache space and evict buffers
holding packets being processed. The maximum number of
in-flight packets is bounded by the number of descriptors
available to NIC queues. For the experiments above, NFs
had their own queue each with 2048 descriptors – that is a
total of 24576 buffers for 12 queues. In the shared runs, this
translates to requiring 3 MB of cache space for small packets
(each spanning 2 cache lines), but a whopping 37.5 MB for
large packets (each spanning 25 cache lines).

As noted earlier, we had not observed significant changes
in NF cores’ cache miss rates when comparing solo and
shared runs. This suggested that LLC contention due to
DDIO does not affect parts of the packet that are processed
by the NF. We thus found that DDIO frequently evicts cache
lines belonging to packets that are being processed, and
these are needed soon after eviction for packet TX. Similarly
the RX path frequently needs to fetch buffers that were
previously evicted due to DDIO space contention. Together,
they result in much of the network traffic and stale buffers

to bounce back and forth between LLC and DRAM multiple
times. We refer to this problem as the leaky DMA problem
and identify it as the root cause of performance variability
for NFs when CAT is used.

4.4 Solution: CAT + Buffer Sizing
Fortunately, both DPDK and netmap provide mechanisms
to control the number of DMA buffers used by the system.
In case all DMA buffers are in use, no packets are received
from the NIC. DMA buffers become available once the
packet data contained within them is freed, at which point
new data can be received. Therefore controlling the number
of in-flight buffers allows us to control the efficacy of DDIO.
In ResQ, we restrict the size of the pool from which packet
buffers are allocated based on the aggregate number of MTU
sized packets that can fit in the LLC space reserved for
DDIO, thus avoiding the leaky DMA problem. Note that
NICs also contain a sizeable buffer (4096 packets in Intel
NICs) and as a result this restriction does not result in packet
loss unless the incoming link is congested.

We evaluated the efficacy of using buffer sizing to solve
the leaky DMA problem by rerunning both solo and shared
runs after fixing the number of allocated packet buffers to the
number calculated above. As shown in Figure 5, this resulted
in a situation where for both packet sizes throughput and
latency degradation were less that 3% (including the vEPC
which is not reported in the Figure 5), thus confirming our fix.

Other Resources. Given our experience with memory
contention, one might be concerned about contention on
other resources which we briefly discuss here. We do not
observe notable IOMMU contention [50] since we use
statically-mapped DMA buffers backed by huge pages. The
maximum degradation we observe in a microbenchmark
that maximizes core to IDI traffic is below 4% – in practice,
the IDI utilization is much lower and the degradation
is negligible. IIO throughput in the Haswell/Broadwell
processors is around 160 Gbit/s which may introduce a
bottleneck if all PCIe lanes (40) are more than half utilized.
However, the aggregate traffic per CPU remains below
150 Gbit/s in our experiments; classical QoS mechanisms
would sufficiently address the fair-sharing of this resource.
Consequently, we conclude that contention for these other
resources is not a concern given the current architecture.

Recap. To summarize we found that while memory con-
tention can be a source of performance variability, this is not a
result of NF behavior, but rather because of poor DMA buffer
sizing which can result in the leaky DMA problem. The leaky
DMA problem causes DMA buffers to be repeatedly evicted
from cache which in turn results in high memory bandwidth
utilization. We address the leaky DMA problem by appro-
priately controlling the aggregate number of active DMA
buffers, and find that this, in conjunction with CAT, is suffi-
cient to ensure performance isolation for NFV workloads. Fi-

288 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

De
gr

ad
at

io
n

(p
er

ce
nt

)

0

0.5

1

1.5

2

2.5

3

3.5

EffiCutsEndRE
Firewall IPsec LPM

MazuNATSnort Stats
Suricata

Small packets
Large packets

(a) Maximum throughput drop

De
gr

ad
at

io
n

(p
er

ce
nt

)

0

0.5

1

1.5

2

2.5

3

3.5

EffiCuts EndRE
Firewall LPM Snort Stats

Suricata

Small packets
Large packets

(b) Maximum 95th percentile latency increase
Figure 5: Maximum degradation in throughput and 95th percentile latency for minimum and MTU-sized packets when target NF is isolated per §4.4. They
are both consistently below 3% across all the experiments. When comparing, note the difference in the y-axis range with Figure 2 and that the results do
not include latency measurements for IPSec and MazuNAT due to traffic generator’s constraints.

nally, our results here show that as opposed to what was found
by Dobrescu et al. [10], issues beyond LLC sizing can affect
NF performance. We believe this is because of changes to
software (e.g., use of DPDK), and hardware architecture (e.g.,
DDIO). Additionally that work considered only small packet
sizes and did not analyze accuracy with MTU-sized packets.

5 ResQ

In this section we present the design and implementation
of ResQ, a cluster resource manager that is designed to
efficiently schedule NFs while guaranteeing that SLOs hold.
We begin by describing ResQ’s design and we focus our
discussion on three aspects:

Service interfaces: Traditionally, network operators have
relied on resource overprovisioning to meet performance
objectives with hardware network appliances. NFV can
allow us to guarantee SLOs while more efficiently utilizing
resources. However, achieving this greater efficiency
requires that tenants provide ResQ with workload and other
information in addition to the NF. We describe ResQ’s
inputs and the types of guarantees it can enforce in §5.1.

NF profiling: Given an input NF, ResQ needs to determine
its resource requirements. These depend on the NF con-
figuration, input traffic, and platform and thus varies across
tenants and operators. In §5.2, we describe ResQ’s efficient
and automatic profiler that measures how NF performance
(both throughput and latency) varies as a function of LLC
allocation. The ResQ profiler minimizes the number of
executions required to collect this information, and can
thus rapidly profile a large set of NFs. The profiler’s output
is a key input to the ResQ scheduler.

NF scheduling: Finally, we present our scheduler in §5.3.
ResQ implements a two-level scheduler that takes as input
NFs, SLO specifications and requirements, and profiling re-
sults and determines (a) the number of NF instances to start,
(b) the server(s) on which these instances must be placed;
and (c) the amount of the LLC to assign to each instance.

5.1 ResQ SLOs
How do we improve efficiency of resource utilization while
continuing to meet performance objectives? Our insight is
that how an NF performs – given a fixed set of resources
– depends on two factors. First, NF configuration such as
rule set of a firewall or an IDS – the size and complexity
of this configuration directly affects performance [4, 15]).
Second, traffic profile which captures characteristics such
as distributions for flow arrival, flow sizes, packet sizes,
and packet interarrivals. NF data sheets often highlight that
performance depends not just on the input traffic rate but also
on factors such as the number of new sessions per second
and traffic mix [48]. ResQ improves scheduling efficiency
by accounting for these factors when allocating resources.

Tenants can specify two types of performance SLOs:
reserved and on-demand, which we explain next.

Reserved SLOs specify the NF or chain, its expected con-
figuration and traffic profile, and its performance target (i.e.,
expected latency and throughput). Given this information,
ResQ profiles (see §5.2) the NF to determine its performance
as a function of resource use, and uses this information to
allocate resources. ResQ does not distinguish between NFs
or chains of NFs and profiles a chain similarly to a single NF.
Since we assume that the traffic profile, configuration, and
maximum input rate (specified as part of the performance
target) do not vary, implementing the computed allocation is
sufficient to satisfy the SLO term. Run-time deviations from
the specified traffic profile or NF configuration may only
violate the corresponding SLO term – it does not affect other
SLOs because ResQ provides sufficient isolation among
SLOs. Tenants are required to submit a new admission
request to ResQ in the event any of these parameters change;
in response, ResQ may either reallocate resources or deny
admission if objectives cannot be met.

ResQ ensures stable resource usage for NFs making use
of reserved SLOs. This simplifies resource provisioning
for the network operator without significantly affecting
efficiency for NFs with stable configuration and input

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 289

Figure 6: Normalized throughput as a function of LLC allocation for a
selection of NFs.

traffic. We envision that, similar to cloud providers, network
operator will encourage the use of reserved SLOs by
providing volume discounts to tenants. Reserved SLOs are,
however, inefficient for NFs with highly variable workloads
– e.g., NFs with high traffic variance – since these must be
overprovisioned to meet worse-case traffic demands. Such
NFs are better suited to use on-demand SLOs.

On-demand SLOs specify the NF and target latency.
ResQ continuously monitors NF latencies and resource
utilization, and dynamically adjusts resource allocations to
meet the target latency independent of the input traffic or
configuration. If the target latency could not be met under
a best-case allocation, ResQ raises an error. Furthermore,
ResQ relies on traffic policing to appropriately reduce input
load if it is unable to meet the total traffic demand – e.g.,
due to lack of resources or reaching a user-specified cap on
resource usage. We provide further details about in §5.3.

5.2 ResQ Profiler
ResQ relies on performance profiles to determine resource
allocation for reserved SLOs. A ResQ profile consists of
throughput-LLC allocation (e.g., Figure 6) and latency-load
(e.g., Figure 7) curves. To construct these curves, the profiler
runs a set of experiments and collects measurements. The
time taken to run one experiment varies depending on the
traffic pattern – it takes around 5 seconds with our sample
traffic profiles. Building a general NF profile that is valid
across all configurations and traffic patterns would likely
require exploring a potentially unbounded space and is
infeasible. Profiles generated by ResQ are, therefore, specific
to not just the NF, but also the configuration and traffic
pattern specified by a reserved SLO. Since our profiles are
quite specific, we might require a large number of profiles for
an NFV cluster; consequently, we must ensure that profile
generation is fast. Furthermore, errors in an NF profile affect
ResQ’s accuracy and efficiency, and therefore we need to
ensure that generated profiles are accurate. We rely on in-
terpolation, with dynamically varying interpolation intervals,
to quickly produce accurate profiles as described below.

The throughput-LLC allocation curve for an NF can
be generated by running it alone on a profiling server

Figure 7: Latency as a function of normalized input traffic load for a
selection of NFs.

and measuring its throughput as the profiler varies the
amount of allocated LLC using CAT §3.4. To generate
the latency-throughput curve (e.g., Figure 6), the profiler
launches the NF with a given LLC allocation and measures
the 95th percentile latency as a function of input traffic rate.
This measurement is repeated for different LLC allocations
to produce a latency-throughput curve. In Figure 7, we show
an example of such curves for a fixed LLC allocation (we
chose to allow NFs to access all of the LLC in this case).

Since the profiler is in the critical path of the admission
control process, naı̈vely running all the required experiments
(400 datapoints for around 20 utilization levels and 20
LLC allocations) delays the process significantly (e.g., 34
minutes with 5 second runs). To alleviate this bottleneck in
the admission control process, we observe that these curves
could be accurately constructed with far fewer datapoints.

We observed that, across a wide range of NFs, the
latency-throughput curves vary only slightly for different
LLC allocations. As a result, we can safely approximate this
curve by measuring an NF’s worst-case latency, which corre-
sponds to the LLC allocation that maximizes NF throughput.
Furthermore, we observed that both sets of curves are mono-
tonically increasing, and that in all cases the throughput-LLC
allocation is concave, while the latency-throughput curve
is convex. This allows us to approximate the curve by
measuring throughput and latency at a few points, and
using linear interpolation to compute values for intermediate
points. We implement our interpolation as follows: the
profiler begins by measuring the minimum, maximum
and midpoint of each curve. It then computes the linear
interpolation error by comparing the interpolated value with
the measured mid-point. If the interpolation error is above
1%, the profiler recursively splits both intervals and repeats
the same procedure. The profiler stops collecting additional
measurements once the interpolation error falls below 1%.
In our experience, each profile required between 8–12
measurements and could be constructed in under a minute.

5.3 ResQ Scheduler
The ResQ scheduler is comprised of two parts:
• A centralized scheduler is responsible for admission

control, placement for all SLOs, resource allocation for

290 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

reserved SLOs, and setting aside resources on individual
servers for on-demand SLOs.

• A server agent that runs on each server and is responsible
for configuring the server, monitoring resource utilization,
and detecting SLO violations. The server agent imple-
ments a local scheduler that is responsible for allocating
resources to NFs with on-demand SLOs that are placed
on the server by the centralized scheduler.
In clusters running ResQ, tenants submit SLO requests to

the centralized scheduler which performs admission control.
For on-demand SLOs, the scheduler checks if the cluster has
sufficient resources available to launch one instance of the
NF (the supplied NF description includes information about
minimum resources required by an instance), and rejects
the SLO should sufficient resources not be available. For
reserved SLOs, the scheduler consults the NF profile (see
§5.2) to determine whether the SLO is feasible; if so, the
scheduler uses a greedy algorithm (see §5.3.1) to compute
NF placement and resource requirements for meeting the
performance objectives. Admission is denied if the greedy
algorithm cannot find a fit, otherwise it notifies the appro-
priate server agents to launch NF instances and allocate the
requested resources to them. The scheduler also programs the
datacenter fabric so as to steer traffic to these NF instances
– similarly to existing NFV schedulers [20, 21, 47, 51], we
assume that the fabric will split traffic across these instances.

While the greedy allocation computed by the central
scheduler is sufficient for meeting the performance
objectives, it might not be optimal in terms of resource use.
Therefore, in the background, ResQ also periodically solves
a mixed-integer linear program (MILP) to find a (near-
)optimal schedule. If the gap in resource usage between this
and the greedy schedules exceeds a configurable threshold,
ResQ migrates running NFs5 to implement the optimal
schedule. Migrating to the optimal schedule frees up more
resources that can be used to accommodate other SLOs.

On-demand SLOs are scheduled locally by server agents.
Upon submission of an on-demand SLO, the centralized
scheduler finds a server that has sufficient resource to run
one instance of the NF and assigns the on-demand SLO to
that server. The server agent uses max-min fair allocation
to partition the on-demand LLC space among such NFs. If
the server agent is unable to meet the NFs latency targets,
it notifies the central scheduler which in turn adds NF
instances to the cluster.

Next we provide more details about the algorithm used
for scheduling both types of NFs.

5.3.1 Reserved SLOs

Computing the optimal schedule for reserved SLOs is an
NP-hard problem. Hence, we develop an online greedy
algorithm for fast admission. After the profile is generated,

5We rely on standard VM migration techniques.

ResQ attempts to greedily bin-pack the NF instances using
a first-fit heuristic, which works as follows.

1. It divides the target throughput by the expected through-
put of a single instance to estimate the number of NF
instances required to meet the objective. The expected
throughput of one instance is what a single instance
can sustain when allocated a fair share of LLC (i.e., the
available LLC divided by the number of cores) such that
its latency does not exceed the target latency.

2. It calculates the minimal LLC allocation for each instance
by iteratively adding a unit of LLC allocation to each
instance in a round-robin fashion until the aggregate
throughput is above the target.

3. It places instances on servers using the first-fit decreasing
heuristic, i.e., places the largest instance first. If this
algorithm succeeds, ResQ launches the instances each
with the computed schedule.

The greedily generated schedule may be suboptimal be-
cause (a) it is online and incremental (does not move running
instances), and (b) uses a heuristic to determine how many
NF instances to run. To improve the placement efficiency,
in the background, ResQ computes an optimal schedule. We
formulate the placement problem as a mixed-integer linear
program whose objective is to minimize the number of
servers used (see Appendix A). We use a MILP solver [24]
to compute the (near-)optimal schedule. In our experiments,
the greedily and incrementally computed schedule’s resource
use is within 20% of the optimal one (see §6).

The solver typically finds near-optimal solution(s) for
inputs which require a cluster size of around 40 servers in
seconds to minutes. To scale to larger-sized clusters, we
partition the SLOs into sets and pass each to a different
solver. The computed schedules are instantiated on different
slices of the cluster. This allows us to trade off computation
time for schedule optimality.

The computed MILP-based schedule might be different
than the running schedule that was greedily updated during
admission. To converge to the new schedule various NFs
must be migrated; this problem has been studied in the
literature in the form of migration of stateful middleboxes
or scaling out NFs [21, 51, 55]. This is likely an expensive
and disruptive process, therefore we migrate only when the
optimality gap is large enough.

Alternatively, a migration avoidance [47] strategy could
be deployed to avoid the disruption or complexity of state
migration. This involves booting up new instances but
leaving old instances (that were to be terminated) running
– the old instances will continue serving their traffic but no
new traffic is directed to them. When their traffic eventually
dies down they will be terminated. This strategy is only
effective when sufficient spare capacity is available to bring
up new instances without terminating the old ones.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 291

5.3.2 On-Demand SLOs

Resource allocation for on-demand SLOs is jointly per-
formed by the local resource scheduler and the centralized
scheduler. The central scheduler is responsible for leasing
dedicated cores and LLC space to local schedulers for
scheduling on-demand SLOs, and for assigning new
NF instances to servers with spare resources. Leases are
dynamically adjusted when reserved SLOs arrive or leave
the system – i.e., beyond configured resources reserved for
on-demand SLOs, the central scheduler may make spare
resources available to local schedulers.

When computing LLC allocations for on-demand SLOs,
NFs are placed in a shared LLC space or dedicated partitions
based on whether or not their latency objectives can be met
with sharing. Sharing LLC space (when possible) helps min-
imize the overhead of LLC partitioning since CAT allocates
LLC space in fixed and relatively large increments. The NFs
that require isolation are put in separate classes. If, despite
isolation, the local scheduler fails to meet an NF’s latency
objective, it notifies the central scheduler which in turn adds
more instances or resources for the failed SLO if possible.

The above-mentioned LLC allocation is computed as fol-
lows. First, all on-demand NFs are placed in a cache class
that includes all the on-demand LLC space leased to the local
scheduler. The server agent waits for a period of time for
NFs to serve traffic before monitoring SLO violations and
LLC occupancies (using Intel CMT – see §3.4) – occupancy
measurements are used to estimate NFs’ LLC demand. If
one or more SLO violations are observed, the local scheduler
continues with a max-min fair allocation of the LLC space.
SLO-compliant NFs and SLO-violating NFs with low cache
miss rates that use less than their fair share of LLC are put
in a shared cache class with an allocation closest to the sum
of their LLC occupancy. SLO-violating NFs with high cache
miss rates that use less than their fair share of LLC are put in
an isolated cache class with an allocation close to their fair
share. The rest remain in the shared cache class whose size
is reduced to the remaining on-demand LLC space. This pro-
cedure is repeated for the shared cache class to completion.

The server agent is responsible for monitoring on-demand
NF instances for SLO violations. Such violations may
occur when traffic pattern or NF configuration changes.
Upon detection of a violation or change in the leased LLC
space size, the local scheduler repeats the LLC allocation
procedure to find whether it could meet the new demand
with local resources and if not would notify the central
scheduler of the new failed SLO.

6 Evaluation
In this section, we address the following questions:
Accuracy: To what extent do contention-agnostic

schedulers violate SLOs? We compare against a simple
bin-packing strategy adopted by current contention-agnostic
schedulers [20, 45, 47]. We compare accuracy both without

CAT and when we use CAT to evenly partition LLC across
NFs.

Efficiency: We compare the efficiency of ResQ’s online
(greedy) and offline (mixed integer program based)
schedulers against a prediction-based online scheduler [10]
and an E2-like scheduler [47] which dynamically scales the
number of NF instances in response to input traffic load.
To answer these questions, we generated three sets of

reservation-based SLOs each with around 200 terms: one
involving only the cache-sensitive NFs; one involving only
the cache-insensitive NFs; and one involving a mixture of
all the NFs. We set the target throughput and latency for
each SLO to 90% and 100% of what a single instance of the
corresponding NF can sustain when run in isolation without
LLC contention. To avoid interfering with DDIO’s reserved
LLC space (10%), ResQ uses only 90% of the available
LLC. To enable comparison with the fair allocation scheme,
we use 9 cores per server so that each core can be allocated
an equal cache partition (10%).

6.1 Accuracy
SL

O
 v

io
la

tio
ns

 (p
er

ce
nt

)

0

20

40

60

80

100

Shared LLC Equal LLC partitions

100
91

55

11 00

Insensitive
Combination
Sensitive

Figure 8: SLO violations with >5% error for contention-agnostic methods.
Contention-agnostic placement results in throughput and latency SLO
violations. As expected, violations increase with the sensitivity of NFs.
Naı̈vely partitioning LLC has an adverse effect.

If SLO violations were rare, it would be appealing to opt
for a simpler contention-agnostic scheduler. To assess this
choice, we evaluate the ability of current contention-agnostic
schedulers to meet SLOs. To do so, we first run each NF
on a dedicated server without restricting cache access to
determine its throughput and latency. We then use this
information to pack NF instances on the first available server.
We show the results in Figure 8. Unsurprisingly, no SLO
violation are observed for the cache-insensitive workload.
However, SLO violations are common for combination
(11%) and cache sensitive workloads (91%) workloads.

Next, to check whether a naı̈ve cache isolation strategy is
sufficient to reduce violations, we reran the same workload
after using CAT to partition the LLC evenly between all
NFs on a server. The number of violations worsened in
this case: 55% of SLOs are violated in the combination
workload, while all SLOs are violated for the cache-sensitive
case. In the combination case, this difference is due to the

292 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

unavailability of the underutilized dedicated LLC space of
the cache-insensitive NFs to the cache-sensitive ones.

Note that schedules computed by ResQ have no violations
in all cases.

6.2 Efficiency

Re
qu

ire
d

m
ac

hi
ne

s

0

20

40

60

80

100

120

140

ResQ optimal ResQ greedy Dynamic Prediction-based

128

4445
38

48
353530

22222222

Insensitive
Combination
Sensitive

Figure 9: Resource efficiency of different schemes and SLO mixes. Not
surprisingly, all methods are similar when NFs are cache-insensitive.
The ResQ’s greedy admission is within 19% of the optimal solution.
The prediction-based scheme uses significantly more servers because it
overestimates degradation.

ResQ builds on availability of a hardware mechanism
(cache isolation) to provide predictable performance regard-
less of contention. Two alternative strategies for getting
predictable performance involve: (a) online scheduling
where one measures NF performance and dynamically
allocates NF instances in response to SLO violations, and
(b) using a performance predictor (e.g., Dobrescu et al.’s
predictor [10]) to predict throughput degradation due to
resource sharing and using its result for scheduling. We
analyze ResQ’s efficiency in contrast to these options next.

ResQ’s efficiency. For reserved SLOs, ResQ implements
both an offline MILP-based scheduler that computes near
optimal schedules and an online greedy scheduler. In
Figure 9, we first evaluate the accuracy gap between these
options. The optimal scheduler performs up to 19% better
than the greedy scheduler. However, as previously noted in
§5.3.1, the optimal scheduler may take much longer than

Pr
ed

ic
tio

n
er

ro
r (

pe
rc

en
t)

0
2
4
6
8

10
12
14
16

EndRE IDS LPM NAT RE Stat VPN
Figure 10: Error of the throughput degradation prediction method [10].
We observe that errors are significantly higher using the current generation
of hardware than what was previously observed. To follow the original
setup, we use the following chains: EndRE is LPM→ Stats→ EndRE,
VPN is LPM→Stats→IPsec, IDS is Snort, RE [58] is LPM→Stats→RE,
STAT is LPM→Stats, NAT is MazuNAT, and IP is LPM.

the greedy scheduler, and ResQ can opportunistically move
to using the optimal schedule if warranted.

Comparison with elastic scaling. Systems like E2 [47]
continuously monitor NFs and dynamically add new
instances if demand could not be met. A major drawback
of this approach is that it cannot be used to enforce any
latency SLOs. Despite being dynamic, this approach is not
significantly more efficient than ResQ as seen in Figure 9.
The dynamic approach uses the same number of instances for
both cache-insensitive and combined traffic. It does provide
a small savings of 1 machine (i.e., a 2.2% improvement) for
cache-sensitive workloads. However, this saving comes at the
cost of no SLO isolation (variations in an NF’s behavior may
affect all its neighboring SLOs) and no latency guarantees.

Comparison with the predication-based approach.
Finally, one could use a performance predictor to predict
degradation due to resource sharing; this produces a safe
schedule assuming the predictor never underestimates
degradation. Dobrescu et al. [10] previously proposed such
a predictor. Their predictor works as follows. Each NF is
profiled using a series of synthetic benchmarks with tunable
pressure on the LLC. The result is a curve which one can
use to determine throughput as a function of competing LLC
references. The competing LLC references are approximated
by counting the LLC references of NFs’ solo runs. This
method was reported as being very accurate in 2012.

To study its robustness against significant hardware and
software changes, we reran the experiments on our testbed
using similar NFs and setup (6 competing NFs and 19.5 MB
of LLC). Figure 10 shows the average prediction error in
percentage points. Each bar shows the difference between
predicted and observed performance drop suffered by a target
NF when sharing a processor with 5 identical competing
application instances (9 different sets of NFs for each NF)
similarly to their choice of competitors. We find that this
predictor is conservative and consistently overestimates
degradation by a large margin. Consequently, it can be used
to enforce (throughput) SLOs albeit not efficiently.

We use this predictor to build an online first-fit bin-
packing scheduler. The scheduler packs an instance on the
first server whose existing SLOs do not get affected by the
new instance; it proceeds to pack a second instance if the
predicted throughput is below the target throughput. We ran
all the computed placements and recorded the real through-
put and latency to assess SLO compliance. All schedules
remain SLO compliant regardless of cache sensitivity except
the prediction-based scheduler that violates 0.5% latency
SLOs in the combination case. This is not surprising because
this method does not predict latency degradation.

In Figure 9, we compare the efficiency of ResQ with
the prediction-based method – by efficiency, we mean the
number of CPUs (equivalent to servers for single-CPU
servers) each scheduler needs to satisfy its SLOs. With

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 293

cache-insensitive NFs, all schedulers need the minimum
number of CPUs because consolidation does not affect the
performance. As expected, the efficiency gap widens as the
cache sensitivity of the mix of SLO NFs increases. The gap
between the prediction-based scheduler and ResQ’s greedy
scheduler increases from 37.1% to 184.4%.

The are two reasons for such a sharp increase in
resource usage for the prediction-based scheduler: (a) overly
conservative performance estimate results in more false
positives (mispredicting violations), and (b) lack of a
mechanism to predict how much traffic an NF can handle
without SLO violations. The gap in the sensitive case is due
to the latter reason: individual servers have spare capacity
but the scheduler cannot use any because an NF serving
maximum traffic will violate the existing NFs’ SLOs, but
what if it only serves 20% of its capacity? These issues aside,
scheduling is much simpler in ResQ because isolation is
enforced by hardware regardless of contention.

Based on this result, we conclude that ResQ’s simple
first-fit bin-packing heuristic using CAT (online admission)
is effective in maintaining a resource efficient and SLO-
compliant schedule, while there is opportunity to further
optimize this schedule by periodically running a slow offline
scheduler.

7 Related Work
Performance modeling. Prior work [5, 9, 23, 40, 60] has
investigated modeling and predicting the effect of resource
contention in the context of HPC and datacenter applications.
These models are often useful in contexts where the relative
performance of two settings needs to be compared, e.g.,
when scheduling or placing jobs. However, they are not
accurate enough for our purposes. Dobrescu et al. [10] have
proposed using cache references as a predictor of throughput
with contending processes. While this was highly accurate
given the hardware and software stacks available at the time,
we find that it consistently underestimate throughput (§6.2)
in today’s systems. We showed that a scheduler using this
predictor may consume up to 3×more resources compared
to ResQ (§6.2). Moreover, this work on prediction models
still leaves open the question of enforcement wherein an
NF that deviates from its predicted behavior (whether due
to malicious behavior, configuration changes, or varying
traffic) can impact the performance of its neighboring NFs.

Performance isolation. Packet processing and NFV plat-
forms [28, 41, 47, 49] do not isolate NFs from contending
on uncore resources. Such systems can be extended to use
CAT to provide performance isolation. Our contribution
lies in showing how cache isolation can be used to both
provide performance isolation and guarantee SLOs. Other
systems that provide end-to-end performance guarantees for
multi-tenant networks [2, 39, 56] treat CPUs as independent
resource units and do not account for interference across
cores. DRFQ [22] models a packet-processing platform as

a pipeline of resources where each packet is sequentially
processed by each resource. DRFQ’s primary goal is to
provide per-flow fairness while we focus on SLO guarantees.
Ginseng [19] presents an auction-based LLC allocation
mechanism, but does not offer SLOs. Heracles [37] uses
CAT and other mechanisms to co-locate batch and latency-
sensitive jobs while maintaining millisecond time-scale
latency SLOs; we target more aggressive latency SLOs (high
throughput, microsecond scale).

Mechanisms. The mechanisms and use cases of cache
partitioning have been studied in the past [8, 34, 35]. A rich
body of literature looks at software-only methods for cache
isolation [14, 26, 59, 64]. Their performance implications
have not been studied in the NFV context but they may be
used as an alternative to CAT when hardware support is not
available or more granular allocations are desired. A recent
work [63] has also briefly looked at the benefit of using CAT
to alleviate a specific instance of the noisy neighbor problem.
It focuses on a single workload and demonstrates that, in
one specific case, CAT notably improves performance in
presence of a noisy neighbor problem. By contrast our work
is general (covering a wide range of NFs and workloads),
identifies cases where CAT alone does not sufficiently isolate
NFs, and develops a contention-aware scheduler that uses our
isolation mechanism to provide SLO guarantees for NFs.

8 Concluding Remarks
Despite no algorithmic innovation, ResQ’s simple greedy
scheduler achieves a significantly higher resource efficiency
than prior prediction-based methods and its efficiency is on-
par with elastic schedulers that do not guarantee SLOs. More-
over, despite its hardness, ResQ’s MILP formulation yields
(near-)optimal schedules in a matter of seconds to minutes.
These advances were all made possible because we identified
a technique – building on hardware cache isolation and
proper buffer management – that ensures strong performance
isolation regardless of noisy neighbors. ResQ is open source
and available at https://github.com/netsys/resq.

Acknowledgement
We would like to thank Andrew Herdrich, Edwin Verplanke,
Priya Autee, Christian Maciocco, Charlie Tai, Rich Uhlig,
Michael Alan Chang, Yashar Ganjali, David Lie, Hans-Arno
Jacobsen, our shepherd Tim Wood, and the NSDI reviewers
for their comments and suggestions. This work was funded in
part by NSF-1553747, NSF-1704941, and Intel corporation.

References
[1] B. Aggarwal, A. Akella, A. Anand, A. Balachan-

dran, P. Chitnis, C. Muthukrishnan, R. Ramjee, and
G. Varghese. EndRE: An End-system Redundancy
Elimination Service for Enterprises. In NSDI, 2010.

294 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/netsys/resq

[2] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E.
Thereska. End-to-end Performance Isolation Through
Virtual Datacenters. In OSDI, 2014.

[3] H. Basilier, M. Darula, and J. Wilke. Virtualizing Net-
work Services- The Telecom Cloud. Ericsson Review,
2014. URL: http://tinyurl.com/j5adfts.

[4] Y. Beyene, M. Faloutsos, and H. V. Madhyastha. SyFi:
A Systematic Approach for Estimating Stateful Fire-
wall Performance. In PAM, 2012.

[5] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fe-
dorova. A Case for NUMA-aware Contention Man-
agement on Multicore Systems. In USENIX ATC,
2011.

[6] R. Braden, D. Clark, and S. Shenker. Integrated Ser-
vices in the Internet Architecture: an Overview. RFC
1633.

[7] Broadband Forum. TR-178: Multi-service Broadband
Network Architecture and Nodal Requirements, 2014.
URL: http://tinyurl.com/z7vkk6h.

[8] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Pat-
terson, and K. Asanovic. A Hardware Evaluation of
Cache Partitioning to Improve Utilization and Energy-
efficiency While Preserving Responsiveness. In ISCA,
2013.

[9] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware
Scheduling for Heterogeneous Datacenters. In ASP-
LOS, 2013.

[10] M. Dobrescu, K. Argyraki, and S. Ratnasamy. To-
ward Predictable Performance in Software Packet-
processing Platforms. In NSDI, 2012.

[11] T. L. K. Documentation. Reducing OS Jitter Due to
Per-CPU kthreads. URL: http://tinyurl.com/
mpnf4m3.

[12] Data Plane Development Kit (DPDK), 2015. URL:
http://dpdk.org/.

[13] DPDK Performance Tuning Guide, 2016. URL: http:
//tinyurl.com/jkngtok.

[14] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fair-
ness via Source Throttling: A Configurable and High-
performance Fairness Substrate for Multi-core Mem-
ory Systems. In ASPLOS, 2010.

[15] S. Ehlert, G. Zhang, and T. Magedanz. Increasing
SIP firewall performance by ruleset size limitation. In
PIMRC, 2008.

[16] Emerging Threats. Emerging Threats Open Rulesets,
2016. URL: http://tinyurl.com/nppr7ut.

[17] The Evolved Packet Core. URL: http://tinyurl.
com/hvkukyw.

[18] ETSI. Network Functions Virtualisation. URL: http:
//portal.etsi.org/NFV/NFV_White_Paper.

pdf.

[19] L. Funaro, O. A. Ben-Yehuda, and A. Schuster. Gin-
seng: Market-Driven LLC Allocation. In USENIX
ATC, 2016.

[20] A. Gember-Jacobson, A. Krishnamurthy, S. S. John,
R. Grandl, X. Gao, A. Anand, T. Benson, A. Akella,
and V. Sekar. Stratos: A Network-Aware Orches-
tration Layer for Middleboxes in the Cloud. CoRR,
abs/1305.0209, 2013.

[21] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R.
Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling Innovation in Network Function Control. In
SIGCOMM, 2014.

[22] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-
resource Fair Queueing for Packet Processing. In SIG-
COMM, 2012.

[23] S. Govindan, J. Liu, A. Kansal, and A. Sivasubrama-
niam. Cuanta: Quantifying Effects of Shared On-chip
Resource Interference for Consolidated Virtual Ma-
chines. In SOCC, 2011.

[24] Gurobi Optimization, Inc. Gurobi Optimizer Refer-
ence Manual, 2015. URL: http://www.gurobi.
com.

[25] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S.
Ratnasamy. SoftNIC: A Software NIC to Augment
Hardware. Technical report UCB/EECS-2015-155,
EECS Department, University of California, Berkeley,
2015.

[26] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V.
Chadha, and J. Moses. Rate-based QoS techniques
for cache/memory in CMP platforms. In ICS, 2009.

[27] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C.
Gianos, R. Singhal, and R. Iyer. Cache QoS: From
Concept to Reality in the Intel® Xeon® Processor
E5-2600 v3 Product Family. In HPCA, 2016.

[28] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM:
High Performance and Flexible Networking Using Vir-
tualization on Commodity Platforms. In NSDI, 2014.

[29] Intel® Xeon® Processor E5 and E7 v4 Families Un-
core Performance Monitoring, 2016. URL: http://
tinyurl.com/zpsj63k.

[30] Introduction to Cache Allocation Technology in the
Intel® Xeon® Processor E5 v4 Family, 2016. URL:
http://tinyurl.com/hasjlm2.

[31] Intel® Data Direct I/O (DDIO), 2014. URL: http:
//tinyurl.com/jlkzvll.

[32] Intel® Memory Latency Checker, 2015. URL: http:
//tinyurl.com/kgroxnw.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 295

http://tinyurl.com/j5adfts
http://tinyurl.com/z7vkk6h
http://tinyurl.com/mpnf4m3
http://tinyurl.com/mpnf4m3
http://dpdk.org/
http://tinyurl.com/jkngtok
http://tinyurl.com/jkngtok
http://tinyurl.com/nppr7ut
http://tinyurl.com/hvkukyw
http://tinyurl.com/hvkukyw
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.gurobi.com
http://www.gurobi.com
http://tinyurl.com/zpsj63k
http://tinyurl.com/zpsj63k
http://tinyurl.com/hasjlm2
http://tinyurl.com/jlkzvll
http://tinyurl.com/jlkzvll
http://tinyurl.com/kgroxnw
http://tinyurl.com/kgroxnw

[33] I. L. A. Division. PCI-SIG SR-IOV Primer, 2011. URL:
http://tinyurl.com/kt7bwqb.

[34] R. Iyer. CQoS: A Framework for Enabling QoS in
Shared Caches of CMP Platforms. In ICS, 2004.

[35] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D.
Newell, Y. Solihin, L. Hsu, and S. Reinhardt. QoS
Policies and Architecture for Cache/Memory in CMP
Platforms. In SIGMETRICS, 2007.

[36] Linux Foundation. OPNFV, 2016. URL: https://
www.opnfv.org/.

[37] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving Resource Effi-
ciency at Scale. In ISCA, 2015.

[38] D. Lopez. OpenMANO: The Dataplane Ready Open
Source NFV MANO Stack. In IETF Meeting Pro-
ceedings, Dallas, Texas, USA, 2015.

[39] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi.
Retro: Targeted Resource Management in Multi-
tenant Distributed Systems. In NSDI, 2015.

[40] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.
Soffa. Bubble-Up: Increasing Utilization in Mod-
ern Warehouse Scale Computers via Sensible Co-
locations. In MICRO, 2011.

[41] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M.
Honda, R. Bifulco, and F. Huici. ClickOS and the Art
of Network Function Virtualization. In NSDI, 2014.

[42] Performance Tuning for Mellanox Adapters. URL:
http://tinyurl.com/y8slm66k.

[43] T. P. Morgan. ARM Servers: Qualcomm is Now a
Contender. https://www.nextplatform.com/
2017/08/23/arm- servers- qualcomm- now-

contender/, 2017.

[44] Nokia. Solutions: Residential Services Delivery, 2016.
URL: http://tinyurl.com/h3cwqsy.

[45] T. L. Foundation. ONAP: Open Network Automa-
tion Platform. https://www.onap.org/ retrieved
09/21/2017.

[46] Open Information Security Foundation. Suricata:
Open Source IDS/IPS/NSM engine, 2015. URL: http:
//suricata-ids.org/.

[47] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-
nasamy, L. Rizzo, and S. Shenker. E2: A Framework
for NFV Applications. In SOSP, 2015.

[48] P. A. Networks. PA-3000 Series Datasheet. https:
/ / www . paloaltonetworks . com / products /

secure - the - network / next - generation -

firewall/pa-3000-series retrieved 09/21/2017.

[49] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,
and S. Shenker. NetBricks: Taking the V out of NFV.
In OSDI, 2016.

[50] O. Peleg, A. Morrison, B. Serebrin, and D. Tsafrir. Uti-
lizing the IOMMU Scalably. In USENIX ATC, 2015.

[51] S. Rajagopalan, D. Williams, H. Jamjoom, and A.
Warfield. Split/Merge: System Support for Elastic Ex-
ecution in Virtual Middleboxes. In NSDI, 2013.

[52] L. Rizzo. Revisiting Network I/O APIs: The Netmap
Framework. ACM Queue, 10(1), 2012.

[53] M. Roesch. Snort - Lightweight Intrusion Detection
for Networks. In LISA, 1999.

[54] S. Blake and D. Black and M. Carlson and E. Davies
and Z. Wang and W. Weiss. An Architecture for Dif-
ferentiated Services. RFC 2475, 1998.

[55] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishna-
murthy, C. Maciocco, M. Manesh, J. Martins, S. Rat-
nasamy, L. Rizzo, and S. Shenker. Rollback-Recovery
for Middleboxes. In SIGCOMM, 2015.

[56] D. Shue, M. J. Freedman, and A. Shaikh. Performance
Isolation and Fairness for Multi-tenant Cloud Storage.
In OSDI, 2012.

[57] Sourcefire’s Vulnerability Research Team. VRT Rule
Set, 2015. URL: https://www.snort.org/talos.

[58] N. T. Spring and D. Wetherall. A Protocol-
independent Technique for Eliminating Redundant
Network Traffic. In SIGCOMM, 2000.

[59] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: Approximating L2 Miss Rate Curves
on Commodity Systems for Online Optimizations. In
ASPLOS, 2009.

[60] L. Tang, J. Mars, and M. L. Soffa. Compiling for Nice-
ness: Mitigating Contention for QoS in Warehouse
Scale Computers. In CGO, 2012.

[61] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. Ef-
fiCuts: Optimizing Packet Classification for Memory
and Throughput. In SIGCOMM, 2010.

[62] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart,
and M. M. Swift. Resource-freeing attacks: improve
your cloud performance (at your neighbor’s expense).
In CCS, 2012.

[63] P. Veitch, E. Curley, and T. Kantecki. Performance
evaluation of cache allocation technology for NFV
noisy neighbor mitigation. NetSoft, 2017.

[64] X. Zhang, S. Dwarkadas, and K. Shen. Towards Prac-
tical Page Coloring-based Multicore Cache Manage-
ment. In EuroSys, 2009.

296 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://tinyurl.com/kt7bwqb
https://www.opnfv.org/
https://www.opnfv.org/
http://tinyurl.com/y8slm66k
https://www.nextplatform.com/2017/08/23/arm-servers-qualcomm-now-contender/
https://www.nextplatform.com/2017/08/23/arm-servers-qualcomm-now-contender/
https://www.nextplatform.com/2017/08/23/arm-servers-qualcomm-now-contender/
http://tinyurl.com/h3cwqsy
https://www.onap.org/
http://suricata-ids.org/
http://suricata-ids.org/
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.snort.org/talos

A MILP Formulation
When a new reserved SLO is submitted, ResQ profiles the
given NF (or chain) and, if admissible, greedily schedules
one or more instances of it. Periodically, ResQ looks for
a more optimal schedule to switch to if this results in
significant resource savings. We formulate this optimal
scheduling as a mixed-integer linear program.

Symbol Type Description

θi Constant Target throughput of SLO i
πil Constant Pivot point of piece l of SLO i
αil Constant Slope of piece l of SLO i
βil Constant Y-intercept of piece l of SLO i
τ Constant Number of cores per machine
φ Constant LLC size per machine
Ui Constant Maximum input load of SLO i
Ii jk Binary Var Instance j of SLO i is assigned to machine k
Nk Binary Var Machine k is active
Ci j Integer Var LLC allocated to instance j of SLO i
λi jl Binary Var Piece l of instance j of SLO i is used

Table 3: List of symbols used in MILP. We use indices i, j,k,l for SLO
terms, instances, machines, and profiles’ linear fit pieces respectively. The
number of variables and constants depend on the size of the cluster, number
of SLO terms, maximum number of instances per SLO term, and number
of pieces of individual profiles.

The objective of the MILP in Listing 1 is to minimize the
number of machines used to satisfy all the SLO terms. As
input, it expects system configuration and profiles, and pro-
duces a schedule as output. For each SLO term, this schedule
provides the number of instances to start, where each instance
should be placed, and the amount of LLC allocated to each in-
stance. We encode the SLO profiles in the form of piecewise
linear approximations of their throughput-LLC curves.

min∑
k

Nk

s.t. ∑
k

Ii jk≤1 ∀i, j (1)

∑
i, j

Ci j.Ii jk≤φ ∀k (2)

Nk≤∑
i, j

Ii jk≤Nk.τ ∀k (3)

θi≤∑
j
[Ui.∑

l
λi jl.[αil.Ci j+βil]] ∀i (4)

∑
l

λi jl.πil≤Ci j≤∑
l

λi j(l+1).πi(l+1) ∀i, j (5)

∑
l

λi jl =∑
k

Ii jk ∀i, j (6)

Listing 1: Mixed-integer linear program that minimizes the number of
machines used to meet reserved SLOs in ResQ. A brief description of the
symbols appear in Table 3.

We use a set of variables to capture the scheduling results
and constants to encode the system configuration and
profiles:

θi specifies the target throughput for SLO term i.
πil specifies the pivot point for piece l of the throughput-LLC

linear approximation of SLO term i.
αil,βil specify the slope and y-intercept for piece l of the

throughput-LLC linear approximation of SLO term i.
τ,φ specify the number of cores and LLC size available on

each machine.
Ui is the maximum input load level that below which the

latency objective of SLO term i is satisfied across all LLC
allocations.

Ii jk indicates whether instance j of SLO term i is active on
machine k.

Nk is set if and only if machine k is active – i.e., at least one
instance is assigned to it.

Ci j indicates the amount of LLC allocated to instance j of
SLO term i. For an active instance, each such variable takes
a value between the minimum and maximum permissible
LLC allocation.

λi jl indicates whether linear fit l is chosen for instance j of
SLO term i.
Below we briefly describe the goal of each constraint in

the order they appear in Listing 1:
1. An instance runs on at most one machine.
2. The total LLC allocated to instances assigned to a machine

is less than or equal to the machine’s total LLC size (φ).
3. A machine is active when there is at least one instance

running on that machine, and an active machine may host
no more instances than its available cores (τ).

4. The aggregate throughput of instances of each SLO is
greater than or equal to its target throughput (θi).

5. Linear piece l of a profile is chosen if and only if the
LLC allocated to instance j of SLO term i lies in the
range corresponding to piece l of the throughput-LLC
linear approximation.

6. Exactly one linear piece is chosen when instance j of
SLO term i is active, otherwise, none is chosen.
For simplicity, we assume a homogeneous infrastructure

and that each SLO term instance requires a single CPU core;
the MILP could be adjusted to account for differences if nec-
essary. To account for small performance degradation despite
ResQ’s isolation (see §4.4), we include a 3% discount in Ui.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 297

Elastic Scaling of Stateful Network Functions
Shinae Woo?†, Justine Sherry‡, Sangjin Han?, Sue Moon†, Sylvia Ratnasamy?, and Scott Shenker?§

?University of California, Berkeley †KAIST ‡CMU §ICSI

Abstract

Elastic scaling is a central promise of NFV but has been
hard to realize in practice. The difficulty arises because
most Network Functions (NFs) are stateful and this state
need to be shared across NF instances. Implementing
state sharing while meeting the throughput and latency
requirements placed on NFs is challenging and, to date,
no solution exists that meets NFV’s performance goals
for the full spectrum of NFs.

S6 is a new framework that supports elastic scaling
of NFs without compromising performance. Its design
builds on the insight that a distributed shared state ab-
straction is well-suited to the NFV context. We organize
state as a distributed shared object (DSO) space and
extend the DSO concept with techniques designed to
meet the need for elasticity and high-performance in
NFV workloads. S6 simplifies development: NF writers
program with no awareness of how state is distributed
and shared. Instead, S6 transparently migrates state
and handles accesses to shared state. In our evaluation,
compared to recent solutions for dynamic scaling of
NFs, S6 improves performance by 100x during scaling
events [25], and by 2-5x under normal operation [27].

1 Introduction
The Network Function Virtualization (NFV) [13] vision
advocates moving middlebox functionality – called Net-
work Functions (NFs) – from dedicated hardware devices
to software applications that run in VMs or containers
on shared server hardware. An important benefit of the
NFV vision is elastic scaling — the ability to increase
or decrease the number of VMs/containers currently
devoted to a particular NF, in response to changes in
offered load. However, realizing such elastic scaling has
proven challenging and solutions to date come with a
significant cost to performance, functionality, and/or ease
of development (§3).

The difficulty arises in that most NFs are stateful, with
state that may be read or updated very frequently (e.g.,
per-packet or per-flow). Hence, elastic scaling requires
more than simply spinning up another VM/container
and updating a load-balancer to send some portion of the
traffic to it.

Instead, scaling can involve migrating state across NF
instances. Migration is important for high performance
(as it avoids remote state accesses) but its implementation
must be fast (to avoid long “pause times” during scaling
events) and should not be burdensome to NF developers.

In addition, elastic scaling must ensure affinity between
packets and their state (i.e., that a packet is directed to the
NF instance that holds the state necessary to process that
packet), and such affinity must be correctly enforced even
in the face of state migrations. A final complication is
that some types of state are not partitionable, but shared
across instances (see §2 for examples). In such cases,
elastic scaling must support access to shared state in
a manner that ensures the consistency requirements of
that state are met, and with minimal disruption to NF
throughput and latency.

The core of any elastic scaling solution is how state is
organized and abstracted to NF applications. Recent work
has explored different options in this regard. Some [33]
assume that all state is local, but neither shared or migrated
– we call this the local-only approach. Others [25,37] sup-
port a richer model in which state is exposed to NF devel-
opers as either local or remote, and developers can migrate
state from remote to local storage, or explicitly access
remote state – we call this the local+remote approach.
Still others [27] assume that all state is remote, stored in a
centralized store – we call this the remote-only approach.

The above were pioneering efforts in exploring the de-
sign space for NF state management. But, as we elaborate
on in §3, they still fall short of an ideal solution: the local-
only approach achieves high performance but is limited
in the NF functionality that it supports; the local+remote
approach supports arbitrary NF functionality but compli-
cates NF development and incurs long downtimes from
repartitioning state en bloc during scaling events; the
remote-only approach is elegant but imposes high perfor-
mance overheads even under normal operation.

In this paper, we propose a new approach to elastic
scaling in which state is organized as a distributed shared
object (DSO) space: objects encapsulate NF state and
live in a global namespace, where all NF instances can
read/write any object. While DSO is an old idea, it has not
to our knowledge been applied to the NFV context. In par-
ticular, DSO has not been shown to the meet the elasticity
and performance requirements that NFV imposes.

We present S6, a development and runtime framework
tailored to NFV. To meet the needs of NFV workloads,
S6 extends the DSO concept as follows: (1) for space
elasticity, we introduce dynamic reorganization of the
DSO keyspace; (2) to minimize the downtime associated
with scaling events, we introduce a “smart but lazy” state
reorganization; (3) to reduce remote access overheads, we
introduce per-packet microthreads and; (4) to optimize

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 299

performance without burdening developers, we expose
per-object hints via which the developer can inform the
DSO framework about appropriate migration or caching
policies. S6 hides all those internal complexities of
distributed state management under the hood, simplifying
NF development.

We present three elastic NFs implemented on top of
S6: NAT, PRADS (a network monitoring system [6]),
and a subset of the Snort IDS [8]. We show that NFs on
S6 elastically scale with minimal performance overhead,
and compare them to NFs built using prior approaches. A
local-only system like E2 [33] cannot support two of our
use-cases (NAT and PRADS) because it does not support
shared state. Compared to OpenNF [25], a state-of-the-art
framework based on the local+remote approach, S6
achieves 10x - 100x lower latency while sustaining 10x
higher throughput during scaling events. Compared to
StatelessNF [27], a state-of-the-art framework based
on a remote-only approach, S6 achieves 2x - 5x higher
throughput under normal operation.

2 Background: NF State Abstractions

The difficulty of elastic scaling arises in how to handle
NF state appropriately. NFs keep state about ongoing
connections (e.g., TCP connection state, last activity time,
number of bytes per user-device, a list of protocols used
at a given IP address). NFs read and update a state while
processing a packet and reuse the updated state to process
subsequent packets. Stateful NF instances should main-
tain correct NF state collectively to prevent the inconsis-
tent or incorrect behavior. Also, the system must handle
general forms of state sharing among instances, as we
will present in this Section. Such NFs’ behavior requires
significantly more care than merely spinning up another
NF instance and sending some portion of traffic to it.

We categorize NF state based on whether it is parti-
tionable. We say that state is partitionable if it can be
distributed across NF instances in a way that state is
only locally accessed, assuming a certain traffic load
balancing scheme. For example, per-flow state (such as
state for individual TCP connections) is partitionable, if
traffic is distributed on a flow basis. On the other hand, a
counter for the total number of active flows is an example
of non-partitionable state, since all NF instances need to
update the counter.

Whether state is partitionable or not is important
since it determines both the mechanisms needed to
manage that state and the achievable performance levels.
With partitionable state, we can collocate state with the
NF instance that processes it, and hence efficient state
migration is key to achieving high performance. If state
is not partitionable, high performance requires a different
set of techniques: e.g., caching state (when its consistency

Apps \ State Partitionable Non-partitionable

NAT -
Address mapping entry
Available address pool

Firewall Connection context -
Load
balancer [11, 21]

Connection - server
mapping

Server pool usage statistics

Traffic
Monitoring [6]

Connection context
Per-host context;
Statistics for packets,
used protocols and host

IDS/IPS
[8, 10, 34]

Connection context
A set of certificates, malicious
servers, or infected hosts;
Per-host port scanning counter

Web proxy [9] Connection context Statistics for cached entry
EPC [3] User state SLA/Usage per device/plan
IMS [5] SIP / RTP sessions Usage accounting per user

Table 1: Examples of state in popular NF types

semantics allows it), placing state to minimize remote
accesses, and minimizing the cost of remote state access.

Most non-partitionable NF state also provide oppor-
tunities for efficient sharing. We can categorize state by
whether it is updated mostly by a single or multiple in-
stances. From our observation, single-writer state tends to
be read-heavy, thus caching or replication can be effective.
When the state is updated by multiple writers simultane-
ously (e.g., global counters), looser consistency is often
tolerable so as to trade freshness of data for performance.

Table 1 lists examples of partitionable and non-
partitionable state found in some real-world NFs. We see
that both forms of state are common in real-world NFs.
For example, traffic monitoring systems [6] maintain
state at both the connection (partitionable) and the
host (non-partitionable1) levels. We also note that state
variables, whether partitionable or not, typically relate to
each other forming complex data structures. For example,
traffic monitoring systems manage a global table of hosts,
each referencing a list of its active connections.

3 State Management for Elastic Scaling
State management for elastic scaling of stateful NFs in-
volves many design options, such as where to place state
and when to initiate migration. They all affect the overall
NF performance, in terms of throughput and latency.
Existing approaches cause high performance overhead,
either during scaling events (i.e., instances join and leave)
or under normal operations (i.e., no ongoing scaling
events). In this section, we discuss the limitations of their
approaches in §3.1 and propose our new approach in §3.2.

3.1 Limitations of existing approaches

Figure 1 shows the typical components of an NFV
architecture as assumed by prior research [27, 27, 33, 37]
and industry efforts [13]. An NFV controller [24, 33]
manages NF instances that run on servers, while an SDN

1No load balancing scheme can ensure data locality of state for both
source and destination hosts at the same time.

300 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

controller manages the network fabric between servers,
including how traffic is load-balanced across the different
NF instances. Responsibility of NF state management—
initiating migration, placement, etc.—resides in the NF
controller. We now discuss existing approaches to NF
state management.

Local-only state: Early work on NFV management [22,
24, 33, 35, 38] typically assumed that NF state is parti-
tionable and hence they do not address the issue of shared
state. Some (e.g., E2 [33]) address elastic scaling but for
NFs with per-flow state only. In such cases, state migra-
tion is avoided by directing only new flows to new NF
instances. Thus, these early systems do not accommodate
NFs with shared or more general (i.e., beyond per-flow)
state, which is common in practice (Table 1). Hence, we
will not consider solutions based on a “local-only” model
further in this paper.2

Remote-only state: In this model, all NF state is kept in
a standalone centralized store. First proposed by Kablan
et al. [27], the elegance of this model is that support for
state sharing, consistency management, and durability (of
state) moves to the centralized store, while the NF in-
stances themselves are stateless and hence can be easily
added or removed. StatelessNF [27] uses this approach to
build various NFs such as a NAT, Firewall and TCP re-
assembler.

Unfortunately, this approach comes at the cost of
performance. In statelessNF, all state accesses are re-
mote: not only do these remote accesses inflate packet
latency, they also consume extra CPU cycles and network
bandwidth for I/O to the remote store. Our results in
§7.2 show that, relative to an NF that uses local state,
a remote-only approach can lead to a 2-3x degradation
in throughput and a 100-fold increase in packet latency.
Problematically, these overheads are incurred even under
normal operation (i.e., in the absence of scaling events)
and grow with the number of state accesses and the size
of messages. Recent work reports that such state accesses
are frequent in NFs: e.g., StateAnalyzr [28] reports that
typical NFs maintain 10-100s of state variables that are
per-flow or shared across flows.

Local+Remote In this model, state is distributed across
NFs and exposed to NF developers as either local or re-
mote. All NF state is defined (by the developer) to be either
local or remote, and is accessed accordingly. OpenNF [25]
and SplitMerge [37] adopts this model. For high perfor-
mance, partitionable state is typically defined as local
state (similar to local-only NFs) while non-partitionable
state requires explicit push/pull function calls to synchro-
nize with remote state.

2We note that systems such as E2 could be augmented with the state
management capabilities that we and others [25, 27, 37] propose.

NF1
NF	controller

Packets

NF2

SDN	controller

Forwarding	rule

Figure 1: Typical components of an NFV architecture

In this model, state management plays two roles: (1)
implementing access to remote state, (2) migrating state
upon scaling events so as to not break local memory
accesses. This functionality is implemented by a state
management framework (such as OpenNF) working in
concert with the NFs and SDN controllers. Under normal
operation, the local+remote approach has the potential to
achieve throughput and latency comparable to the previ-
ous models by migrating state to be co-located with the NF
instances that access it. Unfortunately, the overhead dur-
ing scaling events is high in this model. The reason stems
from the fact that state is explicitly defined and accessed
as local or remote. When a new NF instance is launched,
all state that may be accessed as local state at the new NF
instance must be migrated over to it before any access oc-
curs (since otherwise the local access would simply fail).

Scaling events thus result in “stop the world” behavior,
which involves the following steps: first, the SDN
controller buffers traffic destined for both the old and
new instance, by rerouting traffic from the fabric/load-
balancer to itself; next, the state management controller
coordinates the migration of relevant state from the old
to new NF instance; once migration completes, the SDN
controller releases buffered traffic and coordinates with
the fabric/load-balancer to turn off detouring traffic to
the SDN controller. This approach can lead to long pause
times during which both old and new NF instances stop
processing packets while state is repartitioned. This is
also complex to implement due to tight coordination
among the SDN controller, NF controller, and the inline
switches/load-balancer.3

As we show in §7.1, the local+remote approach lead
to very long pause times for practical NFs. For example,
PRADS implemented on OpenNF incurs a pause time
of 490 ms when migrating only 1,500 flows despite
extensive optimization to the process. In practice, the
pause time is likely to be even higher considering that a
typical 10 Gbps link has tens of thousands of concurrent
flows [43].

3A subtle additional challenge is that these components often come
from different vendors, complicating the adoption of such techniques.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 301

3.2 Our approach: Distributed shared state

The limitations of the aforementioned approaches lead us
to consider a new approach, the distributed shared state
model, which is familiar from distributed computing.
Here, state is distributed among the NFs, and can be
accessed by any NF. However, the NF developer makes
no distinction between local vs. remote state. Instead,
all state variables reside in a shared address space and
the state management framework transparently resolves
all state access. The framework is also responsible for
deciding where state is placed and migrating state across
NF instances when appropriate.

Done right, this model can achieve throughput and
latency comparable to the local-only model by migrating
state to be co-located with the NF instances that access it.
This model can also avoid the long pause-times incurred
by the local+remote approach. Because there is no
distinction between local and remote state, no proactive
migration is required during scaling events. The overhead
of migration is gradually amortized as packets arrive;
e.g., for the same PRADS scenario above, the pause-time
can drop to under 1 millisecond (§7). For the same reason,
state migration no longer needs tight coordination with
traffic load-balancing, hence reducing the system com-
plexity associated with the local+remote model. Finally,
the distributed shared state model simplifies NF devel-
opment. Developers can write NFs on top of a uniform
interface for state access, local or remote, outsourcing
the underlying details of state lookup, remote access, and
migration to the state management framework.

To the best of our knowledge, we are the first to
apply distributed shared state to NFV. We highlight two
challenges distinct from other application domains. NFs
have distinct performance requirements from traditional
cloud applications [18,31]. Furthermore, elasticity makes
it more difficult, dynamically reorganizing the structure
of state space into the new set of NF instances.

Achieving high performance: NFs have I/O intensive
workload, requiring very high throughput on the order of
millions of packets/s with sub-millisecond latency. Given
these requirements, only a few hundreds or thousands of
CPU cycles are available for every packet.

The key to achieving high performance is twofold.
Firstly, we should reduce the number of remote accesses
by leveraging the state-instance affinity and supporting
efficient sharing. As each type of NF state has different ac-
cess patterns and consistency requirements [28], the ques-
tion is how to leverage the information while minimizing
developer’s burden. Secondly, we need to minimize the
cost of remote access when it is unavoidable. While we
can hide the latency by processing other packets in the
meantime, it must be done so without increasing program-

ming complexity. The framework should be able to handle
data dependency detection and context stashing [15, 42].

Supporting elastic scaling: As explained above, scaling
events at runtime must not incur significant performance
degradation. Membership change in NF instance group
involves two potential sources of service disruption. First,
as input traffic is distributed across the new set of NF in-
stances, a subset of state variables must migrate to main-
tain locality. Second, in addition to the state variables
themselves, their location metadata must be reorganized
as well, for scalability of the shared state space. The chal-
lenge is how to perform these operations in a distributed
fashion, in order to avoid a single point of performance
bottleneck. Furthermore, the framework must ensure con-
sistent state access during the process, while minimizing
delay in packet processing.

4 S6 Design
S6 is a development and runtime framework for elastic
scaling of NFs. S6 makes the following assumptions,
which are general enough to apply to a wide variety of
deployment scenarios and environments. First, an NF
runs as a cluster of virtualized instances, such as VMs
and containers. Second, the network somehow distributes
input traffic across instances. Lastly, an external NFV
controller/orchestrator triggers scaling events to adapt to
load change.

S6 does not demand any particular network load
balancing mechanism or NFV controller behavior for
correctness. Therefore they are out of the scope of this
paper. One desirable property is that input traffic be
distributed across instances on a flow basis as like most
of load-balancers and switches already are doing, so that
S6 can leverage the state-instance affinity for high perfor-
mance. S6 differs from the existing NF state management
solutions [25, 37], all of which require sophisticated run-
time coordination across NFV controller, SDN controller,
and NF instances. S6’s decoupling from the load-balancer
and SDN controller reduces system complexity.

We summarize the main design components: 1) S6
provides the global DSO shared by all NF instances.
We choose ‘object’ as a basic unit of state. An object
encapsulates a set of data and its associated operations,
allowing access control and integrity protection of state.
All objects in the space are accessible with a uniform API,
regardless of where the objects physically reside. 2) Our
object abstractions provide NF developers with knobs to
specify object access patterns. The S6 framework uses
this information to improve performance by reducing
the number of remote state accesses. 3) When remote
state access is inevitable, S6 mitigates its cost by hiding
latency with microthreads; NF worker instances can
keep processing other flows only if they have no data
dependency on outstanding accesses to remote objects.

302 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Node	A
(Requester)

Node	B
(Key	owner)

Node	C
(Object	owner)

object	space

key	space where(Key1)=C

.......
get(Key1)
.......

NF	app
hash(Key1)=B

ObjectKey1
migrationable

Figure 2: DHT-based Distributed Shared Object Space

4) Upon scaling events, S6 reorganizes the space, while
keeping the workers processing traffic. S6 minimizes
service disruption with the smart but lazy migration of
objects and their metadata. We explain each component
in greater detail below.

4.1 DHT-based DSO space architecture

In the DSO space, state objects are uniquely identified
with a key. Keys can be of any type, such as 5-tuples, host
names, and URLs as necessary. When an NF instance re-
quests an object with some key (e.g., extracted from pack-
ets), S6 returns a reference to the object, rather than the ob-
ject binary itself. With the reference, the instance can read
or update the state by invoking object methods. S6 con-
structs the DSO space as a DHT-based two-layer structure
(Figure 2) of a key layer and an object layer [40]. Both lay-
ers are distributed over NF instances. The key layer keeps
track of the current location of every object, rather than di-
rectly storing objects. This layer of indirection offers great
flexibility in object migration; no broadcast is necessary
to locate an object, although it may reside (if it exists) on
any instance at the moment. The object layer stores the ac-
tual binary of objects. A reference to an object guarantees
accessibility, no matter where the object currently is.

When an instance accesses an object for the first time,
it hashes the key to identify the key owner, the instance
who knows the current object location, the object owner.
The object access request is sent to the key owner first,
then the key owner forwards the request to the object
owner. Once the location of the object is resolved, the
instance caches it so that subsequent object requests can
go directly to the object owner. When an object migrates
to another instance, the key owner must be notified.
The key owner updates the location of the object and
invalidates the cached location in workers.

The key owner takes charge of object creation,
deletion, and its reference creation; Those requests are
serialized and sequentially processed at the key owner.
Once the key owner receives object deletion request,
it rejects subsequence object access requests until new
object creation request comes.

Note that this two-layer structure is only internally
managed. S6 hides the complexity of placing and locating
objects from NF developers, so that they can focus on the
application logic itself.

4.2 Object abstractions: Per-object optimization

We provide an object abstraction that allows developers to
hint to the framework about what caching, migration, and
optimization strategies are appropriate for each object.
Different objects hence have different consistency guar-
antees depending on their usage. While state management
is a generic problem in distributed systems, we focus on
NFs’ distinct state characteristics and access patterns that
we can leverage to achieve good performance.

We first categorize object types into two types depend-
ing on whether the object permits updates from multiple
flows (thus multiple instances): partitionable objects
and non-partitionable objects. Based on the different
characteristics for each state type in §2, we introduce
appropriate optimization strategies for each object type.
APIs in detail and usage examples are in covered in §5.

Partitionable: leveraging state-instance affinity Parti-
tionable objects are primarily used for state that is updated
by a single flow; up to one writable reference to the ob-
ject is allowed. If an instance is holding the writable refer-
ence, other instances have to wait for their turn to acquire a
writable reference. This is enforced at the key owner since
it is a natural serialization point for all reference requests
to the object.

In NF contexts, while partitionable objects have high
affinity on a single instance, but occasionally, its state
affinity may move to other instances. For example,
per-flow objects’ affinity is decided based on the traffic
load-balancing policy of the network, which is not
controlled by S6. As NFs frequently update partitionable
state, often on a per-packet basis, keeping high state-
instance affinity is the key to achieving high performance
for partitionable objects.

Partitionable objects are gradually migrated between
instances when affinity changes. S6 uses a new request
for writeable access from other instances as an affinity
change indicator. When a key owner for a partitionable
object gets an object access request other than the current
object owner, it initiates the object migration process. The
current object owner voluntarily releases the reference
when the local reference count for the object reaches
to zero, then the object is transferred, and the instance
becomes a new object owner. Now in the new object
owner, all accesses to the object locally happens as the
reference points to the object binary in the memory.

Non-partitionable: consistency/performance trading
Non-partitionable objects are concurrently accessed from
multiple flows simultaneously; multiple writable refer-
ences to an object may exist. Supporting shared state with
high performance in distributed systems is generally dif-
ficult or impossible to achieve—if an object is very fre-
quently updated by multiple flows in a strongly-consistent
manner, it does not scale and S6 cannot help it. Fortu-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 303

nately, we found that the majority of non-partitionable
state in NF applications does not require frequent updates
(e.g., one update per flow) or allow trading consistency for
performance, as shown in Table 1. S6 provides three op-
timization mechanisms for non-partitionable objects that
NF developers can leverage.

First, S6 supports object access via method call ship-
ping, rather than migrating objects. This prevents objects
from bouncing between instances, to avoid wasting
in-flight time. The method calls are applied serially in the
order of request arrival at the object owner, preserving the
internal object consistency. For such non-partitionable
objects, NF developers need to design the objects to be
commutative, i.e., any order of methods calls should pro-
duce an acceptable result. Additionally, S6 supports un-
tethered update, which allows remote object update with-
out blocking if there is no need to wait for its completion.

Second, S6 supports abstractions to design objects to
enable trade-off between consistency and performance. If
a read method on an object class is tolerant of stale results,
instances can cache the results of the method locally. NF
developers can bound the staleness for each read method,
so that S6 can periodically refresh the cached results with
newer ones.

Third, S6 supports object replication, so that multiple
instances can update their local replica. Those replicas are
regularly merged to the main object at the object owner.
NF developers are expected to provide this merge func-
tion since it is very object-specific. Shared counters are
a prime use case of this local update and merge. Frequent
updates are done locally, while (infrequent) reads on the
counter cause local numbers to be merged globally.

4.3 Microthreads: Hiding the cost of remote access

Even with above optimizations for objects, blocking
remote access is necessary when waiting for migrating
objects, refreshing the cache, or dealing with objects with
strong consistency. The cost of remote state access is
high. Suppose that an NF instance issues an RPC request
and waits for its response, in order to process a packet.
Assuming 10us round-trip time between NF instances,
the latency translates to 30,000 cycles on a 3 GHz
processor. We can hide this latency with concurrency; the
NF can process other pending packets to keep the CPU
busy, as long as they do not have data dependency on
the RPC or introduce packet reordering in a flow. Once
its response arrives, the NF continues processing the
packet(s) that were blocked on it.

We adopt a multi-threaded architecture in favor of
ease of NF development to maintain execution contexts
of blocked flows. The other option was an event-driven
architecture, but it hurts programmability since de-
velopers must manually manage to save and restore
contexts [15, 42] for every state access. Another issue

is that whether a method call would block or not must
be visible to the NF developers, which adds additional
complexity to the application logic. In contrast, with
multi-threaded architecture, developers can program
packet processing easily while all thread scheduling is
automatically done by the S6 runtime.

To minimize the performance overhead of multi-
threading, S6 utilizes cooperative, user-space “mi-
crothreads”. User-level microthreads are much more
lightweight than kernel threads, since non-preemptive
scheduling is significantly simpler, and context switching
does not involve kernel/user boundary crossing. It also
scales up to millions (not thousands) of microthreads
thanks for their small footprint.

S6 manages a pool of microthreads to avoid thread
construction/destruction cost. A microthread runs for
each received packet. Whenever the thread is about to
block (e.g., an object is remote and/or in migration, cache
entry is being refreshed, data dependency is detected as
another microthreads is holding a reference, etc.), the
microthread yields to other pending threads and wait to
be rescheduled after the blocking condition has been re-
solved. This non-preemptive scheduling is automatically
done by S6 and transparent to the NF developer. When
multiple microthreads are ready to resume, S6 schedules
one with the longest wait time to avoid packet reordering
within a flow and to minimize latency jitter.

4.4 Smart but lazy DSO keyspace reorganization

When the membership of NF instances changes—due
to scaling events or node failures—S6 must reorganize
the DSO space for the new set of instances. This reor-
ganization involves both object space and key space. As
we illustrated in §4.2, the object space is repartitioned
automatically and gradually for new state-instance
affinity, as NF instances access state objects. Assum-
ing reference locality—most state access is done to a
small number of objects—frequently accessed objects
are quickly migrated to new object owners, incurring
minimal performance impact.

On the other hand, like the object space, S6 ensures
that the key space reorganization is also done gradually
so as to minimize performance impact. Suppose that we
reorganize the DSO key space from Si to Si+1, which use
hi(key) and hi+1(key) as lookup hashes for finding key
owner respectively. Reorganization must not break the
coherency of the keyspace, such that any key record is
neither lost nor owned by multiple key owners. At the
same time, we do not want to pause the entire system
for coherency; instead NF instances lazily migrate key
ownership from hi(k) to hi+i(k) in the background
as necessary. Our keyspace reorganization algorithm
ensures coherency even in the middle of scaling process.

304 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

When the scaling process starts, new key access
requests go to hi+i(k). The new owner hi+1(k) check if the
previous owner hi(k) has a record for k, and if so, the new
key owner pulls the record. During the scaling process,
every new key lookup requires two-hop routing. After
the keyspace converges to Si+1 (all key record migration
is completed), key lookups can be done with the normal
one-hop routing again.

Dealing with race conditions: One challenge comes
from the fact that we cannot assume that all nodes start
and finish the scaling process exactly at the same time. For
example, if two nodes A (previous owner of k, hi(k)) have
not been notified the scaling process and run in ‘normal’
operation but B (next owner of k, hi+1(k)) start ‘scaling’
operation, both two nodes would claim the ownership for
k. This corner case may result in two key records for k
created in both node A and B.

To prevent such conflict, S6 performs scaling in two
stages: pre-scaling and scaling stages. The workers
transition to scaling stage only if the controller has
confirmed that all workers are in pre-scaling state. This
barrier ensures that nodes in the ‘normal’ and nodes in
the ‘scaling’ stage do not coexist. Nodes in pre-scaling
stage do not actively transfer key ownership yet, while
being aware that other nodes may be in scaling process.
Ensuring that there is always a single key owner exists,
but not two or none, is done with the following rules:

R1 Preventing double ownership Suppose that node A
(prev owner, hi(k)) is in ‘pre-scaling’ and node B (next
owner, hi+1(k)) is in ‘scaling’. In this case, hi(k) should
be the single owner for k.

Since pre-scaling nodes can coexist with nodes still in
‘normal’ stage, node A should serve hi(k). Meanwhile,
node B hi+i(k) have more contexts about scaling process
than A. Until node A goes into ‘scaling’ stage, it defers
claiming the ownership for k, but keeps forwarding
requests to A.

R2 Preventing lost ownership Suppose that node A
(prev owner, hi(k)) is in ‘scaling’ and node B (next owner,
hi+1(k)) is in ‘pre-scaling’. If k is for a new object,
hi+1(k) should be the single owner. If k is for an existing
object, hi(k) should be the single owner.

In this case, no one claim the ownership of k, and the
two node forward requests on k to each other. We need to
prevent such loop. Let’s assume that A receives a request
on k. If k is for existing objects and A owns the key since
B hasn’t claimed the ownership. A keeps serving the
requests on k, until B claims ownership of k. If k is for
new objects, then B doesn’t have any information of k.
Therefore B would forward the request to A. A potential
loop is prevented by attaching version number to the
forwarded requests.

Category API Description

Object
SingleWriter Exclusive writeable
MultiWriter Concurrent writeable

Method
const stale Cached read
untethered Untethered update
merge(Object&) Merge two objects

Data
Structure

S6Map<Key, Object> Define a map in DSO
S6Ref<Object> Reference to an object
S6Iter<Object> Iterator of collections

S6Map
(DSO)

create(Key&,Flag&) Create an object
get(Key&) Retrieve an object
remove(S6Ref<>&) Remove an object

Table 2: S6 Programming API

State Type Examples
Object
Annotation

Method
Annotation

Partitioned
UDP/TCP
connection state SingleWriter -

Non-partitioned
freq update

Performance
statistics MultiWriter

untethered
stale
merge

Non-partitioned
read-heavy

NAT mapping
entry SingleWriter stale

Collection of
multi-type
state objects

linked-list
hashtable

Non-intrusive data structures
(§8.1)

Table 3: Common types of NF state and their annotations

5 Using S6
We introduce our programming model (§5.1) and provide
some examples of various NFs (§ 5.2).

5.1 S6 Programming model

Table 2 summarizes the S6 API. From a user’s perspec-
tive, S6’s core components are the shared object space
and tasks.

We provide two types of objects depending on whether
the object permits update from multiple writers (NF in-
stances). SingleWriter allows exclusive writes from
a single instance. MultiWriter allows concurrent
writes from multiple instances simultaneously. Methods
on objects can be annotated appropriately to allows more
optimization such as cached read (const stale),
update-and-forget (untethered), or regularly pushing
merged local updates (merge) into the object owner.
Then, S6 supports appropriate optimization on behind
based on object type as explained in previous section
§4.2. Figure 3 shows an example implementation of an
object class used in PRADS [6]. It is exactly same as
normal object oriented design only except the additional
annotations we introduce. In fact, from our survey of
popular NFs in Table 1, we found that most of NF state
falls into one of four types shown in Table 3.

S6 provides two types of tasks: data-plane and control-
plane. Data-plane tasks perform packet processing
on input network traffic. Control-plane tasks perform
out-of-band operations, such as updating configurations

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 305

class HostAsset: public MultiWriter {
public:
void update_service(Service s) untether;
void update_os(OS os) untether;
uint64_t first_detect_time() const stale;
uint64_t last_detect_time() const stale;
void merge(HostAsset local);

private:
addr_t ip;
uint64_t first_detect_time;
uint64_t last_detect_time;
List<Service> service_list;
List<OS> os_list;

};

Figure 3: A sample S6 object definition of PRADS’s
per-host network asset object

S6Map<IPKey, Asset> g_asset;
S6Map<FlowKey, Connection> g_conn;

// data-plane task
FlowKey fkey(sip, dip, sport, dport);
S6Ref<Connection> c = g_conn.create(fkey);

...
if (new_os_asset) {

S6Ref<Asset> asset = g_asset.get(sip);
asset->update_os_asset(new_os_asset);

}
...

// control-plane task
S6Iter<Asset> *it = g_asset.get_iterator();
while (it->next())

log_asset(it->key, it->value);

Figure 4: A sample implementation of PRADS tasks

or processing user queries. Both types of tasks have
access to the shared object space with a uniform interface.
Figure 4 shows an application implementation including
one data-plane task for packet processing and one
control-plane task for logging the per-host assets.

5.2 Programming NFs

5.2.1 Sample applications

We have chosen various applications to implement or
port. Table 4 lists the state objects in those NFs.

Network Monitoring System (PRADS) PRADS [6] is
a Passive Real-time Asset Detection System in Linux. It
allows network administrators to access real-time data on
types of protocols, services, and devices on their network.

Intrusion Detection System (Snort-rule) We implement
IDS which monitors packets using Snort [8] rules. We bor-
row the rule compilation and detection code from the orig-
inal Snort code base.

NAT We implement NAT (Network Address Translator)
by following the algorithm described in statelessNF [27],
so that have the same per-packet/per-flow access patterns
with their implementation.

NF State Size (B)* Update Access Frequency

PRADS

Flow 160 Exclusive Per-packet RW
Statistics 208 Concurrent Per-packet RW

Asset 112+64n Concurrent
Rarely R
Per-packet W

Hashtable of flows 40n Concurrent Per-flow RW
Hashtable of assets 32n Concurrent Per-flow RW

IDS

Flow context 160∼ 32k Exclusive Per-packet RW
Whitelisted host 16 Exclusive Per-packet RW
Malicious server 12+28n Concurrent Per-flow RW
Hash table of
Malicious server 32n Concurrent Per-flow RW

Hash table of
whitelisted host 32n Concurrent Per-flow RW

NAT
Address Pool 8k per IP Exclusive Per-flow RW

NAT entry 8 Exclusive
Per-packet R
Per-flow W

* n is the number of elements in the structure.

Table 4: States, update patterns, and access frequencies
of NF applications we use.

.

5.2.2 Experiences of porting NF applications

We begin with the assumption that the NF application
to port is in an OOP (Object-Oriented Programming)
model. Since the baseline code of PRADS is in C, a
non-OOP language, our first step is to convert structs
to C++ objects. Then we start porting these objects in our
S6 programming interface.

Porting States Objects: To convert the existing object
classes to S6-compatible object classes, we need to (1)
identify globally accessible objects, (2) analyze their up-
date patterns, and (3) check the applicability of loose con-
sistency.

In Table 4 we list the states we have identified to be
globally accessible and their update patterns: four simple
objects (Flow, Statistics, Asset, and Configuration) and
two collections of objects (Flow hashtable and Asset
hashtable). After identifying the simple objects, we de-
cide their types as SingleWriter or MultiWriter
according to the update pattern. We useS6Map to support
hash tables for flows and assets, and S6Iter to iterate
through the list of assets. In case of more complex applica-
tions, StateAlyzr [28] can help identifying state variables
which need to be shared and their update patterns.

Now the application is compatible with S6 and should
run correctly. Next, we turn to performance improvement
by loosening the consistency level on objects. We design
the Asset and Statistics objects to be commutative, and all
their reads as cached reads and all updates as untethered.

Porting Tasks: PRADS has a simple loop processing
packets using libpcap which is straightforward to port
to S6’s data plane task. PRADS has other out-of-band
tasks from network administrators like generating a log
of current assets. We implement these out-of-band opera-
tions as control-plane tasks.

306 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

5

10

15

20

0
100
200
300
400
500
600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

T
hr

ou
gp

ut
 (K

pp
s)

L
at

en
cy

 (
m

s)

Time(s)

xput (NF1) xput (NF2) 99-% latency 50-% latency

(a) OpenNF, 10 kpps, 1.5k flows for migration

0
100
200
300
400
500
600
700
800

0
10
20
30
40
50
60
70

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

T
hr

ou
gp

ut
 (K

pp
s)

L
at

en
cy

 (
m

s)

Time(s)

xput (NF1) xput (NF2) xput (NF3)
99-% latency 50-% latency

(b) S6, 700 kpps, 8k flows for migration

Figure 5: Performance comparison with PRADS scale-out events

6 Implementation
Our implementation of S6 has three main components:
the S6 runtime, the S6 compiler, and the NFV controller.

Runtime The S6 runtime plays three roles. First, it man-
ages the DSO space distributed across nodes. It tracks
objects location and controls object accesses from multi-
ple instances to support exclusive or concurrent accesses
per object type. Second, it manages S6-compatible ob-
ject references to provide the S6 programming interface.
The S6 runtime intermediates every access to objects and
performs remote operations or initiate object migration
if necessary. Third, it schedules microthreads for data-
plane and control-plane tasks. Whenever a microthread is
about to block due to remote access, the runtime schedules
another pending microthread and continues to process
packets without blocking. We use the boost co-routine li-
brary [12] to implement non-preemptive, user-level multi-
threads.

S6 Compiler While S6 requires a custom programming
interface in the source code, there is no convenient way to
extend C++ syntax. Instead, we implemented a source-to-
source compiler, which translates S6-extended C++ code
into plain C++. The generated code abstracts away im-
plementation details of DSO implementation under the
hood. For example, when a method is invoked, the gen-
erated code checks if the state object is local or remote to
call appropriate functions. We implement the compiler on
top of clang-3.6 library [14] to perform syntax analysis of
a developer’s code.

NFV Controller We built a simple NFV controller to
manage the S6 instances. It runs an NF cluster by launch-
ing S6 instances and initiates scaling-in/out events based
on network workloads. The controller also relays out-of-
band tasks such as queries or updating configuration from
the operators to NF instances.

7 Evaluation
We start our evaluation of S6 with its application-level
performance with the scale-out NFs we ported in §5.2.
We examine how scaling events impact S6 performance
during scaling events in §7.1, and under normal operation
in §7.2. Then we show the effectiveness of design choices
in S6 with a series of micro-benchmarks in §7.3

Evaluation setup We use Amazon EC2 c4.xlarge in-
stances (4 cores @ 2.90GHz) for experiments. NF in-
stances run as a Docker container, across the virtual ma-
chines in the cluster. Our workload is synthetic TCP traf-
fic based on empirical flow distributions in size and arrival
rates. For all experiments shown, we measure the overall
throughput and latency measured at input/output ports of
each NF. For micro-benchmarks, we use a dedicated In-
tel Xeon E5-2670 (2×8 cores @ 2.30GHz) server, with a
10 G link for data channel and another 10 G for state chan-
nel for inter-instance communication.

7.1 Elastic Scaling

How well S6 performs during scaling events? We
compare S6’s scaling-out performance with OpenNF us-
ing PRADS on each framework. Figure 5(a) shows the
throughput and latency of migrating 1.5k flows at 10 kpps
workloads using OpenNF. Even with the highest opti-
mization level OpenNF supports, the throughput drops
and the latency increases up to hundreds of milliseconds.
Not shown, we tested the exact same workload with S6.
S6 shows no visible throughput fluctuation and only a few
hundreds of microseconds increase in latency.

Figure 5(b) shows PRADS scale-out performance
on S6 with a higher input workload, 700 kpps with 8k
concurrent flows. There is not any noticeable through-
put degradation (and also zero packet loss). The state
channel becomes temporarily congested from object
migration, key-space re-partitioning in addition to the
shared variable accesses. Still, the peak latency around
tens of milliseconds during scaling is transient—within a
0.1 second window—and 10x lower while sustaining 10x
higher throughput than OpenNF.

How does workload affect performance during scaling
events? We now consider S6 scaling for a synthetic NF, in
which we can configure the number of state objects and
their size. We send 1 Mpps network load to a single NF
instance. Then we initiate a scale-out event, launching an-
other instance and split the traffic. As a result, half of the
objects in the original instance move to the new instance
as packets arrive. We vary the number of objects and the
object size and measure the end-to-end packet processing
latency.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 307

0.001

0.01

0.1

1

10

100

1000

256B 1KiB 4KiB 16KiB

L
at

en
cy

 (m
s)

Size of objects to migrate

All packets
Packets with remote access

16k Objects migration

(a) Empirical traffic / object size

0.001

0.01

0.1

1

10

100

1000

1k 4k 16k

L
at

en
cy

 (m
s)

Number of objects to migrate

Object size: 4KiB

(b) Empirical traffic / object space size

0.001

0.01

0.1

1

10

100

1000

1k 4k 16k

L
at

en
cy

 (m
s)

Number of objects to migrate

Object Size: 4KiB

(c) Worst-case traffic

Figure 6: Latency (1-25-50-75-99%-iles) during object re-partitioning

1

10

100

1000

10000

NAT PRADS IDS

La
te

nc
y

(u
s)

0

0.2

0.4

0.6

0.8

1

NAT PRADS IDS

R
el

at
ei

ve
 T

hr
ou

gh
pu

t

local-only remote-only distributed/shared

Figure 7: Performance of NFs implemented on different
NF state management abstractions

Figures 6 (a) and (b) show latency during the scal-
ing process. The scaling process takes 100s-1,000s of
milliseconds depending on workloads. As shown in the
graph, the peak latency is sub-millisecond except for
16 KiB (a) objects, as the state channel to transfer objects
among instances gets congested. However, even with
the state channel being a bottleneck the peak latency is
temporary (re-partitioning ends within a second), and
median latency remains under a millisecond. The tail
latency comes from packets accessing objects remotely
due to gradual migration, and subsequent accesses
become local without incurring network round-trips.

We also evaluate a worst-case scenario with bursty
object migration. We generate traffic in a round-robin
fashion (i.e., packets are generated sequentially from
the flow pool) so that all per-flow state objects migrate
back-to-back. Figure 6(c) shows that the peak latency
increases as more objects migrate and the state channel
becomes more congested. Similarly to the previous
graphs, the peak latency lasts only for 500 ms, and the
median latency stays under a millisecond.

S6 creates user-level microthreads for non-blocking
object migration and key space re-partitioning. The over-
head of microthreads was very lightweight for all cases;
while S6 can manage up to millions of microthreads,
much less is necessary in practice. The maximum number
of concurrent microthreads (not shown in the graphs)
during migration was about 30k for the 16 Kib case, or a
few thousands for other cases.

1

2

3

4

5

6

1 2 3 4 5 6

Sp
ee

du
p

Number of NF instances

Ideal

IDS

PRADS

Figure 8: S6 throughput scalability

7.2 Normal Operation

How does S6 compare to existing approaches? We
compare S6’s performance against the remote-only and
local-only options discussed in §3. The local-only model
serves as an idealized scenario, as the absence of re-
mote access overhead represents a performance overhead.
Since it does not support shared state, we instead replicate
non-partitionable state across all instances, thus resulting
in incorrect NF behavior. For the remote-only design, we
consider StatelessNF [27] as state-of-the-art. While its
source code is not publicly available, we implement the
algorithms as presented in the paper, including the per-
formance optimization techniques. Our remote-only test
uses one remote store and an NF instance; our “distribut-
ed/shared” test (S6) uses two NF instances but measures
the throughput of only one instance.

Figure 7 shows the throughput and latency of each
implementation. The remote-only shows 2-5x lower
throughput and 10-100x times higher latency than the
ideal (local-only) case since it requires multiple remote
state accesses per packet. Another overhead we observed
is that depending on workloads and NF types, the state
channel (for communication between NF instances and
the remote storage) may become more congested than the
data channel itself, even with the applications described in
the StatelessNF paper. In S6 the only remote access is the
first access of a migrating flow context, and all subsequent
accesses are local. S6 shows 82-92% of the throughput
and comparable latency to the local-only, an ideal case.

308 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.001
0.01
0.1

1
10

100
1000

1k objects 2k 4k 8k

Pe
r-p

ac
ke

t l
at

en
cy

 (m
s)

Number of objects migrated

Single thread Microthreads

(a) Benefit of microthreads

0.1

1

10

100

1000

Blocking Untethered
update

Cache
read

A
cc

es
s l

at
en

cy
 (u

s)

(b) Loose consistency

15.5 M

161 K
16.2 K

1.62 K
166

3.51 M

3.38 M 3.37 M
882 K

164 K

0 1ms 10ms 100ms 1s

C
on

tro
l m

sg
 x

fe
r (

B
/s

)

State staleness

Stat Asset

4 MiB

256 KiB

16 KiB
1 KiB

64 B

4 B

(c) Communication overhead vs. Staleness

Figure 9: (a) Per-packet latency during scale-out with and without microthreading, (b) Read/Write latency for remote
access (1s maximum staleness), (c) Tradeoff between communication channel overhead vs. accuracy of state

How scalable is S6 with the number of instances? Fig-
ure 8 plots the speedup of PRADS and IDS on S6, relative
to the baseline throughput of a single instance. The ac-
tual aggregated throughput is within 2-8% of ideal linear
speedup. We observe little impact on packet processing
latency with increasing number of instances.

7.3 Micro-benchmarks

How much do microthreads improve latency relative
to a single-threaded approach? In this experiment, we
quantify the benefit of microthreading that masks the cost
of remote state access on Figure 9(a). To start, we run
a single instance which owns all per-flow objects with
1 Mpps input load. Then we split the traffic between two
instances, triggering state migration of half of the objects
to the second instance. Here we see that the microthreaded
architecture improves latency by over three orders of mag-
nitude. Microthreads efficiently pipeline processing pack-
ets as they are blocked for object migration. Also, since
most packets are processed locally, the number of out-
standing microthreads remains small: 130-160 during our
experiments.

How much does annotation-based optimization im-
prove state access latency? We compare the performance
of different remote access mechanisms in Figure 9(b):
1) blocking RPC, 2) untethered update, and 3) cached
read. We run two S6 instances, and 16k shared objects are
evenly distributed between two instances. Each instance
randomly accesses one of the 16k objects. Thus half of
the accesses are local, and the other half are remote. The
results show that the latency of untethered updates and
cached read is only a few microsecond, since state access
can be done with local memory reads/writes; actual syn-
chronization happens in the background. However, in the
case of blocking RPC, remote access adds one network
round-trip latency for remote objects.

How much does caching reduce communication chan-
nel overhead? As we discusses in §4.2, with commuta-
tive updates of shared state, we can lower communication
channel overhead by allowing bounded staleness. Fig-
ure 9(b) quantifies the trade-off, with two different types

of shared objects in PRADS. In the case of Stat(istics), a
single object is shared by all instances, and every packet
triggers at least three updates on it. As we allow more stal-
eness, the required communication channel bandwidth
decreases proportionally.

On the other hand, commutativity is not always effec-
tive when compared with per-update RPCs. In the case of
Assets, State objects—per-host assets—are only shared
among flows originated from or destined to the same host.
Since updates to an object are not very frequent, periodic
synchronization performs no better than individual up-
dates. As shown in the graph, staleness less than 100 ms
does not lower the communication channel overhead.

8 Discussion
8.1 State beyond objects

Collections Many NF applications include collection data
structures (e.g., linked list, tree, or hash tables). In S6,
one can build such collections as non-intrusive contain-
ers of references of objects like C++ STL [39]. In non-
intrusive data structures, objects do not need to have a
special pointer for the container to be a member of it (e.g.,
a pointer for the next element in list), but the container
organizes data structures using references of the objects.
One can also specially design a collection structure for
efficient concurrent accesses (e.g., RCU [30]).

Framework-level supports on collections will have
more opportunities to exploit better locality on its ele-
ments. We implements hashtable and read-only iterator
on it and leave more framework-level support for data
structures as future work.

Multi-object transactions S6 natively supports lineariz-
ability – ordering amongst writes to a single object, but
not support serializability – ordering with regard to multi-
ple objects. To support multi-object transactions, NF de-
velopers can implement a custom lock with exclusively
update-able objects. Only a single instance is allowed to
have a reference to the lock object; the other instances
need to wait until the reference is released from the pre-
vious instance. The key owner serializes accesses to the
lock object.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 309

8.2 Fault-tolerance

Fault tolerance for middleboxes and network functions
has been addressed by prior systems like Pico [36] and
FTMB [39]. These systems promise that when an NF fail
in a non-scaled out environment, a new NF quickly come
back online – with all of the state of the failed NF – and
resume processing data.

The most straightforward remediation is to adopt
Pico’s (checkpoint-based, per-state snapshot) or FTMB’s
(checkpoint and replay-based, VM snapshot) algorithms
at on per node basis. Both systems interpose on accesses
to middlebox state during packet processing; these
systems also have the ability to interpose on accesses
made by S6’s RPC calls from other NF instances. Both
Pico and FTMB have efficient backup strategies, in that
one ‘backup’ instance can serve as a standby for multiple
‘hot’ NF instances. S6’s knowledge about object access
patterns and consistency gives more opportunity to op-
timize per-object snapshot, balancing between snapshot
frequency and amount of logging operations on it.

An alternative approach to fault tolerance could be to
extend S6’s state management with classic DHT-based
failover recovery. Key ownership—and perhaps even data
itself—could be replicated thrice across multiple DHT
nodes. Hence, if any individual node failed, the rest of the
cluster could immediately continue processing incoming
flows, accessing the remaining replicated state. Nonethe-
less, this approach triples intra-cluster traffic, and likely
increases read/write latencies. We leave exploration of
this approach, its design details, and trade-offs, to future
work.

9 Related Work
In §3, we have discussed E2 [33], Split/Merge [37],
StatelessNF [27], and OpenNF [25]. We do not revisit
them here. There are some specific (not general) NF im-
plementations that internally support horizontal scaling
including Maglev (load-balancer) [21], Protego (IPSec
gateway) [41], and Bro Cluster [34]. These systems
leverage each NF-specific techniques, but cannot be
generalized for other types of NFs.

The design and implementation of S6 are heavily
inspired by previous work. There are many systems
adopting the concepts of DSO to build distributed sys-
tems. RPC frameworks such as (CORBA [1], DCOM [2],
and RMI [4] provide state access in a uniform manner
across heterogeneous languages and software. Thor [17]
is a distributed database system that takes care of object
distribution, sharing, and caching. Fabric [29] is a dis-
tributed application building framework, which focuses
on guaranteeing information security among distrust
users. All of above systems provide uniform access
to objects distributed across nodes, guarantee object
consistency, and provide high availability. Yet, none

of the above focuses on supporting high-performance
requirements such for NFs and elastically adjusting the
number of instances on the cluster with minimal inter-
rupts. S6 extends the DSO to support elastic scaling and
optimal performance both for under normal operations
and during scaling events. We also acknowledge that use
of lightweight multi-threading for masking remote access
latency can be found in other application domains, e.g.,
distributed graph processing [31].

Distributed shared state can exist at different levels
of abstraction from low-level memory to a higher-level
object-oriented model. Distributed key-value stores
provide a wider range of state abstractions such as
blobs [19, 23, 32] and abstracted data types [7], with
properties from ACID to eventual consistency [19]. Par-
titioned Global Address Space (PGAS) allows multiple
machines to share the same virtual address space for
their physical memory [16, 20, 26]. This abstraction is
useful in supporting machine-level optimizations (e.g.,
dirty page tracking [16], RDMA [20]) but is too low-level
for our context. A single page may contain multiple
state variables each with different affinity or consistency
semantics, making it impossible to migrate state for
optimal state-operation affinity. We choose objects to
abstract state, because it allows easy to program various
requirements of objects; it is easy to program integrity
and control accesses to its encapsulated set of data.

10 Conclusion
We presented S6, a framework for building elastic scaling
of NF. S6 extends the DSO model to support elastic scal-
ing of NFs without compromising performance, while
the object abstraction transparently hides the complex
details of data locality, consistency, and marshaling.
S6 introduces a various mean to meet the performance
requirements of NFs: “smart but lazy” reorganization
of DSO space to minimize the performance overhead
during scaling events; micro-threaded architecture to
mitigate remote access latency; and programming model
to trade performance with freshness per object require-
ments. Compared to previous work, S6 shows minimal
performance overhead during scaling events (10-100x
than OpenNF [25]) as well as during normal operations
(2-5x than StatelessNF [27]. Our code is available at
https://github.com/NetSys/S6.

11 Acknowledgments
We thank our shepherd Timothy Roscoe and the anony-
mous reviewers for their invaluable comments. We also
thank Aurojit Panda for the enjoyable discussions and
feedback, Keunhong Lee and Junmin Choe for their help
on evaluations. This work was funded in part by NRF-
2014R1A2A1A01007580, NSF-1553747, NSF-1704941
and Intel corporation.

310 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] CORBA. http://www.corba.org/.

[2] DCOM. https://msdn.microsoft.com/en-us/
library/cc226801.aspx.

[3] Evolved Core Network Implementation of OpenAirInterface.
https://gitlab.eurecom.fr/oai/openair-cn.

[4] JavaRMI. http://www.oracle.com/technetwork/
articles/javaee/index-jsp-136424.html.

[5] openIMS. http://www.openimscore.org/.

[6] PRADS. http://manpages.ubuntu.com/manpages/
wily/man1/prads.1.html.

[7] Redis. https://redis.io/.

[8] Snort++. https://www.snort.org/snort3.

[9] Squid. http://www.squid-cache.org/.

[10] Suricata. https://suricata-ids.org/l.

[11] The Software Load Balancer and Dynamic ADC. http://
inlab.de/load-balancer/index.html.

[12] BOOST Coroutine. http://www.boost.org/doc/libs/
1_60_0/libs/coroutine/doc/html/index.html,
accessed 8 May, 2016.

[13] ETSI NFV. http://www.etsi.org/
technologies-clusters/technologies/nfv,
accessed April 28, 2016.

[14] ETSI NFV. http://clang.llvm.org/, accessed April 28,
2016.

[15] ADYA, A., HOWELL, J., THEIMER, M., BOLOSKY, W. J., AND
DOUCEUR, J. R. Cooperative task management without man-
ual stack management. In USENIX Annual Technical Conference,
General Track (2002), pp. 289–302.

[16] CHAPMAN, B., CURTIS, T., POPHALE, S., POOLE, S., KUEHN,
J., KOELBEL, C., AND SMITH, L. Introducing OpenSHMEM:
SHMEM for the PGAS community. In Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming
Model (2010), ACM, p. 2.

[17] DAY, M., LISKOV, B., MAHESHWARI, U., AND MYERS, A. C.
References to remote mobile objects in Thor. ACM Letters on
Programming Languages and Systems (LOPLAS) 2, 1-4 (1993),
115–126.

[18] DEAN, J., AND GHEMAWAT, S. MapReduce: simplified data
processing on large clusters. Communications of the ACM 51, 1
(2008), 107–113.

[19] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. ACM SIGOPS operating systems review
41, 6 (2007), 205–220.

[20] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. FaRM: Fast Remote Memory. In 11th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI
14) (2014), pp. 401–414.

[21] EISENBUD, D. E., YI, C., CONTAVALLI, C., SMITH, C.,
KONONOV, R., MANN-HIELSCHER, E., CILINGIROGLU, A.,
CHEYNEY, B., SHANG, W., AND HOSEIN, J. D. Maglev: A Fast
and Reliable Software Network Load Balancer. In 13th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 16) (Santa Clara, CA, 2016), pp. 523–535.

[22] FAYAZBAKHSH, S. K., SEKAR, V., YU, M., AND MOGUL, J. C.
Flowtags: Enforcing network-wide policies in the presence of dy-
namic middlebox actions. In Proceedings of the second ACM SIG-
COMM workshop on Hot topics in software defined networking
(2013), ACM, pp. 19–24.

[23] FITZPATRICK, B. Distributed caching with memcached. Linux
journal 2004, 124 (2004), 5.

[24] GEMBER, A., KRISHNAMURTHY, A., JOHN, S. S., GRANDL,
R., GAO, X., ANAND, A., BENSON, T., AKELLA, A., AND
SEKAR, V. Stratos: A Network-Aware Orchestration Layer for
Middleboxes in the Cloud. CoRR abs/1305.0209 (2013).

[25] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH, C.,
GRANDL, R., KHALID, J., DAS, S., AND AKELLA, A. OpenNF:
Enabling Innovation in Network Function Control. In Proceedings
of the 2014 ACM Conference on SIGCOMM (New York, NY, USA,
2014), SIGCOMM ’14, ACM, pp. 163–174.

[26] HOEFLER, T., DINAN, J., THAKUR, R., BARRETT, B., BALAJI,
P., GROPP, W., AND UNDERWOOD, K. Remote memory access
programming in mpi-3. ACM Transactions on Parallel Computing
2, 2 (2015), 9.

[27] KABLAN, M., ALSUDAIS, A., KELLER, E., AND LE, F. State-
less Network Functions: Breaking the Tight Coupling of State
and Processing. In 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17) (Boston, MA, 2017),
USENIX Association.

[28] KHALID, J., GEMBER-JACOBSON, A., MICHAEL, R., AB-
HASHKUMAR, A., AND AKELLA, A. Paving the Way for NFV:
Simplifying Middlebox Modifications Using StateAlyzr. In 13th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16) (Santa Clara, CA, 2016), USENIX Associa-
tion, pp. 239–253.

[29] LIU, J., GEORGE, M. D., VIKRAM, K., QI, X., WAYE, L., AND
MYERS, A. C. Fabric: A platform for secure distributed computa-
tion and storage. In Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles (2009), ACM, pp. 321–334.

[30] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy update:
Using execution history to solve concurrency problems. In Paral-
lel and Distributed Computing and Systems (1998), pp. 509–518.

[31] NELSON, J., HOLT, B., MYERS, B., BRIGGS, P., CEZE, L.,
KAHAN, S., AND OSKIN, M. Latency-tolerant software dis-
tributed shared memory. In 2015 USENIX Annual Technical Con-
fercorence (USENIX ATC 15) (2015), pp. 291–305.

[32] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,
C., LEVERICH, J., MAZIÈRES, D., MITRA, S., NARAYANAN,
A., PARULKAR, G., ROSENBLUM, M., ET AL. The case
for RAMClouds: Scalable High-Performance Storage Entirely in
DRAM. ACM SIGOPS Operating Systems Review 43, 4 (2010),
92–105.

[33] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A., RAT-
NASAMY, S., RIZZO, L., AND SHENKER, S. E2: A Framework
for NFV Applications. In Proceedings of the 25th Symposium on
Operating Systems Principles (New York, NY, USA, 2015), SOSP
’15, ACM, pp. 121–136.

[34] PAXSON, V. Bro: a System for Detecting Network Intruders in
Real-Time. Computer Networks 31, 23-24 (1999), 2435–2463.

[35] QAZI, Z. A., TU, C.-C., CHIANG, L., MIAO, R., SEKAR, V.,
AND YU, M. Simple-fying middlebox policy enforcement us-
ing sdn. ACM SIGCOMM computer communication review 43, 4
(2013), 27–38.

[36] RAJAGOPALAN, S., WILLIAMS, D., AND JAMJOOM, H. Pico
Replication: A High Availability Framework for Middleboxes. In
Proceedings of the 4th Annual Symposium on Cloud Computing
(New York, NY, USA, 2013), SOCC ’13, ACM, pp. 1:1–1:15.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 311

[37] RAJAGOPALAN, S., WILLIAMS, D., JAMJOOM, H., AND
WARFIELD, A. Split/Merge: System Support for Elastic Ex-
ecution in Virtual Middleboxes. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA, 2013), nsdi’13, USENIX Asso-
ciation, pp. 227–240.

[38] SEKAR, V., EGI, N., RATNASAMY, S., REITER, M. K., AND
SHI, G. Design and Implementation of a Consolidated Middle-
box Architecture. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation (Berkeley, CA,
USA, 2012), NSDI’12, USENIX Association, pp. 24–24.

[39] SHERRY, J., GAO, P. X., BASU, S., PANDA, A., KRISHNA-
MURTHY, A., MACIOCCO, C., MANESH, M., MARTINS, J. A.,
RATNASAMY, S., RIZZO, L., AND SHENKER, S. Rollback-
Recovery for Middleboxes. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communication (New
York, NY, USA, 2015), SIGCOMM ’15, ACM, pp. 227–240.

[40] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup ser-
vice for Internet Applications. ACM SIGCOMM Computer Com-
munication Review 31, 4 (2001), 149–160.

[41] TAN, K., WANG, P., GAN, Z., AND MOON, S. Protego: Cloud-
scale multitenant ipsec gateway.

[42] VON BEHREN, R., CONDIT, J., AND BREWER, E. Why Events
Are a Bad Idea (for High-concurrency Servers). In Proceedings of
the 9th Conference on Hot Topics in Operating Systems - Volume
9 (Berkeley, CA, USA, 2003), HOTOS’03, USENIX Association,
pp. 4–4.

[43] WOO, S., JEONG, E., PARK, S., LEE, J., IHM, S., AND PARK,
K. Comparison of Caching Strategies in Modern Cellular Back-
haul Networks. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services (New
York, NY, USA, 2013), MobiSys ’13, ACM, pp. 319–332.

312 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Iron: Isolating Network-based CPU in Container Environments

Junaid Khalid† Eric Rozner∗ Wesley Felter∗ Cong Xu∗

Karthick Rajamani∗ Alexandre Ferreira‡ Aditya Akella†

†UW-Madison ∗IBM Research ‡Arm Research

Abstract
Containers are quickly increasing in popularity as the

mechanism to deploy computation in the cloud. In or-
der to provide consistent and reliable performance, cloud
providers must ensure containers cannot adversely inter-
fere with one another. Because containers share the same
underlying OS, it is more challenging to provide isolation
in a container-based framework than a traditional VM-
based framework. And while many schemes can isolate
CPU, memory, disk, or network bandwidth in multi-tenant
environments, less attention has been paid to how the time
spent processing network traffic affects isolation on the
host server. This paper shows computational overhead
associated with the network stack can break isolation in
container-based environments. Specifically, a container
with heavy network traffic can decrease the computation
available to other containers sharing the same server. We
propose a scheme, called Iron, that accounts for the time
spent in the networking stack on behalf of a container
and ensures this processing cannot adversely impact colo-
cated containers through novel enforcement mechanisms.
Our results show Iron effectively provides isolation under
realistic and adversarial conditions, limiting interference-
based slowdowns as high as 6× to less than 5%.

1 Introduction

Today, containers are widely deployed in virtualized envi-
ronments. Companies such as IBM, Google, Microsoft,
and Amazon allow customers to deploy applications and
services in containers via public clouds. In addition,
serverless computing platforms [8,31,55] rely on contain-
ers to deploy user code [38]. Because containers share
components of the underlying operating system (OS), it
is critical the OS provides resource isolation to the con-
tainer’s assigned resources, such as CPU, disk, network
bandwidth, and memory. Currently, control groups (or
cgroups) in Linux [3] enable resource isolation by allocat-
ing, metering, and enforcing resource usage in the kernel.

Resource isolation is an important construct for both ap-
plication developers and cloud providers. Recent studies
indicate today’s workloads are heterogeneous and do not
easily fit into predetermined bucket allocations [62, 69].
Therefore, developers should be able to allocate container
resources in a fine-grained manner. For this to be effec-
tive, however, a container’s provisioned resources must
be readily available. When resource availability is com-
promised due to overprovisioning or ineffective resource
isolation, latency-sensitive applications can suffer from
performance degradation, which can ultimately impact
revenue [7, 14, 20, 49]. In serverless computing, billing
is time-based [38] and insufficient resource isolation can
cause users to be needlessly overcharged. Cloud providers
also rely on resource isolation to employ efficient con-
tainer orchestration schemes [1, 13, 69] that enable hyper-
dense container deployments per server. However, with-
out hardened bounds on container resource consumption,
providers are faced with a trade-off: either underprovi-
sion dedicated container resources on each server (and
thus waste potential revenue by selling spare compute to
lower priority jobs) or allow loose isolation that may hurt
customer performance on their cloud.

In this paper, we show containers can utilize more CPU
than allocated by their respective cgroup when sending
or receiving network traffic, effectively breaking isola-
tion. Modern kernels process traffic via interrupts, and
the time spent handling interrupts is often not charged
to the container sending or receiving traffic. Without ac-
curately charging containers for network processing, the
kernel cannot provide hardened resource isolation. In
fact, our measurements indicate the problem can be se-
vere: containers with high traffic rates can cause colocated
compute-driven containers to suffer an almost 6× slow-
down. The overhead is high because kernels perform a
significant amount of network processing: from servicing
interrupts, to protocol handling, to implementing network
function virtualizations (e.g., switches, firewalls, rate lim-
iters, etc). Modern datacenter line rates are fast (10-100

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 313

Gbps), and studies have shown network processing can
incur significant computational overhead [35, 36, 41, 61].

Interference in datacenters is a known problem [49, 53,
64], and researchers have developed schemes to isolate
CPU [11, 15, 67] and network bandwidth [42, 56, 58, 65].
In contrast, the recent study of isolating network-based
processing has been limited. Prior schemes cannot be
applied to modern containerized ecosystems [34] or al-
ter the network subsystem in such a way that interrupt
processing becomes less efficient [10, 25].

This paper presents Iron (Isolating Resource Overhead
from Networking), a system that monitors, charges, and
enforces CPU usage for processing network traffic. Iron
implements a careful set of kernel instrumentations to
obtain the cost of processing packets at a fine-grained
level, while maintaining the efficiency and responsiveness
of interrupt handling in the kernel. Iron integrates with
the Linux scheduler to charge a container for its traffic.
Charging alone cannot provide hardened isolation because
processing traffic received by a container after it consumes
its CPU allocation can break isolation. As a result, Iron
implements a hardware-based scheme to drop packets
destined to a container that has exhausted its allocation.

Providing isolation in containerized systems is chal-
lenging for many reasons. A container’s traffic traverses
the entire network stack on the server OS and thus accu-
rate charging requires capturing variations in processing
different packet types. A given solution must be compu-
tationally light-weight because line rate per-packet op-
erations are prone to high overhead and keeping state
across cores can lead to inefficient locking. Finally, lim-
iting interference due to packet receptions is difficult be-
cause administrators may not have control over traffic
sources. Iron addresses these challenges to effectively
enforce isolation for network-based processing. In short,
our contributions are as follows:

• A case study showing the computational burden of pro-
cessing network traffic can be significant. Current cgroup
mechanisms do not account for this burden, which can
cause an 6× slowdown for some workloads.

• A system called Iron to provide hardened isola-
tion. Iron’s charging mechanism integrates with the
Linux cgroup scheduler in order to ensure containers are
properly charged or credited for network-based process-
ing. Iron also provides a novel packet dropping mecha-
nism to limit the effect, with minimal overhead, of a noisy
neighbor that has exhausted its resource allocation.

• An evaluation showing MapReduce jobs can experi-
ence over 50% slowdown competing with trace-driven
network loads and compute-driven jobs can experience
a 6× slowdown in controlled settings. Iron effectively
isolates and enforces network-based processing to reduce
these slowdowns to less than 5%.

2 Background and Motivation

This section first describes the interference problem: that
is, how the network traffic of one container can interfere
with CPU allocated to another container. Afterwards,
we place Iron in the context of past solutions and then
empirically examine the impact of interference.

2.1 Network traffic breaks isolation

The interference problem occurs because the Linux sched-
uler does not properly account for time spent servicing
interrupts for network traffic. A brief background on
Linux container scheduling, Linux interrupt handling, and
kernel packet processing follows.

Linux container scheduling Cgroups limit the CPU al-
located to a container by defining how long a container
can run (quota) over a time period. At a high-level,
the scheduler keeps a runtime variable that accrues
how long the container has run within the current period.
When the total runtime of a container reaches its quota,
the container is throttled. At the end of a period, the con-
tainer’s runtime is recharged to its quota. The scheduler
is discussed in [67].

Linux interrupt handling Linux limits interrupt over-
head by servicing interrupts in two parts: a top half (i.e.,
hardware interrupts) and bottom half (i.e., software in-
terrupts). A hardware interrupt can occur at any time,
regardless of which container or process is running. The
top half is designed to be light-weight so it only performs
the critical actions necessary to service an interrupt. For
example, the top half will acknowledge the hardware’s in-
terrupt and may directly interface with the device. The top
half then schedules the bottom half to execute (i.e., raises
a software interrupt). The bottom half is responsible for
actions that can be delayed without affecting the perfor-
mance of the kernel or I/O device. Networking in Linux
typically employs softirqs (a type of software interrupt) to
implement the bottom half. Softirqs are used to transmit
deferred transmissions, manage packet data structures,
and navigate received packets through the network stack.

Linux’s softirq handling directly leads to the interfer-
ence problem. Software interrupts are checked at the end
of hardware interrupt processing or whenever the kernel
re-enables softirq processing. Software interrupts run in
process context. That is, whichever unlucky process is
running will have to use its scheduled time to service the
softirq. Here, isolation breaks when a container has to use
its own CPU time to process another container’s traffic.

The kernel tries to minimize softirq handling in pro-
cess context by limiting the softirq handler to run for a
fixed time or budgeted amount of packets. When the
budget is exceeded, softirq stops executing and sched-

314 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ules ksoftirqd to run. Ksoftirqd is a kernel thread
(it does not run in process context) that services remain-
ing softirqs. There is one ksoftirqd thread per processor.
Because ksoftirqd is a kernel thread, the time it spends
processing packets is not charged to any container. This
breaks isolation by limiting available time to schedule
other containers or allowing a container that exhausted its
cgroup quota to obtain more processing resources.

Kernel packet processing Consider a “normal” packet
transmission in Linux: a packet traverses the kernel from
its socket to the NIC. Although this traversal is done in
the kernel, it is performed in process context, and hence
the time spent sending a packet is charged to the correct
container. There are, however, two cases in which isola-
tion can break on the sender. First, when the NIC finishes
a packet transmission, it schedules an interrupt to free
packet resources. This work is done in softirq context,
and hence may be charged to a container that did not send
the traffic. The second case arises when there is buffering
along the stack, which can commonly occur with TCP
(for congestion control and reliability) or with traffic shap-
ing (in qdisc [2]). The packet is taken from the socket to
the buffer in process context. Upon buffering the packet,
however, the kernel system call exits. Software interrupts
are then responsible for dequeuing the packet from its
buffer and moving it down the network stack. As before,
isolation breaks when softirqs are handled by ksoftirqd or
charged to a container that didn’t send the traffic.

Receiving packets incurs higher softirq overhead than
sending packets. Under reception, packets are moved
from the driver’s ring buffer all the way to the application
socket in softirq context. This traversal may require in-
terfacing with multiple protocol handlers (e.g., IP, TCP),
NFVs, NIC offloads (e.g., GRO [16]), or even sending
new packets (e.g., TCP ACKs or ICMP messages). In
summary, the whole receive chain is performed in softirq
context and therefore a substantial amount of time may
not be charged to the correct container.

2.2 Putting Iron in context

Previous works can mitigate the interference problem by
designing new abstractions to account for container re-
source consumption or redesigning the OS. Below, Iron’s
contributions are put in context.

System container abstraction In a seminal paper Banga
proposed resource containers [10], an abstraction to cap-
ture and charge system resources in use by a particular
activity. The work extends Lazy Receiver Processing
(LRP) [25]. When a process is scheduled, a receive sys-
tem call lazily invokes protocol processing in the ker-
nel, and thus time spent processing packets is correctly
charged to a process. This approach is inefficient for TCP

because at most one window can be consumed between
successive system calls [25], and therefore LRP employs
a per-socket thread associated with each receiving pro-
cess to perform asynchronous protocol processing so CPU
consumption is charged appropriately.

Although LRP solves the accounting problem, the fol-
lowing issues must be considered. First, as the name im-
plies, LRP only handles receiving traffic and cannot fully
capture the overheads of sending traffic. Second, LRP re-
quires a per-socket thread to perform asynchronous TCP
processing1. Maintaining extra threads leads to additional
context switching, which can incur significant overhead
for processing large amounts of flows [41]. Third, the
scheduler must be made aware of, and potentially priori-
tize, threads with outstanding protocol processing other-
wise TCP can suffer from increased latencies and even
drops while it waits for its socket’s thread to be sched-
uled. A similar notion of per-thread softirq processing was
proposed in the Linux Real-Time kernel, but ultimately
dropped because it increases configuration complexity
and reduces performance [30].

Iron explicitly addresses the above concerns. First, Iron
correctly accounts for transmissions. Second, Iron seam-
lessly integrates with Linux’s interrupt processing to main-
tain efficiency and responsiveness. In Linux, all of a
core’s traffic is processed by that core’s softirq handler.
Processing interrupts in a shared manner, rather than in
a per-thread manner, maintains efficiency by minimizing
context switching. Additionally, by servicing hardware
interrupts in process context, protocol processing is per-
formed responsively. Linux’s design, however, directly
leads to the interference problem. Therefore, one contri-
bution of our work is showing accurate accounting for
network processing is possible even when interrupt han-
dling is performed in a shared manner.

Redesigning the OS Library OSes [28, 48, 57, 60] re-
design the OS by moving network protocol processing
from the kernel to application libraries. In these schemes,
packet demultiplexing is performed at the lowest level of
the network stack: typically the NIC directly copies pack-
ets to buffers shared with applications. Since applications
process packets from their buffers directly, network-based
processing is correctly charged.

Library OSes have numerous practical concerns, how-
ever. First, these works face similar challenges as LRP
with threaded protocol processing. Second, explicitly re-
moving network processing from the kernel can make
management difficult. In multi-tenant datacenters, servers
host services such as rate limiting, virtual networking,
billing, traffic engineering, health monitoring, and secu-
rity. With a library OS, admin-defined network processing
must be performed in the NIC or in user-level software.

1Banga’s design uses a per-process asynchronous thread

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 315

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

0 1 2 3 4 5 6 inf

Pe
n
a
lt

y
Fa

ct
o
r

TC queue limit (Gbps)

2 per core
3 per core
6 per core

10 per core

Figure 1: Penalty factor of UDP senders.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 1 2 3 4 5 6 7

C
P
U

 U
sa

g
e
 (

%
)

TC queue limit (Gbps)

2 per core
3 per core
6 per core

10 per core

Figure 2: ksoftirqd overhead with UDP senders.

Neither approach is ideal. Application libraries linked by
developers make it difficult for admins to insert policies
and functionalities at the host. For example, an admin’s
ability to perform traffic shaping or simply configure a
TCP stack may be limited. Furthermore, porting network
services to user-level requires every NFV application to
track, charge, and enforce network processing to mitigate
interference. NIC-based techniques can cost more (to
upgrade hosts), scale more poorly in the number of flows
and services, and be less flexible and harder to config-
ure than software. And while NICs are becoming more
flexible [76], it is likely network management will be
dictated by a combination of admin-controlled software
and hardware in the future. As such, Iron can help track
and enforce software-based network processing. Finally,
adapting Library OSes to support multi-tenancy and re-
placing currently deployed ecosystems can have a high
barrier to entry for providers and customers.

2.3 Impact of network traffic

In this section, a set of controlled experiments quantifies
the impact of both UDP and TCP network processing on
isolation in containerized environments.

Methodology In each experiment, n containers are allo-
cated per core, where n varies from 2, 3, 6, or 10. Each

container is configured to obtain an equal share of the
core (i.e., quota = period/n). This allocation is repli-
cated over all cores. NICs are 25 Gbps, and Section 4
further details methodology. One container per core, de-
noted the victim, runs a CPU-intensive sysbench work-
load [46]. The time to complete each victim’s workload is
measured under two scenarios. In the first scenario all non-
victim containers, henceforth denoted interferers, also run
sysbench. This serves as a baseline case. In the second
scenario, the interferers run a simple network flooding
application that sends as many back-to-back packets as
possible. The victim’s completion time is measured under
both scenarios, and a penalty factor indicates the fraction
of time the victim’s workload takes when competing with
traffic versus competing with sysbench. Penalty fac-
tors greater than one indicate isolation is broken because
traffic is impacting the victim in an adverse way.

For the reception tests, containers are allocated on a
single core and all NIC interrupts are serviced on the same
core to ensure cores without containers do not process
traffic. As before, the victim container runs sysbench,
but the interferers now run a simple receiver. A multi-
threaded sender varies its rate to the core, using 1400 byte
packets and dividing flows evenly amongst the receivers.
All results are averaged over 10 runs.

UDP senders These results show the impact when the
interfering containers flood 1400 byte UDP traffic. Stud-
ies have shown rate limiters can increase computational
overhead [61], so the penalty factor is measured when no
rate limiters are configured and also when hierarchical
token bucket (HTB) [2] is deployed for traffic shaping.

Figure 1 presents the results. Lines denote how many
containers are allocated on a core, the x-axis denotes the
rate limit imposed on a core, and the y-axis indicates the
penalty factor. With n containers per core, each container
receives 1

n

th
of the bandwidth allocated to the core. The

right-most point labeled “inf” is when no rate limiter is
configured. We note the following trends. First, there is
no penalty factor with no rate limiting because the applica-
tion demands are lower than the link bandwidth, so there
is no queuing at the NIC. Second, rate limiting causes
penalty factors as high as 1.18. The summed application
demands can be higher than the imposed rate limit on
each core, which means packets are queued in the rate
limiter. Softirq handling interferes with the processing
time of the victims, leading to high penalty factors. Third,
HTB experiences a relatively higher penalty for 1-3 Gbps.
When rate limits are 4 Gbps and above, the rate limiter
does not shape traffic because senders are CPU-bound
and cannot generate more than 4 Gbps of traffic demand.
Isolation still breaks because rate limiters maintain state
and perform locking (this overhead was also witnessed

316 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0 1 2 3 4 5 6 inf

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

1 flow
10 flows
25 flows
50 flows
75 flows

100 flows

(a) 2 containers per core

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0 1 2 3 4 5 6 inf

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

10 flows
25 flows
50 flows
75 flows

100 flows

(b) 10 containers per core

Figure 3: Penalty factor of victims with TCP senders.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 1 2 3 4 5 6

Pe
n
a
lt

y
Fa

ct
o
r

Input rate (Gbps)

(a) 1 receiver

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10

Pe
n
a
lt

y
Fa

ct
o
r

Input rate (Gbps)

(b) 5 receivers

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12

Pe
n
a
lt

y
Fa

ct
o
r

Input rate (Gbps)

(c) 9 receivers

Figure 4: Penalty factor when there are 10 containers on 1 core. i= 1,5,9 of the containers are UDP receivers.

in [43]). For rates below 4 Gbps, senders generate more
traffic than the enforced rate and higher overheads occur.

Figure 2 shows the CPU usage of ksoftirqd (on core
0) for the experiment in Figure 1. The trends roughly
correspond to the penalty factor overhead. Time spent in
ksoftirqd is not attributed to any process, which means
that time cannot be issued to other containers. This in-
creases the time it takes for the victim workload to com-
plete. To understand the remaining penalty, we instru-
mented a run with perf [5]. With 10 containers per
core and 2 Gbps rate limit, the victim spent 6.99% of its
scheduled time servicing softirqs even though it sent no
traffic.

TCP senders Figure 3 shows TCP sender performance
for 2 and 10 containers per core. Different from the UDP
results, the number of flows per core is varied, and flows
are divided equally amongst all sending containers on a
core. We note the following trends. First, TCP overheads
are higher than UDP overheads– in the worst case, the
overhead can be as high as 1.95×. TCP overheads are
higher because TCP senders receive packets, i.e., ACKs,
and also buffer packets at the TCP layer. Both ACK
processing and pushing buffered packets to the NIC are
completed via softirqs. Therefore, no rate limiting has
higher overhead in TCP than UDP. The second interest-
ing trend is overheads increase as the number of flows

increase. This occurs for two reasons. First, the number
of TCP ACKs increase with flows, and in general, there
exists more protocol processing with more flows. Sec-
ond, a single TCP flow can adapt to the rate limiter, but
multiple flows create burstier traffic patterns that increase
queuing at the rate limiter.

UDP receivers Figure 4 shows the UDP receiver results.
Ten containers are allocated on the core, and if i con-
tainers receive UDP traffic, then 10− i containers run
sysbench. The sender increases its sending rate from
1 Gbps to 12 Gbps at 1 Gbps increments. For each send-
ing rate, 10 trials are run. Each green dot represents the
result of a trial. The x-axis indicates the input rate to
the core, which can differ from the sending rate due to
drops. The red line, provided for reference, averages the
penalty factor in 500 Mbps buckets. We varied the num-
ber of receivers from 1 to 9, but only show 1, 5, and 9
receivers in the interest of space. We note the follow-
ing trends. First, the penalty factor for receiving UDP
is higher than sending UDP. Packets traverse the whole
network stack in softirq context and therefore overheads
are larger. Next, as more of the core is allocated to receive
(as i increases), the rate at which the server can process
traffic increases. As the rate of incoming traffic increases,
so does the penalty factor. Under high levels of traffic, the

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 317

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 500 1000 1500 2000 2500 3000 3500

P
e
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

1 flow
10 flows
25 flows
50 flows
75 flows

100 flows

(a) 1 receiver

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1000 2000 3000 4000 5000 6000 7000

P
e
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

10 flows
25 flows
50 flows
75 flows

100 flows

(b) 5 receivers

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 1000 2000 3000 4000 5000 6000 7000 8000

P
e
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

10 flows
25 flows
50 flows
75 flows

100 flows

(c) 9 receivers

Figure 5: Penalty factor when there are 10 containers on a 1 core. i= 1,5,9 of the containers are TCP receivers.

overheads from softirqs cause the victim to take almost
4.5× longer.

TCP receivers Figure 5 shows the results when interfer-
ing containers receive TCP traffic. Different from UDP
experiments, TCP senders are configured to send as much
as they can. TCP will naturally adapt its rate when drops
occur (from congestion control) or when receive buffers
fill (from flow control). As before, the penalty factor
increases as the input rate increases and also when the
number of flows increase. In the worst case, interference
from TCP traffic causes the victim to take almost six
times longer. To further understand this overhead, we in-
strument sysbench with perf for nine TCP receivers
and 100 flows. Here, ksoftirqd used 54% of the core and
sysbench spent 60% of its time servicing softirqs. This
indicates that isolation techniques must capture softirq
overhead in both ksoftirqd and process context.

3 Design

This section details Iron’s design. Iron first accounts for
time spent processing packets in softirq context. After
obtaining packet costs, Iron integrates with the Linux
scheduler to charge or credit containers for softirq pro-
cessing. When a container’s runtime is exhausted, Iron
enforces hardened isolation by throttling containers and
dropping incoming packets via a hardware-based method.

3.1 Accounting

This section outlines how to obtain per-packet costs in or-
der to ensure accounting is accurate. First, receiver-based
accounting is detailed, followed by sender-based account-
ing. Afterwards, we describe how to assign packets to
containers and the state used for accounting.

Receiver-based accounting In Linux, packets traverse
the network stack through a series of nested function calls.
For example, the IP handler of a packet will directly call
the transport handler. Therefore, a function low in the
call stack can obtain the time spent processing a packet

do_softirq

net_tx_action

qdisc_run

dequeue_skb

ndo_start_xmit

…

NET_TX_SOFTIRQ

NIC

Queueing
Discipline  

 
 

IP

TCP/UDP

Driver 
Queue

do_softirq

net_rx_action

napi_gro_receive

netif_receive_skb

do_irq

ip_rcv

NET_RX_SOFTIRQ

(a) (b) (c)

Figure 6: Networking in Linux: (a) subset of receive call
stack, (b) send architecture, (c) subset of send call stack.

by subtracting the function start time from the function
end time. Figure 6a shows a subset of Linux’s receive
call stack. Iron instruments netif receive skb to
obtain per-packet costs because it is the first function that
handles individual packets outside the driver, regardless
of transport protocol2.

Obtaining the time difference is nontrivial because the
kernel is preemptable and functions in the call tree can
be interrupted at any time. To ensure only the time spent
processing packets is captured, Iron relies on scheduler
data. The scheduler keeps the cumulative execution time
a thread has been running (cumtime), as well as the time
a thread was last swapped in (swaptime). Coupled with
the local clock (now), the start and end times can be
calculated as: time= cumtime+(now−swaptime).

Besides per-packet costs, there is also a fixed cost asso-
ciated with processing traffic. That is, there are overheads
for entering the function that processes hardware inter-
rupts (do IRQ), processing softirqs, and performing skb
garbage collection. In Iron, these overheads are lumped
together and assigned to packet costs in a weighted fash-
ion. In Linux, six types of softirqs are processed by the

2TCP first traverses GRO, but we instrument here for uniformity

318 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

softirq handler (do softirq): HI, TX, RX, TIMER,
SCSI, and TASKLET. For each interrupt, we obtain the
total do IRQ cost, denoted H , and the cost for process-
ing each specific softirq (denoted SHI , STX , etc). Note
software interrupts are processed at the end of a hardware
interrupt, so H > ∑iSi. The overhead associated with
processing an interrupt is defined as: O =H−∑iSi and
the fair share of the receive overhead within that interrupt
is: ORX = O SRX

∑iSi
. Last, ORX is evenly split amongst

packets processed in a given do softirq call to obtain
a fixed charge added to each packet.

Finally, we note this scheme is effective in capturing
TCP overhead. That is, Iron gracefully handles TCP
ACKs and TCP buffering. A TCP flow is handled within a
single thread, so when data is received, the thread directly
calls a function to send an ACK. When the ACK function
returns, the received data continues to be processed as
normal. Therefore, ACK overhead is captured by our start
and end timestamps. Buffering is also handled correctly.
Say packet i− 1 is lost and thus received packet i is
buffered. When retransmitted i− 1 is received the gap
in sequence numbers is filled and TCP will push up the
packets to the socket. Correct charging occurs because
the cost of moving packet i from the buffer to the socket
is captured in the cost of retransmitted packet i−1.

Sender-based accounting When sending packets, the
kernel has to obtain a lock on a NIC queue. Obtain-
ing a lock on a per-packet basis has high overhead, so
packets are often batched for transmission in Linux [18].
Therefore, Iron measures the cost of sending a batch and
then charges each packet within the batch for an equal
share of the batch cost. The do softirq function calls
net tx action to process transmit softirqs (refer to
Figure 6b,c). Then net tx action calls into the qdisc
layer to retrieve packets. Multiple qdisc queues can be de-
queued and each queue may return multiple packets. As a
result, a linked list of skbs is created and sent to the NIC.
Similar to the receiver, net tx action obtains a start
and end time for sending the batch, and OTX is obtained
to split the transmission’s fixed overheads. Overheads
are calculated per core because HTB is work conserving
and may dequeue a packet on a different core than it was
enqueued.

Container mapping and accounting data structures
Iron must identify the container a packet belongs to. On
the sender, an skb is associated with its cgroup when en-
queued in the qdisc layer. On the receiver, Iron maintains
a hash table on IP addresses that is filled when copying
packets to a socket.

In Iron, each process maintains a local (per-core) list of
packets it processed in softirq context and their individual
costs. The per-process structures are eventually merged
into a global per-cgroup structure. Iron does this in a way

Algorithm 1 Global runtime refill at period’s end

1: if gained > 0 then
2: runtime← runtime + gained
3: gained← 0
4: end if
5: if cgroup idled() and runtime > 0 then
6: runtime← 0
7: end if
8: runtime← quota + runtime
9: set timer(now + period)

that does not increase locking by merging state when the
scheduler obtains a global lock. The per-cgroup structure
maintains a variable (gained) that indicates if a cgroup
should be credited for network processing. Section 3.2
details data structure use.

3.2 Enforcement

This subsection shows how isolation is enforced. Isola-
tion is achieved by integrating accounting data with CPU
allocation in Linux’s CFS scheduler [67] and dropping
packets when a container becomes throttled.

Scheduler integration The CFS scheduler implements
CPU allocation for cgroups via a hybrid scheme that keeps
both local (i.e., per core) and global state. Containers are
allowed to run for a given quota within a period. The
scheduler minimizes locking overhead by updating local
state on a fine-grained level and global state on a coarse-
grained level. At the global level a runtime variable is
set to quota at the beginning of a period. The scheduler
subtracts a slice from runtime and allocates it to a
local core. The runtime continues to be decremented
until either it reaches zero or the period ends. Regardless,
at the end of a period runtime is refilled to the quota.

On the local level, a rt remain variable is assigned
the slice intervals pulled from the global runtime.
The scheduler decrements rt remain as a task within
the cgroup consumes CPU. When rt remain hits zero,
the scheduler tries to obtain a slice from the global pool. If
successful, rt remain is recharged with a slice and the
task can continue to run. If the global pool is exhausted,
the local cgroup gets throttled and its tasks are no longer
scheduled until the period ends.

Iron’s global scheduler is presented in Algorithm 1.
A global variable gained tracks the time a container
should get back because it processed another container’s
softirqs. Line 2 adds gained to runtime. Next,
runtime is reset to 0 if the container didn’t use its pre-
vious allocation because it was limited by its demand
(lines 5-7), preserving a CFS policy that disallows unused
cycles to be accumulated for use in subsequent periods.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 319

Algorithm 2 Local runtime refill

1: amount← 0
2: min amount← slice - rt remain
3: if cpuusage > 0 then
4: if cpuusage > gained then
5: runtime← runtime - (cpuusage - gained)
6: gained← 0
7: else
8: gained← gained - cpuusage
9: end if

10: else
11: gained← gained + abs(cpuusage)
12: end if
13: cpuusage← 0
14: if runtime = 0 and gained > 0 then
15: refill← min(min amount, gained)
16: runtime← refill
17: gained← gained - refill
18: end if
19: if runtime > 0 then
20: amount← min(runtime, min amount)
21: runtime← runtime - amount
22: end if
23: rt remain← rt remain + amount

Last, line 8 refills runtime. Note, the runtime input can
be negative when a container exceeds its allocated time
by sending or receiving too much traffic.

Iron’s local algorithm is listed in Algorithm 2. The
scheduler invokes this function when rt remain ≤ 0
and after obtaining appropriate locks. The cpuusage
variable is added to maintain local accounting: positive
values indicate the container needs to be charged for un-
accounted networking cycles and negative values indicate
the container needs a credit for work it did on another
container’s behalf. Lines 3-9 cover when a container is
to be charged, trying to take from gained if possible.
Lines 10-12 cover the case when a container is to be cred-
ited, so gained is increased. Lines 14-18 cover a corner
case where the runtime may be exhausted, but some credit
was accrued and can be used. Lines 19-22 are unchanged:
they ensure the container has global runtime left to use.
If not, then amount remains 0. Line 23 updates the new
rt remain by amount.

Dropping excess packets While scheduler-based en-
forcement improves isolation, packets still need to be
dropped so a throttled container cannot accrue more
network-based processing. Iron does not explicitly drop
packets at the sender because throttled containers already
cannot generate more outgoing traffic. There exists a cor-
ner case when a container has some runtime left and sends
a large burst of packets. Currently, the scheduler charges

this overage on the next quota refill. We did implement
a proactive charging scheme that estimates the cost of
packet transmission, charges it up-front, and drops pack-
ets if necessary. This scheme didn’t substantially affect
performance, however.

Dropping the receiver’s excess packets is more im-
portant because a throttled receiver may continue to re-
ceive traffic, hence breaking isolation. Iron implements
a hardware-based dropping mechanism that integrates
with current architectures. Today, NICs insert incoming
packets into multiple queues. Each queue has its own in-
terrupt that can be assigned to specified cores. To improve
isolation, packets are steered to the core in which their
container runs via advanced receive flow steering [39]
(FlexNIC [45] also works). Upon reception, the NIC
DMAs a packet to a ring buffer in shared memory. Then,
the NIC generates an IRQ for the queue, which triggers
the interrupt handler in the driver. Modern systems man-
age network interrupts with NAPI [4]. Upon receiving
a new packet, NAPI disables hardware interrupts and
notifies the OS to schedule a polling method to retrieve
packets. Meanwhile, additionally received packets are
simply put in the ring buffer by the NIC. When the kernel
polls the NIC, it removes as many packets from the ring
buffer as possible, bounded by a budget. NAPI polling
exits and interrupt-driven reception is resumed when the
number of packets removed is less than the budget.

Our hardware-based dropping mechanism works as
follows. First, assume the NIC has one queue per con-
tainer. Iron augments the NAPI queue structure with a
map from a queue to its container (i.e., task group). When
the scheduler throttles a container, it modifies a boolean
in task group. Different from default NAPI, Iron does not
poll packets from queues whose containers are throttled.
From the kernel’s point of view, the queue is stripped
from the polling list so that it isn’t constantly repolled.
From the NIC’s point of view, the kernel is not polling
packets from the queue, so it stays in polling mode and
keeps hardware interrupts disabled. If new packets are
received, they are simply inserted into the ring buffer.
This technique effectively mitigates receiving overhead
because the kernel is not being interrupted or required to
do any work on behalf of the throttled container. When
the scheduler unthrottles a container, it resets its boolean
and schedules a softirq to process packets that may be
enqueued.

As a slight optimization, Iron can also drop packets
before a container is throttled. That is, if a container
is receiving high amounts of traffic and the container is
within T% of its quota, packets can be dropped. This
allows the container to use some of its remaining runtime
to stop a flood of incoming packets.

Hardware-based dropping is effective when there are a
large number of queues per NIC. Even though NICs are

320 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0.9
 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06

 0 1 2 3 4 5 6 7

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

2 per core
3 per core

6 per core
10 per core

Figure 7: Performance penalty of victim with UDP
senders. Compare to Figure 1.

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 0 1 2 3 4 5 6 7

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

1 flow
10 flows

25 flows
50 flows

75 flows
100 flows

Figure 8: Performance penalty of victim with TCP
senders. Compare to Figure 3a.

increasingly outfitted with extra queues (e.g., Solarflare
SFN8500-series NICs have 2048 receive queues), in prac-
tice the number of queues may not equal the number of
containers. Iron can allocate a fixed number of queues per
core and then dynamically map problematic containers
onto their own queue. Containers without heavy traf-
fic can incur a software-based drop by augmenting the
netif receive skb function early in the softirq

call stack. This dynamic allocation scheme draws inspi-
ration from SENIC [61], which uses a similar approach
to scale NIC-based rate limiters. Alternatively, containers
can be mapped to queues based on prepurchased band-
width allocations.

4 Evaluation

This section evaluates the effectiveness of Iron. First, a
set of macrobenchmarks show Iron isolates controlled
and realistic workloads. Then, a set of microbenchmarks
investigates Iron’s overhead and design choices.

Methodology The tests are run on Super Micro 5039MS-
H8TRF servers with Intel Xeon E3-1271 CPUs. The
machines have four cores, with hyper-threading disabled
and CPU frequency fixed to 3.2 Ghz. The servers are
equipped with Broadcom BCM57304 NetXtreme-C 25
Gbps NICs (driver 1.2.3 and firmware 20.2.25/1.2.2). The
servers run Ubuntu 16.04 LTS with Linux kernel 4.4.17.
The NICs are set to 25 Gbps for UDP and 10 Gbps for
TCP (we noticed instability with TCP at 25 Gbps).

We use lxc to create containers and Open Virtual
Switch as the virtual switch. Simple UDP and TCP
sender and receiver programs create network traffic. The

1 3 5 7 10
Transmit rate of senders (Gbps)

0.94

0.96

0.98

1.00

1.02

1.04

1.06

P
e
n
a
lt

y
 F

a
ct

o
r

1 rcv 4 rcv 7 rcv

Figure 9: Performance penalty of victim when there are
8 containers on a core. i of the containers are UDP re-
ceivers.

sysbench’s CPU benchmark is used to measure the
computational overhead from competing network traffic.
Rate limiters are configured with default burst settings.

4.1 Macrobenchmarks

Sender-side experiments We run the same experiments
in Section 2 to evaluate how well Iron isolates sender
interference. Figure 7 shows the impact of UDP senders
on sysbench. Note this experimental setup is the same
as Figure 1. Iron obtains average penalty factors less
than 1.01 for 2, 3, and 6 containers, as compared penalty
factors as high as 1.11 without Iron. With 10 contain-
ers, Iron’s penalty factor remains below 1.04, a significant
decrease from the maximum of 1.18 without Iron.

Figure 8 shows the performance of Iron with TCP
senders, and can be compared to Figure 3a. The max-
imum penalty factor experienced by Iron is 1.04, whereas
the maximum penalty factor without Iron is 1.85. These
results show Iron can effectively curtail interference from
network-based processing associated with sending traffic.

Receiver-side experiments We rerun the experiments
in Section 2 to evaluate how well Iron isolates receiver
interference. Even though our NICs support more than
eight receive queues, we were unable to modify the driver
to expose more queues than cores. Therefore, different
from Section 2, a single core is allocated with 8 contain-
ers, instead of 10. In these experiments, the number of
receiver containers varies from 1, 4, or 7. Containers that
are not receivers run an interfering sysbench workload.
For the UDP experiments, the hardware-based enforcing
mechanism was employed, while the TCP experiments
utilize our software-based enforcing mechanism.

Figure 9 shows the impact of UDP receivers. The x-
axis shows aggregated traffic rate at the sender. This is
different from the graphs in Section 2 because Iron drops

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 321

wordcount pi grep
Jobs

1.0
1.1
1.2
1.3
1.4
1.5
1.6

P
e
n
a
lt

y
 F

a
ct

o
r without Iron with Iron

(a) with TeraSort

wordcount pi grep
Jobs

1.0
1.1
1.2
1.3
1.4
1.5
1.6

P
e
n
a
lt

y
 F

a
ct

o
r without Iron with Iron

(b) with data-mining workload

wordcount pi grep
Jobs

1.0
1.1
1.2
1.3
1.4
1.5
1.6

P
e
n
a
lt

y
 F

a
ct

o
r without Iron with Iron

(c) with web-search workload

Figure 10: Penalty factor when MapReduce jobs share resources with other workloads.

1 10 25 50 75 100
Number of flows

0.94

0.96

0.98

1.00

1.02

1.04

P
e
n
a
lt

y
 F

a
ct

o
r

1 rcv 4 rcv 7 rcv

Figure 11: Performance penalty of victim when there
are 8 containers on a core. i of the containers are TCP
receivers.

packets when container quotas are exceeded, causing re-
ceived rates to converge. Each number of receivers is
indicated by a different bar color. The error bars represent
the 5% and 95%. The height of the bars indicate the 25%
to 75% and the red horizontal line within each bar is the
median. In the previous results without Iron, penalty fac-
tors ranged from maximums of 2.45 to 4.45. With Iron,
the median penalty factor ranges between 0.98 and 1.02
and never exceeds 1.05. The penalty factor can be lower
than 1 when Iron overestimates hard interrupt overheads:
overheads, including those occurring after softirq process-
ing, are approximated by using measured values from
previous cycles.

Figure 11 shows when interfering containers receive
TCP traffic. Unlike UDP, TCP adapts its rate when packet
drops occur. Therefore, the software-based rate limiter
is effective in reducing interference. In Section 2, the
maximum penalty factor ranged from 2.2 to 6. However,
with Iron, penalty factors do not exceed 1.05.

Realistic applications Here we evaluate the impact of
interference on real applications. We run the experiment
on a cluster of 48 containers spread over 6 machines.
Each machine has 8 containers (2 per core). The cluster
is divided into two equal subclusters such that a container
in a subcluster does not share the core with a container

from the same subcluster. HTB evenly divides bandwidth
between all containers on a machine.

Three MapReduce applications serve as the victims: pi
computes the value of pi, wordcount counts word frequen-
cies in a large file, and grep searches for a given word
in a file. Three different trace-based interferers run on
the other subcluster: the shuffle phase of a TeraSort job
with a 115GB input file, a web-search workload [7] and a
data-mining workload [6]. For the latter two workloads,
applications maintain long-lived TCP connections to ev-
ery other container in the subcluster, sequentially sending
messages to a random destination with sizes distributed
from each trace. Figure 10 shows the impact of interfer-
ence on real applications. Iron obtains an average penalty
factor less than 1.04 over all workloads, whereas the av-
erage penalty factor ranges from 1.21-1.57 without Iron.
These results show Iron can effectively eliminate interfer-
ence that arises in realistic conditions.

4.2 Microbenchmarks

This subsection evaluates Iron’s overhead, the usefulness
of runtime packet cost calculation, and the benefits of
hardware-based packet dropping.

Performance overhead To measure how accurately
Iron limits CPU usage, we allocated 3 containers on a
core with each container having 30% of the core. One of
the containers ran sysbench, while the other two were
UDP senders. Figure 12a shows the total CPU used by
all containers over a 30 second window. On average, the
consumed CPU was around 90.02%. In an ideal case, no
more than 90% of the CPU should be utilized. This indi-
cates Iron does not have high overhead in limiting cgroup
CPU allocation to its respective limits. We also ran the
experiment with a UDP receiver, as shown in Figure 12b.
On average Iron ensures an idle CPU of 10.07%, which
again shows the effectiveness of our scheme.

Next we analyzed if Iron hurts a network-intensive
workload. We instrumented a container to receive traffic
and allowed it 100% of the core. Then, at the sender,
we generated UDP traffic at 2 Gbps. Using mpstat,
we measured the CPU consumed by the receiver. The

322 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25

Time (sec)

0
20
40
60
80

100
T
o
ta

l
C

P
U

 (
%

)

per core usage

(a) CPU usage with senders

0 5 10 15 20 25

Time (sec)

0
20
40
60
80

100

T
o
ta

l
C

P
U

 (
%

)

per core usage

(b) CPU usage with receivers

Figure 12: CPU overhead benchmarks.

Packet type Average packet cost (usec)
UDP 0.706
TCP 1.670
GRE Tunnel 1.184

Table 1: Average packet processing cost at the receiver.

receiver consumed 35% of the core and received traffic
at 1.93 Gbps. Next, we ran the same experiment with
the receiver, but this time limited the container to 35% of
the core. With Iron limiting the CPU usage, the receiver
received traffic at 1.90 Gbps (and used no more than
35% of the CPU). This indicates the overhead of Iron on
network traffic is minimal. We ran a similar experiment
with the UDP sender and observed no degradation in
traffic rate. Unlike the receiver, if a sender is out of CPU
cycles it will be throttled, thus generating no extra traffic.

Packet cost variation A simple accounting scheme
may charge a fixed packet cost and is likely ineffective
because packet processing costs vary significantly at the
receiver. Table 1 shows the average packet cost for three
classes of traffic. TCP requires bookkeeping for flow
control and reliability and results in higher costs than
UDP. UDP packets encapsulated in GRE experience extra
cost because those packets traverse the stack twice.

Dropping mechanism We compared the impact of
software-based versus hardware-based dropping. The
UDP sending rate is varied to a receiver with 8 containers
on a core (7 are receivers). As shown in Figure 13, both
approaches mitigate interference when traffic rates are
low. However, when rates are high, the median penalty
factor of the software-based rate limiter increases to 1.19,
with the 95% approaching a penalty factor of 1.6. The
hardware rate-limiter maintains a near-constant penalty
factor, regardless of rate.

5 Related Work

Here we augment Section 2.2 to further detail prior art.

Isolation of kernel-level resources Many studies have
examined how colocated computation suffers from inter-

1 3 5 7 10
Transmit rate of senders (Gbps)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

P
e
n
a
lt

y
 F

a
ct

o
r

hw drop sw drop

Figure 13: Impact of software and hardware-based packet
dropping mechanisms on penalty factor for 7 receivers.

ference [23, 49, 53, 64, 74]. As such, providing resource
isolation to underlying server hardware has been a rich
area of research. For example, researchers have inves-
tigated how to isolate CPU time [11, 15, 67], processor
caches [27, 44], memory bandwidth [40, 71], energy [26],
and storage [50, 54, 66, 70, 72]. These schemes address
problems orthogonal to our work, and none can be general-
ized to solve the problem Iron solves. While Iron focuses
on network-based interrupt processing, Iron’s high-level
principles of annotating and measuring container-based
interrupt overhead can be applied to other interrupts (e.g.,
timers, storage, etc). For example, tags designed for
scheduling I/O storage requests [32, 72] can help account
for per-container storage processing overheads. Like Iron,
these overheads can be integrated with the Linux CFS
scheduler. While developing specific, low-overhead en-
forcement schemes for other interrupts remains future
work, modifying the I/O block scheduler or utilizing
software-defined storage mechanisms [66] are promis-
ing starts for storage.

A large class of research allocates network band-
width [9, 33, 42, 56, 58, 59, 63, 65] or isolates congestion
control [19, 37] in shared datacenters. In short, these
schemes affect network performance but do nothing to
control network-based processing time, and thus are com-
plimentary to Iron. Last, some schemes isolate dataplane
and application processing on core granularity [12, 41],
but do not generalize to support many containers per core
nor explicitly study the interference problem.

Resource management and isolation in cloud Deter-
mining how to place computation within the cloud has
received significant attention. For example, Paragon [21]
schedules jobs in an interference-aware fashion to ensure
service-level objectives can be achieved. Several other
schemes, such as Borg [69], Quasar [22], Heracles [49],
and Retro [51] can provision, monitor, and control re-
source consumption in colocated environments to ensure
performance is not degraded due to interference. Iron
is largely complementary to these schemes. By provid-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 323

1.0
1.2
1.4
1.6
1.8
2.0
2.2

P
e
n
a
lt

y
 F

a
ct

o
r

Linux

RT_Preempt_Full

Figure 14: Performance penalty with RT Linux.

ing hardened isolation, Iron allows resource managers to
make more informed decisions, so network-heavy jobs
cannot impact colocated processor-heavy jobs.

VM network-based accounting Gupta’s scheme ac-
counts for processing performed in device drivers for
an individual VM [34]. The scheme measures VM-based
resource consumption in the hypervisor, integrates with
the scheduler to charge for usage, and limits traffic when
necessary. Iron differs in many regards. Iron provides
performance isolation in container-based environments,
instead of VM-based environments. The difference is sig-
nificant because packets consume more processing time
with containers because the network stack lies within
the server’s kernel, and not the VM’s. Gupta relies on a
fixed cost to charge for packet reception and transmission,
but our results show packet costs vary significantly. Fur-
thermore, because container-based environments incur
more processing overhead for traffic, it is important that
received traffic is discarded efficiently when necessary.
Hence, Iron contains a novel hardware-based enforcement
scheme, whereas Gupta’s work relies on software.

Shared NFV infrastructure Many works study how
to allocate multiple NFVs and their resources on a
server [24, 29, 47, 52, 68]. Similar to library OSes, NFV
servers require kernel bypass for latency and control. As
discussed, kernel bypass approaches cannot easily gen-
eralize to solve the interference problem in multi-tenant
containerized clouds.

Real-time kernel Real-time (RT) kernels typically aren’t
used for multi-tenancy, but some RT OSes redesign in-
terrupt processing in a way that could mitigate the in-
terference problem. For example, RT Linux patches the
OS so the only type of softirq served in a process’s con-
text are those which originated within that process [17].
While this patch doesn’t help with receptions, it prevents
a container with no outgoing traffic from processing in-
terrupts from another container’s outgoing traffic. To
understand this solution, we ran an experiment with 2
Gbps rate limit and 6 equally-prioritized containers per
core: one sysbench victim and 5 interferers that flood
outgoing UDP traffic. Figure 14 shows the penalty factor
for normal Linux and RT Linux (RT Preempt Full). The

penalty factor of RT Linux is significantly higher than
Linux because in RT Linux the victim doesn’t process
interrupts in its context. Instead, interrupt processing is
moved to kernel threads. The processing time used by
the kernel threads reduces the time available to the victim.
Additionally, RT Linux tries to minimize softirq process-
ing latency and perf shows the victim experiences 270×
more involuntary context switches as compared to Linux.

Finally, Zhang [75] proposes a RT OS that increases
predictability by scheduling interrupts based on pro-
cess priority and accounting for time spent in interrupts.
Zhang’s accounting scheme has up to 20% error [75],
likely because it is coarse-grained in time and does not use
actual, per-packet costs. Overheads in Iron are less than
5% because its accounting mechanism is immediately
responsive to actual, per-packet costs. In addition, Iron
comprehensively studies the interference problem and
introduces enforcement schemes.

Microsoft Windows The scheduler in Windows does not
count time spent processing interrupts towards a thread’s
execution time [73]. This is not sufficient to totally mit-
igate the interference problem because time spent in in-
terrupt and deferred interrupt processing is not charged
to an appropriate thread. Therefore, the large number of
cycles consumed by kernel packet processing leave less
cycles available to colocated, CPU-heavy threads.

6 Conclusion

This paper presents Iron, a system providing hardened
isolation for network-based processing in containerized
environments. Network-based processing can have sig-
nificant overhead, and our case study shows a container
running a CPU-intensive task may suffer up to a 6× slow-
down when colocated with containers running network-
intensive tasks. Iron enforces isolation by accurately mea-
suring the time spent processing network traffic in softirq
context within the kernel. Then, Iron relies on an enforce-
ment algorithm that integrates with the Linux scheduler to
throttle containers when necessary. Throttling alone is in-
sufficient to provide isolation because a throttled container
may receive network traffic. Therefore, Iron contains a
hardware-based mechanism to drop packets with minimal
overhead. Our scheme seamlessly integrates with modern
Linux architectures. Finally, the evaluation shows Iron
reduces overheads from network-based processing to less
than 5% for realistic and adversarial workloads.

Acknowledgements We thank the reviewers and our
shepherd Boon Thau Loo. This work is supported by
the National Science Foundation (grants CNS-1302041,
CNS-1330308, CNS1345249, and CNS-1717039), and
Aditya Akella is also supported by gifts from VMWare,
Huawei, and the UW-Madison Vilas Associates.

324 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Docker swarm.
https://github.com/docker/swarm.
Accessed: 2017-09-25.

[2] Linux advanced routing and traffic control howto.
http://lartc.org/lartc.html. Accessed:
2017-09-25.

[3] Linux control groups.
https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt.
Accessed: 2017-09-21.

[4] Networking napi. https://wiki.
linuxfoundation.org/networking/napi.
Accessed: 2017-09-25.

[5] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.
php/Main_Page. Accessed: 2017-09-21.

[6] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A.,
MATUS, F., PAN, R., YADAV, N., VARGHESE, G.,
ET AL. CONGA: Distributed Congestion-aware Load
Balancing for Datacenters. In SIGCOMM (2014).

[7] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP).
In SIGCOMM (2010).

[8] AMAZON WEB SERVIES, INC. AWS Lambda: Serverless
computing.
https://aws.amazon.com/lambda/.

[9] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND

ROWSTRON, A. Towards predictable datacenter networks.
In ACM SIGCOMM Computer Communication Review
(2011), vol. 41, ACM, pp. 242–253.

[10] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C.
Resource containers: A new facility for resource
management in server systems. In OSDI (1999), vol. 99,
pp. 45–58.

[11] BARTOLINI, D. B., SIRONI, F., SCIUTO, D., AND

SANTAMBROGIO, M. D. Automated fine-grained cpu
provisioning for virtual machines. ACM Trans. Archit.
Code Optim. 11, 3 (July 2014), 27:1–27:25.

[12] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN,
S., KOZYRAKIS, C., AND BUGNION, E. IX: A protected
dataplane operating system for high throughput and low
latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14) (CO,
2014), USENIX Association, pp. 49–65.

[13] BREWER, E. A. Kubernetes and the path to cloud native.
In Proceedings of the Sixth ACM Symposium on Cloud
Computing (New York, NY, USA, 2015), SoCC ’15,
ACM, pp. 167–167.

[14] BRUTLAG, J. Speed Matters for Google Web Search.
Tech. rep., 2009.
https://services.google.com/fh/files/
blogs/google_delayexp.pdf.

[15] CHERKASOVA, L., GUPTA, D., AND VAHDAT, A.
Comparison of the three cpu schedulers in xen.
SIGMETRICS Perform. Eval. Rev. 35, 2 (Sept. 2007),
42–51.

[16] CORBET, J. Jls2009: Generic receive offload. Linux
Weekly News (LWN) (Oct. 2009).
https://lwn.net/Articles/358910/.

[17] CORBET, J. Software interrupts and realtime. Linux
Weekly News (LWN) (Oct. 2012).
https://lwn.net/Articles/520076/.

[18] CORBET, J. Bulk network packet transmission. Linux
Weekly News (LWN) (Oct. 2014).
https://lwn.net/Articles/615238/.

[19] CRONKITE-RATCLIFF, B., BERGMAN, A., VARGAFTIK,
S., RAVI, M., MCKEOWN, N., ABRAHAM, I., AND

KESLASSY, I. Virtualized congestion control. In
Proceedings of the 2016 ACM SIGCOMM Conference
(New York, NY, USA, 2016), SIGCOMM ’16, ACM,
pp. 230–243.

[20] DEAN, J., AND BARROSO, L. A. The tail at scale.
Communications of the ACM 56 (2013), 74–80.

[21] DELIMITROU, C., AND KOZYRAKIS, C. Paragon:
Qos-aware scheduling for heterogeneous datacenters. In
Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2013),
ASPLOS ’13, ACM, pp. 77–88.

[22] DELIMITROU, C., AND KOZYRAKIS, C. Quasar:
Resource-efficient and qos-aware cluster management. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2014),
ASPLOS ’14, ACM, pp. 127–144.

[23] DELIMITROU, C., AND KOZYRAKIS, C. Bolt: I know
what you did last summer... in the cloud. SIGARCH
Comput. Archit. News 45, 1 (Apr. 2017), 599–613.

[24] DOBRESCU, M., ARGYRAKI, K., AND RATNASAMY, S.
Toward predictable performance in software
packet-processing platforms. In Presented as part of the
9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12) (San Jose, CA, 2012),
USENIX, pp. 141–154.

[25] DRUSCHEL, P., AND BANGA, G. Lazy receiver
processing (lrp): A network subsystem architecture for
server systems. In OSDI (1996), vol. 96, pp. 261–275.

[26] FONSECA, R., DUTTA, P., LEVIS, P., AND STOICA, I.
Quanto: Tracking energy in networked embedded
systems. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2008), OSDI’08, USENIX
Association, pp. 323–338.

[27] FUNARO, L., BEN-YEHUDA, O. A., AND SCHUSTER,
A. Ginseng: Market-driven llc allocation. In 2016
USENIX Annual Technical Conference (USENIX ATC 16)
(Denver, CO, 2016), USENIX Association, pp. 295–308.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 325

https://github.com/docker/swarm
http://lartc.org/lartc.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://wiki.linuxfoundation.org/networking/napi
https://wiki.linuxfoundation.org/networking/napi
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://aws.amazon.com/lambda/
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://lwn.net/Articles/358910/
https://lwn.net/Articles/520076/
https://lwn.net/Articles/615238/

[28] GANGER, G. R., ENGLER, D. R., KAASHOEK, M. F.,
BRICEÑO, H. M., HUNT, R., AND PINCKNEY, T. Fast
and flexible application-level networking on exokernel
systems. ACM Trans. Comput. Syst. 20, 1 (Feb. 2002),
49–83.

[29] GHODSI, A., SEKAR, V., ZAHARIA, M., AND STOICA,
I. Multi-resource fair queueing for packet processing. In
Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communication (New York, NY, USA,
2012), SIGCOMM ’12, ACM, pp. 1–12.

[30] GLEIXNER, T. [announce] 3.6.1-rt1. Linux Weekly News
(LWN) (Oct. 2012).
https://lwn.net/Articles/518993/.

[31] GOOGLE INC. Cloud functions.
https://cloud.google.com/functions/.

[32] GULATI, A., MERCHANT, A., AND VARMAN, P. J.
mclock: Handling throughput variability for hypervisor io
scheduling. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2010), OSDI’10,
USENIX Association, pp. 437–450.

[33] GUO, C., LU, G., WANG, H. J., YANG, S., KONG, C.,
SUN, P., WU, W., AND ZHANG, Y. Secondnet: a data
center network virtualization architecture with bandwidth
guarantees. In Proceedings of the 6th International
Conference (2010), ACM, p. 15.

[34] GUPTA, D., CHERKASOVA, L., GARDNER, R., AND

VAHDAT, A. Enforcing performance isolation across
virtual machines in xen. In ACM/IFIP/USENIX
International Conference on Distributed Systems
Platforms and Open Distributed Processing (2006),
Springer, pp. 342–362.

[35] HAN, S., MARSHALL, S., CHUN, B.-G., AND

RATNASAMY, S. Megapipe: A new programming
interface for scalable network i/o. In Presented as part of
the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12) (Hollywood, CA,
2012), USENIX, pp. 135–148.

[36] HE, K., ROZNER, E., AGARWAL, K., FELTER, W.,
CARTER, J., AND AKELLA, A. Presto: Edge-based load
balancing for fast datacenter networks. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication (New York, NY, USA, 2015),
SIGCOMM ’15, ACM, pp. 465–478.

[37] HE, K., ROZNER, E., AGARWAL, K., GU, Y. J.,
FELTER, W., CARTER, J., AND AKELLA, A. Ac/dc tcp:
Virtual congestion control enforcement for datacenter
networks. In Proceedings of the 2016 ACM SIGCOMM
Conference (New York, NY, USA, 2016), SIGCOMM ’16,
ACM, pp. 244–257.

[38] HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Serverless computation with
openlambda. In Proceedings of HotCloud (June 2016).

[39] HERBERT, T., AND DE BRUIJN, W. Scaling in the linux
networking stack, 2011.

https://www.kernel.org/doc/
Documentation/networking/scaling.txt.

[40] IYER, R., ZHAO, L., GUO, F., ILLIKKAL, R.,
MAKINENI, S., NEWELL, D., SOLIHIN, Y., HSU, L.,
AND REINHARDT, S. Qos policies and architecture for
cache/memory in cmp platforms. In Proceedings of the
2007 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (New
York, NY, USA, 2007), SIGMETRICS ’07, ACM,
pp. 25–36.

[41] JEONG, E., WOOD, S., JAMSHED, M., JEONG, H., IHM,
S., HAN, D., AND PARK, K. mtcp: a highly scalable
user-level tcp stack for multicore systems. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14) (Seattle, WA, 2014), USENIX
Association, pp. 489–502.

[42] JEYAKUMAR, V., ALIZADEH, M., MAZIERES, D.,
PRABHAKAR, B., KIM, C., AND AZURE, W. Eyeq:
Practical network performance isolation for the
multi-tenant cloud. In HotCloud (2012).

[43] JEYAKUMAR, V., ALIZADEH, M., MAZIÈRES, D.,
PRABHAKAR, B., KIM, C., AND GREENBERG, A.
EyeQ: Practical Network Performance Isolation at the
Edge. In NSDI (2013).

[44] KASTURE, H., AND SANCHEZ, D. Ubik: Efficient cache
sharing with strict qos for latency-critical workloads. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2014),
ASPLOS ’14, ACM, pp. 729–742.

[45] KAUFMANN, A., PETER, S., SHARMA, N. K.,
ANDERSON, T., AND KRISHNAMURTHY, A. High
performance packet processing with flexnic. In
Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2016),
ASPLOS ’16, ACM, pp. 67–81.

[46] KOPYTOV, A. Sysbench manual. MySQL AB (2012).

[47] KULKARNI, S. G., ZHANG, W., HWANG, J.,
RAJAGOPALAN, S., RAMAKRISHNAN, K. K., WOOD,
T., ARUMAITHURAI, M., AND FU, X. Nfvnice:
Dynamic backpressure and scheduling for nfv service
chains. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (New
York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 71–84.

[48] LESLIE, I. M., MCAULEY, D., BLACK, R., ROSCOE, T.,
BARHAM, P., EVERS, D., FAIRBAIRNS, R., AND

HYDEN, E. The design and implementation of an
operating system to support distributed multimedia
applications. IEEE J.Sel. A. Commun. 14, 7 (Sept. 2006),
1280–1297.

[49] LO, D., CHENG, L., GOVINDARAJU, R.,
RANGANATHAN, P., AND KOZYRAKIS, C. Improving
resource efficiency at scale with heracles. ACM Trans.
Comput. Syst. 34, 2 (May 2016), 6:1–6:33.

326 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://lwn.net/Articles/518993/
https://cloud.google.com/functions/
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt

[50] LU, L., ZHANG, Y., DO, T., AL-KISWANY, S.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Physical Disentanglement in a Container-Based
File System. In Proceedings of the 11th Symposium on
Operating Systems Design and Implementation (OSDI
’14) (Broomfield, CO, October 2014).

[51] MACE, J., BODIK, P., FONSECA, R., AND MUSUVATHI,
M. Retro: Targeted resource management in multi-tenant
distributed systems. In NSDI (2015), pp. 589–603.

[52] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V.,
HONDA, M., BIFULCO, R., AND HUICI, F. Clickos and
the art of network function virtualization. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14) (Seattle, WA, 2014), USENIX
Association, pp. 459–473.

[53] MATTHEWS, J. N., HU, W., HAPUARACHCHI, M.,
DESHANE, T., DIMATOS, D., HAMILTON, G.,
MCCABE, M., AND OWENS, J. Quantifying the
performance isolation properties of virtualization systems.
In Proceedings of the 2007 Workshop on Experimental
Computer Science (New York, NY, USA, 2007), ExpCS
’07, ACM.

[54] MCCULLOUGH, J. C., DUNAGAN, J., WOLMAN, A.,
AND SNOEREN, A. C. Stout: An adaptive interface to
scalable cloud storage. In Proc. of the USENIX Annual
Technical Conference–ATC (2010), pp. 47–60.

[55] MICROSOFT CORP. Azure functions.
https://azure.microsoft.com/en-us/
services/functions/.

[56] MUNDADA, Y., RAMACHANDRAN, A., AND

FEAMSTER, N. Silverline: Data and network isolation for
cloud services. In HotCloud (2011).

[57] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS,
D., KRISHNAMURTHY, A., ANDERSON, T., AND

ROSCOE, T. Arrakis: The operating system is the control
plane. ACM Trans. Comput. Syst. 33, 4 (Nov. 2015),
11:1–11:30.

[58] POPA, L., KUMAR, G., CHOWDHURY, M.,
KRISHNAMURTHY, A., RATNASAMY, S., AND STOICA,
I. FairCloud: Sharing the Network in Cloud Computing.
In SIGCOMM (2012).

[59] POPA, L., YALAGANDULA, P., BANERJEE, S., MOGUL,
J. C., TURNER, Y., AND SANTOS, J. R. Elasticswitch:
Practical work-conserving bandwidth guarantees for
cloud computing. ACM SIGCOMM Computer
Communication Review 43, 4 (2013), 351–362.

[60] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J.,
OLINSKY, R., AND HUNT, G. Rethinking the library os
from the top down. In Proceedings of the 16th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS) (March 2011), ACM.

[61] RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR, V.,
KABBANI, A., PORTER, G., AND VAHDAT, A. SENIC:
Scalable NIC for End-host Rate Limiting. In NSDI
(2014).

[62] REISS, C., TUMANOV, A., GANGER, G. R., KATZ,
R. H., AND KOZUCH, M. A. Heterogeneity and
dynamicity of clouds at scale: Google trace analysis. In
Proceedings of the Third ACM Symposium on Cloud
Computing (New York, NY, USA, 2012), SoCC ’12,
ACM, pp. 7:1–7:13.

[63] RODRIGUES, H., SANTOS, J. R., TURNER, Y., SOARES,
P., AND GUEDES, D. O. Gatekeeper: Supporting
bandwidth guarantees for multi-tenant datacenter
networks. In WIOV (2011).

[64] SHARMA, P., CHAUFOURNIER, L., SHENOY, P., AND

TAY, Y. C. Containers and virtual machines at scale: A
comparative study. In Proceedings of the 17th
International Middleware Conference (New York, NY,
USA, 2016), Middleware ’16, ACM, pp. 1:1–1:13.

[65] SHIEH, A., KANDULA, S., GREENBERG, A. G., AND

KIM, C. Seawall: Performance isolation for cloud
datacenter networks. In HotCloud (2010).

[66] THERESKA, E., BALLANI, H., O’SHEA, G.,
KARAGIANNIS, T., ROWSTRON, A., TALPEY, T.,
BLACK, R., AND ZHU, T. Ioflow: A software-defined
storage architecture. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 182–196.

[67] TURNER, P., RAO, B. B., AND RAO, N. Cpu bandwidth
control for cfs. In Proceedings of the Linux Symposium
(2010), pp. 245–254.

[68] VASILESCU, L., OLTEANU, V., AND RAICIU, C.
Sharing cpus via endpoint congestion control. In
Proceedings of the Workshop on Kernel-Bypass Networks
(New York, NY, USA, 2017), KBNets ’17, ACM,
pp. 31–36.

[69] VERMA, A., PEDROSA, L., KORUPOLU, M. R.,
OPPENHEIMER, D., TUNE, E., AND WILKES, J.
Large-scale cluster management at Google with Borg. In
Proceedings of the European Conference on Computer
Systems (EuroSys) (Bordeaux, France, 2015).

[70] WACHS, M., ABD-EL-MALEK, M., THERESKA, E.,
AND GANGER, G. R. Argon: Performance insulation for
shared storage servers. In Proceedings of the 5th USENIX
Conference on File and Storage Technologies (Berkeley,
CA, USA, 2007), FAST ’07, USENIX Association,
pp. 5–5.

[71] YANG, H., BRESLOW, A., MARS, J., AND TANG, L.
Bubble-flux: Precise online qos management for
increased utilization in warehouse scale computers. In
Proceedings of the 40th Annual International Symposium
on Computer Architecture (New York, NY, USA, 2013),
ISCA ’13, ACM, pp. 607–618.

[72] YANG, S., HARTER, T., AGRAWAL, N., KOWSALYA,
S. S., KRISHNAMURTHY, A., AL-KISWANY, S.,
KAUSHIK, R. T., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Split-level i/o scheduling. In
Proceedings of the 25th Symposium on Operating Systems
Principles (2015), ACM, pp. 474–489.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 327

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

[73] YOSIFOVICH, P., IONESCU, A., RUSSINOVICH, M. E.,
AND SOLOMON, D. A. Windows Internals, Part 1:
System architecture, processes, threads, memory
management, and more, 7th ed. Microsoft Press, 2017.

[74] ZHANG, W., RAJASEKARAN, S., DUAN, S., WOOD, T.,
AND ZHUY, M. Minimizing interference and maximizing
progress for hadoop virtual machines. SIGMETRICS
Perform. Eval. Rev. 42, 4 (June 2015), 62–71.

[75] ZHANG, Y., AND WEST, R. Process-aware interrupt
scheduling and accounting. In Proceedings of the 27th
IEEE International Real-Time Systems Symposium
(Washington, DC, USA, 2006), RTSS ’06, IEEE
Computer Society, pp. 191–201.

[76] ZILBERMAN, N., AUDZEVICH, Y., COVINGTON, G. A.,
AND MOORE, A. W. Netfpga sume: Toward 100 gbps as
research commodity. IEEE Micro 34, 5 (2014), 32–41.

328 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Copa: Practical Delay-Based Congestion Control for the Internet

Venkat Arun and Hari Balakrishnan
M.I.T. Computer Science and Artificial Intelligence Laboratory

Email: {venkatar,hari}@mit.edu

Abstract

This paper introduces Copa, an end-to-end conges-
tion control algorithm that uses three ideas. First, it
shows that a target rate equal to 1/(δdq), where dq is
the (measured) queueing delay, optimizes a natural func-
tion of throughput and delay under a Markovian packet
arrival model. Second, it adjusts its congestion window
in the direction of this target rate, converging quickly to
the correct fair rates even in the face of significant flow
churn. These two ideas enable a group of Copa flows
to maintain high utilization with low queuing delay.
However, when the bottleneck is shared with loss-based
congestion-controlled flows that fill up buffers, Copa, like
other delay-sensitive schemes, achieves low throughput.
To combat this problem, Copa uses a third idea: detect
the presence of buffer-fillers by observing the delay evolu-
tion, and respond with additive-increase/multiplicative
decrease on the δ parameter. Experimental results
show that Copa outperforms Cubic (similar throughput,
much lower delay, fairer with diverse RTTs), BBR and
PCC (significantly fairer, lower delay), and co-exists well
with Cubic unlike BBR and PCC. Copa is also robust
to non-congestive loss and large bottleneck buffers, and
outperforms other schemes on long-RTT paths.

1 Introduction

A good end-to-end congestion control protocol for the
Internet must achieve high throughput, low queueing
delay, and allocate rates to flows in a fair way. Despite
three decades of work, these goals have been hard to
achieve. One reason is that network technologies and
applications have been continually changing. Since
the deployment of Cubic [13] and Compound [32, 31]
a decade ago to improve on Reno’s [16] performance
on high bandwidth-delay product (BDP) paths, link
rates have increased significantly, wireless (with its
time-varying link rates) has become common, and the
Internet has become more global with terrestrial paths
exhibiting higher round-trip times (RTTs) than before.
Faster link rates mean that many flows start and stop
quicker, increasing the level of flow churn, but the
prevalence of video streaming and large bulk transfers
(e.g., file sharing and backups) means that these long
flows must co-exist with short ones whose objectives are
different (high throughput versus low flow completion

time or low interactive delay). Larger BDPs exacerbate
the “bufferbloat” problem. A more global Internet
leads to flows with very different propagation delays
sharing a bottleneck (exacerbating the RTT-unfairness
exhibited by many current protocols).

At the same time, application providers and users
have become far more sensitive to performance, with
notions of “quality of experience” for real-time and
streaming media, and various metrics to measure Web
performance being developed. Many companies have
invested substantial amounts of money to improve
network and application performance. Thus, the perfor-
mance of congestion control algorithms, which are at the
core of the transport protocols used to deliver data on
the Internet, is important to understand and improve.

Congestion control research has evolved in multiple
threads. One thread, starting from Reno, and extending
to Cubic and Compound relies on packet loss (or ECN)
as the fundamental congestion signal. Because these
schemes fill up network buffers, they achieve high
throughput at the expense of queueing delay, which
makes it difficult for interactive or Web-like applications
to achieve good performance when long-running flows
also share the bottleneck. To address this problem,
schemes like Vegas [4] and FAST [34] use delay, rather
than loss, as the congestion signal. Unfortunately, these
schemes are prone to overestimate delay due to ACK
compression and network jitter, and under-utilize the
link as a result. Moreover, when run with concurrent
loss-based algorithms, these methods achieve poor
throughput because loss-based methods must fill buffers
to elicit a congestion signal.

A third thread of research, starting about ten years
ago, has focused on important special cases of network
environments or workloads, rather than strive for gen-
erality. The past few years have seen new congestion
control methods for datacenters [1, 2, 3, 29], cellular net-
works [36, 38], Web applications [9], video streaming [10,
20], vehicular Wi-Fi [8, 21], and more. The performance
of special-purpose congestion control methods is often
significantly better than prior general-purpose schemes.

A fourth, and most recent, thread of end-to-end
congestion control research has argued that the
space of congestion control signals and actions is too
complicated for human engineering, and that algorithms

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 329

can produce better actions than humans. Work in this
thread includes Remy [30, 35], PCC [6], and Vivace [7].
These approaches define an objective function to guide
the process of coming up with the set of online actions
(e.g., on every ACK, or periodically) that will optimize
the specified function. Remy performs this optimization
offline, producing rules that map observed congestion
signals to sender actions. PCC and Vivace perform
online optimizations.

In many scenarios these objective-optimization meth-
ods outperform the more traditional window-update
schemes [6, 35]. Their drawback, however, is that the
online rules executed at runtime are much more complex
and hard for humans to reason about (for example, a typ-
ical Remy controller has over 200 rules). A scheme that
uses online optimization requires the ability to measure
the factors that go into the objective function, which
may take time to obtain; for example, PCC’s default
objective function incorporates the packet loss rate, but
a network running at a low packet loss rate (a desirable
situation) will require considerable time to estimate.

We ask whether it is possible to develop a conges-
tion control algorithm that achieves the goals of high
throughput, low queueing delay, and fair rate allocations,
but which is also simple to understand and is general
in its applicability to a wide range of environments and
workloads, and that performs at least as well as the
best prior schemes designed for particular situations.

Approach: We have developed Copa, an end-to-end
congestion control method that achieves these goals.
Inspired by work on Network Utility Maximization
(NUM) [18] and by machine-generated algorithms,
we start with an objective function to optimize. The
objective function we use combines a flow’s average
throughput, λ , and packet delay (minus propagation
delay), d: U = log λ −δ log d. The goal is for each
sender to maximize its U. Here, δ determines how
much to weigh delay compared to throughput; a larger
δ signifies that lower packet delays are preferable.

We show that under certain simplified (but reason-
able) modeling assumptions of packet arrivals, the
steady-state sending rate (in packets per second) that
maximizes U is

λ =
1

δ ·dq
, (1)

where dq is the mean per-packet queuing delay (in
seconds), and 1/δ is in units of MTU-sized packets.
When every sender transmits at this rate, a unique,
socially-acceptable Nash equilibrium is attained.

We use this rate as the target rate for a Copa sender.
The sender estimates the queuing delay using its RTT
observations, moves quickly toward hovering near this
target rate. This mechanism also induces a property

that the queue is regularly almost flushed, which helps
all endpoints get a correct estimate of the queuing delay.
Finally, to compete well with buffer-filling competing
flows, Copa mimics an AIMD window-update rule when
it observes that the bottleneck queues rarely empty.

Results: We have conducted several experiments
in emulation, over real-world Internet paths and in
simulation comparing Copa to several other methods.
1. As flows enter and leave an emulated network,

Copa maintains nearly full link utilization with a
median Jain’s fairness index of 0.86. The median
indices for Cubic, BBR and PCC are 0.81, 0.61
and 0.35 respectively (higher the better).

2. In real-world experiments Copa achieved nearly
as much throughput and 2-10× lower queueing
delays than Cubic and BBR.

3. In datacenter network simulations, on a web
search workload trace drawn from datacenter
network [11], Copa achieved a >5× reduction in
flow completion time for short flows over DCTCP.
It achieved similar performance for long flows.

4. In experiments on an emulated satellite path, Copa
achieved nearly full link utilization with an average
queuing delay of only 1 ms. Remy’s performance
was similar, while PCC achieved similar throughput
but with≈700 ms of queuing delay. BBR obtained
50% link utilization with ≈100ms queuing delay.
Both Cubic and Vegas obtained < 4% utilization.

5. In an experiment to test RTT-fairness, Copa, Cu-
bic, Cubic over CoDel and Newreno obtained Jain
fairness indices of 0.76, 0.12, 0.57 and 0.37 re-
spectively (higher the better). Copa is designed
to coexist with TCPs (see section §2.2), but when
told that no competing TCPs exist, Copa allocated
equal bandwidth to all flows (fairness index ≈1).

6. Copa co-exists well with TCP Cubic. On a set
of randomly chosen emulated networks where
Copa and Cubic flows share a bottleneck, Copa
flows benefit and Cubic flows aren’t hurt (upto
statistically insignificant differences) on average
throughput. BBR and PCC obtain higher
throughput at the cost of competing Cubic flows.

2 Copa Algorithm

Copa incorporates three ideas: first, a target rate to
aim for, which is inversely proportional to the measured
queueing delay; second, a window update rule that
depends moves the sender toward the target rate; and
third, a TCP-competitive strategy to compete well
with buffer-filling flows.

2.1 Target Rate and Update Rule

Copa uses a congestion window, cwnd, which
upper-bounds the number of in-flight packets. On

330 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

every ACK, the sender estimates the current rate
λ = cwnd/RTTstanding, where RTTstanding is the
smallest RTT observed over a recent time-window, τ.
We use τ=srtt/2, where srtt is the current value of the
standard smoothed RTT estimate. RTTstanding is the
RTT corresponding to a “standing” queue, since it’s
the minimum observed in a recent time window.
The sender calculates the target rate using Eq. (1),

estimating the queueing delay as

dq=RTTstanding−RTTmin, (2)

where RTTmin is the smallest RTT observed over a
long period of time. We use the smaller of 10 seconds
and the time since the flow started for this period (the
10-second part is to handle route changes that might
alter the minimum RTT of the path).
If the current rate exceeds the target, the sender

reduces cwnd; otherwise, it increases cwnd. To avoid
packet bursts, the sender paces packets at a rate of
2·cwnd/RTTstanding packets per second. Pacing also
makes packet arrivals at the bottleneck queue appear
Poisson as the number of flows increases, a useful
property that increases the accuracy of our model to
derive the target rate (§4). The pacing rate is double
cwnd/RTTstanding to accommodate imperfections in
pacing; if it were exactly cwnd/RTTstanding, then the
sender may send slower than desired.
The reason for using the smallest RTT in the recent

τ=srtt/2 duration, rather than the latest RTT sample,
is for robustness in the face of ACK compression [39]
and network jitter, which increase the RTT and can
confuse the sender into believing that a longer RTT
is due to queueing on the forward data path. ACK
compression can be caused by queuing on the reverse
path and by wireless links.
The Copa sender runs the following steps on each

ACK arrival:
1. Update the queuing delay dq using Eq. (2) and srtt

using the standard TCP exponentially weighted
moving average estimator.

2. Set λt =1/(δ ·dq) according to Eq. (1).
3. If λ = cwnd/RTTstanding ≤ λt, then

cwnd = cwnd + v/(δ · cwnd), where v is a
“velocity parameter” (defined in the next step).
Otherwise, cwnd = cwnd− v/(δ · cwnd). Over 1
RTT, the change in cwnd is thus ≈v/δ packets.

4. The velocity parameter, v, speeds-up convergence.
It is initialized to 1. Once per window, the sender
compares the current cwnd to the cwnd value at
the time that the latest acknowledged packet was
sent (i.e., cwnd at the start of the current window).
If the current cwnd is larger, then set direction to
“up”; if it is smaller, then set direction to “down”.
Now, if direction is the same as in the previous

window, then double v. If not, then reset v to 1.
However, start doubling v only after the direction
has remained the same for three RTTs. Since
direction may remain the same for 2.5 RTTs in
steady state as shown in figure 1, doing otherwise
can cause v to be >1 even during steady state. In
steady state, we want v=1.

When a flow starts, Copa performs slow-start where
cwnd doubles once per RTT until λ exceeds λt. While
the velocity parameter also allows an exponential
increase, the constants are smaller. Having an explicit
slow-start phase allows Copa to have a larger initial
cwnd, like many deployed TCP implementations.

2.2 Competing with Buffer-Filling Schemes

We now modify Copa to compete well with buffer-
filling algorithms such as Cubic and NewReno while
maintaining its good properties. The problem is that
Copa seeks to maintain low queuing delays; without
modification, it will lose to buffer-filling schemes.

We propose two distinct modes of operation for Copa:

1. The default mode where δ =0.5, and
2. A competitive mode where δ is adjusted dy-

namically to match the aggressiveness of typical
buffer-filling schemes.

Copa switches between these modes depending on
whether or not it detects a competing long-running
buffer-filling scheme. The detector exploits a key Copa
property that the queue is empty at least once every
5·RTT when only Copa flows with similar RTTs share
the bottleneck (Section 3). With even one concurrent
long-running buffer-filling flow, the queue will not
empty at this periodicity. Hence if the sender sees a
“nearly empty” queue in the last 5 RTTs, it remains in
the default mode; otherwise, it switches to competitive
mode. We estimate “nearly empty” as any queuing
delay lower than 10% of the rate oscillations in the last
four RTTs; i.e., dq < 0.1(RTTmax−RTTmin) where
RTTmax is measured over the past four RTTs and
RTTmin is our long-term minimum as defined before.
Using RTTmax allows Copa to calibrate its notion
of “nearly empty” to the amount of short-term RTT
variance in the current network.

In competitive mode the sender varies 1/δ according
to whatever buffer-filling algorithm one wishes to
emulate (e.g., NewReno, Cubic, etc.). In our imple-
mentation we perform AIMD on 1/δ based on packet
success or loss, but this scheme could respond to other
congestion signals. In competitive mode, δ≤0.5. When
Copa switches from competitive mode to default mode,
it resets δ to 0.5.

The queue may be nearly empty even in the presence
of a competing buffer-filling flow (e.g., because of a
recent packet loss). If that happens, Copa will switch

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 331

Figure 1: One Copa cycle: Evolution of queue
length with time. Copa switches direction at change
points A and B when the standing queue length
estimated by RTTstanding crosses the threshold of δ̂−1.
RTTstanding is the smallest RTT in the last srtt/2
window of ACKs packets (shaded region). Feedback
on current actions is delayed by 1 RTT in the network.
The slope of the line is ±δ̂ packets per RTT.

22

24

26

28

0 0.2 0.4 0.6 0.8 1

20

22

24

26

28

30

C
w

n
d

 (
p

k
ts

)

R
T

T
s
ta

n
d

in
g

 (
m

s
)

Time (s)

Cwnd

RTTstanding

Figure 2: Congestion window and RTT as a function
of time for a Copa flow running on a 12 Mbit/s
Mahimahi [25] emulated link. As predicted, the period
of oscillation is ≈5RTT and amplitude is ≈5 packets.
The emulator’s scheduling policies cause irregularities
in the RTT measurement, but Copa is immune to such
irregularities because the cwnd evolution depends only
on comparing RTTstanding to a threshold.

to default mode. Eventually, the buffer will fill again,
making Copa switch to competitive mode.
Note that if some Copa flows are operating in

competitive mode but no buffer-filling flows are present,
perhaps because the decision was erroneous or because
the competing flows left the network, Copa flows once
again begin to periodically empty the queue. The
mode-selection method will detect this condition and
switch to default mode.

3 Dynamics of Copa

Figures 1 (schematic view) and 2 (emulated link) show
the evolution of Copa’s cwnd with time. In steady state,
each Copa flow makes small oscillations about the target

rate, which also is the equilibrium rate (Section 4). By
“equilibrium”, we mean the situation when every sender
is sending at its target rate. When the propagation
delays for flows sharing a bottleneck are similar and
comparable to (or larger than) the queuing delay, the
small oscillations synchronize to cause the queue length
at the bottleneck to oscillate between having 0 and
2.5/δ̂ packets every five RTTs. Here, δ̂ =(∑i1/δi)

−1.

The equilibrium queue length is (0+2.5)δ̂−1/2=1.25/δ̂

packets. When each δ = 0.5 (the default value),

1/δ̂ =2n, where n is the number of flows.
We prove the above assertions about the steady state

using a window analysis for a simplified deterministic
(D/D/1) bottleneck queue model. In Section 4 we
discuss Markovian (M/M/1 and M/D/1) queues. We
assume that the link rate, µ, is constant (or changes
slowly compared to the RTT), and that (for simplicity)
the feedback delay is constant, RTTmin≈RTT. This
means that the queue length inferred from an ACK
at time t is q(t)=w(t−RTTmin)−BDP, where w(t) is
congestion window at time t and BDP is the bandwidth-
delay product. Under the constant-delay assumption,
the sending rate is cwnd/RTT=cwnd/RTTmin.
First consider just one Copa sender. We show that

Copa remains in steady state oscillations shown in
Figure 1, once it starts those oscillations. In steady
state, v=1 (v starts to double only after cwnd changes
in the same direction for at least 3 RTTs. In steady
state, direction changes once every 2.5 RTT. Hence
v=1 in steady state.). When the flow reaches “change
point A”, its RTTstanding estimate corresponds to
minimum in the 1

2srtt window of latest ACKs. Latest
ACKs correspond to packets sent 1 RTT ago. At
equilibrium, when the target rate, λt =1/(δdq), equals
the actual rate, cwnd/RTT , there are 1/δ packets
in the queue. When the queue length crosses this
threshold of 1/δ packets, the target rate becomes
smaller than the current rate. Hence the sender begins
to decrease cwnd. By the time the flow reaches “change
point B”, the queue length has dropped to 0 packets,
since cwnd decreases by 1/δ packets per RTT, and it
takes 1 RTT for the sender to know that queue length
has dropped below target. At “change point B”, the
rate begins to increase again, continuing the cycle. The
resulting mean queue length of the cycle, 1.25/δ , is a
little higher than 1/δ because RTTstanding takes an
extra srtt/2 to reach the threshold at “change point A”.
When N senders each with a different δi share the

bottleneck link, they synchronize with respect to the
common delay signal. When they all have the same
propagation delay, their target rates cross their actual
rates at the same time, irrespective of their δi. Hence
they increase/decrease their cwnd together, behaving

as one sender with δ = δ̂ =(∑i1/δi)
−1.

332 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To bootstrap the above steady-state oscillation, target
rate should be either above or below the current rate of
every sender for at least 1.5 RTT while each v=1. Note,
other modes of oscillation are possible, for instance when
two senders oscillate about the equilibrium rate 180o

out-of-phase, keeping the queue length constant. Never-
theless, small perturbations will cause the target rate to
go above/below every sender’s current rate, causing the
steady-state oscillations described above to commence.
So far, we have assumed v=1. In practice, we find that
the velocity parameter, v, allows the system to quickly
reach the target rate. Then it v remains equal to 1 as
the senders hover around the target.
To validate our claims empirically, we simulated a

dumbbell topology with a 100 Mbit/s bottleneck link,
20 ms propagation delay, and 5 BDP of buffer in ns-2.
We introduce flows one by one until 100 flows share
the network. We found that the above properties held
throughout the simulation. The velocity parameter v
remained equal to 1 most of the time, changing only
when flow was far from the equilibrium rate. Indeed,
these claims hold in most of our experiments, even
when jitter is intentionally added.

We have found that this behavior breaks only under
two conditions in practice: (1) when the propagation
delay is much smaller than the queuing delay and (2)
when different senders have very different propagation
delays, and the delay synchronization weakens. These
violations can cause the endpoints to incorrectly think
that a competing buffer-filling flow is present(see §2.2).
Even in competitive mode, Copa offers several
advantages over TCP, including better RTT fairness,
better convergence to a fair rate, and loss-resilience.

Median RTTstanding If a flow achieves an steady-
state rate of ≈λ pkts/s, the median standing queuing
delay, RTTstanding − RTTmin, is 1/(λδ). If the
median RTTstanding were lower, Copa would increase
its rate more often than it decreases, thus increasing
λ . Similar reasoning holds if RTTstanding were higher.
This means that Copa achieves quantifiably low delay.
For instance, if each flow achieves 1.2Mbit/s rate in
the default mode (δ = 0.5), the median equilibrium
queuing delay will be 20 ms. If it achieves 12 Mbit/s,
the median equilibrium queuing delay will be 2 ms.
In this analysis, we neglect the variation in λ during
steady state oscillations since it is small.

Alternate approaches to reaching equilibrium.
A different approach would be to directly set the current
sending rate to the target rate of 1/δdq. We experi-
mented with and analyzed this approach, but found
that the system converges only under certain conditions.
We proved that the system converges to a constant rate

when C ·∑i1/δi < (bandwidth delay product), where
C≈0.8 is a dimensionless constant. With ns-2 simula-
tions, we found this condition to be both necessary and
sufficient for convergence. Otherwise it oscillates. These
oscillations can lead to severe underutilization of the
network and it is non-trivial to ensure that we always op-
erate at the condition where convergence is guaranteed.

Moreover, convergence to a constant rate and
non-zero queuing delay is not ideal for a delay-based
congestion controller. If the queue never empties, flows
that arrive later will over-estimate their minimum
RTT and hence underestimate their queuing delay.
This leads to significant unfairness. Thus, we need a
scheme that approaches the equilibrium incrementally
and makes small oscillations about the equilibrium to
regularly drain the queues.

A natural alternative candidate to Copa’s method
is additive-increase/multiplicative-decrease (AIMD)
when the rate is below or above the target. However,
Copa’s objective function seeks to keep the queue
length small. If a multiplicative decrease is performed
at this point, severe under-utilization occurs. Similarly,
a multiplicative increase near the equilibrium point will
cause a large queue length.

AIAD meets many of our requirements. It converges
to the equilibrium and makes small oscillations about
it such that the queue is periodically emptied, while
maintaining a high link utilization (§5.1). However, if
the bandwidth-delay product (BDP) is large, AIAD
can take a long time to reach equilibrium. Hence we
introduce a velocity parameter §2.1 that moves the
rate exponentially fast toward the equilibrium point,
after which it uses AIAD.

4 Justification of the Copa Target Rate

This section explains the rationale for the target
rate used in Copa. We model packet arrivals at a
bottleneck not as deterministic arrivals as in the
previous section, but as Poisson arrivals. This is a
simplifying assumption, but one that is more realistic
than deterministic arrivals when there are multiple
flows. The key property of random packet arrivals (such
as with a Poisson distribution) is that queues build up
even when the bottleneck link is not fully utilized.

In general traffic may be burstier than predicted by
Poisson arrivals [28] because flows and packet transmis-
sions can be correlated with each other. In this case,
Copa over-estimates network load and responds by im-
plicitly valuing delay more. This behavior is reasonable
as increased risk of higher delay is being met by more
caution. Ultimately, our validation of the Copa algo-
rithm is through experiments, but the modeling assump-
tion provides a sound basis for setting a good target rate.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 333

4.1 Objective Function and Nash Equilibrium

Consider the objective function for sender (flow) i
combining both throughput and delay:

Ui= log λi−δi log ds, (3)

where ds =dq+1/µ is the “switch delay” (total minus
propagation delay). The use of switch delay is for
technical ease; it is nearly equal to the queuing delay.
Suppose each sender attempts to maximize its own

objective function. In this model, the system will be
at a Nash equilibrium when no sender can increase
its objective function by unilaterally changing its rate.
The Nash equilibrium is the n-tuple of sending rates
(λ1,...,λn) satisfying

Ui(λ1,...,λi,...,λn)>Ui(λ1,...,λi−1,x,λi+1,...,λn) (4)

for all senders i and any non-negative x.
We assume a first-order approximation of Markovian

packet arrivals. The service process of the bottleneck
may be random (due to cross traffic, or time-varying
link rates), or deterministic (fixed-rate links, no cross
traffic). As a reasonable first-order model of the
random service process at the bottleneck link, we
assume a Markovian service distribution and use that
model to develop the Copa update rule. Assuming
a deterministic service process gives similar results,
offset by a factor of 2. In principle, senders could send
their data not at a certain mean rate but in Markovian
fashion, which would make our modeling assumption
match practice. In practice, we don’t, because: (1)
there is natural jitter in transmissions from endpoints
anyway, (2) deliberate jitter unnecessarily increases
delay when there are a small number of senders and,
(3) Copa’s behavior is not sensitive to the assumption.

We prove the following proposition about the
existence of a Nash equilibrium for Markovian packet
transmissions. We then use the properties of this
equilibrium to derive the Copa target rate of Eq. (1).
The reason we are interested in the equilibrium property
is that the rate-update rule is intended to optimize
each sender’s utility independently; we derive it directly
from this theoretical rate at the Nash equilibrium. It
is important to note that this model is being used not
because it is precise, but because it is a simple and
tractable approximation of reality. Our goal is to derive
a principled target rate that arises as a stable point of
the model, and use that to guide the rate update rule.

Lemma 1. Consider a network with n flows, with flow
i sending packets with rate λi such that the arrival at the
bottleneck queue is Markovian. Then, if flow i has the
objective function defined by Eq. (3), and the bottleneck
is an M/M/1 queue, a unique Nash equilibrium exists.

Further, at this equilibrium, for every sender i,

λi=
µ

δi(δ̂−1+1)
(5)

where δ̂ =(∑1/δi)
−1.

Proof. Denote the total arrival rate in the queue,

∑ j λ j, by λ . For an M/M/1 queue, the sum of the

average wait time in the queue and the link is 1
µ−λ

.

Substituting this expression into Eq. (3) and separating
out the λi term, we get

Ui= log λi+δi log(µ−λi−∑
j6=i

λ j). (6)

Setting the partial derivative ∂Ui
∂λi

to 0 for each i yields

δiλi+∑
j

λ j=µ

The second derivative, −1/λ2
i − δi/(µ − λ)2, is

negative.
Hence Eq. (4) is satisfied if, and only if, ∀i, ∂Ui

∂λi
=0.

We obtain the following set of n equations, one for each
sender i:

λi(1+δi)+∑
j6=i

λ j=µ.

The unique solution to this family of linear equations
is

λi=
µ

δi(δ̂−1+1)
,

which is the desired equilibrium rate of sender i.

When the service process is assumed to be determinis-
tic, we can model the network as an M/D/1 queue. The
expected wait time in the queue is 1/(2(µ−λ))−µ/2≈
1/2(µ − λ). An analysis similar to above gives the

equilibrium rate of sender i to be λi=2µ/(δi(2δ̂−1+1)),
which is the same as the M/M/1 case when each δi
is halved. Since there is less uncertainty, senders can
achieve higher rates for the same delay.

4.2 The Copa Update Rule Follows from the
Equilibrium Rate

At equilibrium, the inter-send time between packets is

τi=
1
λi
=

δi(δ̂
−1+1)
µ

.

Each sender does not, however, need to know
how many other senders there are, nor what their δi
preferences are, thanks to the aggregate behavior of
Markovian arrivals. The term inside the parentheses in
the equation above is a proxy for the “effective” number
of other senders, or equivalently the network load, and
can be calculated differently.

334 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

As noted earlier, the average switch delay for an
M/M/1 queue is ds=

1
µ−λ

. Substituting Eq, (8) for λ

in this equation, we find that, at equilibrium,

τi=δi ·ds=δi(dq+1/µ), (7)

where ds is the switch delay (as defined earlier) and dq
is the average queuing delay in the network.
This calculation is the basis and inspiration for the

target rate. The does not model the dynamics of Copa,
where sender rates change with time. The purpose
of this analysis is to determine a good target rate for
senders to aim for. Nevertheless, using steady state
formulae for expected queue delay is acceptable since
the rates change slowly in steady state.

4.3 Properties of the Equilibrium

We now make some remarks about this equilibrium.
First, by adding Eq. (5) over all i, we find that the
resulting aggregate rate of all senders is

λ =∑λ j=µ/(1+δ̂) (8)

This also means that the equilibrium queuing delay
is 1+1/δ̂ . If δi=0.5, the number of enqueued packets
with n flows is 2n+1.

Second, it is interesting to interpret Eqs. (5) and (8)
in the important special case when the δis are all the
same δ . Then, λi = µ/(δ +n), which is equivalent to
dividing the capacity between n senders and δ (which
may be non-integral) “pseudo-senders”. δ is the “gap”
from fully loading the bottleneck link to allow the
average packet delay to not blow up to ∞. The portion
of capacity allocated to “pseudo-senders” is unused and
determines the average queue length which the senders
can adjust by choosing any δ ∈ (0,∞). The aggregate
rate in this case is n·λi =

nµ

δ+n . When δis are unequal,
bandwidth is allocated in inverse proportion to δi. The
Copa rate update rules are such that a sender with
constant parameter δ is equivalent to k senders with
a constant parameter kδ in steady state.
Third, we recommend a default value of δi = 0.5.

While we want low delay, we also want high throughput;
i.e., we want the largest δ that also achieves high
throughput. A value of 1 causes one packet in the queue
on average at equilibrium (i.e., when the sender trans-
mits at the target equilibrium rate). While acceptable
in theory, jitter causes packets to be imperfectly paced
in practice, causing frequently empty queues and wasted
transmission slots when a only single flow occupies a
bottleneck, a common occurrence in our experience.
Hence we choose δ = 1/2, providing headroom for
packet pacing. Note that, as per the above equation
modeled on an M/M/1 queue, the link would be severely
underutilized when there are a small number (≤5) of

senders. But with very few senders, arrivals at the queue
aren’t Poisson and stochastic variations don’t cause the
queue length to rise. Hence link utilization is nearly
100% before queues grow as demonstrated in §5.1.
Fourth, the definition of the equilibrium point is

consistent with our update rule in the sense that every
sender’s transmission rate equals their target rate if
(and only if) the system is at the Nash equilibrium.
This analysis presents a mechanism to determine the
behavior of a cooperating sender: every sender observes
a common delay ds and calculates a common δds (if all
senders have the same δ) or its δids. Those transmitting
faster than the reciprocal of this value must reduce
their rate and those transmitting slower must increase
it. If every sender behaves thus, they will all benefit.

5 Evaluation

To evaluate Copa and compare it with other congestion-
control protocols, we use a user-space implementation
and ns-2 simulations. We run the user-space
implementation over both emulated and real links.

Implementations: We compare the performance of
our user-space implementation of Copa with Linux
kernel implementations of TCP Cubic, Vegas, Reno,
and BBR [5], and user-space implementations of Remy,
PCC [6], Vivace [7], Sprout [36], and Verus [38]. We
used the developers’ implementations for PCC and
Sprout. For Remy, we developed a user-space implemen-
tation and verified that its results matched the Remy
simulator. There are many available RemyCCs and
whenever we found a RemyCC that was appropriate for
that network, we report its results. We use the Linux
qdisc to create emulated links. Our PCC results are for
the default loss-based objective function. Pantheon [37],
an independent test-bed for congestion control, uses
the delay-based objective function for PCC.

ns-2 simulations: We compare Copa with Cubic [13],
NewReno [15], and Vegas [4], which are end-to-end pro-
tocols, and with Cubic-over-CoDel [26] and DCTCP [1],
which use in-network mechanisms.

5.1 Dynamic Behavior over Emulated Links

To understand how Copa behaves as flows arrive and
leave, we set up a 100 Mbit/s link with 20 ms RTT and
1 BDP buffer using Linux qdiscs. One flow arrives every
second for the first ten seconds, and one leaves every
second for the next ten seconds. The mean ± standard
deviation of the bandwidths obtained by the flows at
each time slot are shown in Figure 3. A CDF of the Jain
fairness index in various timeslots is shown in Figure 4.
Both Copa and Cubic track the ideal rate allocation.

Figure 4 shows that Copa has the highest median
fairness index, with Cubic close behind. BBR and
PCC respond much more slowly to changing network

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 335

1

10

100

0 2 4 6 8 10 12 14 16 18

T
h

ro
u

g
h

p
u

t
(M

b
its

/s
)

Time (s)

BBR Copa

1

10

100

0 2 4 6 8 10 12 14 16 18

T
h

ro
u

g
h

p
u

t
(M

b
its

/s
)

Time (s)

Cubic Copa

1

10

100

0 2 4 6 8 10 12 14 16 18

T
h

ro
u

g
h

p
u

t
(M

b
its

/s
)

Time (s)

PCC Copa

Figure 3: Mean ± std. deviation of throughput of 10 flows as they enter and leave the network once a second.
The black line indicates the ideal allocation. Graphs for BBR, Cubic and PCC are shown alongside Copa in each
figure for comparison. Copa and Cubic flows follow the ideal allocation closely.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
op

aC
ub

ic

B
B
RP

C
C

Jain index

Figure 4: A CDF of the Jain indices obtained at various
timeslots for the dynamic behavior experiment (§5.1)

conditions and fail to properly allocate bandwidth. In
experiments where the network changed more slowly,
BBR and PCC eventually succeeded in converging to
the fair allocation, but this took tens of seconds.

This experiment shows Copa’s ability to quickly adapt
to changing environments. Copa’s mode switcher cor-
rectly functioned most of the time, detecting that no
buffer-filling algorithms were active in this period. Much
of the noise and unfairness observed in Copa in this
experiment was due erroneous switches to competitive
mode for a few RTTs. This happens because when flows
arrive or depart, they disturb Copa’s steady-state opera-
tion. Hence it is possible that for a few RTTs the queue
is never empty and Copa flows can switch from default to
competitive mode. In this experiment, there were a few
RTTs during which several flows switched to competitive
mode, and their δ decreased. However, queues empty
every five RTTs in this mode as well if no competing
buffer-filling flow is present. This property enabled Copa
to correctly revert to default mode after a few RTTs.

5.2 Real-World Evaluation

To understand how Copa performs over wide-
area Internet paths with real cross traffic
and packet schedulers, we submitted our user-
space implementation of Copa to Pantheon [37]
(http://pantheon.stanford.edu), a system de-

veloped to evaluate congestion control schemes. During
our experiments, Pantheon had nodes in six countries.
It creates flows using each congestion control scheme
between a node and an AWS server nearest it, and
measures the throughput and delay. We separate the set
of experiments into two categories, depending on how
the node connects to the Internet (Ethernet or cellular).

To obtain an aggregate view of performance across the
dozens of experiments, we plot the average normalized
throughput and average queuing delay. Throughput
is normalized relative to the flow that obtained the
highest throughput among all runs in an experiment
to obtain a number between 0 and 1. Pantheon reports
the one-way delay for every packet in publicly-accessible
logs calculated with NTP-synchronized clocks at the
two end hosts. To avoid being confounded by the
systematic additive delay inherent in NTP, we report
the queuing delay, calculated as the difference between
the delay and the minimum delay seen for that flow.
Each experiment lasts 30 seconds. Half of them have
one flow. The other half have three flows starting at
0, 10, and 20 seconds from the start of the experiment.

Copa’s performance is consistent across different types
of networks. It achieves significantly lower queueing de-
lays than most other schemes, with only a small through-
put reduction. Copa’s low delay, loss insensitivity, RTT
fairness, resistance to buffer-bloat, and fast convergence
enable resilience in a wide variety of network settings.
Vivace LTE and Vivace latency achieved excessive de-
lays in a link between AWS São Paulo and a node in
Columbia, sometimes over 10 seconds. When all runs
with > 2000 ms are removed for Vivace latency and
LTE, they obtain average queuing delays of 156 ms and
240 ms respectively, still significantly higher than Copa.
The Remy method used was trained for a 100× range of
link rates. PCC uses its delay-based objective function.

336 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://pantheon.stanford.edu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16326412825651210242048

BBR

Copa

Cubic
LEDBAT

PCC

Sprout

Remy
Vegas
Verus

Vivace latency

Vivace loss

Vivace LTE

A
v
g

.
N

o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

Avg. Queuing Delay (ms)

Cellular Networks

0

0.2

0.4

0.6

0.8

1

124816

BBR
Copa

Cubic

LEDBAT

PCC

Sprout

Remy

VegasVerus Vivace
latency

Vivace loss

Vivace LTE

A
v
g

.
N

o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

Avg. Queuing Delay (ms)

Wired Networks

Figure 5: Real-world experiments on Pantheon paths: Average normalized throughput vs. queuing delay achieved
by various congestion control algorithms under two different types of Internet connections. Each type is averaged
over several runs over 6 Internet paths. Note the very different axis ranges in the two graphs. The x-axis is
flipped and in log scale. Copa achieves consistently low queueing delay and high throughput in both types of
networks. Note that schemes such as Sprout, Verus, and Vivace LTE designed specifically for cellular networks.
Other schemes that do well in one type of network don’t do well on the other type. On wired Ethernet paths,
Copa’s delays are 10× lower than BBR and Cubic, with only a modest mean throughput reduction.

Ideal

1

10

100

0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Propagation Delay

RTT Fairness

Copa

Copa D

Cubic

Vegas

Cubic/CoDel

Figure 6: RTT-fairness of various schemes. Throughput
of 20 long-running flows sharing a 100 Mbit/s bottleneck
link versus their respective propagation delays. “Copa
D” is Copa in the default mode without mode switching.
“Copa” is the full algorithm. “Ideal” shows the fair
allocation, which “Copa D” matches. Notice the log
scale on the y-axis. Schemes other than name allocate
little bandwidth to flows with large RTTs.

5.3 RTT-fairness

Flows sharing the same bottleneck link often have
different propagation delays. Ideally, they should get
identical throughput, but many algorithms exhibit
significant RTT unfairness, disadvantaging flows with
larger RTTs. To evaluate the RTT fairness of various

algorithms, we set up 20 long-running flows in ns-2
with propagation delays evenly spaced between 15 ms
and 300 ms. The link has a bandwidth of 100 Mbit/s
and 1 BDP of buffer (calculated with 300 ms delay).
The experiment runs for 100 seconds. We plot the
throughput obtained by each of the flows in Figure 6.

Copa’s property that the queue is nearly empty
once in every five RTTs is violated when such a
diversity of propagation delays is present. Hence
Copa’s mode switching algorithm erroneously shifts to
competitive mode, causing Copa with mode switching
(labeled “Copa” in the figure) to inherit AIMD’s RTT
unfriendliness. However, because the AIMD is on 1/δ

while the underlying delay-sensitive algorithm robustly
grabs or relinquishes bandwidth to make the allocation
proportional to 1/δ , Copa’s RTT-unfriendliness is
much milder than in the other schemes.

We also run Copa after turning off the mode-switching
and running it in the default mode (δ =0.5), denoted
as “Copa D” in the figure. Because the senders share a
common queuing delay and a common target rate, under
identical conditions, they will make identical decisions to
increase/decrease their rate, but with a time shift. This
approach removes any RTT bias, as shown by“Copa D”.

In principle, Cubic has a window evolution that is
RTT-independent, but in practice it exhibits significant
RTT-unfairness because low-RTT Cubic senders are
slow to relinquish bandwidth. The presence of the
CoDel AQM improves the situation, but significant
unfairness remains. Vegas is unfair because several

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 337

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Copa
BBR

PC
CReno

Cubic

VegasT
h

ro
u

g
h

p
u

t
(M

b
it/

s
)

Packet Loss %

Figure 7: Performance of various schemes in the
presence of stochastic packet loss over a 12 Mbit/s link
with a 50 ms RTT.

flows have incorrect base RTT estimates as the queue
rarely drains. Schemes other than Copa allocate nearly
no bandwidth to long RTT flows (note the log scale),
a problem that Copa solves.

5.4 Robustness to Packet Loss

To meet the expectations of loss-based congestion
control schemes, lower layers of modern networks
attempt to hide packet losses by implementing extensive
reliability mechanisms. These often lead to excessively
high and variable link-layer delays, as in many cellular
networks. Loss is also sometimes blamed for the poor
performance of congestion control schemes across
trans-continental links (we have confirmed this with
measurements, e.g., between AWS in Europe and non-
AWS nodes in the US). Ideally, a 5% non-congestive
packet loss rate should decrease the throughput by
5%, not by 5×. Since TCP requires smaller loss rates
for larger window sizes, loss resilience becomes more
important as network bandwidth rises.

Copa in default mode does not use loss as a
congestion signal and lost packets only impact Copa to
the extent that they occupy wasted transmission slots in
the congestion window. In the presence of high packet
loss, Copa’s mode switcher would switch to default
mode as any competing traditional TCPs will back off.
Hence Copa should be largely insensitive to stochastic
loss, while still performing sound congestion control.

To test this hypothesis, we set up an emulated link
with a rate of 12 Mbit/s bandwidth and an RTT of
50 ms. We vary the stochastic packet loss rate and plot
the throughput obtained by various algorithms. Each
flow runs for 60 seconds.

Figure 7 shows the results. Copa and BBR remain
insensitive to loss throughout the range, validating our
hypothesis. As predicted [22], NewReno, Cubic, and
Vegas decline in throughput with increasing loss rate.
PCC ignores loss rates up to ≈5%, and so maintains

24

26

28

210

212

214

216

22 24 26 28 210 212

F
lo

w
 c

om
pl

et
io

n
tim

e
(1

0
-6

s)

Flow length (KBytes)

Datacenter Environment

Copa

DCTCP

Vegas

NewReno

Figure 8: Flow completion times achieved by various
schemes in a datacenter environment. Note the log scale.

throughput until then, before falling off sharply as
determined by its sigmoid loss function.

5.5 Simulated Datacenter Network

To test how widely beneficial the ideas in Copa might
be, we consider datacenter networks, which have
radically different properties than wide-area networks.
Many congestion-control algorithms for datacenters
exploit the fact that one entity owns and controls the
entire network, which makes it easier to incorporate
in-network support [1, 3, 24, 29, 12]. DCTCP [1] and
Timely [23], for example, aim to detect and respond
to congestion before it builds up. DCTCP uses routers
to mark ECN in packet headers when queue length
exceeds a pre-set threshold. Timely demonstrates
that modern commodity hardware is precise enough
to accurately measure RTT and pace packets. Hence
it uses delay as a fine-grained signal for monitoring
congestion. Copa is similar in its tendency to move
toward a target rate in response to congestion.
Exploiting the datacenter’s controlled environment,

we make three small changes to the algorithm: (1) the
propagation delay is externally provided, (2) since it is
not necessary to compete with TCPs, we disable the
mode switching and always operate at the default mode
with δ =0.5 and, (3) since network jitter is absent, we
use the latest RTT instead of RTTstanding, which also
enables faster convergence. For computing v, the conges-
tion window is considered to change in a given direction
only if >2/3 of ACKs cause motion in that direction.
We simulate 32 senders connected to a 40 Gbit/s

bottleneck link via 10 Gbit/s links. The routers have
600 Kbytes of buffer and each flow has a propagation
delay of 12 µs. We use an on-off workload with flow
lengths drawn from a web-search workload in the

338 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

5

10

15

20

25

30

35

40

1101001000

Copa
RemyPCC

Cubic Vegas

BBR

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Average Queuing Delay (ms)

Figure 9: Throughput vs. delay plot for a satellite link.
Notice that algorithms that are not very loss sensitive
(including PCC, which ignores small loss rates) all do
well on throughput, but the delay-sensitive ones get
substantially lower delay as well. Note the log-scale.

datacenter [1]. Off times are exponentially distributed
with mean 200 ms. We compare Copa to DCTCP,
Vegas, and NewReno.

The average flow completion times (FCT) are plotted
against the length of the flow in Figure 8, with the
y-axis shown on a log-scale. Because of its tendency
to maintain short queues and robustly converge
to equilibrium, Copa offers significant reduction in
flow-completion time (FCT) for short flows. The FCT
of Copa is between a factor of 3 and 16 better for small
flows under 64 kbytes compared to DCTCP. For longer
flows, the benefits are modest, and in many cases other
schemes perform a little better in the datacenter setting.
This result suggests that Copa is a good solution for
datacenter network workloads involving short flows.
We also implemented TIMELY [23], but it did

not perform well in this setting (over 7 times worse
than Copa on average), possibly because TIMELY
is targeted at getting high throughput and low delay
for long flows. TIMELY requires several parameters
to be set; we communicated with the developers and
used their recommended parameters, but the difference
between our workload and their RDMA experiments
could explain the discrepancies; because we are not
certain, we do not report those results in the graph.

5.6 Emulated Satellite Links

We evaluate Copa on an emulated satellite link using
measurements from the WINDS satellite system [27],
replicating an experiment from the PCC paper [6]. The
link has a 42 Mbit/s capacity, 800 ms RTT, 1 BDP
of buffer and 0.74% stochastic loss rate, on which we
run 2 concurrent senders for 100 seconds. This link
is challenging because it has a high bandwidth-delay
product and some stochastic loss.

Figure 9 shows the throughput v. delay plot for
BBR, PCC, Remy, Cubic, Vegas, and Copa. Here we
use a RemyCC trained for a RTT range of 30-280 ms
for 2 senders with exponential on-off traffic of 1 second,
each over a link speed of 33 Mbit/s, which, surprisingly,
worked well in this case and was the best performer
among the ones available in the Remy repository.
PCC obtained high throughput, but at the cost of

high delay as it tends to fill the buffer. BBR ignores
loss, but still underutilized the link as its rate oscillated
wildly between 0 and over 42 Mbit/s due to the high
BDP. These oscillations also causing high delays. Copa
is insensitive to loss and can scale to large BDPs due
to its exponential rate update. Both Cubic and Vegas
are sensitive to loss and hence lose throughput.

5.7 Co-existence with Buffer-Filling Schemes

A major concern is whether current TCP algorithms
will simply overwhelm the delay-sensitivity embedded
in Copa. We ask: (1) how does Copa affects existing
TCP flows?, and (2) do Copa flows get their fair share
of bandwidth when competing with TCP (i.e., how
well does mode-switching work)?

We experiment on several emulated networks. We
randomly sample throughput between 1 and 50 Mbit/s,
RTT between 2 and 100 ms, buffer size between 0.5 and
5 BDP, and ran 1-4 Cubic senders and 1-4 senders of
the congestion control algorithm being evaluated. The
flows are run concurrently for 10 seconds. We report the
average of the ratio of the throughput achieved by each
flow to its ideal fair share for both the algorithm being
tested and Cubic. To set a baseline for variations within
Cubic, we also report numbers for Cubic, treating one
set of Cubic flows as “different” from another.
Figure 10 shows the results. Even when competing

with other Cubic flows, Cubic is unable to fully utilize
the network. Copa takes this unused capacity to
achieve greater throughput without hurting Cubic
flows. In fact, Cubic flows competing with Copa get
a higher throughput than when competing with other
Cubic flows (by a statistically insignificant margin).
Currently Copa in competitive mode performs AIMD
on 1/δ . Modifying this to more closely match Cubic’s
behavior will help reduce the standard deviation.

PCC gets a much higher share of throughput because
its loss-based objective function ignores losses until
about 5% and optimizes throughput. BBR gets higher
throughput while significantly hurting competing Cubic
flows.

6 Related Work

Delay-based schemes like CARD [17], DUAL [33], and
Vegas [4] were viewed as ineffective by much of the
community for several years, but underwent a revival
in the 2000s with FAST [34] and especially Microsoft’s

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 339

0

0.5

1

1.5

2

2.5

Vegas Reno Cubic Copa PCC BBR

A
v
g

.
(T

p
t

/
Id

e
a

l t
p

t)

Scheme under test's throughput

Cubic's throughput

Figure 10: Throughput of different schemes versus
Cubic shown by plotting the mean and standard
deviation of the ratio of each flow’s throughput to
the ideal fair rate. The mean is over several runs of
randomly sampled networks. The left and right bars
show the value for the scheme being tested and Cubic
respectively. Copa is much fairer than BBR and PCC
to Cubic. It also uses bandwidth that Cubic does not
utilize to get higher throughput without hurting Cubic.

Compound TCP [32]. Recently, delay-based control has
been used in datacenters by DX [19] and TIMELY [23].
Vegas and FAST share some equilibrium properties with
Copa in the sense that they all seek to maintain queue
length in proportion to the number of flows. Vegas
seeks to maintain between 3 and 6 packets per flow in
the queue, and doesn’t change its rate if this target is
met. Copa’s tendency to always change its rate ensures
that the queue is periodically empty. This approach
has two advantages: (1) every sender gets the correct
estimate of minimum RTT, which helps ensure fairness
and, (2) Copa can quickly detect the presence of a com-
peting buffer-filling flow and change its aggressiveness
accordingly. Further, Copa adapts its rate exponentially
allowing it to scale to large-BDP networks. Vegas and
FAST increase their rate as a linear function of time.

Network utility maximization (NUM) [18] approaches
turn utility maximization problems into rate allocations
and vice versa. FAST [34] derives its equilibrium
properties from utility maximization to propose an
end-to-end congestion control mechanism. Other
schemes [24, 14, 24] use the NUM framework to develop
with algorithms that use in-network support.

BBR [5] uses bandwidth estimation to operate
near the optimal point of full bandwidth utilization
and low delay. Although very different from Copa in
mechanism, BBR shares some desirable properties with
Copa, such as loss insensitivity, better RTT fairness,
and resilience to bufferbloat. Experiments §5.2 show
that Copa achieves significantly lower delay and slightly
less throughput than BBR. There are three reasons
for this. First, the default choice of δ =0.5, intended
for interactive applications, encourages Copa to trade

a little throughput for a significant reduction in delay.
Applications can choose a smaller value of δ to get more
throughput, such as δ = 0.5/6, emulating 6 ordinary
Copa flows, analogous to how some applications open
6 TCP connections today. Second, BBR tries to be
TCP-compatible within its one mechanism. This forced
BBR’s designers to choose more aggressive parameters,
causing longer queues even when competing TCP flows
are not present [5]. Copa’s use of two different modes
with explicit switching allowed us to choose more con-
servative parameters in the absence of competing flows.
Third, both BBR and Copa seek to empty their queues
periodically to correctly estimate the propagation delay.
BBR uses a separate mechanism with a 10-second
cycle, while Copa drains once every 5 RTTs within
its AIAD mechanism. As shown in our evaluation
in §5.1 and §5.5, Copa is able to adapt more rapidly to
changing network conditions. It is also able to handle
networks with large-BDP paths better than BBR (§5.6).

7 Conclusion

We described the design and evaluation of Copa, a
practical delay-based congestion control algorithm for
the Internet. The idea is to increase or decrease the
congestion window depending on whether the current
rate is lower or higher than a well-defined target rate,
1/(δdq), where dq is the (measured) queueing delay. We
showed how this target rate optimizes a natural function
of throughput and delay. Copa uses a simple update
rule to adjust the congestion window in the direction
of the target rate, converging quickly to the correct fair
rates even in the face of significant flow churn.

These two ideas enable Copa flows to maintain high
utilization with low queuing delay (on average, 1.25/δ

packets per flow in the queue). However, when the
bottleneck is shared with buffer-filling flows like Cubic
or NewReno, Copa, like other delay-sensitive schemes,
has low throughput. To combat this problem, a Copa
sender detects the presence of buffer-fillers by observing
the delay evolution, and then responds with AIMD on
the δ parameter to compete well with these schemes.

Acknowledgments

We thank Greg Lauer, Steve Zabele, and Mark Keaton
for implementing Copa on BBN’s DARPA-funded
IRON project and for sharing experimental results,
which helped improve Copa. We are grateful to
Karthik Gopalakrishnan and Hamsa Balakrishnan for
analyzing an initial version of Copa. We thank the
anonymous reviewers and our shepherd Dongsu Han
for many useful comments. Finally, we would like to
thank members of the NMS group at CSAIL, MIT for
many interesting and useful discussions. Our work was

340 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

funded in part by DARPA’s EdgeCT program (award
024890-00001) and NSF grant 1407470.

References
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010.

[2] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is More: Trading a Little
Bandwidth for Ultra-low Latency in the Data Center. In
NSDI, 2012.

[3] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-
own, B. Prabhakar, and S. Shenker. pfabric: Minimal
Near-Optimal Datacenter Transport. In SIGCOMM, 2013.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
Vegas: New Techniques for Congestion Detection and
Avoidance. In SIGCOMM, 1994.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson. Bbr: Congestion-based congestion control.
Queue, 14(5):50, 2016.

[6] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira.
PCC: Re-architecting Congestion Control for Consistent
High Performance. In NSDI, 2015.

[7] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad,
B. Godfrey, and M. Schapira. Vivace: Online-learning
congestion control. In 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI}
18). USENIX Association, 2018.

[8] J. Eriksson, H. Balakrishnan, and S. Madden. Cabernet:
Vehicular Content Delivery using WiFi. In MobiCom, 2008.

[9] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Card-
well, Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and
R. Govindan. Reducing Web Latency: The Virtue of Gentle
Aggression. In SIGCOMM, 2013.

[10] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle:
Rate limiting youtube video streaming. In USENIX ATC,
2012.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In SIGCOMM,
2009.

[12] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues don’t
matter when you can jump them! In NSDI, pages 1–14, 2015.

[13] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly
High-Speed TCP Variant. ACM SIGOPS Operating
System Review, 42(5):64–74, July 2008.

[14] D. Han, R. Grandl, A. Akella, and S. Seshan. Fcp: a flexible
transport framework for accommodating diversity. In ACM
SIGCOMM Computer Communication Review, volume 43,
pages 135–146. ACM, 2013.

[15] J. C. Hoe. Improving the Start-up Behavior of a Congestion
Control Scheme for TCP. In SIGCOMM, 1996.

[16] V. Jacobson. Congestion Avoidance and Control. In
SIGCOMM, 1988.

[17] R. Jain. A Delay-based Approach for Congestion Avoidance
in Interconnected Heterogeneous Computer Networks. In
SIGCOMM, 1989.

[18] F. P. Kelly, A. Maulloo, and D. Tan. Rate Control in
Communication Networks: Shadow Prices, Proportional
Fairness and Stability. Journal of the Operational Research
Society, 49:237–252, 1998.

[19] C. Lee, C. Park, K. Jang, S. Moon, and D. Han. Accurate
Latency-based Congestion Feedback for Datacenters. In
USENIX ATC, 2015.

[20] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and
D. Oran. Probe and adapt: Rate adaptation for HTTP
video streaming at scale. IEEE JSAC, 32(4):719–733, 2014.

[21] R. Mahajan, J. Padhye, S. Agarwal, and B. Zill. High
Performance Vehicular Connectivity with Opportunistic
Erasure Coding. In USENIX ATC, 2012.

[22] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the tcp congestion avoidance
algorithm. ACM SIGCOMM Computer Communication
Review, 27(3):67–82, 1997.

[23] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, D. Zats, et al. TIMELY:
RTT-based Congestion Control for the Datacenter. In
SIGCOMM, 2015.

[24] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh,
and S. Katti. Numfabric: Fast and flexible bandwidth
allocation in datacenters. In Proceedings of the 2016
conference on ACM SIGCOMM 2016 Conference, pages
188–201. ACM, 2016.

[25] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein,
J. Mickens, and H. Balakrishnan. Mahimahi: Accurate
Record-and-Replay for HTTP. In USENIX ATC, 2015.

[26] K. Nichols and V. Jacobson. Controlling Queue Delay.
ACM Queue, 10(5), May 2012.

[27] H. Obata, K. Tamehiro, and K. Ishida. Experimental
evaluation of TCP-STAR for satellite Internet over WINDS.
In International Symposium on Autonomous Decentralized
Systems (ISADS), 2011.

[28] V. Paxson and S. Floyd. Wide area traffic: the failure of
poisson modeling. IEEE/ACM Transactions on Networking
(ToN), 3(3):226–244, 1995.

[29] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized ”Zero-Queue”Datacenter
Network. In SIGCOMM, 2014.

[30] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan.
An Experimental Study of the Learnability of Congestion
Control. In SIGCOMM, 2014.

[31] M. Sridharan, K. Tan, D. Bansal, and D. Thaler. Compound
TCP: A New TCP congestion control for high-speed and
long distance networks. Technical report, Internet-draft
draft-sridharan-tcpm-ctcp-02, 2008.

[32] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound
TCP Approach for High-speed and Long Distance Networks.
In INFOCOM, 2006.

[33] Z. Wang and J. Crowcroft. A New Congestion Control
Scheme: Slow Start and Search (Tri-S). In SIGCOMM, 1991.

[34] D. Wei, C. Jin, S. Low, and S. Hegde. FAST TCP: Motiva-
tion, Architecture, Algorithms, Performance. IEEE/ACM
Trans. on Networking, 14(6):1246–1259, 2006.

[35] K. Winstein and H. Balakrishnan. TCP ex Machina:
Computer-Generated Congestion Control. In SIGCOMM,
2013.

[36] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic
Forecasts Achieve High Throughput and Low Delay over
Cellular Networks. In NSDI, 2013.

[37] F. Y. Yan, J. Ma, G. Hill, D. Raghavan, R. S. Wahby,
P. Levis, and K. Winstein. Pantheon: the train-
ing ground for internet congestion-control research.
http://pantheon.stanford.edu/.

[38] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg.
Adaptive congestion control for unpredictable cellular
networks. In SIGCOMM, 2015.

[39] L. Zhang, S. Shenker, and D. D. Clark. Observations on the
Dynamics of a Congestion Control Algorithm: The Effects
of Two-Way Traffic. 1991.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 341

http://pantheon.stanford.edu/

A Application-Layer Benefits

Many applications benefit from accurate information
about path throughput and delay. For example,
recently there has been a surge of interest in video
streaming, where one of the primary challenges is
in estimating the correct bitrate to use. A low
estimate hurts video quality while a high estimate risks
experiencing a stall in playback. Most algorithms tend
to under-estimate rates because stalls hurt the quality
of experience more. That, in turn, means they are
unable to effectively obtain the true usable path rate.
We showed how every measurement of the queuing

delay provides a new estimate of the target rate. Hence,
to understand what throughput and delay can be ex-
pected from a path, an endpoint only needs to transmit
a few packets. The expected performance can be calcu-
lated from the measured RTT and queuing delay. These
packets can be small, containing only the header and no
data, which reduces the bandwidth consumed by probes.
Applications can use this information in many ways.

Copa offers a way for applications to obtain rate
information. Senders can use the techniques we have
developed to measure “expected throughput” – i.e., the
rate that a Copa sender will use – by sending only a few
small packets, and take an informed decision regarding
what quality of content to transfer. As shown in §5.1,
Copa’s rate estimates are accurate and senders are able
to jump directly to the correct rate.
Quick estimation of a transport protocol’s expected

transmission rate is also useful for selecting good paths
or endpoints. For instance, peer-to-peer networks
can regularly send tiny packets without payload
to monitor the throughput and delay available on
the link to a peer. The monitoring is inexpensive,
but can enable more informed decisions. Content
Distribution Networks using Copa for data delivery
can use this too, by routing requests to the appropriate
servers. For instance, they can route to minimize the
flow-completion time estimated as 2·RTT+l/λ , where
l is the flow length and λ is the rate estimate.

342 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PCC Vivace: Online-Learning Congestion Control

Mo Dong*, Tong Meng*, Doron Zarchy†, Engin Arslan‡, Yossi Gilad§,
P. Brighten Godfrey* and Michael Schapira†

*UIUC, †Hebrew University of Jerusalem, ‡University of Nevada, Reno, §MIT

Abstract

TCP’s congestion control architecture suffers from no-
toriously bad performance. Consequently, recent years
have witnessed a surge of interest in both academia and
industry in novel approaches to congestion control. We
show, however, that past approaches fall short of at-
taining ideal performance. We leverage ideas from the
rich literature on online (convex) optimization in machine
learning to design Vivace, a novel rate-control protocol,
designed within the recently proposed PCC framework.
Our theoretical and experimental analyses establish that
Vivace significantly outperforms traditional TCP vari-
ants, the previous realization of the PCC framework, and
BBR in terms of performance (throughput, latency, loss),
convergence speed, alleviating bufferbloat, reactivity to
changing network conditions, and friendliness towards
legacy TCP in a range of scenarios. Vivace requires only
sender-side changes and is thus readily deployable.

1 Introduction

The recent surge of interest in both academia and in-
dustry in improving Internet congestion control [8, 11,
13, 19, 21, 22, 24, 25, 31, 32, 36] has made it appar-
ent that today’s prevalent congestion control algorithms,
the TCP family, fall short of important performance re-
quirements. Indeed, transport rate control faces numer-
ous challenges. First and foremost, a congestion con-
trol architecture should be able to efficiently utilize net-
work resources under varying and complex network con-
ditions. This includes optimizing for throughput, loss,
and latency, and doing so in a plethora of environments
— potentially with non-congestion loss [8], high-RTT
cross-continent links, highly dynamic networks such as
WiFi and LTE links, etc. Second, congestion control
should guarantee quick convergence to stable and fair
rates when multiple senders compete over network re-
sources. This desideratum is particularly important for
applications like high quality or virtual reality video

streaming. Last, a congestion control scheme should be
easy and safe (e.g., sufficiently friendly to existing pro-
tocols) to deploy.

Traditional algorithms [6, 15, 23] fail to satisfy the
first two requirements; their performance can be as high
as 10× away from the optimal under non-congestion
packet loss [11]. Recent proposals, including Remy [31],
PCC [11], and BBR [8], investigate new approaches
to this challenge. Remy replaces the human designer
with an offline optimization scheme that searches for the
best scheme within a certain design space, for a pre-
specified range of network conditions. While they can
attain high performance, Remy-generated TCPs are in-
herently prone to degraded performance when the actual
network conditions deviate from input assumptions [27].

BBR takes a white-box network-modeling approach,
translating change patterns in performance measure-
ments (e.g., increase in delivery rate) to presumed un-
derlying network conditions (e.g., bottleneck through-
put and latency). PCC takes a black box approach: a
PCC sender observes performance metrics resulting from
sending at a specific rate, converts these metrics into a
numerical utility value, and adapts the sending rate in the
direction that empirically is associated with higher util-
ity. Our experiments indicate that while improving sub-
stantially over traditional schemes, both the specific real-
ization of PCC in [11], termed “PCC Allegro” (or sim-
ply Allegro) henceforth, and BBR’s implementation [8],
fail to achieve optimal low latency and exhibit far-from-
ideal tradeoffs between convergence speed and stabil-
ity. Specifically, BBR exhibits high rate variance and
high packet loss rate upon convergence, whereas PCC
Allegro’s convergence time is overly long. In addition,
when BBR’s model of the network does not reflect the
complexities of reality, performance can suffer severely.
Lastly, they are both highly aggressive towards TCP, al-
though BBR is designed with TCP-friendliness in mind.

To address the above limitations, we draw inspiration
from literature on online (convex) optimization [12, 16,
37] to design PCC Vivace, a novel congestion control

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 343

scheme. Vivace adopts the high-level architecture of
PCC – a utility function framework and a learning rate-
control algorithm – but realizes both components dif-
ferently. First, Vivace relies on a new, learning-theory-
informed framework for utility derivation that incorpo-
rates crucial considerations such as latency minimization
and TCP friendliness. Second, Vivace employs prov-
ably (asymptotically) optimal online optimization based
on gradient ascent to achieve high utilization of network
capacity, swift reaction to changes, and fast and stable
convergence. In particular, our contributions are:

(1) A principled framework for transport utility with
multiple novel consequences. We prove that for a
proper choice of utility functions that incorporate not
only throughput and loss (as in Allegro), but also la-
tency, a stable global rate configuration (Nash equilib-
rium) always exists; show a tradeoff between random
loss tolerance and packet loss at convergence with com-
peting senders; and allow controllable capacity alloca-
tion among competing senders with heterogeneous utili-
ties (suggesting a future opportunity for centralized net-
work control in an SDN or OpenTCP [13] architecture).

(2) A rate control scheme that utilizes gradient-ascent
algorithms from online learning theory to achieve an
improved tradeoff between stability and reactivity. We
prove that our rate-control scheme guarantees quick con-
vergence to the equilibrium guaranteed by our choice
of utility functions, and employ additional techniques to
improve rate control in the face of noisy measurements,
such as linear regression and low-pass filtering.

(3) Extensive experiments with PCC Vivace, PCC Al-
legro, BBR, and various TCP variants, in controlled en-
vironments, real residential Internet scenarios, and with
video-streaming applications. Highlights include: im-
proved performance in rapidly changing conditions (70%
less packet loss and 72.5% higher throughput than PCC
Allegro, and around 20% median throughput gain over
BBR); convergence about 2× faster than Allegro and sta-
bility about 2× better than BBR; 57% less video buffer-
ing time than BBR with multiple ongoing streams; and
significantly improved TCP friendliness.

By no means do we expect that Vivace is the end of
the story. Optimizing rate quickly and accurately with
limited information in a complex, noisy environment is
difficult, and we highlight a simulated LTE environment
where a “white-box” model-based approach engineered
for this context, namely Sprout [32], outperforms Vi-
vace, as a case for future work. However, Vivace repre-
sents a substantial overall advance, showing how a strong
learning-theoretic basis yields practical improvements.

2 Rate-Control Through Online Learning
When approached from an online learning perspective,
the challenges outlined in § 1 fall naturally into the cat-

egory of online optimization in machine learning and
game theory [16, 37] (a.k.a. “no-regret learning”). On-
line learning provides a useful and powerful abstraction
for decision making under uncertainty. In the online
learning setting, a decision maker repeatedly selects be-
tween available strategies. Only after selection is the de-
cision maker aware of the implications of the selected
strategy, in terms of a resulting utility value. State-of-the-
art online learning algorithms provide provable guaran-
tees (namely, the classical “no regret” guarantee [16, 37])
even under complete uncertainty about the environment,
i.e., without assuming/inferring anything about the rela-
tion between choices of strategies and the induced utility
values. In addition, results in game theory establish that
online learning algorithms “play well” together, in the
sense that, under the appropriate conditions, global con-
vergence to a stable equilibrium is guaranteed when there
are multiple decision makers.

We are thus inspired to apply ideas and machinery
from online learning to rate control on the Internet, which
can naturally be cast as an online learning task as follows.
A traffic sender repeatedly selects between sending rates.
After sending at a certain rate for “sufficiently long”, the
sender learns its performance implications by translating
aggregated statistics (e.g., achieved goodput, packet loss
rate, average latency) into a numerical utility value, and
then adapts the sending rate in response. Importantly, the
application of online learning to rate-control is particu-
larly challenging since often only very limited feedback
from the network is available to the sender, and so accu-
rately determining the utility derived from sending at a
certain rate is sometimes infeasible.

PCC [11] is a promising step towards online-learning-
based congestion control. The gist of its architecture is
as follows. Time is divided into consecutive intervals,
called Monitor Intervals (MIs), each devoted to “testing”
the implications for performance of sending at a certain
rate. PCC aggregates selective ACKs for packets sent in
a MI into the above-mentioned meaningful performance
metrics, and feeds these metrics into a utility function
that translates them into a numerical value. PCC’s rate-
control module continuously adjusts the sending rate in
the direction that is most beneficial in terms of utility.

However, the specific realization of PCC Allegro
in [11] is far from tapping the full potential of online
learning. First, Allegro uses a somewhat arbitrary choice
of utility function. While [11] proves this choice induces
desirable properties in some settings, fair convergence
is not provably guaranteed when utility functions are
latency-aware, reasoning about fundamental tradeoffs in
parameter settings is difficult, and there is no theoreti-
cal understanding of what happens when Allegro senders
with different utility functions interact with each other.

Second, Allegro inherently ignores the information re-

344 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Utility-based rate-control
flected in the utility when deciding on step size. Sup-
pose Allegro’s utility function is as described in Fig-
ure 1, where C is the capacity of a single link. Then,
consider two possible initial rates for the Allegro-sender:
r1 and r2 (r1 < C� r2). When starting at r1, the Alle-
gro sender will increase its rate to r1(1+ ε), for a fixed
ε > 0, whereas the initial rate r2 will be followed by a
decrement to r2(1− ε). Intuitively, this rate-adjustment
is not optimal; a small ε will result in slowly lowering the
rate from r2, leading to long convergence time, whereas
choosing too large an ε will increase the rate from r1
by too much, overshooting the optimum. Indeed, any
choice of fixed increase/decrease step size is bound to be
too much in some circumstances and too little in others,
resulting in suboptimal reactivity or convergence.

The combination of Allegro’s fairly naive rate control
scheme and its ad hoc choice of utility function prevents
it from attaining good performance under rapidly chang-
ing network conditions, does not alleviate bufferbloat,
results in convergence rate/stability tradeoff that is bet-
ter TCP’s yet still suboptimal, leads to high packet loss
upon convergence, and is overly aggressive towards TCP.
Hence, despite a promising architecture, the operational
instantiation of PCC in [11] is still far from optimal.

To address the above limitations, Vivace’s design bor-
rows ideas from the rich body of literature on online con-
vex optimization [12, 16, 37] to replace the realization of
the two crucial components of PCC’s high-level architec-
ture: (1) the utility function framework, and (2) the learn-
ing rate-control algorithm. First, Vivace relies on a new,
learning-theory-informed framework for utility deriva-
tion [12], which guarantees multiple competing Vivace
senders will converge to a unique stable rate configura-
tion that is fair and near-optimal. Second, Vivace em-
ploys provably optimal gradient-ascent-based no-regret
online optimization [37] to adjust sending rates, taking
into account not only the direction (increase/decrease)
that is more beneficial utility-wise, but also the extent to
which increasing/decreasing the rate impacts utility.
No-regret learning. The classical objective in online
learning theory is regret minimization. We give an infor-
mal exposition of the implications of no-regret for con-
gestion control here. See [16, 37] for a more complete
treatment. A “no-regret” rate-control protocol, such as
Vivace, guarantees that its choices of rates are asymptot-
ically (across time) no worse, utility-wise, than sending
at what would have been (in hindsight) the best fixed rate.

No-regret is a useful guarantee for two reasons.
First, no-regret provides a formal performance guaran-

tee for individual senders across all network conditions,
even highly dynamic or adversarially chosen (within the
scope of the model). We believe Vivace is the first con-
gestion control scheme to provide such a guarantee.

Second, no-regret provides a powerful lens for theo-
retical analysis, which we will use to reason formally
about convergence with multiple competing no-regret
senders, even with heterogeneous utility functions across
the senders, and also about tradeoffs between resilience
to non-congestion loss and loss upon convergence.

Limitations of no-regret. As no-regret relates perfor-
mance to the best fixed strategy, the quality of this guar-
antee in a dynamic environment depends on the speed at
which the protocol minimizes “regret” [16]. If, from an
arbitrary starting state, the regret vanishes to a desired
low value within T time units, then the no-regret guar-
antee applies relative to the best fixed strategy within ev-
ery T units of time. Empirically (§5.1.4), Vivace adapts
quickly to changes in network conditions.

Of course, a guarantee of near-optimality relative to
the best dynamic strategy would be even better. However,
such guarantees often entail assumptions about the en-
vironment, e.g., that the network behavior exhibits high
regularity. Vivace reflects the design choice of avoiding
such assumptions. That said, an important direction for
future research is to quantify to what extent real-world
networks are sufficiently predictable (e.g., via machine
learning) to improve rate selection.
PCC Allegro vs. PCC Vivace. Compared with PCC Al-
legro, PCC Vivace’s utility framework (1) incorporates
latency awareness, mitigating the bufferbloat problem
and the resulting packet loss and latency inflation, (2)
extends to heterogeneous senders with different utility
functions, enabling flexible network-resource allocation,
and (3) induces more friendly behavior towards TCP, and
thus is better suited for real-world deployment. In addi-
tion, Vivace’s rate-control algorithm (1) provides faster,
more stable convergence, and (2) reacts more quickly
upon changes to network conditions.

3 Vivace’s Utility Framework
Vivace divides time into consecutive Monitor Intervals
(MIs). At the end of each MI, sender i applies the follow-
ing utility function to transform the performance statis-
tics gathered at that MI to a numerical utility value:

u
(

xi,
d(RT Ti)

dT
,Li

)
= xt

i−bxi
d(RT Ti)

dT
− cxi×Li, (1)

where 0< t < 1,b≥ 0,c> 0, xi is sender i’s sending rate,
and Li is its observed loss rate. The term d(RT Ti)

dT is the ob-
served “RTT gradient” during this MI, i.e., the increase in
latency experienced within this MI. The parameters b,c, t
are constants. Intuitively, utility functions of the above

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 345

form reward increase in throughput (via xt
i), and penalize

increase in both latency (bxi
d(RT Ti)

dT) and loss (cxi×Li).
We next identify the properties of utility functions within
our framework, and refer to [2] for formal analysis.

To see why Vivace’s utility function does not consider
the absolute value of latency, instead using RTT gradi-
ent, consider the following example. A single sender on
a link with a large buffer sends at a rate of twice the ca-
pacity of the link for a single MI; then, in the next MI,
it tries a slightly lower but still over-capacity rate. Such
a sender would experience higher absolute latency in the
second MI than in the first MI (since the link’s queue is
only further lengthened), even though lowering the rate
was clearly the right choice. To learn within a single MI
that lowering the rate is more beneficial, the sender ex-
amines the rate at which latency increases or decreases.

The choice of values for the parameters b, c and t
in the utility function have crucial implications for the
existence of an equilibrium point when multiple Vivace
senders compete, and for the latency and congestion loss
in such an equilibrium. Due to space limitations, the full
proofs of the theorems in this section appear in [2].

3.1 Stability and Fairness
When t ≤ 1, the family of utility functions in Equation 1
falls into the category of “socially-concave” in game the-
ory [12]. A utility function within this category, when
coupled with a theoretical model of Vivace’s online-
learning rate-control scheme (described in § 4), guaran-
tees high performance from the individual sender’s per-
spective and ensures quick convergence to a global rate-
configuration [16, 37]. Specifically, we consider a net-
work model with n senders competing on a bottleneck
link with a FIFO queue. The following theorem shows
convergence to a fair equilibrium.

Theorem 1. When n Vivace-senders share a bottleneck
link, and each Vivace-sender i’s utility function is defined
as in Eq. 1, the senders’ sending rates converge to a fixed
configuration (x∗1, . . . ,x

∗
n) such that x∗1 = x∗2 = . . .= x∗n.

We further analyze the latency in equilibrium. Ideally,
upon convergence the latency will not exceed the base
RTT, i.e., the RTT when the link buffer is not occupied.
Theorem 2 shows how Vivace can achieve that through a
proper assignment of value for the parameter b.

Theorem 2. Let C denote the capacity of the bottleneck
link. If b≥ tn2−tCt−1, then the latency in the unique sta-
ble configuration is the base RTT.

3.2 Random Loss vs. Congestion
Non-congestion packet loss (due to lossy wireless links,
port flaps on routers, etc.) is a common phenomenon
in today’s Internet [8]. We say a rate-control protocol

is p-loss-resilient if that protocol does not decrease its
sending rate under random loss rate of at most p.

For Vivace to be p-loss-resilient, we need to set c in the
above utility function framework to be c = tCt−1

p (details
in [2]). However, enduring more random loss comes at
a price. To simplify the analysis, assume that b = 0 (i.e.,
the utility function is purely loss-based). The following
theorem captures a link between random loss resilience
and loss due to many competing senders.

Theorem 3. In a system of n Vivace senders, each p-
loss-resilient, the loss rate L of each sender i in equilib-
rium (with no random loss) satisfies

p =
nL−L+1

(1−L)1−tn2−t . (2)

To illustrate Theorem 3 with simplified algebra,1 sup-
pose that t = 1 and b = 0. Enduring random loss rate
of p implies that the derivative of the utility function u
satisfies:

u̇ = 1− cp≥ 0, and so: c≤ 1/p

By plugging t = 1 in Equation 2, we find that in a
system of n Vivace senders sharing a link, the loss rate
experienced by each sender under equilibrium (to which
Vivace is guaranteed to converge, by Theorem 1), given
n > c (if n < c, then L = 0), is L = p n−1/p

n−1 .
When n → ∞, the congestion loss rate on conver-

gence approaches the random loss resilience p! There-
fore, withstanding more random loss comes at the cost
of suffering more loss upon convergence for a large
number of senders. Our experiments with TCP, BBR,
and Allegro, show a similar tradeoff, indicating that this
is a barrier for current congestion control frameworks.

3.3 Heterogeneous Senders
So far, our discussion focused on the environment where
the senders are homogeneous, i.e., they employ the same
utility function. However, our utility framework allows
us to reason about interactions between heterogeneous
Vivace senders competing over a shared link.

Recent studies on SDN-based traffic engineering [17,
18] and network optimization for big-data systems [9]
suggest a need for resource allocation at the transport
layer. However, globally allocating network resources
to transport-layer connections usually involves complex
schemes for rate-limiting at end-hosts, or utilizing in-
network isolation mechanisms. OpenTCP [13] pro-
poses allocating bandwidth by tuning TCP parameters or
switching between TCP variants. Yet, as TCP has no
direct control knobs for global network-resource alloca-
tion, OpenTCP resorts to clever “hacks” and complicated
feedback loops to indirectly achieve such control.

1Our theorems require t < 1, but t can be arbitrarily close to 1.

346 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Vivace’s utility function framework, in contrast, pro-
vides flexibility in resource-allocation. As a concrete ex-
ample, consider the following loss-based utility:

u(xi,Li) = xi− cixi

(
1

1−Li
−1

)
(3)

This utility function, similar to that of § 3, induces a
unique stable rate configuration to which Vivace senders
are guaranteed to converge (more formally, it is also “so-
cially concave”). Now, suppose that n Vivace senders
share a link and the goal is to allocate the link’s band-
width C between the senders by assigning a rate of xi to
each sender such that ∑ j∈N x j =C. Then we have:

Theorem 4. A system of n Vivace senders, in which each
sender’s utility function is of the form in Equation 3, con-
verge to rate configuration x∗1,x

∗
2, ...,x

∗
n, if for each i∈ [n],

the loss penalty coefficient in Equation 3 is set to ci =
C
x∗i

.

Hence, one can flexibly adjust the bandwidth allocated
to each sender at equilibrium by tuning Vivace’s param-
eters {ci}. We experimentally validate this result in § 5.

4 Vivace’s Rate Control
Vivace’s rate control begins with a slow start phase in
which the sender doubles sending rate every MI and per-
manently exits slow start when its empirically-derived
utility value decreases for the first time. It then enters
the online learning phase, which we focus on here.

4.1 Key Idea and Challenges
Vivace’s online learning phase employs an online
gradient-ascent learning scheme to select transmission
rates. This choice of rate-control algorithm is very
appealing from an online optimization theory perspec-
tive [12, 16, 37]. Specifically, when the utility functions
are strictly convex, which is satisfied when t < 1 in our
utility function formulation (Equation 1), the following
two desiderata are fulfilled (see [2] for proofs). (1) Each
sender is guaranteed that employing Vivace is (asymp-
totically) no worse than the optimal fixed sending rate
in hindsight, termed the “no-regret” guarantee in online
learning literature [12, 16, 37]. This is a strong guarantee
in that it applies even when the sender is presented with
adversarial environments, but it is limited in the sense
that it quantifies performance with respect to the actual
history of experienced network conditions and not to the
conditions that would have resulted from sending at other
rates. (2) When multiple senders share the same link,
quick convergence to an equilibrium point is guaranteed.

In theory, applying gradient ascent to rate-control
means starting at some initial transmission rate and re-
peatedly estimating γ , by which we denote the gradi-
ent (with respect to sending rate) of the utility function,
through sampling and changing the rate by θγ , where θ

is initially set to be a very high positive number. With
time, θ gradually diminishes to 0. But realizing this in
practice involves nontrivial operational challenges.

The first challenge is deciding on the extent to which
the rate should be increased or decreased. The above
theoretical rate-adjustment rule suffers from two serious
problems: (a) The initial step size is potentially huge,
resulting in a sender jumping between very low (e.g.
1 Mbps) and very high rates (e.g. 500 Mbps) in tens of
milliseconds, causing high loss rates and latency infla-
tion. (b) As time goes by, and θ diminishes, changes in
rate become small, leading to slow reaction to changed
network conditions like newly-free capacity. Second,
there are challenges in the basic task of estimating γ .
What happens when the environment is noisy, e.g., due
to complex interactions between multiple senders, non-
congestion loss, or microbursts unrelated to long-term
congestion? We next explain how Vivace tackles this.

4.2 Translating Utility Gradients to Rates
Vivace’s online learning algorithm begins by computing
the gradient of the utility function. Suppose the current
sending rate is r. Then, in the next two MIs, the sender
will test the rates r(1+ε) and r(1−ε), compute the cor-
responding numerical utility values, u1 and u2, respec-
tively, and estimate the gradient of the utility function to
be γ = u1−u2

2εr . Then, Vivace utilizes γ to deduce the direc-
tion and extent to which rate should be changed, selects
the newly computed rate, and repeats the above process.

To convert γ into a change in rate, Vivace starts with
fairly low “conversion factor” and increases the conver-
sion factor value as it gains confidence in its decisions.
Specifically, initially θ is set to be a conservatively small
number θ0 and so, at first, the rate change is ∆r = θ0γ

(i.e., rnew = r+θ0γ). We introduce the concept of confi-
dence amplifier. Intuitively, when the sender repeatedly
decides to change the rate in the same direction (increase
vs. decrease), the confidence amplifier is increased. The
confidence amplifier is a monotonically nondecreasing
function that assigns a real value m(τ) to any integer
τ ≥ 0. After a sender makes τ consecutive decisions to
change the rate in the same direction, θ is set to m(τ)θ0
(and so the rate is changed by ∆r = m(τ)θ0γ). Setting
m(0) = 1 implies that initially the change in rate is θ0γ ,
as described above. When the direction at which rate is
adapted is reversed (increase to decrease or vice-versa),
τ is set back to 0 (and the above process starts anew).

Sampled utility-gradient can be excessively high due
to unreliable measurements or large changes to net-
work conditions between MIs. For instance, a burst of
losses when probing r(1− ε) and no losses when prob-
ing r(1+ ε) might result in huge γ and, consequently,
a drastic rate change that overshoots the link’s capac-
ity. To address this, we introduce a mechanism, called

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 347

the dynamic change boundary ω . Whenever Vivace’s
computed rate change (∆r) exceeds ωr, the effective rate
change is capped at ωr. The dynamic change bound-
ary is initialized to some predetermined value ω = ω0,
is gradually increased every time ∆r > ω , and is de-
creased when ∆r < ω . Specifically, ω is updated to
ω = ω0 + k · δ following k consecutive rate adjustments
in which the gradient-based rate-change ∆r exceeded the
dynamic change boundary, for a predetermined constant
δ > 0. Whenever ∆r ≤ r ·ω , Vivace recalibrates the value
of k in the formula ω = ω0+k ·δ to be the smallest value
for which ∆r ≤ rω . k is reset to 0 when the direction of
rate adjustment changes (e.g., from increase to decrease).

4.3 Contending with Unreliable Statistics
In general, accurate measurements require long observa-
tion time, yet that slows reaction to changing environ-
ments. We next discuss the ideas Vivace incorporates to
address this challenge.

Estimating the RTT gradient via linear regression.
The RTT gradient d(RT Tx)

dt in MI x could be estimated by
quantifying the RTT experienced by the first packet and
the last packet sent in that MI. To estimate the RTT gra-
dient more accurately, we utilize linear regression. Vi-
vace assembles the 2-dimensional data set of (sampled
packet RTT, time of sampling) for the packets in a MI,
and uses the linear-regression-generated slope (the “β

coefficient”) as the RTT gradient.

Low-pass filtering of RTT gradient. Non-congestion-
induced latency jitters often occur, e.g., because of recov-
ery from packet losses in the physical layer (especially on
wireless links), software packet processing devices, for-
warding path flaps, or simply measurement errors due to
processing time at the end-host networking stack. When
Vivace employs a latency-sensitive utility function, this
can result in misinformed decisions. To resolve this, Vi-
vace leverages a low-pass filtering mechanism that treats
latency gradient measurement smaller than fltlatency as 0,
to ignore small, brief latency jitters.

Double checking abnormal measurements. Occasion-
ally, measurements lead to “counterintuitive” observa-
tions. We address the specific case that sending faster
results in lower loss. While in general we avoid assump-
tions about the network, even with complex conditions
it is highly unlikely that sending faster is the cause of
lower loss; more likely, this is due to measurement noise
or changing conditions (e.g., another sender reducing its
rate). In this abnormal situation, Vivace “double checks”
by re-running the same pair of rates. If this produces the
same outcome in terms of which rate has higher utility,
Vivace averages the utility-gradients; otherwise it throws
out the original abnormal measurement.2

2In our experiments, double checking is mostly triggered during

MI timeout. Generally, all information regarding pack-
ets sent during an MI will be returned after approxi-
mately one RTT. However, in the case of sudden net-
work condition changes, a large number of packets can
be lost or delayed. The measurements Vivace did before
the sudden change are no longer meaningful. Therefore,
if Vivace has not learned the fate of all packets sent in an
MI when a certain timeout Ttimeout (a certain number of
RTTs) expires, Vivace halves the sending rate.

4.4 TCP Friendliness
A common requirement from new congestion control
schemes is to fairly share bandwidth with existing TCP
connections (e.g., CUBIC). Attaining perfect friendli-
ness to TCP can be at odds with achieving high perfor-
mance, as the congestion control protocol is expected to
both not aggressively take over spare capacity freed by a
TCP connection when it backs off, and quickly take over
spare capacity freed by the very same TCP connection
when it terminates. We conjecture that it is fundamen-
tally hard for any loss-based protocol to achieve consis-
tently high performance and at the same time be fair to-
wards TCP. The best is to hope it does not dominate TCP
too much. Worse yet, latency-aware protocols can be
entirely dominated by today’s prevalent loss-based TCP
CUBIC. Fast TCP [29], for instance, backs off as latency
deviates from the minimal latency due to TCP CUBIC
continuously filling the network buffer.

How, then, can a rate-control protocol both optimize
latency and avoid being “killed” by loss-based TCP con-
nections? We argue that the combination of Vivace’s util-
ity function and its rate control algorithm is a big step in
this direction. Informally, Vivace captures the objective
that can be expressed as “care about latency when your
rate selection makes a difference”. To see this, consider
the scenario that a Vivace sender is the only sender on a
certain link. It tries out two rates that exceed the link’s
bandwidth, and the buffer for that link is not yet full. Vi-
vace’s utility function will assign a higher value to the
lower of these rates, since the achieved goodput and loss
rate are identical to those attained when sending at the
higher rate, but the latency gradient is lower. Thus, in this
context, the Vivace sender behaves in a latency-sensitive
manner and reduces its transmission rate. Now, con-
sider the scenario that the Vivace sender is sharing a link
that is already heavily utilized by many loss-based pro-
tocols like TCP CUBIC and the buffer is, consequently,
almost always full. When testing different rates, the Vi-
vace sender will constantly perceive the latency gradi-
ent as roughly 0, and thus disregard latency and com-

changing network conditions and multiflow competition, and lowers
the packet loss rate with almost no influence on throughput, e.g., turn-
ing on double-checking lowers Vivace’s converged congestion loss
from close to 7% to 5%. We omit these results due to limited space.

348 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MI duration 1 RTT
sampling step ε 0.05
initial conversion factor θ0 1
initial dynamic boundary ω0 0.05
dynamic boundary increment δ 0.1
RTT gradient filter threshold fltlatency 0.01
MI timeout Ttimeout 4 RTT
confidence amplifier m(τ) τ (τ ≤ 3)

2τ−3 (τ > 3)

Table 1: Vivace’s rate control default parameters

pete against the TCP senders over the link capacity, ef-
fectively transforming into a loss-based protocol. Our
experimental results in § 5.3 illustrate this intuition.

5 Implementation and Evaluation
We implemented a user-space prototype of Vivace based
on UDT [14]. We set the specific parameters for t,b,c
based on our theoretical analyses in § 3. We first set
t = 0.9, satisfying the requirement that t < 1 in our family
of utility functions, and then adjust the remaining param-
eters according to that t. We set b = 900 so as to achieve
(in theory) no inflation in latency with up to 1000 com-
peting senders on a 1000 Mbps bottleneck link, as estab-
lished in Theorem 2. We set the parameter c = 11.35 so
as to endure up to 5% random packet-loss rate according
to the formula in §3.2 that c= tCt−1

p . We believe these are
reasonable design choices in practice, and note that our
analysis enables tuning this parameter to accommodate
other scenarios. Unless stated otherwise, our evaluation
of Vivace uses the parameter default values in Table 1.
For BBR, we use the net-next Linux kernel v4.10 [3].

Setup. We report on our experimental results with Vi-
vace under emulated realistic network conditions, in the
Internet, and in emulated application scenarios.

To cleanly separate Vivace’s loss-related properties
from its latency-related properties, our experiments
sometimes involve evaluating Vivace when the latency
penalty coefficient is b = 0, i.e., studying a purely loss-
based variant of Vivace. We refer to this variant of Vivace
as “Vivace-Loss” and to Vivace with the default parame-
ter assignment as “Vivace-Latency”.

5.1 Consistent High Performance
5.1.1 Resilience to Random Loss (Fig. 2)

Using Emulab [30], we evaluate the throughput of Vi-
vace with a single flow on a link with 100 Mbps band-
width, 30 ms RTT, 75 KB buffer, and varying random
loss rate, and compare it with Allegro, BBR, and two
TCP variants. As shown in Figure 2, both Vivace vari-
ants and Allegro achieve more than 90 Mbps throughput
when the random loss rate is at most 3%, and remain
above 80 Mbps until 3.5% loss rate. After that point,
corresponding to the employed 5% loss resistance in the
utility functions, their throughput reduces to 1

10 of link

 0.1

 1

 10

 100

0 0.02 0.04 0.06

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

 Random Loss Rate

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Illinois

0.16

Figure 2: Random loss resilience

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 10 100 1000

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Buffer Size (KB)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Vegas
TCP Illinois
TCP Reno
TCP Hybla

Figure 3: Long RTT tolerance

capacity. Vivace does not achieve full capacity at close
to 4% random loss due to temporary bursty losses, which
may exceed 5% in some monitor intervals.

BBR keeps close-to-capacity throughput until 15%
loss. By tuning Vivace’s utility parameter c, we can
achieve similarly high resilience to random loss. How-
ever, the theoretical insights (§ 3.2) and experiments we
later present (§ 5.2.2) suggest that BBR’s higher loss re-
silience induces comparable congestion loss with multi-
ple competing flows, which we think is a less reasonable
design choice. Finally, Figure 2 also shows gains of 20-
50× over TCP family protocols.

5.1.2 High Performance on Satellite Links (Fig. 3)

We set up an emulated satellite link (as in [11]) with
42 Mbps bandwidth, 800 ms RTT and 0.74% random
loss. Figure 3 shows the throughput achieved. Both
Vivace-Loss and Vivace-Latency perform at least similar
to Allegro, outperforming all the other protocols. Specif-
ically, Vivace reaches more than 90% link capacity with
a 7.5KB buffer, in which case it is more than 40% larger
than BBR. When the buffer size increases to 1000KB,
the two Vivace flavors are at least 20% better than BBR
as well, while the throughput of Allegro starts to fall. We
also observed 20-300× higher performance compared to
the best-in-class TCP variant.

5.1.3 High Throughput without Bufferbloat (Fig. 4)
To demonstrate the effect of Vivace’s latency-aware and
provably fair utility function framework, we evaluate (us-
ing Emulab) its throughput and latency performance on
a link with 100 Mbps bottleneck bandwidth, 30 ms RTT,
and varying buffer size. On the throughput front, as

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 349

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Buffer Size (KB)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Vegas
TCP Illinois
TCP Reno
TCP Hybla

(a) High capacity

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0 30 60 90 120 150

P
a
ck

e
t

Lo
ss

 R
a
te

 (
%

)

Buffer Size (KB)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Vegas
TCP Illinois

(b) Low packet losses

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800 900

La
te

n
cy

 I
n
fl
a
ti

o
n
 R

a
ti

o

Buffer Size (KB)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Vegas
TCP Illinois

(c) Negligible RTT overflow

Figure 4: Vivace can achieve better performance with shallow buffer

0

20

40

60

80

100

 0 10 20 30 40 50 60 70

Optimal

P
e
rc

e
n
ta

g
e
 o

f
T
ri

a
ls

 (
%

)

Average Throughput (Mbps)

(a) Achieving high capacity

0

20

40

60

80

100

0.0 0.05 0.10 0.15

P
e
rc

e
n
ta

g
e
 o

f
T
ri

a
ls

 (
%

)

Packet Loss Ratio

Vivace-Loss
Vivace-Latency
Allegro
Allegro-Latency
BBR
TCP CUBIC
TCP Illinois

(b) Moderate packet loss

0

20

40

60

80

 100 120 140 160 180 200

S
e
n
d
in

g
 R

a
te

 (
M

b
p
s)

Time (s)

Optimal
Vivace-Latency

Allegro
BBR

TCP CUBIC

(c) More responsive latency-sensitivity

Figure 5: Vivace can adapt to rapidly changing network conditions

shown in Figure 4(a), to achieve more than 90 Mbps,
Vivace, BBR and Allegro only need a shallow queue of
7.5KB, which is 95% smaller than needed by CUBIC.

We next study how small a buffer each protocol re-
quires to achieve minimal latency inflation and near-
lossless data transfer (less than 0.5% loss rate). As
shown in Figure 4(b)3, Vivace-Latency only needs a
13.5 KB buffer to guarantee nearly zero (less than 0.5%)
loss, which is 55%, 70%, 74.3%, and 91% smaller than
that of CUBIC, Vegas, Illinois, and BBR, respectively.
Meanwhile, Vivace-Loss and Allegro exhibit interesting
behavior as maximum buffer length grows. Initially, like
all protocols, their loss rate decreases as the buffer be-
comes able to handle the inevitable randomness in packet
arrival. But later, loss increases because a larger buffer
(which these protocols fill) increases RTT and slows re-
action when the buffer occasionally overflows. Even so,
Vivace-Loss has lower loss than Allegro in all cases.

Finally, Figure 4(c) compares the latency inflation
ratio, computed as the 95th percentile of self-inflicted
RTT divided by the maximal possible latency inflation
with given buffer size (when the buffer is full). Vivace-
Latency’s latency inflation ratio is kept small with its ab-
solute RTT overflow always below 2ms. However, both
TCP Illinois and BBR have close to 100% inflation ratio
(i.e., an almost full buffer) for as large as 300 KB buffer.
When the buffer size is as large as 2 BDP (750 KB),
Vivace-Latency still has more than 90% less latency in-
flation ratio than BBR. BBR’s performance disadvan-

3For conciseness, we leave out TCP Reno and Hybla, which have
similar performance as the presented TCP variants.

tage may be due to its white-box assumptions about the
buffer size. Vegas achieves good performance on la-
tency inflation by sacrificing the ability to fully utilize
the available bandwidth (as shown in Figure 4(a)). As
expected, Vivace-Loss, Allegro, and TCP CUBIC have
around 100% inflation ratio, because they lack latency
awareness.4 In sum, Vivace achieves superior latency-
awareness and high throughput at the same time.
5.1.4 Swift Reaction to Changes (Figures 5-6)

We next demonstrate how Vivace’s online learning rate
control significantly improves the reactiveness to dynam-
ically changing network conditions.

Emulated changing networks. We start with a network
on Emulab where the RTT, bottleneck bandwidth, and
random loss rate all change every 5 seconds with uniform
distribution ranging from 10-100 ms, 10-100 Mbps, and
0-1%, respectively. For each protocol, we repeat the ex-
periment 100 times with 500 sec duration each, and cal-
culate the cumulative distribution of average throughput
and packet loss rate. Allegro’s latency-based utility func-
tion, which does not guarantee fairness and convergence,
is also evaluated (denoted Allegro-Latency).

Figure 5(a) shows Vivace-Loss achieves the highest
average throughput. Quantitatively, it reaches 49Mbps
in median case, which is 88.3% of the optimal, corre-
sponding to a gain of 5.4%, 25.6%, 72.5%, 5.7×, and
15.3× compared with Allegro, BBR, Allegro-Latency,
TCP Illinois, and CUBIC, respectively. Vivace-Latency

4Although TCP CUBIC considers per-packet latency, it still cannot
avoid severe buffer bloat, which explains its high inflation ratio.

350 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 0.1 1 10 100

Better

Vivace-Loss

Vivace-Latency

Vivace-Latency (b=2)

Allegro

Allegro-Latency

BBR CUBIC

Vegas
Sprout

T
h
ro

u
g
h
p

u
t

(M
b

p
s)

Self-inflicted Latency (s)

Figure 6: LTE throughput vs. self-inflicted latency

performs similarly to Allegro, still with a median gain
of 17.9%, 62.0%, 5.3×, and 14.3× over BBR, Allegro-
Latency, TCP Illinois, and CUBIC.

To further demonstrate Vivace’s reactivity, we com-
pare different protocols’ packet loss. As shown in Fig-
ure 5(b), the median case loss rates of Vivace-Loss and
Vivace-Latency are only 4.9% and 3.3%. Specifically,
Vivace-Latency has similar median loss as BBR (but
higher throughput), while outperforming Allegro and Al-
legro-Latency by 55.7% and 75.8%. This is because
Allegro’s fixed-rate control algorithm reduces rate too
slowly when available bandwidth suddenly decreases.

Figure 5(c) illustrates the behavior of several of the
protocols across time. BBR occasionally suffers sudden
rate degradation; we find this is associated with increases
in latency, to which BBR reacts badly. Allegro reduces
rate slower than Vivace-Loss when the bandwidth drops,
which explains its higher packet loss rate.

LTE networks. An even more challenging network sce-
nario, as suggested by [32, 36], is the LTE environment
where very deep queues are accompanied by drastically
changing available bandwidth in a matter of millisec-
onds. On one hand, this extremely dynamic environment
requires a long measurement time to prune out random
noise. On the other hand, if Vivace takes too long to mea-
sure, network conditions may have drastically changed,
invalidating previous measurements.

We use Mahimahi [26] to replay the Verizon-LTE trace
provided by [32]. We compare Vivace with Allegro-
Latency, BBR, CUBIC, Vegas and Sprout [32]. Fig-
ure 6 shows the achieved tradeoff between throughput
and self-inflicted latency (as defined in [32]). Alle-
gro, due to its overly aggressive behavior, significantly
inflates latency, and also fails to deliver good through-
put. Vivace-Loss reduces latency by 50.7%, 94.9%, and
95.5% compared to BBR, Allegro-Latency, and TCP
CUBIC, at the cost of only 16.3%, 17.1%, and 23.4%
smaller throughput, respectively. However, Vivace is still
suboptimal. Compared with the best-in-class TCP (Ve-
gas), Vivace-Loss has 17.7% larger throughput, but also
21.6% larger latency. Sprout, which is specifically de-
signed for cellular networks with an explicit cellular link
measurement model and receiver-side feedback changes

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500

Vivace-Latency

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Time (s)

500 1000 1500 2000 2500 3000 3500

Allegro-Latency

Time (s)

0

20

40

60

80

100

BBR

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

CUBIC

Figure 7: Vivace has fair and stable convergence

to TCP, outperforms Vivace-Loss with 75.2% shorter la-
tency and only 35.6% smaller throughput. Furthermore,
Vivace-Latency is impeded by the noisy latency mea-
surements, and achieves the smallest throughput.

We also test with a smaller latency coefficient, b = 2.
The consequence is supporting fewer competing senders,
but the typical resource allocation in LTE networks [34]
lowers the possibility of competition by many concurrent
flows. This improves performance, with 39.0% lower
latency and 26.3% smaller throughput than Vegas, but
still falls short of Sprout. Vivace’s performance in LTE
networks may further improve through better reaction to
noisy environments; we leave this to future work.

5.2 Convergence Properties
We next demonstrate that Vivace improves the conver-
gence speed vs. stability tradeoff compared to state-of-
the-art protocols. We also experimentally show the trade-
off between congestion loss and random loss resilience.

5.2.1 Convergence Speed and Stability (Fig. 7-8)
Temporal behavior of convergence. We set up a dumb-
bell topology on Emulab to demonstrate convergence
performance with 4 flows sharing a link with 100 Mbps
bandwidth, 30 ms RTT, and 75 KB buffer. Figure 7
shows the convergence process of several protocols with
1s granularity. Vivace achieves fair rate convergence
among competing flows and is more stable than BBR and
CUBIC. Compared with Allegro-Latency, which does
not have any convergence guarantee, Vivace’s default
latency-aware utility function achieves significantly bet-
ter convergence speed and stability at the same time.

Better convergence speed-stability tradeoff. We mea-
sure the quantitative trade-off between speed and stabil-
ity of convergence, reproducing an experiment in [11].

On a link of 100 Mbps bandwidth and 30 ms RTT,
we let an initial flow run for 10 s, which is significantly
longer than needed for its convergence, then start a sec-
ond flow. The convergence time is calculated as the
time from the second flow’s entry to the earliest time af-
ter which it maintains a sending rate within ±25% of
its ideal fair share (50 Mbps) for at least 5s. The con-
vergence stability is calculated as the standard deviation
of throughput of the second flow after its convergence.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 351

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

 Initial
Ignorance

BBR

CUBIC

Reno
Hybla

T
h
ro

u
g

h
p

u
t

D
e
v
ia

ti
o
n
 (

M
b

p
s)

Convergence Time (s)

Vivace-Loss
Vivace-Latency
Allegro

Figure 8: Better tradeoff curve

0.00

0.03

0.06

0.09

0.12

0.15

 0 5 10 15 20 25 30 35 40

P
a
ck

e
t

Lo
ss

 R
a
te

Number of Flows

Vivace-Loss
Vivace-Latency
Allegro
BBR

Figure 9: Multi-flow congestion

0.1

1

10

100

0 8 16 24 32

8Mbps/5KB 4Mbps/30KB

more friendly

less friendly

T
h
ro

u
g

h
p

u
t

R
a
ti

o

Number of CUBIC Flows

 Vivace-Loss
 Vivace-Latency
 Allegro
 BBR

Figure 10: More friendly to TCP

To produce a tradeoff curve in Vivace, we vary param-
eters that affect response speed within a certain range
(1.0 ≤ θ0 ≤ 1.5, 0.05 ≤ ω0,δ ≤ 0.1); we show all re-
sulting points and highlight the lower-left Pareto front.

Figure 8 illustrates that there is a “virtual wall” in the
trade-off plane at around 10s convergence time that nei-
ther TCP variants nor Allegro can pass even by trad-
ing off stability. Interestingly, BBR and Vivace pene-
trate that wall. Vivace, by default, achieves significantly
better tradeoff points. Both Vivace-latency and Vivace-
loss achieve similar convergence stability as Allegro, but
using nearly 60% smaller convergence time. With con-
vergence speed slightly higher than BBR, both Vivace
variants have around 50% smaller throughput deviation.
These improved trade-offs demonstrate the effectiveness
of Vivace’s no-regret online learning scheme.

However, any of the protocols here could choose to
adopt more aggressive slow-start algorithms. As a sim-
ple example, we implemented an “initial ignorance” of
loss (first 50 lost packets) and latency inflation (gradient
smaller than 0.2), resulting in 37% faster convergence,
and better stability, than BBR. In general, the startup al-
gorithm is orthogonal to long-term rate control, and more
advanced techniques like [22] might improve both BBR
and Allegro; we leave this to future work.

5.2.2 Lower Price for Loss Resilience (Figure 9)
As we analyzed in § 3.2, resilience to random loss comes
at the cost of sustaining packet-loss after convergence
when the number of senders increases. Importantly, this
is only the theoretical “minimal price” one has to pay to
endure random packet loss within the Vivace framework.
Due to the network dynamics from multi-sender interac-
tion and efficiency of rate control algorithm, the actual
price can be even higher.

To experimentally evaluate this trade-off, we set up
an experiment with 30 ms RTT. We increase the number
of concurrent competing flows, while proportionally in-
creasing the FIFO queue link’s total bandwidth to main-
tain a per flow 8 Mbps and 25 KB (close to 1 BDP) buffer
share on average. Figure 9 shows the average packet loss
per flow as the number of flows increases.

We observe that the packet loss rate of Vivace-Loss

converges at the theoretical bound of 5%. Even though
BBR does not fall into Vivace’s online learning analy-
sis framework, it shows a surprisingly similar tradeoff: it
endures more random loss but pays a much higher price
(14% loss) compared to Vivace. Though one might argue
that high congestion loss is fine as long as the final good-
put reaches full link utilization, this is often not true, e.g.,
high loss rate can cause additional delays for key frames,
resulting in a lag in interactive or video streaming appli-
cations; and the large amount of transmission can cause
additional energy burden on mobile devices.

In light of this discovery, we urge future conges-
tion control designs to carefully consider this tradeoff.
Though Allegro also achieves 5% random loss resilience
similar to Vivace, due to its naı̈ve rate control algorithm,
it pays a higher convergence loss (9%) price. BBR, posi-
tioned as a latency-aware protocol, also has the same ef-
fect. We also observe that though Vivace-latency main-
tains low loss rate when there is only a single flow, its
loss rate still grows as the number of concurrent senders
increases. This may be due to factors not modeled in our
theoretical analysis, including measurement noise and
the fact that the large number of senders are constantly
probing rather than staying in a perfect equilibrium. We
hope to study this congestion loss in the future.

5.3 Improved Friendliness to TCP
We set up a 30 ms RTT bottleneck link with one flow us-
ing a new protocol (BBR, Allegro, or Vivace) and com-
peting with an increasing number of CUBIC flows. As
the number of senders increases, we also increase the
total bandwidth and bottleneck buffer to maintain the
same per-flow share, as before. We used two per-flow
share settings: (4Mbps, 30KB) and (8Mbps, 5KB), cor-
responding to 2BDP and 0.12BDP of buffer size, respec-
tively. Figure 10 shows the ratio between the through-
put of the new-protocol flow and average throughput per
CUBIC flow. A ratio of 1 in Figure 10 indicates per-
fect friendliness; larger ratios indicate aggressiveness to-
wards CUBIC.

Vivace-Latency behaves as expected in the design
(§4.4). When the number of CUBIC flows is small, since
the queue is not always full, Vivace-Latency finds it can

352 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

G
o
o
d

p
u
t

(M
b

p
s)

Time (s)

Flow 1
Flow 2

Flow 1 Optimal
Flow 2 Optimal

Figure 11: Flexible equilibrium by tuning utility knobs

reduce RTT by reducing its rate, and thus achieves lower
throughput than CUBIC flows. However, as the number
of CUBIC senders increases, it achieves the best fairness
among new generation protocols. Would Vivace-Latency
on the Internet still be conservative when the number of
competing CUBIC flows is small? Only large scale de-
ployment experiences can tell for sure, but our real world
experiments in §5.5.2 strongly suggest positive results.

Among the evaluated protocols, BBR yields the worst
TCP friendliness. In [1, 8], BBR’s TCP friendliness was
noted to be satisfactory, based on a single BBR flow
competing with a single CUBIC flow over a large buffer
(2 BDP). We successfully reproduced this specific result
(the leftmost point in the 4 Mbps/30 KB (2 BDP) BBR
line of Figure 10). However, we discovered that as we
add more CUBIC flows, BBR becomes increasingly ag-
gressive: it effectively treats all competing CUBIC flows
as a single “bundle” with its throughput ratio increasing
linearly with the number of CUBIC flows until about 16.
Therefore, in practice, BBR can be very unfriendly when
there are multiple competing CUBIC flows.

Though Allegro and Vivace-Loss are both loss-based,
Vivace is much more agile in its reaction to competing
TCP flows, especially under a shallow buffered network:
its throughput ratio converges at 2.5 vs. Allegro’s 8. In
addition, though Vivace-Loss dominates CUBIC when
the number of concurrent flows is small, the final con-
verged throughput ratio (about 5 at 2 BDP) is less than
half of that in BBR. In sum, though perfect TCP friend-
liness is fundamentally hard, we believe that Vivace pro-
vides a viable path towards adoption.

5.4 Flexible Convergence Equilibrium
With its unique utility function framework (§ 3.3), Vivace
unleashes the potential to be flexible and centrally con-
trolled. To demonstrate this capability experimentally,
we set up a link with 100 Mbps bandwidth, 30 ms RTT,
and two competing flows. As shown in Figure 11, we
control the two flows’ bandwidth share by changing their
utility functions at 60s, 120s and 180s. The actual send-
ing rate closely tracks the ideal allocation (dashed lines).
This is only to illustrate the basic capability of Vivace;
we leave a full-fledged system leveraging this capability
to future work.

5.5 Benefits in the Real World
In addition to the above transport-level experiments on
controlled networks, we test a video streaming applica-
tion and performance in the wild Internet.

5.5.1 Video Streaming
We implemented a transparent proxy so that RTSP-over-
TCP traffic flows from an OpenRTSP [4] client over a
legacy TCP connection ending at a client-side proxy,
then over a configurable transport protocol across the
bottleneck link to a server-side proxy, and finally over a
second legacy TCP connection to an OpenRTSP server;
similar proxying occurs in reverse. We compare the
streamed video’s buffering ratio [10], calculated as the
ratio of time spent during buffering relative to total
streaming session time, using Vivace-Latency, Allegro-
Latency, BBR, and TCP CUBIC. We test with four 4K
videos, with 15 Mbps, 30 Mbps, 50 Mbps, and 95 Mbps
average bit rate requirements in experiments in Emulab.

We first evaluate the buffering ratio with RTT chang-
ing every five seconds to a value uniform-randomly se-
lected between 10 ms and 100 ms. We set up a link with
300 KB buffer and 0.01% random loss rate, with the net-
work bandwidth at least 10% more than the bit rate re-
quired to stream the requested video. Fig. 12(a) shows
the average buffering ratio of Vivace-Latency stays be-
low 8%, similar to Allegro-Latency – a reduction of at
least 86% and 90% compared with BBR and CUBIC.

To demonstrate the application-level benefit of Vi-
vace’s stable convergence, we set up three competing
streaming flows from three client-server pairs. They
share a bottleneck link with 75 KB buffer, 100 ms RTT,
0.01% random loss, and adequate bandwidth for all three
to stream. As shown in Figure 12(b), Vivace-Latency
outperforms Allegro-Latency, BBR, and CUBIC by at
least 48%, 57%, and 80%, respectively. We attribute the
degraded performance of Allegro-Latency to its inferior
latency awareness and reaction, and that of BBR to its
high throughput variance among flows.

5.5.2 The Wild Internet
Finally, we evaluate Vivace’s real-world performance in
the wild Internet. We set up senders at 3 different resi-
dential WiFi networks and receivers at 14 Amazon Web
Service (AWS) sites, i.e., 42 sender-receiver pairs.5 As
WiFi networks have more noise in latency than wired
networks, we use a slightly larger fltlatency = 0.05 to filter
small variation of latency.6 For each AWS site we test all
protocols, and compute the average throughput of each
protocol from five 100 sec transmissions. Figure 12(c)

5We test only the uplink because the virtualized AWS server im-
pacts performance of our current user-space UDP-based packet pacing.

6We expect that in a full implementation, Vivace can automatically
adjust fltlatency when observing high latency variance.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 353

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

B
u
ff

e
ri

n
g
 R

a
ti

o
 (

%
)

Bit Rate (Mbps)

Vivace-Latency
Allegro-Latency
BBR
TCP Cubic

(a) Video streaming with varying latency

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

B
u
ff

e
ri

n
g
 R

a
ti

o
 (

%
)

Bit Rate (Mbps)

Vivace-Latency
Allegro-Latency
BBR
TCP Cubic

(b) Multiflow video streaming

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

P
e
rc

e
n
ta

g
e
 o

f
T
ri

a
ls

 (
%

)

Average Throughput (Mbps)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC

(c) Throughput from home networks to
AWS

Figure 12: Performance gain in application and live Internet environments

shows the cumulative distribution of average through-
put. Similar to the results in controlled networks, Vivace-
Loss is slightly better than Vivace-Latency, and they both
outperform BBR and CUBIC. Specifically, Vivace-Loss
has a median throughput gain of 7.2%, 18.9%, and 4.0×
compared with Allegro, BBR, and CUBIC, respectively.

More importantly, even though having the possibility
to be overly friendly to TCP, Vivace-Latency success-
fully achieves 11.6% and 3.7× better throughput than
BBR and CUBIC in the median, i.e., CUBIC flows just
cannot efficiently utilize the available bandwidth. This
serves as a strong validation that Vivace provides a viable
deployment path, although larger scale evaluation is de-
sirable. Specifically, more substantial measurements are
needed to answer the question of how Vivace behaves on
real-world traffic patterns [28].

The root cause of the difference between Vivace-Loss
and Allegro is Allegro’s slow reaction to network condi-
tion variation, e.g. packet loss due to available bandwidth
reduction or congestion. As a result, it may gain higher
throughput occasionally (only after 90th percentile), but
it will suffer from a higher loss rate and often yield more
aggressive behavior compared to Vivace.

6 Related Work
We have already discussed Remy, and compared with
several TCP variants, PCC Allegro, and BBR. We next
place Vivace in the context of other related work.

In-network feedback. One class of protocols improve
congestion control by providing explicit in-network
feedback (e.g. available bandwidth and ECN) for bet-
ter informed decisions [5, 7, 20]. These protocols yield
good performance, but have been proven to be hard to
deploy outside of data centers: they require coordinated
change of protocols and network devices. Vivace on the
other hand is compatible with the TCP message format,
only requires deployment at the sender, and is therefore
readily deployable.

Specially engineered congestion control. Another class
of the recent works targets TCP’s poor performance in
specific network scenarios like LTE networks [32, 36]
or data center networks [5, 24, 33] by leveraging unique

insights of particular networks’ behavior models, spe-
cial tools or explicit feedback from the receiver. Some
of these works are also moving away from TCP’s hard-
wired control mechanism and are more like BBR; e.g.,
Timely [24] uses the RTT-gradient as a control signal
similar to Vivace, but it still uses a hardwired rate con-
trol algorithm that maps events to fixed reactions (e.g.,
using fixed thresholds and step sizes). Protocols in this
class provide significant performance gains, but only tar-
get very specific environments. Some of them also re-
quire changes at both endpoints [32], which may chal-
lenge deployment in practice.

Short flows. Some congestion control protocols aim
to optimize performance of very short flows [22, 25].
These are complementary to Vivace, because short-flow
optimization in many cases is an “open loop” problem
(i.e. transfer as much data as possible in first few RTTs
with very limited feedback) whereas Vivace targets the
“closed loop” phase of data transfer (when meaningful
feedback can be gathered with long enough data trans-
fer). In fact Vivace could plausibly utilize [22, 25] as its
starting phase, replacing slow-start.

7 Conclusion
We proposed Vivace, a congestion control architecture
based on online optimization theory. Vivace lever-
ages a novel latency-aware utility function framework
with gradient-ascent-based online learning rate control to
achieve provably fast convergence and fairness guaran-
tees. Extensive experimentation reveals that Vivace sig-
nificantly improves upon the existing state of the art in
terms of performance, convergence speed, reactiveness,
TCP friendliness, and more. Vivace requires sender-only
changes and is hence readily deployable. We leave re-
search questions regarding centralized resource alloca-
tion via Vivace’s simple interface, and Vivace’s integra-
tion into comprehensive emulators such as Pantheon [35]
and production systems such as QUIC [21] and the Linux
kernel, to the future.

We thank our shepherd, Alex Snoeren, and the review-
ers for their helpful comments, and Google and Huawei
for ongoing support of the PCC project.

354 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] BBR talk in IETF 97. www.ietf.org/
proceedings/97/slides/slides-97-
iccrg-bbr-congestion-control-01.
pdf.

[2] Full Proof of Theorems. http://www.
ttmeng.net/pubs/vivace_proof.pdf.

[3] Linux net-next. https : / / kernel .
googlesource . com / pub / scm /
linux / kernel / git / davem / net -
next.git/+/v4.10.

[4] OpenRTSP. http://www.live555.com/
openRTSP/.

[5] ALIZADEH, M., GREENBERG, A., MALTZ, D.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SEN-
GUPTA, S., AND SRIDHARAN, M. Data center
TCP. Proc. of ACM SIGCOMM (September 2010).

[6] BRAKMO, L., LAWRENCE, S., O’MALLEY, S.,
AND PETERSON, L. TCP Vegas: New techniques
for congestion detection and avoidance. Proc. of
ACM SIGCOMM (1994).

[7] CAESAR, M., CALDWELL, D., FEAMSTER, N.,
REXFORD, J., SHAIKH, A., AND VAN DER
MERWE, K. Design and implementation of a rout-
ing control platform. Proc. of NSDI (April 2005).

[8] CARDWELL, N., CHENG, Y., GUNN, C.,
YEGANEH, S., AND JACOBSON, V. BBR:
Congestion-based congestion control. Queue 14,
5 (2016), 50.

[9] CHOWDHURY, M., ZHONG, Y., AND STOICA, I.
Efficient coflow scheduling with varys.

[10] DOBRIAN, F., SEKAR, V., AWAN, A., STOICA,
I., JOSEPH, D., GANJAM, A., ZHAN, J., AND
ZHANG, H. Understanding the impact of video
quality on user engagement. Proc. of ACM SIG-
COMM (August 2011).

[11] DONG, M., LI, Q., ZARCHY, D., GODFREY,
P. B., AND SCHAPIRA, M. PCC: Re-architecting
Congestion Control for Consistent High Perfor-
mance. Proc. of NSDI (March 2015).

[12] EVEN-DAR, M. E., MANSOUR, Y., AND NADAV,
U. On the convergence of regret minimization dy-
namics in concave games. Proc. of ACM sympo-
sium on Theory of computing (2009).

[13] GHOBADI, M., YEGANEH, S., AND GANJALI,
Y. Rethinking end-to-end congestion control
in software-defined networks. Proc. of HotNets
(November 2012).

[14] GU, Y. UDT: a high performance data transport
protocol. University of Illinois at Chicago, 2005.

[15] HA, S., RHEE, I., AND XU, L. CUBIC: A
new TCP-friendly high-speed TCP variant. ACM
SIGOPS Operating Systems Review (2008).

[16] HAZAN, E. Introduction to online con-
vex optimization. http://ocobook.cs.
princeton.edu/OCObook.pdf.

[17] HONG, C., KANDULA, S., MAHAJAN, R.,
ZHANG, M., GILL, V., NANDURI, M., AND WAT-
TENHOFER, R. Achieving high utilization with
software-driven WAN. Proc. of ACM SIGCOMM
(August 2013).

[18] JAIN, S., KUMAR, A., MANDAL, S., ONG, J.,
POUTIEVSKI, L., SINGH, A., VENKATA, S.,
WANDERER, J., ZHOU, J., AND ZHU, M. B4:
Experience with a globally-deployed software de-
fined wan. ACM Computer Communication Review
(September 2013).

[19] JIANG, J., SUN, S., SEKAR, V., AND ZHANG,
H. Pytheas: Enabling data-driven quality of expe-
rience optimization using group-based exploration-
exploitation. Proc. of NSDI (March 2017).

[20] KATABI, D., HANDLEY, M., AND ROHRS, C.
Congestion control for high bandwidth-delay prod-
uct networks. Proc. of ACM SIGCOMM (August
2002).

[21] LANGLEY, A., RIDDOCH, A., WILK, A., VI-
CENTE, A., KRASIC, C., ZHANG, D., YANG, F.,
KOURANOV, F., SWETT, I., IYENGAR, J., ET AL.
The quic transport protocol: Design and internet-
scale deployment. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data
Communication (2017), ACM, pp. 183–196.

[22] LI, Q., DONG, M., AND GODFREY, P. Halfback:
Running short flows quickly and safely. Proc. of
CoNEXT (November 2015).

[23] LIU, S., BAŞAR, T., AND SRIKANT, R. TCP-
Illinois: A loss-and delay-based congestion control
algorithm for high-speed networks. Performance
Evaluation (2008).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 355

[24] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM,
E. R., WASSEL, H. M. G., GHOBADI, M., VAH-
DAT, A., WANG, Y., WETHERALL, D., AND
ZATS, D. TIMELY: RTT-based congestion con-
trol for the datacenter. In Proceedings of the
2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM 2015, Lon-
don, United Kingdom, August 17-21, 2015 (2015),
S. Uhlig, O. Maennel, B. Karp, and J. Padhye, Eds.,
ACM, pp. 537–550.

[25] MITTAL, R., SHERRY, J., RATNASAMY, S., AND
SHENKER, S. Recursively cautious congestion
control. Proc. of NSDI (March 2014).

[26] NETRAVALI, R., SIVARAMAN, A., DAS, S.,
GOYAL, A., WINSTEIN, K., MICKENS, J., AND
BALAKRISHNAN, H. Mahimahi: Accurate record-
and-replay for HTTP. Proc. USENIX ATC (August
2015).

[27] SIVARAMAN, A., WINSTEIN, K., THAKER, P.,
AND BALAKRISHNAN, H. An experimental study
of the learnability of congestion control. Proc. of
ACM SIGCOMM (August 2014).

[28] SUN, Y., YIN, X., JIANG, J., SEKAR, V., LIN, F.,
WANG, N., LIU, T., AND SINOPOLI, B. Cs2p: Im-
proving video bitrate selection and adaptation with
data-driven throughput prediction. Proc. of ACM
SIGCOMM (August 2016).

[29] WEI, D., JIN, C., LOW, S., AND HEGDE, S. FAST
TCP: motivation, architecture, algorithms, perfor-
mance. IEEE/ACM Transactions on Networking
(2006).

[30] WHITE, B., LEPREAU, J., STOLLER, L., RICCI,
R., GURUPRASAD, G., NEWBOLD, M., HIBLER,
M., BARB, C., AND JOGLEKAR, A. An integrated
experimental environment for distributed systems
and networks. Proc. of OSDI (December 2002).

[31] WINSTEIN, K., AND BALAKRISHNAN, H. TCP ex
Machina: computer-generated congestion control.
Proc. of ACM SIGCOMM (August 2013).

[32] WINSTEIN, K., SIVARAMAN, A., AND BALAKR-
ISHNAN, H. Stochastic forecasts achieve high
throughput and low delay over cellular networks.
Proc. of NSDI (March 2013).

[33] WU, H., FENG, Z., GUO, C., AND ZHANG, Y.
ICTCP: Incast congestion control for TCP in data
center networks. Proc. of CoNEXT (November
2010).

[34] XIE, X., ZHANG, X., KUMAR, S., AND LI, L. E.
pistream: Physical layer informed adaptive video
streaming over lte. In Mobicom (2015).

[35] YAN, F. Y., MA, J., HILL, G., RAGHAVAN,
D., WAHBY, R. S., LEVIS, P., AND WINSTEIN,
K. Pantheon: the training ground for internet
congestion-control research, 2018.

[36] ZAKI, Y., PÖTSCH, T., CHEN, J., SUBRAMA-
NIAN, L., AND GÖRG, C. Adaptive congestion
control for unpredictable cellular networks. Proc.
of ACM SIGCOMM (August 2015).

[37] ZINKEVICH, M. Online convex programming and
generalized infinitesimal gradient ascent. In ICML
(2003), AAAI Press, pp. 928–936.

356 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Multi-Path Transport for RDMA in Datacenters

Yuanwei Lu†�, Guo Chen¶∗, Bojie Li†�, Kun Tan‡, Yongqiang Xiong�, Peng Cheng�,
Jiansong Zhang�, Enhong Chen†, Thomas Moscibroda�

†University of Science and Technology of China,
�Microsoft Research, ¶Hunan University, ‡Huawei Technologies, �Microsoft Azure

Abstract
RDMA is becoming prevalent because of its low la-

tency, high throughput and low CPU overhead. How-

ever, current RDMA remains a single path transport

which is prone to failures and falls short to utilize the

rich parallel paths in datacenters. Unlike previous multi-

path approaches, which mainly focus on TCP, this pa-

per presents a multi-path transport for RDMA, i.e. MP-

RDMA, which efficiently utilizes the rich network paths

in datacenters. MP-RDMA employs three novel tech-

niques to address the challenge of limited RDMA NICs

on-chip memory size: 1) a multi-path ACK-clocking
mechanism to distribute traffic in a congestion-aware

manner without incurring per-path states; 2) an out-of-

order aware path selection mechanism to control the level

of out-of-order delivered packets, thus minimizes the

meta data required to them; 3) a synchronise mechanism

to ensure in-order memory update whenever needed.

With all these techniques, MP-RDMA only adds 66B to

each connection state compared to single-path RDMA.

Our evaluation with an FPGA-based prototype demon-

strates that compared with single-path RDMA, MP-

RDMA can significantly improve the robustness under

failures (2x∼4x higher throughput under 0.5%∼10%

link loss ratio) and improve the overall network utiliza-

tion by up to 47%.

1 Introduction
Modern datacenter applications require high through-

put and low latency networks to meet the increasing

demands from customers. Compared with conven-

tional software transport, Remote Direct Memory Ac-

cess (RDMA) implements the entire transport logic in

hardware network interface card (NIC) and allows di-

rect access to remote memory, mostly bypassing CPU.

Therefore, RDMA provides ultra-low latency (∼1μs)

and high throughput (40/100Gbps) with little CPU over-

head. Nowadays, RDMA has been deployed in data-

centers at scale with RDMA over Converged Ethernet

(RoCE) v2 [26, 49]. Existing RDMA is a single path

transport, i.e., an RDMA connection only flows along

one network path. This single path transport is prone

to path failures and also cannot utilize the rich parallel

∗This work was done when Guo Chen was a full-time employee at

Microsoft Research.

paths in modern datacenters [8, 9, 41]. While many ap-

proaches have been proposed to enhance TCP to support

multi-path, none has considered RDMA. In this paper,

we propose a multi-path transport for RDMA.

However, RDMA is completely implemented in NIC

hardware which has very limited computing resource and

on-chip memory (e.g., only a few mega-bytes). Although

NIC could upload local states in host memory, swapping

data between on-chip memory and host memory has a

cost and frequent swapping would significantly down-

grades performance [32, 33] (also see §2.3). As a con-

sequence, the key design goal for a multi-path RDMA

transport is to minimize the memory footprint, which in-

curs three challenges.

First, a multi-path transport should track the con-

gestion states on each path, so that it can perform

congestion-aware load distribution. However, these

states grow linearly with the number of sending paths.

This may cause a considerable memory overhead even

when a modest number of paths are used for one RDMA

connection. For example, if we adopt a multi-path trans-

port similar to MPTCP [41], we may add 368 bytes if 8

sub-flows are used. 1 However, the size of these extra

states is already 50% more than the entire states of one

connection in current RoCE design. 2 As a result, 33.3%

fewer concurrent connections can be supported only us-

ing on-chip memory, which leads to more frequent swap-

ping and downgrades the performance.

Second, multi-path will cause packets to arrive out-of-

order at the receiver. Consequently, the receiver needs

additional metadata to track whether a packet has arrived

or not. However, if the paths conditions vary greatly,

the size of the metadata could be large. Fig. 1 gives the

99.9% tail of the out-of-order degree (OOD) 3 of a net-

work under various scenarios (more details in § 5.2.1).

For example, consider the case that one path has de-

graded to 1Gbps (e.g., due to hardware failures caused

link rate auto-negotiation [9, 27]), while other paths re-

1Each sub-connection needs to maintain states including rcv nxt,
snd nxt, snd una, snd ssthresh, snd cwnd, srtt, rttvar, rtt seq,

map data seq, map subseq, map data len, ...
2Mellanox ConnectX Linux driver [43] maintains all the states of

an RDMA connection in a 248B mlx4 qp context.
3We define the out-of-order degree (OOD) here as the maximal dif-

ference between the sequence number of an out-of-order arrived packet

and the expected packet sequence number.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 357

main at a normal speed of 40Gbps. If a bitmap structure

is used, the size of the bitmap would be 1.2KB. If we

naively use fewer bits, any packet with a sequence num-

ber out of the range of the bitmap has to be dropped. This

would reduce the performance greatly as the throughput

is effectively limited by the slowest path. A core design

challenge is to keep high performance even if we can

only track very limited out-of-order packets.

Finally, the receiver NIC does not have enough mem-

ory to buffer out-of-order packets but has to place them

into host memory as they arrive. Therefore, the data in

host memory may be updated out-of-order. This may

cause a subtle issue as some existing applications implic-

itly assume the memory is updated in the same order as

the operations are posted [20, 22, 48]. For example, a

process may use a WRITE operation to update a remote

memory, and then issues another WRITE operation to

set a dirty flag to notify a remote process. If the second

WRITE updates memory before the first WRITE, the re-

mote process may prematurely read the partial data and

fails. While retaining the memory updating order is triv-

ial for single-path RDMA, it requires careful design in

multi-path RDMA to avoid performance downgrade.

This paper presents MP-RDMA, the first multi-path

transport for RDMA that addresses all aforementioned

challenges. Specifically, MP-RDMA employs a novel

multi-path ACK-clocking mechanism that can effectively

do congestion-aware packets distribution to multiple

paths without adding per-path states. Second, we design

an out-of-order aware path selection algorithm that pro-

actively prunes slow paths and adaptively chooses a set

of paths that are fast and with similar delays. This way,

MP-RDMA effectively controls the out-of-order level so

that almost all packets can be tracked with a small sized

bitmap (e.g., 64 bits). Finally, MP-RDMA provides an

interface for programmers to ensure in-order memory

update by specifying a synchronise flag to an operation.

A synchronise operation updates memory only when all

previous operations are completed. Therefore, two com-

munication nodes can coordinate their behaviors and en-

sure application logic correctness.

We have implemented an MP-RDMA prototype in

FPGA, which can run at the line rate of 40Gbps. We

evaluate MP-RDMA in a testbed with 10 servers and 6

switches. Results show that MP-RDMA can greatly im-

prove the robustness under path failures (2x∼4x higher

throughput when links have 0.5%∼10% loss rate), over-

all network utilization (∼47% higher overall throughput)

and average flow completion time (up to 17.7% reduc-

tion) compared with single-path RDMA. Moreover, MP-

RDMA only consumes a small constant (66B) amount

of extra per-connection memory, which is comparable to

the overhead (∼60B) added by DCQCN [49] to enhance

existing single-path RDMA.

In summary, we make the following contributions: 1)

We present MP-RDMA, the first transport for RDMA

that supports multi-path. 2) We have designed a set

of novel algorithms to minimize the memory footprint,

so that MP-RDMA is suitable to be implemented in

NIC hardware. 3) We have evaluated MP-RDMA on an

FPGA-based testbed as well as large-scale simulations.

2 Background and motivation
2.1 RDMA Background

RDMA enables direct memory access to a remote sys-

tem through NIC hardware, by implementing the trans-
port entirely in NIC. Therefore RDMA can provide low

latency and high throughput with little CPU involvement

on either local or remote end. RoCE v2 [4–6] introduces

UDP/IP/Ethernet encapsulation which allows RDMA to

run over generic IP networks. Nowadays, production

datacenters, e.g. Microsoft Azure and Google, have de-

ployed RoCE at scale [26, 39, 49]. Hereafter in this pa-

per, unless explicitly stated otherwise, we refer RDMA

to RoCE v2.

In RDMA terminology, an RDMA connection is iden-

tified by a pair of work queues, called queue pair (QP).

A QP consists of a send queue and a receive queue which

are both maintained on NICs. When an application initi-

ates an RDMA operation (also called a verb) to send or

retrieve data, it will post a work queue element (WQE) to

NIC’s send queue or receive queue, respectively. More-

over, to notify the application for operation completion,

there is also a completion queue (CQ) associated with

each QP. On completing a WQE, a completion queue el-

ement (CQE) will be delivered to the CQ. There are four

commonly used verbs in RDMA: SEND, RECV, WRITE

and READ. Among these, SEND and RECV are two-
sided, meaning that SEND operation always requires a

RECV operation at the other side. READ and WRITE

are one-sided operations, meaning that applications can

directly READ or WRITE pre-registered remote memory

without involving remote CPU.

RDMA transport is message-based, i.e. an RDMA

operation is translated into a message for transmission.

Then an RDMA message will be divided into multiple

equal-sized segments which are encapsulated into UD-

P/IP/Ethernet packet(s). In RoCEv2, all RDMA pack-

ets use an identical UDP destination port (4791), while

the UDP source port is arbitrary and varies for different

connections, which allows load-balancing. An RDMA

header is attached to every packet. The header contains a

packet sequence number (PSN) which provides a contin-

uous sequence number for the RDMA packets in a con-

nection. At the receiver side, RDMA messages are re-

stored according to PSN. Moreover, an RDMA receiver

may generate an ACK or a Negative ACK (NACK) to

notify the sender for received or lost packets.

358 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RDMA transport requires a lossless network provided

by priority-based flow control (PFC) [1, 19]. Specifi-

cally, PFC employs a hop-by-hop flow control on traf-

fic with pre-configured priorities. With PFC, when a

downstream switch detects that an input queue exceeds

a threshold, it will send a PAUSE frame back to the

upstream switch. While PFC can effectively prevent

switches from dropping packets, the back-pressure be-

havior may propagate congestion and slow down the en-

tire network. Thus, end-to-end congestion control mech-

anisms have been introduced into RoCE. For example,

DCQCN [49] enhances RoCE transport with explicit

congestion notification (ECN) and quantized congestion

notification (QCN) [30] to control congestion.

2.2 Need for Multi-Path Transmission
Current RDMA transport mandates a connection to

follow one network path. Specifically, packets of one

RDMA connection use the same UDP source and des-

tination ports. There are two major drawbacks for such

single-path transmission.

First, single path transmission is prone to path fail-

ures. Some minor failures along the path can greatly

affect the performance of upper-layer applications. For

example, silent packet loss is a common failure in data-

center [18, 27]. Since RDMA transport is implemented

in hardware which typically lacks resources to realize so-

phisticated loss recovery mechanism, it is very sensitive

to packet loss. As a result, a small loss rate (e.g., 0.1%)

along the transmission path can lead to dramatic RDMA

throughput degradation (e.g., <∼60%) [49].

Second, single path falls short to utilize the overall net-

work bandwidth. Equal Cost Multi-Path (ECMP) rout-

ing is currently the main [26, 44, 45] method to bal-

ance RDMA traffic among the datacenter network fab-

rics. Basically, ECMP hashes different connections to

different paths. However, as many prior studies pointed

out [15, 26], ECMP is not able to balance traffic well

when the number of parallel paths is large [7, 25] due to

hash collisions. While some part of the network is highly

congested, the rest may often have a low traffic load, re-

ducing the overall network utilization. Therefore, it is

important to spread traffic in finer granularity than flow

among multiple paths to achieve high network utiliza-

tion [15, 41].

In literature, a set of mechanisms have been pro-

posed to distribute traffic in finer-grained ways to ef-

ficiently utilize the rich network paths in datacenters

[8, 9, 14, 15, 21, 28, 34, 40–42]. Unfortunately, most of

these previous arts only consider TCP traffic, and none of

them explicitly discuss RDMA (see §6 for more discus-

sions). As we will show in §2.3, RDMA is quite different

from TCP in many aspects. Therefore, in this paper, we

design the first multi-path transport for RDMA.

100

101

102

103

104

Normal ECN
 mis-config

 Link
 downgrade

O
O

O
 D

eg
re

e
99

.9
 p

ct
l

Figure 1: Out-of-order degree
under different scenarios.

 0

 10

 20

 30

 40

 8 16 32 64 128 256 512 1024Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

of concurrent connections
Figure 2: Goodput of concurrent
MLNX CX3 Pro WRITEs.

2.3 Challenges for Multi-Path RDMA
RDMA is implemented in NICs. But usually, on-chip

memory in NIC is small and expensive. Populating large

memories in NIC hardware is very costly. Not only mem-

ory blocks require many transistors and may occupy a

large die area, but also significantly increase the power

consumption, which may cause further issues like cool-

ing. Thus NICs usually serve as a cache of host memory

to store the connection states. If a cache miss happens,

RDMA NIC needs to access the host memory via PCIe.

Frequent cache misses lead to NIC throughput degrada-

tion due to the PCIe bus latency and the contention on

the bandwidth. To illustrate the impact of cache misses

on application goodput, we use 4 clients with Mellanox

ConnectX 3 Pro NICs to initiate RDMA WRITEs to a

single server and measure the total goodput. Fig. 2 shows

that when the number of concurrent connections is larger

than 256, application goodput would drop sharply. This

is because to perform WRITE operations, the receiv-

ing NIC needs to access corresponding connection states

(QP context). When the number of connections is larger

than 256, not all states can be stored in NIC’s memory.

With more concurrent connections, cache misses occur

more frequently. This result conforms with previous

work [32, 33]. Thus, to avoid performance degradation

caused by frequent cache misses, the memory footprint

for each RDMA connection should be minimized to sup-

port more connections in on-chip memory. This key

uniqueness of RDMA brings several challenges for de-

signing MP-RDMA as aforementioned (§1).

3 MP-RDMA design
3.1 Overview

MP-RDMA is a multi-path transport for RDMA while

effectively addresses the challenge of the limited on-chip

memory in NIC hardware. MP-RDMA employs a novel

ACK-clocking and congestion control mechanism to do

congestion-aware load distribution without maintaining

per-path states (§3.2). Moreover, it uses an out-of-order

aware path selection mechanism to control the out-of-

order degree among sending paths, thus minimizes the

meta data size required for tracking out-of-order pack-

ets (§3.3). Finally, MP-RDMA provides a synchronise
mechanism for applications to ensure in order host mem-

ory update without sacrificing throughput (§3.4).

MP-RDMA assumes a PFC enabled network with

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 359

Ethernet
Header IP Header UDP Header

VP ID (Src Port)

MSN (3B) iPSN (3B)

synchroniseReTx

RoCEv2 Data
Headers

(a) MP-RDMA data packet header

Ethernet
Header IP Header UDP Header RoCEv2 ACK

Headers

SACK (PSN) ECE

AACK (3B)

synchroniseReTx

Echo VP ID (Src Port)

(b) MP-RDMA ACK packet header

Figure 3: MP-RDMA packet header format. Fields with red bold
text are specific for MP-RDMA.

RED [24] supported. It reuses most of the existing/re-

served fields (with thin border) in the UDP and RoCE

v2 headers. It extends the existing headers by certain

fields (with thick border) (Fig. 3). MP-RDMA controls

the transmission paths of a packet by selecting a specific

source port in the UDP header and let ECMP pick up

the actual path. Since packets with the same source port

will be mapped to the same network path, we use a UDP

source port to identify a network path, which is termed as

a Virtual Path (VP). Initially, the sender picks a random

VP for a data packet. Upon receiving a data packet, the

receiver immediately generates an ACK which encodes

the same VP ID (Echo VP ID field). The ACK header

carries the PSN of the received data packet (SACK field)

as well as the accumulative sequence number at the data

receiver (AACK field). ECN signal (ECE field) is also

echoed back to the sender.

The data of a received packet is placed directly into

host memory. For WRITE and READ operations, the

original RDMA header already embeds the address in

every data packet, so the receiver can place the data ac-

cordingly. But for SEND/RECV operations, additional

information is required to determine the data memory

placement address. This address is in a corresponding

RECV WQE. MP-RDMA embeds a message sequence
number (MSN) in each SEND data packet to assist the

receiver for determining the correct RECV WQE. In ad-

dition, an intra-message PSN (iPSN) is also carried in

every SEND data packet as an address offset to place the

data of a specific packet within a SEND message.

Next, we zoom into each design component and elab-

orate how they together can achieve high performance

with a small MP-RDMA on-chip memory footprint.

3.2 Congestion control and multi-path
ACK-clocking

As aforementioned, MP-RDMA performs congestion

control without maintaining per-path states, thus mini-

mizing on-chip memory footprint. MP-RDMA uses one

congestion window for all paths. The congestion con-

trol algorithm is based on ECN. MP-RDMA decreases its

cwnd proportionally to the level of congestion, which is

similar to DCTCP [49]. However, unlike DCTCP that es-

timates the level of congestion by computing an average

ECN ratio, MP-RDMA reacts directly upon ACKs. As

packets are rarely dropped in an RDMA network, react-

ing to every ACK would be precise and reliable. More-

over, it is very simple to implement the algorithm in hard-

ware. MP-RDMA adjusts cwnd on a per-packet basis:

For each received ACK:

cwnd ←
{

cwnd +1/cwnd if ECN = 0

cwnd −1/2 if ECN = 1

Note that on receiving an ECN ACK, cwnd is decreased

by 1/2 segment instead of cutting by half.

MP-RDMA employs a novel algorithm called multi-
path ACK-clocking to do congestion-aware packets dis-

tribution, which also allows each path to adjust its send-

ing rate independently. The mechanism works as fol-

lows: Initially, the sender randomly spreads initial win-
dow (IW) wise of packets to IW initial VPs. Then, when
an ACK arrives at the sender, after adjusting cwnd, if
packets are allowed, they are sent along the VP car-
ried in the ACK. In § 3.2.1, fluid models show that with

per-packet ECN-based congestion control and multi-path

ACK clocking, MP-RDMA can effectively balance traf-

fic among all sending paths based on their congestion

level. It is worth noting that MP-RDMA requires per-

packet ACK, which adds a tiny bandwidth overhead (<
4%) compared to convention RDMA protocol.

MP-RDMA uses a similar way as TCP NewReno [23]

to estimate the inflight packets when there are out-of-

order packets being selectively acked. 4 Specifically, we

maintain an inflate variable, which increases by one for

each received ACK. We use snd nxt to denote the PSN of

the highest sent packet and snd una to denote the PSN of

the highest accumulatively acknowledged packet. Then

the available window (awnd) is:

awnd = cwnd + in f late− (snd nxt − snd una).

Once an ACK moves snd una, in f late is decreased by

(ack aack− snd una). This estimation can be temporar-

ily inaccurate due to the late arrival of the ACKs with

SACK PSN between the old snd una and new snd una.

However, as awnd increases only one per ACK, our ACK

clocking mechanism can still work correctly.

3.2.1 Fluid model analysis of MP-RDMA
Now we develop a fluid model for MP-RDMA con-

gestion control. For clarity, we first establish a single-

path model for MP-RDMA to show its ability to control

4Alternatively, we could use a sender-side bitmap to track sacked
packets. But the memory overhead of this bitmap could be large for

high-speed networks. For example, for 100Gbps network with 100μs
delay, the size of the bitmap can be as large as 1220 bits.

360 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the queue oscillation. Then a multi-path model is given

to demonstrate its ability in balancing congestion among

multiple paths. We assume all flows are synchronized,

i.e. their window dynamics are in phase.

Single-path model. Consider N long-lived flows travers-

ing a single-bottleneck link with capacity C. The fol-

lowing functions describe the dynamics of W (t) (con-

gestion window), q(t) (queue size). We use R(t) to

denote the network RT T , F(t) to denote the ratio of

ECN marked packets in the current window of pack-

ets. d is the propagation delay. We further use R∗ =
d+average queue length/C to denote the average RTT.

MP-RDMA tries to strictly hold the queue length around

a fixed value, thus R∗ is fixed:

dW
dt

=
1−F(t −R∗)

R(t)
− W (t)

2R(t)
F(t −R∗) (1)

dq
dt

= N
W (t)
R(t)

−C (2)

R(t) = d +
q(t)
C

(3)

The fix point of Equation (1) is: W (t) = 2(1−F)
F . The

queue can be calculated as q=NW (t)−CR, which gives:

q(t) =
N(1−F)

F
− Cd

2
(4)

MP-RDMA requires RED marking at the switch [24]:

p =

⎧⎪⎨
⎪⎩

0 if q � Kmin

Pmax
(q−Kmin)

Kmax−Kmin
if Kmin < q ≤ Kmax

1 if q > Kmax

(5)

Combining Equation (4) and (5) yields the fix point so-

lution (q,W,F). We consider two different ECN mark-

ing schemes: 1) standard RED [24]; 2) DCTCP RED

(Kmax = Kmin,Pmax = 1.0). With standard RED mark-
ing, MP-RDMA achieves a stable queue with small
oscillation. If DCTCP RED is used, as MP-RDMA

doesn’t use any history ECN information, MP-RDMA

can be modeled as a special case of DCTCP with g = 1.

As a result, The queue oscillation would be large [11].

We use simulations to validate our analysis. 8 flows

each with output rate 10Gbps, compete for a 10Gbps bot-

tleneck link. RTT is set to 100μs. For standard RED, we

set (Pmax,Kmin,Kmax)= (0.8,20,200). For DCTCP RED,

we set (Pmax,Kmin,Kmax) = (1.0,65,65). According to

Fig. 4, with standard RED, MP-RDMA’s queue length

varies very little compared with theoretical results. And

the queue oscillation is much smaller than DCTCP RED.

Full throughput is achieved under both marking schemes.

Multi-path model. Now we develop the multi-path

model. Let V Pi denote ith VP. We assume V Pi has a

 0

 20

 40

 60

 80

 1 1.002 1.004 1.006 1.008 1.01

Q
ue

ue
 (P

ac
ke

ts
)

Time (s)

Kmin = 20, Kmax = 200, Pmax = 0.8
Kmin = Kmax = 65, Pmax = 1.0

Theory

Figure 4: Queue oscillation.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

EC
N

 M
ar

ki
ng

 R
at

io

Time (ms)

Path 1
Path 2

Path 3
Path 4

Figure 5: ECN marking ratio.

virtual cwnd denoted by wi, which controls the num-

ber of packets on V Pi. And the total cwnd is given as

cwnd = ∑i wi. We use ε to denote the fraction part of

cwnd, i.e. ε = cwnd −�cwnd�. We assume ε has a uni-

form distribution from 0 to 1 (denoted as U [0,1)). 5

An ECN ACK from V Pi will reduce cwnd by 1/2 seg-

ment. There could be two situations: If ε ≥ 1/2, a new

packet can still be clocked out on path V Pi; otherwise,

after reduction, the new cwnd will prevent a packet from

sending to V Pi. Since ε is subject to U(0,1), an ECN

ACK reduces wi by one with probability 50%. On the

other hand, a non-ECN ACK increases cwnd by 1/cwnd.

If the growth of cwnd happens to allow one additional

packet, V Pi would get two packets. As ε is subject to

U(0,1), such chance would be equal for each incoming

non-ECN ACK, i.e. 1/cwnd. In other words, a non-ECN

ACK increases wi by one with probability wi/cwnd.

Based on the above analysis, we can establish the fluid

model for our multi-path congestion control. Since a VP

is randomly mapped to a physical path, statistically each

physical path may get an equal number of VP for a long-

lived MP-RDMA connection. Consider N flows, each

flow distributes their traffic to Mv virtual paths, which are

mapped onto Mp physical paths. We use Path(j) to de-

note the set of virtual paths that are mapped onto physical

path j. Then we have the model:

(i = 0,1, ...,Mv −1; j = 0,1, ...,Mp −1)

dwi

dt
=

wi(t)
cwnd ∗Ri(t)

[1−Fi(t −R∗
i)]−

wi(t)
2Ri(t)

Fi(t −R∗
i)

(6)

dq j

dt
= N

∑i∈Path(j) wi

R j
−Cj (7)

R j(t) = d j +
q j(t)
Cj

(8)

Also, each physical path j has its own RED marking

curve as in Eq. (5). Eq. (6) yields the fix point solu-

tion: Fi =
2

cwnd+2 . As Fi only depends on the total cwnd,

this indicates that the marking ratio Fi of each VP will

be the same, so will the physical path marking ratio. In

5We note that this assumption cannot be easily proven as the con-

gestion window dynamics are very complicated, but our observation

on both testbed and simulation experiments verified the assumption.

Later we will show that based on this assumption, our experiments and

theoretical analysis results match each other very well.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 361

other words, MP-RDMA can balance the ECN mark-
ing ratio among all sending paths regardless of their
RTTs, capacities and RED marking curves. In data-

centers where all equal-cost paths have same capacities

and RED marking curves, MP-RDMA can balance the

load among multiple paths.

We use simulations to validate our conclusion. 10

MP-RDMA connections are established. Each sends at

40Gbps among 8 VPs. The virtual paths are mapped

randomly onto 4 physical paths with different rates, i.e.
20Gbps, 40Gbps, 60Gbps and 80Gbps. The network

base RTT of each path is set to 16μs. For RED mark-

ing, all paths has the same Kmin = 20 and Kmax = 200,

but with Pmax set to different values, i.e. 0.2, 0.4, 0.6 and

0.8. Fig. 5 shows the ECN marking ratio of the 4 phys-

ical paths. ECN marking ratios of the 4 physical paths

converge to the same value which validates our analysis.

3.3 Out-of-order aware path selection
Out-of-Order (OOO) is a common outcome due to the

parallelism of multi-path transmission. This section first

introduces the data structure for tracking OOO packets.

Then we discuss the mechanism to control the network

OOO degree to an acceptable level so that the on-chip

memory footprint can be minimized.

3.3.1 Bitmap to track out-of-order packets
MP-RDMA employs a simple bitmap data structure at

the receiver to track arrived packets. Fig. 6 illustrates the

structure of the bitmap, which is organized into a cyclic

array. The head of the array refers to the packet with

PSN = rcv nxt. Each slot contains two bits. According

to the message type, a slot can be one of the four states:

1) Empty. The corresponding packet is not received. 2)

Received. The corresponding packet is received, but not

the tail (last) packet of a message. 3) Tail. The packet

received is the tail packet of a message. 4) Tail with
completion. The packet received is the tail packet of a

message that requires a completion notification.

When a packet arrives, the receiver will check the PSN

in the packet header and find the corresponding slot in

the bitmap. If the packet is the tail packet, the receiver

will further check the opcode in the packet to see if the

message requires a completion notification, e.g., SEND

or READ response. If so, the slot is marked as Tail with
completion; Otherwise, it is marked as Tail. For non-tail

packets, the slots are simply set to Received. The re-

ceiver continuously scans the tracking bitmap to check if

the head-of-the-line (HoL) message has been completely

received, i.e., a continuous block of slots are marked

as Received with the last slot being either Tail or Tail
with completion. If so, it clears these slots to Empty and

moves the head point after this HoL message. If the mes-

sage needs a completion notification, the receiver pops a

WQE from the receive WQ and pushes a CQE in the CQ.

Msg2

LHead: PSN = rcv_nxt

R TC R T E R E TC

Msg1

...

Lead: PSN rcv_nxt

R TC R T E R E TC

Msg1 Msg2

E: Empty
R: Received
T: Tail
TC: Tail with completion

Slot states

Figure 6: Data structure to track OOO packets at the receiver.

snd_una snd_oohsnd_ool snd_nxtsnd_retx

Figure 7: MP-RDMA window structure at the sender.

3.3.2 Out-of-order aware path selection
MP-RDMA employs only limited slots in the track-

ing bitmap, e.g., L = 64, to reduce the memory footprint

in NIC hardware. Therefore, if an out-of-order packet

holds a PSN larger than (rcv nxt + L), the receiver has

to drop this packet, which hurts the overall performance.

MP-RDMA controls the degree of out-of-order packets

(OOD) by a novel path selection algorithm, so that most

packets would arrive within the window of the tracking

bitmap. The core idea of our out-of-order aware path se-

lection algorithm is to actively prune the slow paths and

select only fast paths with similar delay.

Specifically, we add one new variable, snd ooh, which

records the highest PSN that has been sacked by an ACK.

For the sake of description, we define another variable

snd ool = snd ooh−Δ, where Δ≤ L is a tunable parame-

ter that determines the out-of-order level of MP-RDMA.

The algorithm works as follows: When an ACK arrives
at the sender, the sender will check if the SACK PSN is
lower than snd ool. If so, the sender reduces cwnd by
one and this ACK is not allowed to clock out a packet to
the VP embedded in the ACK header.

The design rationale is straightforward. We note that

snd ooh marks an out-of-order packet that goes through

the fast path. In order to control the OOD, we need

to prune all slow paths that causes an OOD larger than

Δ. Clearly, an ACK acknowledges a PSN lower than

snd ool identifies such a slow path with the VP in the

header. Note that PSN alone may not correctly reflect

the sending order of a retransmitted packet (sent later but

with lower PSN). Therefore, to remove this ambiguity,

we explicitly tagged a bit in packet header to identify a

retransmitted packet and echoed back in its ACK (ReTx

in Fig. 3). For those ReTx ACKs, we simply regard their

data packets have used good paths.

3.4 Handling synchronise operations
As discussed in §2, NIC hardware does not have

enough memory to store out-of-order packets and has

to place them into host memory. One possible way is

to allocate a separate re-ordering buffer in host mem-

ory and temporarily store the out-of-order packets there.

When the HoL message is completely received, the NIC

can copy the message from the re-ordering buffer into

the right memory location. This, however, causes a sig-

nification overhead as a packet may traverse PCIe bus

362 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

twice, which not only consumes double PCIe bandwidth

resource but also incurs a long delay. We choose to di-

rectly place out-of-order packets’ data into application

memory. This approach is simple and achieves optimal

performance in most cases. However, to support applica-

tions that rely on the strict order of memory updates, e.g.,
key-value store using RDMA WRITE operations [20],

MP-RDMA allows programmers to specify a synchro-
nise flag on an operation, and MP-RDMA ensures that a

synchronise operation updates the memory only after all

previous operations are completed.

One straightforward approach is to delay a synchro-

nise operation until the initiator receives acknowledge-

ments or data (for READ verbs) of all previous opera-

tions. This may cause inferior performance as one ad-

ditional RTT will be added to every synchronise opera-

tion. We mitigate this penalty by delaying synchronise

operations only an interval that is slightly larger than the

maximum delay difference among all paths. In this way,

the synchronise operations should complete just after all

its previous messages with high probability. With the

out-of-order aware path selection mechanism (§3.3), this

delay interval can be easily estimated as

Δt = α ·Δ/Rs = α ·Δ/
(

cwnd
RT T

)
,

where Δ is the target out-of-order level, Rs is the sending

rate of the RDMA connection and α is a scaling fac-

tor. We note that synchronise messages could still arrive

before other earlier messages. In these rare cases, to en-

sure correctness, the receiver may drop the synchronise

message and send a NACK, which allows the sender to

retransmit the message later.

3.5 Other design details and discussions
Loss recovery. For single-path RDMA, packet loss

is detected by the gap in PSNs. But in MP-RDMA,

out-of-order packets are common and most of them are

not related to packet losses. MP-RDMA combines loss

detection with the out-of-order aware path selection al-

gorithm. In normal situations, the algorithm controls

OOD to be around Δ. However, if a packet gets lost,

OOD will continuously increase until it is larger than

the size of the tracking bitmap. Then, a NACK will

be generated by the receiver to notify the PSN of the

lost packet. Upon a NACK, MP-RDMA enters recovery

mode. Specifically, we store the current snd nxt value

into to a variable called recovery and set snd retx to the

NACKed PSN (Fig.7). In the recovery mode, an incom-

ing ACK clocks out a retransmission packet indicated by

snd retx, instead of a new packet. If snd una moves be-

yond recovery, the loss recovery mode ends.

There is one subtle issue here. Since MP-RDMA en-

ters recovery mode only upon bitmap overflow, if the

application does not have that much data to send, RTO

is triggered. To avoid this RTO, we adopt a scheme of

FUSO [18] that early retransmits unacknowledged pack-

ets as new data if there is no new data to transmit and

awnd allows. In rare case that the retransmissions are

also lost, RTO will eventually fire and the sender will

start to retransmit all unacknowledged packets.

New path probing. MP-RDMA periodically probes

new paths to find better ones. Specifically, every RTT,

with a probability p, the sender sends a packet to a new

random VP, instead of the VP of the ACK. This p bal-

ances the the chance to fully utilize the current set of

good paths and to find even better paths. In our experi-

ment, we set p to 1%.

Burst control. Sometimes for a one returned ACK,

the sender may have a burst of packets (≥2) to send, e.g.,
after exiting recovery mode. If all those packets are sent

to the ACK’s VP, the congestion may deteriorate. MP-

RDMA forces that one ACK can clock out at most two

data packets. The rest packets will gradually be clocked

out by successive ACKs. If no subsequent ACKs return,

these packets will be clocked out by a burst timer to ran-

dom VPs. The timer length is set to wait for outstanding

packets to be drained from the network, e.g. 1/2 RTT.

Path window reduction. If there is no new data to

transfer, MP-RDMA gracefully shrinks cwnd and reduce

the sending rate accordingly following a principle called

“use it or lose it”. Specifically, if the sender receives an

ACK that should kick out a new packet but there is no

new data available, cwnd is reduced by one. This mech-

anism ensures that all sending paths adjust their rates in-

dependently. If path window reduction mechanism is not

used, the sending window opened up by an old ACK may

result in data transmission on an already congested path,

thus deteriorating the congestion.

Connection restart. When applications start to trans-

mit data after idle (e.g. 3 RTTs), MP-RDMA will restart

from IW and restore multi-path ACK clocking. This is

similar to the restart after idle problem in TCP [29].

Interact with PFC. With our ECN-based end-to-end

congestion control, PFC will seldom be triggered. If

PFC pauses all transmission paths [26, 49], MP-RDMA

will stop sending since no ACK returns. When PFC re-

sumes, ACK clocking will be restarted. If only a sub-

set of paths are paused by PFC, those paused paths will

gradually be eliminated by the OOO-aware path selec-

tion due to their longer delay. We have confirmed above

arguments through simulations. We omit the results here

due to space limitation.

4 Implementation
4.1 FPGA-based Prototype

We have implemented an MP-RDMA prototype using

Altera Stratix V D5 FPGA board [12] with a PCIe Gen3

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 363

MP-RDMA Library

Application

Application
Data Buffer

MP-RDMA
Transport Logic

Host

FPGA

40G Ethernet Port

ToR Switch

MP-RDMA
Transport Logic

FPGA

40G Ethernet Port

DMA

PCIe

Figure 8: System architecture.

x8 interface and two 40G Ethernet ports. Fig.8 shows the

overview of the prototype architecture. There are two

major components: 1) MP-RDMA transport logic, and

2) MP-RDMA library. The entire transport logic is im-

plemented on FPGA with ClickNP framework [35]. We

have developed 14 ClickNP elements with ∼2K lines of

OpenCL code. Applications call MP-RDMA library to

issue operations to the transport. FPGA directly DMAs

packet data from/to the application buffer via PCIe.

Table 1 summarizes all extra states incurred per con-

nection by MP-RDMA for multi-path transport com-

pared to existing RoCE v2. Collectively, MP-RDMA

adds additional 66 bytes. This extra memory footprint is

comparable to other single-path congestion control pro-

posals to enhance RoCE v2. For example, DCQCN [49]

adds ∼60 bytes for its ECN based congestion control.

4.2 Validation
We now evaluate the basic performance of the FPGA-

based prototype. We measure the processing rate and

latency for sending and receiving under different mes-

sage sizes. Specifically, the sending/receiving latency

refers to the time interval between receiving one ACK-

/data packet and generating a new data/ACK packet.

To measure the processing rate for sending logic,

we use one MP-RDMA sender to send traffic to two

MP-RDMA receivers, creating a sender bottleneck, vice

versa for measuring the receiving logic. As shown in

Fig.9, our implementation achieves line rate across all

message sizes for receiving. For sending, when message

size is smaller than 512 bytes, the sender cannot reach

the line rate. This is because sender logic is not fully

pipelined due to memory dependencies. However, our

sending logic processing rate is still 10.4%∼11.5% bet-

ter than commodity Mellanox RDMA NIC (ConnectX-3

Pro) [37, 38]. When message size is larger, i.e. >512B,

the sender logic can sustain the line-rate of 40Gbps. The

prototype also achieves low latency. Specifically, the

Table 1: MP-RDMA States

Functionality Variable Size (B)

Congestion control

cwnd 4

in f late 4

snd una 3

snd nxt 3

rcv nxt 3

OOO-aware

path selection

snd ooh 3

L 1

Loss recovery
snd retx 3

recovery 3

Path probing
MaxPathID 2

p 1

Tracking

OOO packets

bitmap data 16

bitmap head 1

Burst Control burst timer 3

Connection restart restart timer 3

Synchronise message α 1

RTT measurement srtt, rttvar, rtt seq 12

Total N/A 66

sending and receiving latency is only 0.54μs and 0.81μs

for 64B messages respectively.

5 Evaluation
In this section, we first evaluate MP-RDMA’s over-

all performance. Then, we evaluate properties of MP-

RDMA algorithm using a series of targeted experiments.

Testbed setup. Our testbed consists of 10 servers

located under two ToR switches as shown in Fig.10.

Each server is a Dell PowerEdge R730 with two 16-core

Intel Xeon E5-2698 2.3GHz CPUs and 256GB RAM.

Every server has one Mellanox ConnectX-3 Pro 40G

NIC as well as an FPGA board that implements MP-

RDMA. There are four switches connecting the two ToR

switches forming four equal-cost cross-ToR paths. All

the switches are Arista DCS-7060CX-32S-F with Tri-

dent chip platform. The base cross-ToR RTT is 12μs
(measured using RDMA ping). This means the band-

width delay product for a cross-ToR network path is

around 60KB. We enable PFC and configure RED with

(Pmax,Kmin,Kmax) = (1.0,20KB,20KB) as it provides

good performance on our testbed. The initial window

is set to be one BDP. We set Δ = 32 and the size of the

bitmap L = 64.

5.1 Benefits of MP-RDMA
5.1.1 Robust to path failure

1) Lossy paths. We show that MP-RDMA can greatly

improve RDMA throughput in a lossy network [27].

Setup: We start one RDMA connection from T0 to

T1, continuously sending data at full speed. Then, we

manually generate random drop on Path 1, 2 and 3.

We leverage the switch built-in iCAP (ingress Content-

364 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 10
 15
 20
 25
 30
 35
 40

 64 128 256 512 1024Th
ro

ug
hp

ut
 (G

bp
s)

Message Size (Byte)

MP-RDMA Receive
MP-RDMA Send

Mellanox CX3 Pro Send

Figure 9: Prototype ability.

T0 T1

L1 L2 L3L0

40G 40G

40G

Figure 10: Testbed Topology.

Aware Processor) [2] functionality to drop packets with

certain IP ID (e.g., ID mod 100 == 0). We compare the

goodput between MP-RDMA and single-path RDMA

(DCQCN). Each result is the average of 100 runs.

Results: Fig.11(a) illustrates that MP-RDMA always

achieves near to optimal goodput (∼38Gbps excluding

header overhead) because it always avoids using lossy

path. Specifically, the credits on lossy paths are gradually

reduced and MP-RDMA moves its load to Path 4 (good

path). However, DCQCN has 75% probability to trans-

mit data on lossy paths. When this happens, DCQCN’s

throughput drops dramatically due to its go-back-N loss

recovery mechanism. Specifically, the throughput of the

flow traversing lossy path drops to ∼10Gbps when the

loss rate is 0.5%, and drops to near zero when loss rate

exceeds 1%. This conforms with the results in [36, 49].

As a result, DCQCN can achieve only ∼17.5Gbps aver-

age goodput when loss rate is 0.5%. When the loss rate

exceeds 0.5%, DCQCN achieves only ∼25% average

goodput compared with MP-RDMA. Improving the loss

recovery mechanism (e.g., [36]) is a promising direction

to further improve the performance of MP-RDMA and

DCQCN, but it is not the focus of this paper.

2) Quick reaction to link up and down. We show

that MP-RDMA can quickly react to path failure and re-

store the throughput when failed paths come back.

Setup: We start one MP-RDMA connection from T0

to T1 and configure each path to be 10Gbps. At time

60s, 120s, and 180s, P1, P2, and P3 are disconnected

one by one. At time 250s, 310s, and 370s, these paths

are restored to healthy status one by one.

Results: Fig.11(b) shows that, upon each path fail-

ure, MP-RDMA quickly throttles the traffic on that path,

meanwhile fully utilizes other healthy paths. This is be-

cause there are no ACKs returning from the failed paths

which leads to zero traffic on those paths. While the

ACK clocking for healthy paths is not impacted, those

paths are fully utilized and are used to recover the lost

packets on failed paths. When paths are restored, MP-

RDMA can quickly fully utilize the newly recovered

path. Specifically, for each restored path, it takes only

less than 1s for this path to be fully utilized again. This

is benefited from the path probing mechanism of MP-

RDMA, which periodically explores new VPs and re-

stores the ACK-clocking on those paths.

 0

 10

 20

 30

 40

0 0.5% 1% 5% 10%

Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

 MP-RDMA DCQCN

(a) Adaptive to random drop.

 0

 10

 20

 30

 40

 0 60 120 180 240 300 360 420Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Time(s)

(b) Reaction to paths failure.

Figure 11: MP-RDMA robustness.

5.1.2 Improved Overall Performance
Now, we show that with multi-path enabled, the over-

all performance can be largely improved by MP-RDMA.

1) Small-Scale Testbed. Now we evaluate the

throughput performance on our testbed.

Setup: We generate a permutation traffic [15, 41],

where 5 servers in T0 setup MP-RDMA connects to 5

different servers in T1 respectively. Permutation traffic

is a common traffic pattern in datacenters [26, 49] and in

the following, we use this pattern to study the though-

put, latency and out-of-order behavior of MP-RDMA.

We compare the overall goodput (average of 10 runs) of

all these 5 connections of MP-RDMA with DCQCN.

Results: The results show that MP-RDMA can well

utilize the link bandwidth, achieving in total 150.68Gbps

goodput (near optimal excluding header overhead). Due

to the coarse-grained per-connection ECMP-based load

balance, DCQCN only achieves in total 102.46Gbps.

MP-RDMA gains 47.05% higher application goodput

than DCQCN. Fig.12(a) shows the goodput of each

RDMA connection (denoted by its originated server ID)

in one typical run. The 5 flows in MP-RDMA fairly share

all the network bandwidth and each achieves ∼30Gbps.

However, in DCQCN, only 3 out of 4 paths are used for

transmission while the other one path is idle, which leads

to much lower (<20Gbps) and imbalanced throughput.

2) Large-Scale Simulation on Throughput. Now we

evaluate throughput performance at scale with NS3 [3].

Setup: We build a leaf-spine topology with 4 spine

switches, 32 leaf switches and 320 servers (10 under

each leaf). The server access link is 40Gbps and the

link between leaf and spine is 100Gbps, which forms

a full-bisection network. The base RTT is 16us. For

the single-path RDMA (DCQCN), we use the simulation

code and parameter settings provided by the authors. We

use the same permutation traffic [15, 41] as before. Half

of the servers act as senders and each sends RDMA traf-

fic to one of the other half servers across different leaf

switches. In total there are 160 RDMA connections. For

MP-RDMA, the ECN threshold is set to be 60KB.

Results: Fig.12(b) shows the goodput of each RDMA

connection. MP-RDMA achieves much better overall

performance than DCQCN with ECMP. To be specific,

the average throughput of all servers of MP-RDMA is

34.78% better than DCQCN. Moreover, the performance

across multiple servers is more even in MP-RDMA,

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 365

 0

 10

 20

 30

 40

 0 1 2 3 4Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Server ID

 MP-RDMA DCQCN

(a) Small-scale testbed.

 0

 10

 20

 30

 40

 0 20 40 60 80 100 120 140 160Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Server ID

 MP-RDMA DCQCN

(b) Large-scale simulation.

Figure 12: Overall throughput compared with DCQCN.

where the lowest connection throughput can still achieve

32.95Gbps. However, in DCQCN, many unlucky flows

are congested into a single path, leading to a very low

throughout (e.g., <15Gbps) for them.

3) Large-Scale Simulation on FCT.
Setup: We use the same leaf-spine topology and gen-

erate flow size according to a web search workload [10].

The source and destination of each flow are randomly

picked from all the servers. We further assume that flows

arrive according to a Poisson process and vary the inter-

arrival time of flows to form different levels of load.

Results: In this experiment, at start up, each con-

nection uses 54 virtual paths. As time goes by, a long

flow will result in using about 60∼70 virtual paths.

Fig. 13 shows the normalized FCT performance. For

average FCT, MP-RDMA is 6.0%∼17.7% better than

DCQCN. For large flows (>10MB), throughput is the

dominate factor. As MP-RDMA avoids hash colli-

sion, they achieve 16.7%∼77.7% shorter FCT than DC-

QCN. We omit the figure due to space limitation. For

small flows (<100KB), MP-RDMA also achieves a lit-

tle bit better FCT (3.6%∼13.3% shorter) than DCQCN

(Fig. 12(b)). This advantage is from finer grained load

balance and accurate queue length control of congestion

control (§3.2.1) in MP-RDMA.

5.2 MP-RDMA deep-dive
5.2.1 OOO-aware path selection

Now, we show MP-RDMA’s OOO-aware path selec-

tion algorithm can well control the OOO degree, and

achieve good application throughput.

Setup: We use the same traffic as in §5.1.2, and mea-

sure the OOO degrees in three different scenarios: 1)

Normal, in which all paths RED marking parameters are

configured as (Pmax,Kmin,Kmax) = (1.0,20KB,20KB); 2)

ECN mis-config, in which the RED of path 4 is mis-

configured as (Pmax,Kmin,Kmax) = (1.0,240KB,240KB);
3) link-degradation, in which path 4 degrades from

40Gbps to 1Gbps due to failure caused auto-negotiation.

Results: First we set bitmap length L to infinite to

cover the maximum OOD. Then, we evaluate how MP-

RDMA can control the OOD to different extent with dif-

ferent Δ. Fig. 14(a) shows the 99.9th percentile of OOD

using different Δ under various scenarios. OOO-aware

path selection can well control the OOD. Specifically,

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.4 0.5 0.6 0.7 0.8FC
T

(N
or

m
al

iz
ed

 to
 O

pt
im

al
)

Load

 MP-RDMA DCQCN

(a) Average FCT.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.4 0.5 0.6 0.7 0.8FC
T

(N
or

m
al

iz
ed

 to
 O

pt
im

al
)

Load

 MP-RDMA DCQCN

(b) Small flows (< 100KB).

Figure 13: FCT performance compared with DCQCN.

 0
 50

 100
 150
 200
 250
 300
 350

32 64 96 128 160

O
O

O
 D

eg
re

e
99

.9
 p

ct
l

Δ

Normal
ECN mis-config
Link downgrade

(a) OOO control.

 0

 0.2

 0.4

 0.6

 0.8

 1

Normal ECN
 mis-config

 Link
 downgradeN

or
m

ai
liz

ed
 T

hr
ou

gh
pu

t

w/o OOO control
w/ OOO control

(b) Goodput.

Figure 14: Out-of-order control algorithm performance.

compared to MP-RDMA without OOO control, 6 Δ=32

can effectively reduce the OOD 99.9th by ∼5x and ∼50x

under ECN mis-configuration and link-degradation re-

spectively. A proper Δ can control the OOD to a small

range, which means that we can use a very small L in

practice under various network conditions.

Next, we consider a bitmap with L = 64. We set Δ=32

correspondingly. Fig. 14(b) shows the throughput nor-

malized to the ideal case when all connections fairly

share the full bandwidth. With OOO control, in ECN
mis-config case, MP-RDMA achieves optimal through-

put. Even in more extreme link-degradation case, the

overall application throughput is only 3.94% less than

the optimal. However, if MP-RDMA uses the same L=64

bitmap but without OOO control, its throughput signifi-

cantly degrades by 25.1% and 67.5% under these two

cases respectively, due to severe OOO.

5.2.2 Congestion-aware Path Selection
Now, we show MP-RDMA’s ability to do congestion-

aware traffic distribution.

Setup: We configure each path to 10G and start one

MP-RDMA long connection sending unlimited data at

the maximum rate. Normally, the traffic is evenly bal-

anced among the four parallel paths. Then after ∼30s,

we start another special MP-RDMA flow which is man-

ually forced to use only Path 4 (denoted as SP-RDMA).

The SP-RDMA flow will cause a sudden congestion on

Path 4. We evaluate how MP-RDMA perceives the con-

gestion and moves the load away from Path 4.

Results: Fig. 15 shows the throughput of the MP-

RDMA flows on each of the four paths. Before the SP-

RDMA flow joins, each path has a throughput stable at

∼10Gbps. After the SP-RDMA joins on Path 4, the

throughput of the MP-RDMA flows on Path 4 quickly

falls to near zero. Meanwhile, the throughput on other

6Without OOO control, the 99.9th OOD is 179 and 5324 for the two

abnormal scenarios, respectively.

366 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50Li
nk

 T
hr

ou
gh

pu
t (

G
bp

s)

Time(s)

path1
path2

path3
path4

Figure 15: Path selection.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 90 180 270 360 450Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Time(s)

c1
c2

c3
c4

c5
c6

c7
c8

Figure 16: MP-RDMA Fairness.

3 paths all remains at around 10Gbps. This indicates

that MP-RDMA can quickly perceive the congestion on

Path 4, and moves the load away from this path. Also,

since the congestion conditions on other paths remain un-

changed, MP-RDMA does not adjust the load on them.

Here we don’t focus on the fairness between SP-RDMA

and MP-RDMA connections.

5.2.3 Fairness of MP-RDMA
Setup: In this experiment, two physical servers un-

der one ToR establish multiple MP-RDMA connections

to another server under the same ToR creating a single

bottleneck. 8 MP-RDMA connections are started one by

one with an interval of 30s, and then leaves the network

one after another with the same time interval. We mea-

sure the application goodput of each connection.

Results: Fig. 16 shows that all flows evenly share the

network, and get the fair share quickly. Specifically, each

connection’s throughput quickly converges to ∼ 40
n Gbps,

when n varies from 1 to 8 and then 8 to 1. The Jain

fairness index [31] is within 0.996 - 0.999 (1 is optimal)

under various number of concurrent flows.

5.2.4 Incast
Next we evaluate MP-RDMA’s congestion control un-

der more stressed scenario, i.e., incast.

Setup: The traffic pattern mimics a disk recovery ser-

vice [49] where failed disks are repaired by fetching

backups from several other servers. Specifically, a re-

ceiver host initiates one connection with each of the N
randomly selected sender host, simultaneously request-

ing 1Gb data from each sender. Following the conven-

tion in DCQCN [49], we vary the incast degree from 1

to 9. The experiment is repeated five times. We evaluate

the overall application goodput at the receiver end.

Results: Fig. 17 shows that MP-RDMA achieves sim-

ilar near-optimal incast performance as DCQCN. To be

specific, when incast degree increases from 1 to 9, the

total goodput of the 5 connections remains stable, at

around 37.65Gbps. Note that MP-RDMA achieves a lit-

tle (∼3%) higher goodput than DCQCN. We cannot as-

certain the exact root cause of this, but we believe this

may be an implementation issue with the Mellanox NIC

instead of an algorithm issue with DCQCN.

5.2.5 Synchronise Mechanism Performance
In this section, we evaluate the impact of sychronise

mechanism on application performance.

 0

 10

 20

 30

 40

 1 2 3 4 5 6 7 8 9Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Incast Degree

 MP-RDMA DCQCN

Figure 17: Incast performance.

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

%
 o

f O
O

O
 s

yn
ch

ro
ni

se

α

 512KB 32KB

Figure 18: α impact.

Setup: The same permutation traffic in §5.1.2 is used

to emulate a typical network congestion. Synchronise
messages will be delayed for a while and then send out.

This results in burst traffic and causes large delay fluctua-

tions. We stress test the mechanism under the case when

the load is as high as 0.8. We first study the setting

of parameter α by measuring the amount of out-of-order

synchronise messages under different α . Then α is set

to a value that ensures all the synchronise messages are

in order. The average goodput for the 5 connections un-

der various ratio of synchronise messages are measured.

Two different message sizes are evaluated, i.e., 512KB

(RDMA-based RPC application [48]) and 32KB (a more

challenging smaller size). The results are compared with

DCQCN, which achieves only ∼20Gbps in average (due

to ECMP hash collision). We also evaluate MP-RDMA

(Stop-Wait), in which a synchronise message is sent only

when all previous messages are completed.

Results: As shown in Fig 18, larger α leads to less

OOO synchronise messages. Under the same α , OOO is

severer for larger message size due to the more congested

network. When α is 1.0, no OOO occurs in our tests. As

such, we set α to 1.0 for the following experiment.

Fig. 19 shows the result for synchronise mechanism

impact on throughput. When message size is large (e.g.,
512KB), both MP-RDMA and MP-RDMA (Stop-Wait)

can achieve ∼30Gbps goodput, which is ∼48% higher

than single-path DCQCN across all synchronise ratios.

This is because the Δt for sending synchronise mes-

sages is ∼0.5 RTT for MP-RDMA and ∼1 RTT for MP-

RDMA (Stop-Wait). Both are rather small compared

with the transmission delay for a 512KB message. Thus

the impact of Δt is amortized. When message size is

smaller (i.e., 32KB), Δt is larger compared with the mes-

sage transmission delay. Thus the goodput drops as the

synchronise message ratio grows. However, with our op-

timistic transmission algorithm (§3.4), MP-RDMA still

achieves good performance. Specifically, MP-RDMA

gets 13%∼49% higher throughput than DCQCN under

0∼60% synchronise ratio. When the synchronise ra-

tio grows to 80%, MP-RDMA performs 16.28% worse.

Note that this is already the worst case performance for

MP-RDMA because the traffic load is at its peak, i.e.
100%. More results (omitted due to space limitation)

show that, when the load is lighter, MP-RDMA per-

forms very close to DCQCN under high synchronise ra-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 367

 0

 10

 20

 30

 40

0% 20% 40% 60% 80%

G
oo

dp
ut

 (G
bp

s)

% of synchronise messages

 MP-RDMA
MP-RDMA (Stop-Wait)

DCQCN

(a) 512KB message.

 0

 10

 20

 30

 40

0% 20% 40% 60% 80%

G
oo

dp
ut

 (G
bp

s)

% of synchronise messages

MP-RDMA
MP-RDMA (Stop-Wait)

DCQCN

(b) 32KB message.

Figure 19: Synchronise mechanism performance.

tio. On the contrary, the naive MP-RDMA (Stop-Wait)

only achieves less than 50% throughput of MP-RDMA.

6 Related Work
Various multi-path transmission mechanisms propose

to utilize parallel network paths in datacenters [8, 9, 14,

15, 21, 28, 34, 40–42]. Most of them consider only TCP,

and cannot be directly used for RDMA.

Load-balance routing: Previous approaches such as

[8, 9, 14, 15, 21, 28, 34, 40, 42] propose to balance traffic

over a set of paths at the routing layer. In order to han-

dle out-of-order packets, some of them, e.g., [15, 28],

utilize a dedicated reordering buffer under the trans-

port layer. However, these schemes are hard to imple-

ment in NIC hardware. Other work, e.g., [9, 34], try to

proactively avoid out-of-order delivery. Most of them

utilize flowlets. If the inactive gap between flowlets

is long enough, flowlets can be distributed to different

paths without causing out-of-order. However, for RDMA

which is implemented in hardware and usually smoothed

with a rate-shaper, it is quite hard to find flowlets. To val-

idate this, we study the flowlet characteristics of RDMA

and compare it with TCP on our testbed. We measure the

size of flowlets with various inactive intervals. For each

experiment, we run 8 RDMA/TCP flows with size 2GB.

Fig. 20 shows that it is really difficult to observe flowlets

in RDMA traffic. When the inactive interval is larger

than 2μs, the flowlet size is strictly 2GB. In contrast,

TCP does have flowlets. When we set the inactive gap

to 100μs, we observe many flowlets with size ∼60KB.

We conclude that flowlet-based load balancing schemes

may not work well for RDMA traffic. A recent work [47]

reports that flowlet can be used to do load balance for

DCQCN traffic. This might be true for applications with

an on-off traffic pattern, but not for applications that are

throughput intensive. Moreover, as flowlets cannot guar-

antee out-of-order free, it’s not clear how out-of-order

RDMA packets would impact the performance in [47].

Multi-path transport: MPTCP modifies TCP to en-

able multi-path transmission [16,17,41]. The core idea is

to split the original transport into several sub-flows and

distribute packets among these sub-flows according to

their congestion states. Thereby MPTCP adds additional

states proportional to the number of sub-flows and ex-

plores a large re-ordering buffer at the transport layer to

handle out-of-order packets. As aforementioned, this de-

 0

 0.2

 0.4

 0.6

 0.8

 1

10 1K 100K 10M 1G

Fr
ac

tio
n

of
 d

at
a

by
te

s

Flowlet size (bytes)

100 us
500 us

(a) TCP.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 1K 100K 10M 1G

Fr
ac

tio
n

of
 d

at
a

by
te

s

Flowlet size (bytes)

0.5 us
2 us

(b) RDMA.

Figure 20: Flowlet characteristics in TCP and RDMA.

sign adds considerable memory overhead and is difficult

to implement in hardware.

Generally, the multi-path ACK-clocking of MP-

RDMA resembles the PSLB algorithm [13] in the sense

that both schemes adjust their load on multiple paths in a

per-ACK fashion. However, MP-RDMA independently

adjusts the load on each path while PSLB dynamically

moves the load of slow paths to fast paths.

Recently Mellanox proposed a multi-path support for

RDMA [46]. However, it is just a fail-over solution

using two existing single-path RoCE connections (hot

standby). The goal and the techniques of the Mellanox

multi-path RDMA are completely different from MP-

RDMA, which is a new multi-path RDMA transport.

7 Conclusion
This paper presents MP-RDMA, a multi-path trans-

port for RDMA in datacenters. It can efficiently uti-

lize the rich network paths in datacenters while keep-

ing on-chip memory footprint low. MP-RDMA employs

novel multi-path ACK-clocking and out-of-order aware
path selection to choose best network paths and dis-

tribute packets among them in a congestion-aware man-

ner. In total, MP-RDMA requires only a small constant

(66B) amount of extra memory for each RDMA connec-

tion no matter how many network paths are used. Our

FPGA-based prototype validates the feasibility for MP-

RDMA’s hardware implementation. Our evaluations on

a small-scale testbed as well as large-scale simulation il-

lustrate the effectiveness for MP-RDMA in utilizing the

rich network paths diversity in datacenters.

Acknowledgements
We thank our shepherd Michael Freedman and the

anonymous reviewers for their valuable comments and

suggestions. We are grateful to Wei Bai, Ran Shu and

Henry Xu for their comments on the modeling. We thank

Larry Luo for his discussion to improve the quality of

the paper. Yun Wang, Wencong Xiao and Sukhan Lee

helped us to improve the writing. This research was par-

tially funded by the National Natural Science Foundation

of China (Grants No. U1605251).

368 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] 802.1Qbb - Priority-based Flow Control.

http://www.ieee802.org/1/pages/802.1bb.html.

[2] Arista 7050x and 7050x2 switch archi-

tecture (a day in the life of a packet).

https://www.arista.com/assets/
data/pdf/Whitepapers/Arista_7050X_
Switch_Architecture.pdf.

[3] Ns3: A discrete-event network simulator for inter-

net systems. https://www.nsnam.org/.

[4] InfiniBand architecture volume 1, general specifi-
cations, release 1.2.1. InfiniBand Trade Associa-

tion, 2008.

[5] InfiniBand architecture volume 2, physical specifi-
cations, release 1.3. InfiniBand Trade Association,

2012.

[6] Supplement to InfiniBand architecture specification
volume 1 release 1.2.2 annex A17: RoCEv2 (IP
routable RoCE). InfiniBand Trade Association,

2012.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat. A

scalable, commodity data center network architec-

ture. ACM SIGCOMM Computer Communication
Review, 38(4):63–74, 2008.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan,

N. Huang, and A. Vahdat. Hedera: Dynamic flow

scheduling for data center networks. In Proceed-
ings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI’10,

pages 19–19, Berkeley, CA, USA, 2010. USENIX

Association.

[9] M. Alizadeh, T. Edsall, S. Dharmapurikar,

R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam,

F. Matus, R. Pan, N. Yadav, and G. Varghese.

Conga: Distributed congestion-aware load balanc-

ing for datacenters. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14,

pages 503–514, New York, NY, USA, 2014. ACM.

[10] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-

haran. Data center tcp (dctcp). In Proceedings
of the ACM SIGCOMM 2010 Conference, SIG-

COMM ’10, pages 63–74, New York, NY, USA,

2010. ACM.

[11] M. Alizadeh, A. Javanmard, and B. Prabhakar.

Analysis of dctcp: stability, convergence, and fair-

ness. In Proceedings of the ACM SIGMETRICS

joint international conference on Measurement and
modeling of computer systems, pages 73–84. ACM,

2011.

[12] Altera. Stratix v fpgas. https:
//www.altera.com/products/
fpga/stratix-series/stratix-v/
overview.html.

[13] J. Anselmi and N. Walton. Decentralized propor-

tional load balancing. SIAM Journal on Applied
Mathematics, 76(1):391–410, 2016.

[14] T. Benson, A. Anand, A. Akella, and M. Zhang.

Microte: Fine grained traffic engineering for data

centers. In Proceedings of the Seventh COnference
on emerging Networking EXperiments and Tech-
nologies, page 8. ACM, 2011.

[15] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan,

Y. Zheng, H. Wu, Y. Xiong, and D. Maltz. Per-

packet load-balanced, low-latency routing for clos-

based data center networks. In Proceedings of
the Ninth ACM Conference on Emerging Network-
ing Experiments and Technologies, CoNEXT ’13,

pages 49–60, New York, NY, USA, 2013. ACM.

[16] Y. Cao, M. Xu, and X. Fu. Delay-based congestion

control for multipath tcp. In 2012 20th IEEE Inter-
national Conference on Network Protocols (ICNP),
pages 1–10. IEEE, 2012.

[17] Y. Cao, M. Xu, X. Fu, and E. Dong. Explicit multi-

path congestion control for data center networks.

In Proceedings of the ninth ACM conference on
Emerging networking experiments and technolo-
gies, pages 73–84. ACM, 2013.

[18] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei,

P. Cheng, L. L. Luo, Y. Xiong, X. Wang, et al. Fast

and cautious: Leveraging multi-path diversity for

transport loss recovery in data centers. In 2016
USENIX Annual Technical Conference (USENIX
ATC 16). USENIX Association, 2016.

[19] Cisco. Priority flow control: Build reliable layer

2 infrastructure. http://www.cisco.com/
en/US/prod/collateral/switches/
ps9441/ps9670/white_paper_
c11-542809_ns783_Networking_
Solutions_White_Paper.html.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-

ishnan, and R. Sears. Benchmarking cloud serving

systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154.

ACM, 2010.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 369

[21] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella.

On the impact of packet spraying in data center net-

works. In INFOCOM 2013.

[22] A. Dragojević, D. Narayanan, M. Castro, and

O. Hodson. Farm: fast remote memory. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 401–414,

2014.

[23] S. Floyd, A. Gurtov, and T. Henderson. The

newreno modification to tcp’s fast recovery algo-

rithm. 2004.

[24] S. Floyd and V. Jacobson. Random early detection

gateways for congestion avoidance. IEEE/ACM
Transactions on Networking (ToN), 1(4):397–413,

1993.

[25] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,

C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-

gupta. Vl2: A scalable and flexible data center net-

work. In SIGCOMM ’09, 2009.

[26] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye,

and M. Lipshteyn. Rdma over commodity ether-

net at scale. In Proceedings of the 2016 conference
on ACM SIGCOMM 2016 Conference, pages 202–

215. ACM, 2016.

[27] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,

D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, et al.

Pingmesh: A large-scale system for data center

network latency measurement and analysis. vol-

ume 45, pages 139–152. ACM, 2015.

[28] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter,

and A. Akella. Presto: Edge-based load balanc-

ing for fast datacenter networks. ACM SIGCOMM
Computer Communication Review, 45(4):465–478,

2015.

[29] A. Hughes and J. Touch. J. heidemann,” issues in

tcp slow-start restart after idle. Work in Progress, 1,

1998.

[30] IEEE. Ieee 802.1qau - congestion notification.

http://www.ieee802.org/1/pages/
802.1au.html.

[31] R. Jain, A. Durresi, and G. Babic. Throughput fair-

ness index: An explanation. Technical report, Tech.

rep., Department of CIS, The Ohio State University,

1999.

[32] A. Kalia, M. Kaminsky, and D. G. Andersen. De-

sign guidelines for high performance rdma sys-

tems. In 2016 USENIX Annual Technical Confer-
ence (USENIX ATC 16), 2016.

[33] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst:

Fast, scalable and simple distributed transactions

with two-sided (rdma) datagram rpcs. In 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 185–201,

GA, 2016. USENIX Association.

[34] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy,

and J. Rexford. Clove: How i learned to stop wor-

rying about the core and love the edge. In Proceed-
ings of the 15th ACM Workshop on Hot Topics in
Networks, pages 155–161. ACM, 2016.

[35] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,

Y. Xiong, and P. Cheng. Clicknp: Highly flexible

and high-performance network processing with re-

configurable hardware. In Proceedings of the 2016
conference on ACM SIGCOMM 2016 Conference,

pages 1–14. ACM, 2016.

[36] Y. Lu, G. Chen, Z. Ruan, W. Xiao, B. Li, J. Zhang,

Y. Xiong, P. Cheng, and E. Chen. Memory ef-

ficient loss recovery for hardware-based transport

in datacenter. In Proceedings of the First Asia-
Pacific Workshop on Networking, pages 22–28.

ACM, 2017.

[37] Mellanox. Connectx-3 pro en single/dual-port

adapters 10/40/56gbe adapters w/ pci express

3.0. http://www.mellanox.com/page/
products_dyn?product_family=162&
mtag=connectx_3_pro_en_card.

[38] Mellanox. Roce vs. iwarp competitive anal-

ysis. http://www.mellanox.com/
related-docs/whitepapers/WP_RoCE_
vs_iWARP.pdf.

[39] R. Mittal, N. Dukkipati, E. Blem, H. M. G. Wassel,

M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and

D. Zats. Timely: Rtt-based congestion control for

the datacenter. acm special interest group on data
communication, 45(4):537–550, 2015.

[40] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,

and H. Fugal. Fastpass: A centralized zero-queue

datacenter network. In ACM SIGCOMM Computer
Communication Review, volume 44, pages 307–

318. ACM, 2014.

[41] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh,

D. Wischik, and M. Handley. Improving datacenter

performance and robustness with multipath tcp. In

Proceedings of the ACM SIGCOMM 2011 Confer-
ence, SIGCOMM ’11, pages 266–277, New York,

NY, USA, 2011. ACM.

370 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[42] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Fel-

ter, K. Agarwal, J. Carter, and R. Fonseca. Planck:

Millisecond-scale monitoring and control for com-

modity networks. ACM SIGCOMM Computer
Communication Review, 44(4):407–418, 2015.

[43] L. C. Reference. Linux/include/linux/mlx4/qp.h.

http://lxr.free-electrons.com/
source/include/linux/mlx4/qp.h.

[44] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.

Snoeren. Inside the social network’s (datacenter)

network. In ACM SIGCOMM Computer Commu-
nication Review, volume 45, pages 123–137. ACM,

2015.

[45] A. Singh, J. Ong, A. Agarwal, G. Anderson,

A. Armistead, R. Bannon, S. Boving, G. Desai,

B. Felderman, P. Germano, et al. Jupiter rising: A

decade of clos topologies and centralized control

in google’s datacenter network. ACM SIGCOMM
Computer Communication Review, 45(4):183–197,

2015.

[46] M. Technologies. Multi-path rdma.

https://www.openfabrics.org/

images/eventpresos/workshops2015/
DevWorkshop/Tuesday/tuesday_04.
pdf.

[47] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and

T. Edsall. Let it flow: Resilient asymmetric load

balancing with flowlet switching. In NSDI, pages

407–420, 2017.

[48] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei,

H. Lin, Y. Dai, and L. Zhou. G ra m: scaling graph

computation to the trillions. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, pages

408–421. ACM, 2015.

[49] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lip-

shteyn, Y. Liron, J. Padhye, S. Raindel, M. H.

Yahia, and M. Zhang. Congestion control for large-

scale rdma deployments. In ACM SIGCOMM Com-
puter Communication Review, volume 45, pages

523–536. ACM, 2015.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 371

Andromeda: Performance, Isolation, and Velocity at Scale
in Cloud Network Virtualization

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman Gupta, Brian Fahs,
Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow, James Alexander Docauer, Jesse Alpert,

Jing Ai, Jon Olson, Kevin DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis,
Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata, Yossi Richter,

Uday Naik, and Amin Vahdat
Google, Inc.

Abstract
This paper presents our design and experience with An-
dromeda, Google Cloud Platform’s network virtualization
stack. Our production deployment poses several challeng-
ing requirements, including performance isolation among
customer virtual networks, scalability, rapid provisioning
of large numbers of virtual hosts, bandwidth and latency
largely indistinguishable from the underlying hardware,
and high feature velocity combined with high availability.

Andromeda is designed around a flexible hierarchy of
flow processing paths. Flows are mapped to a program-
ming path dynamically based on feature and performance
requirements. We introduce the Hoverboard programming
model, which uses gateways for the long tail of low band-
width flows, and enables the control plane to program
network connectivity for tens of thousands of VMs in
seconds. The on-host dataplane is based around a high-
performance OS bypass software packet processing path.
CPU-intensive per packet operations with higher latency
targets are executed on coprocessor threads. This architec-
ture allows Andromeda to decouple feature growth from
fast path performance, as many features can be imple-
mented solely on the coprocessor path. We demonstrate
that the Andromeda datapath achieves performance that is
competitive with hardware while maintaining the flexibil-
ity and velocity of a software-based architecture.

1 Introduction
The rise of Cloud Computing presents new opportuni-

ties and challenges for networking. Cloud providers must
support virtual networks with high performance and a rich
set of features such as load balancing, firewall, VPN, QoS,
DoS protection, isolation, and NAT, all while operating
at a global scale. There has been substantial research in
network support for Cloud Computing, in particular in
high-speed dataplanes [17, 34], virtualized routing infras-
tructure [6, 22, 23, 31], and NFV middleboxes [14, 16].
Typical research efforts focus on point problems in the
space, rather than the challenges of bringing a working

system together end to end. We developed Andromeda,
the network virtualization environment for Google Cloud
Platform (GCP). We use this experience to show how we
divide functionality across a global, hierarchical control
plane, a high-speed on-host virtual switch, packet proces-
sors, and extensible gateways.

This paper focuses on the following topics:

• The Andromeda Control plane is designed for agility,
availability, isolation, and scalability. Scale up and down
of compute and rapid provisioning of virtual infrastructure
means that the control plane must achieve high perfor-
mance and availability. Andromeda scales to networks
over 100,000 VMs, and processes network updates with
a median latency of 184ms. Operations on behalf of one
virtual network, e.g., spinning up 10k VMs, should not
impact responsiveness for other networks.

• The Andromeda Dataplane is composed of a flexible set
of flow processing paths. The Hoverboard path enables
control plane scaling by processing the long tail of mostly
idle flows on dedicated gateways. Active flows are pro-
cessed by our on-host dataplane. The on-host Fast Path
is used for performance-critical flows and currently has a
300ns per-packet CPU budget. Expensive per-packet work
on-host is performed on the Coprocessor Path. We found
that most middlebox functionality such as stateful fire-
walls can be implemented in the on-host dataplane. This
improves latency and avoids the high cost of provisioning
middleboxes for active flows.

• To remain at the cutting edge, we constantly deploy new
features, new hardware, and performance improvements.
To maintain high deployment velocity without sacrific-
ing availability, Andromeda supports transparent VM live
migration and non-disruptive dataplane upgrades.

We describe the design of Andromeda and our experi-
ence evolving it over five years. Taken together, we have
improved throughput by 19x, CPU efficiency by 16x, la-
tency by 7x, and maximum network size by 50x, relative
to our own initial production deployment. Andromeda

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 373

also improved velocity through transparent VM migration
and weekly non-disruptive dataplane upgrades, all while
delivering a range of new end-customer Cloud features.

2 Overview
2.1 Requirements and Design Goals

A robust network virtualization environment must sup-
port a number of baseline and advanced features. Before
giving an overview of our approach, we start with a list of
features and requirements that informed our thinking:

• At the most basic level, network virtualization requires
supporting isolated virtual networks for individual cus-
tomers with the illusion that VMs in the virtual network
are running on their own private IP network. VMs in one
virtual network should be able to communicate with one
another, to internal Cloud provider services, to third party
providers, and to the Internet, all subject to customer pol-
icy while isolated from actions in other virtual networks.
While an ideal, our target is to support the same throughput
and latency available from the underlying hardware.

• Beyond basic connectivity, we must support constantly
evolving network features. Examples include billing, DoS
protection, tracing, performance monitoring, and firewalls.
We added and evolved these features and navigated several
major architectural shifts, such as transitioning to a kernel
bypass dataplane, all without VM disruption.

• A promise of Cloud Computing is higher availability
than what can be provisioned in smaller-scale deploy-
ments. Our network provides global connectivity, and it is
a core dependency for many services; therefore, it must be
carefully designed to localize failures and meet stringent
availability targets.

• Operationally, we have found live virtual machine mi-
gration [5, 11, 18, 30] to be a requirement for both overall
availability and for feature velocity of our infrastructure.
Live migration has a number of stringent requirements,
including packet delivery during the move from one phys-
ical server to another, as well as minimizing the duration
of any performance degradation.

• Use of GCP is growing rapidly, both in the number of
virtual networks and the number of VMs per network. One
critical consideration is control plane scalability. Large
networks pose three challenges, relative to small networks:
they require larger routing tables, the routing tables must
be disseminated more broadly, and they tend to have higher
rates of churn. The control plane must be able to support
networks with tens or even hundreds of thousands of VMs.
Additionally, low programming latency is important for
autoscaling and failover. Furthermore, the ability to pro-
vision large networks quickly makes it possible to run
large-scale workloads such as MapReduce inexpensively,
quickly, and on demand.

Figure 1: Andromeda Stack

2.2 Design Overview

Our general design approach centers around hierarchi-
cal data and control planes. The control plane is designed
around a global hierarchy coupled with the overall Cloud
cluster management layer. For example, configuring An-
dromeda is only one step among many in configuring
compute, storage, access control, etc. For isolation, we
run separate control stacks in every cluster. A cluster
is a collection of colocated machines with uniform net-
work connectivity that share the same hardware failure
domain. The Andromeda control plane maintains informa-
tion about where every VM in the network currently runs,
and all higher-level product and infrastructure state such as
firewalls, load balancers, and routing policy. The control
plane installs selected subsets of this state in individual
servers through a hierarchy of controllers.

The dataplane consists of a set of flexible user-space
packet processing paths. The VM host Fast Path is the
first path in the dataplane hierarchy and targets raw per-
formance over flexibility. The Fast Path has a per-packet
CPU budget of 300ns. Achieving this goal requires limit-
ing both the complexity of Fast Path work and the amount
of Fast Path state required to process packets. High perfor-
mance, latency-critical flows are processed end to end on
the Fast Path. Andromeda forwards other flows from the
Fast Path to Hoverboards or Coprocessors for additional
processing. On-host software Coprocessors running in
per-VM floating threads perform per-packet work that is
CPU-intensive or without strict latency targets. Coproces-
sors decouple feature growth from Fast Path performance,
providing isolation, ease of programming, and scalability.

Andromeda sends packets that do not match a flow rule
on the VM host to Hoverboards, dedicated gateways that
perform virtual network routing. The control plane dynam-
ically selects only active flows to be installed on VM hosts
based on current communication patterns. Hoverboards
process the long tail of mostly idle flows. Since typically
only a small subset of possible VM pairs in a network
communicate, only a small fraction of network configura-
tion is required at an individual VM host. Avoiding the
need to install full forwarding information on every host
improves per-server memory utilization and control-plane
CPU scalability by over an order of magnitude.

374 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Control Plane
The Andromeda control plane consists of three layers:

Cluster Management (CM) Layer: The CM layer pro-
visions networking, storage, and compute resources on
behalf of users. This layer is not networking-specific, and
is beyond the scope of this paper.

Fabric Management (FM) Layer: The FM layer ex-
poses a high-level API for the CM Layer to configure
virtual networks. The API expresses user intent and ab-
stracts implementation details, such as the mechanism for
programming switches, the encapsulation format, and the
network elements responsible for specific functions.

Switch Layer: In this layer, two types of software
switches support primitives such as encapsulation, for-
warding, firewall, and load balancing. Each VM host has a
virtual switch based on Open vSwitch [33], which handles
traffic for all VMs on the host. Hoverboards are standalone
switches, which act as default routers for some flows.

3.1 FM Layer
When the CM layer connects to a FM controller, it sends

a full update containing the complete FM configuration
for the cluster. Subsequent updates are diffs against previ-
ously sent configuration. The FM configuration consists
of a set of entities with a known type, a unique name, and
parameters defining entity properties. Figure 2 lists some
examples of FM entities.

The FM API is implemented by multiple types of con-
trollers, each responsible for different sets of network
devices. Presently, VM Controllers (VMCs) program
VM hosts and Hoverboards, while Load-Balancing Con-
trollers [12] program load balancers. This paper focuses
on VMCs.

VMCs program VM host switches using a combination
of OpenFlow [3, 28] and proprietary extensions. VMCs
send OpenFlow requests to proxies called OpenFlow
Front Ends (OFEs) via RPC – an architecture inspired
by Onix [25]. OFEs translate those requests to Open-
Flow. OFEs decouple the controller architecture from the
OpenFlow protocol. Since OFEs maintain little internal
state, they also serve as a stable control point for VM
host switches. Each switch has a stable OFE connection
without regard for controller upgrade or repartitioning.

OFEs send switch events to VMCs, such as when a
switch connects to it, or when virtual ports are added for
new VMs. VMCs generate OpenFlow programming for
switches by synthesizing the abstract FM programming
and physical information reported in switch events. When
a VMC is notified that a switch connected, it reconciles the
switch’s OpenFlow state by reading the switch’s state via
the OFE, comparing that to the state expected by the VMC,
and issuing update operations to resolve any differences.

Network: QoS, firewall rules, . . .
VM: Private IP, external IPs, tags, . . .
Subnetwork: IP prefix
Route: IP prefix, priority, next hop, . . .

Figure 2: Examples of FM Entities

Multiple VMC partitions are deployed in every cluster.
Each partition is responsible for a fraction of the cluster
hosts, determined by consistent hashing [20]. The OFEs
broadcast some events, such as switch-connected events,
to all VMC partitions. The VMC partition responsible for
the host switch that generated the event will then subscribe
to other events from that host.

3.2 Switch Layer
The switch layer has a programmable software switch

on each VM host, as well as software switches called Hov-
erboards, which run on dedicated machines. Hoverboards
and host switches run a user-space dataplane and share
a common framework for constructing high-performance
packet processors. These dataplanes bypass the host ker-
nel network stack, and achieve high performance through
a variety of techniques. Section 4 discusses the VM host
dataplane architecture.

We employ a modified Open vSwitch [33] for the con-
trol portion of Andromeda’s VM host switches. A user-
space process called vswitchd receives OpenFlow pro-
gramming from the OFE, and programs the datapath. The
dataplane contains a flow cache, and sends packets that
miss in the cache to vswitchd. vswitchd looks up the flow
in its OpenFlow tables and inserts a cache entry.

We have modified the switch in a number of substantial
ways. We added a C++ wrapper to the C-based vswitchd,
to include a configuration mechanism, debugging hooks,
and remote health checks. A management plane process
called the host agent supports VM lifecycle events, such
as creation, deletion, and migration. For example, when
a VM is created, the host agent connects it to the switch
by configuring a virtual port in Open vSwitch for each
VM network interface. The host agent also updates VM
to virtual port mapping in the FM.

Extension modules add functionality not readily ex-
pressed in OpenFlow. Such extensions include connection
tracking firewall, billing, sticky load balancing, security
token validation, and WAN bandwidth enforcement [26].
The extension framework consists of upcall handlers run
during flow lookup. For example, Pre-lookup handlers
manage flow cache misses prior to OpenFlow lookup. One
such handler validates security tokens, which are crypto-
graphic ids inserted into packet headers to prevent spoof-
ing in the fabric. Another type is group lookup handlers,
which override the behavior of specific OpenFlow groups,
e.g., to provide sticky load balancing.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 375

3.3 Scalable Network Programming
A key question we faced in the design and evolution

of Andromeda was how to maintain correct forwarding
behavior for individual virtual networks that could in the-
ory scale to millions of individual VMs. Traditional net-
works heavily leverage address aggregation and physical
locality to scale the programming of forwarding behavior.
Andromeda, in contrast, decouples virtual and physical
addresses [23]. This provides many benefits, including
flexible addressing for virtual networks, and the ability
to transparently migrate VMs within the physical infras-
tructure (Section 3.4). However, this flexibility comes at a
cost, especially with respect to scaling the control plane.

One of the following three models is typically used to
program software-defined networks:

Preprogrammed Model: The control plane programs a
full mesh of forwarding rules from each VM to every
other VM in the network. This model provides consistent
and predictable performance. However, control plane
overhead scales quadratically with network size, and any
change in virtual network topology requires a propagation
of state to every node in the network.

On Demand Model: The first packet of a flow is sent to
the controller, which programs the required forwarding
rule. This approach scales better than the preprogrammed
model. However, the first packet of a flow has significantly
higher latency. Furthermore, this model is very sensitive
to control plane outages, and worse, it exposes the control
plane to accidental or malicious packet floods from VMs.
Rate limiting can mitigate such floods, but doing so while
preserving fairness and isolation across tenants is complex.

Gateway Model: VMs send all packets of a specific type
(e.g., all packets destined for the Internet) to a gateway
device, designed for high speed packet processing. This
model provides predictable performance and control plane
scalability, since changes in virtual network state need to
be communicated to a small number of gateways. The
downside is that the number of gateways needs to scale
with the usage of the network. Worse, the gateways need
to be provisioned for peak bandwidth usage and we have
found that peak to average bandwidth demands can vary
by up to a factor of 100, making it a challenge to provision
gateway capacity efficiently.

3.3.1 Hoverboard Model
Andromeda originally used the preprogrammed model

for VM-VM communication, but we found that it was
difficult to scale to large networks. Additionally, the pre-
programmed model did not support agility – the ability to
rapidly provision infrastructure – which is a key require-
ment for on-demand batch computing.

To address these challenges, we introduced the Hover-
board Model, which combines the benefits of On-Demand

Figure 3: Hoverboard Packet Forwarding

and Gateway models. The Andromeda VM host stack
sends all packets for which it does not have a route to
Hoverboard gateways, which have forwarding informa-
tion for all virtual networks. However, unlike the gateway
model, the control plane dynamically detects flows that
exceed a specified usage threshold and programs offload
flows, which are direct host-to-host flows that bypass the
Hoverboards. Figure 3 shows flows that use Hoverboards
as a default router and flows for which the control plane
has programmed a direct host to host route and offloaded
them from the Hoverboard.

The control plane detects these high bandwidth flows
based on usage reports from the sending VM hosts. For
robustness, we do not rely on usage reports from the Hov-
erboards themselves: the Hoverboards may not be able
to send such reports if they are overloaded, and thus the
control plane would be unable to install offload flows to
reduce the load.

The Hoverboard model avoids the pitfalls with the other
models. It is scalable and easy to provision: Our evalua-
tion (see Section 5.3) shows that the distribution of flow
bandwidth tends to be highly skewed, so a small number
of offload flows installed by the control plane diverts the
vast majority of the traffic in the cluster away from the
Hoverboards. Additionally, unlike the On Demand Model,
all packets are handled by a high performance datapath
designed for low latency.

Currently we use the Hoverboard model only to make
routing scale, but we plan to extend Hoverboards to sup-
port load balancing and other middlebox features. Stateful
features, such as firewall connection tracking or sticky
load balancing, are more challenging to support in the
Hoverboard model. Challenges include state loss dur-
ing Hoverboard upgrade or failure [21], transferring state
when offloading, and ensuring that flows are “sticky” to
the Hoverboard that has the correct state.

3.4 Transparent VM Live Migration
We opted for a high-performance software-based archi-

tecture instead of a hardware-only solution like SR-IOV
because software enables flexible, high-velocity feature
deployment (Section 4.1). VM Live Migration would be
difficult to deploy transparently with SR-IOV as the guest
would need to cope with different physical NIC resources
on the migration target host.

Live migration [5, 11] makes it possible to move a
running VM to a different host to facilitate maintenance,
upgrades, and placement optimization. Migrations are

376 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Control Plane Replication and Partitioning

virtually transparent to the VM: the VM continues to see
the same virtual Ethernet device, and Andromeda ensures
that network connections are not interrupted. The VM
is paused during the migration blackout phase, which
has a median duration of 65ms and 99th percentile of
388ms. After blackout, the VM resumes execution on the
destination host.

Prior work [11, 30] focuses on migrations within a sin-
gle layer-2 domain. In contrast, Andromeda supports glo-
bal virtual networks and migrations across clusters. A key
challenge is avoiding packet loss during migration even
though global routing tables cannot be updated instantly.
During blackout, Andromeda enables hairpin flows on the
migration source host. The migration source will hairpin
any ingress packets intended for the migrating VM by
forwarding the packets to the migration destination. Af-
ter blackout ends, other VM hosts and Hoverboards are
updated to send packets destined for the migrated VM to
the migration destination host directly. Finally, the hairpin
flows on the migration source are removed. VROOM [35]
uses a similar approach to live migrate virtual routers.

3.5 Reliability
The Andromeda control plane is designed to be highly

available. To tolerate machine failures, each VMC par-
tition consists of a Chubby-elected [9] master and two
standbys. Figure 4 shows an Andromeda instance for a
cluster with four replicated VMC partitions. We found
the following principles important in designing a reliable,
global network control plane:

Scoped Control Planes: Andromeda programs net-
works that can be global in scope, so the cluster control
plane must receive updates for VMs in all other clusters.
We must ensure that a bad update or overload in one
region cannot spill over to the control planes for other
regions. To address this challenge, we split the control
plane into a regionally aware control plane (RACP) and
a globally aware control plane (GACP). The RACP
programs all intra-region network connectivity, with its
configuration limited to VMs in the local region. The
GACP manages inter-region connectivity, receiving FM

Figure 5: Host Dataplane Overview

updates for both local and remote regions. This approach
ensures that intra-region networking in each region is a
separate failure domain.

Network Isolation: Churn within one customer’s net-
work should not impact network programming latency
for other networks. To that end, VMCs maintain separate
queues for processing FM updates for each network.

Fail static: Every layer of the control plane is designed to
fail static. For example, hosts continue to forward packets
using the last-known-good programming state, even if
VMCs are unavailable. Hosts checkpoint their state to
allow them to preserve the fail static behavior across host
process restarts, and we routinely test fail-static behavior
by simulating outages in a test environment.

4 VM Host Dataplane
Figure 5 illustrates the Andromeda VM host dataplane.

The dataplane is a userspace process that performs all
on-host VM packet processing, combining both virtual
NIC and virtual switch functionality. There are two pri-
mary dataplane packet processing paths: the Fast Path
and the Coprocessor Path. The Fast Path performs high-
performance packet processing work such as encapsula-
tion and routing via a flow table. The Coprocessor Path
performs packet work that is either CPU-intensive or does
not have strict latency requirements, such as WAN packet
encryption.

Each VM is managed by a userspace Virtual Machine
Manager (VMM). There is one VMM per VM. The VMM
sends RPCs to the Andromeda dataplane for operations
such as mapping guest VM memory, configuring virtual
NIC interrupts and offloads, and attaching virtual NIC
queues.

The Fast Path maintains a cache of forwarding state
and associated packet processing actions. When a packet

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 377

misses in the Fast Path cache, it is sent to on-host vswitchd,
which maintains the full forwarding state programmed by
VMC. Vswitchd sends flow cache update instructions and
reinjects packets into the Fast Path.

A key goal of the Fast Path is to provide high-
throughput, low-latency VM networking. For perfor-
mance, the Fast Path busy polls on a dedicated logical
CPU. The other logical CPU on the physical core runs
low-CPU control plane work, such as RPC processing,
leaving most of the physical core for Fast Path use. The
Fast Path can process over three million small packets per
second with a single CPU, corresponding to a per-packet
CPU budget of 300ns. The Fast Path can be scaled to
multiple CPUs using multi-queue NICs.

4.1 Principles and Practices
Our overall dataplane design philosophy is flexible,

high-performance software coupled with hardware of-
floads. A high performance software dataplane can pro-
vide performance indistinguishable from the underlying
hardware. We provision sufficient Fast Path CPU to
achieve throughput targets, leveraging hardware offloads
on a per-platform basis to minimize the Fast Path CPU re-
quired. Currently, we offload encryption; checksums; and
memory copies using Intel QuickData DMA Engines [2].
We are investigating more substantial hardware offloads.

A software dataplane allows a uniform featureset and
performance profile for customers running on heteroge-
neous hardware with different NICs and hardware offloads.
This uniformity enables transparent live migration across
heterogenous hardware. Whether a network feature has
none, some, or all functionality in software or hardware
becomes a per-platform detail. On-host software is exten-
sible, supports rapid release velocity (see Section 6.2), and
scales to large amounts of state. A full SR-IOV hardware
approach requires dedicated middleboxes to handle new
features or to scale beyond hardware table limits. Such
middleboxes increase latency, cost, failure rates, and oper-
ational overhead.

To achieve high performance in software, the Fast Path
design minimizes Fast Path features. Each feature we add
to the Fast Path has a cost and consumes per-packet CPU
budget. Only performance-critical low-latency work be-
longs on the Fast Path. Work that is CPU-intensive or
does not have strict latency requirements, such as work
specific to inter-cluster or Internet traffic, belongs on the
Coprocessor Path. Our design also minimizes per-flow
work. All VM packets go through the Fast Path routing
flow table. We can optimize by using flow key fields to
pre-compute per-flow work. For example, Andromeda
computes an efficient per-flow firewall classifier during
flow insertion, rather than requiring an expensive full fire-
wall ruleset match for every packet.

The Fast Path uses high-performance best practices:

avoid locks and costly synchronization, optimize memory
locality, use hugepages, avoid thread handoffs, end-to-
end batching, and avoid system calls. For example, the
Fast Path only uses system calls for Coprocessor thread
wakeups and virtual interrupts. The Fastpath uses lock-
free Single Producer / Single Consumer (SPSC) packet
rings and channels for communication with control and
Coprocessor threads.

4.2 Fast Path Design

The Fast Path performs packet processing actions re-
quired for performance-critical VM flows, such as intra-
cluster VM-VM. The Fast Path consists of separate in-
gress and egress engines for packet processing and other
periodic work such as polling for commands from con-
trol threads. Engines consist of a set of reusable, con-
nected packet processing push or pull elements inspired by
Click [29]. Elements typically perform a single task and
operate on a batch of packets (up to 128 packets on ingress
and 32 on egress). Batching results in a 2.4x increase in
peak packets per second. VM and Host NIC queues are
the sources and sinks of element chains. To avoid thread
handoffs and system calls, the Fast Path directly accesses
both VM virtual NIC and host physical NIC queues via
shared memory, bypassing the VMM and host OS.

Figures 6 and 7 outline the elements and queues for
Andromeda Fast Path engines. The pull-pusher is the C++
call point into the element chain in both Fast Path engines.
In the egress engine, the pull-pusher pulls packets from
the VM transmit queue chain, and pushes the packets
to the NIC transmit queue chain. In the ingress engine,
the pull-pusher pulls packets from NIC receive queue
chain and pushes the packets to the VM chain. Engine
element chains must support fan-in and fan-out, as there
may be multiple queues and VMs. Hash Demux elements
use a packet 5-tuple hash to fan-out a batch of packets
across a set of push elements. Schedulers pull batches of
packets from a set of pull elements to provide fan-in. To
scale to many VMs and queues per host, the VM Round
Robin Scheduler element in the egress engine checks if a
VM’s queues are idle before calling the long chain of C++
element methods to actually pull packets from the VM.
Routing is the core of the Fast Path, and is implemented
by the ingress and egress flow table pipeline elements
discussed in Section 4.3.

Several elements assist with debugging and monitor-
ing. Tcpdump elements allow online packet dumps. Stats
exporter records internal engine and packet metrics for
performance tuning. Packet tracer sends metadata to an
off-host service for network analysis and debug. Latency
sampler records metadata for off-host analysis of network
RTT, throughput, and other performance information.

378 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 6: Andromeda dataplane egress engine. Note: Arrows indicate the direction of the push or pull C++ function call
chain. Packets flow from the lower right to the upper left.

Figure 7: Andromeda dataplane ingress engine. Note: Arrows indicate the direction of the push or pull C++ function
call chain. Packets flow from the upper left to the lower right.

4.3 Fast Path Flow Table
All VM packets pass through the engine flow table (FT)

for both routing and per-flow packet operations such as
encapsulation. The FT is a cache of the vswitchd flow
tables. We minimize per-flow work through the FT in mul-
tiple ways. The FT uses only a single hash table lookup
to map the flow key to a dense integer flow index. Subse-
quent tables, such as the action table and firewall policy
table, are flat arrays indexed by flow index. Flow actions
perform common packet operations such as encapsulation
and setting the Ethernet header. Actions also store the
destination virtual switch port and the set of Fast Path and
Coprocessor packet stages for the flow, if any. Commonly,
VM-VM intra-cluster flows have no packet stages enabled,
and complete FT execution after applying the action set to
the packet.

To avoid costly synchronization, the FT does not use
locks, and is never modified by the engines. To update
the FT, a control thread updates a shadow FT and then
updates the engine via SPSC channels to point to the new

FT [36]. Each engine maintains its own FT flow statistics,
which vswitchd periodically reads and aggregates.

When a packet is sent through the FT, the FT computes
the flow key for the packet, looks up the key in the flow
index table, then applies the specified flow actions and
any enabled Fast Path packet stages, and finally updates
statistics. If Coprocessor stages are enabled for the flow,
the packet is sent to the appropriate Coprocessor thread.

FT keys are either 3-tuple or 5-tuple. Ingress FT keys
support encapsulation, and include both the inner and outer
packet 3-tuple. Egress FT keys are unencapsulated. Flow
index table lookup is attempted first with a 3-tuple flow
key. If no match is found, a 5-tuple flow key is computed
and lookup is retried. If no match is found again the
packet is sent to the Flow Miss Coprocessor, which sends
the packet to vswitchd. 3-tuple keys are used wherever
possible, and are the common case for VM-VM traffic.
Example uses of 5-tuple keys include VM connections to
load balanced VIPs, as VIP backend selection is performed
on a per-connection basis.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 379

4.3.1 Middlebox Functionality
Andromeda provides middlebox functions such as fire-

wall, load balancing, and NAT on-host [7, 27, 32]. This
approach achieves higher performance and reduced pro-
visioning complexity compared to traditional dedicated
appliance middleboxes. A key challenge is how to ensure
that these features do not degrade Fast Path performance.
To accomplish this goal, we perform the expensive mid-
dlebox work in the on-host control plane on a flow miss.
The control plane inserts the flow into the FT with any
middlebox packet stage work pre-computed per-flow.

An example Fast Path feature is the always-on connec-
tion tracking firewall [4]. Traditional firewalls require
a firewall rule lookup and a connection-tracking table
lookup per packet, both of which are expensive. To mini-
mize per-flow work, vswitchd analyzes the rules on a flow
miss in order to minimize the amount of work that the
Fast Path must do. If the IP addresses and protocol in the
flow are always allowed in both directions, then no fire-
wall work is needed in the Fast Path. Otherwise, vswitchd
enables the firewall stage and computes a flow firewall
policy, which indicates which port ranges are allowed
for the flow IPs. The Fast Path matches packets against
these port ranges, which is much faster than evaluating
the full firewall policy. Furthermore, the firewall stage
skips connection tracking if a packet connection 5-tuple is
permitted by the firewall rules in both directions, which is
a common case for VM-VM and server flows.

4.4 Coprocessor Path
The Coprocessor Path implements features that are

CPU-intensive or do not have strict latency requirements.
Coprocessors play a key role in minimizing Fast Path fea-
tures, and decouple feature growth from Fast Path perfor-
mance. Developing Coprocessor features is easier because
Coprocessors do not have to follow the strict Fast Path best
practices. For example, Coprocessor stages may acquire
locks, allocate memory, and perform system calls.

Coprocessor stages include encryption, DoS, abuse de-
tection, and WAN traffic shaping. The encryption stage
provides transparent encryption of VM to VM traffic
across clusters. The DoS and abuse detection stage en-
forces ACL policies for VM to internet traffic. The WAN
traffic shaping stage enforces bandwidth sharing poli-
cies [26]. Coprocessor stages are executed in a per-VM
floating Coprocessor thread, whose CPU time is attributed
to the container of the corresponding VM. This design
provides fairness and isolation between VMs, which is
critical for more CPU-intensive packet work. A single
coprocessor thread performing Internet ACL/shaping can
send 11.8Gb/s in one netperf TCP stream, whereas one
coprocessor thread performing WAN encryption without
hardware offloads can send 4.6Gb/s. This inherent dif-
ference in per-packet processing overhead highlights the

need for attributing and isolating packet processing work.
Fast Path FT lookup determines the Coprocessor stages

enabled for a packet. If Coprocessor stages are enabled,
the Fast Path sends the packet to the appropriate Coproc-
essor thread via an SPSC packet ring, waking the thread
if necessary. The Coprocessor thread applies the Coproc-
essor stages enabled for the packet, and then returns the
packet to the Fast Path via a packet ring.

5 Evaluation
This section evaluates the resource consumption, per-

formance, and scalability of Andromeda.

5.1 On-Host Resource Consumption
Andromeda consumes a few percent of the CPU and

memory on-host. One physical CPU core is reserved for
the Andromeda dataplane. One logical CPU of the core
executes the busy polling Fast Path. The other mostly
idle logical CPU executes infrequent background work,
leaving most of the core’s shared resources available to the
Fast Path logical CPU. In the future, we plan to increase
the dataplane CPU reservation to two physical cores on
newer hosts with faster physical NICs and more CPU
cores in order to improve VM network throughput.

The Andromeda dataplane has a 1GB max memory
usage target. To support non-disruptive upgrades and a
separate dataplane lifecycle management daemon, the total
dataplane memory container limit is 2.5GB. The combined
vswitchd and host agent memory limit is 1.5GB.

5.2 Dataplane Performance
Dataplane performance has improved significantly

throughout the evolution of Andromeda.

Pre-Andromeda was implemented entirely in the VMM
and used UDP sockets for packet I/O. The dataplane sup-
ported only a single queue virtual NIC with zero offloads,
such as LRO and TSO.

Andromeda 1.0 included an optimized VMM packet
pipeline and a modified kernel Open vSwitch (OVS). We
added virtual NIC multi-queue and egress offloads.

Andromeda 1.5 added ingress virtual NIC offloads and
further optimized the packet pipeline by coalescing redun-
dant lookups in the VMM with the kernel OVS flow table
lookup. Host kernel scheduling and C-State management
were also optimized, improving latency.

Andromeda 2.0 consolidated prior VMM and host ker-
nel packet processing into a new OS-bypass busy-polling
userspace dataplane. The VMM continued to handle VM
virtual NIC ring access and interrupts, but all packet pro-
cessing was performed by the new dataplane. The VMM
exchanged packets with the dataplane via SPSC shared
memory rings. The dataplane maps in all VM memory,
and directly copies packet to/from VM memory.

380 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: Multi-stream TCP throughput.

Figure 9: TCP round trip latency.

Andromeda 2.1 directly accesses VM virtual NIC rings
in the dataplane, bypassing the VMM. Performance-
critical packets are processed end-to-end by the busy-
polling dataplane CPU without thread handoffs or context
switches. Eliminating the VMM from the packet datap-
ath removed four thread wakeups per network round trip
which significantly improved latency and CPU efficiency.

Andromeda 2.2 uses Intel QuickData DMA Engines [2]
to offload larger packet copies, improving throughput.
DMA engines use an IOMMU for safety and are directly
accessed by the dataplane via OS bypass. Tracking async
packet copies and maintaining order caused a slight la-
tency increase over Andromeda 2.1 for small packets.

Throughout this evolution, we tracked many perfor-
mance metrics. Figure 8 plots the same-cluster through-
put achievable by two VMs using 200 TCP streams. As
the stack evolved, we improved throughput by 19x and
improved same-cluster TCP round trip latency by 7x (Fig-
ure 9). Figure 10 plots the virtual network CPU efficiency
in cycles per byte during a multi-stream benchmark. Our
measurement includes CPU usage by the sender and re-
ceiver for both the VM and host network dataplane. The
host dataplane covers all host network processing, includ-
ing the VMM, host kernel, and new Andromeda OS bypass
dataplane. Overall, Andromeda reduced cycles per byte
by a factor of 16. For Andromeda 2.0 and later, we use the
host resource limits described in Section 5.1 and execute
the Fast Path on a single reserved logical CPU.

We measured these results on unthrottled VMs con-
nected to the same Top of Rack switch. Benchmark hosts
have Intel Sandy Bridge CPUs and 40Gb/s physical NICs
except for Pre-Andromeda, which used bonded 2x10Gb/s
NICs. The sender and receiver VMs run a Linux 3.18

Figure 10: CPU Efficiency. Note: Guest versus host
breakdown is unavailable for Pre-Andromeda

guest kernel, and are configured with 8 VCPUs. The
only hardware offloads used are checksum offloads, and
in Andromeda 2.2, memory copy offloads.

5.3 Control Plane Agility and Scale
Andromeda 1.0 used the preprogrammed model for

all VM-VM flows, and initially supported networks up
to 2k VMs. Under the preprogrammed model, even a
small change in a virtual network, such as adding a VM,
requires updating the routing tables for all other VMs in
the network.

We subsequently developed the Hoverboard model,
which made the control plane substantially more scalable
and agile. With Hoverboards, a new VM has network
connectivity as soon as its host and the Hoverboards are
programmed. Median programming latency – the time
required for the VM controller to process an FM request
(e.g., to add a VM to a network) and program the appro-
priate flow rules via OpenFlow – improved from 551ms
to 184ms. The 99th percentile latency dropped even more
substantially, from 3.7s to 576ms. Furthermore, the con-
trol plane now scales gracefully to virtual networks with
100k VMs.

Figure 11a shows VMC flow programming time for
networks with varying numbers of VMs. The control
plane has 30 VMC partitions with 8 Broadwell logical
CPUs per partition, and 60 OFEs with 4 CPUs each. VMs
are scheduled on a fixed pool of 10k physical hosts.

When using the Hoverboard model, the programming
time and number of flows grows linearly in network size.
However, when we use the preprogrammed model, the pro-
gramming time and number of flows is O(n×h), where n
is the number of VMs and h is the number of hosts with at
least one VM in the network. Multiple VMs on the same
host can share a forwarding table; without this optimiza-
tion, the number of flows would be O(n2). Programming
time grows quadratically in n until n ≈ h, and linearly
thereafter. Quadratic growth is representative of typical
multi-regional deployments, for which n ≪ h.

For the 40k VM network, VMCs program a total of
1.5M flows in 1.9 seconds with the Hoverboard model,
using a peak of 513MB of RAM per partition. Under
the preprogrammed model, VMCs program 487M flows

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 381

(a) Programming time vs. network size (b) Bandwidth distribution across flows
(c) Hoverboard throughput vs. offloaded
flows

Figure 11: Hoverboard scaling analysis

in 74 seconds, and peak RAM use per partition is 10GB.
Beyond 40k VMs, preprogramming led to stability issues
in the OFE and vswitchd due to the large number of flows.

The effectiveness of the Hoverboard model is predi-
cated on the assumption that a small number of offloaded
flows installed by the control plane can capture most of
the traffic, with a long tail of small flows going through
the Hoverboards. Indeed, network flows in our clusters
follow a power law distribution, consistent with prior ob-
servations, e.g., [19]. Figure 11b shows a CDF of peak
throughput across all VM pairs in a production cluster,
measured over a 30-minute window. 84% of VM pairs
never communicate: in the Hoverboard model, these flows
are never programmed, and their host overhead is zero.
98% of flows have peak throughput less than 20kbps, so
with an offload threshold of 20kbps, Hoverboards improve
control plane scalability by 50x.

Figure 11c shows the peak traffic through the Hover-
board gateways as we program more direct host to host
flows. The figure shows that by shifting a total of about
50k flows (less than 0.1% of the total flows possible) to
end hosts, the peak throughput through the Hoverboard
gateways drops to less than 1% of the cluster bandwidth.

6 Experiences
This section describes our experiences building An-

dromeda, challenges we faced as the system grew and
evolved, and how we addressed those challenges.

6.1 Resource Management
In a Cloud environment, it is essential to provide iso-

lation among tenants while making effective use of re-
sources. Here we discuss CPU and memory; for a descrip-
tion of how we manage network bandwidth, see [26].

6.1.1 CPU Isolation
Andromeda 1.0 shipped with a kernel datapath that pro-

vided limited isolation. Ingress traffic was processed on
kernel softirq threads shared by all VMs on-host. These
softirq threads could run on any host CPU and did not
have CPU attribution. The current Andromeda userspace

datapath performs Fast Path processing on its own dedi-
cated CPU. Packets requiring CPU-intensive processing
are sent to a per-VM coprocessor thread which is CPU
attributed to the VM container

As the Fast Path is shared by all VMs on-host, Androm-
eda provides isolation within the Fast Path. For egress, the
Fast Path polls VMs round robin and each VM is rate lim-
ited to a VM virtual NIC line rate. Initially, we provided
no Fast Path isolation between VMs for ingress. This re-
sulted in noisy neighbor problems when the packet rate of
one VM was higher than the Fast Path could pull packets
off the physical NIC. The NIC queue would back up and
drop packets, harming other VMs on-host.

To improve isolation, we split the Fast Path ingress en-
gine into two parts. The front half polls the NIC, performs
flow table lookup, and places packets into per-VM queues.
The more CPU intensive back half pulls packets from the
per-VM queues, copies the packets to the VM, and may
raise a virtual interrupt. In Figure 7, the back half be-
gins after the Per VM Queues stage. Isolation is provided
within the back half by the VM Priority Scheduler. The
scheduler selects the per-VM queue whose recent back
half processing has consumed the least Fast Path CPU.
Unfortunately, noisy neighbor issues may still arise if the
less CPU intensive front half is overloaded. In the future
we will explore use of per-VM physical NIC queues to
provide isolation in the front half as well.

6.1.2 Guest VM Memory
The Andromeda dataplane maps in all of guest VM

memory for all VMs on-host, as any guest memory ad-
dress may be used for packet I/O. However, dataplane
access to VM memory creates attribution and robustness
challenges. Guest VM memory is backed by a host tmpfs
file and is demand-allocated. Dataplane access to an un-
backed VM memory page causes a page allocation, which
is typically charged to the process triggering the allocation.
To ensure that the dataplane does not exceed its memory
limits (Section 5.1), we modified our host Linux kernel to
always charge VM memory page allocations to the VM
memory container rather than the process triggering the
allocation.

382 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The dataplane memory container is also charged for
kernel page table memory. Over time, the dataplane can
access hundreds of GB of VM memory. If page table
memory usage exceeds a target limit, Andromeda asks the
kernel to free page table entries. This is done by mmaping
the VM memory file over its existing mapping, which
atomically replaces the existing mapping. Remapping a
guest VM memory region is done in multiple mmap calls
over small chunks rather than one system call. This avoids
tail latency due to kernel memory lock contention.

A VM can crash while the dataplane is accessing VM
memory. A compromised VMM could also truncate the
VM memory backing file. To handle these cases, all dat-
aplane VM memory access occurs via custom assembly
memcpy functions. On VM memory access failure, the
dataplane receives a signal. The dataplane signal handler
modifies the signal saved registers so that execution re-
sumes at a custom memcpy fixup handler, which returns
failure to the memcpy caller. On memcpy failure, the dat-
aplane disconnects the offending VM’s queues. We must
minimize the Fast Path cost relative to normal memcpy
in the common case of VM memory access success. Our
approach requires only a single extra branch to test the
memcpy return value. This is similar to how the Linux
kernel handles failure during memory copies to userspace.

6.1.3 Memory Provisioning
Our Cloud environment serves a diverse set of applica-

tions which place varying memory demands on the net-
work stack due to routing tables, firewall connection track-
ing, load balancing, etc. Therefore, a key challenge is how
to provision memory with minimal waste.

We initially expected network virtualization features
to span the Top of Rack switch (ToR), switch fabric, and
host machine software. The fact that we already managed
ToR and switch fabrics with OpenFlow contributed to
our decision to use OpenFlow for Andromeda. However,
we found that scaling a feature to many virtual networks
is much easier on an end host where we can provision
additional memory and CPU per network.

Currently we statically provision dataplane memory on
each host (Section 5.1), regardless of the number of VMs
running on the host or how those VMs use networking
features. We are exploring attribution of dataplane net-
working memory usage to VM containers so that network
features may dynamically scale memory usage. This ap-
proach reduces dataplane memory overprovisioning and
allows the cluster manager to take network memory usage
for a VM into account during VM placement.

6.2 Velocity
The Cloud ecosystem is evolving rapidly, so a key chal-

lenge was to build a platform with high feature velocity.
Our strategy for achieving velocity has evolved over time.

6.2.1 Andromeda 1.0: Kernel Datapath
Andromeda 1.0 shipped with the Open vSwitch kernel

datapath. Kernel upgrades were much slower than our
control plane release cycle. The OpenFlow APIs provide a
flexible flow programming model that allowed us to deploy
a number of features with only control plane changes.
OpenFlow was instrumental in getting the project off the
ground and delivering some of the early features, such as
load balancing and NAT, via control plane changes alone.

However, we also faced a number of difficulties. For
example, OpenFlow was not designed to support stateful
features such as connection tracking firewalls and load bal-
ancing. We initially tried to express firewall rules in Open-
Flow. However, expressing firewall semantics in terms of
generic primitives was complex, and the implementation
was difficult to optimize and scale. We ultimately added
an extension framework in OVS to support these features.
Unlike OpenState [8] and VFP [13], which integrate state-
ful primitives into the flow lookup model, our extensions
use a separate configuration push mechanism.

6.2.2 Andromeda 2.0: Userspace Datapath
Qualifying and deploying a new kernel to a large fleet

of machines is intrinsically a slow process. Andromeda
2.0 replaced the kernel dataplane with a userspace OS by-
pass dataplane, which enabled weekly dataplane upgrades.
At that point, the advantage of having a programming
abstraction as generic as OpenFlow diminished.

A rapid dataplane release cycle requires non-disruptive
updates and robustness to rare but inevitable dataplane
bugs. To provide non-disruptive updates, we use an up-
grade protocol consisting of a brownout and blackout
phase. During brownout, the new dataplane binary starts
and transfers state from the old dataplane. The old data-
plane continues serving during brownout. After the initial
state transfer completes, the old dataplane stops serving
and blackout begins. The old dataplane then transfers
delta state to the new dataplane, and the new dataplane
begins serving. Blackout ends for a VM when the VMM
connects to the new dataplane and attaches its VM virtual
NIC. The median blackout time is currently 270ms. We
plan to reduce blackout duration by passing VMM con-
nection file descriptors as part of state transfer to avoid
VMM reconnect time.

The userspace dataplane improves robustness to data-
plane bugs. The VM and host network can be hardened so
that a userspace dataplane crash only results in a tempo-
rary virtual network outage for the on-host VMs. On-host
control services continuously monitor the health of the dat-
aplane, restarting the dataplane if health checks fail. Host
kernel networking uses separate queues in the NIC, so we
can roll back dataplane releases even if the dataplane is
down. In contrast, a failure in the Linux kernel network
stack typically takes down the entire host.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 383

6.3 Scaling and Agility
Our initial pre-Andromeda virtual network used a global

control plane, which pre-programmed routes for VM-VM
traffic, but also supported on-demand lookups to reduce
perceived programming latency. The on-demand model
was not robust under load. When the control plane fell
behind, all VM hosts would request on-demand program-
ming, further increasing the load on the control plane,
leading to an outage.

Andromeda initially used OpenFlow and the pre-
programmed model exclusively. As we scaled to large
networks, we ran into OpenFlow limitations. For example,
supporting a million-entry IP forwarding table across a
large number of hosts requires the control plane to trans-
mit a compact representation of the routes to the dataplane.
Expressing such a large number of routes in OpenFlow
adds unacceptable overhead. As another example, the Re-
verse Path Forwarding check in OpenFlow required us to
duplicate data that was already present in the forwarding
table, and we built a special-purpose extension to avoid
this overhead. We also scaled the control plane by parti-
tioning VM Controllers and parallelizing flow generation.
However, the pre-programmed model’s quadratic scaling
(see Section 5.3) continued to create provisioning chal-
lenges, particularly for on-demand customer workloads.

Later, we introduced the Hoverboard model, which lead
to more stable control plane overhead and enabled much
faster provisioning of networks (see Section 5.3). Hover-
boards have allowed us to scale to support large virtual
networks. However, certain workloads create challenges.
For example, batch workloads in which many VM pairs
begin communicating simultaneously at high bandwidth
consume substantial Hoverboard capacity until the control
plane can react to offload the flows. We have made a num-
ber of improvements to address that, such as detecting and
offloading high-bandwidth flows faster.

7 Related Work
The Andromeda control plane builds upon a wide body

of software defined networking research [10, 15, 25],
OpenFlow [3, 28] and Open vSwitch [33]. The data plane
design overlaps with concepts described in Click [29],
SoftNIC [17], and DPDK [1].

NVP [24] is a SDN-based network virtualization stack,
like Andromeda. NVP also uses Open vSwitch, along
with the OVS kernel datapath, similar to Andromeda 1.0.
The NVP control plane uses the preprogrammed model
(Section 3.3), so a network with n VMs will have O(n2)
flows. NVP scales by using partitioning, and by dividing
the control plane into virtual and physical layers. An-
dromeda also uses partitioning, but principally solves the
scaling issue by using the Hoverboard model.

VFP [13] is the SDN-based virtualization host stack for
Microsoft Azure, using a layered match-action table model

with stateful rules. All VFP features support offloading
to an exact-match fastpath implemented in the host ker-
nel or an SR-IOV NIC. Andromeda uses a hierarchy of
flexible software-based userspace packet processing paths.
Relative to VFP, Coprocessors enable rapid iteration on
features that are CPU-intensive or do not have strict la-
tency targets, and allow these features to be built with
high performance outside of the Fast Path. Andromeda
does not rely on offloading entire flows to hardware: We
demonstrate that a flexible software pipeline can achieve
performance competitive with hardware. Our Fast Path
supports 3-tuple flow lookups and minimizes use of state-
ful features such as firewall connection tracking. While
the VFP paper does not focus on the control plane, we
present our experiences and approach to building a highly
scalable, agile, and reliable network control plane.

8 Conclusions

This paper presents the design principles and deploy-
ment experience with Andromeda, Google Cloud Plat-
form’s network virtualization stack. We show that an OS
bypass software datapath provides performance competi-
tive with hardware, achieving 32.8Gb/s using a single core.
To achieve isolation and decouple feature growth from fast-
path performance, we execute CPU-intensive packet work
on per-VM Coprocessor threads. The Andromeda Control
plane is designed for agility, availability, isolation, fea-
ture velocity, and scalability. We introduce Hoverboards,
which makes it possible to program connectivity for tens
of thousands of VMs in seconds. Finally, we describe our
experiences deploying Andromeda, and we explain how
non-disruptive upgrades and VM live migration were criti-
cal to navigating major architectural shifts in production
with essentially no customer impact.

In the future, we will offload more substantial portions
of the Fast Path to hardware. We will continue to improve
scalability, as lightweight virtual network endpoints such
as containers will result in much larger and more dynamic
virtual networks.

Acknowledgements

We would like to thank our reviewers, shepherd Michael
Kaminsky, Jeff Mogul, Rama Govindaraju, Aspi Sigan-
poria, and Parthasarathy Ranganathan for paper feedback
and guidance. We also thank the following individuals,
who were instrumental in the success of the project: Aspi
Siganporia, Alok Kumar, Andres Lagar-Cavilla, Bill Som-
merfeld, Carlo Contavalli, Frank Swiderski, Jerry Chu,
Mike Bennett, Mike Ryan, Pan Shi, Phillip Wells, Phong
Chuong, Prashant Chandra, Rajiv Ranjan, Rüdiger Son-
derfeld, Rudo Thomas, Shay Raz, Siva Sunkavalli, and
Yong Ni.

384 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Intel data plane development kit. http://

www.intel.com/go/dpdk.

[2] Intel I/O acceleration technology. https:
//www.intel.com/content/www/
us/en/wireless-network/accel-
technology.html.

[3] Openflow specification. https://
www.opennetworking.org/software-
defined-standards/specifications/.

[4] Using networks and firewalls. https:
//cloud.google.com/compute/docs/
networking.

[5] M. Baker-Harvey. Google compute engine uses
live migration technology to service infrastruc-
ture without application downtime. https:
//cloudplatform.googleblog.com/
2015/03/Google-Compute-Engine-
uses-Live-Migration-technology-
to-service-infrastructure-without-
application-downtime.html.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In Proceedings
of the Nineteenth ACM Symposium on Operating
Systems Principles, SOSP ’03, pages 164–177, New
York, NY, USA, 2003. ACM.

[7] S. M. Bellovin. Distributed firewalls. IEEE Commu-
nications Magazine, 32:50–57, 1999.

[8] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
OpenState: Programming platform-independent
stateful openflow applications inside the switch. SIG-
COMM, 44(2):44–51, Apr. 2014.

[9] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
7th Symposium on Operating Systems Design and Im-
plementation, OSDI ’06, pages 335–350, Berkeley,
CA, USA, 2006. USENIX Association.

[10] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Taking con-
trol of the enterprise. In Proceedings of the 2007
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications,
SIGCOMM ’07, pages 1–12, New York, NY, USA,
2007. ACM.

[11] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live mi-
gration of virtual machines. In Proceedings of the
2nd Conference on Symposium on Networked Sys-
tems Design & Implementation - Volume 2, NSDI’05,
pages 273–286, Berkeley, CA, USA, 2005. USENIX
Association.

[12] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Ma-
glev: A fast and reliable software network load bal-
ancer. In Proceedings of the 13th Usenix Conference
on Networked Systems Design and Implementation,
NSDI’16, pages 523–535, Berkeley, CA, USA, 2016.
USENIX Association.

[13] D. Firestone. VFP: A virtual switch platform for
host SDN in the public cloud. In 14th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 17), pages 315–328, Boston,
MA, 2017. USENIX Association.

[14] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling innovation in network function control. In
Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14, pages 163–174, New York,
NY, USA, 2014. ACM.

[15] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. My-
ers, J. Rexford, G. Xie, H. Yan, J. Zhan, and
H. Zhang. A clean slate 4D approach to network
control and management. SIGCOMM Comput. Com-
mun. Rev., 35(5):41–54, Oct. 2005.

[16] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Net-
work function virtualization: Challenges and oppor-
tunities for innovations. Communications Magazine,
IEEE, 53(2):90–97, Feb. 2015.

[17] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and
S. Ratnasamy. SoftNIC: A software NIC to augment
hardware. Technical Report UCB/EECS-2015-155,
EECS Department, University of California, Berke-
ley, May 2015.

[18] M. R. Hines, U. Deshpande, and K. Gopalan. Post-
copy live migration of virtual machines. SIGOPS
Oper. Syst. Rev., 43(3):14–26, July 2009.

[19] R. Jain. Characteristics of destination address local-
ity in computer networks: A comparison of caching
schemes. Computer Networks and ISDN Systems,
18:243–254, 1989.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 385

http://www.intel.com/go/dpdk
http://www.intel.com/go/dpdk
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://cloud.google.com/compute/docs/networking
https://cloud.google.com/compute/docs/networking
https://cloud.google.com/compute/docs/networking
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html

[20] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In Proceed-
ings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 654–663,
New York, NY, USA, 1997. ACM.

[21] J. Khalid, A. Gember-Jacobson, R. Michael, A. Ab-
hashkumar, and A. Akella. Paving the way for NFV:
Simplifying middlebox modifications using state-
alyzr. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16), pages
239–253, Santa Clara, CA, 2016. USENIX Associa-
tion.

[22] C. Kim, M. Caesar, and J. Rexford. Floodless in Seat-
tle: A scalable ethernet architecture for large enter-
prises. In Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication, SIGCOMM
’08, pages 3–14, New York, NY, USA, 2008. ACM.

[23] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross, P. In-
gram, E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li,
A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar,
D. Wendlandt, A. Yip, and R. Zhang. Network
virtualization in multi-tenant datacenters. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 203–216, Seat-
tle, WA, 2014. USENIX Association.

[24] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross, P. In-
gram, E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li,
A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar,
D. Wendlandt, A. Yip, and R. Zhang. Network
virtualization in multi-tenant datacenters. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 203–216, Seat-
tle, WA, 2014. USENIX Association.

[25] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Z. Google, R. Ramanathan, Y. I.
NEC, H. I. NEC, T. H. NEC, and S. Shenker. Onix:
a distributed control platform for large-scale produc-
tion networks. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Im-
plementation, pages 351–364, Berkeley, CA, USA,
2010.

[26] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasi-
nadhuni, E. C. Zermeno, C. S. Gunn, J. Ai, B. Car-

lin, M. Amarandei-Stavila, M. Robin, A. Siganporia,
S. Stuart, and A. Vahdat. BwE: Flexible, hierarchical
bandwidth allocation for WAN distributed comput-
ing. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 1–14, New York, NY, USA,
2015. ACM.

[27] J. Lee, J. Tourrilhes, P. Sharma, and S. Banerjee. No
more middlebox: Integrate processing into network.
In Proceedings of the ACM SIGCOMM 2010 Con-
ference, SIGCOMM ’10, pages 459–460, New York,
NY, USA, 2010. ACM.

[28] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling innovation in
campus networks. SIGCOMM Comput. Commun.
Rev., 38(2):69–74, Mar. 2008.

[29] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.
The click modular router. In Proceedings of the
Seventeenth ACM Symposium on Operating Systems
Principles, SOSP ’99, pages 217–231, New York,
NY, USA, 1999. ACM.

[30] M. Nelson, B.-H. Lim, and G. Hutchins. Fast trans-
parent migration for virtual machines. In USENIX
Annual Technical Conference, USENIX ’05, pages
391–394, Berkeley, CA, USA, 2005. USENIX Asso-
ciation.

[31] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. PortLand: A scalable fault-tolerant
layer 2 data center network fabric. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data
Communication, SIGCOMM ’09, pages 39–50, New
York, NY, USA, 2009. ACM.

[32] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Green-
berg, D. A. Maltz, R. Kern, H. Kumar, M. Zikos,
H. Wu, C. Kim, and N. Karri. Ananta: Cloud
scale load balancing. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIG-
COMM ’13, pages 207–218, New York, NY, USA,
2013. ACM.

[33] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. She-
lar, K. Amidon, and M. Casado. The design and
implementation of open vswitch. In 12th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 15), pages 117–130, Oakland,
CA, 2015. USENIX Association.

386 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[34] L. Rizzo. Netmap: A novel framework for fast
packet i/o. In Proceedings of the 2012 USENIX Con-
ference on Annual Technical Conference, USENIX
ATC’12, pages 9–9, Berkeley, CA, USA, 2012.
USENIX Association.

[35] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe,
and J. Rexford. Virtual routers on the move: Live
router migration as a network-management primitive.
In Proceedings of the ACM SIGCOMM 2008 Con-
ference on Data Communication, SIGCOMM ’08,
pages 231–242, New York, NY, USA, 2008. ACM.

[36] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Hol-
liman, G. Baldus, M. Hines, T. Kim, A. Narayanan,
A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh,
B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney,
D. Trumic, V. Valancius, C. Ying, M. Kallahalla,
B. Koley, and A. Vahdat. Taking the edge off with
espresso: Scale, reliability and programmability for
global internet peering. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, pages 432–445,
New York, NY, USA, 2017. ACM.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 387

LHD: Improving Cache Hit Rate by Maximizing Hit Density

Nathan Beckmann Haoxian Chen Asaf Cidon
Carnegie Mellon University University of Pennsylvania Stanford University/Barracuda Networks

beckmann@cs.cmu.edu hxchen@seas.upenn.edu asaf@cidon.com

Abstract
Cloud application performance is heavily reliant on the
hit rate of datacenter key-value caches. Key-value caches
typically use least recently used (LRU) as their eviction
policy, but LRU’s hit rate is far from optimal under real
workloads. Prior research has proposed many eviction
policies that improve on LRU, but these policies make
restrictive assumptions that hurt their hit rate, and they
can be difficult to implement efficiently.

We introduce least hit density (LHD), a novel eviction
policy for key-value caches. LHD predicts each object’s
expected hits-per-space-consumed (hit density), filtering
objects that contribute little to the cache’s hit rate. Unlike
prior eviction policies, LHD does not rely on heuristics,
but rather rigorously models objects’ behavior using con-
ditional probability to adapt its behavior in real time.

To make LHD practical, we design and implement
RankCache, an efficient key-value cache based on mem-
cached. We evaluate RankCache and LHD on com-
mercial memcached and enterprise storage traces, where
LHD consistently achieves better hit rates than prior poli-
cies. LHD requires much less space than prior policies
to match their hit rate, on average 8× less than LRU and
2–3× less than recently proposed policies. Moreover,
RankCache requires no synchronization in the common
case, improving request throughput at 16 threads by 8×
over LRU and by 2× over CLOCK.

1 Introduction
The hit rate of distributed, in-memory key-value caches
is a key determinant of the end-to-end performance of
cloud applications. Web application servers typically
send requests to the cache cluster over the network,
with latencies of about 100 µs, before querying a much
slower database, with latencies of about 10 ms. Small
increases in cache hit rate have an outsize impact on ap-
plication performance. For example, increasing hit rate
by just 1% from 98% to 99% halves the number of re-
quests to the database. With the latency numbers used
above, this decreases the mean service time from 210 µs
to 110 µs (nearly 2×) and, importantly for cloud applica-
tions, halves the tail of long-latency requests [21].

To increase cache hit rate, cloud providers typically
scale the number of servers and thus total cache ca-

Memcachiersrc1_0 src1_1 usr_1 proj_1 proj_2
0

1

2

3

4

Re
la

tiv
e

Si
ze

 a
t

Eq
ua

l H
it

Ra
tio

LHD Hyperbolic GDSF AdaptSize LRU

Figure 1: Relative cache size needed to match LHD’s hit rate
on different traces. LHD requires roughly one-fourth of LRU’s
capacity, and roughly half of that of prior eviction policies.

pacity [37]. For example, Facebook dedicates tens of
thousands of continuously running servers to caching.
However, adding servers is not tenable in the long run,
since hit rate increases logarithmically as a function of
cache capacity [3, 13, 20]. Prohibitively large amounts
of memory are needed to significantly impact hit rates.

This paper argues that improving the eviction policy is
much more effective, and that there is significant room
to improve cache hit rates. Popular key-value caches
(e.g., memcached, Redis) use least recently used (LRU)
or variants of LRU as their eviction policy. However, LRU
is far from optimal for key-value cache workloads be-
cause: (i) LRU’s performance suffers when the workload
has variable object sizes, and (ii) common access pat-
terns expose pathologies in LRU, leading to poor hit rate.

These shortcomings of LRU are well documented, and
prior work has proposed many eviction policies that im-
prove on LRU [4, 14, 16, 25, 35, 38, 40]. However, these
policies are not widely adopted because they typically
require extensive parameter tuning, which makes their
performance unreliable, and globally synchronized state,
which hurts their request throughput. Indeed, to achieve
acceptable throughput, some systems use eviction poli-
cies such as CLOCK or FIFO that sacrifice hit rate to re-
duce synchronization [22, 33, 34].

More fundamentally, prior policies make assumptions
that do not hold for many workloads, hurting their hit
rate. For example, most policies prefer recently used ob-
jects, all else equal. This is reasonable—such objects
are often valuable—, but workloads often violate this as-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 389

sumption. Prior policies handle the resulting pathologies
by adding new mechanisms. For example, ARC [35] adds
a second LRU list for newly admitted objects, and Adapt-
Size [9] adds a probabilistic filter for large objects.

We take a different approach. Rather than augment-
ing or recombining traditional heuristics, we seek a new
mechanism that just “does the right thing”. The key mo-
tivating question for this paper is: What would we want
to know about objects to make good caching decisions,
independent of workload?

Our answer is a metric we call hit density, which mea-
sures how much an object is expected to contribute to the
cache’s hit rate. We infer each object’s hit density from
what we know about it (e.g., its age or size) and then
evict the object with least hit density (LHD). Finally, we
present an efficient and straightforward implementation
of LHD on memcached called RankCache.

1.1 Contributions
We introduce hit density, an intuitive, workload-agnostic
metric for ranking objects during eviction. We arrive at
hit density from first principles, without any assumptions
about how workloads tend to reference objects.

Least hit density (LHD) is an eviction policy based on
hit density. LHD monitors objects online and uses con-
ditional probability to predict their likely behavior. LHD
draws on many different object features (e.g., age, fre-
quency, application id, and size), and easily supports
others. Dynamic ranking enables LHD to adapt its evic-
tion strategy to different application workloads over time
without any hand tuning. For example, on a certain
workload, LHD may initially approximate LRU, then
switch to most recently used (MRU), least frequently
used (LFU), or a combination thereof.

RankCache is a key-value cache based on memcached
that efficiently implements LHD (and other policies).
RankCache supports arbitrary ranking functions, making
policies like LHD practical. RankCache approximates
a true global ranking while requiring no synchroniza-
tion in the common case, and adds little implementation
complexity over existing LRU caches. RankCache thus
avoids the unattractive tradeoff in prior systems between
hit rate and request throughput, showing it is possible to
achieve the best of both worlds.

1.2 Summary of Results
We evaluate LHD on a weeklong commercial mem-
cached trace from Memcachier [36] and storage traces
from Microsoft Research [48]. LHD significantly im-
proves hit rate prior policies—e.g., reducing misses by
half vs. LRU and one-quarter vs. recent policies—and
also avoids pathologies such as performance cliffs that
afflict prior policies. Fig. 1 shows the cache size (i.e.,
number of caching servers) required to achieve the same

hit rate as LHD at 256 MB on Memcachier and 64 GB on
Microsoft traces. LHD requires much less space than
prior eviction policies, saving the cost of thousands of
servers in a modern datacenter. On average, LHD needs
8× less space than LRU, 2.4× less than GDSF [4], 2.5×
less than Hyperbolic [11], and 2.9× less than Adapt-
Size [9]. Finally, at 16 threads, RankCache achieves 16×
higher throughput than list-based LRU and, at 90% hit
rate, 2× higher throughput than CLOCK.

2 Background and Motivation
We identify two main opportunities to improve hit rate
beyond existing eviction policies. First, prior policies
make implicit assumptions about workload behavior that
hurt their hit rate when they do not hold. Second, prior
policies rely on implementation primitives that unneces-
sarily limit their design. We avoid these pitfalls by go-
ing back to first principles to design LHD, and then build
RankCache to realize it practically.

2.1 Implicit assumptions in eviction policies
Eviction policies show up in many contexts, e.g., OS
page management, database buffer management, web
proxies, and processors. LRU is widely used because it
is intuitive, simple to implement, performs reasonably
well, and has some worst-case guarantees [12, 47].

However, LRU also has common pathologies that hurt
its performance. LRU uses only recency, or how long
it has been since an object was last referenced, to de-
cide which object to evict. In other words, LRU as-
sumes that recently used objects are always more valu-
able. But common access patterns like scans (e.g.,
AB. . . ZAB. . . Z . . .) violate this assumption. As a result,
LRU caches are often polluted by infrequently accessed
objects that stream through the cache without reuse.

Prior eviction policies improve on LRU in many dif-
ferent ways. Nearly all policies augment recency with
additional mechanisms that fix its worst pathologies. For
example, ARC [35] uses two LRU lists to distinguish
newly admitted objects and limit pollution from infre-
quently accessed objects. Similarly, AdaptSize [9] adds
a probabilistic filter in front of an LRU list to limit pol-
lution from large objects. Several recent policies split
accesses across multiple LRU lists to eliminate perfor-
mance cliffs [6, 18, 51] or to allocate space across objects
of different sizes [10, 17, 18, 37, 41, 43, 49].

All of these policies use LRU lists as a core mecha-
nism, and hence retain recency as built-in assumption.
Moreover, their added mechanisms can introduce new
assumptions and pathologies. For example, ARC as-
sumes that frequently accessed objects are more valu-
able by placing them in a separate LRU list from newly
admitted objects and preferring to evict newly admitted
objects. This is often an improvement on LRU, but can
behave pathologically.

390 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Other policies abandon lists and rank objects using a
heuristic function. GDSF [4] is a representative exam-
ple. When an object is referenced, GDSF assigns its rank
using its frequency (reference count) and global value L:

GDSF Rank =
Frequency

Size
+ L (1)

On a miss, GDSF evicts the cached object with the lowest
rank and then updates L to this victim’s rank. As a result,
L increases over time so that recently used objects have
higher rank. GDSF thus orders objects according to some
combination of recency, frequency, and size. While it is
intuitive that each of these factors should play some role,
it is not obvious why GDSF combines them in this par-
ticular formula. Workloads vary widely (Sec. 3.5), so no
factor will be most effective in general. Eq. 1 makes im-
plicit assumptions about how important each factor will
be, and these assumptions will not hold across all work-
loads. Indeed, subsequent work [16, 27] added weighting
parameters to Eq. 1 to tune GDSF for different workloads.

Hence, while prior eviction policies have significantly
improved hit rates, they still make implicit assumptions
that lead to sub-optimal decisions. Of course, all online
policies must make some workload assumptions (e.g.,
adversarial workloads could change their behavior arbi-
trarily [47]), but these should be minimized. We believe
the solution is not to add yet more mechanisms, as do-
ing so quickly becomes unwieldy and requires yet more
assumptions to choose among mechanisms. Instead, our
goal is to find a new mechanism that leads to good evic-
tion decisions across a wide range of workloads.

2.2 Implementation of eviction policies
Key-value caches, such as memcached [23] and Re-
dis [1], are deployed on clusters of commodity servers,
typically based on DRAM for low latency access. Since
DRAM caches have a much lower latency than the back-
end database, the main determinant of end-to-end request
latency is cache hit rate [19, 37].
Request throughput: However, key-value caches must
also maintain high request throughput, and the eviction
policy can significantly impact throughput. Table 1 sum-
marizes the eviction policies used by several popular and
recently proposed key-value caches.

Most key-value caches use LRU because it is simple
and efficient, requiring O(1) operations for admission,
update, and eviction. Since naïve LRU lists require global
synchronization, most key-value caches in fact use ap-
proximations of LRU, like CLOCK and FIFO, that elim-
inate synchronization except during evictions [22, 33,
34]. Policies that use more complex ranking (e.g., GDSF)
pay a price in throughput to maintain an ordered ranking
(e.g., O(logN) operations for a min-heap) and to syn-
chronize other global state (e.g., L in Eq. 1).

Key-Value Cache Allocation Eviction Policy

memcached [23] Slab LRU
Redis [1] jemalloc LRU
Memshare [19] Log LRU
Hyperbolic [11] jemalloc GD
Cliffhanger [18] Slab LRU
GD-Wheel [32] Slab GD
MICA [34] Log ≈LRU
MemC3 [22] Slab ≈LRU

Table 1: Allocation and eviction strategies of key-value caches.
GD-Wheel and Hyperbolic’s policy is based on GreedyD-
ual [53]. We discuss a variant of this policy (GDSF) in Sec. 2.1.

For this reason, most prior policies restrict themselves
to well-understood primitives, like LRU lists, that have
standard, high-performance implementations. Unfortu-
nately, these implementation primitives restrict the de-
sign of eviction policies, preventing policies from retain-
ing the most valuable objects. List-based policies are
limited to deciding how the lists are connected and and
which objects to admit to which list. Similarly, to main-
tain data structure invariants, policies that use min-heaps
(e.g., GDSF) can change ranks only when an object is
referenced, limiting their dynamism.

We ignore such implementation restrictions when de-
signing LHD (Sec. 3), and consider how to implement the
resulting policy efficiently in later sections (Secs. 4 & 5).

Memory management: With objects of highly variable
size, another challenge is memory fragmentation. Key-
value caches use several memory allocation techniques
(Table 1). This paper focuses on the most common one,
slab allocation. In slab allocation, memory is divided
into fixed 1 MB slabs. Each slab can store objects of
a particular size range. For example, a slab can store
objects between 0–64 B, 65–128 B, or 129–256 B, etc.
Each object size range is called a slab class.

The advantages of slab allocation are its performance
and bounded fragmentation. New objects always replace
another object of the same slab class, requiring only a
single eviction to make space. Since objects are al-
ways inserted into their appropriate slab classes, there
is no external fragmentation, and internal fragmentation
is bounded. The disadvantage is that the eviction policy
is implemented on each slab class separately, which can
hurt overall hit rate when, e.g., the workload shifts from
larger to smaller objects.

Other key-value caches take different approaches.
However, non-copying allocators [1] suffer from frag-
mentation [42], and log-structured memory [19, 34, 42]
requires a garbage collector that increases memory band-
width and CPU consumption [19]. RankCache uses slab-
based allocation due to its performance and bounded
fragmentation, but this is not fundamental, and LHD
could be implemented on other memory allocators.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 391

3 Replacement by Least Hit Density (LHD)
We propose a new replacement policy, LHD, that dy-
namically predicts each object’s expected hits per space
consumed, or hit density, and evicts the object with the
lowest. By filtering out objects that contribute little to
the cache’s hit rate, LHD gradually increases the av-
erage hit rate. Critically, LHD avoids ad hoc heuris-
tics, and instead ranks objects by rigorously modeling
their behavior using conditional probability. This section
presents LHD and shows its potential in an idealized set-
ting. The following sections will present RankCache, a
high-performance implementation of LHD.

3.1 Predicting an object’s hit density
Our key insight is that policies must account for both
(i) the probability an object will hit in its lifetime; and
(ii) the resources it will consume. LHD uses the follow-
ing function to rank objects:

Hit density =
Hit probability

Object size× Expected time in cache
(2)

Eq. 2 measures an object’s contribution to the cache’s hit
rate (in units of hits per byte-access). We first provide
an example that illustrates how this metric adapts to real-
world applications, and then show how we derived it.

3.2 LHD on an example application
To demonstrate LHD’s advantages, consider an exam-
ple application that scans repeatedly over a few objects,
and accesses many other objects with Zipf-like popular-
ity distribution. This could be, for example, the common
media for a web page (scanning) plus user-specific con-
tent (Zipf). Suppose the cache can fit the common me-
dia and some of the most popular user objects. In this
case, each scanned object is accessed frequently (once
per page load for all users), whereas each Zipf-like object
is accessed much less frequently (only for the same user).
The cache should ideally therefore keep the scanned ob-
jects and evict the Zipf-like objects when necessary.

Fig. 2a illustrates this application’s access pattern,
namely the distribution of time (measured in accesses)
between references to the same object. Scanned objects

produce a characteristic peak around a single reference
time, as all are accessed together at once. Zipf-like ob-
jects yield a long tail of reference times. Note that in
this example 70% of references are to the Zipf-like ob-
jects and 30% to scanned objects, but the long tail of
popularity in Zipf-like objects leads to a low reference
probability in Fig. 2a.

Fig. 2b illustrates LHD’s behavior on this example ap-
plication, showing the distribution of hits and evictions
vs. an object’s age. Age is the number of accesses since
an object was last referenced. For example, if an object
enters the cache at access T , hits at accesses T + 4 and
T + 6, and is evicted at access T + 12, then it has two
hits at age 4 and 2 and is evicted at age 6 (each reference
resets age to zero). Fig. 2b shows that LHD keeps the
scanned objects and popular Zipf references, as desired.

LHD does not know whether an object is a scanned
object or a Zipf-like object until ages pass the scanning
peak. It must conservatively protect all objects until this
age, and all references at ages less than the peak therefore
result in hits. LHD begins to evict objects immediately
after the peak, since it is only at this point it knows that
any remaining objects must be Zipf-like objects, and it
can safely evict them.

Finally, Fig. 2c shows how LHD achieves these out-
comes. It plots the predicted hit density for objects of
different ages. The hit density is high up until the scan-
ning peak, because LHD predicts that objects are poten-
tially one of the scanned objects, and might hit quickly.
It drops after the scanning peak because it learns they are
Zipf objects and therefore unlikely to hit quickly.

Discussion: Given that LHD evicts the object with the
lowest predicted hit density, what is its emergent behav-
ior on this example? The object ages with the lowest pre-
dicted hit density are those that have aged past the scan-
ning peak. These are guaranteed to be Zipf-like objects,
and their hit density decreases with age, since their im-
plied popularity decreases the longer they have not been
referenced. LHD thus evicts older objects; i.e., LRU.

However, if no objects older than the scanning peak
are available, LHD will prefer to evict the youngest ob-
jects, since these have the lowest hit density. This is

Time (in accesses)

Re
fe

re
nc

e
Pr

ob
ab

ilit
y

Zipf
Scan

(a) Summary of access pattern.

Age (accesses since reference)

Pr
ob

ab
ilit

y

Hits
Evictions

(b) Distribution of hits and evictions.

Age (accesses since reference)

Hi
t D

en
sit

y MRU

LRU

(c) Predicted hit density.

Figure 2: How LHD performs on an application that scans over 30% of objects and Zipf over the remaining 70%.

392 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the most recently used (MRU) eviction policy, or anti-
LRU. MRU is the correct policy to adopt in this example
because (i) without more information, LHD cannot dis-
tinguish between scanning and Zipf-like objects in this
age range, and (ii) MRU guarantees that some fraction
of the scanning objects will survive long enough to hit.
Because scanning objects are by far the most frequently
accessed objects (Fig. 2a), keeping as many scanned ob-
jects as possible maximizes the cache’s hit rate, even if
that means evicting some popular Zipf-like objects.

Overall, then, LHD prefers to evict objects older than
the scanning peak and evicts LRU among these objects,
and otherwise evicts MRU among younger objects. This
policy caches as many of the scanning objects as possi-
ble, and is the best strictly age-based policy for this ap-
plication. LHD adopts this policy automatically based on
the cache’s observed behavior, without any pre-tuning re-
quired. By adoping MRU for young objects, LHD avoids
the potential performance cliff that recency suffers on
scanning patterns. We see this behavior on several traces
(Sec. 3.5), where LHD significantly outperforms prior
policies, nearly all of which assume recency.

3.3 Analysis and derivation
To see how we derived hit density, consider the cache
in Fig. 3. Cache space is shown vertically, and time in-
creases from left to right. (Throughout this paper, time
is measured in accesses, not wall-clock time.) The fig-
ure shows how cache space is used over time: each
block represents an object, with each reference or evic-
tion starting a new block. Each block thus represents a
single object lifetime, i.e., the idle time an object spends
in the cache between hits or eviction. Additionally, each
block is colored green or red, indicating whether it ends
in a hit or eviction, respectively.

A A

… A B B A C B A B D A B C D A B C B …

A

A

B B B
C

B

D D B B

C C

…

Reference pattern: Hit! Eviction!

X

B

Y

B

A

Sp
ac

e
⇒

Figure 3: Illustration of a cache over time. Each block depicts
a single object’s lifetime. Lifetimes that end in hits are shown
in green, evictions in red. Block size illustrates resources con-
sumed by an object; hit density is inversely proportional to
block size.

Fig. 3 illustrates the challenge replacement policies
face: they want to maximize hits given limited resources.

In other words, they want to fit as many green blocks into
the figure as possible. Each object takes up resources
proportional to both its size (block height) and the time
it spends in the cache (block width). Hence, the replace-
ment policy wants to keep small objects that hit quickly.

This illustration leads directly to hit density. Integrat-
ing uniformly across the entire figure, each green block
contributes 1 hit spread across its entire block. That is,
resources in the green blocks contribute hits at a rate of:
1 hit/(size × lifetime). Likewise, lifetimes that end in
eviction (or space lost to fragmentation) contribute zero
hits. Thus, if there are N hits and M evictions, and if
object i has size Si bytes and spends Li accesses in the
cache, then the cache’s overall hit density is:

∑
Lifetimes

Hits︷ ︸︸ ︷
1 + 1 + ...+ 1 +

Evictions︷ ︸︸ ︷
0 + 0 + ...+ 0∑

Lifetimes S1 × L1 + ...+ SN × LN︸ ︷︷ ︸
Hit resources

+ S1 × L1 + ...+ SM × LM︸ ︷︷ ︸
Eviction resources

The cache’s overall hit density is directly proportional to
its hit rate, so maximizing hit density also maximizes the
hit rate. Furthermore, it follows from basic arithmetic
that replacing an object with one of higher density will
increase the cache’s overall hit density.1

LHD’s challenge is to predict an object’s hit density,
without knowing whether it will result in a hit or eviction,
nor how long it will spend in the cache.
Modeling object behavior: To rank objects, LHD must
compute their hit probability and the expected time they
will spend in the cache. (We assume that an object’s size
is known and does not change.) LHD infers these quanti-
ties in real-time using probability distributions. Specifi-
cally, LHD uses distributions of hit and eviction age.

The simplest way to infer hit density is from an ob-
ject’s age. Let the random variables H and L give hit
and lifetime age; that is, P[H = a] is the probability that
an object hits at age a, and P[L = a] is the probability
that an object is hit or evicted at age a. Now consider an
object of age a. Since the object has reached age a, we
know it cannot hit or be evicted at any age earlier than a.
Its hit probability conditioned on age a is:

Hit probability = P[hit|age a] =
P[H > a]

P[L > a]
(3)

Similarly, its expected remaining lifetime2 is:

Lifetime = E[L− a|age a] =
∑∞

x=1 x · P[L = a+x]

P[L > a]
(4)

Altogether, the object’s hit density at age a is:

Hit densityage(a) =

∑∞
x=1 P[H = a+ x]

Size · (
∑∞

x=1 x · P[L = a+x])
(5)

1Specifically, if a/b > c/d, then (a+ c)/(b+ d) > c/d.
2We consider the remaining lifetime to avoid the sunk-cost fallacy.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 393

3.4 Using classification to improve predictions
One nice property of LHD is that it intuitively and rigor-
ously incorporates additional information about objects.
Since LHD is based on conditional probability, we can
simply condition the hit and eviction age distributions
on the additional information. For example, to incorpo-
rate reference frequency, we count how many times each
object has been referenced and gather separate hit and
eviction age distributions for each reference count. That
is, if an object that has been referenced twice is evicted,
LHD updates only the eviction age distribution of objects
that have been referenced twice, and leaves the other dis-
tributions unchanged. LHD then predicts an object’s hit
density using the appropriate distribution during ranking.

To generalize, we say that an object belongs to an
equivalence class c; e.g., c could be all objects that have
been referenced twice. LHD predict this object’s hit den-
sity as:

Hit density(a, c) =
∑∞

x=1 P[H = a+ x|c]
Size ·

(∑∞
x=1 x · P[L = a+x|c]

) (6)

where P[H = a|c] and P[L = a|c] are the conditional hit
and lifetime age distributions for class c.

3.5 Idealized evaluation
To demonstrate LHD’s potential, we simulate an ideal-
ized implementation of LHD that globally ranks objects.
Our figure of merit is the cache’s miss ratio, i.e., the frac-
tion of requests resulting in misses. To see how miss ra-
tio affects larger system tradeoffs, we consider the cache
size needed to achieve equal miss ratios.
Methodology: Unfortunately, we are unaware of a pub-
lic trace of large-scale key-value caches. Instead, we
evaluate two sets of traces: (i) a weeklong, commercial
trace provided by Memcachier [36] containing requests
from hundreds of applications, and (ii) block traces from
Microsoft Research [48]. Neither trace is ideal, but to-
gether we believe they represent a wide range of relevant
behaviors. Memcachier provides caching-as-a-service
and serves objects from a few bytes to 1 MB (median:
100 B); this variability is a common feature of key-value
caches [5, 22]. However, many of its customers mas-
sively overprovision resources, forcing us to consider
scaled-down cache sizes to replicate miss ratios seen
in larger deployments [37]. Fortunately, scaled-down
caches are known to be good models of behavior at larger
sizes [6, 30, 51]. Meanwhile, the Microsoft Research
traces let us study larger objects (median: 32 KB) and
cache sizes. However, its object sizes are much less vari-
able, and block trace workloads may differ from key-
value workloads.

We evaluate 512 M requests from each trace, ignoring
the first 128 M to warm up the cache. For the shorter
traces, we replay the trace if it terminates to equalize

trace length across results. All included traces are much
longer than LHD’s reconfiguration interval (see Sec. 5).

Since it is too expensive to compute Eq. 2 for every
object on each eviction, evictions instead sample 64 ran-
dom objects, as described in Sec. 4.1. LHD monitors hit
and eviction distributions online and, to escape local op-
tima, devotes a small amount of space (1%) to “explorer”
objects that are not evicted until a very large age.

What is the best LHD configuration?: LHD uses an ob-
ject’s age to predict its hit density. We also consider
two additional object features to improve LHD’s predic-
tions: an object’s last hit age and its app id. LHDAPP
classifies objects by hashing their app id into one of N
classes (mapping several apps into each class limits over-
heads). We only use LHDAPP on the Memcachier trace,
since the block traces lack app ids. LHDLAST HIT clas-
sifies objects by the age of their last hit, analogous to
LRU-K [38], broken into N classes spaced at powers
of 2 up to the maximum age. (E.g., with max age =
64 K and N = 4, classes are given by last hit age in
0 < 16K < 32K < 64K <∞).

We swept configurations over the Memcachier and
Microsoft traces and found that both app and last-hit
classification reduce misses. Furthermore, these im-
provements come with relatively few classes, after which
classification yields diminishing returns. Based on these
results, we configure LHD to classify by last hit age (16
classes) and application id (16 classes). We refer to this
configuration as LHD+ for the remainder of the paper.

How does LHD+ compare with other policies?: Fig. 4
shows the miss ratio across many cache sizes for LHD+,
LRU, and three prior policies: GDSF [4, 16], Adapt-
Size [9], and Hyperbolic [11]. GDSF and Hyperbolic
use different ranking functions based on object recency,
frequency, and size (e.g., Eq. 1). AdaptSize probabilis-
tically admits objects to an LRU cache to avoid pollut-
ing the cache with large objects (Sec. 6). LHD+ achieves
the best miss ratio across all cache sizes, outperforms
LRU by a large margin, and outperforms Hyperbolic,
GDSF, and AdaptSize, which perform differently across
different traces. No prior policy is consistently close to
LHD+’s hit ratio.

Moreover, Fig. 4 shows that LHD+ needs less space
than these other policies to achieve the same miss ra-
tio, sometimes substantially less. For example, on Mem-
cachier, a 512 MB LHD+ cache matches the hit rate of
a 768 MB Hyperbolic cache, a 1 GB GDSF, or a 1 GB
AdaptSize cache, and LRU does not match the perfor-
mance even with 2 GB. In other words, LRU requires
more than 4× as many servers to match LHD+’s hit rate.

Averaged across all sizes, LHD+ incurs 45% fewer
misses than LRU, 27% fewer than Hyperbolic and GDSF
and 23% fewer than AdaptSize. Moreover, at the largest

394 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

LHD Hyperbolic GDSF AdaptSize LRU

256 512 1024 2048
Size (MB)

0

5

10

15

20

25

30

M
iss

 R
at

io
 (%

)

(a) Memcachier

16 32 64 128
Size (GB)

0

20

40

60

80

100

(b) MSR src1_0

32 64 128 192
Size (GB)

0

20

40

60

80

100

(c) MSR src1_1

32 64 128 256 512
Size (GB)

0

10

20

30

40

50

M
iss

 R
at

io
 (%

)

(d) MSR usr_1

32 64 128 256 512
Size (GB)

0

20

40

60

80

100

(e) MSR proj_1

32 64 128 256 512
Size (GB)

0

20

40

60

80

100

(f) MSR proj_2

Figure 4: Miss ratio for LHD+ vs. prior policies over 512 M requests and cache sizes from 2 MB to 2 GB on Memcachier trace and
from 128 MB to 512 GB on MSR traces. LHD+ consistently outperforms prior policies on all traces.

100 101 102

Age (M requests)

0

20

40

60

80

100

Ev
ict

io
n

%
 (C

um
ul

at
iv

e)

100 101 102

Age (M requests)
100 101 102

Age (M requests)

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

(a) LRU. (b) AdaptSize. (c) LHD.

Figure 5: When policies evict objects, broken into quartiles by
object size. LRU evicts all objects at roughly the same age, re-
gardless of their size, wasting space on big objects. AdaptSize
bypasses most large objects, losing some hits on these objects,
while also ignoring object size after admission, still wasting
space. LHD dynamically ranks objects to evict larger objects
sooner, allocating space across all objects to maximize hits.

sizes, LHD+ incurs very few non-compulsory misses,
showing it close to exhausting all possible hits.
Where do LHD+’s benefits come from?: LHD+’s dy-
namic ranking gives it the flexibility to evict the least
valuable objects, without the restrictions or built-in as-
sumptions of prior policies. To illustrate this, Fig. 5 com-
pares when LRU, AdaptSize, and LHD evict objects on
the Memcachier trace at 512 MB. Each line in the figure
shows the cumulative distribution of eviction age for ob-
jects of different sizes; e.g., the solid line in each figure
shows when the smallest quartile of objects are evicted.

LRU ignores object size and evicts all objects at
roughly the same age. Because of this, LRU wastes
space on large objects and must evict objects when they
are relatively young (age≈30 M), hurting its hit ratio.
AdaptSize improves on LRU by bypassing most large ob-

jects so that admitted objects survive longer (age≈75 M).
This lets AdaptSize get more hits than LRU, at the cost
of forgoing some hits to the bypassed objects. How-
ever, since AdaptSize evicts LRU after admission, it still
wastes space on large, admitted objects.

LHD+ is not limited in this way. It can admit all ob-
jects and evict larger objects sooner. This earns LHD+
more hits on large objects than AdaptSize, since they are
not bypassed, and lets small objects survive longer than
AdaptSize (age≈200 M), getting even more hits.

Finally, although many applications are recency-
friendly, several applications in the Memcachier trace as
well as most of the Microsoft Research traces show that
this is not true in general. As a result, policies that in-
clude recency (i.e., nearly all policies, including GDSF,
Hyperbolic, and AdaptSize), suffer from pathologies like
performance cliffs [6, 18]. For example, LRU, GDSF, and
Hyperbolic suffer a cliff in src1_0 at 96 MB and proj_2
at 128 MB. LHD avoids these cliffs and achieves the high-
est performance of all policies (see Sec. 6).

4 RankCache Design
LHD improves hit rates, but implementability and re-
quest throughput also matter in practice. We design
RankCache to efficiently support arbitrary ranking func-
tions, including hit density (Eq. 5). The challenge is
that, with arbitrary ranking functions, the rank-order of
objects can change constantly. A naïve implementation
would scan all cached objects to find the best victim for
each eviction, but this is far too expensive. Alternatively,
for some restricted ranking functions, prior work has
used priority queues (i.e., min-heaps), but these queues
require expensive global synchronization to keep the data

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 395

structure consistent [9].
RankCache solves these problems by approximating

a global ranking, avoiding any synchronization in the
common case. RankCache does not require synchroniza-
tion even for evictions, unlike prior high-performance
caching systems [22, 34], letting it achieve high request
throughput with non-negligible miss rates.

4.1 Lifetime of an eviction in LHD

Ranks in LHD constantly change, and this dynamism is
critical for LHD, since it is how LHD adapts its policy
to the access pattern. However, it would be very expen-
sive to compute Eq. 5 for all objects on every cache miss.
Instead, two key techniques make LHD practical: (i) pre-
computation and (ii) sampling. Fig. 6 shows the steps of
an eviction in RankCache, discussed below.

A

B

C

D

E

F

G

Miss!

Sample
objects

A
C
F

E

Lookup ranks
(pre-computed)

Evict E

R
an

k
⇒

Figure 6: Steps for an eviction in RankCache. First, randomly
sample objects, then lookup their precomputed rank and evict
the object with the worst rank.

Selecting a victim: RankCache randomly samples
cached objects and evicts the object with the worst rank
(i.e., lowest hit density) in the sample. With a large
enough sample, the evicted object will have eviction
priority close to the global maximum, approximating
a perfect ranking. Sampling is an old idea in pro-
cessor caches [44, 46], has been previously proposed
for web proxies [39], and is used in some key-value
caches [1, 11, 19]. Sampling is effective because the
quality of a random sample depends on its size, not the
size of the underlying population (i.e., number of cached
objects). Sampling therefore lets RankCache implement
dynamic ranking functions in constant time with respect
to the number of cached objects.
Sampling eliminates synchronization: Sampling makes
cache management concurrent. Both linked lists and pri-
ority queues have to serialize GET and SET operations
to maintain a consistent data structure. For example, in
memcached, where LRU is implemented by a linked list,
every cache hit promotes the hit object to the head of the
list. On every eviction, the system first evicts the object
from the tail of the list, and then inserts the new object at
the head of the list. These operations serialize all GETs
and SETs in memcached.

To avoid this problem, systems commonly sacrifice
hit ratio: by default, memcached only promotes objects

if they are older than one minute; other systems use
CLOCK [22] or FIFO [33], which do not require global
updates on a cache hit. However, these policies still seri-
alize all evictions.

Sampling, on the other hand, allows each item to up-
date its metadata (e.g., reference timestamp) indepen-
dently on a cache hit, and evictions can happen concur-
rently as well except when two threads select the same
victim. To handle these rare races, RankCache uses
memcached’s built-in versioning and optimistic concur-
rency: evicting threads sample and compare objects in
parallel, then lock the victim and check if its version has
changed since sampling. If it has, then the eviction pro-
cess is restarted. Thus, although sampling takes more
operations per eviction, it increases concurrency, let-
ting RankCache achieve higher request throughput than
CLOCK/FIFO under high load.
Few samples are needed: Fig. 7 shows the effect of sam-
pling on miss ratio going from associativity (i.e., sample
size) of one to 128. With only one sample, the cache
randomly replaces objects, and all policies perform the
same. As associativity increases, the policies quickly
diverge. We include a sampling-based variant of LRU,
where an object’s rank equals its age. LRU, Hyperbolic,
and LHD+ all quickly reach diminishing returns, around
associativity of 32. At this point, true LRU and sampling-
based LRU achieve identical hit ratios.

1 2 4 8 16 32 64 128
Associativity (# samples)

0

10

20

30

M
iss

 R
at

io
 (%

)

LHD Hyperbolic GDSF LRU w/ Sampling

Figure 7: Miss ratios at different associativities.

Since sampling happens at each eviction, lower asso-
ciativity is highly desirable from a throughput and la-
tency perspective. Therefore, RankCache uses an asso-
ciativity of 64.

We observe that GDSF is much more sensitive to asso-
ciativity, since each replacement in GDSF updates global
state (L, see Sec. 2.1). In fact, GDSF still has not con-
verged at 128 samples. GDSF’s sensitivity to associa-
tivity makes it unattractive for key-value caches, since
it needs expensive data structures to accurately track its
state (Fig. 10). Hyperbolic [11] uses a different ranking
function without global state to avoid this problem.
Precomputation: RankCache precomputes object ranks
so that, given an object, its rank can be quickly found
by indexing a table. In the earlier example, RankCache
would precompute Fig. 2c so that ranks can be looked up

396 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

directly from an object’s age. With LHD, RankCache pe-
riodically (e.g., every one million accesses) recomputes
its ranks to remain responsive to changes in application
behavior. This approach is effective since application be-
havior is stable over short time periods, changing much
more slowly than the ranks themselves fluctuate. More-
over, Eq. 5 can be computed efficiently in linear time [8],
and RankCache configures the maximum age to keep
overheads low (Sec. 5).

4.2 Approximating global rankings with slabs
RankCache uses slab allocation to manage memory be-
cause it ensures that our system achieves predictable
O(1) insertion and eviction performance, it does not re-
quire a garbage collector, and it has no external fragmen-
tation. However, in slab allocation, each slab class evicts
objects independently. Therefore, another design chal-
lenge is to approximate a global ranking when each slab
allocation implements its own eviction policy.

Similar to memcached, when new objects enter the
cache, RankCache evicts the lowest ranked object from
the same slab class. RankCache approximates a global
ranking of all objects by periodically rebalancing slabs
among slab classes. It is well-known that LRU effectively
evicts objects once they reach a characteristic age that de-
pends on the cache size and access pattern [15]. This fact
has been used to balance slabs across slab classes to ap-
proximate global LRU by equalizing eviction age across
slab classes [37]. RankCache generalizes this insight,
such that caches essentially evict objects once they reach
a characteristic rank, rather than age, that depends on the
cache size and access pattern.
Algorithm: In order to measure the average eviction
rank, RankCache records the cumulative rank of evicted
objects and the number of evictions. It then periodically
moves a slab from the slab class that has the highest av-
erage victim rank to that with the lowest victim rank.

However, we found that some slab classes rarely evict
objects. Without up-to-date information about their av-
erage victim rank, RankCache was unable to rebalance
slabs away from them to other slab classes. We solved
this problem by performing one “fake eviction” (i.e.,
sampling and ranking) for each slab class during rebal-
ancing. By also averaging victim ranks across several
decisions, this mechanism gives RankCache enough in-
formation to effectively approximate a global ranking.

RankCache decides whether it needs to rebalance
slabs every 500 K accesses. We find that this is suffi-
cient to converge to the global ranking on our traces, and
more frequent rebalancing is undesirable because it has
a cost: when a 1 MB slab is moved between slab classes,
1 MB of objects are evicted from the original slab class.
Evaluation: Fig. 8 shows the effect of rebalancing slabs
in RankCache. It graphs the distribution of victim rank

5 4 3 2 1 0
Victim Ranks 1e 9

0

20

40

60

80

100

In
te

rv
al

 E
vi

ct
io

ns
 (%

)

RankCache + LHD
RankCache + LHD + Rebalancing
Simulation + LHD

0 1 2 3 4 5
Victim Ranks 1e6

RankCache + LRU
RankCache + LRU + Rebalancing
Simulation + LRU

Figure 8: Distribution of victim rank for slab allocation poli-
cies with and without rebalancing vs. true global policy. LHD+
is on the left, LRU on the right.

for several different implementations, with each slab
class shown in a different color. The right-hand fig-
ure shows RankCache with sampling-based LRU, and the
left shows RankCache with LHD+. An idealized, global
policy has victim rank tightly distributed around a sin-
gle peak—this demonstrates the accuracy of our charac-
teristic eviction rank model. Without rebalancing, each
slab evicts objects around a different victim rank, and is
far from the global policy. With rebalancing, the victim
ranks are much more tightly distributed, and we find this
is sufficient to approximate the global policy.

5 RankCache Implementation
We implemented RankCache, including its LHD ranking
function, on top of memcached [23]. RankCache is back-
wards compatible with the memcached protocol and is a
fairly lightweight change to memcached v1.4.33.

The key insight behind RankCache’s efficient imple-
mentation is that, by design, RankCache is an approxi-
mate scheme (Sec. 4). We can therefore tolerate loosely
synchronized events and approximate aging information.
Moreover, RankCache does not modify memcached’s
memory allocator, so it leverages existing functional-
ity for events that require careful synchronization (e.g.,
moving slabs).
Aging: RankCache tracks time through the total number
of accesses to the cache. Ages are coarsened in large
increments of COARSENESS accesses, up to a MAX_AGE.
COARSENESS and MAX_AGE are chosen to stay within
a specified error tolerance (see appendix); in practice,
coarsening introduces no detectable change in miss ratio
or throughput for reasonable error tolerances (e.g., 1%).

Conceptually, there is a global timestamp, but for
performance we implement distributed, fuzzy counters.
Each server thread maintains a thread-local access count,
and atomic-increments the global timestamp periodically
when its local counter reaches COARSENESS.

RankCache must track the age of objects to compute
their rank, which it does by adding a 4 B timestamp to
the object metadata. During ranking, RankCache com-
putes an object’s coarsened age by subtracting the object

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 397

timestamp from the global timestamp.

Ranking: RankCache adds tables to store the ranks of
different objects. It stores ranks up to MAX_AGE per
class, each rank a 4 B floating-point value. With 256
classes (Sec. 3), this is 6.4 MB total overhead. Ranks
require no synchronization, since they are read-only be-
tween reconfigurations, and have a single writer (see be-
low). We tolerate races as they are infrequently updated.

Monitoring behavior: RankCache monitors the distri-
bution of hit and eviction age by maintaining histograms
of hits and evictions. RankCache increments the appro-
priate counter upon each access, depending on whether
it was a hit or eviction and the object’s coarsened age.
To reduce synchronization, these are also implemented
as distributed, fuzzy counters, and are collected by the
updating thread (see below). Counters are 4 B values;
with 256 classes, hit and eviction counters together re-
quire 12.6 MB per thread.

Sampling: Upon each eviction, RankCache samples ob-
jects from within the same slab class by randomly gen-
erating indices and then computing the offset into the
appropriate slab. Because objects are stored at regular
offsets within each slab, this is inexpensive.

Efficient evictions: For workloads with non-negligible
miss ratios, evictions are the rate-limiting step in
RankCache. To make evictions efficient, RankCache
uses two optimizations. First, rather than adding an ob-
ject to a slab class’s free list and then immediately claim-
ing it, RankCache directly allocates the object within the
same thread after it has been freed. This avoids unneces-
sary synchronization.

Second, RankCache places object metadata in a sepa-
rate, contiguous memory region, called the tags. Tags are
stored in the same order as objects in the slab class, mak-
ing it easy to find an object from its metadata. Since slabs
themselves are stored non-contiguously in memory, each
object keeps a back pointer into the tags to find its meta-
data. Tags significantly improve spatial locality during
evictions. Since sampling is random by design, without
separate tags, RankCache suffers 64 (associativity) cache
misses per eviction. Compact tags allow RankCache to
sample 64 candidates with just 4 cache misses, a 16×
improvement in locality.

Background tasks: Both updating ranks and rebalanc-
ing slabs are off the critical path of requests. They run
as low-priority background threads and complete in a
few milliseconds. Periodically (default: every 1 M ac-
cesses), RankCache aggregates histograms from each
thread and recomputes ranks. First, RankCache aver-
ages histograms with prior values, using an exponential
decay factor (default: 0.9). Then it computes LHD for
each class in linear time, requiring two passes over the
ages using an algorithm similar to [8]. Also periodically

(every 500 K accesses), RankCache rebalances one slab
from the slab with the highest eviction rank to the one
with the lowest, as described in Sec. 4.2.

Across several orders of magnitude, the reconfigura-
tion interval and exponential decay factor have minimal
impact on hit rate. On the Memcachier trace, LHD+’s
non-compulsory miss rate changes by 1% going from re-
configuring every 10 K to 10 M accesses, and the expo-
nential decay factor shows even smaller impact when it
is set between 0.1 and 0.99.

5.1 RankCache matches simulation
Going left-to-right, Fig. 9 compares the miss ratio over
512 M accesses on Memcachier at 1 GB for (i) stock
memcached using true LRU within each slab class;
RankCache using sampling-based LRU as its rank-
ing function (ii) with and (iii) without rebalancing;
RankCache using LHD+ (iv) with and (v) without rebal-
ancing; and (vi) an idealized simulation of LHD+ with
global ranking.

Memcach
ed

+ Samplin
g

+ Rebalancin
g

− Rebalancin
g

 + Rebalancin
g

Ideal LHD+
0

5

10

15

20

25

30
M

is
s

R
a
ti

o
 (

%
)

Memcached

RankCache

Ideal

Figure 9: RankCache vs. unmodified memcached and ideal-
ized simulation. Rebalancing is necessary to improve miss ra-
tio, and effectively approximates a global ranking.

As the figure shows, RankCache with slab rebalancing
closely matches the miss ratio of the idealized simula-
tion, but without slab rebalancing it barely outperforms
LRU. This is because LHD+ operating independently on
each slab cannot effectively take into account object size,
and hence on an LRU-friendly pattern performs similarly
to LRU. The small degradation in hit ratio vs. idealized
simulation is due to forced, random evictions during slab
rebalancing.

5.2 RankCache with LHD+ achieves both high
hit ratio and high performance

Methodology: To evaluate RankCache’s performance,
we stress request serving within RankCache itself by
conducting experiments within a single server and by-
passing the network. Each server thread pulls requests
off a thread-local request list. We force all objects to
have the same size to maximally stress synchronization
in each policy. Prior work has explored techniques to op-
timize the network in key-value stores [22, 33, 34]; these
topics are not our contribution.

398 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We compare RankCache against list-based LRU, GDSF
using a priority queue (min-heap), and CLOCK. These
cover the main implementation primitives used in key-
value caches (Sec. 2). We also compare against random
evictions to show peak request throughput when the evic-
tion policy does no work and maintains no state. (Ran-
dom pays for its throughput by suffering many misses.)
Scalability: Fig. 10 plots the aggregate request through-
put vs. number of server threads on a randomly gener-
ated trace with Zipfian object popularities. We present
throughput at 90% and 100% hit ratio; the former repre-
sents a realistic deployment, the latter peak performance.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Random

RankCache+tags

RankCache

CLOCK

Linked List (LRU)

Priority Queue (GDSF)

0 2 4 6 8 10 12 14 16
#Threads

0

5

10

15

20

25

30

35

T
h
ro

u
g
h
p
u
t

(M
 R

e
q
u
e
st

s/
s)

(a) 90% Hit ratio.

0 2 4 6 8 10 12 14 16
#Threads

0

5

10

15

20

25

30

35

40

T
h
ro

u
g
h
p
u
t

(M
 R

e
q
u
e
st

s/
s)

(b) 100% Hit ratio.

Figure 10: RankCache’s request throughput vs. server threads.
RankCache’s performance approaches that of random, and out-
performs CLOCK with non-negligible miss ratio.

RankCache scales nearly as well as random because
sampling avoids nearly all synchronization, whereas LRU
and GDSF barely scale because they serialize all opera-
tions. Similarly, CLOCK performs well at 100% hit ratio,
but serializes evictions and underperforms RankCache
with 10% miss ratio. Finally, using separate tags in
RankCache lowers throughput with a 100% hit ratio, but
improves performance even with a 10% miss ratio.
Trading off throughput and hit ratio: Fig. 11a plots
request throughput vs. cache size for these policies on
the Memcachier trace. RankCache achieves the high-
est request throughput of all policies except random, and
tags increase throughput at every cache size. RankCache
increases throughput because (i) it eliminates nearly all
synchronization and (ii) LHD+ achieves higher hit ratio
than other policies, avoiding time-consuming evictions.

Fig. 11b helps explain these results by plotting request
throughput vs. hit ratio for the different systems. These
numbers are gathered by sweeping cache size for each
policy on a uniform random trace, equalizing hit ratio
across policies at each cache size. Experimental results
are shown as points, and we fit a curve to each dataset by
assuming that:

Total service time = # GETs×GET time+# SETs×SET time

As Fig. 11b shows, this simple model is a good fit, and
thus GET and SET time are independent of cache size.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Random

RankCache+tags

RankCache

CLOCK

Linked List (LRU)

Priority Queue (GDSF)

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

Cache Size (MB)

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
 R

e
q
u
e
st

s/
s)

(a) vs. cache size.

55 60 65 70 75 80 85 90 95 100

Hit Rate (%)

0

5

10

15

20

25

30

35

40

T
h
ro

u
g
h
p
u
t

(M
 R

e
q
u
e
st

s/
s)

(b) vs. hit ratio.

Figure 11: Request throughput on Memcachier trace at 16
server threads. RankCache with LHD achieves the highest
request throughput of all implementations, because it reduces
synchronization and achieves a higher hit ratio than other poli-
cies. Tags are beneficial except at very high hit ratios.

Fig. 11b shows how important hit ratio is, as small
improvements in hit ratio yield large gains in request
throughput. This effect is especially apparent on CLOCK
because it synchronizes on evictions, but not on hits.
Unfortunately, CLOCK achieves the lowest hit ratio of
all policies, and its throughput suffers as a result. In
constrast, LHD+ pushes performance higher by improv-
ing hit ratio, and RankCache removes synchronization to
achieve the best scaling of all implementations.
Response latency: Fig. 12 shows the average response
time of GETs and SETs with different policies running
at 1 and 16 server threads, obtained using the same pro-
cedure as Fig. 11b. The 16-thread results show that, in
a parallel setting, RankCache achieves the lowest per-
operation latency of all policies (excluding random), and
in particular using separate tags greatly reduces eviction
time. While list- or heap-based policies are faster in a
sequential setting, RankCache’s lack of synchronization
dominates with concurrent requests. Because CLOCK
synchronizes on evictions, its evictions are slow at 16
threads, explaining its sensitivity to hit ratio in Fig. 11b.
RankCache reduces GET time by 5× vs. list and prio-
queue, and SET time by 5× over CLOCK.

Hits Evictions0

2

4

6

Ti
m

e
(µ

s)

Hits Evictions0

5

10

15

Random
RankCache+tags

RankCache
CLOCK

Linked List
Priority Queue

Figure 12: Request processing time for hits and evictions at a
single thread (left) and 16 threads (right).

In a real-world deployment, RankCache’s combina-
tion of high hit ratio and low response latency would
yield greatly reduced mean and tail latencies and thus

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 399

to significantly improved end-to-end response latency.

6 Related Work
Prior work in probabilistic eviction policies: EVA, a re-
cent eviction policy for processor caches [7, 8], intro-
duced the idea of using conditional probability to balance
hits vs. resources consumed. There are several signifi-
cant differences between LHD and EVA that allow LHD
to perform well on key-value workloads.

First, LHD and EVA use different ranking functions.
EVA ranks objects by their net contribution measured in
hits, not by hit density. This matters, because EVA’s rank-
ing function does not converge in key-value cache work-
loads and performs markedly worse than LHD. Second,
unlike processor caches, LHD has to deal with variable
object sizes. Object size is one of the most important
characteristics in a key-value eviction policy. RankCache
must also rebalance memory across slab classes to im-
plement a global ranking. Third, LHD classifies objects
more aggressively than is possible with the implemen-
tation constraints of hardware policies, and classifies by
last hit age instead of frequency, which significantly im-
proves hit ratio.

Key-value caches: Several systems have tried to improve
upon memcached’s poor hit ratio under objects of vary-
ing sizes. Cliffhanger [18] uses shadow queues to incre-
mentally assign memory to slab classes that would gain
the highest hit ratio benefit. Similarly, Dynacache [17],
Moirai [49], Mimir [43] and Blaze [10] determine the ap-
propriate resource allocation for objects of different sizes
by keeping track of LRU’s stack distances. Twitter [41]
and Facebook [37] periodically move memory from slabs
with a high hit ratio to those with a low hit ratio. Other
systems have taken a different approach to memory allo-
cation than memcached. Memshare [19] and MICA [34]
utilize log-structured memory allocation. In the case of
all the systems mentioned above, the memory allocation
is intertwined with their eviction policy (LRU).

Similar to RankCache, Hyperbolic caching [11] also
uses sampling to implement dynamic ranking functions.
However, as we have demonstrated, Hyperbolic suffers
from higher miss ratios, since it is a recency-based policy
that is susceptible to performance cliffs, and Hyperbolic
did not explore concurrent implementations of sampling
as we have done in RankCache.

Replacement policies: Prior work improves upon LRU
by incorporating more information about objects to
make better decisions. For example, many policies fa-
vor objects that have been referenced frequently in the
past, since intuitively these are likely to be referenced
again soon. Prominent examples include LRU-K [38],
SLRU [29], 2Q [28], LRFU [31], LIRS [26], and ARC [35].
There is also extensive prior work on replacement poli-

cies for objects of varying sizes. LRU-MIN [2], HY-
BRID [52], GreedyDual-Size (GDS) [14], GreedyDual-
Size-Frequency (GDSF) [4, 16], LNC-R-W3 [45], Adapt-
Size [9], and Hyperbolic [11] all take into account the
size of the object.

AdaptSize [9] emphasizes object admission vs. evic-
tion, but this distinction is only important for list-based
policies, so long as objects are small relative to the
cache’s size. Ranking functions (e.g., GDSF and LHD)
can evict low-value objects immediately, so it makes lit-
tle difference if they are admitted or not (Fig. 5).

Several recent policies explicitly avoid cliffs seen in
LRU and other policies [6, 11, 18]. Cliffs arise when
policies’ built-in assumptions are violated and the policy
behaves pathologically, so that hit ratios do not improve
until all objects fit in the cache. LHD also avoids cliffs,
but does so by avoiding pathological behavior in the first
place. Cliff-avoiding policies achieve hit ratios along the
cliff’s convex hull, and no better [6]; LHD matches or
exceeds this performance on our traces.
Tuning eviction policies: Many prior policies require
application-specific tuning. For example, SLRU divides
the cache into S partitions. However, the optimal choice
of S, as well as how much memory to allocate to each
partition, varies widely depending on the application [24,
50]. Most other policies use weights that must be tuned
to the access pattern (e.g., [2, 11, 27, 38, 45, 52]). For
example, GD∗ adds an exponential parameter to Eq. 1
to capture burstiness [27], and LNC-R-W3 has separate
weights for frequency and size [45]. In contrast to LHD,
these policies are highly sensitive to their parameters.
(We have implemented LNC-R-W3, but found it performs
worse than LRU without extensive tuning at each size,
and so do not present its results.)

7 Conclusions
This paper demonstrates that there is a large opportunity
to improve cache performance through non-heuristic ap-
proach to eviction policies. Key-value caches are an es-
sential layer for cloud applications. Scaling the capac-
ity of LRU-based caches is an unsustainable approach to
scale their performance. We have presented a practical
and principled approach to tackle this problem, which
allows applications to achieve their performance goals at
significantly lower cost.

Acknowledgements
We thank our anonymous reviewers, and especially our
shepherd, Jon Howell, for their insightful comments. We
also thank Amit Levy and David Terei for supplying the
Memcachier traces, and Daniel Berger for his feedback
and help with implementing AdaptSize. This work was
funded by a Google Faculty Research Award and sup-
ported by the Parallel Data Lab at CMU.

400 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Redis. http://redis.io/. 7/24/2015.

[2] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A.
Fox. Caching proxies: Limitations and potentials. Technical re-
port, Blacksburg, VA, USA, 1995.

[3] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Char-
acterizing reference locality in the WWW. In Proceedings of the
Fourth International Conference on on Parallel and Distributed
Information Systems, DIS ’96, pages 92–107, Washington, DC,
USA, 1996. IEEE Computer Society.

[4] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Eval-
uating content management techniques for web proxy caches.
ACM SIGMETRICS Performance Evaluation Review, 2000.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload analysis of a large-scale key-value store. In ACM SIG-
METRICS Performance Evaluation Review, volume 40, pages
53–64. ACM, 2012.

[6] N. Beckmann and D. Sanchez. Talus: A simple way to remove
cliffs in cache performance. In HPCA-21, 2015.

[7] N. Beckmann and D. Sanchez. Modeling cache performance be-
yond LRU. HPCA-22, 2016.

[8] N. Beckmann and D. Sanchez. Maximizing cache performance
under uncertainty. HPCA-23, 2017.

[9] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. AdaptSize:
Orchestrating the hot object memory cache in a content deliv-
ery network. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 483–498, Boston,
MA, 2017. USENIX Association.

[10] H. Bjornsson, G. Chockler, T. Saemundsson, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceed-
ings of the 4th annual Symposium on Cloud Computing, page 59.
ACM, 2013.

[11] A. Blankstein, S. Sen, and M. J. Freedman. Hyperbolic caching:
Flexible caching for web applications. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 499–511, Santa
Clara, CA, 2017. USENIX Association.

[12] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competi-
tive paging with locality of reference. Journal of Computer and
System Sciences, 50(2):244–258, 1995.

[13] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implications.
In INFOCOM’99. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 1, pages 126–134. IEEE, 1999.

[14] P. Cao and S. Irani. Cost-aware www proxy caching algorithms.
In Proceedings of the USENIX Symposium on Internet Technolo-
gies and Systems on USENIX Symposium on Internet Technolo-
gies and Systems, USITS’97, pages 18–18, Berkeley, CA, USA,
1997. USENIX Association.

[15] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching sys-
tems: Modeling, design and experimental results. IEEE Journal
on Selected Areas in Communications, 2002.

[16] L. Cherkasova. Improving WWW proxies performance with
greedy-dual-size-frequency caching policy. Hewlett-Packard
Laboratories, 1998.

[17] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Dynacache:
Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15), Santa Clara, CA, July 2015.
USENIX Association.

[18] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Cliffhanger:
Scaling performance cliffs in web memory caches. In 13th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16), pages 379–392, Santa Clara, CA, Mar.
2016. USENIX Association.

[19] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman.
Memshare: a dynamic multi-tenant key-value cache. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages
321–334, Santa Clara, CA, 2017. USENIX Association.

[20] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of
WWW client-based traces. Technical report, Boston, MA, USA,
1995.

[21] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2), 2013.

[22] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Com-
pact and concurrent MemCache with dumber caching and smarter
hashing. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, NSDI’13, pages
371–384, Berkeley, CA, USA, 2013. USENIX Association.

[23] B. Fitzpatrick. Distributed caching with Memcached. Linux jour-
nal, 2004(124):5, 2004.

[24] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and
H. C. Li. An analysis of facebook photo caching. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 167–181, New York, NY, USA,
2013. ACM.

[25] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer. High
performance cache replacement using re-reference interval pre-
diction. In ISCA-37, 2010.

[26] S. Jiang and X. Zhang. LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. SIGMETRICS Perform. Eval. Rev., 30(1):31–42, June
2002.

[27] S. Jin and A. Bestavros. GreedyDualâĹŮ web caching algorithm:
exploiting the two sources of temporal locality in web request
streams. Computer Communications, 24(2):174–183, 2001.

[28] T. Johnson and D. Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In Proceedings of the
20th International Conference on Very Large Data Bases, VLDB
’94, pages 439–450, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[29] R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies to
improve disk system performance. Computer, 27(3):38–46, Mar.
1994.

[30] R. E. Kessler, M. D. Hill, and D. A. Wood. A comparison of trace-
sampling techniques for multi-megabyte caches. IEEE Transac-
tions on Computers, 1994.

[31] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used (LFU)
policies. SIGMETRICS Perform. Eval. Rev., 27(1):134–143, May
1999.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 401

http://redis.io/

[32] C. Li and A. L. Cox. GD-Wheel: a cost-aware replacement pol-
icy for key-value stores. In Proceedings of the Tenth European
Conference on Computer Systems, page 5. ACM, 2015.

[33] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,
D. G. Andersen, O. Seongil, S. Lee, and P. Dubey. Architecting to
achieve a billion requests per second throughput on a single key-
value store server platform. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA ’15,
pages 476–488, New York, NY, USA, 2015. ACM.

[34] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A
holistic approach to fast in-memory key-value storage. In 11th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 429–444, Seattle, WA, Apr. 2014.
USENIX Association.

[35] N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead
replacement cache. In FAST, volume 3, pages 115–130, 2003.

[36] Memcachier. www.memcachier.com.

[37] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling Memcache at Face-
book. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages
385–398, Lombard, IL, 2013. USENIX.

[38] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page re-
placement algorithm for database disk buffering. In Proceedings
of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’93, pages 297–306, New York, NY,
USA, 1993. ACM.

[39] K. Psounis and B. Prabhakar. A randomized web-cache replace-
ment scheme. In INFOCOM 2001. Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 3, pages 1407–1415. IEEE, 2001.

[40] M. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adap-
tive insertion policies for high performance caching. In ISCA-34,
2007.

[41] M. Rajashekhar and Y. Yue. Twemcache. blog.twitter.com/
2012/caching-with-twemcache.

[42] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured
Memory for DRAM-based Storage. In FAST, pages 1–16, 2014.

[43] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceedings
of the ACM Symposium on Cloud Computing, pages 1–14. ACM,
2014.

[44] D. Sanchez and C. Kozyrakis. The zcache: Decoupling ways and
associativity. In MICRO-43, 2010.

[45] P. Scheuermann, J. Shim, and R. Vingralek. A case for delay-
conscious caching of web documents. Computer Networks and
ISDN Systems, 29(8):997–1005, 1997.

[46] A. Seznec. A case for two-way skewed-associative caches. In
ACM SIGARCH Computer Architecture News, volume 21, pages
169–178. ACM, 1993.

[47] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update
and paging rules. Commun. ACM, 28(2):202–208, Feb. 1985.

[48] SNIA. MSR Cambridge Traces. http://iotta.snia.org/
traces/388, 2008.

[49] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Bal-
lani, T. Karagiannis, A. Rowstron, and T. Talpey. Software-
defined caching: Managing caches in multi-tenant data centers.
In Proceedings of the Sixth ACM Symposium on Cloud Comput-
ing, pages 174–181. ACM, 2015.

[50] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. RIPQ: Ad-
vanced photo caching on flash for Facebook. In 13th USENIX
Conference on File and Storage Technologies (FAST 15), pages
373–386, Santa Clara, CA, Feb. 2015. USENIX Association.

[51] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park. Cache
modeling and optimization using miniature simulations. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages
487–498, Santa Clara, CA, 2017. USENIX Association.

[52] R. P. Wooster and M. Abrams. Proxy caching that estimates page
load delays. In Selected Papers from the Sixth International Con-
ference on World Wide Web, pages 977–986, Essex, UK, 1997.
Elsevier Science Publishers Ltd.

[53] N. Young. The k-server dual and loose competitiveness for pag-
ing. Algorithmica, 11:525–541, 1994.

402 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

www.memcachier.com
blog.twitter.com/2012/caching-with-twemcache
blog.twitter.com/2012/caching-with-twemcache
http://iotta.snia.org/traces/388
http://iotta.snia.org/traces/388

A Age coarsening with bounded error
RankCache chooses how much to coarsen ages and how
many ages to track in order to stay within a user-specified
error tolerance. RankCache is very conservative, so that
in practice much more age coarsening and fewer ages can
be used with no perceptible loss in hit rate.
Choosing a maximum age: The effect of age coarsening
is to divide ages into equivalence classes in chunks of
COARSENESS, so that the maximum true age that can be
tracked is COARSENESS × MAX_AGE. Any events above
this maximum true age cannot be tracked. Hence, if the
access pattern is a scan at a larger reuse distance than
this, the cache will be unable to find these objects, even
with an optimal ranking metric.

If the cache fits N objects and the scan contains M
objects, then the maximum hit rate on the trace is N/M .
To keep the error tolerance below ε, we must track ages
up to M ≥ N/ε, hence:

MAX_AGE ≥ N

COARSENESS× ε
(7)

Choosing age coarsening: COARSENESS hurts per-
formance by forcing RankCache to be conservative
and keep objects around longer than necessary, until
RankCache is certain that they can be safely evicted. The
effect of large COARSENESS is to reduce effective cache
capacity, since more space is spent on objects that will be
eventually evicted. In the worst case, all evicted objects
spend an additional COARSENESS accesses in the cache,
reducing the space available for hits proportionally.

Coarsening thus “pushes RankCache down the hit rate
curve”. The lost hit rate is maximized when the hit rate
curve has maximum slope. Since optimal eviction poli-
cies have concave hit rate curves [6], the loss from coars-
ening is maximized when the hit rate curve is a straight
line. Once again, this is the hit rate curve of a scanning
pattern with uniform object size.

Without loss of generality, assume objects have
size = 1. The cache size equals the sum of the expected
resources spent on hits and evictions [8],

N = E[H] + E[E]

In the worst case, coarsening increases space spent on
evictions by

E[E′] = E[E] + COARSENNG,

so space for hits is reduced

E[H ′] = E[H]− COARSENNG

With a scan over M objects, the effect of coarsening is
thus to reduce cache hit rate by

Hit rate loss =
COARSENNG

M

This loss is maximized when M is small, but M cannot
be too small since M ≤ N leads to zero misses.

To bound this error below ε, RankCache coarsens ages
such that

COARSENNG ≤ N × ε (8)

Substituting into Eq. 7 yields

MAX_AGE ≥ 1

ε2
(9)

Implementation: Age coarsening thus depends only
on the error tolerance and number of cached objects.
RankCache monitors the number of cached objects
and, every 100 intervals, updates COARSENNG and
MAX_AGE. We find that hit rate is insensitive to these
parameters, so long as they are within the right order of
magnitude.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 403

Performance analysis of cloud applications

Dan Ardelean
Google

Amer Diwan
Google

Chandra Erdman
Google

Abstract
Many popular cloud applications are large-scale dis-
tributed systems with each request involving tens to
thousands of RPCs and large code bases. Because of
their scale, performance optimizations without action-
able supporting data are likely to be ineffective: they
will add complexity to an already complex system of-
ten without chance of a benefit. This paper describes the
challenges in collecting actionable data for Gmail, a ser-
vice with more than 1 billion active accounts.

Using production data from Gmail we show that both
the load and the nature of the load changes continuously.
This makes Gmail performance difficult to model with a
synthetic test and difficult to analyze in production. We
describe two techniques for collecting actionable data
from a production system. First, coordinated bursty trac-
ing allows us to capture bursts of events across all lay-
ers of our stack simultaneously. Second, vertical con-
text injection enables us combine high-level events with
low-level events in a holistic trace without requiring us to
explicitly propagate this information across our software
stack.

1 Introduction

Large cloud applications, such as Facebook and Gmail,
serve over a billion active users [4, 5]. Performance of
these applications is critical: their latency affects user
satisfaction and engagement with the application [2, 26]
and their resource usage determines the cost of running
the application. This paper shows that understanding
and improving their resource usage and latency is diffi-
cult because their continuously varying load continually
changes the performance characteristics of these applica-
tions.

Prior work has shown that as the user base changes, the
load on cloud applications (often measured as queries-
per-second or QPS) also changes [28]. We show, using

data from Gmail, that the biggest challenges in analyzing
performance come not from changing QPS but in chang-
ing load mixture. Specifically, we show that the load on
a cloud application is a continually varying mixture of
diverse loads, some generated by users and some gen-
erated by the system itself (e.g., essential maintenance
tasks). Even if we consider only load generated by users,
there is significant variation in load generated by differ-
ent users; e.g., some user mailboxes are four orders of
magnitude larger than others and operations on larger
mailboxes are fundamentally more expensive than those
on smaller mailboxes.

This time-varying mixture of load on our system has
two implications for performance analysis. First, to de-
termine the effect of a code change on performance, we
must collect and analyze data from many points in time
and thus many different mixtures of load; any single
point in time gives us data only for one mixture of load.
Second, to reproduce a performance problem we may
need to reproduce the combination of load that led to the
performance problem in the first place. While sometimes
we can do this in a synthetic test, often times we need to
collect and analyze data from a system serving real users.

Doing experiments in a system serving real users is
challenging for two reasons. First, since we do not con-
trol the load that real users generate, we need to do each
experiment in a system serving a large (tens of millions
users) random sample of users to get statistically signifi-
cant results. Second, since experiments in a system serv-
ing real users is inherently risky (a mistake can nega-
tively impact users) we use statistics whenever possible
to predict the likely outcome of an experiment before ac-
tually undertaking the experiment. We show that this is
not without its pitfalls: sometimes the distribution of the
data (and thus the appropriate statistical method) is not
obvious.

To collect rich performance data from a system serv-
ing real users we have developed two techniques.

First, coordinated bursty tracing collects coordinated

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 405

Figure 1: Continuously changing queries per second

bursts of traces across all software layers without re-
quiring explicit coordination. Unlike traditional sam-
pling or bursty approaches which rely on explicitly main-
tained counters [19, 6] or propagation of sampling deci-
sions [27, 22], coordinated bursty tracing uses time to
coordinate the start and end of bursts. Since all layers
collect their bursts at the same time (clock drift has not
been a problem in practice), we can reason across the en-
tire stack of our application rather than just a single layer.
By collecting many bursts we get a random sampling of
the mix of operations which enables us to derive valid
conclusions from our performance investigations.

Second, since interactions between software layers are
responsible for many performance problems, we need to
be able to connect trace events at one layer with events
at another. Vertical context injection solves this problem
by making a stylized sequence of innocuous system calls
at each high-level event of interest. These system calls
insert the system call events into the kernel trace which
we can analyze to produce a trace that interleaves both
high and low-level events. Unlike prior work (e.g., [27]
or [15]) our approach does not require explicit propaga-
tion of a trace context through the layers of the software
stack.

To illustrate the above points, this paper presents data
from Gmail, a popular email application from Google.
However, the authors have used the techniques for many
other applications at Google, particularly Google Drive;
the lessons in this paper apply equally well to those other
applications.

2 Our challenge: constantly varying load

The primary challenge in performance analysis of cloud
applications stems from their constantly varying load.
Figure 1 shows scaled queries per second (QPS) across
thousands of processes serving tens of millions of users
over the course of a week for one deployment of Gmail.
By “scaled” we mean that we have multiplied the actual
numbers by a constant to protect Google’s proprietary
information; since we have multiplied each point by the

Figure 2: Continuously changing response size

Figure 3: Continuously changing user behavior

same constant and each graph is zero based, it allows rel-
ative comparisons between points or curves on the same
graph.1 The time axes for all graphs in this paper are in
US Pacific time and start on a Sunday unless the graph
is for a one-off event in which case we pick the time
axis most suitable for the event. We see that load on our
system changes continuously: from day to day and from
hour to hour by more than a factor of two.

While one expects fluctuations in QPS (e.g., there are
more active users during the day than at night), one
does not expect the mix of requests to fluctuate signif-
icantly. Figure 2 shows one characteristic of requests,
the response size per request, over the course of a week.
Figure 2 shows that response size per request changes
over the course of the week and from hour to hour (by
more than a factor of two) which indicates that the actual
mix of requests to our system (and not just their count)
changes continuously.

The remainder of this section explores the sources of
variation in the mix of requests.

406 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.1 Variations in rate and mix of user visi-
ble requests (UVR)

Figure 3 gives the response size per request (upper curve)
and QPS (lower curve) for “user visible requests” (UVR
for short) only. By UVR we mean requests that users ex-
plicitly generate (e.g., by clicking on a message), back-
ground requests that the user’s client generates (e.g.,
background sync by the IMAP client), and message de-
livery.

From Figure 3 we see that, unlike Figure 1, the QPS
curve for UVR exhibits an obvious diurnal cycle; during
early morning (when both North America and Europe are
active) we experience the highest QPS, and the QPS grad-
ually ramps up and down as expected. Additionally we
see higher QPS on weekdays compared to weekends.

We also see that the bytes per response in Figure 3 is
flatter than in Figure 2: for UVR, we see that the high-
est observed response size per request is approximately
20% higher than the lowest observed response size per
request. In contrast, when we consider all requests (and
not just UVR), the highest response size is more than
100% higher than the lowest (Figure 2).

While a 20% variation is much smaller than a 100%
variation, it is still surprising: especially given that the
data is aggregated over tens of millions of users, we ex-
pect that there would not be much variation in average
response size over time. We have uncovered two causes
for this variation.

First, the mix of mail delivery (which has a small re-
sponse size) and user activity (which usually has a larger
response size) varies over the course of the day which in
turn affects the average response size per request. This
occurs because many bulk mail senders send bursts of
email at particular times of the day and those times do not
necessarily correlate with activity of interactive users.

Second, the mix of user interactive requests and sync
requests varies over the course of the day. For exam-
ple, Figure 4 shows the scaled ratio of UVR requests
from a web client to UVR requests from an IMAP client
(e.g., from an iOS email application or from Microsoft
Outlook). IMAP requests are mostly synchronization re-
quests (i.e., give me all messages in this folder) while
web client requests are a mix of interactive requests (i.e.,
user clicks on a message) and prefetch requests. Thus,
IMAP requests tend to have a larger response size com-
pared to interactive requests. We see that this ratio too
exhibits a diurnal cycle indicating that over the course
of the day the relative usage of different email clients
changes (by more than a factor of three), and thus the re-
sponse size per request also changes. This comes about

1All graphs in this paper use such scaling but different graphs may
use different scaling to aid readability and thus absolute values are not
comparable across graphs.

Figure 4: Scaled fraction of web client requests to IMAP
requests

due to varying email client preferences; for example one
user can use a dedicated Gmail application while another
can use a generic IMAP-based email application on a mo-
bile device).

In summary, even if we consider only UVR, both the
queries per second and mix of requests changes hour to
hour and day to day.

2.2 Variations in rate and mix of essential
non-UVR work

In addition to UVR requests which directly provide ser-
vice to our users, our system performs many essential
tasks:

• Continuous validation of data. Because of the scale
of our system, any kind of failure that could happen
does actually happen. Besides software failures, we
regularly encounter hardware errors (e.g., due to an
undetected problem with a memory chip). To pre-
vent these failures from causing widespread corrup-
tion of our data, we continuously check invariants
of the user data. For example, if our index indicates
that N messages contain a particular term, we check
the messages to ensure that those and only those
messages contain the term. As another example, we
continuously compare replicas of each user’s data to
detect any divergence between the replicas.

• Software updates. Our system has many interact-
ing components and each of them has its own up-
date cycle. Coordinating the software updates of all
components is not only impractical but undesirable:
it is invaluable for each team to be able to update
its components when necessary without coordina-
tion with other teams. Rather than using dynamic
software updating [18] which attempts to keep each
process up while updating it, we use a simpler ap-
proach: we push software updates by restarting a
few processes at a time; our system automatically

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 407

Figure 5: Scaled CPU usage of UVR and non-UVR work

moves users away from servers that are being up-
dated to other servers and thus our users get unin-
terrupted service.

• Repairs. Hardware and software bugs can and do
happen. For example, we once had a bug in the
message tokenizer that incorrectly tokenized certain
email addresses in the message. This bug affected
the index and thus users could not search for mes-
sages using the affected email addresses. To fix this
problem, we had to reindex all affected messages
using a corrected tokenizer. Given the scale of our
system, such fixes can take weeks or longer to com-
plete and while the fixes are in progress they induce
their own load on the system.

• Data management. Gmail uses Bigtable as its un-
derlying storage [11, 10]. Bigtable maintains stacks
of key-value pairs and periodically compacts each
stack to optimize reads and to remove overwritten
values. This process is essential for the resource
usage and performance of our system. These com-
pactions occur throughout the day and are roughly
proportional to the rate of updates to our system.

As with UVR work, the mix of non-UVR work also
changes continuously. When possible we try to schedule
non-UVR work when the system is under a low UVR load:
this way we not only minimize impact on user-perceived
performance but are also able to use resources reserved
for UVR that would otherwise go unused (e.g., during
periods of low user activity).

Figure 5 shows the scaled CPU usage of UVR work
(lowest line), non-UVR work (middle line) and total
scaled CPU consumed by the email backend (top line).
From this we see that UVR directly consumes only about
20% of our CPU; indirectly UVR consumes more CPU be-
cause it also induces data management work. Thus, fo-
cusing performance analysis on just the UVR or just the
non-UVR work alone is inadequate for understanding the
performance of our system.

Figure 6: CPU usage goes up globally (circled) after a
natural event

2.3 Variations due to one-off events

In addition to UVR and essential non-UVR work, our sys-
tem also experiences one-off events. We cannot plan for
one-off events: they may come from hardware or soft-
ware outages or from work that must be done right away
(e.g., a problem may require us to move the users served
by one datacenter into other datacenters).

Figure 6 shows a 20% increase, on average, in CPU
usage (circled) of our system after lightning struck
Google’s Belgian datacenter four times and potentially
caused corruption in some disks [3]. Gmail dropped
all the data in the affected datacenter because it could
have been corrupted and automatically reconstructed
data from a known uncorrupted source in other datacen-
ters; all of this without the users experiencing any outage
or issues with their email. Consequently, during the re-
covery period after this event, we experienced increased
CPU usage in datacenters that were not directly affected
by the event; this is because they were now serving more
users than before the event and because of the work re-
quired to reconstruct another copy of the user’s data.

One-off events can also interact with optimizations.
For example, we wanted to evaluate a new policy for us-
ing hedged requests [13] when reading from disk. Our
week-long experiment clearly showed that this change
was beneficial: it reduced the number of disk operations
without degrading latency.

Unfortunately, we found that this optimization inter-
acted poorly with a datacenter maintenance event which
temporarily took down a percentage of the disks for a
software upgrade. Figure 7 shows the scaled 99th per-
centile latency of a critical email request with and with-
out our optimization during a maintenance event. We see
that during the events, our latency nearly tripled, which
of course was not acceptable.

The latency degradation was caused by a bug in our
heuristic for deciding whether to redirect a read to an-
other copy of the data: our heuristic was taking too long
to blacklist the downed disks and thus rather than redi-

408 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: Scaled latency during a datacenter maintenance
event

recting the read to another copy, it was waiting for the
downed disks until the request would time out. Fixing
this bug enabled our optimization to save resources with-
out degrading latency even during maintenance events.

In summary, the resource usage during one-off events
is often different from resource usage in the stable state.
Since one-off events are relatively rare (affect each dat-
acenter every few months) they are easy to miss in our
experiments.

2.4 Variation in load makes it difficult to
use a synthetic environment

The superimposition of UVR load, non-UVR load, and
one-off events results in a complex distribution of la-
tency and resource usage, often with a long-tail. When
confronted with such long-tail performance puzzles, we
first try to reproduce them with synthetic users: if we
can do this successfully, it simplifies the investigation:
with synthetic users we can readily add more instrumen-
tation, change the logic of our code, or rerun operations
as needed. With real users we are obviously limited be-
cause we do not want our experiments to compromise our
users’ data in any way and because experimenting with
real users is much slower than with synthetic users: be-
fore we can release a code change to real users it needs
to undergo code reviews, testing, and a gradual rollout
process.

Gmail has a test environment that brings up the entire
software stack and exercises it with synthetic mailboxes
and load. We have modeled synthetic users as closely as
we can on real users: the mailbox sizes of synthetic users
have the same distribution as the mailbox sizes of real
users and the requests from synthetic users is based on a
model from real users (e.g., same distribution of interar-
rival times, same mixture of different types of requests,
and similar token frequency).

Figure 8 compares the latency of a common email op-
eration for real users to the latency for synthetic users.

Figure 8: Latency for synthetic users versus real users at
the 50th, 95th, and 99th percentiles

We collected all data from the same datacenter (different
datacenters may use different hardware and thus are not
always comparable). The dotted lines in Figure 8 give the
latency from the synthetic load and the solid lines display
the latency from the real load at various percentiles.

Despite our careful modeling, latency distribution in
our test environment is different (and better) than latency
distribution of real users. As discussed in Section 2.1,
the continuously varying load is difficult to model in any
synthetic environment and large distributed systems in-
corporate many optimizations based on empirical obser-
vations of the system and its users [24]; it is therefore
not surprising that our test environment yields different
results from real users. Even then, we find our syn-
thetic environment to be an invaluable tool for debug-
ging many egregious performance inefficiencies. While
we cannot directly use the absolute data (e.g., latencies)
we get from our synthetic environment, the relationships
are often valid (e.g., if an optimization improves the la-
tency of an operation with synthetic user it often does so
for real users but the magnitude of the improvement may
be different).

For most subtle changes though, we must run experi-
ments in a live system serving real users. An alternate,
less risky, option is to mirror live traffic to a test environ-
ment that incorporates the changes we wish to evaluate.
While we have tried mirroring in the past, it is difficult
to get right: if we wait for the mirrored operation to fin-
ish (or at least get queued to ensure ordering), we de-
grade the latency of user-facing operations; if we mirror
operations asynchronously, our mirror diverges from our
production system over time.

2.5 Effect of continuously-varying load
The continuously-varying load mixtures affect both the
resource usage and latency of our application. For exam-
ple, Figure 9 shows two curves: the dotted curve gives
the scaled QPS to the Gmail backend and the solid line
gives the 99th percentile latency of a particular operation

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 409

Figure 9: Changing load and changing latency

to the Gmail backend across tens of millions of users:
this operation produces the list of message threads in a
label (such as inbox). Since we are measuring the latency
of a particular operation and our sample is large, we do
not expect much variation in latency over time. Surpris-
ingly, we see that latency varies by more than 50% over
time as the load on the system changes. Furthermore the
relationship between load and latency is not obvious or
intuitive: e.g., the highest 99th percentile latency does
not occur at the point that QPS is at its highest and some-
times load and latency appear negatively correlated.

3 Our approach

Prior work has shown that even understanding the perfor-
mance of systems with stable load (e.g., [23]) is difficult;
thus, understanding the performance of a system with
widely varying load (Section 2) will be even harder. In-
deed we have found that even simple performance ques-
tions, such as “Does this change improve or degrade la-
tency?” are difficult to answer. In this section we de-
scribe the methodologies and tools that we have devel-
oped to help us in our performance analysis.

Since we cannot easily reproduce performance phe-
nomena in a synthetic environment, we conduct most of
our experiments with live users; Section 3.1 explains how
we do this. Section 3.2 describes how we can sometimes
successfully use statistics to predict the outcome of ex-
periments and the pitfalls we encounter in doing so. Sec-
tion 3.3 describes the two contexts in which we need to
debug the cause of slow or resource intensive operations
in a system under constantly varying load.

3.1 Running experiments in a live serving
system

As discussed in Section 2.4, we often need to do our per-
formance analysis on systems serving live users. This
section describes and explains our approach.

To conduct controlled experiments with real users we

(a) 100K users

(b) X0M users

Figure 10: Latency comparison: (a) 100K users, (b)
X0M users

partition our users (randomly) and each experiment uses
one partition as the test and the other as the control. The
partitions use disjoined sets of processes: i.e., in the non-
failure case, a user is served completely by the processes
in their partition. Large partitions enable us to employ
the law of large numbers to factor out differences be-
tween two samples of users. We always pick both the
test and control in the same datacenter to minimize the
difference in hardware between test and control and we
have test and control pairs in all datacenters.

Figure 10(a) shows scaled 50th, 95th and 99th per-
centile latency for two partitions, each serving 100K ac-
tive users. Each partition has the same number of pro-
cesses and each process serves the same number of ran-
domly selected users. We expect the two partitions to
have identical latency distributions because neither is
running an experiment but we see that this is not the
case. For example, the 95th percentiles of the two par-
titions differ by up to 50% and often differ by at least
15%. Thus, 100K randomly selected users is clearly not
enough to overwhelm the variation between users and
operations.

Figure 10(b) shows scaled 50th, 95th, and 99th per-
centile latency for two partitions, each serving tens of
millions users. With the exception of a few points where
the 95th percentiles diverge, we see that these partitions

410 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

are largely indistinguishable from each other; the differ-
ences between the percentiles rarely exceed 1%.

Given that many fields routinely derive statistics from
fewer than 100K observations, why do our samples dif-
fer by up to 50% at some points in time? The diversity of
our user population is responsible for this: Gmail users
exhibit a vast spread of activity and mailbox sizes with a
long-tail. The 99th percentile mailbox size is four orders
of magnitude larger than the median. The resource usage
of many operations (such as synchronization operations
and search) depend on the size of the mailbox. Thus, if
one sample of 100K users ends up with even one more
large user compared to another sample, it can make the
first sample appear measurably worse. With larger sam-
ples we get a smaller standard deviation (by definition) in
the distribution of mailbox sizes and thus it is less likely
that two samples will differ significantly by chance. Intu-
itively, we need a greater imbalance (in absolute terms)
in mailbox sizes as samples increase in size before we
observe a measurable difference between the samples.

3.2 Using statistics to determine the impact
of a change

Since a change may affect system performance differ-
ently under different load, we:

• Collect performance data from a sample of produc-
tion. A large sample (tens of millions of randomly
chosen users) makes it likely that we see all of the
UVR behaviors.

• Collect performance data over an entire week and
discount data from holiday seasons which tradition-
ally have low load. By collecting data over an entire
week we see a range of likely mixtures of UVR and
non-UVR loads.

• Collect data from “induced” one-off events. For ex-
ample, we can render one cluster as “non-serving”
which forces other clusters to take on the additional
load.

• Compare our test to a control at the same time and
collect additional metrics to ensure that there was
no other factor (e.g., a one-off event or the residual
effects of a previous experiment) that renders the
comparison invalid.

Once we have the data, we use statistical methods to
analyze it. Unfortunately, the choice of the statistical
method is not always obvious: most methods make as-
sumptions about the data that they analyze (e.g., the dis-
tribution or independence of the data). Suppose, for ex-
ample, that we want to test for statistically significant dif-
ferences between latency in two partitions of randomly

Figure 11: CPU of processes running the same binary has
a near-normal distribution

selected users (as illustrated in Figure 10). Because
the Kolmogorov-Smirnov (K-S) test is non-parametric
(without distributional assumptions) it seems like a good
candidate to use. However, due to the scale of the ap-
plication, we store only aggregate latency at various per-
centiles rather than latency of each operation. Apply-
ing the K-S test to the percentiles (treating the repeated
measurements over time as independent observations)
would violate the independence assumption and inflate
the power of the test. Any time we violate the assump-
tions of a statistical method, the method may produce
misleading results (e.g., [9]).

This section gives two real examples: one where sta-
tistical modeling yields a valid outcome and one where it
surprisingly does not.

3.2.1 Example 1: Data is near normal

A critical binary in our email system runs with N pro-
cesses, each with C CPU cores serving U users. We
wanted to deploy processes for 2U users but without us-
ing 2C CPU (our computers did not have 2C CPU). Since
larger processes allow for more pooling of resources, we
knew that the larger process would not need 2C CPU; but
then how much CPU would it need?

Looking at the distribution of the CPU usage of the
N processes, we observed that (per the central limit the-
orem) they exhibited a near normal distribution. Thus,
at least in theory, we could calculate the properties of
the larger process (2N total processes) using the stan-
dard method for adding normal distributions. Concretely,
when adding a normal distribution to itself, the resulting
mean is two times the mean of the original distribution
and the standard deviation is

√
2 of the standard devia-

tion of the original distribution. Using this method we
predicted the resources needed by the larger process and
deployed it using the prediction.

The solid lines in Figure 11 show the observed 50th,
95th, and 99th percentiles of scaled CPU usage of the
larger process using a sample of 3,000 processes. The

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 411

Figure 12: Time-shifted resource usage

dashed lines display the percentiles predicted by the sta-
tistical model. We see that the dashed and solid lines are
close to each other (usually within 2%) at the 50th and
95th percentiles but the observed 99th percentile is al-
ways larger than the normal 99th percentile, usually by
10 to 20%. With the exception of the tail, our statisti-
cal model effectively predicted the resource needs of the
larger process.

3.2.2 Example 2: Data is near normal but not inde-
pendent

Our email application is made up of many different ser-
vices which communicate with each other using RPC
calls. Similar to the pooling in the previous section, we
wanted to explore if allowing pairs of communicating
processes (one from the higher-level binary and one for
the lower-level binary) to share CPU would be beneficial.

The dashed (“Normal”) lines in Figure 12 show the
50th, 95th, and 99th percentiles of scaled CPU usage that
we expected when we shared resources between pairs of
communicating processes. The solid (“Observed”) lines
show the actual percentiles of scaled CPU usage that we
observed for the paired processes. To our surprise, the
actual CPU usage is lower than the modeled CPU usage
by up to 25% at the 95th and 99th percentiles and by
50% to 65% at the median. Clearly, our statistical model
is incorrect.

On further investigation we determined that the CPU
usage of the two communicating processes is not inde-
pendent of each other: the two processes actually exhibit
“time-shifted” CPU usage: when the higher-level process
makes an RPC call to the lower-level process, it waits
for the response and thus consumes no CPU (for that re-
quest); when the lower-level process returns a response
it stops using CPU (for that request) and the higher-level
process then becomes active processing the response.
Thus, because these two distributions are not indepen-
dent we cannot add them together.

3.3 Temporal and operation context

Section 3.2 shows how we approach establishing the im-
pact of a change to the live system. Before we can de-
termine what changes we need for a cloud application
to become more responsive or cost effective, we need to
understand why a request to a cloud application is slow
or expensive. To achieve that understanding, we need to
consider two contexts.

First, because cloud applications experience continu-
ously varying load and load mixture (Section 2) we need
to consider the temporal context of the request. By “tem-
poral context” we mean all (possibly unrelated) concur-
rent activity on computers involved in serving our re-
quest throughout the time required to complete the re-
quest. Unrelated activity may degrade the performance
of our request by, for example, causing cache evictions.
While in our multi-tenant environment (i.e., many differ-
ent applications share each computer) the operation con-
text could include activity from processes uninvolved in
serving our request, in practice we have found that this
rarely happens: this is because each process runs in a
container that (for the most part) isolates it from other
processes running on the same computer. Thus, we are
only interested in temporal context from processes that
are actually involved in serving our request.

Second, a single request to a cloud application can in-
volve many processes possibly running on different com-
puters [21]. Furthermore, each process runs a binary
with many software layers, often developed by indepen-
dent teams. Thus a single user request involves remote-
procedure calls between processes, functional calls be-
tween user-level software layers, and system calls be-
tween user-level software and the kernel. A request may
be slow (expensive) because (i) a particular call is unrea-
sonably slow (expensive), (ii) arguments to a particular
call causes it to be slow (expensive), or (iii) the individ-
ual calls are fast but there is an unreasonably large num-
ber of them which adds up to a slow (expensive) request.
Knowing the full tree of calls that make up an operation
enables us to tease apart the above three cases. We call
this the operation context because it includes the calls
involved in a request along with application-level anno-
tations on each call.

We now illustrate the value of the two contexts with a
real example. While attempting to reduce the CPU reser-
vation for the backend of our email service, we noticed
that even though its average (over 1 minute) utilization
was under 50%, we could not reduce its CPU reservation
even slightly (e.g., by 5%) without degrading latency.
The temporal context showed that RPCs to our service
came in bursts that caused queuing even though the av-
erage utilization was low. The full operation context told
us what operations were causing the RPCs in the bursts.

412 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

By optimizing those operations (essentially using batch-
ing to make fewer RPCs per operation) we were able to
save 5% CPU for our service without degrading latency.

3.3.1 Coordinated bursty tracing

The obvious approach for using sampling yet getting the
temporal context is to use bursty tracing [6, 19]). Rather
than collecting a single event at each sample, bursty trac-
ing collects a burst of events. Prior work triggers a burst
based on a count (e.g., Arnold et al. trigger a burst on the
nth invocation of a method). This approach works well
when we are only interested in collecting a trace at a sin-
gle layer, it does not work across processes or across lay-
ers. For example, imagine we collect a burst of requests
o1, · · · ,on arriving at a server O and each of these opera-
tions need to make an RPC to a service S . For scalabil-
ity, S itself is comprised of multiple servers s1, · · · ,sm
which run on many computers (i.e., it is made up of
many processes each running on a different computer)
and the different oi may each go to a different server in
the s1, · · · ,sm set. Thus, a burst of requests does not give
us temporal context on any of the s1, · · · ,sm servers. As
another example, the nth invocation of a method will not
correspond to the nth invocation of a system call and thus
the bursts we get at the method level and at the kernel
level will not be coordinated.

We can address the above issues with bursty tracing
by having each layer (including the kernel) continuously
record all events in a circular buffer. When an event of
interest occurs, we save the contents of the buffers on all
processes that participated in the event. In practice we
have found this approach to be problematic because it
needs to identify all processes involved in an event and
save traces from all of these processes before the process
overwrites the events. Recall that the different processes
often run on different computers and possibly in different
datacenters.

To solve the above limitations of bursty tracing, we use
coordinated bursty tracing which uses wall-clock time
to determine the start and end of a burst. By “coordi-
nated” we mean that all computers and all layers collect
the burst at the same time and thus we can simultaneously
collect traces from all the layers that participated in ser-
vicing a user request. Since a burst is for a contiguous
interval of time, we get the temporal context. Since we
are collecting bursts across computers, we can stitch to-
gether the bursts into an operation context as long as we
enabled coordinated bursty tracing on all of the involved
computers.

We specify our bursts using a burst-config which is a
64-bit unsigned integer. The burst-config dictates both
the duration and the period of the burst. Most commonly
it is of the form:

(1)m(0)n (in binary)

i.e., it is m 1s followed by n 0s (in base 2). Each process
and each layer performs tracing whenever:

burst-config & WallTimeMillis() == burst-
config

Intuitively, each burst lasts for 2nms and there is one
burst every 2n+mms. For example if we want to trace
for 4ms every 32ms we would use the burst-config of
11100 (in base 2). Unlike common mechanisms for
bursty tracing, this mechanism does not require the appli-
cation to maintain state (e.g., count within a burst [6, 19])
or for the different processes to communicate with each
other to coordinate their bursts; instead, it can control the
bursts using a cheap conditional using only local infor-
mation (i.e., wall-clock time).

Collecting many bursts spread out over a period of
time ensures that we get the complete picture: i.e., by
selecting an appropriate burst-config we can get bursts
spread out over time and thus over many different loads
and load mixes.

There are five challenges in using coordinated bursty
tracing.

First, bursty tracing assumes that clocks across differ-
ent computers are aligned. Fortunately because of true
time [12] clock misalignment is not a problem for us in
practice.

Second, we need to identify and enable coordinated
bursty tracing on all processes involved in our request;
otherwise we will get an incomplete operation context.
Because we partition our users (Section 3.1) and pro-
cesses of a partition only communicate with other pro-
cesses of the same partition (except in the case of failure
handling) we can readily identify a set of processes for
which we need to enable coordinated bursty tracing to
get both the operation and the temporal context of all re-
quests by users in the partition.

Third, since coordinated bursty tracing is time based
(and not count based as in prior work on bursty tracing), a
burst may start or end in the middle of a request; thus we
can get incomplete data for such requests. To alleviate
this, we always pick a burst period that is at least 10 times
the period of the request that we are interested in. This
way, while some requests will be cut off, we will get full
data for the majority of requests within each burst.

Fourth, any given burst may or may not actually con-
tain the event of interest (e.g., a slow request); we need to
search through our bursts to determine which ones con-
tain interesting events. Sometimes this is as simple as
looking for requests of a particular type that take longer
than some threshold. Other times, the criteria is more
subtle: e.g., we may be interested in requests that make
at least one RPC to service S and S returns a particu-
lar size of a response. Thus, we have built tools that use

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 413

temporal logic to search over the bursts to find interesting
operations [25].

Fifth, coordinated bursty tracing, and really any trac-
ing, can itself perturb system behavior. If severe enough,
the perturbation can mislead our performance analysis.
The perturbation of coordinated bursty tracing depends
on the traces that we are collecting; since traces for dif-
ferent layers have vastly different costs, we cannot quan-
tify the perturbation of coordinated bursty tracing in a
vacuum. Instead, we always confirm any findings with
corroborating evidence or further experiments. In prac-
tice we have not yet encountered a situation where the
perturbation due to bursty tracing was large enough to
mislead us.

We use coordinated bursty tracing whenever we need
to combine traces from different layers to solve a per-
formance mystery. As a real example, cache traces at
our storage layer showed that the cache was getting re-
peated requests for the same block in a short (millisec-
onds) time interval. While cache lookups are cheap, our
cache stores blocks in compressed form and thus each
read needs to pay the price of uncompressing the block.
For efficiency reasons, the cache layer uses transient file
identifiers and an offset as the key; thus logs of cache
access contain only these identifiers and not the file sys-
tem path of the file. Without knowing the path of the
file, we did not know what data our application was re-
peatedly reading from the cache (the file path encodes
the type of data in the file). The knowledge of the file
path was in a higher level trace in the same process and
the knowledge of the operation that was resulting in the
reads was in another process. On enabling coordinated
bursty tracing we found that most of the repeated reads
were of the index block: a single index block provides
mapping for many data blocks but we were repeatedly
reading the index block for each data block. The prob-
lem was not obvious from the code structure: we would
have to reason over a deeply nested loop structure spread
out over multiple modules to find the problem via code
inspection alone. The fix improved both the long-tail la-
tency and CPU usage of our system.

3.3.2 Vertical context injection

Section 3.3.1 explores how we can collect a coordinated
burst across layers. Since a burst contains traces from
different layers, we need to associate events in one trace
with events in another trace. More concretely, we would
like to project all of the traces from a given machine so
we get a holistic trace that combines knowledge from all
the traces.

Simply interleaving traces based on timestamps or
writing to the same log file is not enough to get a holistic
trace. For example by interleaving RPC events with ker-

nel events we will know that certain system calls, con-
text switches, and interrupts occurred while an RPC was
in progress. However, we will not know if those system
calls were on behalf of the RPC or on behalf of some un-
related concurrent work.

The obvious approach to combining high- and low-
level traces is to propagate the operation context through
all the layers and tag all trace events with it. This ap-
proach is difficult because it requires us to propagate the
context through many layers, some of which are not even
within our direct control (e.g., libraries that we use or the
kernel). We could use dynamic instrumentation tools,
such as DTrace [1], to instrument all code including ex-
ternal libraries. This approach is unfortunately unsuit-
able because propagating the operation context through
layers can require non-trivial logic; thus even if we could
do this using DTrace, the code with the instrumentation
would be significantly different from the code that we
have reviewed and tested. Using such untested and un-
reviewed code for serving real user requests could po-
tentially compromise our user’s data and thus we (as a
policy) never do this.

Our approach instead relies on the insight that any
layer of the software stack can directly cause kernel-level
events by making system calls. By making a stylized se-
quence of innocuous system calls, any layer can actually
inject information into the kernel traces. 2

For example, let’s suppose we want to inject the RPC-
level event, “start of an RPC,” into a kernel trace. We
could do this as follows:

syscall(getpid, kStartRpc);
syscall(getpid, RpcId);

The argument to the first getpid (kStartRpc) is a constant
for “start of RPC.” getpid ignores all arguments passed
to it, but the kernel traces still record the value of those
arguments. The argument to the second getpid identifies
the RPC that is starting. Back-to-back getpid calls (with
the first one having an argument of kStartRpc) are un-
likely to appear naturally and thus the above sequence
can reliably inject RPC start events into the kernel trace.

When we find the above sequence in the kernel trace
we know that an RPC started but more importantly we
know the thread on which the RPC started (the kernel
traces contain the context switch events which enable us
to tell which thread is running on which CPU). We can
now tag all system calls on the thread with our RPC until
either (i) the kernel preempts the thread, in which case
the thread resumes working on our RPC when the kernel
schedules it again, or (ii) the thread switches to working
on a different CPU (which we again detect with a pattern
of system calls).

2We discovered this idea in collaboration with Dick Sites at Google.

414 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We use vertical context injection for other high-level
events also. For example, by also injecting “just acquired
a lock after waiting for a long time” into the kernel trace,
we can uncover exactly what RPC was holding the lock
that we were waiting on; it will be the one that invokes
sched wakeup to wake up the blocked futex call.

Implementing the above approach for injecting RPC
and lock-contention information into our kernel traces
took less than 100 lines of code. The analysis of the ker-
nel traces to construct the holistic picture is of course
more complex but this code is offline; it does not add any
work or complexity to our live production system. In
contrast, an approach that propagated context across the
layers would have been far more intrusive and complex.

We use vertical context injection as a last resort: its
strength is that it provides detailed information that fre-
quently enables us to get to the bottom of whatever per-
formance mystery we are chasing; its weakness is that
these detailed traces are large and understanding them is
complex.

As a concrete example, we noticed that our servers had
low CPU utilization: under 50%. When we reduced the
CPU per server (to increase utilization and save CPU) the
latency of our service became worse. This indicated that
there were micro bursts where the CPU utilization was
higher than 50%; reducing the CPU per server was neg-
atively affecting our micro bursts and thus degrading la-
tency. We used vertical context injection along with co-
ordinated bursty tracing to collect bursts of kernel traces.
On analyzing the traces we found that reading user prop-
erties for each user request was responsible for the bursts;
for each user request we need a number of properties and
each property is small: e.g., one property gives the num-
ber of bytes used by the user. Rather than reading all
properties at once, our system was making a separate
RPC for each property which resulted in bursty behav-
ior and short (a few milliseconds) CPU bursts. Reading
all properties in a single RPC improved both the CPU and
latency of our service. Vertical context injection enabled
us to determine that the work in the bursts was related to
servicing the RPCs involved in reading the properties.

4 Related work

We now review related work in the areas of analyzing
the performance of cloud applications and performance
tools.

Magpie [7, 8] collects data for all requests (thus
the temporal context) and stitches together information
across multiple computers to provide the operation con-
text. Because Magpie collects data for all requests it
does not scale to billions of user requests per day; Dap-
per and Canopy (discussed below) address this issue by
using sampling.

Dapper [27] propagates trace identifiers to produce an
RPC tree for an operation. We use Dapper extensively
in our work because Dapper tells us exactly what RPCs
execute as part of an operation and the performance data
pertinent to the RPCs. By default Dapper performs ran-
dom sampling: e.g., it may sample 1 in N traces. While
this gives us the operation context, it does not give us
the temporal context. Thus, we use Dapper in conjunc-
tion with coordinated bursty tracing and vertical context
injection.

Canopy [22] effectively extends Dapper by provid-
ing APIs where any layer can add new events to a
Dapper-like trace and users can use DSL to extend traces.
Canopy’s solution to combining data from multiple lay-
ers is to require each layer to use a Canopy API; while
this is effective for high-level software layers, it may be
unsuitable for low-level libraries and systems (e.g., OS
kernel) because it creates a software dependency from
critical systems software on high-level APIs.

Xtrace [15] uses auxiliary information (X-Trace Meta-
data) to tie together events that belong to the same oper-
ation. Thus, one could use Xtrace to tie together high-
level RPC events and kernel-level events; however, un-
like vertical context injection, Xtrace requires each layer
to explicitly propagate the metadata across messages.

Jalaparti et al. [21] discuss the variations in latency
that they observe in Bing along with mitigation strate-
gies that involve trading off accuracy and resources with
latency. Unlike our work, Jalaparti et al. do not explore
the effects of time-varying load on performance.

Vertical profiling [17] recognizes the value of the oper-
ation context and subsequent work extends vertical pro-
filing to combine traces from multiple layers using trace
alignment [16]. Unlike our work, this work only consid-
ers the operation context within a single Java binary.

5 Discussion

This paper shows that for Gmail the load varies continu-
ally over time; these variations are not just due to changes
in QPS; the actual nature of the load changes over time
(for example, due to the the mix of IMAP traffic and web
traffic). These variations create challenges for evaluating
the performance impact of code changes. Concretely, (i)
we cannot compare before-after performance data at dif-
ferent points in time and instead we run the test and con-
trol experiments simultaneously to ensure that they expe-
rience comparable loads; (ii) it is difficult to model this
changing load in a synthetic environment and thus we
conduct our experiments in a system serving live users;
and (iii) we need large sample sizes (millions of users) to
get statistically significant results.

We can take each source of variation described in this
paper and devise a fix for it. For example, by isolating

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 415

IMAP and web traffic in disjoint services we circumvent
the variation due to different mixes of IMAP and web
traffic over the course of time. Unfortunately, such an
approach does not work in general: there are many other
causes of load variation besides the ones that we have
described and fixes for each of the many causes becomes
untenable quickly. The remainder of this section dis-
cusses some other sources of variation and in doing so
generalizes the contributions of this paper.

The continuously changing software [14] causes per-
formance to vary. A given operation to a Cloud applica-
tion may involve hundreds of RPCs in tens of services;
for example a median request to Bing involves 15 stages
processed across 10s to 1000s of servers [21]. Different
teams maintain and deploy these stages independently.
To ensure the safety of the deployed code, we cannot
deploy new versions of software atomically even if the
number of instances is small enough to allow it (e.g.,
[20]). Instead we deploy it in a staged fashion: e.g., first
we may deploy a software only to members of the team,
then to random users at Google, then to small sets of ran-
domly picked external users, and finally to all users. As a
result, at any given time many different versions of a soft-
ware may be running. Two identical operations at differ-
ent points in time will often touch different versions of
some of the services involved in serving the operation.
Since different versions of a server may induce differ-
ent loads (e.g., by making different RPCs to downstream
servers or by inducing different retry behavior on the up-
stream servers), continuous deployment of software also
continuously changes the load on our system.

Real-world events can easily change the mix or
amount of load on our systems and thus cause perfor-
mance to vary. For example, Google applications that
are popular in academia (e.g., Drive or Classroom) see
a surge of activity at back-to-school time. Some world
events may be more subtle: e.g., a holiday in a place with
limited or expensive internet connectivity may change
the mix of operations to our system because clients in
such areas often access our systems in a different mode
(e.g., using offline mode or syncing mode) than clients in
areas with good connectivity.

Datacenter management software can change the num-
ber of servers that are servicing user requests, move
servers across physical machines, and turn up or turn
down VMs; in doing so they directly vary the load on
services.

In summary, there are many and widespread reasons
beyond the ones explored in this paper that result in con-
tinuously varying load on cloud applications. Thus, we
believe that the approaches in this paper for doing exper-
iments in the presence of these variations and the tools
that we have developed are widely applicable.

6 Conclusions

Performance analysis of cloud applications is important;
with many cloud applications serving more than a bil-
lion active users, even a 1% saving in resources translates
into significant cost savings. Furthermore, being able to
maintain acceptable long-tail latency at such large scale
requires constant investment in performance monitoring
and analysis.

We show that performance analysis of cloud applica-
tion is challenging and the challenges stem from con-
stantly varying load patterns. Specifically, we show that
superimposition of requests from users, different email
clients, essential background work, and one-off events
results in a continuously changing load that is hard to
model and analyze. This paper describes how we meet
this challenge. Specifically, our approach has the follow-
ing components:

• We conduct performance analysis in a live appli-
cation setting with each experiment setting involv-
ing millions of real users. Smaller samples are not
enough to capture the diversity of our users and their
usage patterns.

• We do longitudinal studies over a week or more to
capture the varying load mixes. Additionally, we
primarily compare data (between the test and con-
trol setups) at the same point in time so that they are
serving a similar mix of load.

• We use statistics to analyze data and to predict the
outcome of risky experiments and we corroborate
the results with other data.

• We use coordinated bursty tracing to capture bursts
of traces across computers and layers so we get both
the temporal and the operation context needed for
debugging long-tail performance issues.

• We project higher-level events into kernel events so
that we can get a vertical trace which allows us to
attribute all events (low or high level) to the high-
level operation (e.g., RPC or user operation).

We have used the above strategies for analyzing and
optimizing various large applications at Google includ-
ing Gmail (more than 1 billion users) and Drive (hun-
dreds of millions users).

7 Acknowledgments

Thanks to Brian Cooper, Rick Hank, Dick Sites, Gar-
rick Toubassi, John Wilkes, and Matei Zaharia for feed-
back on the paper and for countless discussions on per-
formance.

416 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] About dtrace. http://dtrace.org/blogs/about.

[2] Google research blog: Speed matters.
http://googleresearch.blogspot.com/2009/06/speed-matters.html,
June 2009.

[3] Google loses data as lightning strikes. BBC News, Aug. 2015.
http://www.bbc.com/news/technology-33989384.

[4] Facebook stats. http://newsroom.fb.com/company-info/, 2016.

[5] Gmail now has more than 1B monthly active users.
https://techcrunch.com/2016/02/01/gmail-now-has-more-than-
1b-monthly-active-users/, Feb. 2016.

[6] ARNOLD, M., HIND, M., AND RYDER, B. G. Online feedback-
directed optimization of java. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications (New York, NY, USA, 2002),
OOPSLA ’02, ACM, pp. 111–129.

[7] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using magpie for request extraction and workload modelling. In
Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6 (Berkeley, CA,
USA, 2004), OSDI’04, USENIX Association, pp. 18–18.

[8] BARHAM, P., ISAACS, R., MORTIER, R., AND NARAYANAN,
D. Magpie: Online modelling and performance-aware systems.
In Proceedings of the 9th Conference on Hot Topics in Operat-
ing Systems - Volume 9 (Berkeley, CA, USA, 2003), HOTOS’03,
USENIX Association, pp. 15–15.

[9] BLACKBURN, S. M., DIWAN, A., HAUSWIRTH, M.,
SWEENEY, P. F., AMARAL, J. N., BRECHT, T., BULEJ, L.,
CLICK, C., EECKHOUT, L., FISCHMEISTER, S., FRAMPTON,
D., HENDREN, L. J., HIND, M., HOSKING, A. L., JONES,
R. E., KALIBERA, T., KEYNES, N., NYSTROM, N., AND
ZELLER, A. The truth, the whole truth, and nothing but the
truth: A pragmatic guide to assessing empirical evaluations. ACM
Trans. Program. Lang. Syst. 38, 4 (Oct. 2016), 15:1–15:20.

[10] Apache cassandra. http://cassandra.apache.org/.

[11] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. ACM Trans. Comput. Syst. 26, 2 (June 2008), 4:1–
4:26.

[12] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E.,
LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK,
M., TAYLOR, C., WANG, R., AND WOODFORD, D. Span-
ner: Google’s globally-distributed database. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2012), OSDI’12, USENIX
Association, pp. 251–264.

[13] DEAN, J., AND BARROSO, L. A. The tail at scale. Communica-
tions of the ACM 56 (2013), 74–80.

[14] FEITELSON, D., FRACHTENBERG, E., AND BECK, K. Devel-
opment and deployment at facebook. IEEE Internet Computing
17, 4 (July 2013), 8–17.

[15] FONSECA, R., PORTER, G., KATZ, R. H., AND SHENKER,
S. X-trace: A pervasive network tracing framework. In 4th
USENIX Symposium on Networked Systems Design & Implemen-
tation (NSDI 07) (Cambridge, MA, 2007), USENIX Association.

[16] HAUSWIRTH, M., DIWAN, A., SWEENEY, P. F., AND MOZER,
M. C. Automating vertical profiling. SIGPLAN Not. 40, 10 (Oct.
2005), 281–296.

[17] HAUSWIRTH, M., SWEENEY, P. F., DIWAN, A., AND HIND, M.
Vertical profiling: Understanding the behavior of object-priented
applications. In Proceedings of the 19th Annual ACM SIG-
PLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (New York, NY, USA, 2004), OOP-
SLA ’04, ACM, pp. 251–269.

[18] HICKS, M., AND NETTLES, S. Dynamic software updating.
ACM Trans. Program. Lang. Syst. 27, 6 (Nov. 2005), 1049–1096.

[19] HIRZEL, M., AND CHILIMBI, T. Bursty tracing: A framework
for low-overhead temporal profiling. In In 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization (2001), pp. 117–
126.

[20] ISARD, M. Autopilot: Automatic data center management. Tech.
rep., April 2007.

[21] JALAPARTI, V., BODIK, P., KANDULA, S., MENACHE, I., RY-
BALKIN, M., AND YAN, C. Speeding up distributed request-
response workflows. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM (New York, NY, USA, 2013),
SIGCOMM ’13, ACM, pp. 219–230.

[22] KALDOR, J., MACE, J., BEJDA, M., GAO, E., KUROPATWA,
W., O’NEILL, J., ONG, K. W., SCHALLER, B., SHAN, P., VIS-
COMI, B., VENKATARAMAN, V., VEERARAGHAVAN, K., AND
SONG, Y. J. Canopy: An end-to-end performance tracing and
analysis system. In Proceedings of the 26th Symposium on Op-
erating Systems Principles (New York, NY, USA, 2017), SOSP
’17, ACM, pp. 34–50.

[23] LI, J., SHARMA, N. K., PORTS, D. R. K., AND GRIBBLE,
S. D. Tales of the tail: Hardware, os, and application-level
sources of tail latency. In Proceedings of the ACM Symposium
on Cloud Computing (New York, NY, USA, 2014), SOCC ’14,
ACM, pp. 9:1–9:14.

[24] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling memcache at facebook. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA, 2013), nsdi’13, USENIX Asso-
ciation, pp. 385–398.

[25] RYCKBOSCH, F., AND DIWAN, A. Analyzing performance
traces using temporal formulas. Softw., Pract. Exper. 44, 7 (2014),
777–792.

[26] SCHURMAN, E., AND BRUTLAG, J. Perfor-
mance related changes and their user impact.
http://conferences.oreilly.com/velocity/velocity2009/-
public/schedule/detail/8523, June 2009. Additional Bytes,
and HTTP Chunking in Web Search.

[27] SIGELMAN, B. H., BARROSO, L. A., BURROWS, M.,
STEPHENSON, P., PLAKAL, M., BEAVER, D., JASPAN, S., AND
SHANBHAG, C. Dapper, a large-scale distributed systems tracing
infrastructure.

[28] VEERARAGHAVAN, K., MEZA, J., CHOU, D., KIM, W., MAR-
GULIS, S., MICHELSON, S., NISHTALA, R., OBENSHAIN, D.,
PERELMAN, D., AND SONG, Y. J. Kraken: Leveraging live traf-
fic tests to identify and resolve resource utilization bottlenecks in
large scale web services. In 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16) (GA, 2016),
USENIX Association, pp. 635–651.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 417

007: Democratically Finding The Cause of Packet Drops
Behnaz Arzani1, Selim Ciraci2, Luiz Chamon3, Yibo Zhu1, Hongqiang (Harry) Liu1, Jitu Padhye2, Boon

Thau Loo3, Geoff Outhred2
1Microsoft Research,2Microsoft,3University of Pennsylvania

Abstract – Network failures continue to plague dat-
acenter operators as their symptoms may not have
direct correlation with where or why they occur. We
introduce 007, a lightweight, always-on diagnosis ap-
plication that can find problematic links and also
pinpoint problems for each TCP connection. 007 is
completely contained within the end host. During
its two month deployment in a tier-1 datacenter, it
detected every problem found by previously deployed
monitoring tools while also finding the sources of
other problems previously undetected.

1 Introduction
007 has an ambitious goal: for every packet drop on a
TCP flow in a datacenter, find the link that dropped
the packet and do so with negligible overhead and
no changes to the network infrastructure.
This goal may sound like an overkill—after all,

TCP is supposed to be able to deal with a few packet
losses. Moreover, packet losses might occur due to
congestion instead of network equipment failures.
Even network failures might be transient. Above all,
there is a danger of drowning in a sea of data without
generating any actionable intelligence.
These objections are valid, but so is the need to

diagnose “failures” that can result in severe problems
for applications. For example, in our datacenters,
VM images are stored in a storage service. When a
VM boots, the image is mounted over the network.
Even a small network outage or a few lossy links can
cause the VM to “panic” and reboot. In fact, 17%
of our VM reboots are due to network issues and in
over 70% of these none of our monitoring tools were
able to find the links that caused the problem.
VM reboots affect customers and we need to un-

derstand their root cause. Any persistent pattern in
such transient failures is a cause for concern and is
potentially actionable. One example is silent packet
drops [1]. These types of problems are nearly impos-
sible to detect with traditional monitoring tools (e.g.,
SNMP). If a switch is experiencing these problems,
we may want to reboot or replace it. These interven-
tions are “costly” as they affect a large number of
flows/VMs. Therefore, careful blame assignment is
necessary. Naturally, this is only one example that
would benefit from such a detection system.

There is a lot of prior work on network failure di-
agnosis, though one of the existing systems meet our

ambitious goal. Pingmesh [1] sends periodic probes
to detect failures and can leave “gaps” in coverage, as
it must manage the overhead of probing. Also, since
it uses out-of-band probes, it cannot detect failures
that affect only in-band data. Roy et al. [2] monitor
all paths to detect failures but require modifications
to routers and special features in the switch (§10).
Everflow [3] can be used to find the location of packet
drops but it would require capturing all traffic and
is not scalable. We asked our operators what would
be the most useful solution for them. Responses in-
cluded: “In a network of ≥ 106 links its a reasonable
assumption that there is a non-zero chance that a
number (> 10) of these links are bad (due to device,
port, or cable, etc.) and we cannot fix them simul-
taneously. Therefore, fixes need to be prioritized
based on customer impact. However, currently we do
not have a direct way to correlate customer impact
with bad links". This shows that current systems
do not satisfy operator needs as they do not provide
application and connection level context.
To address these limitations, we propose 007, a

simple, lightweight, always-on monitoring tool. 007
records the path of TCP connections (flows) suffer-
ing from one or more retransmissions and assigns
proportional “blame” to each link on the path. It
then provides a ranking of links that represents their
relative drop rates. Using this ranking, it can find
the most likely cause of drops in each TCP flow.
007 has several noteworthy properties. First, it

does not require any changes to the existing net-
working infrastructure. Second, it does not require
changes to the client software—the monitoring agent
is an independent entity that sits on the side. Third,
it detects in-band failures. Fourth, it continues to
perform well in the presence of noise (e.g. lone packet
drops). Finally, it’s overhead is negligible.
While the high-level design of 007 appear sim-

ple, the practical challenges of making 007 work
and the theoretical challenge of proving it works
are non-trivial. For example, its path discovery is
based on a traceroute-like approach. Due to the use
of ECMP, traceroute packets have to be carefully
crafted to ensure that they follow the same path as
the TCP flow. Also, we must ensure that we do not
overwhelm routers by sending too many traceroutes
(traceroute responses are handled by control-plane
CPUs of routers, which are quite puny). Thus, we

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 419

need to ensure that our sampling strikes the right
balance between accuracy and the overhead on the
switches. On the theoretical side, we are able to show
that 007’s simple blame assignment scheme is highly
accurate even in the presence of noise.

We make the following contributions: (i) we design
007, a simple, lightweight, and yet accurate fault
localization system for datacenter networks; (ii) we
prove that 007 is accurate without imposing excessive
burden on the switches; (iii) we prove that its blame
assignment scheme correctly finds the failed links
with high probability; and (iv) we show how to tackle
numerous practical challenges involved in deploying
007 in a real datacenter.

Our results from a two month deployment of 007 in
a datacenter show that it finds all problems found by
other previously deployed monitoring tools while also
finding the sources of problems for which information
is not provided by these monitoring tools.

2 Motivation
007 aims to identify the cause of retransmissions
with high probability. It is is driven by two practi-
cal requirements: (i) it should scale to datacenter
size networks and (ii) it should be deployable in a
running datacenter with as little change to the in-
frastructure as possible. Our current focus is mainly
on analyzing infrastructure traffic, especially connec-
tions to services such as storage as these can have
severe consequences (see §1, [4]). Nevertheless, the
same mechanisms can be used in other contexts as
well (see §9). We deliberately include congestion-
induced retransmissions. If episodes of congestion,
however short-lived, are common on a link, we want
to be able to flag them. Of course, in practice, any
such system needs to deal with a certain amount of
noise, a concept we formalize later.
There are a number of ways to find the cause

of packet drops. One can monitor switch counters.
These are inherently unreliable [5] and monitoring
thousands of switches at a fine time granularity is
not scalable. One can use new hardware capabilities
to gather more useful information [6]. Correlating
this data with each retransmission reliably is difficult.
Furthermore, time is needed until such hardware is
production-ready and switches are upgraded. Com-
plicating matters, operators may be unwilling to
incur the expense and overhead of such changes [4].
One can use PingMesh [1] to send probe packets and
monitor link status. Such systems suffer from a rate
of probing trade-off: sending too many probes creates
unacceptable overhead whereas reducing the probing
rate leaves temporal and spatial gaps in coverage.
More importantly, the probe traffic does not capture

what the end user and TCP flows see. Instead, we
choose to use data traffic itself as probe traffic. Us-
ing data traffic has the advantage that the system
introduces little to no monitoring overhead.

As one might expect, almost all traffic in our dat-
acenters is TCP traffic. One way to monitor TCP
traffic is to use a system like Everflow. Everflow
inserts a special tag in every packet and has the
switches mirror tagged packets to special collection
servers. Thus, if a tagged packet is dropped, we can
determine the link on which it happened. Unfortu-
nately, there is no way to know in advance which
packet is going to be dropped, so we would have to
tag and mirror every TCP packet. This is clearly
infeasible. We could tag only a fraction of packets,
but doing so would result in another sampling rate
trade-off. Hence, we choose to rely on some form of
network tomography [7, 8, 9]. We can take advantage
of the fact that TCP is a connection-oriented, reliable
delivery protocol so that any packet loss results in
retransmissions that are easy to detect.

If we knew the path of all flows, we could set up an
optimization to find which link dropped the packet.
Such an optimization would minimize the number of
“blamed” links while simultaneously explaining the
cause of all drops. Indeed past approaches such as
MAX COVERAGE and Tomo [10, 11] aim to approx-
imate the solution of such an optimization (see §12
for an example). There are problems with this ap-
proach: (i) the optimization is NP-hard [12]. Solving
it on a datacenter scale is infeasible. (ii) tracking the
path of every flow in the datacenter is not scalable in
our setting. We can use alternative solutions such as
Everflow or the approach of [2] to track the path of
SYN packets. However, both rely on making changes
to the switches. The only way to find the path of a
flow without any special infrastructure support is to
employ something like a traceroute. Traceroute relies
on getting ICMP TTL exceeded messages back from
the switches. These messages are generated by the
control-plane, i.e., the switch CPU. To avoid over-
loading the CPU, our administrators have capped
the rate of ICMP responses to 100 per second. This
severely limits the number of flows we can track.
Given these limitations, what can we do? We

analyzed the drop patterns in two of our datacenters
and found: typically when there are packet drops,
multiple flows experience drops. We show this in
Figure 1a for TCP flows in production datacenters.
The figure shows the number of flows experiencing
drops in the datacenter conditioned on the total
number of packets dropped in that datacenter in 30
second intervals. The data spans one day. We see
that the more packets are dropped in the datacenter,

420 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

0.5

1
E

m
pi

ri
ca

l
C

D
F

(a)

0 50 100 150
Number of connections

with at least one packet drop

0

0.5

1

E
m

pi
ri

ca
l
C

D
F

(b)

0 0.5 1
Fraction of packet drops

attributed to a connection

> 0 drops
> 1 drop
> 10 drops
> 30 drops
> 50 drops

Figure 1: Observations from a production network:
(a) CDF of the number of flows with at least one
retransmission; (b) CDF of the fraction of drops
belonging to each flow in each 30 second interval.

D
IP

di
sc

ov
er

y

Software
Load

Balancer

Analysis
agent

...

Top of the rack switch

Tier-1
switches

Host

TCP retransmission

Path

TCP Monitoring

Path Discovery

Other apps

Pre-processor

Host

007

Other
apps

Figure 2: Overview of 007 architecture

the more flows experience drops and 95% of the time,
at least 3 flows see drops when we condition on ≥ 10
total drops. We focus on the ≥ 10 case because lower
values mostly capture noisy drops due to one-off
packet drops by healthy links. In most cases drops
are distributed across flows and no single flow sees
more than 40% of the total packet drops. This is
shown in Figure 1b (we have discarded all flows with
0 drops and cases where the total number of drops
was less than 10). We see that in ≥ 80% of cases, no
single flow captures more than 34% of all drops.

Based on these observations and the high path
diversity in datacenter networks [13], we show that if:
(a) we only track the path of those flows that have
retransmissions, (b) assign each link on the path of
such a flow a vote of 1/h, where h is the path length,
and (c) sum up the votes during a given period,
then the top-voted links are almost always the ones
dropping packets (see §5)! Unlike the optimization,
our scheme is able to provide a ranking of the links in
terms of their drop rates, i.e. if link A has a higher
vote than B, it is also dropping more packets (with
high probability). This gives us a heat-map of our
network which highlights the links with the most
impact to a given application/customer (because we
know which links impact a particular flows).

3 Design Overview
Figure 2 shows the overall architecture of 007. It is
deployed alongside other applications on each end-
host as a user-level process running in the host OS.
007 consists of three agents responsible for TCP
monitoring, path discovery, and analysis.

The TCP monitoring agent detects retransmissions
at each end-host. The Event Tracing For Windows
(ETW) [14] framework1 notifies the agent as soon as
an active flow suffers a retransmission.

Upon a retransmission, the monitoring agent trig-
gers the path discovery agent (§4) which identifies
the flow’s path to the destination IP (DIP).
At the end-hosts, a voting scheme (§5) is used

based on the paths of flows that had retransmissions.
At regular intervals of 30s the votes are tallied by
a centralized analysis agent to find the top-voted
links. Although we use an aggregation interval of
30s, failures do not have to last for 30s.

007’s implementation consists of 6000 lines of C++
code. Its memory usage never goes beyond 600 KB
on any of our production hosts, its CPU utilization
is minimal (1-3%), and its bandwidth utilization due
to traceroute is minimal (maximum of 200 KBps
per host). 007 is proven to be accurate (§5) in typ-
ical datacenter conditions (a full description of the
assumed conditions can be found in §9).

4 The Path Discovery Agent
The path discovery agent uses traceroute packets
to find the path of flows that suffer retransmissions.
These packets are used solely to identify the path
of a flow. They do not need to be dropped for
007 to operate. We first ensure that the number
of traceroutes sent by the agent does not overload
our switches (§4.1). Then, we briefly describe the
key engineering issues and how we solve them (§4.2).
4.1 ICMP Rate Limiting
Generating ICMP packets in response to traceroute
consumes switch CPU, which is a valuable resource.
In our network, there is a cap of Tmax = 100 on the
number of ICMP messages a switch can send per
second. To ensure that the traceroute load does not
exceed Tmax, we start by noticing that a small frac-
tion of flows go through tier-3 switches (T3). Indeed,
after monitoring all TCP flows in our network for
one hour, only 2.1% went through a T3 switch. Thus
we can ignore T3 switches in our analysis. Given that
our network is a Clos topology and assuming that
hosts under a top of the rack switch (ToR) commu-
nicate with hosts under a different ToR uniformly at
random (see §6 for when this is not the case):

1Similar functionality exists in Linux.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 421

Theorem 1. The rate of ICMP packets sent by any
switch due to a traceroute is below Tmax if the rate Ct
at which hosts send traceroutes is upper bounded as

Ct ≤
Tmax
n0H

min
[
n1,

n2(n0npod−1)
n0(npod−1)

]
, (1)

where n0, n1, and n2, are the numbers of ToR, T1,
and T2 switches respectively, npod is the number of
pods, and H is the number of hosts under each ToR.

See §12 for proof. The upper bound of Ct in our
datacenters is 10. As long as hosts do not have more
than 10 flows with retransmissions per second, we
can guarantee that the number of traceroutes sent by
007 will not go above Tmax. We use Ct as a threshold
to limit the traceroute rate of each host. Note that
there are two independent rate limits, one set at
the host by 007 and the other set by the network
operators on the switch (Tmax). Additionally, the
agent triggers path discovery for a given connection
no more than once every epoch to further limit the
number of traceroutes. We will show in §5 that this
number is sufficient to ensure high accuracy.
4.2 Engineering Challenges
Using the correct five-tuple. As in most datacen-
ters, our network also uses ECMP. All packets of a
given flow, defined by the five-tuple, follow the same
path [15]. Thus, traceroute packets must have the
same five-tuple as the flow we want to trace. To
ensure this, we must account for load balancers.

TCP connections are initiated in our datacenter in
a way similar to that described in [16]. The connec-
tion is first established to a virtual IP (VIP) and the
SYN packet (containing the VIP as destination) goes
to a software load balancer (SLB) which assigns that
flow to a physical destination IP (DIP) and a service
port associated with that VIP. The SLB then sends a
configuration message to the virtual switch (vSwitch)
in the hypervisor of the source machine that regis-
ters that DIP with that vSwitch. The destination
of all subsequent packets in that flow have the DIP
as their destination and do not go through the SLB.
For the path of the traceroute packets to match that
of the data packets, its header should contain the
DIP and not the VIP. Thus, before tracing the path
of a flow, the path discovery agent first queries the
SLB for the VIP-to-DIP mapping for that flow. An
alternative is to query the vSwitch. In the instances
where the failure also results in connection termina-
tion the mapping may be removed from the vSwitch
table. It is therefore more reliable to query the SLB.
Note that there are cases where the TCP connection
establishment itself may fail due to packet loss. Path
discovery is not triggered for such connections. It is

also not triggered when the query to the SLB fails
to avoid tracerouting the internet.
Re-routing and packet drops. Traceroute itself may
fail. This may happen if the link drop rate is high
or due to a blackhole. This actually helps us, as it
directly pinpoints the faulty link and our analysis
engine (§5) is able to use such partial traceroutes.
A more insidious possibility is that routing may

change by the time traceroute starts. We use BGP
in our datacenter and a lossy link may cause one
or more BGP sessions to fail, triggering rerouting.
Then, the traceroute packets may take a different
path than the original connection. However, RTTs in
a datacenter are typically less than 1 or 2 ms, so TCP
retransmits a dropped packet quickly. The ETW
framework notifies the monitoring agent immediately,
which invokes the path discovery agent. The only
additional delay is the time required to query the
SLB to obtain the VIP-to-DIP mapping, which is
typically less than a millisecond. Thus, as long as
paths are stable for a few milliseconds after a packet
drop, the traceroute packets will follow the same
path as the flow and the probability of error is low.
Past work has shown this to be usually the case [17].
Our network also makes use of link aggrega-

tion (LAG) [18]. However, unless all the links in the
aggregation group fail, the L3 path is not affected.
Router aliasing [19]. This problem is easily solved in
a datacenter, as we know the topology, names, and
IPs of all routers and interfaces. We can simply map
the IPs from the traceroutes to the switch names.
To summarize, 007’s path discovery implementa-

tion is as follows: Once the TCP monitoring agent
notifies the path discovery agent that a flow has
suffered a retransmission, the path discovery agent
checks its cache of discovered path for that epoch
and if need be, queries the SLB for the DIP. It then
sends 15 appropriately crafted TCP packets with
TTL values ranging from 0–15. In order to disam-
biguate the responses, the TTL value is also encoded
in the IP ID field [20]. This allows for concurrent
traceroutes to multiple destinations. The TCP pack-
ets deliberately carry a bad checksum so that they
do not interfere with the ongoing connection.
5 The Analysis Agent
Here, we describe 007’s analysis agent focusing on
its voting-based scheme. We also present alternative
NP-hard optimization solutions for comparison.
5.1 Voting-Based Scheme
007’s analysis agent uses a simple voting scheme. If a
flow sees a retransmission, 007 votes its links as bad.
Each vote has a value that is tallied at the end of
every epoch, providing a natural ranking of the links.
We set the value of good votes to 0 (if a flow has no

422 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

retransmission, no traceroute is needed). Bad votes
are assigned a value of 1

h , where h is the number
of hops on the path, since each link on the path is
equally likely to be responsible for the drop.
The ranking obtained after compiling the votes

allows us to identify the most likely cause of drops
on each flow: links ranked higher have higher drop
rates (Theorem 2). To further guard against high
levels of noise, we can use our knowledge of the
topology to adjust the links votes. Namely, we itera-
tively pick the most voted link lmax and estimate the
portion of votes obtained by all other links due to
failures on lmax. This estimate is obtained for each
link k by (i) assuming all flows having retransmissions
and going through lmax had drops due to lmax and
(ii) finding what fraction of these flows go through k
by assuming ECMP distributes flows uniformly at
random. Our evaluations showed that this results in
a 5% reduction in false positives.

Algorithm 1 Finding the most problematic links in
the network.
1: L← Set of all links
2: P ← Set of all possible paths
3: v(li)← Number of votes for li ∈ L
4: B ← Set of most problematic links
5: lmax← Link with maximum votes in ∀li ∈ L∩Bc

6: while v(lmax)≥ 0.01(
∑

li∈L
v(li)) do

7: lmax← argmaxli∈L∩Bc v(li)
8: B ← B∪{lmax}
9: for li ∈ L∩Bc do
10: if ∃ pi ∈ P s.t. li ∈ pi & lmax ∈ pi then
11: Adjust the score of li
12: end if
13: end for
14: end while
15: return B

007 can also be used to detect failed links using
Algorithm 1. The algorithm sorts the links based on
their votes and uses a threshold to determine if there
are problematic links. If so, it adjusts the votes of all
other links and repeats until no link has votes above
the threshold. In Algorithm 1, we use a threshold
of 1% of the total votes cast based on a parameter
sweep where we found that it provides a reasonable
trade-off between precision and recall. Higher values
reduce false positives but increase false negatives.
Here we have focused on detecting link failures.

007 can also be used to detect switch failures in a
similar fashion by applying votes to switches instead
of links. This is beyond the scope of this work.
5.2 Voting Scheme Analysis
Can 007 deliver on its promise of finding the most
probable cause of packet drops on each flow? This is
not trivial. In its voting scheme, failed connections
contribute to increase the tally of both good and
bad links. Moreover, in a large datacenter such as

ours, occasional, lone, and sporadic drops can and
will happen due to good links. These failures are
akin to noise and can cause severe inaccuracies in any
detection system [21], 007 included. We show that
the likelihood of 007 making these errors is small.
Given our topology (Clos):
Theorem 2. For npod ≥ n0

n1
+ 1, 007 will find with

probability 1− 2e−O(N) the k <
n2(n0npod−1)
n0(npod−1) bad

links that drop packets with probability pb among
good links that drop packets with probability pg if

pg ≤ (nuα)−1 [1− (1−pb)nl] ,

where N is the total number of flows between hosts,
nl and nu are lower and upper bounds, respectively,
on the number of packets per connection, and

α=
n0(4n0−k)(npod−1)

n2(n0npod−1)−n0(npod−1)k . (2)

The proof is deferred to the appendices due to
space constraints. Theorem 2 states that under mild
conditions, links with higher drop rates are ranked
higher by 007. Since a single flow is unlikely to go
through more than one failed link in a network with
thousands of links, it allows 007 to find the most
likely cause of packet drops on each flow.
A corollary of Theorem 2 is that in the absence

of noise (pg = 0), 007 can find all bad links with
high probability. In the presence of noise, 007 can
still identify the bad links as long as the probabil-
ity of dropping packets on non-failed links is low
enough (the signal-to-noise ratio is large enough).
This number is compatible with typical values found
in practice. As an example, let nl and nu be the 10th
and 90th percentiles respectively of the number of
packets sent by TCP flows across all hosts in a 3 hour
period. If pb≥ 0.05%, the drop rate on good links can
be as high as 1.8×10−6. Drop rates in a production
datacenter are typically below 10−8 [22].
Another important consequence of Theorem 2 is

that it establishes that the probability of errors in
007’s results diminishes exponentially with N , so that
even with the limits imposed by Theorem 1 we can
accurately identify the failed links. The conditions
in Theorem 2 are sufficient but not necessary. In
fact, §6 shows how well 007 performs even when the
conditions in Theorem 2 do not hold.
5.3 Optimization-Based Solutions
One of the advantages of 007’s voting scheme is its
simplicity. Given additional time and resources we
may consider searching for the optimal sets of failed
links by finding the most likely cause of drops given
the available evidence. For instance, we can find the

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 423

least number of links that explain all failures as we
know the flows that had packet drops and their path.
This can be written as an optimization problem we
call the binary program. Explicitly,

minimize ‖p‖0
subject to Ap≥ s

p ∈ {0,1}L
(3)

where A is a C×L routing matrix; s is a C×1 vector
that collects the status of each flow during an epoch
(each element of s is 1 if the connection experienced
at least one retransmission and 0 otherwise); L is the
number of links; C is the number of connections in
an epoch; and ‖p‖0 denotes the number of nonzero
entries of the vector p. Indeed, if the solution of (3)
is p?, then the i-th element of p? indicates whether
the binary program estimates that link i failed.

Problem (3) is the NP-hard minimum set covering
problem [23] and is intractable. Its solutions can be
approximated greedily as in MAX COVERAGE or
Tomo [10, 11] (see appendix). For benchmarking, we
compare 007 to the true solution of (3) obtained by
a mixed-integer linear program (MILP) solver [24].
Our evaluations showed that 007 (Algorithm 1) sig-
nificantly outperforms this binary optimization (by
more than 50% in the presence of noise). We illus-
trate this point in Figures 4 and 10, but otherwise
omit results for this optimization in §6 for clarity.

The binary program (3) does not provide a ranking
of links. We also consider a solution in which we
determine the number of packets dropped by each
link, thus creating a natural ranking. The integer
program can be written as

minimize ‖p‖0
subject to Ap≥ c

‖p‖1 = ‖c‖1
pi ∈ N∪{0}

(4)

where N is the set of natural numbers and c is a C×1
vector that collects the number of retransmissions suf-
fered by each flow during an epoch. The solution p?

of (4) represents the number of packets dropped
by each link, which provides a ranking. The con-
straint ‖p‖1 = ‖c‖1 ensures each failure is explained
only once. As with (3), this problem is NP-hard [12]
and is only used as a benchmark. As it uses more
information than the binary program (the number
of failures), (4) performs better (see §6).
In the next three sections, we present our evalua-

tion of 007 in simulations (§6), in a test cluster (§7),
and in one of our production datacenters (§8).

6 Evaluations: Simulations
We start by evaluating in simulations where we know
the ground truth. 007 first finds flows whose drops
were due to noise and marks them as “noise drops”.
It then finds the link most likely responsible for drops
on the remaining set of flows (“failure drops”). A
noisy drop is defined as one where the corresponding
link only dropped a single packet. 007 never marked
a connection into the noisy category incorrectly. We
therefore focus on the accuracy for connections that
007 puts into the failure drop class.
Performance metrics. Our measure for the perfor-
mance of 007 is accuracy, which is the proportion
of correctly identified drop causes. For evaluating
Algorithm 1, we use recall and precision. Recall is
a measure of reliability and shows how many of the
failures 007 can detect (false negatives). For exam-
ple, if there are 100 failed links and 007 detects 90
of them, its recall is 90%. Precision is a measure of
accuracy and shows to what extent 007’s results can
be trusted (false positives). For example, if 007 flags
100 links as bad, but only 90 of those links actually
failed, its precision is 90%.
Simulation setup. We use a flow level simulator [25]
implemented in MATLAB. Our topology consists of
4160 links, 2 pods, and 20 ToRs per pod. Each host
establishes 2 connections per second to a random
ToR outside of its rack. The simulator has two types
of links. For good links, packets are dropped at a very
low rate chosen uniformly from (0,10−6) to simulate
noise. On the other hand, failed links have a higher
drop rate to simulate failures. By default, drop rates
on failed links are set to vary uniformly from 0.01%
to 1%, though to study the impact of drop rates we
do allow this rate to vary as an input parameter.
The number of good and failed links is also tunable.
Every 30 seconds of simulation time, we send up to
100 packets per flow and drop them based on the
rates above as they traverse links along the path.
The simulator records all flows with at least one drop
and for each such flow, the link with the most drops.
We compare 007 against the solutions described

in §5.3. We only show results for the binary pro-
gram (3) in Figures 4 and 10 since its performance is
typically inferior to 007 and the integer program (4)
due to noise. This also applies to MAX COVERAGE
or Tomo [10, 11, 26] as they are approximations of
the binary program (see [27]).
6.1 In The Optimal Case
The bounds of Theorem 2 are sufficient (not neces-
sary) conditions for accuracy. We first validate that
007 can achieve high levels of accuracy as expected
when these bounds hold. We set the drop rates on the
failed links to be between (0.05%,1%). We refer the

424 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

0.5

1

2 6 10 14

A
cc

ur
ac

y

Number of failed links

007
Integer optimization

Figure 3: When Theorem 2 holds.

Number of failed links

0

50

100

2 6 10 14

P
re

ci
si

on
(%

)

25

75

(a)

0

50

100

2 6 10 14

R
ec

al
l
(%

)

Number of failed links

(b)

25

75

007
Integer optimization
Binary optimization

Figure 4: Algorithm 1 when Theorem 2 holds.

reader to [2] for why these drop rates are reasonable.
Accuracy. Figure 3 shows that 007 has an average
accuracy that is higher than 96% in almost all cases.
Due to its robustness to noise, it also outperforms
the optimization algorithm (§ 5.3) in most cases.
Recall & precision. Figure 4 shows that even when
failed links have low packet drop rates, 007 detects
them with high recall/precision.
We proceed to evaluate 007’s accuracy when the

bounds in Theorem 2 do not hold. This shows these
conditions are not necessary for good performance.
6.2 Varying Drop Rates
Our next experiment aims to push the boundaries of
Theorem 2 by varying the “failed” links drop rates
below the conservative bounds of Theorem 2.
Single Failure. Figure 5a shows results for different
drop rates on a single failed link. It shows that 007
can find the cause of drops on each flow with high
accuracy. Even as the drop rate decreases below the
bounds of Theorem 2, we see that 007 can maintain
accuracy on par with the optimization.
Multiple Failures. Figure 5b shows that 007 is suc-
cessful at finding the link responsible for a drop even
when links have very different drop rates. Prior work
have reported the difficulty of detecting such cases [2].
However, 007’s accuracy remains high.
6.3 Impact of Noise
Single Failure. We vary noise levels by changing the
drop rate of good links. We see that higher noise
levels have little impact on 007’s ability to find the
cause of drops on individual flows (Figure 6a).
Multiple Failures. We repeat this experiment for the
case of 5 failed links. Figure 6b shows the results.

0

0.5

1

A
cc

ur
ac

y

(a) Single failure

0 0.2 0.4 0.6 0.8 1
Packet drop rate, (%)

0

0.5

1

2

A
cc

ur
ac

y

(b) Multiple failures

6 10 14
Number of failed links

007
Integer optimization0

0.5

1

0 0.05 0.1

Figure 5: 007’s accuracy for varying drop rates.

0

0.5

1

A
cc

ur
ac

y

(a) Single failure

Packet drop rate,

0

0.5

1

A
cc

ur
ac

y

(b) Multiple failures

007
Integer optimization

Packet drop rate,

Figure 6: 007’s accuracy for varying noise levels.

007 shows little sensitivity to the increase in noise
when finding the cause of per-flow drops. Note that
the large confidence intervals of the optimization is
a result of its high sensitivity to noise.
6.4 Varying Number of Connections
In previous experiments, hosts opened 60 connections
per epoch. Here, we allow hosts to choose the number
of connections they create per epoch uniformly at
random between (10,60). Recall, from Theorem 2,
that a larger number of connections from each host
helps 007 improve its accuracy.
Single Failure. Figure 7a shows the results. 007
accurately finds the cause of packet drops on each
connection. It also outperforms the optimization
when the failed link has a low drop rate. This is
because the optimization has multiple optimal points
and is not sufficiently constrained.
Multiple Failures. Figure 7b shows the results for
multiple failures. The optimization suffers from the
lack of information to constrain the set of results. It
therefore has a large variance (confidence intervals).
007 on the other hand maintains high probability of
detection no matter the number of failures.
6.5 Impact of Traffic Skews
Single Failure. We next demonstrate 007’s ability to
detect the cause of drops even under heavily skewed
traffic. We pick 10 ToRs at random (25% of the
ToRs). To skew the traffic, 80% of the flows have
destinations set to hosts under these 10 ToRs. The
remaining flows are routed to randomly chosen hosts.
Figure 8a shows that the optimization is much more
heavily impacted by the skew than 007. 007 continues
to detect the cause of drops with high probability

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 425

0

0.5

1

2

A
cc

ur
ac

y

(b) Multiple failures

6 10 14
Number of failed links

007
Integer optimization

0

0.5

1

0

A
cc

ur
ac

y

(a) Single failure

0.2 0.4 10.6 0.8
Packet drop rate, (%)

0

0.5

1

0 0.05 0.1

Figure 7: Varying the number of connections.

0

0.5

1

A
cc

ur
ac

y

(a) Single failure

0 0.2 0.4 0.6 0.8 1
Packet drop rate, (%)

0

0.5

2

A
cc

ur
ac

y

(b) Multiple failures

6 10 14

1

Number of failed links

007
Integer
optimization

Figure 8: 007’s accuracy under skewed traffic.

(≥ 85%) for drop rates higher than 0.1%.
Multiple Failures. We repeated the above for multi-
ple failures. Figure 8b shows that the optimization’s
accuracy suffers. It consistently shows a low detec-
tion rate as its constraints are not sufficient in guiding
the optimizer to the right solution. 007 maintains a
detection rate of ≥ 98% at all times.
Hot ToR. A special instance of traffic skew occurs
in the presence of a single hot ToR which acts as
a sink for a large number of flows. Figure 9 shows
how 007 performs in these situations. 007 can tol-
erate up to 50% skew, i.e., 50% of all flows go to
the hot ToR, with negligible accuracy degradation.
However, skews above 50% negatively impact its ac-
curacy in the presence of a large number of failures
(≥ 10). Such scenarios are unlikely as datacenter load
balancing mitigates such extreme situations.
6.6 Detecting Bad Links
In our previous experiments, we focused on 007’s
accuracy on a per connection basis. In our next
experiment, we evaluate its ability to detect bad
links.
Single Failure. Figure 10 shows the results. 007

0

0.5

1

0 5 10 15

A
cc

ur
ac

y

Number of failures

30% skew
50% skew
70% skew

10% skew

Figure 9: Impact of a hot ToR on 007’s accuracy.

0

50

100

P
re

ci
si

on
(%

)

25

75

(a)

0 0.2 0.4 0.6 0.8 1
0

50

100

0

R
ec

al
l
(%

)

(b)

25

75

007
Integer optim.
Binary optim.

0 0.2 0.4 0.6 0.8 1

Figure 10: Algorithm 1 with single failure.

0

50

100

0 0.2 0.6 1

P
re

ci
si

on
(%

)

(a)

0.4 0.8
Packet drop rate, (%)

0

50

100

R
ec

al
l
(%

)

(b)

0 0.2 0.6 10.4 0.8
Packet drop rate, (%)

ToR-T1 failure
T1-T2 failure
T2-T1 failure
T1-ToR failure

Figure 11: Impact of link location on Algorithm 1.

outperforms the optimization as it does not require
a fully specified set of equations to provide a best
guess as to which links failed. We also evaluate the
impact of failure location on our results (Figure 11).
Multiple Failures. We heavily skew the drop rates
on the failed links. Specifically, at least one failed
link has a drop rate between 10 and 100%, while
all others have a drop rate in (0.01%,0.1%). This
scenario is one that past approaches have reported
as hard to detect [2]. Figure 12 shows that 007 can
detect up to 7 failures with accuracy above 90%. Its
recall drops as the number of failed links increase.
This is because the increase in the number of failures
drives up the votes of all other links increasing the
cutoff threshold and thus increasing the likelihood of
false negatives. In fact if the top k links had been
selected 007’s recall would have been close to 100%.
6.7 Effects of Network Size
Finally, we evaluate 007 in larger networks. Its accu-
racy when finding a single failure was 98%, 92%, 91%,
and 90% on average in a network with 1,2,3, and
4 pods respectively. In contrast, the optimization
had an average accuracy of 94%, 72%, 79%, and 77%
respectively. Algorithm 1 continues to have Recall

0

50

100

P
re

ci
si

on
(%

)

25

75

(a)

2 6 10 14
Number of failed links

0

50

100

R
ec

al
l
(%

)

(b)

25

75

2 6 10 14
Number of failed links

007
Integer optimization

Figure 12: Algorithm 1 with multiple failures. The
drop rates on the links are heavily skewed.

426 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

≥ 98% for up to 6 pods (it drops to 85% for 7 pods).
Precision remains 100% for all pod sizes.

We also evaluate both 007 and the optimization’s
ability to find the cause of per flow drops when the
number of failed links is ≥ 30. We observe that both
approach’s performance remained unchanged for the
most part, e.g., the accuracy of 007 in an example
with 30 failed links is 98.01%.
7 Evaluations: Test Cluster
We next evaluate 007 on the more realistic environ-
ment of a test cluster with 10 ToRs and a total of 80
links. We control 50 hosts in the cluster, while others
are production machines. Therefore, the T1 switches
see real production traffic. We recorded 6 hours
of traffic from a host in production and replayed it
from our hosts in the cluster (with different starting
times). Using Everflow-like functionality [3] on the
ToR switches, we induced different rates of drops
on T1 to ToR links. Our goal is to find the cause
of packet drops on each flow §7.2 and to validate
whether Algorithm 1 works in practice §7.3.
7.1 Clean Testbed Validation
We first validate a clean testbed environment. We
repave the cluster by setting all devices to a clean
state. We then run 007 without injecting any fail-
ures. We see that in the newly-repaved cluster, links
arriving at a particular ToR switch had abnormally
high votes, namely 22.5±3.65 in average. We thus
suspected that this ToR is experiencing problems.
After rebooting it, the total votes of the links went
down to 0, validating our suspicions. This exercise
also provides one example of when 007 is extremely
effective at identifying links with low drop rates.
7.2 Per-connection Failure Analysis
Can 007 identify the cause of drops when links have
very different drop rates? To find out, we induce a
drop rate of 0.2% and 0.05% on two different links
for an hour. We only know the ground truth when
the flow goes through at least one of the two failed
links. Thus, we only consider such flows. For 90.47%
of these, 007 was able to attribute the packet drop
to the correct link (the one with higher drop rate).

0

0.5

1

0 50 100 150 200

E
m

pi
ri

ca
l
C

D
F

Drop rate = 0.5%
Drop rate = 0.05%

Drop rate = 1%

[Bad link votes] − [Maximum good link votes]

Figure 13: CDF of difference between votes on bad
links and the maximum vote on good links.

7.3 Identifying Failed Links
We next validate Algorithm 1 and its ability to detect
failed links. We inject different drop rates on a chosen
link and determine whether there is a correlation
between total votes and drop rates. Specifically, we
look at the difference between the vote tally on the
bad link and that of the most voted good link. We
induced a packet drop rate of 1%, 0.1%, and 0.05%
on a T1 to ToR link in the test cluster.
Figure 13 shows the distribution for the various

drop rates. The failed link has the highest vote out of
all links when the drop rate is 1% and 0.1%. When
the drop rate is lowered to 0.05%, the failed link
becomes harder to detect due to the smaller gap be-
tween the drop rate of the bad link and that of the
normal links. Indeed, the bad link only has the max-
imum score in 88.89% of the instances (mostly due
to occasional lone drops on healthy links). However,
it is always one of the 2 links with the highest votes.

Figure 13 also shows the high correlation between
the probability of packet drop on a links and its vote
tally. This trivially shows that 007 is 100% accurate
in finding the cause of packet drops on each flow
given a single link failure: the failed link has the
highest votes among all links. We compare 007 with
the optimization problem in (4). We find that the
latter also returns the correct result every time, albeit
at the cost of a large number of false positives. To
illustrate this point: the number of links marked as
bad by (4) on average is 1.5, 1.18, and 1.47 times
higher than the number given by 007 for the drop
rates of 1%, 0.1%, and 0.05% respectively.
What about multiple failures? This is a harder

experiment to configure due to the smaller number of
links in this test cluster and its lower path diversity.
We induce different drop rates (p1 = 0.2% and p2 =
0.1%) on two links in the cluster. The link with
higher drop rate is the most voted 100% of the time.
The second link is the second highest ranked 47% of
the time and the third 32% of the time. It always
remained among the 5 most voted links. This shows
that by allowing a single false positive (identifying
three instead of two links), 007 can detect all failed
links 80% of the time even in a setup where the traffic
distribution is highly skewed. This is something past
approaches [2] could not achieve. In this example,
007 identifies the true cause of packet drops on each
connection 98% of the time.
8 Evaluations: Production
We have deployed 007 in one of our datacenters2. No-
table examples of problems 007 found include: power

2The monitoring agent has been deployed across all our
data centers for over 2 years.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 427

T = 0 T > 0 & T ≤ 3 T > 3 max(T)
69% 30.98% 0.02% 11

Table 1: Number of ICMPs per second per switch (T).
We see max(T)≤ Tmax.

supply undervoltages [28], FCS errors [29], switch
reconfigurations, continuous BGP state changes, link
flaps, and software bugs [30]. Also, 007 found every
problem that was caught by our previously deployed
diagnosis tools.
8.1 Validating Theorem 1
Table 1 shows the distribution of the number of ICMP
messages sent by each switch in each epoch over a
week. The number of ICMP messages generated by
007 never exceed Tmax (Theorem 1).
8.2 TCP Connection Diagnosis
In addition to finding problematic links, 007 identifies
the most likely cause of drops on each flow. Knowing
when each individual packet is dropped in production
is hard. We perform a semi-controlled experiment to
test the accuracy of 007. Our environment consists of
thousands of hosts/links. To find the “ground truth”,
we compare its results to that obtained by EverFlow.
EverFlow captures all packets going through each
switch on which it was enabled. It is expensive to
run for extended periods of time. We thus only run
EverFlow for 5 hours and configure it to capture
all outgoing IP traffic from 9 random hosts. The
captures for each host were conducted on different
days. We filter all flows that were detected to have at
least one retransmission during this time and using
EverFlow find where their packets were dropped. We
then check whether the detected link matches that
found by 007. We found that 007 was accurate in
every single case. In this test we also verified that
each path recorded by 007 matches exactly the path
taken by that flow’s packets as captured by EverFlow.
This confirms that it is unlikely for paths to change
fast enough to cause errors in 007’s path discovery.
8.3 VM Reboot Diagnosis
During our deployment, there were 281 VM reboots
in the datacenter for which there was no explanation.
007 found a link as the cause of problems in each case.
Upon further investigation on the SNMP system logs,
we observe that in 262 cases, there were transient
drops on the host to ToR link a number of which
were correlated with high CPU usage on the host.
Two were due to high drop rates on the ToR. In
another 15, the endpoints of the links found were
undergoing configuration updates. In the remaining 2
instances, the link was flapping.
Finally, we looked at our data for one cluster for

one day. 007 identifies an average of 0.45±0.12 links

as dropping packets per epoch. The average across
all epochs of the maximum vote tally was 2.51±0.33.
Out of the links dropping packets 48% are server to
ToR links (38% were due to a single ToR switch that
was eventually taken out for repair), 24% are T1-ToR
links and 6% were due to T2-T1 link failures.
9 Discussion
007 is highly effective in finding the cause of packet
drops on individual flows. By doing so, it provides
flow-level context which is useful in finding the cause
of problems for specific applications. In this section
we discuss a number of other factors we considered
in its design.
9.1 007’s Main Assumptions
The proofs of Theorems 1 and 2 and the design of
the path discovery agent (§4) are based on a number
of assumptions:
ACK loss on reverse path. It is possible that packet
loss on the reverse path is so severe that loss of
ACK packets triggers timeout at the sender. If this
happens, the traceroute would not be going over any
link that triggered the packet drop. Since TCP ACKs
are cumulative, this is typically not a problem and
007 assumes retransmissions in such cases are unlikely.
This is true unless loss rates are very high, in which
case the severity of the problem is such that the cause
is apparent. Spurious retransmissions triggered by
timeouts may also occur if there is sudden increased
delay on forward or reverse paths. This can happen
due to rerouting, or large queue buildups. 007 treats
these retransmissions like any other.
Source NATs. Source network address translators
(SNATs) change the source IP of a packet before it is
sent out to a VIP. Our current implementation of 007
assumes connections are SNAT bypassed. However, if
flows are SNATed, the ICMP messages will not have
the right source address for 007 to get the response
to its traceroutes. This can be fixed by a query to
the SLB. Details are omitted.
L2 networks. Traceroute is not a viable option to
find paths when datacenters operate using L2 routing.
In such cases we recommend one of the following:
(a) If access to the destination is not a problem
and switches can be upgraded one can use the path
discovery methods of [2, 31]. 007 is still useful as it
allows for finding the cause of failures when multiple
failures are present and for individual flows. (b)
Alternatively, EverFlow can be used to find path.
007’s sampling is necessary here as EverFlow doesn’t
scale to capture the path of all flows.
Network topology. The calculations in §5 assume a
known topology (Clos). The same calculations can
be carried out for any known topology by updating

428 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the values used for ECMP. The accuracy of 007 is
tied to the degree of path diversity and that multiple
paths are available at each hop: the higher the degree
of path diversity, the better 007 performs. This is
also a desired property in any datacenter topology,
most of which follow the Clos topology [13, 32, 33].
ICMP rate limit. In rare instances, the severity of
a failure or the number of flows impacted by it may
be such that it triggers 007’s ICMP rate limit which
stops sending more traceroute messages in that epoch.
This does not impact the accuracy of Algorithm 1.
By the time 007 reaches its rate limit, it has enough
data to localize the problematic links. However, this
limits 007’s ability to find the cause of drops on flows
for which it did not identify the path. We accept
this trade-off in accuracy for the simplicity and lower
overhead of 007.
Unpredictability of ECMP. If the topology and the
ECMP functions on all the routers are known, the
path of a packet can be found by inspecting its header.
However, ECMP functions are typically proprietary
and have initialization “seeds” that change with every
reboot of the switch. Furthermore, ECMP functions
change after link failures and recoveries. Tracking all
link failures/recoveries in real time is not feasible at
a datacenter scale.

9.2 Other Factors To Consider

007 has been designed for a specific use case, namely
finding the cause of packet drops on individual con-
nections in order to provide application context. This
resulted in a number of design choices:
Detecting congestion. 007 should not avoid detecting
major congestion events as they signal severe traffic
imbalance and/or incast and are actionable. However,
the more prevalent (≥ 92%) forms of congestion have
low drop rates 10−8–10−5 [29]. 007 treats these as
noise and does not detect them. Standard congestion
control protocols can effectively react to them.
007’s ranking. 007’s ranking approach will naturally
bias towards the detection of failed links that are
frequently used. This is an intentional design choice
as the goal of 007 is to identity high impact failures
that affect many connections.
Finding the cause of other problems. 007’s goal is
to identify the cause of every packet drop, but other
problems may also be of interest. 007 can be extended
to identify the cause of many such problems. For
example, for latency, ETW provides TCP’s smooth
RTT estimates upon each received ACK. Thresh-
olding on these values allows for identifying “failed”
flows and 007’s voting scheme can be used to provides
a ranked list of suspects. Proving the accuracy of
007 for such problems requires an extension of the

analysis presented in this paper.
VM traffic problems. 007’s goal is to find the cause
of drops on infrastructure connections and through
those, find the failed links in the network. In princi-
ple, we can build a 007-like system to diagnose TCP
failures for connections established by customer VMs
as well. For example, we can update the monitor-
ing agent to capture VM TCP statistics through a
VFP-like system [34]. However, such a system raises
a number of new issues, chief among them being
security. This is part of our future work.
In conclusion, we stress that the purpose of 007

is to explain the cause of drops when they occur.
Many of these are not actionable and do not require
operator intervention. The tally of votes on a given
link provide a starting point for deciding when such
intervention is needed.

10 Related Work
Finding the source of failures in distributed systems,
specifically networks, is a mature topic. We outline
some of the key differences of 007 with these works.

The most closely related work to ours is perhaps [2],
which requires modifications to routers and both end-
points a limitation that 007 does not have. Often
services (e.g. storage) are unwilling to incur the
additional overhead of new monitoring software on
their machines and in many instances the two end-
points are in seperate organizations [4]. Moreover,
in order to apply their approach to our datacenter,
a number of engineering problems need to be over-
come, including finding a substitute for their use of
the DSCP bit, which is used for other purposes in
our datacenter. Lastly, while the statistical testing
method used in [2] (as well as others) are useful when
paths of both failed and non-failed flows are available
they cannot be used in our setting as the limited
number of traceroutes 007 can send prevent it from
tracking the path of all flows. In addition 007 allows
for diagnosis of individual connections and it works
well in the presence of multiple simultaneous failures,
features that [2] does not provide. Indeed, finding
paths only when they are needed is one of the most
attractive features of 007 as it minimizes its overhead
on the system. Maximum cover algorithms [31, 35]
suffer from many of the same limitations described
earlier for the binary optimization, since MAX COV-
ERAGE and Tomo are approximations of (3). Other
related work can be loosely categorized as follows:
Inference and Trace-Based Algorithms [1, 2, 3, 36,
37, 38, 39, 40, 41, 42] use anomaly detection and
trace-based algorithms to find sources of failures.
They require knowledge/inference of the location of
logical devices, e.g. load balancers in the connection

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 429

path. While this information is available to the
network operators, it is not clear which instance of
these entities a flow will go over. This reduces the
accuracy of the results.

Everflow [3] aims to accurately identify the path of
packets of interest. However, it does not scale to be
used as an always on diagnosis system. Furthermore,
it requires additional features to be enabled in the
switch. Similarly, [26, 31] provides another means
of path discovery, however, such approaches require
deploying new applications to the remote end points
which we want to avoid (due to reasons described
in [4]). Also, they depend on SDN enabled networks
and are not applicable to our setting where routing
is based on BGP enabled switches.

Some inference approaches aim at covering the full
topology, e.g. [1]. While this is useful, they typically
only provides a sampled view of connection livelihood
and do not achieve the type of always on monitoring
that 007 provides. The time between probes for [1]
for example is currently 5 minutes. It is likely that
failures that happen at finer time scales slip through
the cracks of its monitoring probes.

Other such work, e.g. [2, 39, 40, 41] require access
to both endpoints and/or switches. Such access may
not always be possible. Finally, NetPoirot [4] can
only identify the general type of a problem (network,
client, server) rather than the responsible device.
Network tomography [7, 8, 9, 11, 21, 43, 44, 45, 46,
47, 48, 49, 50] typically consist of two aspects: (i)
the gathering and filtering of network traffic data to
be used for identifying the points of failure [7, 45]
and (ii) using the information found in the previous
step to identify where/why failures occurred [8, 9, 10,
21, 43, 49, 51]. 007 utilizes ongoing traffic to detect
problems, unlike these approaches which require a
much heavier-weight operation of gathering large
volumes of data. Tomography-based approaches are
also better suited for non-transient failures, while 007
can handle both transient and persistent errors. 007
also has coverage that extends to the entire network
infrastructure, and does not limit coverage to only
paths between designated monitors as some such
approaches do. Work on analyzing failures [7, 21, 43,
45] are complementary and can be applied to 007 to
improve our accuracy.
Anomaly detection [52, 53, 54, 55, 56, 57, 58] find
when a failure has occurred using machine learn-
ing [52, 54] and Fourier transforms [56]. 007 goes a
step further by finding the device responsible.
Fault Localization by Consensus [59] assumes that
a failure on a node common to the path used by a
subset of clients will result in failures on a significant
number of them. NetPoirot [4] illustrates why this

approach fails in the face of a subset of problems that
are common to datacenters. While our work builds
on this idea, it provides a confidence measure that
identifies how reliable a diagnosis report is.
Fault Localization using TCP statistics [2, 60, 61,
62, 63] use TCP metrics for diagnosis. [60] requires
heavyweight active probing. [61] uses learning tech-
niques. Both [61], and T-Rat [62] rely on continuous
packet captures which doesn’t scale. SNAP [63] iden-
tifies performance problems/causes for connections
by acquiring TCP information which are gathered
by querying socket options. It also gathers routing
data combined with topology data to compare the
TCP statistics for flows that share the same host,
link, ToR, or aggregator switch. Given their lack of
continuous monitoring, all of these approaches fail in
detecting the type of problems 007 is designed to de-
tect. Furthermore, the goal of 007 is more ambitious,
namely to find the link that causes packet drops for
each TCP connection.
Learning Based Approaches [4, 64, 65, 66] do fail-
ure detection in home and mobile networks. Our
application domain is different.
Application diagnosis [67, 68] aim at identifying the
cause of problems in a distributed application’s exe-
cution path. The limitations of diagnosing network
level paths and the complexities associated with this
task are different. Obtaining all execution paths seen
by an application, is plausible in such systems but is
not an option in ours.
Failure resilience in datacenters [13, 69, 70, 71, 72,
73, 74, 75, 76, 77] target resilience to failures in dat-
acenters. 007 can be helpful to a number of these
algorithms as it can find problematic areas which
these tools can then help avoid.
Understanding datacenter failures [22, 78] aims to
find the various types of failures in datacenters. They
are useful in understanding the types of problems
that arise in practice and to ensure that our diagnosis
engines are well equipped to find them. 007’s analysis
agent uses the findings of [22].
11 Conclusion
We introduced 007, an always on and scalable mon-
itoring/diagnosis system for datacenters. 007 can
accurately identify drop rates as low as 0.05% in dat-
acenters with thousands of links through monitoring
the status of ongoing TCP flows.
12 Acknowledgements
This work was was supported by grants NSF CNS-
1513679, DARPA/I2O HR0011-15-C-0098. The au-
thors would like to thank T. Adams, D. Dhariwal, A.
Aditya, M. Ghobadi, O. Alipourfard, A. Haeberlen,
J. Cao, I. Menache, S. Saroiu, and our shepherd H.
Madhyastha for their help.

430 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Guo, C., Yuan, L., Xiang, D., Dang, Y., Huang, R.,

Maltz, D., Liu, Z., Wang, V., Pang, B., Chen, H.,
et al. Pingmesh: A large-scale system for data center
network latency measurement and analysis. In ACM
SIGCOMM (2015), pp. 139–152.

[2] Roy, A., Bagga, J., Zeng, H., and Sneoren, A. Pas-
sive realtime datacenter fault detection. In ACM NSDI
(2017).

[3] Zhu, Y., Kang, N., Cao, J., Greenberg, A., Lu, G.,
Mahajan, R., Maltz, D., Yuan, L., Zhang, M., Zhao,
B. Y., et al. Packet-level telemetry in large datacenter
networks. In ACM SIGCOMM (2015), pp. 479–491.

[4] Arzani, B., Ciraci, S., Loo, B. T., Schuster, A.,
Outhred, G., et al. Taking the blame game out of data
centers operations with NetPoirot. In ACM SIGCOMM
(2016), pp. 440–453.

[5] Wu, X., Turner, D., Chen, C.-C., Maltz, D. A., Yang,
X., Yuan, L., and Zhang, M. NetPilot: Automating
datacenter network failure mitigation. ACM SIGCOMM
Computer Communication Review 42, 4 (2012), 419–430.

[6] Narayana, S., Sivaraman, A., Nathan, V., Goyal, P.,
Arun, V., Alizadeh, M., Jeyakumar, V., and Kim, C.
Language-directed hardware design for network perfor-
mance monitoring. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication
(2017), ACM, pp. 85–98.

[7] Zhang, Y., Roughan, M., Willinger, W., and Qiu, L.
Spatio-temporal compressive sensing and internet traffic
matrices. ACM SIGCOMM Computer Communication
Review 39, 4 (2009), 267–278.

[8] Ma, L., He, T., Swami, A., Towsley, D., Leung, K. K.,
and Lowe, J. Node failure localization via network
tomography. In ACM SIGCOMM IMC (2014), pp. 195–
208.

[9] Liu, C., He, T., Swami, A., Towsley, D., Salonidis,
T., and Leung, K. K. Measurement design framework
for network tomography using fisher information. ITA
AFM (2013).

[10] Dhamdhere, A., Teixeira, R., Dovrolis, C., and Diot,
C. NetDiagnoser: Troubleshooting network unreachabili-
ties using end-to-end probes and routing data. In ACM
CoNEXT (2007).

[11] Kompella, R. R., Yates, J., Greenberg, A., and
Snoeren, A. C. IP fault localization via risk modeling.
In USENIX NSDI (2005), pp. 57–70.

[12] Bertsimas, D., and Tsitsiklis, J. N. Introduction to
linear optimization. Athena Scientific, 1997.

[13] Ports, D. R. K., Li, J., Liu, V., Sharma, N. K., and
Krishnamurthy, A. Designing distributed systems us-
ing approximate synchrony in data center networks. In
USENIX NSDI (2015), pp. 43–57.

[14] Microsoft. Windows ETW, 2000. https:
//msdn.microsoft.com/en-us/library/windows/
desktop/bb968803(v=vs.85).aspx.

[15] Hopps, C. E. RFC 2992: Analysis of an Equal-Cost
Multi-Path algorithm, 2000.

[16] Patel, P., Bansal, D., Yuan, L., Murthy, A., Green-
berg, A., Maltz, D. A., Kern, R., Kumar, H., Zikos,
M., Wu, H., et al. Ananta: Cloud scale load balancing.
ACM SIGCOMM Computer Communication Review 43,
4 (2013), 207–218.

[17] Liu, H. H., Kandula, S., Mahajan, R., Zhang, M.,
and Gelernter, D. Traffic engineering with forward
fault correction. In ACM SIGCOMM Computer Com-
munication Review (2014), vol. 44, ACM, pp. 527–538.

[18] Johnson, B. W., Kim, S. H., Leo Jr, E. J., and Lee,
D. Link aggregation path selection method, 2003. US
Patent 6,535,504.

[19] Gunes, M. H., and Sarac, K. Resolving IP aliases in
building traceroute-based internet maps. IEEE/ACM
Transactions on Networking 17, 6 (2009), 1738–1751.

[20] Institute, I. S. RFC 791: Internet Protocol, 1981.
DARPA.

[21] Mysore, R. N., Mahajan, R., Vahdat, A., and Vargh-
ese, G. Gestalt: Fast, unified fault localization for net-
worked systems. In USENIX ATC (2014), pp. 255–267.

[22] Zhuo, D., Ghobadi, M., Mahajan, R., Phanishayee,
A., Zou, X. K., Guan, H., Krishnamurthy, A., and
Anderson, T. RAIL: A case for Redundant Arrays of
Inexpensive Links in data center networks. In USENIX
NSDI (2017).

[23] Bernhard, K., and Vygen, J. Combinatorial optimiza-
tion: Theory and algorithms. Springer, Third Edition,
2005. (2008).

[24] Mosek, A. The mosek optimization software. Online at
http://www. mosek. com 54 (2010), 2–1.

[25] Arzani, B. Simulation source codes. Tech. rep., Mi-
crosoft Research, 2018. https://github.com/behnazak/
Vigil-007SourceCode.git.

[26] Tammana, P., Agarwal, R., and Lee, M. Cherrypick:
Tracing packet trajectory in software-defined datacenter
networks. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research
(2015), ACM, p. 23.

[27] Arzani, B., Ciraci, S., Chamon, L., Zhu, Y., Liu, H.,
Padhye, J., Thau Loo, B., and Outhred, G. 007:
Democratically finding the cause of packet drops. arXiv
preprint (2018).

[28] Arista. Arista eos system message guide. Tech. rep.,
Arista Networks, 2015. http://simatinc.com/simatftp/
4.14/EOS-4.14.6M/EOS-4.14.6M-SysMsgGuide.pdf.

[29] Zhuo, D., Ghobadi, M., Mahajan, R., Förster, K.-T.,
Krishnamurthy, A., and Anderson, T. Understanding
and mitigating packet corruption in data center networks.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (2017), ACM,
pp. 362–375.

[30] Cisco. Cisco bug: Cscut86141 - sfp-h10gb-cu2.255m,
hardware type changed to no-transceiver on n3k. Tech.
rep., Cisco, 2017. https://quickview.cloudapps.cisco.
com/quickview/bug/CSCut86141.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 431

[31] Tammana, P., Agarwal, R., and Lee, M. Simplifying
datacenter network debugging with pathdump. In OSDI
(2016), pp. 233–248.

[32] Al-Fares, M., Loukissas, A., and Vahdat, A. A
scalable, commodity data center network architecture.
In ACM SIGCOMM Computer Communication Review
(2008), vol. 38, ACM, pp. 63–74.

[33] Greenberg, A., Hamilton, J. R., Jain, N., Kandula,
S., Kim, C., Lahiri, P., Maltz, D. A., Patel, P., and
Sengupta, S. Vl2: a scalable and flexible data center
network. In ACM SIGCOMM computer communication
review (2009), vol. 39, ACM, pp. 51–62.

[34] Firestone, D. Vfp: A virtual switch platform for host
sdn in the public cloud. In NSDI (2017), pp. 315–328.

[35] Kompella, R. R., Yates, J., Greenberg, A., and
Snoeren, A. C. Detection and localization of network
black holes. In INFOCOM 2007. 26th IEEE International
Conference on Computer Communications. IEEE (2007),
IEEE, pp. 2180–2188.

[36] Bahl, P., Chandra, R., Greenberg, A., Kandula, S.,
Maltz, D. A., and Zhang, M. Towards highly reliable
enterprise network services via inference of multi-level de-
pendencies. ACM SIGCOMM Computer Communication
Review 37, 4 (2007), 13–24.

[37] Adair, K. L., Levis, A. P., and Hruska, S. I. Expert
network development environment for automating ma-
chine fault diagnosis. In SPIE Applications and Science
of Artificial Neural Networks (1996), pp. 506–515.

[38] Ghasemi, M., Benson, T., and Rexford, J. RINC:
Real-time Inference-based Network diagnosis in the Cloud.
Tech. rep., Princeton University, 2015. https://www.cs.
princeton.edu/research/techreps/TR-975-14.

[39] Mahajan, R., Spring, N., Wetherall, D., and Ander-
son, T. User-level internet path diagnosis. ACM SIGOPS
Operating Systems Review 37, 5 (2003), 106–119.

[40] Liú, Y., Miao, R., Kim, C., and Yuú, M. LossRadar:
Fast detection of lost packets in data center networks. In
ACM CoNEXT (2016), pp. 481–495.

[41] Li, Y., Miao, R., Kim, C., and Yu, M. FlowRadar:
A better NetFlow for data centers. In USENIX NSDI
(2016), pp. 311–324.

[42] Heller, B., Scott, C., McKeown, N., Shenker, S.,
Wundsam, A., Zeng, H., Whitlock, S., Jeyakumar,
V., Handigol, N., McCauley, J., et al. Leveraging
SDN layering to systematically troubleshoot networks.
In ACM SIGCOMM HotSDN (2013), pp. 37–42.

[43] Duffield, N. Network tomography of binary network
performance characteristics. IEEE Transactions on In-
formation Theory 52, 12 (2006), 5373–5388.

[44] Kandula, S., Katabi, D., and Vasseur, J.-P. Shrink:
A tool for failure diagnosis in IP networks. In ACM
SIGCOMM MineNet (2005), pp. 173–178.

[45] Ogino, N., Kitahara, T., Arakawa, S., Hasegawa,
G., and Murata, M. Decentralized boolean network to-
mography based on network partitioning. In IEEE/IFIP
NOMS (2016), pp. 162–170.

[46] Chen, Y., Bindel, D., Song, H., and Katz, R. H.
An algebraic approach to practical and scalable over-
lay network monitoring. ACM SIGCOMM Computer
Communication Review 34, 4 (2004), 55–66.

[47] Zhao, Y., Chen, Y., and Bindel, D. Towards unbi-
ased end-to-end network diagnosis. ACM SIGCOMM
Computer Communication Review 36, 4 (2006), 219–230.

[48] Huang, Y., Feamster, N., and Teixeira, R. Practical
issues with using network tomography for fault diagnosis.
ACM SIGCOMM Computer Communication Review 38,
5 (2008), 53–58.

[49] Duffield, N. G., Arya, V., Bellino, R., Friedman, T.,
Horowitz, J., Towsley, D., and Turletti, T. Network
tomography from aggregate loss reports. Performance
Evaluation 62, 1 (2005), 147–163.

[50] Herodotou, H., Ding, B., Balakrishnan, S., Outhred,
G., and Fitter, P. Scalable near real-time failure local-
ization of data center networks. In ACM KDD (2014),
pp. 1689–1698.

[51] Banerjee, D., Madduri, V., and Srivatsa, M. A
framework for distributed monitoring and root cause
analysis for large IP networks. In IEEE SRDS (2009),
pp. 246–255.

[52] Fu, Q., Lou, J.-G., Wang, Y., and Li, J. Execution
anomaly detection in distributed systems through un-
structured log analysis. In IEEE ICDM (2009), pp. 149–
158.

[53] Huang, L., Nguyen, X., Garofalakis, M., Jordan,
M. I., Joseph, A., and Taft, N. In-network PCA and
anomaly detection. In NIPS (2006), pp. 617–624.

[54] Gabel, M., Sato, K., Keren, D., Matsuoka, S., and
Schuster, A. Latent fault detection with unbalanced
workloads. In EPForDM (2015).

[55] Ibidunmoye, O., Hernández-Rodriguez, F., and Elm-
roth, E. Performance anomaly detection and bottleneck
identification. ACM Computing Surveys 48, 1 (2015).

[56] Zhang, Y., Ge, Z., Greenberg, A., and Roughan, M.
Network anomography. In ACM SIGCOMM IMC (2005).

[57] Crovella, M., and Lakhina, A. Method and apparatus
for whole-network anomaly diagnosis and method to de-
tect and classify network anomalies using traffic feature
distributions, 2014. US Patent 8,869,276.

[58] Kind, A., Stoecklin, M. P., and Dimitropoulos, X.
Histogram-based traffic anomaly detection. IEEE Trans-
actions on Network and Service Management 6, 2 (2009).

[59] Padmanabhan, V. N., Ramabhadran, S., and Padhye,
J. Netprofiler: Profiling wide-area networks using peer
cooperation. In IPTPS. 2005, pp. 80–92.

[60] Mathis, M., Heffner, J., O’Neil, P., and Siemsen, P.
Pathdiag: Automated TCP diagnosis. In PAM (2008),
pp. 152–161.

[61] Widanapathirana, C., Li, J., Sekercioglu, Y. A.,
Ivanovich, M., and Fitzpatrick, P. Intelligent auto-
mated diagnosis of client device bottlenecks in private
clouds. In IEEE UCC (2011), pp. 261–266.

432 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[62] Zhang, Y., Breslau, L., Paxson, V., and Shenker, S.
On the characteristics and origins of internet flow rates.
ACM SIGCOMM Computer Communication Review 32,
4 (2002), 309–322.

[63] Yu, M., Greenberg, A. G., Maltz, D. A., Rexford, J.,
Yuan, L., Kandula, S., and Kim, C. Profiling network
performance for multi-tier data center applications. In
USENIX NSDI (2011).

[64] Chen, M., Zheng, A. X., Lloyd, J., Jordan, M.,
Brewer, E., et al. Failure diagnosis using decision
trees. In IEEE ICAC (2004), pp. 36–43.

[65] Dimopoulos, G., Leontiadis, I., Barlet-Ros, P., Pa-
pagiannaki, K., and Steenkiste, P. Identifying the
root cause of video streaming issues on mobile devices.

[66] Agarwal, B., Bhagwan, R., Das, T., Eswaran, S.,
Padmanabhan, V. N., and Voelker, G. M. NetPrints:
Diagnosing home network misconfigurations using shared
knowledge. In USENIX NSDI (2009), vol. 9, pp. 349–364.

[67] Chen, Y.-Y. M., Accardi, A., Kiciman, E., Patterson,
D. A., Fox, A., and Brewer, E. A. Path-based failure
and evolution management. In USENIX NSDI (2004).

[68] Aguilera, M. K., Mogul, J. C., Wiener, J. L.,
Reynolds, P., and Muthitacharoen, A. Performance
debugging for distributed systems of black boxes. ACM
SIGOPS Operating Systems Review 37, 5 (2003), 74–89.

[69] Liu, J., Panda, A., Singla, A., Godfrey, B., Schapira,
M., and Shenker, S. Ensuring connectivity via data
plane mechanisms. In USENIX NSDI (2013), pp. 113–
126.

[70] Alizadeh, M., Edsall, T., Dharmapurikar, S.,
Vaidyanathan, R., Chu, K., Fingerhut, A., Matus, F.,
Pan, R., Yadav, N., Varghese, G., et al. CONGA: Dis-
tributed congestion-aware load balancing for datacenters.
ACM SIGCOMM Computer Communication Review 44,
4 (2014), 503–514.

[71] Paasch, C., and Bonaventure, O. Multipath TCP.
Communications of the ACM 57, 4 (2014), 51–57.

[72] Chen, G., Lu, Y., Meng, Y., Li, B., Tan, K., Pei, D.,
Cheng, P., Luo, L. L., Xiong, Y., Wang, X., et al.
Fast and cautious: Leveraging multi-path diversity for
transport loss recovery in data centers. In USENIX ATC
(2016).

[73] Schiff, L., Schmid, S., and Canini, M. Ground control
to major faults: Towards a fault tolerant and adaptive
SDN control network. In IEEE/IFIP DSN (2016), pp. 90–
96.

[74] Reitblatt, M., Canini, M., Guha, A., and Foster, N.
Fattire: Declarative fault tolerance for software-defined
networks. In ACM SIGCOMM HotSDN (2013), pp. 109–
114.

[75] Kuźniar, M., Perešíni, P., Vasić, N., Canini, M., and
Kostić, D. Automatic failure recovery for software-
defined networks. In ACM SIGCOMM HotSDN (2013),
pp. 159–160.

[76] Bodík, P., Menache, I., Chowdhury, M., Mani, P.,
Maltz, D. A., and Stoica, I. Surviving failures in
bandwidth-constrained datacenters. In ACM SIGCOMM
(2012), pp. 431–442.

[77] Wundsam, A., Mehmood, A., Feldmann, A., and
Maennel, O. Network troubleshooting with mirror
VNets. In IEEE GLOBECOM (2010), pp. 283–287.

[78] Gill, P., Jain, N., and Nagappan, N. Understanding
network failures in data centers: Measurement, analysis,
and implications. ACM SIGCOMM Computer Commu-
nication Review 41, 4 (2011), 350–361.

[79] Arratia, R., and Gordon, L. Tutorial on large devi-
ations for the binomial distribution. Bulletin of Mathe-
matical Biology 51, 1 (1989), 125–131.

[80] Feller, W. An Introduction to Probability Theory and
Its Applications, vol. 1. Wiley, 1968.

[81] Cover, T., and Thomas, J. Elements of information
theory. Wiley-Interscience, 2006.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 433

1 3

4

2

Figure 14: Simple tomography example.
A Network tomography example
Knowing the path of all flows, it is possible to find
with confidence which link dropped a packet. To
do so, consider the example network in Figure 14.
Suppose that the link between nodes 2 and 4 drops
packets. Flows 1–2 and 3–2 suffer from drops, but
1–3 does not. A set cover optimization, such as the
one used by MAX COVERAGE and Tomo [10, 11],
that minimizes the number of “blamed” links will
correctly find the cause of drops. This problem is
however equivalent to a set covering optimization
problem that is known to be NP-complete [23].

B Proofs
Consider a Clos topology with npod pods each
with n0 ToR switches each with H hosts. Links
between tier-0 and tier-1 switches are referred to
as level 1 links and links between tier-1 and tier-2
switches are called level 2 links (see Figure 15). As-
sume that connection occur uniformly at random
between hosts under different ToR switches. Also,
assume that link failure and connection routing are
independent and that links drop packets indepen-
dently across links and across packets. To make the
derivations clearer, we use calligraphic letter (A) for
sets and boldface (A) to denote random variables.
We also use the notation [M] = 1, . . . ,M (see [27] for
more detailed proofs).
B.1 Proof of Theorem 1
Proof. First, note that since the number of hosts
below each ToR switch is the same, we can consider
that traceroutes are sent uniformly at random be-
tween ToR switches at a rate CtH. Also, note that
routing probabilities are the same for links on the
same level, so the traceroute rate depends only on
whether the link is on level 1 or level 2. Given ECMP,
the traceroute rates on a level 1 (R1) and level 2 (R2)
link is given by

R1 = 1
n1
CtH and R2 = n0

n1n2

n0(npod−1)
(n0npod−1)CtH.

Since n0 links are connected to a tier-1 switch and n1
links are connected to a tier-2, the rate of ICMP pack-
ets at any links is bounded by T ≤max[n0R1,n1R2].

Taking max[n0R1,n1R2]≤ Tmax yields (1).

B.2 Proof of Theorem 2
We prove a more precise statement of Theorem 2.

Theorem 3. In a Clos topology with n0 ≥ n2 and
npod ≥ 1+max

[
n0
n1
, n2(n0−1)
n0(n0−n2) ,1

]
, 007 will rank with

probability (1−ε) the k < n2(n0npod−1)
n0(npod−1) bad links that

drop packets with probability pb above all good links
that drop packets with probability pg as long as

pg ≤
1− (1−pb)cl

αcu
, (5)

where cl and cu are lower and upper bounds, re-
spectively, on the number of packets per connection,
ε≤ 2e−O(N), N is the total number of connections
between hosts, and

α=
n0(4n0−k)(npod−1)

n2(n0npod−1)−n0(npod−1)k . (6)

Before proceeding, note that the typical scenario
in which n0 ≥ 2n2 and n2(n0−1)

n0(n0−n2) ≤ 1, as in our data
center, the condition on the number of pods from
Theorem 3 reduces to npod ≥ 1+ n0

n1
.

Proof. The proof proceeds as follows. First, we show
that if a link has higher probability of receiving a
vote, then it receives more votes if a large enough
number of connections (N) are established. We do
so using large deviation theory [79], so that we can
show that the probability that this does not happen
decreases exponentially in N .

Lemma 1. Let vb (vg) be the probability of a
bad (good) link receiving a vote. If vb ≥ vg, 007 ranks
bad links above good links with probability 1−e−O(N).

With Lemma 1 in hands, we then need to relate
the probabilities of a link receiving a vote (vb,vg)
to the link drop rates (pb,pg). This will allow us to
derive the signal-to-noise ratio condition in (5). Note
that the probability of a link receiving a vote is the
probability of a flow going through the link and that
a retransmission occurs (i.e., some link in the flow’s
path drops at least one packet).

Lemma 2. In a Clos topology with n0 ≥ n2 and
npod ≥ 1 + max

[
n0
n1
, n2(n0−1)
n0(n0−n2) ,1

]
, it holds that

for k ≤ n0 bad links

vb ≥
rb

n0n1npod
(7a)

vg ≤
1

n1n2npod

n0(npod−1)
n0npod−1

[
(4− k

n0
)rg + k

n0
rb

]
(7b)

434 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

where rb and rg are the probabilities of a retransmis-
sion being due to a bad and a good link, respectively.

Before proving these lemmata, let us see how they
imply Theorem 3. From (7) in Lemma 2,

rb ≥
n0(4n0−k)(npod−1)

n2(n0npod−1)−n0(npod−1)k︸ ︷︷ ︸
α

rg⇒ vb ≥ vg,

(8)
for k < n2(n0npod−1)

n0(npod−1) < n0. Thus, in a Clos topology,
if rb ≥ αrg for α as in (6), then vb ≥ vg. However, (8)
gives a relation in terms of probabilities of retransmis-
sion (rg, rb) instead of the packet drop rates (pg, pb).
Nevertheless, note that the probability r of retrans-
mission during a connection with c packets due
to a link that drops packets with probability p
is r= 1−(1−p)c. Since r is monotonically increasing
in c, we have rb≥ 1−(1−pb)cl and rg ≤ 1−(1−pg)cu .
Using the fact (1−x)n ≥ 1−nx yields (5).

Proof of Lemma 1. First, note in a datacenter-sized
Clos network, almost every connection has a hop
count of 5 (in our datacenter, this happens to 97.5%
of connections). We can therefore approximate links
votes by assuming all bad votes have the same value.

Since links cause retransmissions independently
across connections, the number of votes of a bad link
is a binomial random variable B with parameters N ,
the total number of connections, and vb, the probabil-
ity of a bad link receiving a bad vote. Similarly, let G
be the number of votes on a good link, a binomial
random variable with parameters N and vg. 007 will
correctly rank bad links if B ≥G, i.e., if bad links re-
ceive more votes than good links. This event contains
the event D = {G ≤ (1 + δ)Nvg ∩B ≥ (1− δ)Nvb}
for δ ≤ vb−vg

vb+vg
. Using the union bound [80], the prob-

ability of 007 correctly identifying bad links obeys

P(B ≥G)≥ 1−P [G≥ (1+ δ)Nvg]
−P [B ≤ (1− δ)Nvb] .

(9)

To proceed, bound the probabilities in (9) using the
large deviation principle [79], i.e., use the fact that
for a binomial random variable S with parametersM
and q and for δ > 0 it holds that

P [S ≥ (1+ δ)qM]≤ e−MDKL((1+δ)q‖q) (10a)

P [S ≤ (1− δ)qM]≤ e−MDKL((1−δ)q‖q) (10b)

where DKL(q‖r) is the Kullback-Leibler divergence
between two Bernoulli distributions with probabili-
ties of success q and r [81]. The result in Lemma 1
is obtained by substituting (10) into (9).

Level 1 links

Level 2 links

Figure 15: Illustration of notation for Clos topology
used in the proof of Lemma 2

Proof of Lemma 2. Let T0, T1, and T2 denote the set
of ToR, tier-1, and tier-2 switches respectively (Fig-
ure 15). Let T s0 and T s1 , s = [npod], denote the
tier-0 and tier-1 switches in pod s, respectively. Note
that T0 = T 1

0 ∪·· ·∪T
npod

0 and T1 = T 1
1 ∪·· ·∪T

npod
1 .

Throughout the derivation, we use subscripts to de-
note the switch tier and superscripts to denote its pod.
For instance, is0 is the i-th tier-0 switch from pod s,
i.e., is0 ∈ T s0 , and `2 is the `-th tier-2 switch (tier-
2 switches do not belong to specific pods). We
write (is0, js1) for the level 1 link between is0 to js1 (as
in Figure 15) and r(is0, js1) = r(js1 , is0) to refer to the
probability of link (is0, js1) causing a retransmission.

To get the lower bound in (7a), note that a bad link
receives at least as many bad votes as retransmissions
it causes. Therefore, the probability of 007 voting
for a bad link is larger than the probability of that
link causing a retransmission. The bound is obtained
by taking the minimum between the probability of a
connection going through a level 1 and a level 2 link
and that link causing a retransmission, i.e.,

vb ≥min
[

1
n0n1npod

,
1

n1n2npod

n0(npod−1)
n0npod−1

]
rb.

The assumption that npod≥ 1+ n2(n0−1)
n0(n0−n2) makes the

first term smaller than the second and yields (7a).
In contrast, the upper bound in (7b) is obtained by

applying the union bound [80] over all possible ways
that level 1 and level 2 link could be voted. Then,
finding an adversarial placement of good and bad
links that maximizes the probability of the good link
receiving a vote, we find that for n0 ≥ n2, npod ≥ 2,
and k ≤ n2, the worst case is achieved for a level 2
link, yielding (7a).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 435

Efficient and Correct Test Scheduling for Ensembles of Network Policies

Yifei Yuan Sanjay Chandrasekaran Limin Jia Vyas Sekar
Carnegie Mellon University

Abstract
Testing whether network policies are correctly imple-
mented is critical to ensure a network’s safety, perfor-
mance and availability. Network operators need to test
ensembles of network policies using a combination of
native and third-party tools in practice, as indicated by
our survey. Unfortunately, existing approaches for run-
ning tests for ensembles of network policies on state-
ful networks face fundamental challenges with respect to
correctness and efficiency. Running all tests sequentially
is inefficient, while naı̈vely running tests in parallel may
lead to incorrect testing results. In this paper, we propose
Mikado, a principled scheduling framework for schedul-
ing tests generated by various (blackbox) tools for en-
sembles of policies. We make two key contributions: (1)
we develop a formal correctness criteria for running tests
for ensembles of policies; and (2) we design a provably
correct and efficient test scheduling algorithm, based on
detecting read-write test conflicts. Mikado is open source
and can support a range of policies and testing tools. We
show that Mikado can generate correct schedules in real-
world scenarios, achieve orders of magnitude reduction
on the test running time, and schedule tests for thousands
of network policies in large networks with 1000+ nodes
within minutes.

1 Introduction
Network policies, such as reachability (Can A talk to B?)
and dynamic service chaining [14], are implemented via
complex network configurations. Testing whether these
policies are correctly implemented is becoming increas-
ing important to ensure the security, performance and
availability of networks [13, 47, 42, 44, 29, 19].

In recent years, a number of testing techniques have
been developed which focus on a variety of network poli-
cies, such as ATPG [47], BUZZ [13] and Symnet [42].
Each of these tools can efficiently generate test traces
for a single network policy. Our survey indicates, how-
ever, that operators have a broad spectrum of policies

that the network must implement in practice and thus
they need efficient techniques for testing ensembles of
network policies. Testing such ensembles of policies
involves incorporating multiple third-party testing tools
(e.g., ATPG for reachability, Symnet for network func-
tion correctness, BUZZ for service chaining) as they may
offer complementary capabilities and tradeoffs. Looking
forward, with emerging trends such as intent-based net-
working [7, 28, 23], we expect that the policies and test-
ing tools will increase both in diversity and in number.1

Unfortunately, testing such ensembles raises funda-
mental conflicts with respect to efficiency and correct-
ness. Today, operators often run all tests sequentially in
the live network, as indicated by our survey. However,
this approach cannot scale up to large-size networks that
enforce hundreds or even thousands of network policies.
On the other hand, running all tests in parallel may pro-
duce incorrect testing results due to interference among
the tests. For instance, if a firewall enforces a policy A
based on connection state, then any test of another policy
B that changes the relevant connection state will induce
incorrect test results for A when executing the two tests
in parallel (See §2 for more examples).

To achieve both correctness and efficiency, we need a
principled framework for scheduling such ensembles of
test cases. In this respect, strawman solutions such as
avoiding specific middleboxes or randomizing the par-
allelization strategy lead to suboptimal and/or incorrect
results; and trivial exhaustive search for optimal sched-
ules may take exponential time. Thus, there are two key
challenges in realizing such a framework: 1) how to rea-
son about the correctness of a schedule for ensembles of
tests generated by a variety of testing tools; and 2) how to

1An alternative to testing is to statically verify networks [37] or
synthesizing configurations from intents [43]. However, given the dy-
namic, stateful nature of processing, the large state space of possible
behaviors, testing will still be needed even with these advances to: (1)
check correctness for scenarios that cannot be statically verified and
(2) to diagnose possible disconnects between the models in the verifi-
cation/synthesis tools and the real network implementations.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 437

Intended policies

Mikado

Network

BUZZ ATPG SymNet
Test Traffic Traces

Logs
Parallelized Test Trace Injection

…

Figure 1: Mikado overview.
efficiently generate optimal schedules for large networks
with thousands of nodes and policies.

To this end, we design and implement Mikado, a
framework that offers a provably correct and efficient
scheduling for tests of ensembles of network policies.
As illustrated in Fig. 1, Mikado logically sits between
the test generation tools and the network (live or shadow)
and is agnostic to the testing tools. Given the test traces
for the intended policies, Mikado generates a test sched-
ule that can (near-optimally) reduce the test running time
needed to cover those test traces. We note that an al-
ternative design is to generate and schedule test cases in
one go. However, given the wide spectrum of network
policies, it is unlikely for a single testing tool to sup-
port all kinds of policies. Thus, we design Mikado with
a blackbox approach to support multiple test generation
tools specialized for various policies.

Mikado’s design makes two key contributions. First,
we develop a formal model for stateful network testing to
reason about the correctness of a schedule of test cases
(§4). Second, we use our formal model to detect read-
write interference among tests and use an efficient graph
coloring heuristic on an interference graph to generate
provably correct and near-optimal schedules (§5). We
also identify opportunities for optimizing the test running
time via a combination of random packet header fuzzing
and an iterative refinement technique that reduce the like-
lihood of interference among test traces (§6).

We evaluate Mikado based on both real and synthetic
network topologies and policies (§7). We show that: (1)
Mikado can generate correct schedules in real-world sce-
narios; (2) Mikado achieves orders of magnitude reduc-
tion on the test running time for thousands of policies on
real network topologies; (3) Mikado is scalable to net-
work with 1000+ switches and middlebox and thousands
of policies; (4) the proposed extension to reduce interfer-
ence is both effective and efficient.

2 Motivation
We first describe motivating examples to illustrate the
challenges of running tests in stateful networks today.
Then we describe our recent survey over network opera-
tors, which further confirms these challenges in practice.

2.1 Motivating Examples
Multi-stage IPS: Fig. 2 shows a multi-stage intrusion
prevention deployment which consists of a light-weight
IPS (IPS1) and a heavy-weight IPS (IPS2). The network
operator wants to enforce a set of policies for each de-
partment, where traffic from all departments should be
sent to IPS1 but traffic from suspicious hosts labeled by
IPS1 (e.g., generating 10 bad connections) is sent to IPS2
for payload signature analysis. The topology of the net-
work is at the bottom of Fig. 2 and the policy ensemble
is illustrated on top of Fig. 2, which we call policy graph.

S1 S2

IPS1

IPS2

Allow

Drop
Bad conn. # >= 10

Bad signature

otherwise
otherwise

Internet
CS

IPS1 IPS2

Policy
Network

All departments’s traffic

EE

…

Figure 2: Multi-stage IPS.

To test the intended policies in a live network, a testing
tool may generate three test traces for a department, each
of which corresponds to a path in the policy graph. For
instance, to test the policy ensemble for traffic from the
CS department, the tool may generate three test traces
from a host H, one containing 6 bad connections and the
other two containing 11 bad connections. Further, the
second test trace only includes good signatures and the
last test trace includes bad signatures. We write trace6

H
to denote the first test trace, trace11

H for the second, and
trace′11

H for the third. If the policies are correctly imple-
mented, by injecting the test traces into the network, the
network operator would expect to see that packets in the
first two traces are successfully forwarded to the Internet
and only the latter is directed to IPS2, while trace′11

H is
directed to IPS2 and blocked.

Today, operators often need to inject a trace, obtain
the results, and then repeat for the next trace. However,
such a sequential approach may generate incorrect test-
ing results due to the local state maintained by IPS1. For
example, injecting trace6

H after trace11
H will cause trace6

H
to be (mistakenly) directed to IPS2, because of IPS1’s
stale counter value. An improved sequential testing may
wait for a sufficient time Tto for the state to expire be-
tween each two injections. However, this scheduling can
be very inefficient: suppose the time of injecting a trace
and waiting for timeout is 30 seconds, running tests for
1,000 policies would take 8 hours!

Injecting all test traces in parallel can reduce the test-
ing time, however, such scheduling could generate in-
correct testing results: e.g., injecting trace6

H and trace11
H

together may cause both traces to be directed to IPS2 as

438 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

S1 S2

Stateful
firewall

Block

AllowConn. is setup

InternetDepartment

NAT
Stateful
firewall

Policy
Network

otherwise

Traffic from external

Figure 3: Stateful firewall.

S1 S2

Monitor
Block

Allow

Internet

H1
Proxy Monitor

Policy
Network

otherwise

Web traffic
to .edu

H2

Proxy
Cache miss

Figure 4: Web monitoring.

the IPS1’s counter value reflects the collective connec-
tion counts of the traces, not individual ones.
Stateful Firewall: In practice, operators use multiple
tools to test different policies. We show that running
multiple tools may also lead to incorrect results. Con-
sider the stateful firewall example Fig. 3, where the in-
tended policies are to 1) allow an external IP to access
internal network after an internal host is connected to that
IP, and 2) block external traffic otherwise.

A tester (e.g., BUZZ [13]) aimed at stateful policies
may generate a test trace traceBUZZ that contains a con-
nection from an internal client C1 to an external server
S followed by packets from S to C1. Meanwhile, a net-
work operator may also use tools like ATPG [47] to test
basic reachability. ATPG may generate a test traffic trace
traceATPG from S to a client C2. However, running the
two traces in parallel may produce incorrect testing re-
sults: if traceATPG reaches the firewall after the connec-
tion has been set up between C1 and S by traceBUZZ ,
traceATPG would go through the firewall while it should
have been blocked if it was injected alone. This example
demonstrates that simple composition of multiple testing
tools may not be safe even if one (ATPG in this example)
is aimed at stateless policies such as basic reachability.
Traffic monitoring: Running multiple tests not only
raises false alarms, but can also mask configuration bugs
in the network. In Fig. 4, a proxy is used to improve the
web performance, and a monitoring system is configured
to monitor web traffic. The intended policy is to allow
.edu web traffic for all internal hosts. However, switch
S2 is mistakenly configured to block traffic from H2.

To test the intended policy, one may run tests that re-
quest xyz.edu from all hosts. Running the tests in arbi-
trary order may not uncover the misconfiguration on S2.
For example, consider a test trace containing requests to
xyz.edu from host H1, and a second trace containing
requests to xyz.edu from host H2. The second trace

Policies %
< 10 19.23%
10-100 57.69%
100-1000 11.54%
>1k 11.54%

Tools %
< 5 35%
5-10 50%
>10 15%

Table 1: Number of policies and testing tools.

can uncover the misconfiguration when injected alone to
the network, as the request will be blocked by S2. How-
ever, when injected together with the first trace (or imme-
diately after it), the request from H2 may get a response
from the proxy, which caches the content from the first
test trace, and the bug is not revealed.
Summary: We observe key correctness and efficiency
challenges in testing an ensemble of policies, and natural
strawman solutions face one or both of the challenges.
For example, simple isolation heuristics, such as avoid-
ing running tests that access the same middleboxes, will
run tests for EE and CS separately for the example in
Fig. 2. However, an optimal scheduling can safely run
tests from EE and CS together even if they all access
IPS1. Exhaustively searching for optimal schedules is
not applicable as it takes exponential time and thus in-
curs prohibitive overhead to the testing workflow.

2.2 Survey on Network Testing
To understand the reality of the aforementioned chal-
lenges in network testing today, we conducted a survey
in Sept. 2017 among subscribers to the North Ameri-
can Network Operators Group. Among all 30 respon-
dents, 4 manage small networks (< 1k hosts), 6 medium
networks (1k-10k hosts), 11 large networks (10k-100k
hosts), and 9 very large networks (> 100k hosts). Ques-
tions and responses can be found in the link [3]. Here we
highlight a few key observations.
Sequential live testing is the dominant testing
methodology: When asked the ways of running network
tests, 72.97% report running testing on live networks,
which is significantly higher than other methodologies
(24.32% for emulated network based testing and 2.7%
for others). Among those who responded live testing,
86.21% run tests in a sequential way (i.e. run each test
case one by one).
Ensembles of policies need to be tested: Table 1 shows
that network operators need to test varied number of net-
work policies. While the majority (57.68%) reports pol-
icy numbers ranging from 10-100, a significant portion
(accounts for 12%) reports the number to be several thou-
sands. A large variety of policies are also reported, rang-
ing from reachability, service chaining, access control,
routing, latency/throughput among others.
Multiple tools are used: When asked the number of
tools used in testing, all responses report at least 2 dif-
ferent tools. As shown on the right of Table 1, 50% re-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 439

Concerns %
Test cases may not match the policy intent 30.23%
Testing result maybe incorrect 27.91%
Testing traffic may conflict 25.58%
Testing is slow 16.28%

Table 2: Concerns when running tests

spondents use 5-10 tools for network testing, while some
use 10+ tools. While ping, traceroute, iperf are still pop-
ular testing tools, we also see responses on using expert-
crafted scripts, third-party tools, and custom tools.
Top concerns: Given the large variety and number of
policies and testing tools, we hypothesize that correct-
ness of testing results and test conflicts may be one of the
concerns for running tests. This is confirmed by our sur-
vey. Table 2 lists the concerns network operators report
for running network tests under a multi-choice question.
A large number (53%) of responses report correctness of
testing results and test conflicts as their concerns.

3 Overview
Our goal is to schedule an ensemble of test traces effi-
cient while guaranteeing the correctness of the tests. In
other words, we seek to inject as many test traces as pos-
sible in parallel such that these traces do not interfere
with each other. To this end, we need: (1) a systematic
way to reason about the potential for interference of test
cases and (2) efficient techniques to identify and sched-
ule non-interfering test cases.

Figure 5 depicts the workflow of our tool Mikado,
zoomed in view of Figure 1. The input to Mikado is a set
of test traffic traces that are generated from any testing
tools (e.g., Symnet, ATPG, Buzz), and Mikado outputs
an efficient and correct test scheduling plan. To realize
the requirements discussed above, Mikado consists of the
following components (the dashed are extensions).

Interference Checker: To reason about the potential
for interference, we develop a formal model to capture
the behavior of the stateful networks (§4). Using this
model, Mikado first checks the potential source of in-
terference among the test traces. This offers a provable
guarantee that scheduling non-interfering test traces in
parallel preserves the testing results as if each test trace
was injected on a separate or isolated network.

Trace Scheduler: Base on the pairwise interference
relations, Mikado builds an interference graph, where
each node in the graph corresponds to a test trace, and
an edge connects two interfering traces. Mikado then
uses a graph coloring algorithm to generate an optimal
scheduling of the test traces by assigning each node in
the interference graph a color such that two end nodes of
an edge are assigned different colors.

Given a colored interference graph, Mikado runs all
tests in k rounds, where k is the number of colors on
the interference graph. In the i-th round, Mikado injects

Test Trace Scheduler

Trace Refiner

Test Traffic Traces

Efficient and Safe Test Traffic Injection

Network
Model

Testing Tools
Prepocesser

Refined Test
Traffic Traces

Interference Checker

Figure 5: Mikado architecture.
all test traces with the i-th color and reports the execut-
ing results to the testing tools. Between two consecutive
rounds, Mikado waits for a sufficient amount of time in
order for all state to reset.

Preprocessor and Trace Refiner: Optionally,
Mikado can further improve the scheduling by random
packet fuzzing and test traces refinement.

Before checking interference, Mikado can run
heuristic-based preprocessing to reduce the chance of in-
terference among test traces. This process rewrites the
test traces using randomly selected values for given fields
according to the policy being tested.

After obtaining a correct schedule, Mikado can fur-
ther refine the test traces to reduce the number of edges
in the interference graph, and thus reduce the number of
colors to color the refined interference graph. In partic-
ular, given a trace that is interfering with a set of traces,
Mikado reruns the testing tool for that trace to generate
another test trace which is not interfering with the set of
traces. For this purpose, Mikado automatically generates
a configuration file for the testing tool, without modify-
ing the internal logic of the testing tool.
Illustrative Example: We use the multi-stage IPS ex-
ample from §2 to illustrate the end-to-end workflow. For
brevity, we do not discuss the preprocessing here and
only consider the testing of two policies for each depart-
ment. Suppose trace6

H and trace11
H are the two traces gen-

erated for the CS department and trace6
H ′ and trace11

H ′ are
the two traces for the EE department. First, the interfer-
ence checker automatically detects the interferences, and
builds the interference graph as shown in the left sub-
figure in Figure 6, where circular nodes correspond to
trace6

H and trace11
H , and rectangular nodes correspond to

test traces for the EE department. As discussed in §2,
trace6

H and trace11
H cannot be injected together, and thus

there is an edge in the interference graph between them.
Second, the trace scheduler colors each node with the
goal to minimize the number of colors. An example col-
oring is shown in the middle subfigure. Based on this
colored interference graph, Mikado can safely inject blue
traces (i.e., trace6

H and trace6
H ′) in the first round, and

then inject the red traces (i.e., trace11
H and trace11

H ′) in the
second round. Additionally, the trace refiner can be used
to refine a test trace to further reduce the interference.

440 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Interference graph Colored Interference
graph

Refined Interference
Graph

trace6

trace11

CS EE

Figure 6: Example run of Mikado on multi-stage IPS.

For instance, to reduce the interference between the two
circular nodes, the refiner generates a configuration file
that asks the testing tool to generate another test trace that
is not from H to refine the trace trace11

H . If the testing tool
succeeds in doing so, the old node will be replaced with
the newly generated trace in the interference graph, and
edges from the old nodes are removed. The right sub-
figure illustrates the final results, where the nodes with
dashed line are the refined traces. After the refinement,
all test traces can be safely injected in a single round.

4 Problem Formalization
Before we design any tool for scheduling, first we need
a formal basis for reasoning about the correctness of a
schedule. To this end, we develop a formal notion of
correctness and define the test scheduling problem.

4.1 Stateful Network Model
We extend prior work on formal network modeling used
in defining stateless networks (c.f. [22, 40]) to model the
stateful behaviors we encountered in §2. This model pro-
vides a necessary building block for our test correctness
definition and proofs for our scheduling algorithm. Our
model may also be used in providing semantics to other
network testing and verification problems. Note that this
model abstracts concrete network functions and thus sub-
sumes models in BUZZ [13] and Symnet [42]. We cur-
rently do not model multicast and time.
Syntax. The syntactic constructs used for our model are
summarized in Figure 7. We write pkt to denote network
packets, which are bitstrings. We model locations in the
network as ports, denoted p. We use natural numbers n to
represent concrete network locations. A special port exit
models all locations outside the network of concern. To
model dropped packets we include a special port drop.
A located packet, denoted lp, is a pair of a port and a
packet. (p,pkt) means that the packet pkt is at port p
waiting to be processed. Packets at port exit are the ones
that have left the network. All dropped packets are at
port drop. Multiple packets can co-locate at one port. A
packet queue, denoted Q, maps each port p to a list of
packets located at p.

Each state in a stateful network (e.g., connection state
remembered by a firewall) is labelled with a unique state
location, denoted s. We assume s is drawn from a fi-
nite set of location symbols Σ. A state map, denoted

Packet pkt ::= [b1 . . .bl]
Port p ::= n |exit |drop
Located Packet lp ::= (p,pkt)
Port Queue Q ∈ Port→ Packet list
State. Loc. s ∈ Σ

State Map M ∈ StateLoc→ Value
Network Env. E ::= (Q,M)
Topo. Func. ρ ∈ Port→ Port
Trans. Func. δ ∈ StateMap×LocatedPkt

→ StateMap×LocatedPkt
Configuration C ::= (ρ,δ)
Network State S ::= (E,C)

Network run r ::= E1
lp/lp′−−−→C · · ·Ek

Observation o ::= [l p1/l p1; · · · ; lpn/l p′n]
Figure 7: Stateful network model: syntax

M, maps each state location to a value, drawn from a
finite set of values Value. Intuitively, the state locations
represent the variables and data structures that are inter-
nally maintained by stateful middleboxes and SDN con-
trollers. We write E to denote network environments,
which are pairs of the packet queue and the state map.
We write Minit to denote the initial state map. Minit maps
each state location to its pre-defined initial value. The
initial port queue, Qinit, maps each port to an empty list.
We call (Qinit,Minit) an initial environment. A terminat-
ing environment is one where the port queue is empty for
all port p s.t. p /∈ {exit,drop}.

The topology of the network is determined by connec-
tions between ports. We use a function ρ to map a port
p to another port p′, where packets at p are sent to. The
process of transforming and forwarding packets are mod-
eled as transfer functions, denoted δ . A transfer function
takes as arguments a pair of a state map and a located
packet and returns a pair of a new state map and a new
located packet. A configuration of the network is a pair
(ρ,δ), which include the topology and transfer function
of the network. A network state S is a pair of the envi-
ronment E the configuration C.
Operational semantics. As packets are processed and
traverse the network, network states change and affect
the processing of future packets. We define small-step
operational semantics to model the transitions of net-

work states. We write E
lp/lp′−−−→C E ′ to denote the tran-

sition from E to E ′ using configuration C. Here, lp
and lp′ above the arrow denote the located packet pro-
cessed at the transition and the resulting located packet
respectively. We assume that the configuration C does
not change during the testing of policies in the network.

The only transition rule NET-TRANS (shown below)
states that if the first packet at port p is pkt, the transition
function changes the located packet (p,pkt) to (p′,pkt′)
and the state map from M to M′, and p′ is connect to p′′,
then after pkt at p is processed, the state map is M′, and
the port queue is updated to reflect that pkt is no longer

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 441

at p and pkt′ is added to port p′′.

NET-TRANS
pkt = head(Q(p))

δ (M,(p,pkt)) = (M′,(p′,pkt′)) ρ(p′) = p′′

Q′ = Q[p′′ 7→ (Q(p′′)++[pkt′])][p 7→ tail(Q(p))]

(Q,M)
(p,pkt)/(p′,pkt′)−−−−−−−−−→(ρ,δ) (Q

′,M′)

We call a sequence of network transitions a run, de-
noted r. All transitions in a run r from the state (E,C) use
C as the configuration. A complete run is a run, whose
last environment is a terminating one. Given a network
state (E,C), we write R(E,C) to denote the set of com-
plete runs starting from (E,C). We sometimes omit the
configuration C from runs as it never changes during the
testing and is often clear from the context.

4.2 Correctness of Network Tests
We formalize the correctness criteria for network testing
and define the test scheduling problem.
Network testing via packet trace. When testing poli-
cies, a network operator first generates a sequence of lo-
cated packets (using existing test generation tools), then
injects the packets into the network, and finally makes a
judgement of whether the policy is violated based on ob-
servations derived from a complete run of the network.

We call the sequence of located packets (lp1, . . . , lpm)
generated by the testing generation tools a test trace,
denoted t. Injecting a trace t into a network state
with port queue Q results in a new port queue where
each located packet in t is enqueued at the appropriate
port. A test always runs from an initial environment,
so we write queue(t) to denote the port queue resulted
from injecting t to Qinit. Executing the test trace cor-
responds to generating a complete run from the envi-
ronment (queue(t),Minit). One subtlety is that the or-
der in which packets in t are processed matters (e.g., re-
ply to a request can only happen after the request). Our
model takes care of this by defining valid runs that com-
ply with the injection order requirement. Given a run r in
R(queue(t),Minit), we say r is a valid test run w.r.t. t and
an ordering requirement ϕ(t), r satisfies ϕ(t). Different
test traces have different ordering requirements based on
protocol conventions. We assume that such requirements
are given as input; our approach and algorithm is agnos-
tic to the specific type of ordering requirement.

We define the observation of a run, written O(r), as the
sequence of pairs of located packets. Given a run r where

r = S0
lpi1/lpo1−−−−−→C S1 · · ·

lpik/lpok−−−−→C Sk, the observation O(r)
is simply [lpi1/lpo1; · · · ; lpik/lpok]. This corresponds to
the trace routes that the network operator sees.
Correct network test. Given a set of test traces
{t1, ..., tk} for an ensemble of policies (pol1, . . ., polk), we
have shown in §2 that test traces may interfere with each

other if they are allowed to execute concurrently. We pro-
vide a strong correctness definition of running multiple
tests based on a tester’s observation of each test.

Intuitively, if it is correct to concurrently run a set of
test traces, the observation of each test trace should be
the same as the test trace running alone. For the IPS
example in §2, the observation of injecting trace6

H and
trace11

H together for trace6
H may be different from that of

injecting trace6
H alone. In the former case, packets in

trace6
H may be sent to IPS2, while in the latter case all

the packets in the trace land in the exit port.
To formalize this intuition, we define a projection of a

run given a packet trace, written r ↓t , as the observation
containing only the located packets that are related to t,
that is, either it is in t, or it is (transitively) transformed
from a located packet in t. The projection of a run r from
(queue(t),Minit) given t is O(r). Then the correctness
definition can be formalized below:

Definition 1 (Correctness) Given a set T = {t1, · · · , tn}
of test traces, we say that it is correct to schedule T (T
is correct for short) if ∀r ∈ R(queue(∪n

i=1ti),Minit) s.t.
r is valid w.r.t. each ϕ j(t j) where j ∈ [1,n], ∀i ∈ [1,n],
∀r′ ∈R(queue(ti),Minit), r ↓ti= O(r′).

Test scheduling problem. Given an ensemble of test
traces, a natural scheduling is to run all tests in sequential
rounds. In each round, we want to run as many tests in
parallel as possible, in order to reduce the total runtime
of testing. Between two rounds, we can wait sufficiently
long for the network state to reset so the execution of
each round starts from a clean (the initial) state.

Definition 2 (Correct scheduling) Given a set of test
traces T generated for ensembles of policies by a set
of testing tools, a correct schedule of T is a partition
{T1, ..,Tk} of T , such that running each Ti is correct.

We assume that a round of testing takes roughly the
same time which is much less than the waiting time be-
tween rounds. Therefore, our goal is to correctly mini-
mize the number of rounds and the test traces scheduling
problem is defined as follows. That is, given a set of test
traces T , the test trace scheduling problem seeks a cor-
rect schedule with minimal number of rounds.

5 Test Traffic Scheduling
A naı̈ve solution to the test trace scheduling problem
is enumerating all possible partitions and then checking
whether each set of traces in the partition is correct us-
ing Definition 1. However, this is extremely inefficient.
First, the number of partitions is exponential to the num-
ber of test traces in the set. Second, checking whether
a set of test traces is correct directly by comparing pro-
jections of every possible run of the composed test traces
is also prohibitively expensive. For instance, there are

442 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(2m)!
m!m! possible complete runs of a one-port network and
two test traces of size m; and n! runs for a one-port net-
work and n traces of size 1.

Next, we outline our key insights (§5.1) and then
present our algorithm and discuss the algorithm’s time
complexity and correctness guarantees (§5.2).

5.1 Key Insights
Even though checking correctness directly may be com-
plex, we can solve an approximation of the problem
much more efficiently. For our three examples from §2,
it is not too hard to see why test traces may interfere with
each other. The main cause of the problem is that con-
currently executing test traces do not preserve the values
of each other’s state locations that determine their behav-
ior. If we are able to identify the conditions under which
test traces may interfere with each other, we can solve
the scheduling problem by selecting test traces that do
not interfere with each other to be scheduled together.

First, we observe that by examining a run of a test
trace, we can identify the fragment of the state map that
is key to decide how packets are processed by the net-
work. (Recall from §4.1, a state map M maps each state
in the network to a value.) For instance, the value of
the bad connection counter of IPS1 (denoted sH) decides
how packets in trace6

H are processed. Changing the value
of sH changes the observation of the test trace and, more
importantly, changing the value of other state locations
(e.g., the bad connection counter for host H1) in the state
map will not affect how packets in trace6

H are processed.
A natural corollary of this observation is that given two

test traces, we can determine whether they interfere with
each other by examining the state maps that decide the
behavior of each trace from independent runs of the test
trace. For the IPS example, let trace6

H1 be the test trace
containing 6 bad connections from host H1 and trace11

H2
be the test trace containing 11 bad connections from host
H2. They modify and depend on two different state loca-
tions in IPS1 and thus, don’t interfere with each other.

Finally, we observe that instead of considering arbi-
trary partitions, we can construct a correct schedule from
pair-wise noninterfering test traces as none of the test
traces interfere with each others’ key state maps. Those
state maps remain the same as an independent run of a
test trace, and therefore, result in the same observation.

Given these observations, we can encode the correct
scheduling problem as a graph coloring problem where
the nodes correspond to test traces and the edges con-
nect interfering test traces (the lack of edges between
two nodes implies compatibility between the two traces).
Then, we can use an efficient graph coloring algorithm to
generate a near-optimal coloring of the graph, which cor-
responds to a near-optimal correct schedule: nodes of the
same color can be scheduled together.

Algorithm 1 Correct scheduling
1: function GEN INTF GRAPH(T , C, Minit)
2: G←{}
3: (ρ,δ)←C
4: for each trace ti ∈ T do
5: create a node vti for ti in graph G
6: ri← a run from (Q{ti},Minit) under C
7: for each pair of traces t1, t2 ∈ T do

8: (S1
0

lp1
0/..−−−→ ·· ·

lp1
k/..−−−→ S1

k+1)← r1

9: (S2
0

lp2
0/..−−−→ ·· ·

lp2
l /..−−−→ S2

l+1)← r2
10: let Ma

b be the state map for Sa
b

11: if there exist i ∈ [1, . . . ,k + 1], j ∈ [0, . . . , l]
and s, such that s ∈ dtMap(δ ,M2

j , lp
2
j), M1

i (s) 6=
M2

j (s), and M1
i−1(s) 6= M1

i (s) then
12: G← G∪ (vt1 ,vt2)

13: return G
14:
15: function SCHEDULE(T , C, Minit)
16: G← GEN INTF GRAPH(T , C, Minit)
17: Gc← GRAPH COLORING(G)
18: for each color i in Gc do
19: Ti← nodes in Gc of color i
20: return (T1, · · · ,Tk)

5.2 Algorithm
The main function of our algorithm (Alg. 1) is SCHED-
ULE (lines 15-20), which takes a set of test traces T , a
network configuration C, and the initial state map M as
input and returns a partition of T . The SCHEDULE func-
tion calls GEN INTF GRAPH to generate the interference
graph of T and GRAPH COLORING to color the graph.
The latter can be any efficient coloring algorithm, which
we omit. The output partition corresponds to a schedule
of the test traces (line 20).

The GEN INTF GRAPH function creates a node in the
graph for all traces in T (line 5). The edges are sup-
posed to connect two nodes representing test traces
that interfere with each other. The key is to decide
whether two test traces interfere (not compatible) with
each other, which relies on the following two func-
tions: dtMap(δ ,M, lp) and upd(δ ,M, lp). At a highlevel,
dtMap(δ ,M, lp) returns a state map M′ containing a sub-
set of the mappings in M that determines the result of
δ (M, lp). upd(δ ,M, lp) returns a state map M′ that maps
the subset of state locations in the domain M that are up-
dated by the transition δ (M, lp) to new values.

For each concrete transition function δ , it is straight-
forward to define dtMap(δ ,M, lp). Using the stateful
firewall example from §2, the state map remembering
whether there exists a prior connection from a host within

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 443

the department should be returned by this function. We
require that all instances of dtMap(δ ,M, lp) return the
determinant state map of the transition from M and lp
under δ , formally defined below. Intuitively, state loca-
tions that are in the determinant state map uniquely de-
termines the result of δ (M, lp); state locations that are
not in the determinant state map are allowed to be al-
tered by other test traces without changing the behavior
of the current test trace. Use the stateful firewall example
again, other state locations such as the state of TCP con-
nections are not in the determinant state map and can be
altered by other test traces while keeping the observation
of the current test trace the same.

We write diff (M1,M2) to denote the set of state loca-
tions that are in the domain of M1 and M2 and mapped
to different values by M1 and M2. The determinant state
map of the transition from M and lp under δ is Md if we
construct another state map M′ by changing the values
that state locations in M but not in Md are mapped to,
the transition from M′ and lp generates the same located
packet (lp1 = lp2), and the resulting state maps M1 and
M2 only differ at state locations that are not updated by
the transition and not in the determinant state map. The
last condition essentially forces updates to the state maps
to be determined by Md as well.

Definition 3 (Determinant state map) We say a state
map Md determines (is the determinant state map of)
the transition from M and lp under δ if M = (Md ,Mn)
and for all M′n s.t. dom(Mn) = dom(M′n), let M′ =
(Md ,M′n), (M1, lp1) = δ (M, lp), (M2, lp2) = δ (M′, lp), it
is the case that lp1 = lp2 and diff (M1,M2)⊆ dom(M′)\
dom(upd(δ ,M, lp)∪upd(δ ,M′, lp)).

To build the interference graph, the algorithm executes
each test trace ti independently and stores the run (lines
4-6). Only one run is needed and we pick the one where
a located packet in ti is only processed when the located
packet before it has left the network. We call such a run
a sequential run, written Rseq(queue(ti),M). The if con-
dition on line 11 checks whether a run r1 contains a state
location s that determines the execution and run r2 writes
to s with a different value from the one that determines
the transition in r1. If so, then r1 and r2 interfere with
each other. This is because the modification by r2 could
change the behavior of r1. This is a conservative check.

Let us revisit the example shown in Figure 6. We
explain how our algorithm detects the interference be-
tween trace6

H and trace11
H . The middlebox IPS1 main-

tains a state of the number of bad connections for each
host. Consider both traces, the determinant state map
dtMap(δ ,M, lp) and upd(δ ,M, lp) are both the bad con-
nection counter for H. We write sH to denote this state
location. For the run of trace6

H , the determinant state
maps are sH 7→ 0, to sH 7→ 6. The update state maps for

the run of trace11
H are sH 7→ 0, to sH 7→ 11. Obviously, the

updates by the second trace don’t always agree with the
determinant state maps of the first trace. Condition on
line 11 of Algorithm 1 is true. Therefore, the two traces
are interfering with each other.

We prove that Algorithm 1 is correct (Theorem 1), and
detailed proofs can be found in Appendix.

Theorem 1 (Correctness)
SCHEDULE(T,C,Minit) is a correct schedule.

6 Extensions to Basic Algorithm
So far, we have discussed how to schedule the test given
a set of test traces for ensembles of policies. As we see
in previous examples, testing tools may generate inter-
fering test traces for ensembles of policies. However, it
is possible that the cause is not that the policies conflict,
but the optimization heuristics that the testing tools em-
ploy to improve the efficiency of test trace generation.
For instance, BUZZ attempts to pick concrete field val-
ues (same values across policies) for test traces to reduce
the number of symbolic variables. In this section, we in-
vestigate the opportunities to guide test trace generation
to further improve scheduling efficiency.

6.1 High-level Idea
Recall the multi-stage IPS example in §2. The three test
traces (trace6

H , trace11
H , and trace′11

H for each policy path)
interfere since they share the same counter on IPS1 for
the source H. Intuitively, by altering the source of each
test trace, we can obtain test traces for each policy path
while avoiding the interference. For example, trace6

H1,
trace11

H2, and trace′11
H3 are three test traces for each policy

path and can be safely injected in parallel.
To generalize this intuition, we identify a set of influ-

encing fields for a located packet lp (in a test trace t1)
given a test trace t2 (denoted Ilp(t2)). The property of
Ilp(t2) is that by altering values for some fields in it, it
could be possible to avoid the interference between t1 and
t2 related to lp. For instance, the set of influencing fields
for packets in trace6

H includes the source, since changing
the sources in trace6

H from H to H1, interference with
other test traces are avoided.

The precise fields in Ilp(t) may require involved static
analysis of the model and the test trace. Here, we propose
two heuristics for identifying Ilp(t) and new field values:
one is to fix the set to commonly used fields such as the 5-
tuples and randomly select the value of them; the other is
to leverage results learned from the interference analysis
(Alg. 1). We discuss each in detail next.

6.2 Random Packet Fuzzing
For flow-based policy testing (e.g., flow-based service
chaining [39, 13]), Mikado employs a light-weight pre-
processing for the test traces to reduce the chance of

444 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

interferences. This preprocessing picks random values
from the flow space specified in the policy and rewrites
the 5-tuple of each packet in the test trace using these
random values. In addition, to preserve the flow seman-
tics, this preprocessing ensures that fields with the same
original values will be substituted with the same values.

This heuristic does not ensure the coherence of the test
trace and the policy to be tested in general, as it may pick
wrong fields and field values. However, as we will see in
§7, this heuristic works reasonably well in practice for
the targeted policies.

6.3 Test Trace Refinement
Mikado also employs a more rigorous analysis to refine
test traces using information obtained from the initial
scheduling process. The refinement process uses con-
crete runs of test traces to guide the selection of Ilp(t)
and the new values for fields in Ilp(t). This process aims
to tell the test generation tool not to use values that are
known to cause interference from previous analysis.

In the rest of this section, we first describe how to re-
fine t to be non-interfering with all traces in T , followed
by the algorithm that refines given correct schedules.
Test Generation with Configurations. Given a testing
tool A, let GenTestA(pol,N,Config) denote the test traces
generated by A for policy pol and network N under the
tool configuration Config. Different tools can be tuned
differently. One can treat Config as constraints on packet
header fields for the test traces to be generated. Given
the sequential run r1 and r2 obtained from the schedul-
ing process for test trace t1 and t2 respectively, we first
apply an analysis to identify Ilp(t2) for all lp ∈ t1, which
are essentially the fields in lp that are used as meaning-
ful input in the transition function δ . For instance, the
source address in the multi-stage IPS example. This is
more precise than fixing a set of fields a priori.

Next, given the set of influencing fields Ilp(t2) for all
lp ∈ t1, we generate the following constraint CS(t1, t2):∧

lpi∈t1
∨

f∈Ilpi (t2)
lp′i(f) 6= lpi(f). That is, every packet

lp′i in the refined trace by A should not have values ex-
actly the same for fields in Ilpi(t2). This constraint will
be translated to suitable configuration files that the test
generation tool understands (see §7). Similarly, to re-
fine a trace t1 for a set of traces T , the configuration is
the constraint CS(t1,T) =

∧
t2∈T CS(t1, t2). For instance,

for the multi-stage IPS example, if we refine trace11
H , the

constraint is
∧

i srci 6= H, where srci is the source address
of the i-th packet in the refined trace.

With the above settings, we use Algorithm 2 to refine
a trace t for a policy P, such that the refined trace is non-
interfering with all traces in T . In the algorithm, we try
to refine t for at most max num try times. In each try, we
invoke GenTestA to generate a possible trace t ′. We return
t ′ if it is non-interfering with all traces in T , otherwise,

Algorithm 2 refineTrace(t,T)

1: CS = CS(t,T))
2: for i = 1 to max num try do
3: if GenTestA(P,N,CS) generates a new trace t ′

then
4: if t ′ is non-interfering with T then return t ′

5: else CS = CS∧{t ′′ 6= t ′} // t ′′ is the next gen-
erated trace

6: else return FAIL
7: return FAIL

we invoke GenTestA again for another trace that is not t ′.

Refinement Algorithm. Given a correct schedule for
a set of policies {T1, ..,Tk} as input, our refinement algo-
rithm outputs a refined correct schedule for the policies
with potentially a smaller number of injection rounds.
At a highlevel, our refinement algorithm takes a greedy
heuristic and iterates all rounds Ti, starting from the
round with least number of traces. Then it attempts to re-
fine all traces in Ti using the algorithm described above.
If all traces in Ti can be refined, we remove Ti and obtain
a correct schedule with fewer injection rounds. We omit
the details of the algorithm in interest of brevity.

7 Evaluation
We evaluate Mikado via a testbed-based emulation and
large-scale simulations and show that Mikado: (1) is able
to detect test interferences in a range of scenarios and
generate correct schedule; (2) achieves orders of mag-
nitude reduction in the test running time compared with
alternative test scheduling mechanisms; (3) is scalable
to networks with 1000+ switches/middleboxes and thou-
sands of policies.
Implementation: We implement a prototype of Mikado
in Python. We consider four testing tools in our frame-
work, namely ATPG [47], BUZZ [13], Pingmesh [19],
and Symnet [42]. For ATPG and BUZZ, we reuse their
constructs for routing tables and middleboxes; and for
Symnet, we manually encoded the middleboxes that are
not in the code repository in their language SEFL. To
support the refinement extension, we also implement a
light-weight helper function (≈100 LoC each tool) that
translates the generated constraints to each tool’s config-
uration (e.g., Z3 [9] formulas for Symnet). All experi-
ments are conducted on a server with 20 cores (2.8Ghz)
and 128GB RAM.

7.1 Validation
End-to-end correctness. We first validate Mikado’s cor-
rectness in a variety of use cases. On our testbed, we
emulate hosts and (software) middleboxes as separate
KVM-based virtual NFs, connected with OpenVSwitch.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 445

We use OpenDayLight [33] as the controller for all emu-
lated networks.
• To emulate the multi-IPS scenario in Fig. 2, we use
Snort as both IPS1 and IPS2, and use three hosts to emu-
late the departments and the Internet. We configure IPS1
to enforce two policies: 1) forwarding a host’s traffic
to IPS2 if the host issues more than 5 connections in a
minute; 2) otherwise the traffic is sent to the Internet.
We run BUZZ to test the two policies in parallel, and
log the traffic at the interface of IPS2 to check the test-
ing results. We run the experiment 100 runs, and BUZZ
reports violation of policy 1) in 80 runs. All reported pol-
icy violations are validated to be false positives: the root
cause is that BUZZ injects traffic from a single host for
two policies, and causes conflicts.
• For the scenario in Fig. 3, we use iptables as both the
NAT and the stateful firewall, and use Symnet and ATPG
to test the connectivity between the Internet and the de-
partment in parallel. In all 100 runs, the security policy
on the stateful firewall was reported violated. However,
we verify that the testing results are false positives: test
cases interfere on the stateful firewall.
•We use a simple “blue team-red team” test to simulate
the scenario in Fig. 4. We use Squid as the proxy and
Snort as the monitor device to emulate the network. To
bind proxy’s requests with the origin hosts, we use Flow-
Tag [14] to configure the network. One student (“red”)
intentionally misconfigures the switch to drop web re-
quests from H2, and the other student (“blue”) use BUZZ
to test HTTP connectivity of each host. Of 10 times of
this experiment, the blue team could only uncover the
bug in 5 times.

In all three scenarios, Mikado can successfully detect
the interference among the generated tests, and correctly
schedule the tests in separate runs. We repeat the three
experiments with the schedule from Mikado, and no false
positives or negatives are produced.
Interference detection. Next, we evaluate Mikado’s
capability to detect test interference in practice. We
consider two popular types of network policies in our
survey: reachability and service chaining policies. To
collect real-world service chaining policies, we con-
duct a survey from a set of industrial and academic
sources [38, 14, 13, 44, 20, 1, 2, 27, 30], and build a li-
brary of 38 service chaining policy templates. The num-
ber of network functions on each service chain ranges
from 1 to 5, and the library involves 14 types of network
functions in total. Our library is a superset of what has
been considered in the prior work in this space.

Table 3 summarizes the key metrics for five differ-
ent topologies we consider. For each network, we as-
sign hosts into a number of policy groups and enforce
1000 service chaining policies using our library of ser-
vice chaining templates for randomly selected pairs of

Switches # Middleboxes # Links
Internet2 9 9 37
Stanford 16 16 37
Sprint 11 10 28
Oxford 20 20 46

Chinanet 42 39 105

Table 3: Summary of the dataset.

policy groups. We use BUZZ and Symnet to generate
test cases for each policy (500 policies for each tool).
For reachability policies, we consider basic reachability
policies using ATPG2 and TCP reachabilities inspired by
Pingmesh [19]. Figure 8 shows the number of test inter-
ferences with the number of policies under test.

0 500 1000 1500 2000 2500

Network policies

100

101

102

103

104

105

#
In

te
rfe

re
nc

es Sprint

Stanford

Internet2

Chinanet

Oxford

Figure 8: Number of potential interferences.
As expected, as the number of policies increases,

Mikado detects an increasing number of interferences
among policy tests. Further analysis confirms that in-
terferences are caused mostly by multiple tools. For ex-
ample, when testing all service chaining and TCP reach-
ability policies on Internet2, 3504 interferences are de-
tected and 77% of them happen across different tools.
The results further confirm that simply randomizing the
parallelization is not likely to generate correct schedules.

7.2 Test Time Reduction
We evaluate the test time reduction using Mikado’s
scheduling based on the same setup as above. Figure 9
shows the (average) number of runs to complete the tests
for different number of policies under test. Recall that all
test traffic in each run can be injected in parallel, while
multiple runs have to be conducted in sequential. There-
fore, the number of runs serves as a reasonable proxy for
the test running time. For comparison, we consider two
alternative approaches: BASELINE is the basic schedul-
ing approach that runs tests sequentially; MB-based is
the heuristic which schedules test traces that do not tra-
verse the same middleboxes together; and Mikado is the
proposed scheduling approach (we build a checker that
validates the correctness of the schedule). Each data
point on the figure is obtained by repeating 100 times.

First, we observe that Mikado significantly reduces
the testing running time across all networks (Sprint and
Oxford in Appendix) compared to both alternative ap-
proaches. For example, when testing 2560 service chain-
ing and TCP reachability policies in Internet2, Mikado

2Since ATPG’s source code only supports Internet2 and Stanford
networks, we only apply ATPG to the two networks.

446 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 500 1000 1500 2000 2500

Network policies

100

101

102

103

104

#
R

un
s

Baseline

MB-based

Mikado

(a) Internet2

0 500 1000 1500 2000 2500

Network policies

100

101

102

103

104

#
R

un
s

Baseline

MB-based

Mikado

(b) Stanford

0 500 1000 1500 2000 2500

Network policies

100

101

102

103

104

#
R

un
s

Baseline

MB-based

Mikado

(c) Chinanet.
Figure 9: Test running time.

can complete all tests in 13 runs by parallelizing most
non-interfering traces. In contrast, BASELINE has to
inject each trace in a single round (i.e. 2560 runs in
total), and MB-based approaches can only complete all
test in 663 runs. Both approaches take orders of magni-
tude more time than Mikado. Putting this result in per-
spective, if a single run can be complete in 30 seconds,
Mikado can effectively reduce the test running time from
21 hours (sequential) to 10 minutes. We also note that
the overhead of Mikado’s scheduling algorithm is negli-
gible compared with the test generation time: generating
all test cases for Internet2 takes 14 hours, while Mikado
only takes 2 minutes to generate the test schedule.

Second, Mikado’s extensions are effective in further
reducing the testing time. Fig. 10 shows the testing run-
ning time for the Internet2 network with Mikado’s exten-
sions. In general, we observe that our refinement tech-
nique achieves greater reduction compared to the random
fuzzing heuristic. This is because that the refinement can
systematically explore available field values by incorpo-
rating with testing tools via simple configurations. With
the extensions, the number of runs in Internet2 can be
reduced from 13 to 7.

0 500 1000 1500 2000 2500
Network policies

0

2

4

6

8

10

R

un
s

Fuzzing

Refine

Figure 10: Test running time with Mikado extensions.

Sensitivity to topologies. To evaluate how sensitive
Mikado is w.r.t. the network topology, we run our
scheduling algorithm on 20 different topologies from
TopologyZoo [26]. Figure 11 shows the CDF of the test
running time reduction for 200 test traces on each topol-
ogy. Here, we consider the testing time reduction as the
ratio between the test running time using Mikado’s cor-
rect schedule and that of the sequential testing.

We observe that our scheduling algorithm achieves
high reduction for most cases. In particular, for more
than half of the topologies, our basic scheduling algo-
rithm achieves at least 87% reduction, while it has 96%+
reduction with the refinement technique.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
End-to-end time reduction

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Basic scheduling

Scheduling+extensions

Figure 11: Test running time reduction CDF

7.3 Scalability
Next, we evaluate the scalability of Mikado with respect
to the network size, the number and the complexity of
policies. Specifically, we evaluate the running time of
our scheduling algorithm, including the time of the inter-
ference graph generation and graph coloring3.
With network size. We generate Fattree topologies [4]
with varying sizes and augment the topology by adding
a middlebox to every switch. We define the network size
as the number of switches in it. We run Mikado on each
topology with 5000 randomly generated test traces, and
each test trace traverses two middleboxes.

Figure 12a plots the running time of each component
of our scheduling algorithm vs. network size. Both the
interference graph generation and the graph coloring al-
gorithm can scale up to 1000 switches with negligible
increase in the running time. This is expected as the run-
ning of both algorithms are dominated by the number
of test traces, as shown in §5. We also observe that the
running time of the interference graph generation algo-
rithm slightly decreases as the network size increments.
This is because on larger networks the chance that two
test traces interfere with each other is lower, and leads to
faster interference checking.
With the number of test traces. We further run our
algorithm on the Fattree topology with 500 switches, and
vary the number of test traces from 1000 to 10000.

Figure 12b shows the running time of each algorithm
with the number of test traces. As we show in §5, both al-
gorithms run quadratically with the number of test traces;
and for 10 thousand test traces, it takes less than 10 min-
utes for both algorithms to generate a correct schedule.

To put the above results in perspective, we fur-
ther compare our scheduling algorithm with the naive
scheduling approach discussed in §5. Recall that the

3We do not consider the refinement heuristic since it relies on other
testing tools and not Mikado per se

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 447

0 200 400 600 800 1000 1200 1400
Network size

0

50

100

150

200

Ti
m

e (
s)

Inter-graph generation

Test trace scheduling

(a) Network size.

1 2 3 4 5 6 7 8 9 10
Number of test traces (thousand)

0
100
200
300
400
500
600

Ti
m

e
(s

)

Inter-graph generation

Test trace scheduling

(b) Number of test traces.

3 5 7
Policy complexity

100

101

102

103

Ti
m

e
(s

)

(c) Policy complexity.
Figure 12: Mikado scalability.

naive scheduling approach needs to consider all possible
partitions of the test traces, and for each partition it needs
to check for all possible runs due to the concurrent injec-
tion of all the traces in the partition. The naive approach
takes more than 8 hours just for checking compatibility
for 10 test traces on one switch.
With policy complexity. We define the policy complex-
ity as the number of middleboxes appeared on the ser-
vice chain of each policy. We run our algorithm on 2000
test traces, and vary the number of middleboxes each test
trace must traverse. Figure 12c shows that both algo-
rithms scales well w.r.t. policy complexity. Even in the
case where each test case traverses 7 middleboxes, gen-
erating the interference graph takes 13 minutes, while the
scheduling algorithm only takes 8 seconds.

8 Related Work
Our work draws ideas from several related areas includ-
ing network testing, software testing, and formal model-
ing. We discuss related work in those areas.
Network testing and verification. The high-level goals
of network testing [47, 13, 42] and network verifica-
tion [22, 24, 21, 31, 32, 46, 6, 37, 12, 8, 6, 10, 44] are
similar: check whether networks have implemented in-
tended policies correctly. Different from network veri-
fication, network testing is better suited for bug finding
and in general does not provide guarantees that policies
are correctly implemented.

Our work builds upon existing work on network
testing and focuses on generating correct and efficient
scheduling of test cases. Even though we tested our
framework on four existing testing tools, it can be ex-
tended as new testing tools are proposed.
Network modeling and abstractions. Formal models of
networks are necessary building blocks for formal analy-
sis of the network. There have been a number of existing
formal network models (c.f [22, 40, 15, 34, 35, 5, 25,
36]). Some model stateless dataplanes, some model SDN
control and dataplanes, and some like ours, model state-
ful dataplanes. All of the models are defined to facilitate
analysis or verification methods that rely on the model.
Ours is no exception. Our model, even though straight-
forward, serves the purpose of providing the basic con-
structs for defining the correct test ensemble scheduling
problem, a key contribution of this work.
Service-chaining policies. The majority of the policies

that we use to test Mikado are service-chaining poli-
cies. Recently, much work has been done surround-
ing enforcing service-chaining policies. For example,
Simple [39] proposes a static service chain enforcement;
FlowTag [14] uses tag bits in packet to implement dy-
namic service chaining; and [38] offers a composition
for service-chaining policies. Rather than enforcement
or composition of policies, our work stays at the level of
scheduling test cases for those policies and is comple-
mentary to the above mentioned projects; Mikado can be
used to perform extensive tests of networks that aim to
enforce those policies.
Software testing. Our randomized packet fuzzing is bor-
rowed from the software testing literature. Similar to
software fuzzing, we also aim to achieve good coverage
of the input space, but we do not really care about the
coverage of the portions of the network tested. Testing
network models is very similar to testing [18, 17, 41, 45,
11, 16], where network model is encoded as a program.
However, the type of network testing that we are inter-
ested in are live tests (i.e., inject test while into the live
network). This provides a set of unique challenges. To
carry out an ensemble of tests on software, one can sim-
ply perform each test on a copy of the software in paral-
lel. This is not possible for live network tests, since live
networks cannot be easily duplicated.

9 Conclusions
We present Mikado, a framework that generates efficient
and correct scheduling of test traces for ensembles of
network policies. Using a formal model for stateful net-
works, we develop rigorous definitions of correctness for
safely injecting test traces in parallel. We develop an ef-
ficient and provably correct algorithm for the test trace
scheduling problem. Mikado employs additional heuris-
tics to further improve the testing time reduction. We
validate Mikado in a variety of scenarios, and show that
Mikado can easily handle large networks with thousands
of test traces.

Acknowledgment
We thank all anonymous reviewers and our shepherd
Timothy Roscoe for their helpful suggestions and com-
ments. This work is partially supported by NSF CNS-
1513961, CNS-1552481, and Intel Labs University Re-
search Office.

448 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Cisco NSH Service Chaining Configuration

Guide. https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/wan nsh/configuration/xe-16/wan-nsh-xe-16-book.html.

[2] ODL: Service Function Chaining.
http://events.linuxfoundation.org/sites/events/files
/slides/odl%20summit%20sfc%20v5.pdf .

[3] Survey on Network Testing.
http://www.andrew.cmu.edu/user/yifeiy2/mikado/survey.pdf .

[4] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A Scalable,
Commodity Data Center Network Architecture. In Proceedings
of the ACM SIGCOMM 2008 Conference on Data Communica-
tion (New York, NY, USA, 2008), SIGCOMM ’08, ACM, pp. 63–
74.

[5] ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-B.,
KOZEN, D., SCHLESINGER, C., AND WALKER, D. NetKAT:
Semantic foundations for networks. In Proceedings of the 41st
annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (2014), ACM, pp. 113–126.

[6] BALL, T., BJØRNER, N., GEMBER, A., ITZHAKY, S., KARBY-
SHEV, A., SAGIV, M., SCHAPIRA, M., AND VALADARSKY, A.
VeriCon: Towards Verifying Controller Programs in Software-
defined Networks. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion (2014), ACM, p. 31.

[7] BUTLER, B. What is intent-based networking?
https://www.networkworld.com/article/3202699/lan-wan/what-
is-intent-based-networking.html.

[8] CANINI, M., VENZANO, D., PERESINI, P., KOSTIC, D., REX-
FORD, J., ET AL. A NICE Way to Test OpenFlow Applications.
In NSDI (2012), pp. 127–140.

[9] DE MOURA, L., AND BJØRNER, N. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (Berlin, Heidelberg, 2008),
TACAS’08/ETAPS’08, Springer-Verlag, pp. 337–340.

[10] DOBRESCU, M., AND ARGYRAKI, K. Software Dataplane
Verification. In 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14) (Seattle, WA, 2014),
USENIX Association, pp. 101–114.

[11] EMMI, M., MAJUMDAR, R., AND SEN, K. Dynamic Test In-
put Generation for Database Applications. In Proceedings of the
2007 International Symposium on Software Testing and Analysis
(New York, NY, USA, 2007), ISSTA ’07, ACM, pp. 151–162.

[12] FAYAZ, S. K., SHARMA, T., FOGEL, A., MAHAJAN, R., MILL-
STEIN, T., SEKAR, V., AND VARGHESE, G. Efficient Network
Reachability Analysis Using a Succinct Control Plane Represen-
tation. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16) (GA, 2016), USENIX Associa-
tion, pp. 217–232.

[13] FAYAZ, S. K., YU, T., TOBIOKA, Y., CHAKI, S., AND SEKAR,
V. BUZZ: Testing Context-Dependent Policies in Stateful Net-
works. In 13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16) (Santa Clara, CA, 2016),
USENIX Association, pp. 275–289.

[14] FAYAZBAKHSH, S. K., CHIANG, L., SEKAR, V., YU, M., AND
MOGUL, J. C. Enforcing Network-wide Policies in the Presence
of Dynamic Middlebox Actions Using Flowtags. In Proceed-
ings of the 11th USENIX Conference on Networked Systems De-
sign and Implementation (Berkeley, CA, USA, 2014), NSDI’14,
USENIX Association, pp. 533–546.

[15] FOSTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO,
C., REXFORD, J., STORY, A., AND WALKER, D. Frenetic:
A network programming language. In ACM SIGPLAN Notices
(2011), vol. 46, ACM, pp. 279–291.

[16] GODEFROID, P. Compositional Dynamic Test Generation. In
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (New York, NY,
USA, 2007), POPL ’07, ACM, pp. 47–54.

[17] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected Automated Random Testing. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design
and Implementation (New York, NY, USA, 2005), PLDI ’05,
ACM, pp. 213–223.

[18] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated
Whitebox Fuzz Testing. In Proceedings of Network and Dis-
tributed Systems Security (NDSS 2008) (November 2008).

[19] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R.,
MALTZ, D., LIU, Z., WANG, V., PANG, B., CHEN, H., LIN, Z.-
W., AND KURIEN, V. Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analysis. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on
Data Communication (New York, NY, USA, 2015), SIGCOMM
’15, ACM, pp. 139–152.

[20] JOSEPH, D. A., TAVAKOLI, A., AND STOICA, I. A policy-aware
switching layer for data centers. In ACM SIGCOMM Computer
Communication Review (2008), vol. 38, ACM, pp. 51–62.

[21] KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE, G.,
MCKEOWN, N., AND WHYTE, S. Real Time Network Policy
Checking Using Header Space Analysis. In Presented as part
of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13) (Lombard, IL, 2013), USENIX,
pp. 99–111.

[22] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header
Space Analysis: Static Checking for Networks. In Presented
as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12) (San Jose, CA, 2012),
USENIX, pp. 113–126.

[23] KHAN, F. Intent-based Networking - A Must for SDN.
http://resources.solarwinds.com/intent-based-networking-not-
an-option-but-a-must-for-sdn/ .

[24] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M., AND GOD-
FREY, P. B. VeriFlow: Verifying Network-Wide Invariants in
Real Time. In Presented as part of the 10th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
13) (Lombard, IL, 2013), USENIX, pp. 15–27.

[25] KIM, H., REICH, J., GUPTA, A., SHAHBAZ, M., FEAMSTER,
N., AND CLARK, R. Kinetic: Verifiable Dynamic Network Con-
trol. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15) (Oakland, CA, 2015), USENIX
Association, pp. 59–72.

[26] KNIGHT, S., NGUYEN, H., FALKNER, N., BOWDEN, R., AND
ROUGHAN, M. The Internet Topology Zoo. Selected Areas in
Communications, IEEE Journal on 29, 9 (october 2011), 1765
–1775.

[27] KUMAR, S., TUFAIL, M., MAJEE, S., CAPTARI, C., AND
S, H. Service Function Chaining Use Cases In Data Centers.
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06 (2014).

[28] LERNER, A. Intent-based Networking.
http://blogs.gartner.com/andrew-lerner/2017/02/07/intent-
based-networking/ .

[29] LIU, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRAGADA,
S., LOPES, N. P., RYBALCHENKO, A., LU, G., AND YUAN, L.
MirrorNet: Faithfully Emulating Large Production Networks. In

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 449

Proceedings of the 26th Symposium on Operating Systems Prin-
ciples (New York, NY, USA, 2013), SOSP ’17, ACM.

[30] LIU, W., LI, H., HUANG, O., BOUCADAIR, M., LEYMANN,
N., CAO, Z., AND HU, J. Service Function Chaining (SFC)
Use Cases. https://tools.ietf.org/html/draft-liu-sfc-use-cases-01
(2014).

[31] LOPES, N. P., BJØRNER, N., GODEFROID, P., JAYARAMAN,
K., AND VARGHESE, G. Checking Beliefs in Dynamic Net-
works. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15) (Oakland, CA, 2015),
USENIX Association, pp. 499–512.

[32] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GOD-
FREY, P. B., AND KING, S. T. Debugging the Data Plane with
Anteater. In Proceedings of the ACM SIGCOMM 2011 Con-
ference (New York, NY, USA, 2011), SIGCOMM ’11, ACM,
pp. 290–301.

[33] MEDVED, J., VARGA, R., TKACIK, A., AND GRAY, K. Open-
daylight: Towards a model-driven sdn controller architecture.
In World of Wireless, Mobile and Multimedia Networks (WoW-
MoM), 2014 IEEE 15th International Symposium on a (2014),
IEEE, pp. 1–6.

[34] MONSANTO, C., FOSTER, N., HARRISON, R., AND WALKER,
D. A compiler and run-time system for network programming
languages. ACM SIGPLAN Notices 47, 1 (2012), 217–230.

[35] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND
WALKER, D. Composing Software Defined Networks. In 10th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13) (Lombard, IL, 2013), USENIX Association,
pp. 1–13.

[36] NELSON, T., FERGUSON, A. D., SCHEER, M. J., AND KR-
ISHNAMURTHI, S. Tierless programming and reasoning for
software-defined networks. NSDI, Apr (2014).

[37] PANDA, A., LAHAV, O., ARGYRAKI, K., SAGIV, M., AND
SHENKER, S. Verifying Reachability in Networks with Muta-
ble Datapaths.

[38] PRAKASH, C., LEE, J., TURNER, Y., KANG, J.-M., AKELLA,
A., BANERJEE, S., CLARK, C., MA, Y., SHARMA, P., AND
ZHANG, Y. PGA: Using Graphs to Express and Automatically
Reconcile Network Policies. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication
(New York, NY, USA, 2015), SIGCOMM ’15, ACM, pp. 29–42.

[39] QAZI, Z. A., TU, C.-C., CHIANG, L., MIAO, R., SEKAR, V.,
AND YU, M. SIMPLE-fying Middlebox Policy Enforcement Us-
ing SDN. In Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM (New York, NY, USA, 2013), SIGCOMM
’13, ACM, pp. 27–38.

[40] REITBLATT, M., FOSTER, N., REXFORD, J., SCHLESINGER,
C., AND WALKER, D. Abstractions for Network Update. In
Proceedings of the ACM SIGCOMM 2012 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communication (New York, NY, USA, 2012), SIGCOMM ’12,
ACM, pp. 323–334.

[41] SEN, K., MARINOV, D., AND AGHA, G. CUTE: A Concolic
Unit Testing Engine for C. In Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (New York, NY, USA, 2005), ESEC/FSE-13, ACM,
pp. 263–272.

[42] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND
RAICIU, C. SymNet: Scalable Symbolic Execution for Mod-
ern Networks. In Proceedings of the 2016 Conference on ACM
SIGCOMM 2016 Conference (New York, NY, USA, 2016), SIG-
COMM ’16, ACM, pp. 314–327.

[43] SUBRAMANIAN, K., D’ANTONI, L., AND AKELLA, A. Gene-
sis: synthesizing forwarding tables in multi-tenant networks. In
POPL (2017), pp. 572–585.

[44] TSCHAEN, B., ZHANG, Y., BENSON, T., BENERJEE, S., LEE,
J., AND KANG, J.-M. SFC-Checker: Checking the Correct For-
warding Behavior of Service Function Chaining. In IEEE SDN-
NFV Conference (2016).

[45] VISSER, W., PǍSǍREANU, C. S., AND KHURSHID, S. Test
Input Generation with Java PathFinder. In Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (New York, NY, USA, 2004), ISSTA ’04, ACM,
pp. 97–107.

[46] XIE, G. G., ZHAN, J., MALTZ, D. A., ZHANG, H., GREEN-
BERG, A., HJALMTYSSON, G., AND REXFORD, J. On Static
Reachability Analysis of IP Networks. In INFOCOM 2005.
24th Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings IEEE (2005), vol. 3, IEEE,
pp. 2170–2183.

[47] ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN,
N. Automatic Test Packet Generation. IEEE/ACM Trans. Netw.
22, 2 (Apr. 2014), 554–566.

450 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix
Evaluation on Test Running Time

0 500 1000 1500 2000 2500

Network policies

100

101

102

103

104
#

R
un

s

Baseline

MB-based

Mikado

Figure 13: Test running time for Oxford

0 500 1000 1500 2000 2500

Network policies

100

101

102

103

104

#
R

un
s

Baseline

MB-based

Mikado

Figure 14: Test running time for Sprint

Proof of Theorem 1
Theorem 1 is a corollary of a stronger lemma (Lemma 2),
which we explain next.

We first define the compatibility of two tests traces t1
and t2 using just the sequential run of each test trace as
follows. The definition essentially is the negation of the
condition on line 12 of Algorithm 1.

Definition 4 Test trace t1 is compatible with test trace t2
w.r.t. Minit and (ρ,δ) iff r1 = Rseq(queue(t1),Minit), r2 =
Rseq(queue(t2),Minit), ∀i ∈ [0, |r1| − 1], ∀ j ∈ [0, |r2| −
1], ∀x ∈ dom(dtMap(δ ,M1

i , lp
1
i)) ∩ (upd(δ ,M2

j , lp
2
j)),

dtMap(δ ,M1
i , lp

1
i)(x) = upd(δ ,M2

j , lp
2
j)(x), where Mk

i

and lpk
i denotes the state map and the located packet pro-

cessed at the ith state of rk respectively.

Prove disconnected nodes in the graph returned by
the GEN INTF GRAPH are compatible is straightforward
(Lemma 1).

Lemma 1 Let G =GEN INTF GRAPH(T,C,Minit). If vt1
and vt2 are not connected by an edge in G then t1 is com-
patible with t2 w.r.t. Minit and C.

To simplify the proofs, we represent the set of runs
R(Q,M) as an execution tree R, which can be either a
leaf node of one network environment, or a node whose
content is a network environment E and each of its chil-
dren is another execution tree obtained from making a
transition from E and processing packet lpi.

Exec. tree R ::= Lf (E)

| Nd(E,
lp1/lp′1−−−−→ R1, · · · ,

lpn/lp′n−−−−→ Rn)
Path π ::= •|n : π

We can identify a unique run in R using a path π , which
is a list of numbers indicating which transition to take.
For instance, path 1:1:1 identifies the run that takes three
transitions following the first branch at each step.

Next we define r .π1,··· ,πi,··· ,πn R1; · · · ;Rn in Figure 15.
The meaning of this judgment is that r simulates an in-
terleaving of runs, each of which is indexed by the path
πi in Ri. For our proofs, Ri is the execution tree for test
case ti and r is a run of the ensemble of tests t1 to tn.

The base case is when the indices all point to the ini-
tial state. We only need to check that r contains only one
state, where the state map is the initial map and the queue
only contains the test traces. Here, we Q1]Q2 represents
an interleaving of packets from Q1 and Q2 that preserves
the order of packets enforced by Q1 and Q2. The induc-
tive case checks that (1) the last transition of r matches
a transition in Ri (2) the port queue of the last state of r
is an order-perserving interleaving of all the port queues
in each R j at the correct indices and (3) each state loca-
tion in the state map M in the last state of r preserves the
determinant state maps of each Ri. The last condition is
the most complex, as we need to reason about who last
updates a location s in M. If s is last updated by a packet
related to test trace tm, and s is part of the determinant
location of another test trace tl (l 6= m), then M(s) should
be the same as the value in that determinant state map.
Otherwise, m may interfere with l. However, a test trace
can modify its own determinant state locations. It would
be too strong to require M(s) to be equal to the values
of all determinant state location of the test trace m itself.
Instead, we only guarantee that M(s) is equal to the cor-
responding state in Rm.

Lemma 2 is the key to our correctness proof. It states
that any run starting from the ensemble of test traces
maintains a simulation relation with each individual runs.
Here, Rm denotes a run of length m.

Lemma 2 Give a set of test traces T = {t1, · · · , tn}, s.t.
∀ i j ∈ [1,n] and i 6= j, ti is compatible with t j w.r.t.
Minit and C, let Ri =R((queue(ti),Minit),C) then let R =
Rm((queue(flatten(T)),Minit),C), ∀r ∈ R, ∃π1, · · · ,πn,
r .π1,··· ,πn R1; · · · ;Rn.

The proof is by induction of ∑
n
i=1 |πi|. We rely on the

fact that the set of valid runs have the same determinant
state maps and updates (Definition 5) to generalize the
compatibility conditions on sequential runs to other valid
runs.

Definition 5 We say that the valid runs of test
trace t form an equivalence class iff let rseq =
Rseq(queue(t),Minit), ∀r ∈ R(queue(t),Minit), ∀lp ∈
t, r ↓{lp}= rseq ↓{lp} and ∀Q,M, l p1, l p′1,Q

′,M′ s.t.

(Q,M)
lp/lp′1−−−→∈ rseq, and (Q′,M′)

lp/lp′1−−−→∈ r, imply

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 451

Ri = Lf (Qi,Mi) or Nd((Qi,Mi),) M = M1 = · · ·= Mn = Minit Q = Q1]·· ·]Qn

(Q,M).•,··· ,• R1; · · · ;Rn

πi = π
′
i : η r .π1,··· ,π ′i ,··· ,πn R1; · · · ;Rn

∀ j ∈ [1,n] let R j\π j = Lf (Q j,M j) or Nd((Q j,M j),)

Q′ =]n
j=1Q j Ri\π ′i

= Nd((Qa,Ma),Ch) Ch.η =
lp/lp′−−−→ R′i,

∀x ∈ dom(M),x is last updated by tm,
∀l ∈ [1,n],s.t. l 6= m, if x is in the determinant state map of a state map Mα in Rl , then M(x) = Mα(x).
let rm = Rm|πm let Mβ be the last state in rm where x is updated from the previous state,M(x) = Mβ (x)
∀x ∈ dom(M),x is not updated by any thread,∀ j ∈ [1,n],M j(x) = M(x) = Minit(x)

r
lp/lp′−−−→ (Q,M).π1,··· ,πi,··· ,πn R1; · · · ;Rn

Figure 15: Simulation relation

upd(δ ,M, lp) = upd(δ ,M′, lp) and dtMap(δ ,M, lp) =
dtMap(δ ,M′, lp).

The correspondence relation established in Lemma 2
ensures that the determinant state maps of individual runs
are preserved by the combined run. Theorem 1 follows
straightforwardly because observations are determined
by the transitions, which in turn, are determined by the
state maps.

452 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Distributed Network Monitoring and Debugging with SwitchPointer

Praveen Tammana
University of Edinburgh

Rachit Agarwal
Cornell University

Myungjin Lee
University of Edinburgh

Abstract
Monitoring and debugging large-scale networks remains
a challenging problem. Existing solutions operate at one
of the two extremes — systems running at end-hosts
(more resources but less visibility into the network) or at
network switches (more visibility, but limited resources).

We present SwitchPointer, a network monitoring and
debugging system that integrates the best of the two
worlds. SwitchPointer exploits end-host resources and
programmability to collect and monitor telemetry data.
The key contribution of SwitchPointer is to efficiently
provide network visibility by using switch memory as a
“directory service” — each switch, rather than storing
the data necessary for monitoring functionalities, stores
pointers to end-hosts where relevant telemetry data is
stored. We demonstrate, via experiments over real-world
testbeds, that SwitchPointer can efficiently monitor and
debug network problems, many of which were either
hard or even infeasible with existing designs.

1 Introduction
Managing large-scale networks is complex. Even
short-lived problems due to misconfigurations, failures,
load imbalance, faulty hardware and software bugs can
severely impact performance and revenue [15, 23, 31].

Existing tools to monitor and debug network problems
operate at one of the two extremes. On the one hand,
proposals for in-network monitoring argue for capturing
telemetry data at switches [7, 20, 30, 21, 18], and query-
ing this data using new switch interfaces [24, 13, 25, 4]
and hardware [19, 24]. Such in-network approaches pro-
vide visibility into the network that may be necessary
to debug a class of network problems; however, these
approaches are often limited by data plane resources
(switch memory and/or network bandwidth) and thus
have to rely on sampling or approximate counters which

are not accurate enough for monitoring and diagnosing
many network problems (§2).

At the other extreme are recent systems [23, 28] that
use end-hosts to collect and monitor telemetry data, and
to use this data to debug spurious network events. The
motivation behind such end-host based approaches is
two folds. First, hosts not only have more available re-
sources than switches but also already need to process
packets; thus, monitoring and debugging functionalities
can potentially be integrated within the packet processing
pipeline with little additional overhead. Second, hosts
offer the programmability needed to implement various
monitoring and debugging functionalities without any
specialized hardware. While well-motivated, such purely
end-host based approaches lose the benefits of network
visibility offered by in-network approaches.

We present SwitchPointer, a network monitoring and
debugging system that integrates the best of the two
worlds — resources and programmability of end-host
based approaches, and the visibility of in-network ap-
proaches. SwitchPointer exploits end-host resources and
programmability to collect and monitor telemetry data,
and to trigger spurious network events (e.g., using exist-
ing end-host based systems like PathDump [28]). The
key contribution of SwitchPointer is to efficiently enable
network visibility for such end-host based systems by us-
ing switch memory as a “directory service” — in contrast
to in-network approaches where switches store telemetry
data necessary to diagnose network problems, Switch-
Pointer switches store pointers to end-hosts where the
relevant telemetry data is stored. The distributed storage
at switches thus operates as a distributed directory ser-
vice; when an end-host triggers a spurious network event,
SwitchPointer uses the distributed directory service to
quickly filter the data (potentially distributed across mul-
tiple end-hosts) necessary to debug the event.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 453

The key design choice of thinking about network
switch storage as a directory service rather than a data
store allows SwitchPointer to efficiently solve many
problems that are hard or even infeasible for existing
systems. For instance, consider the network problems
shown in Figure 1. We provide an in-depth discussion
in §2, but note here that existing systems are insufficient
to debug the reasons behind high latency, packet drops
or TCP timeout problems for the red flow since this re-
quires maintaining temporal state (that is, flow IDs and
packet priorities for all flows that the red flow contends
with in Figure 1(a)), combining state distributed across
multiple switches (required in Figure 1(b)), and in some
cases, maintaining state even for flows that do not trigger
network events (for the blue flow in Figure 1(c)).

SwitchPointer is able to solve such problems using a
simple design (detailed discussion in §4):

• Switches divide the time into epochs and maintain
a pointer to all end-hosts to which they forward the
packets in each epoch;

• Switches embed their switchID and current epochID
into the packet header before forwarding a packet;

• End-hosts maintain a storage and query service that
allows filtering the headers for packets that match a
(switchID, epochID) pair; and,

• End-hosts trigger spurious events, upon which a con-
troller (or an end-host) uses pointers at the switches to
locate the data necessary to debug the event.

While SwitchPointer design is simple at a high-level, re-
alizing it into an end-to-end system requires resolving
several technical challenges. The first challenge is to
decide the epoch size — too small an epoch would re-
quire either large storage (to store pointers for several
epochs) or large bandwidth between data plane and con-
trol plane (to periodically push the pointers to persistent
storage); too large an epoch, on the other hand, may lead
to inefficiency (a switch may forward packets to many
end-hosts). SwitchPointer resolves this challenge using
a hierarchical data structure, where each subsequent level
of the hierarchy stores pointers over exponentially larger
time scales. We describe the data structure in §4.1.1, and
discuss how it offers a favorable tradeoff between switch
memory and bandwidth, and system efficiency.

The second challenge in realizing the SwitchPointer
design is to efficiently maintain the pointers at switches.
The naïve approach of using a hash table for each level
of the hierarchy would either require large amount of
switch memory or would necessitate one hash operation
per level per packet for the hierarchical data structure,

A ...

m hosts

B ...

(a) Too much traffic

A D E

B C F

S1 S3S2

(b) Too many red lights

A D E

B C F

S1 S3S2

(c) Traffic cascades

Figure 1: Three example network problems. Green, blue
and red flows have decreasing order of priority. Red flow
observes high latency (or even TCP timeout due to exces-
sive packet drops) due to: (a) contention with many high
priority flows at a single switch; (b) contention with mul-
tiple high priority flows across multiple switches; and (c)
cascading problems — green flow (highest priority) delays
blue flow, resulting in blue flow contending with and delay-
ing red flow (lowest priority). Please see more details in §2.

making it hard to achieve line rate even for modest size
packets. SwitchPointer instead uses a perfect hash func-
tion [1, 14] to efficiently store and update switch pointers
in the hierarchical data structure. Perfect hash functions
require only 2.1 bits of storage per end-host per-level for
storing pointers and only one hash operation per packet
(independent of number of levels in the hierarchical data
structure). We discuss storage and computation require-
ments of perfect hash functions in §4.1.2.

The final two challenges in realizing SwitchPointer
design into an end-to-end system are: (a) to efficiently
embed switchIDs and epochIDs into packet header; and
(b) handle the fact that switch and end-host clocks are
typically not synchronized perfectly. For the former,
SwitchPointer can of course use clean-slate approaches
like INT [4]; however, we also present a design in
§4.1.3 that allows SwitchPointer to embed switchIDs and
epochIDs into packet header using commodity switches
(under certain assumptions). SwitchPointer resolves the
latter challenge by exploiting the fact that while the net-
work devices may not be perfectly synchronized, it is
typically possible to bound the difference between clocks
of any pair of devices within a datacenter. This allows
SwitchPointer to handle asynchrony by carefully design-
ing epoch boundaries in its switch data structures.

We have implemented SwitchPointer into an end-to-
end system that currently runs over a variety of network
testbeds comprising commodity switches and end-hosts.
Evaluation of SwitchPointer over these testbeds (§5, §6)
demonstrates that SwitchPointer can monitor and debug
network events at sub-second timescales while requiring
minimal switch and end-host resources.

454 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Motivation
In this section we discuss several network problems that
motivate the need for SwitchPointer.

2.1 Too much traffic
The first class of problems are related to priority-based
and microburst-based contention between flows.

Priority-based flow contention. Consider the case of
Figure 1(a), where a low-priority flow competes with
many high-priority flows on an output port. As a result,
the low priority flow may observe throughput drop, high
inter-packet arrival times, or even TCP timeouts.

To demonstrate this problem, we set up an experi-
ment. We create a low-priority TCP flow between two
hosts A and B that lasts for 100ms. We then create 5
batches of high-priority UDP bursts; each burst lasts for
1ms and has increasingly larger number of UDP flows
(m in Figure 1(a)) all having different source-destination
pairs. We use Pica8 P-3297 switches in our experiment;
the switch allows us to delay processing of low-priority
packets in the presence of a high-priority packet.

Figure 2(a) demonstrates that high-priority UDP
bursts hurt the throughput and latency performance of the
TCP flow significantly. With increasingly larger number
of high-priority flows in the burst, the TCP flow observes
increasingly more throughput drop eventually leading to
starvation (e.g., 0 Gbps for ∼10 ms in case of 16 UDP
flows). The figure also shows that increasing number
of high-priority flows in the burst results in increasingly
larger inter-arrival times for packets in the TCP flow. The
reduced throughput and increased packet delays may, at
the extreme, lead to TCP timeout.

Microburst-based flow contention. We now create a
microburst based flow contention scenario, where con-
gestion lasts for short periods, from hundreds of mi-
croseconds to a few milliseconds, due to bursty arrival of
packets that overflows a switch queue. To achieve this,
we use the same set up as priority-based flow contention
with the only difference that we use a FIFO queue instead
of a priority queue at each switch (thus, all TCP and UDP
packets are treated equally). The results in Figure 2(b)
show a throughput drop similar to priority-based flow
contention, but a slightly different plot for inter-packet
arrival times — as expected, the increase in inter-packet
delays is not as significant as in priority-based flow con-
tention since all packets get treated equally.

Limitations of existing techniques. The two problems
demonstrated above can be detected and diagnosed using
specialized switch hardware and interfaces [24]. With-
out custom designed hardware, these problems can still

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

1 2 4 8 16

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

In
te

r-
pa

ck
et

 a
rr

iv
al

 ti
m

e
(m

s)

Timeline (ms)

1 2 4 8 16

(a) Throughput (left) and inter-packet arrival time (right) of a low-
priority TCP flow under priority-based flow contention.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

1 2 4 8 16

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100

In
te

r-
pa

ck
et

 a
rr

iv
al

 ti
m

e
(m

s)

Timeline (ms)

1 2 4 8 16

(b) Throughput (left) and inter-packet arrival time (right) of a TCP
flow under microburst-based flow contention.

Figure 2: Too much traffic problem depicted in Figure 1(a).
Five UDP burst batches are introduced with a gap of 15 ms
between each other. The gray lines highlight the five
batches, all of which last for 1 ms. The number in circle
denotes the number of UDP flows used in each batch.

be detected at the destination of the suffering flow(s),
but diagnosing the root cause is significantly more chal-
lenging. Packet sampling based techniques would miss
microbursts due to undersampling; switch counter based
techniques would not be able to differentiate between
the priority-based and microburst-based flow contention;
and finally, since diagnosing these problems requires
looking at flows going to different end-hosts, existing
end-host based techniques [23, 28] are insufficient since
they only provide visibility at individual end-hosts.

2.2 Too many red lights
We now consider the network problem shown in
Figure 1(b). Our set up uses a low-priority TCP flow
from host A to host F (the red flow) that traverses
switches S1, S2 and S3. The TCP flow contends with
two high-priority UDP flows (B-D and C-E), each last-
ing for 400µs in a sequential fashion (that is, flow C-E
starts right after flow B-D finishes). Consequently, the
TCP flow gets delayed for about 400µs at S1 due to UDP
flow B-D and another 400µs at S2 due to UDP flow C-E.

The result is shown in Figure 3. The destination of the
TCP flow sees a sudden throughput drop almost down to

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 455

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

(a) Throughput of flow A-F at S1

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

(b) Throughput of flow A-F at S2

Figure 3: Too many red lights problem depicted in
Figure 1(b). UDP is used for flows B-D and C-E and TCP
for flow A-F.

200 Mbps. This is a consequence of performance degra-
dation accumulated across two switches S1 and S2 —
Figures 3(a) and 3(b) show that the throughput is around
600Mbps at S1 and around 200 Mbps at S2 (at around
6 ms time point). In fact, the problem is not limited
to reduced throughput for the TCP flow — taken to the
extreme, adding more “red lights” can easily result in a
timeout for the TCP flow.

Limitations of existing techniques. The too many red
lights problem highlights the importance of combining
in-network and end-host based approaches to network
monitoring and debugging.

Indeed, it is hard for purely in-network techniques to
detect the problem — switches are usually programmed
to collect relevant flow- or packet-level telemetry infor-
mation if a predicate (e.g., throughput drop is more than
50% or queuing delay is larger than 1ms) is satisfied,
none of which is the case in the above phenomenon.
Since the performance of the TCP flow degrades grad-
ually due to contention across switches, the net effect
becomes visible closer to the end-host of the TCP flow.

On the other hand, existing end-host based techniques
allow detecting the throughput drop (or for that mat-
ter, the TCP timeout); however, these techniques do not
provide the network visibility necessary to diagnose the
gradual degradation of throughput across switches in the
too-many-red-lights phenomenon.

2.3 Traffic cascades
Finally, we discuss the traffic cascade phenomenon from
Figure 1(c). Here, we have three flows, B-D, A-F and
C-E, with flow priorities being high, middle and low, re-
spectively. Flows B-D and A-F use UDP and last for
10ms each whereas flow C-E uses TCP and transfers
2MB of data. A cascade effect happens when the high-
priority flow B-D affects the middle-priority flow A-F

 0
 0.2
 0.4
 0.6
 0.8

Flow B-D

 0
 0.2
 0.4
 0.6
 0.8

Th
ro

ug
hp

ut
 (G

bp
s)

Flow A-F

 0
 0.2
 0.4
 0.6
 0.8

 0 10 20 30 40 50
Timeline (ms)

Flow C-E

(a)

 0
 0.2
 0.4
 0.6
 0.8

 0
 0.2
 0.4
 0.6
 0.8

Th
ro

ug
hp

ut
 (G

bp
s)

 0
 0.2
 0.4
 0.6
 0.8

 0 10 20 30 40 50
Timeline (ms)

(b)

Figure 4: Traffic cascades problem depicted in Figure 1(c).
Throughput of flows (a) without traffic cascades; (b) with
traffic cascades. UDP is used for flows B-D and A-F, and
TCP for flow C-E.

which subsequently affects the low-priority flow C-E.
Specifically, if flow B-D and flow A-F do not contend
at switch S1, the flow A-F will depart from switch S2 be-
fore flow C-E arrives resulting in no flow contention in
the network (Figure 4(a)). However, due to contention
of flow B-D and flow A-F at switch S1 (for various rea-
sons, including B-D being rerouted due to failure on a
different path), flow A-F is delayed at switch S1 and ends
up reducing the throughput for flow C-E at switch S2
(Figure 4(b)).

Limitations of existing techniques. Diagnosing the root
cause of the traffic cascade problem is challenging for
both in-network and for end-hosts based techniques. It
not only requires capturing the temporal state (flowIDs
and packet priorities for all contending flows) across
multiple switches, but also requires to do so even for
flows that do not observe any noticeable performance
degradation (e.g., the B-D flow). Existing in-network and
end-host based techniques fall short of providing such
functionality.

2.4 Other SwitchPointer use cases
There are many other network monitoring and debugging
problems for which in-network techniques and end-host
based techniques, in isolation, are either insufficient or
inefficient (in terms of data plane resources). We have
compiled a list of such network problems along with a
detailed description of how SwitchPointer is able to mon-
itor and diagnose such problems in [8].

456 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 SwitchPointer Overview
SwitchPointer integrates the benefits of end-host based
and in-network approaches into an end-to-end system
for network monitoring and debugging. To that end, the
SwitchPointer system has three main components. This
section provides a high-level overview of these compo-
nents and how SwitchPointer uses these components to
monitor and debug network problems.

SwitchPointer Switches. The first component runs at
network switches and is responsible for three main tasks:
(1) embedding the telemetry data into packet header; (2)
maintaining pointers to end hosts where the telemetry
data for packets processed by the switch are stored; and
(3) coordinating with an analyzer for monitoring and de-
bugging network problems.

SwitchPointer switches embed at least two pieces
of information in packet headers before forwarding a
packet. The first is to enable tracing of packet trajec-
tory, that is, the set of switches traversed by the packet;
SwitchPointer uses solutions similar to [27, 28] for this
purpose. The second piece of information is to efficiently
track contending packets and flows at individual ports
over fine-grained time intervals. To achieve this, each
SwitchPointer switch divides (its local view of) time into
epochs and embeds into the packet header the epochID
at which the packet is processed. SwitchPointer can of
course use clean-slate approaches like INT [4] to embed
epochIDs into packet headers; however, we also present
a design in §4.1.3 that extends the techniques in [27, 28]
to efficiently embed these epochIDs into packet headers
along with the packet trajectory tracing information.

Embedding path and epoch information within the
packet headers alone does not suffice to debug network
problems efficiently. Once a spurious network event is
triggered, debugging the problem requires the ability to
filter headers contributing to that problem (potentially
distributed across multiple end hosts); without any ad-
ditional state, filtering these headers would require con-
tacting all the end hosts. To enable efficient filtering of
headers contributing to the triggered network problem,
SwitchPointer uses distributed storage at switches as a
directory service — switches store “pointers” to destina-
tion end hosts of the packets processed by the switch in
different epochs. Once an event is triggered, this direc-
tory service can be used to quickly filter out headers for
packets and flows contributing to the problem.

Using epochs to track contending packets and flows
at switches, and storing pointers to destination end-hosts
for packets processed in each epoch leads to several de-
sign and performance tradeoffs in SwitchPointer. Indeed,
too large an epoch size is not desirable — with increasing

epoch size, a switch may forward packets to increasingly
many end-hosts within an epoch, leading to inefficiency
(at an extreme, this would converge to trivial approach
of contacting all end-hosts for filtering relevant headers).
Too small an epoch size is also undesirable since with
increasing number of epochs, each switch would require
either increasingly large memory (SRAM for storing the
pointers) or increasingly large bandwidth between the
data plane and the control plane (for periodically trans-
ferring the pointers to persistent storage).

SwitchPointer achieves a favorable tradeoff between
switch memory, bandwidth between the data plane and
the control plane, and the efficiency of debugging net-
work problems using a hierarchical data structure, where
each subsequent level of the hierarchy stores pointers
over exponentially larger time scales. This data struc-
ture enables both real-time (potentially automated) de-
bugging of network problems using pointers for more
recent epochs, and offline debugging of network prob-
lems by transferring only pointers over coarse-grained
time scales from the data plane to the control plane. We
discuss this data structure in §4.1.1. Maintaining a hier-
archy of pointers also leads to challenges in maintaining
an updated set of pointers while processing packets at
line rate; indeed, a naïve implementation that uses hash
tables would require one operation per packet per level of
hierarchy to update pointers upon each processed packet.
We present, in §4.1.2, an efficient implementation that
uses perfect hash functions to efficiently maintain up-
dated pointers across the entire hierarchy using just one
operation per packet (independent of number of levels in
the hierarchical data structure).

SwitchPointer End-hosts. SwitchPointer, similar to re-
cent end-host based monitoring systems [28, 23], uses
end hosts to collect and monitor telemetry data carried in
packet headers, and to trigger spurious network events.
SwitchPointer uses PathDump [28] to implement its end-
host component; however, this requires several exten-
sions to capture additional pieces of information (e.g.,
epochIDs) carried in SwitchPointer’s packet headers and
to query headers. We describe SwitchPointer’s end-host
component design and implementation in §4.2.

SwitchPointer Analyzer. The third component of
SwitchPointer is an analyzer that coordinates with
SwitchPointer switches and end-hosts. The analyzer can
either be colocated with the end-host component, or on a
separate controller. A network operator, upon observing
a trigger regarding a spurious network event, uses the an-
alyzer to debug the problem. We describe the design and
implementation of the SwitchPointer analyzer in §4.3.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 457

An example for using SwitchPointer:
We now describe how a network operator can use
SwitchPointer to monitor and debug the too many red
lights problem from Figure 1 and §2.2. The destina-
tion end-host of the victim TCP flow A-F detects a large
throughput drop and triggers the event. The operator,
upon observing the trigger, uses the analyzer module to
extract the end-hosts that store the telemetry data relevant
to the problem — the analyzer module internally queries
the destination end-host for flow A-F to extract the trajec-
tory of its packets (switches S1, S2 and S3 in this exam-
ple) and the corresponding epochIDs, uses this informa-
tion to extract the pointers from the three switches (for
corresponding epochs), and returns the relevant point-
ers corresponding to the end-hosts that store the relevant
headers for flows that contended with the victim TCP
flow (D and E in this example). The operator then filters
the relevant headers from the end-hosts to learn that flow
A-F contended with flow B-D and C-E, and can interac-
tively debug the problem using these headers. Switch-
Pointer debugs other problems in a similar way (more
details in §5).

4 SwitchPointer
In this section, we discuss design and implementation
details for various SwitchPointer components.

4.1 SwitchPointer switches
SwitchPointer provides the network visibility necessary
for debugging network problems by using the memory at
network switches as a distributed directory service, and
by embedding telemetry information in the packet head-
ers. We now describe the data structure stored at and
packet processing pipeline of SwitchPointer switches.

4.1.1 Hierarchical data structure for pointers

SwitchPointer switches divide their local view of time
into epochs and enable tracking of contending packets
and flows at switches by storing pointers to destina-
tion end-hosts for packets processed in different epochs.
SwitchPointer stores these pointers using a hierarchical
data structure, where each subsequent level of the hi-
erarchy stores pointers over exponentially larger time
scales. We describe this data structure and discuss how
it achieves a favorable tradeoff between switch mem-
ory (to store pointers) and bandwidth between data plane
and control plane (to periodically transfer pointers from
switch memory to persistent storage).

Figure 5 shows SwitchPointer’s hierarchical data
structure with k levels in the hierarchy. Suppose the
epoch size is α ms. At the lowermost level, the data

α
k
 ms

Pointer

Update

Function

Dst IP

...

... α
2
 ms

...

α
3
 ms...

Time

...

Level k

Level 1α set of pointers α ms

α set of pointers

...

Level 3

Update

k pointers

Update

k pointers
Level 2

α set of pointers

Figure 5: SwitchPointer’s hierarchical data structure for
storing pointers. For each packet that a switch forwards,
SwitchPointer stores a pointer to the packet’s destination
end-host along a hierarchy of k levels. For epoch size α ms,
level h (1 ≤ h ≤ k − 1) stores pointers to destination end-
hosts for packets processed in last consecutive αh epochs
(that is, αh+1 ms) across α set of pointers. The topmost
level stores only one set of pointers corresponding to pack-
ets processed in last αk ms.

structure stores α set of pointers, each corresponding to
destinations for packets processed in one epoch; thus the
set of pointers at the lowermost level provide a per-epoch
information on end-hosts storing headers to all contend-
ing packets and flows over an α2 ms period. In general,
at level h (1 ≤ h ≤ k−1), the data structure stores α set
of pointers corresponding to packets processed in con-
secutive αh ms intervals. The top level stores only one
set of pointers corresponding to packets processed in last
αk ms of time period.

The hierarchical data structure, by design, maintains
some redundant information. For instance, the first set of
pointers in level h+1 correspond to packets processed in
last αh+1 ms of time period, collectively similar to all the
set of pointers in level h. It is precisely this redundancy
that allows SwitchPointer to achieve a favorable tradeoff
between switch memory and bandwidth. We return to
characterizing this tradeoff below, but note that pointers
at the lower level of the hierarchy provide a more fine-
grained view of packets and flows contending at a switch
and are useful for real-time diagnosis; the set of pointers
on the upper levels, on the other hand, provide a more
coarse-grained view and are useful for offline diagnosis.

SwitchPointer allows pointers at all levels to be ac-
cessed by the analyzer under a pull model. For instance,
suppose the epoch size is α = 10 and the data structure
has k = 3 levels. Then, each set of pointers at level 1
correspond to 10 ms of time period while those at level 2
correspond to 100 ms of time period. If a network opera-
tor wishes to obtain the headers corresponding to packets
and flows processed by the switch for last 50 ms (i.e., 5

458 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

epochs), it can pull the five most recent set of pointers
from level 1; for last 150 ms period, the operator can pull
the two most recent pointers from level 2 (which, in fact,
correspond to 200 ms time period). In addition to sup-
porting access to the hierarchical data structure using a
pull model, SwitchPointer also pushes the topmost level
of pointers to the control plane for persistent storage ev-
ery αk ms which can then be used for offline diagnosis
of network events. The toplevel pointers provide coarse-
grained view of contending packets and flows at switches
which may be sufficient for offline diagnosis but using a
push model only for the topmost level pointers signifi-
cantly reduces the requirements on bandwidth between
the data plane and the control plane.

Tradeoff. The hierarchical data structure, as described
above, exposes a tradeoff between switch memory and
the bandwidth between the data plane and the control
plane via two parameters — k and α . Specifically, let
the storage needed by a set of pointers to be S bits
(this storage requirement depends on the maximum num-
ber of end-hosts in the network, and is characterized in
next subsection); Then, the overall storage needed by
the hierarchical data structure is α · (k − 1) · S+ S bits.
Moreover, since only the topmost pointer is pushed from
the data plane to the control plane (once every αk ms),
the bandwidth overhead of SwitchPointer is bounded
by S × (103/αk) bps. For a fixed network size (and
hence, fixed S), as k and α are increased, the memory
requirements increase and the bandwidth requirements
decrease. We evaluate this tradeoff in §6 for varying val-
ues of k and α; however, we note that misconfiguration
of k and α values may result in longer diagnosis time
(the analyzer may touch more end-hosts to filter relevant
headers) but does not result in correctness violation.

4.1.2 Maintaining updated pointers at line rate

We now describe the technique used in SwitchPointer
to minimize the switch memory requirements for storing
the hierarchical data structure and to minimize the num-
ber of operations performed for updating all the levels in
the hierarchy upon processing each packet.

Strawman: a simple hash table. A plausible solution
for storing each set of pointers in the hierarchical data
structure is to use a hash table. However, since Switch-
Pointer requires updating k set of pointers upon process-
ing each packet (one at each level of hierarchy), using a
standard hash table would require k operations per packet
in the worst case. This may be too high a overhead for
high-speed networks (e.g., with 10Gbps links). One way
to avoid such overhead is to use hash tables with large

number of buckets so as to have a negligible collision
probability. Using such a hash table would reduce the
number of operations per packet to just one (independent
of number of levels in the hierarchy); however, such a
hash table would significantly increase the storage re-
quirements. For instance, consider a network with m
destinations; given a hash table with n buckets, the ex-
pected number of collisions under simple uniform hash-
ing is m−(n−n(1−1/n)m). Suppose that m= 100K and
the target number of collisions is 0.001m (i.e., 0.1% of
100K keys). To achieve this target, the number of buck-
ets in the hash table should be close to 50 million, 500×
larger than the number of keys. Thus, this strawman ap-
proach becomes quickly infeasible for our hierarchical
data structure — it would either require multiple oper-
ations per packet to update the data structure or would
require very large switch memory.

Our solution: Minimal perfect hash function. Our key
observation is that the maximum number of end-hosts in
a typical datacenter is known a priori and that it changes
at coarse time scales (hours or longer). Therefore, we can
construct a minimal perfect hash function to plan ahead
on the best way to map destinations to buckets to avoid
hash collisions completely. In fact, since each level in the
hierarchy uses the same perfect hash function, Switch-
Pointer needs to perform just one operation per packet to
find the index in a bit array of size equal to the maximum
number of destinations; the same index needs to be up-
dated across all levels in the hierarchy. Upon processing
a packet, the bit at the same index across the bit array is
set in parallel. Lookups are also easy — to check if a
packet to a particular destination end-host was processed
in an epoch, one simply needs to check the corresponding
bit (given by the perfect hash function) in the bit array.

The minimal perfect hash function provides O(1) up-
date operation and expresses a 4-byte IP address with 1
bit (e.g., 100Kbits for 100K end-hosts). While an ad-
ditional space is required to construct a minimal perfect
hash function, it is typically small (70 KB and 700 KB
for for 100K and 1M end-hosts respectively; see §6.1).
Moreover, while constructing a perfect hash function is
a computationally expensive task, small storage require-
ment of perfect hash tables allow us to recompute the
hash function only at coarse-grained time intervals —
temporary failures of end-hosts do not impact the cor-
rectness since the bits corresponding to those end-hosts
will simply remain unused. For resetting pointers at
level h, an agent at the switch control plane updates a
register with the memory address of next pointer every
αh ms and resets its content. The agent conducts this
process for pointers at all levels.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 459

S1 Core S3
S2 S5S4

Pod 1 Pod 2

ei S2-S3MAC header

1st tag: Link ID2nd tag: Epoch ID

Figure 6: Telemetry data embedding using two VLAN tags
using a modified version of the technique in [27]. See §4.1.3
and §4.2.1 for discussion.

4.1.3 Embedding telemetry data

SwitchPointer requires two pieces of information to be
embedded in packet headers. The first is the trajectory
of a packet, that is, the set of switches (i.e., switchIDs)
traversed by the packet between the source and the des-
tination hosts. The second is epoch information (i.e.,
epochID) on when a packet traverses those switches.

SwitchPointer extends the link sampling idea
from [27, 28] to efficiently enable packet trajectory
tracing and epoch embedding for commonly used
datacenter network topologies (e.g., clos networks like
fat-tree, leaf-spine and VL2) without any hardware
modifications. Specifically, it is shown in [27, 28] that
an end-to-end path in typical datacenter network topolo-
gies can be represented by selectively picking a small
number of key links. For instance, in a fat-tree topology
the technique reconstructs a 5-hop end-to-end path by
selecting only one aggregate-core link and embedding its
linkID into the packet header. For embedding epochIDs
in addition to the linkID, we extend the technique that
relies on IEEE 802.1ad double tagging. When a linkID
is added to the packet header using a VLAN tag, we add
an epochID using another tag (see Figure 6).

The number of rules for embedding linkID increases
linearly with respect to the number of switch ports
whereas only one flow rule is for epochID embedding.
However, the switch needs a rule update once every
epoch — as the epoch changes, the switch should be able
to increment epochID and add a new epochID for incom-
ing packets. A commodity OpenFlow switch that we use
is capable of updating flow rules every 15 ms, giving us
a lower bound on α granularity for commodity switches.

We note that the limitations on supported topologies
and α granularity in our implementation over commod-
ity switches are merely an artifact of today’s switch hard-
ware — it is possible to use SwitchPointer with clean-
slate solutions such as INT [4] to support trajectory trac-
ing and epoch embedding over arbitrary topologies.

4.2 SwitchPointer End-hosts
SwitchPointer uses PathDump [28] to collect and moni-
tor telemetry data carried in packet headers, and to trig-
ger spurious network events. In this subsection, we dis-
cuss the extensions needed in PathDump to capture ad-
ditional pieces of information (e.g., epochIDs) carried in
SwitchPointer’s packet headers and to query headers.

4.2.1 Decoding telemetry data

When a packet arrives at its destination, the destination
host extracts the telemetry data from the packet header. If
the network supports clean-slate approaches like INT [4],
this is fairly straight forward. For implementation us-
ing commodity switches (using techniques discussed in
§4.1.3), the host extracts two VLAN tags containing the
switchID and the epochID associated with the switchID.
Using the switchID, the end-to-end path can be con-
structed using techniques in [27, 28], giving us a list of
switches visited by the packet. Next, we decide a list
of epochIDs for each of those switches. However, since
only one epochID is available at the end-host, it is hard to
determine the missing epochIDs for those switches cor-
rectly. Thus, we set a range of epochs that the switches
should examine. Specifically, we may need to examine
max_delay/α number of pointers at each switch due to
uncertainty in epoch identification.

Let ∆ denote the a maximum one hop delay and ε be a
maximum time drift among all switches. Given epochID
ei of switch S and an end-to-end path, the epochIDs for
switches along the path are identified as follows.

For the upstream switches of switch S, the epoch range
is [ei − (ε + j ·∆)/α,ei + ε/α] and for the downstream
switches of S, it is [ei − ε/α,ei +(ε + j ·∆)/α], where j
is hop difference between an upstream (or downstream)
switch and switch S. Suppose α = 10 ms, ε = α and
∆ = 2 ·α . For instance, in the example of Figure 6, we
set [ei −3,ei +1] for switch S2, [ei −1,ei +3] for S4, and
so forth. This provides a reasonable bound due to two
reasons. First, a maximum queuing delay is within tens
of milliseconds in the datacenter network (e.g., 14 ms in
[9]). Second, millisecond-level precision is sufficient as
SwitchPointer epochs are of similar granularity.

4.2.2 Event trigger and query execution

The end-host also has an agent that communicates with
and executes queries on behalf of the analyzer. The agent
is implemented using a microframework called flask [3],
and implements a variety of techniques (similar to those
in existing end-host based systems [28, 23]) to monitor
spurious network events.

460 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

1 2 4 8 16

T
im

e
 (

m
s
)

No. of UDP flows

Problem detection

Alert to analyzer

Pointer retrieval

Diagnosis

Figure 7: Debugging time of the priority-based flow con-
tention problem depicted in Figure 2(a). SwitchPointer is
able to monitor and debug the problem in less than 100ms.
We provide a break down of the diagnosis latency later in
Figure 12.

4.3 SwitchPointer Analyzer
The analyzer is also implemented using flask mi-
croframework. It communicates with both switch and
end-host agents. From the switch agent, the analyzer ob-
tains pointers to end-hosts for epoch(s). From the end-
host agent, it receives alert messages, and exchanges
queries and responses. Another responsibility is that
it constructs a minimal perfect hash function whenever
there are permanent changes in the number of end-hosts
in the network, especially when end-hosts are newly
added. It then distributes the minimal perfect hash func-
tion to all the switches in the network. The analyzer also
does pre-processing of pointers by leveraging network
topology, flow rules deployed in the network, etc. For ex-
ample, to diagnose the network problem experienced by
a flow, the analyzer filters out irrelevant end-hosts in the
pointer if the paths between the flow’s source and those
end-hosts do not share any path segment of the flow. This
way, the analyzer reduces search radius, i.e., number of
end-hosts that it has to contact.

5 SwitchPointer Applications
In this section, we demonstrate some key monitoring ap-
plications SwitchPointer supports.

5.1 Too much traffic
We debug the problem discussed in §2 using Switch-
Pointer. This problem include two different cases: (i)
priority-based flow contention and (ii) microburst-based
flow contention. The debugging processes of both cases
are similar; the only difference is the former case re-
quires the analyzer to examine flow’s priority value.
Thus, we only discuss the former case.

Figure 7 shows the breakdown of times it took to di-
agnose the priority-based flow contention case. First, we
instrument hosts with a simple trigger that detects dras-
tic throughput changes. The trigger measures throughput
every 1 ms interval and generates an alert to the analyzer
if throughput drop is more than 50%. The problem de-
tection takes less than 1 ms, thus almost invisible from
the figure (3-4 ms for the microburst-based contention
case). Then, it takes 2-3 ms to send the analyzer an alert
and to receive an acknowledgment. The alert contains
a series of <switchID, a list of epochIDs, a list of byte
counts per epoch> tuples that tell the analyzer when and
where packets of the TCP flow visit. The analyzer uses
the switchIDs and epochIDs, and obtains relevant point-
ers from switches. In this scenario, it only takes about
7-8 ms to retrieve a pointer from one switch.

Next, the analyzer learns hosts encoded in the pointer,
and diagnoses the problem by consulting them; it collects
telemetry data such as UDP flow’s priority, the number
of bytes in UDP flow during the epoch when the TCP
flow experiences high delay. The analyzer finally draws a
conclusion that the presence of high-priority UDP flows
aggravated the performance of the low-priority TCP flow.
As shown in Figure 7, the time for the diagnosis in-
creases as the number of consulted hosts (i.e., each UDP
flow is destined to a different host) increases. Although
not too large, the diagnosis overhead inflation pertains to
the implementation of connection initiation; we discuss
this matter and its optimization in §6.2.

5.2 Too many red lights

This problem illustrated in Figure 1(b) (for its behav-
ior, see Figure 3) requires spatial correlation of telemetry
data across multiple switches for diagnosis. While this
problem is challenging to existing tools, SwitchPointer
easily diagnoses it as follows.

First, destination F triggers an alert to the analyzer in
no time (∼1 ms) by using our throughput drop detection
heuristic introduced in §5.1. The alert contains IDs for
switches S1,S2 and S3 and their corresponding epochID
ranges. The analyzer contacts all of the switches and re-
trieves pointers that match the epoch IDs for each switch
in 10 ms, and then conducts diagnosis (another 20 ms)
by obtaining telemetry data for UDP flows B-D and C-E
from hosts D and E, respectively. The analyzer finds out
that low (A-F) and high prority (B-D and C-E) flows have
at least one common epochID, and finally concludes (in
about 30 ms) that both flows B-D and C-E contributed to
the actual impact on the TCP flow.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 461

 0

 100

 200

 300

 400

4 8 16 32 64 96D
ia

g
n

o
s
is

 t
im

e
 (

m
s
)

No. of servers with relevant flows

Figure 8: Latency for diagnosing load imbalance problem.

5.3 Traffic cascades
This problem is a more challenging problem to exist-
ing tools because debugging it requires spatial and tem-
poral correlation of telemetry data (see Figure 1(c) for
the problem illustration and Figure 4(b) for its behavior).
SwitchPointer diagnoses the problem as follows.

First, the low-priority TCP flow C-E observes a large
throughput drop at around 26 ms (see Figure 4(b)) and
triggers an alert along with switchIDs and correspond-
ing epoch details. Then, the analyzer retrieves pointers
that match with epochIDs from S2 and S3, contacts F
and finds out the presence of middle-priority flow A-F
on S2 caused the contention in ∼25 ms. Since flow A-F
has middle-priority, the analyzer subsequently examines
pointers from switches (i.e., S1 and S2) along the path of
flow A-F in order to see whether or not the flow was af-
fected by some other flows. From a pointer from switch
S1, the analyzer comes to know that flow B-C made flow
A-F delayed, which in turn had flows A-F and C-E col-
lide. This part of debugging takes another 25 ms. Hence,
the whole process takes about 50 ms in total.

Of course, in a large datacenter network, debugging
this kind of problem can be more complex than the exam-
ple we studied here. Therefore, in practice the debugging
process may be an off-line task (with a pointer at a higher
level that covers many epochs) rather than an online task.
However, independent of whether it is an off-line or on-
line task, SwitchPointer showcases, with this example,
that it is feasible to diagnose network problems that need
both spatial and temporal correlation.

5.4 Load imbalance diagnosis
To demonstrate the way SwitchPointer works for diag-
nosing load imbalance, we create the same problematic
setup used in [28]. In that setup, a switch that is con-
figured to malfunction, forwards traffic unevenly to two
egress interfaces; specifically, packets from flows whose
size is less than 1 MB are output on one interface; oth-
erwise, packets are forwarded to the other interface. We
vary the number of flows from 4 to 96. Each flow is des-

 0
 2
 4
 6
 8

 10

64 128 ≥ 256Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

OVS
SwitchPointer (k = 1)
SwitchPointer (k = 5)

Figure 9: For smaller packet sizes, SwitchPointer is unable
to sustain line rate due to overheads of perfect hash func-
tion. SwitchPointer is able to achieve line rate for a 10GE
interface for packets of size 256bytes and more.

tined to a different end-host. Using this setup, we can
understand how the number of end-hosts contacted by
the analyzer impacts SwitchPointer’s performance.

The debugging procedure is similar to that of other
problems we already studied. This problem is detected
by monitoring interface byte counts per second. The an-
alyzer fetches the pointers corresponding to the most re-
cent 1 sec. It then obtains the end-hosts in the pointers,
and sends them a query that computes a flow size dis-
tribution for each of the egress interfaces of the switch.
Finally, the analyzer finds out that there is a clean sep-
aration in flow size between two distributions. Figure 8
shows the diagnosis time of running a query as a function
of the number of end-hosts consulted by the analyzer.
The diagnosis time increases almost linearly as the an-
alyzer consults more end-hosts. Since this trend comes
from the same cause, we refer to §6.2 for understanding
individual factors that contribute to the diagnosis time.

6 SwitchPointer Evaluation

We prototype SwitchPointer on top of Open vSwitch [6]
over Intel DPDK [2]. To build a minimal perfect hash
function, we use the FCH algorithm [14] among others
in CMPH library [1]. We also implement the telemetry
data extraction and epoch extrapolation module (§4.2.1)
on OVS. The module maintains a list of flow records;
one record consists of the usual 5-tuple as flowID, a list
of switchIDs, a series of epoch ranges that correspond
to each switchID, byte/packet counts and a DSCP value
as flow priority. This flow record is initially maintained
in memory and flushed to a local storage, implemented
using MongoDB [5]. We now evaluate SwitchPointer in
terms of switch overheads and query performance under
real testbeds that consist of 96 servers.

462 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 2
 4
 6
 8

 10
 12

 1 2 3 4 5

M
em

or
y

(M
B

)

k (No. of levels)

(n = 1M, α = 20)
(1M, 10)
(100K, 20)
(100K, 10)

(a) Memory overhead

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

B
an

dw
id

th
 (M

bp
s)

k (No. of levels)

(n = 1M, α = 20)
(1M, 10)

(100K, 20)
(100K, 10)

(b) Bandwidth overhead

Figure 10: Overheads of SwitchPointer. At (n, α) in the leg-
end, n denotes the maximum number of IP addresses traced
by SwitchPointer, and α is an epoch duration in ms.

6.1 Switch overheads
To quantify switch overheads, we vary epoch duration
(α ms), the number of levels in a pointer (k), the number
of IP addresses (n) and packet size (p). We set up two
servers connected via a 10GE link. From one server, we
generate 100K packets, each of which has a unique desti-
nation IP (hence, 100K flows); we play those 100K pack-
ets repeatedly to the other server where SwitchPointer
is running using one 3.1 GHz CPU core. Under the
setup, we measure i) throughput, ii) the amount of mem-
ory to keep pointers on data plane, iii) bandwidth to of-
fload pointers from SRAM (data plane) to off-chip stor-
age (control plane), and iv) pointer recycling period.

Throughput. We compare SwitchPointer’s throughput
with that of vanilla OVS (baseline) over Intel DPDK. We
set k = 1 and 5. Here one pointer of SwitchPointer is
configured to record 100K unique end-hosts. We then
measure the throughput of SwitchPointer while varying
p. Our current implementation in OVS processes about
7 million packets per second. From Figure 9, we ob-
serve that OVS and both configurations of SwitchPointer
achieve a full line rate (∼9.99 Gbps) when p≥ 256 bytes.
In contrast, when p < 256 bytes, both OVS and Switch-
Pointer face throughput degradation. For example, when
p is 128 bytes, OVS achieves about 9.29 Gbps whereas
SwitchPointer’s throughput is about 22% less than that
of OVS. However, since an average packet size in data
centers is in general larger than 256 bytes (e.g., 850
bytes [10], median value of 250 bytes for hadoop traf-
fic [26]), the throughput of SwitchPointer can be accept-
able. We also envision that a hardware implementation
atop programmable switch [11, 19] would eliminate the
limitation of a software version.

Memory. Perfect hash functions account for about
70 KB (n = 100K) and 700 KB (n = 1M). In addition,

101

102

103

104

105

 10 20 30

P
oi

nt
er

 re
cy

cl
in

g
pe

rio
d

(m
s)

α (epoch duration in ms)

level 1
level 2

Figure 11: Recycling period of a pointer when k = 3.

n also governs the pointer’s size: 12.5 KB (n = 100K)
and 125 KB (n = 1M). Together SwitchPointer requires
to have 82.5 KB and 825 KB, respectively. These are the
minimum amount of memory requirement for Switch-
Pointer. Figure 10(a) shows the memory overhead; the
memory requirement increases in proportion to each of k
and α . When n = 1M, α = 10 and k = 3, SwitchPointer
consumes 3.45 MB; for n = 100K, it is only 345 KB.

Bandwidth. In contrast to memory overhead, the band-
width requirement of system bus between SRAM and
off-chip storage decreases as we increase k and α be-
cause larger values of those parameters make the pointer
flush less frequent. In particular, k has a significant
impact in controlling the bandwidth requirement; in-
creasing it drops the requirement exponentially. For
n = 1M and α = 10 (the most demanding setting in
Figure 10(b)), the bandwidth requirement reduces from
100 Mbps (k = 1) to 10 Mbps (k = 2).

The results in Figures 10(a) and 10(b) present a clear
tradeoff between memory and bandwidth. Depending
on the amount of available resources and user’s require-
ments, SwitchPointer provides a great flexibility in ad-
justing its parameters. For instance, if memory is a scarce
resource, it may be better to keep k ≤ 3 and α ≤ 10.

Pointer recycling period. Except for top level pointers,
pointers are recycled after all the pointers on the same
layer are used. The pointer recycling period at level h is
expressed as α(αh − 1) ms where 1 ≤ h < k. Figure 11
shows a tradeoff between α and k. As expected, the
recycling period exponentially increases as the level in-
creases (when α = 10, the recycling period of a pointer at
level 1 is 90 ms and it is 900 ms at level 2). Because too
small α may always let SwitchPointer end up accessing
a higher-level pointer, α should be chosen carefully.

6.2 Query performance
We now evaluate the query performance of Switch-
Pointer, which we compare with that of PathDump [28]

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 463

 0

 0.1

 0.2

 0.3

 0.4

1 8 16 32 64 96

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

No. of servers

Connection initiation
Request
Query execution
Response

(a) PathDump

 0

 0.1

 0.2

 0.3

 0.4

1 8 16 32 64 96

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

No. of servers

(b) SwitchPointer

Figure 12: Top-100 query response time. Most of Switch-
Pointer latency overheads are due to connection initiation
requests from the analyzer to the end-hosts and can be im-
proved with a more optimized RPC implementation.

(baseline). We run a query that seeks top-k flows in a
switch in our testbed where there are 96 servers. The key
difference between SwitchPointer and PathDump is that
SwitchPointer knows which end-hosts it needs to contact
but PathDump does not. Thus, PathDump executes the
query from all the servers in the network. To see the im-
pact of the difference, we vary the number of servers that
contain telemetry data of flows that traverse the switch.

From Figure 12 we observe that the response time
of SwitchPointer gradually increases as the number of
servers increases. On the other hand, PathDump always
has the longest response time as it has to contact all
96 servers anyway. Both of them only have a similar
response time when all the servers have relevant flow
records and thus SwitchPointer has to contact all of them.

A closer look reveals that most of the response time is
because of connection initiation for both SwitchPointer
and PathDump. In our current implementation, the an-
alyzer creates one thread per server to initiate connec-
tion when a query should be executed. This on-demand
thread creation delays the execution of query at servers.
This is an implementation issue, not a fundamental flaw
in design. Thus, it can be addressed with proper tech-
nique such as thread pull management. However, since
PathDump must contact all the servers regardless of
whether or not the servers have useful telemetry data,
it wastes servers’ resources. On the contrary, Switch-
Pointer only spends right amounts of server resources,
thus offering a scalable way of query execution.

7 Related Work
SwitchPointer’s goals are related to two key areas of re-
lated work on network monitoring and debugging.

End-host based approaches. These approaches [23,
28, 29, 12, 15, 22] typically exploit the fact that end-

hosts have ample resources and support for programma-
bility needed to monitor and diagnose spurious network
events. As discussed in §2, these approaches lack the
network visibility needed to debug a class of network
problems. SwitchPointer incorporates such visibility by
using switch memory as a directory service thus enabling
monitoring and debugging for a larger class of network
problems [8].

In-network approaches. In-network approaches to net-
work monitoring and debugging have typically focused
on designing novel switch data structures [30, 20, 21, 18,
7], abstractions [17, 24, 16, 25, 13] and even switch hard-
ware [24] to capture telemetry data at switches. While
interesting, these approaches are often limited by switch
and data plane resources required to store and query the
telemetry data. Moreover, as discussed in §2, existing
in-network approaches are insufficient to debug network
problems that require analyzing data captured across
multiple switches. SwitchPointer is able to overcome
these limitations of in-network approaches using limited
switch resources (4-6 MB of SRAM and 1-2 Mbps of
bandwidth between the data plane and the control plane)
by delegating the tasks of collecting and monitoring the
telemetry data to the end-hosts, and by using switch
memory as a distributed directory service.

8 Conclusion
SwitchPointer is a system that integrates the benefits of
end-host based approaches and in-network approaches to
network monitoring and debugging. SwitchPointer uses
end-host resources and programmability to collect and
monitor telemetry data, and to trigger spurious network
events. The key technical contribution of SwitchPointer
is to enable network visibility by using switch memory
as a “directory service” — SwitchPointer switches use a
hierarchical data structure to efficiently store pointers to
end-hosts that store relevant telemetry data. Using ex-
periments on real-world testbeds, we have shown that
SwitchPointer efficiently monitors and debugs a large
class of network problems, many of which were either
hard or even infeasible with existing designs.

Acknowledgments
We would like to thank anonymous NSDI reviewers
and our shepherd Mohammad Alizadeh for their insight-
ful comments and suggestions. We would also like
to thank Minlan Yu for many discussions during the
project. This work was in part supported by EPSRC
grants EP/L02277X/1 and EP/N033981/1, a Google fac-
ulty research award, and NSF grant F568379.

464 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] CMPH - C Minimal Perfect Hashing Library.

http://cmph.sourceforge.net/.

[2] DPDK: Data Plane Development Kit. http://
dpdk.org/.

[3] Flask. http://flask.pocoo.org/.

[4] In-band Network Telemetry. https:
//github.com/p4lang/p4factory/
tree/master/apps/int.

[5] MongoDB. https://www.mongodb.org/.

[6] Open vSwitch. http://openvswitch.org/.

[7] Sampled NetFlow. http://www.cisco.com/
c/en/us/td/docs/ios/12_0s/feature/
guide/12s_sanf.html, 2003.

[8] PathDump. https://github.com/
PathDump, 2016.

[9] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-
haran. Data center TCP (DCTCP). In ACM SIG-
COMM, 2010.

[10] T. Benson, A. Anand, A. Akella, and M. Zhang.
Understanding Data Center Traffic Characteristics.
ACM SIGCOMM CCR, 40(1), Jan. 2010.

[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Vargh-
ese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hard-
ware for SDN. In ACM SIGCOMM, 2013.

[12] H. Chen, N. Foster, J. Silverman, M. Whittaker,
B. Zhang, and R. Zhang. Felix: Implementing traf-
fic measurement on end hosts using program anal-
ysis. In ACM SIGCOMM SOSR, 2016.

[13] N. Foster, R. Harrison, M. J. Freedman, C. Mon-
santo, J. Rexford, A. Story, and D. Walker. Fre-
netic: A network programming language. In ACM
SIGPLAN ICFP, 2011.

[14] E. A. Fox, Q. F. Chen, and L. S. Heath. A Faster
Algorithm for Constructing Minimal Perfect Hash
Functions. In ACM SIGIR, 1992.

[15] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,
D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z.-
W. Lin, and V. Kurien. Pingmesh: A Large-Scale

System for Data Center Network Latency Measure-
ment and Analysis. In ACM SIGCOMM, 2015.

[16] A. Gupta, R. Birkner, M. Canini, N. Feamster,
C. Mac-Stoker, and W. Willinger. Network mon-
itoring as a streaming analytics problem. In ACM
HotNets, 2016.

[17] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. I Know What Your Packet Did
Last Hop: Using Packet Histories to Troubleshoot
Networks. In USENIX NSDI, 2014.

[18] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-
C. Chen, and G. Zhang. Sketchvisor: Robust net-
work measurement for software packet processing.
In ACM SIGCOMM, 2017.

[19] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazières. Millions of Little Minions: Using
Packets for Low Latency Network Programming
and Visibility. In ACM SIGCOMM, 2014.

[20] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A
Better NetFlow for Data Centers. In USENIX NSDI,
2016.

[21] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman. One sketch to rule them all: Re-
thinking network flow monitoring with univmon. In
ACM SIGCOMM, 2016.

[22] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the Data Plane
with Anteater. In ACM SIGCOMM, 2011.

[23] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Trumpet: Timely and Precise Triggers in Data Cen-
ters. In ACM SIGCOMM, 2016.

[24] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,
V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim.
Language-Directed Hardware Design for Network
Performance Monitoring. In ACM SIGCOMM,
2017.

[25] S. Narayana, M. Tahmasbi, J. Rexford, and
D. Walker. Compiling Path Queries. In USENIX
NSDI, 2016.

[26] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.
Snoeren. Inside the social network’s (datacenter)
network. In ACM SIGCOMM, 2015.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 465

http://cmph.sourceforge.net/
http://dpdk.org/
http://dpdk.org/
http://flask.pocoo.org/
https://github.com/p4lang/p4factory/tree/master/apps/int
https://github.com/p4lang/p4factory/tree/master/apps/int
https://github.com/p4lang/p4factory/tree/master/apps/int
https://www.mongodb.org/
http://openvswitch.org/
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
https://github.com/PathDump
https://github.com/PathDump

[27] P. Tammana, R. Agarwal, and M. Lee. CherryP-
ick: Tracing Packet Trajectory in Software-defined
Datacenter Networks. In ACM SIGCOMM SOSR,
2015.

[28] P. Tammana, R. Agarwal, and M. Lee. Simplifying
Datacenter Network Debugging with PathDump. In
USENIX OSDI, 2016.

[29] M. Yu, A. Greenberg, D. Maltz, J. Rexford,
L. Yuan, S. Kandula, and C. Kim. Profiling Net-
work Performance for Multi-tier Data Center Ap-
plications. In USENIX NSDI, 2011.

[30] M. Yu, L. Jose, and R. Miao. Software defined
traffic measurement with OpenSketch. In USENIX
NSDI, 2013.

[31] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu,
R. Mahajan, D. Maltz, L. Yuan, M. Zhang, B. Y.
Zhao, and H. Zheng. Packet-Level Telemetry in
Large Datacenter Networks. In ACM SIGCOMM,
2015.

466 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Stroboscope: Declarative Network Monitoring on a Budget
https://stroboscope.ethz.ch

Olivier Tilmans
Université catholique de

Louvain

Tobias Bühler
ETH Zürich

Ingmar Poese
BENOCS

Stefano Vissicchio
University College London

Laurent Vanbever
ETH Zürich

Abstract

For an Internet Service Provider (ISP), getting an accu-
rate picture of how its network behaves is challenging.
Indeed, given the carried traffic volume and the impos-
sibility to control end-hosts, ISPs often have no other
choice but to rely on heavily sampled traffic statistics,
which provide them with coarse-grained visibility at a
less than ideal time resolution (seconds or minutes).

We present Stroboscope, a system that enables fine-
grained monitoring of any traffic flow by instructing
routers to mirror millisecond-long traffic slices in a pro-
grammatic way. Stroboscope takes as input high-level
monitoring queries together with a budget and automati-
cally determines: (i) which flows to mirror; (ii) where to
place mirroring rules, using fast and provably correct al-
gorithms; and (iii) when to schedule these rules to maxi-
mize coverage while meeting the input budget.

We implemented Stroboscope, and show that it scales
well: it computes schedules for large networks and query
sizes in few seconds, and produces a number of mirroring
rules well within the limits of current routers. We also
show that Stroboscope works on existing routers and is
therefore immediately deployable.

1 Introduction

Not all networks are created equally when it comes
to monitoring. ISP networks, in particular, suffer from
extremely poor visibility. As they do not control end-
hosts and carry huge amounts of traffic, ISP operators
often have no choice but to rely on pure in-network
solutions based on random packet sampling (i.e., Net-
Flow [1] or sFlow [2]). By design, random sampling pro-
vides no guarantee on which traffic flows will be sam-
pled, by which router and at what time. Except for few
heavy-hitters [3], even minutes-long collections of ran-
dom samples typically provide coarse-grained and inac-
curate bandwidth estimations for the large majority of

the prefixes. Moreover, the likelihood of randomly sam-
pling the same flow across the network is extremely low;
hence, it is basically impossible to use random samples
for reasoning on the network-wide forwarding behavior,
and monitoring anything else than bandwidth.

We confirmed these limitations in an actual Tier-1 ISP
by analyzing the Netflow data collected by hundreds of
routers over 10 minutes. We observed that most BGP pre-
fixes (65%) are not observed at all, 15% of them are ob-
served only twice, and just 10% of all prefixes are ob-
served more than 30 times. Even worse, 75% of these
observed flows were only seen on a single router, mak-
ing it impossible to track flows network-wide, even for
the largest heavy hitters.

As a result, ISP operators are currently incapable of
answering practical questions like: What is the ingress
router for a given packet seen at a specific node? Which
paths does the traffic follow? Is the network-wide latency
acceptable? Is traffic load-balanced as expected?

Stroboscope This paper presents Stroboscope, a scal-
able monitoring system that complements existing tools
like NetFlow, by enabling fine-grained monitoring of any
traffic flow. Stroboscope exploits the possibility to ex-
tract small traffic samples (i.e., slices) in a programmatic
way, by activating and deactivating traffic mirroring for
any destination prefix, up to a single IP address, network-
wide, and within milliseconds. Our tests confirm that
this possibility is available today, on currently deployed
routers, making Stroboscope immediately deployable.

By coordinating packet mirroring across routers, Stro-
boscope implements deterministic packet sampling: it
collects copies of the same packets from multiple lo-
cations, following such packets as they cross the net-
work. This enables Stroboscope to precisely measure
the network forwarding behavior including traffic paths,
one-way delays and load-balancing ratios. Traffic slices
with no packets are also informative: Stroboscope uses
them to determine additional forwarding properties, like
packet loss and devices not receiving specific flows.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 467

https://stroboscope.ethz.ch
mailto:olivier.tilmans@uclouvain.be
mailto:buehlert@ethz.ch
mailto:ingmar@benocs.com
mailto:s.vissicchio@cs.ucl.ac.uk
mailto:lvanbever@ethz.ch

Challenges Given a high-level query, determining which
flows to mirror, where and when is both hard and poten-
tially dangerous—especially when considering arbitrary
network dynamics (e.g., unexpected traffic shifts). Ag-
gressive mirroring strategies can lead to significant con-
gestion (e.g., if many routers mirror traffic for popular
destinations) and inaccurate results (e.g., if congestion
affects the mirrored traffic). Conversely, conservative
strategies can lead to poor coverage and slow answers.
Compilation Stroboscope tackles those challenges on
behalf of operators. From high-level queries, it automat-
ically derives how to mirror traffic so as to maximize
monitoring accuracy without exceeding a budget, while
also adapting to network dynamics in near real time.

Stroboscope’s compilation process follows three
steps. First, Stroboscope decides what (which prefixes)
to mirror for every query, dynamically adapting this de-
cision according to the amount of mirrored packets. Sec-
ond, Stroboscope computes where to activate mirroring
rules, in order to maximize coverage while minimizing
the impact on the budget. Third, Stroboscope calculates
when to mirror and for how long, producing a budget-
compliant schedule, optimized across all input queries.
Guarantees Stroboscope provides strong guarantees in
terms of budget compliance, even in the presence of un-
predictable network dynamics. In fact, traffic mirrored by
Stroboscope can only exceed the budget for at most the
few milliseconds needed to collect a single traffic slice.
Implementation We implemented Stroboscope, and
show that it scales well: it computes schedules for large
networks and query sizes in few seconds, and produces a
number of mirroring rules well within the limits of cur-
rent routers. We also demonstrate how to build practical
monitoring applications on top of Stroboscope, such as
estimating one-way delays, loss rates, or load-balancing
ratios for any destination prefix.
Contributions Our earlier work [4] showed the benefits
of mirroring thin traffic slices to monitor networks. This
paper goes further by describing the complete design,
implementation and evaluation of the corresponding sys-
tem. We make the following contributions:

• A novel fine-grained and scalable monitoring ap-
proach based on deterministic traffic sampling (§2);
• Practical algorithms to: (i) estimate unknown traf-

fic demands in real time (§3); and (ii) compute opti-
mally placed mirroring rules (§4), as well as sched-
ule them while adhering to a given budget (§5);
• A full implementation of Stroboscope (§6) along

with a thorough evaluation using benchmarks, sim-
ulations and tests on Cisco routers (§7);
• A case study demonstrating how to use Strobo-

scope measurements to estimate one-way delays,
loss rates, and load-balancing ratios (§8).

Query
MIRROR { 1.2.3.0/24 }

ON { A -> C } USING 15 Mb/s

DURING 450 ms EVERY 5 s

§4
Where?

§3
What?

Estimate(1.2.3.0/24)
= 5 Mb/s

N
ex

t
It

er
at

io
n

NetFlow Data

Control Plane 
Information

Topology

§5
When?

Slot 1

Traffic Slice Capture
Update Traffic Statistics

§6

Compilation

Processing

Application

Measurement

Database

Measurement Stream

Estimate

one-way

delays

Stroboscope

§8

Auxiliary Information

M
ai

n

In
p

u
t

Figure 1: Stroboscope translates high-level queries to
measurement streams by capturing packet slices.

2 Overview

In this section, we provide an intuitive description of
Stroboscope (see Fig. 1) using a running example.
Specifically, we consider a network operator who re-
ceives complaints from customers trying to reach one
prefix (1.2.3.0/24) through its infrastructure (see Fig. 2a).
Following up on the complaints, the operator wants to:
(i) check that the corresponding traffic follows the ex-
pected paths; and (ii) measure key performance indica-
tors, such as packet loss rate and path latencies.
Specifying queries Stroboscope allows operators to de-
fine their monitoring goals using an SQL-like language:

((MIRROR | CONFINE) <prefixes>
ON <paths>)+

USING <Gbps> DURING <sec> EVERY <sec>

These monitoring queries specify for which IP prefixes,
up to a single IP address, traffic should be mirrored
(MIRROR) or confined (CONFINE), and where (ON), e.g.,
on a specific node, along a specified path or following
the ones computed by the routing protocols (indicated
with the -> operator, e.g. A ->D). MIRROR and CONFINE
queries differ in when they mirror traffic: the former
continuously mirrors traffic while the latter only mirrors
traffic that leaves a specified region. In addition, oper-
ators can specify constraints on: (i) the maximum rate
of mirrored traffic (USING) allowed; (ii) the duration of
any measurement campaign (DURING); and (iii) the fre-
quency at which to run measurements (EVERY).
Coming back to the example above, the operator can in-
struct Stroboscope to mirror traffic along all IGP paths
between A and D using a MIRROR and a -> construct (see
Fig. 2b). Additionally, she can use a CONFINE construct
to verify that these paths are the only ones carrying traffic
towards 1.2.3.0/24.

468 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

monitored
traffic

A L

F

C

B

J

H

I

U

D

P

K

E1

E2

E3

border router

1.2.3.0/24

(a) Sample network.
When?

CONFINE { 1.2.3.0/24 } ON { [A -> D] }

MIRROR

Queries

Budget USING 15 Mb/s DURING 450 ms EVERY 5 s

In
p

u
t

C
o

m
p

il
a
ti

o
n

Q1

Q2

not([A B L C D])

5 Mb/s

Q1

[A B C D]
5 Mb/s

Q2a

[A L C D]

5 Mb/s

Where?

Q2b

Region

BW Estimation

What?

ON { [A -> D] }{ 1.2.3.0/24 }

(b) Compilation process translating high-level queries in a measurement campaign.

Figure 2: From high-level monitoring queries and the current network state, Stroboscope computes a measure-
ment campaign schedule meeting the monitoring budget.

While simple, our language supports several practi-
cal use cases. Among others, MIRROR queries enable
network-wide path tracing, i.e., following a given packet
as it traverses a sequence of nodes. Packet copies can
then be analyzed by monitoring applications to estimate
data-plane performance, like packet loss or path latency,
or to inspect packet payloads. CONFINE queries are es-
pecially useful to detect unwanted forwarding behavior
(e.g., traffic shifts, security policies) at runtime, and to
complement information from MIRROR queries (e.g., on
paths not taken by given traffic flows).

A three-staged compilation process From high-level
queries, Stroboscope derives measurement campaigns,
i.e., schedules of mirroring rule (de-)activations that:
(i) provide strong guarantees on budget compliance;
(ii) maximize accuracy by activating mirroring rules as
often as possible; (iii) minimize the number of mirror-
ing locations to both lower the mirrored traffic volume
and decrease the control-plane overhead. Stroboscope
derives these measurement campaigns in three stages.

Stage 1: Resolving high-level queries (§3) First, Stro-
boscope translates any input query into a concrete
one defined on actual paths and flows. To this end, it
collects routing (e.g., IGP and BGP) feeds and Net-
Flow records whenever available. It also maintains a
measurement database, storing results from past mon-
itoring campaigns. Based on this information, Strobo-
scope estimates per-prefix traffic volumes and com-
putes their forwarding paths. In our example, Strobo-
scope estimates the traffic demand for 1.2.3.0/24 to be
5 Mbps and resolves [A->D] (Q2) in two sub-queries
{[A B C D],[A L C D]} (Q2a, Q2b), one for each path.

Stage 2: Optimizing mirroring locations (§4) Second,
Stroboscope minimizes the number of mirroring rules by
optimizing their locations using two provably correct al-
gorithms. Doing so, it reduces the mirrored traffic and
the control-plane overhead to activate them.

The first algorithm (§4.1) optimizes the placement of
MIRROR queries, like Q2a and Q2b in Fig. 2b. The key
insight is to leverage properties of the complete network
topology to prune mirroring rules. For instance, for Q2a,
no mirroring rule is required on router C, as C is the only
1-hop path between B and D. By observing the TTL of
mirrored packets at B and D, we can therefore be sure
that traffic traversed C, without actually mirroring there.

The second algorithm (§4.2) deals with CONFINE
queries, like Q1. The key insight is to place heavily rate-
limited mirroring rules, all around the region specified in
the query. This way, no packets are mirrored for correct
CONFINE queries, and few packets per location are mir-
rored for incorrect queries. Our algorithm optimizes the
position of surrounding rules, as exemplified in Fig. 2b.
For example, the algorithm places only one mirroring
rule on P to detect possible packets crossing [A B] and
leaving the network at E1 or E2.

Stage 3: Computing measurement campaigns (§5)
Third, Stroboscope schedules mirroring rules over time.
These schedules use the estimated traffic volumes to
meet the budget, while packing as many measurements
as possible to increase monitoring accuracy. Comput-
ing such schedules is a variant of the bin-packing prob-
lem, which is NP-hard. To scale, Stroboscope encom-
passes fast approximation heuristics (O(n logn) where
n is the number of queries) whose results are close to
optimal. Our scheduling approach enforces determinis-
tic sampling: packets for one specific query are mirrored
from well-defined locations for a given amount of time.

In our example, Q2a and Q2b in Fig. 2 cannot be
scheduled at the same time given the specified budget of
15 Mbps. Indeed, with 4 different mirroring rules, they
would require a total of 20 Mbps. Stroboscope therefore
schedules Q2a and Q2b each for half of the timeslots. In
addition, as Q1 does not mirror any traffic unless a vio-
lation is detected, Stroboscope schedules Q1 for all the
timeslots, so that any violation to Q1 can be detected.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 469

Budget Guarantees The ability of a Stroboscope sched-
ule to meet the budget requirements inherently depends
on two assumptions, both checked at runtime. First, Stro-
boscope checks its demand estimations by monitoring
the total traffic being mirrored and stops the measure-
ment campaign when detecting a budget violation. Such
a premature termination is enforced within one mirror-
ing timeslot (a few milliseconds). Second, as CONFINE
queries are not expected to mirror traffic, and only re-
quire one packet when violated, they are rate-limited.

Outputs Stroboscope’s runtime (§6) carries out mea-
surement campaigns instructing routers to mirror query-
defined traffic flows for a specific amount of time. Stro-
boscope outputs a stream of collected packets with their
meta-data (e.g., timestamp, corresponding query), meant
to be processed by the operators or external applications.

3 From Abstract to Concrete Queries

Given an input query, the first operation performed by
Stroboscope is to concretely define the prefix and the re-
gion to monitor. We now detail how this happens.

Resolving loosely defined regions In Stroboscope’s in-
put queries (like Q2 in Fig. 2b), regions to monitor can
be specified using the -> operator. Stroboscope replaces
any expression s-> t with the forwarding paths from
router s to router t as provided by the routing protocols
(e.g., the IGP) running in the network. If no IGP path
can be found, Stroboscope returns a compilation error.
For example, in Fig. 2, [A->D] will be translated into
[A B C D] and [A L C D] if those are all the IGP forward-
ing paths from A to D for 1.2.3.0/24.

Whenever the -> operator is present at the start (resp.
end) of a query, the Stroboscope replaces it with the set
of all ingress (resp. egress) routers that receive traffic for
the prefix in the query—e.g., leveraging BGP informa-
tion if present, or static knowledge of all network border
routers. Using this feature, the queries from Fig. 2b can
be generalized to all paths terminating in D: it would be
sufficient to replace [A->D] with [->D] in the queries,
discovering on the fly which ingresses are active. Those
translations are updated at the start of each measurement
campaign, so that Stroboscope performs the following
measurements consistently with the latest available rout-
ing information, and flags the previous measurements if
collected during routing changes.

Estimating traffic volumes In order to match the bud-
get, Stroboscope needs information about traffic vol-
umes for every prefix specified in the input queries. It
is fundamentally impossible to exactly know how much
traffic will be destined to any prefix ahead of measure-
ments: in theory, any flow can unpredictably vary over
time. Stroboscope does not require traffic estimation to

be 100% accurate, as it includes runtime mechanisms to
bound the amount of excessive traffic (see §5.2). Yet,
for Stroboscope to avoid computing infeasible sched-
ules, we would like traffic estimation to be as close to the
real demands as possible. To this end, Stroboscope im-
plements a dynamic traffic estimation technique, based
on data collected during past measurement campaigns.
For each prefix involved in any input query, the measure-
ment database stores the maximum demand measured by
Stroboscope over a customizable number of minutes (5,
by default). Stroboscope then uses such value as a con-
servative estimate of the traffic that will be received for
that prefix during the next iteration.

The above procedure is applicable if Stroboscope has
historical data for all the queried prefixes. This condi-
tion might not hold in several cases, e.g., for prefixes
not recently mirrored and those in CONFINE queries (for
which no or few packets are mirrored, as discussed in
§2). Stroboscope solves the absence of historical data in
two ways. First, it can infer estimates from sampled traf-
fic (e.g., as collected by NetFlow). In this case, Strobo-
scope sets the peak value recorded by random sampling
as initial traffic estimation for the prefixes tracked in a
significant number of samples (e.g., more than 30 in 5
minutes). This way, it exploits random sampling for what
it is good at: bandwidth estimation for heavy hitters [3].
Second, for all the prefixes not covered by enough ran-
dom sampling data, Stroboscope runs a specific, boot-
strapping measurement campaign to estimate their traf-
fic volume. In particular, Stroboscope reserves one mini-
mal timeslot per prefix, and activates mirroring on all the
routers in the region specified by the query (e.g., on all
routers in [A, B, C, D] for Q2a in Fig. 2). If no traffic is
captured, more timeslots are reserved to the same prefix.

We stress that the risk of significantly exceeding the
budget by running bootstrapping campaigns is limited.
First, those measurements are targeted to prefixes that are
likely to carry a limited amount of traffic since they gen-
erated few or no observations over minutes of random
sampling. In addition, traffic for each prefix is mirrored
for a minimal timeslot, which would last about 25 ms in
our current implementation (see §7).

Stroboscope also outputs packets collected during
bootstrapping campaigns with convenient meta-data.
This enables operators and special-purpose applications
to select sub-prefixes of the queried destinations that best
match the query purpose.

4 Optimizing Mirroring Locations

Stroboscope runs distinct algorithms to select mirroring
locations for MIRROR (§4.1) and CONFINE (§4.2) queries.
These algorithms minimize the number of mirroring lo-
cations while also providing high accuracy guarantees

470 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of the produced measurements (e.g., packets violating
CONFINE queries are never missed). Reducing the mir-
roring locations let Stroboscope: (i) answer more queries
at the same time within the input budget; and (ii) decrease
the control-plane overhead by changing less mirroring
rules during measurement campaigns.

Stroboscope’s algorithms take as input the operator-
specified queries and the complete network topology, in-
cluding all currently down links and nodes. Consider-
ing all possible links and nodes ensures that the algo-
rithms always guard against all possible network paths,
and never select mirroring locations breaking the accu-
racy guarantees due to transient topology changes.

4.1 Key-points Sampling algorithm
We developed the key-points sampling (KPS) algorithm.
Stroboscope uses the KPS algorithm to select mirroring
locations for MIRROR queries.

Goal Given a MIRROR query on a path P, KPS selects a
set of routers which will capture traffic crossing P, while
also enabling to distinguish packets forwarded outside P,
which would violate the query.

Note that this goal cannot be achieved through the
naive solution of mirroring only at the extremes of the
path. For example, if a MIRROR query is defined on path
[A B C D] in Fig. 2a would only place mirroring rules on
A and D, packets forwarded over [A B C D] would be in-
distinguishable from those flowing over [A L C D].

General solution By default, KPS returns all the routers
in the path. This guarantees that the resulting measure-
ment campaigns track all packets crossing any subset of
routers in the path. For each mirrored packet, Strobo-
scope checks if there exists a sequence of routers such
that the Time-To-Live (TTL) of the packet is decreased
exactly by 1 at each hop in the sequence. Assuming that
every router decreases packets’ TTL by 11, a mirrored
packet must have followed the path in the query if and
only if Stroboscope finds such a sequence for that packet.

Optimizations KPS goes beyond this general solution
whenever mirroring locations can be reduced according
to the complete network topology. To this end, it exploits
the following theorem, proven in Appendix A.1.

Theorem 1. Let a forwarding path P be the concatena-
tion of sub-paths Q1, . . . ,Qn. MIRROR queries on P can
be correctly answered by mirroring only on the endpoints
si and ti of all Qi such that no other forwarding path from
si to ti has the same length as Qi.

As an illustration, consider Fig. 2a. The path [A B C D]
can be seen as the concatenation of [A B] and [B C D].

1This assumption is consistent with the default behavior of com-
mercial routers for both IP and MPLS packets [5, 6].

Also, [B C D] is the only path in the topology of length 3
from B to D. Theorem 1 states that we can skip C as mir-
roring location. This is intuitively true because we can
distinguish packets traversing [B C D] as the only ones
whose TTL in D is equal to the TTL in B minus 2.

Algorithm Given a path P, KPS checks all the concate-
nations of sub-paths that result in P. For each concatena-
tion, KPS checks if Theorem 1 holds on each sub-path,
performing a depth-first search on the network graph
truncated at a depth equal to the sub-path length2. KPS
then stores the first and last router in the sub-paths com-
pliant with Theorem 1 plus all the routers in the other
sub-paths as the set of mirroring points for that concate-
nation. Finally, it returns a set with minimal cardinality.

For example, for the path [A B C D], KPS sequentially
considers the concatenations [A B C D], [A B][B C D],
[A B C][C D], and [A B][B C][C D]. By following this or-
der, the first concatenation is the minimal one, as a con-
catenation with n elements requires at least n+1 mirror-
ing locations, corresponding to the first and last routers
in every sub-path. For instance, if Theorem 1 was apply-
ing to [A B C D], KPS would immediately return A and
D as mirroring locations. Instead, as [A L C D] has the
same length than [A B C D], Theorem 1 does not hold.
This implies that at least 3 mirroring locations will be
needed (e.g., {A,B,D} is the minimum set of locations for
[A B][B C D]).

KPS is theoretically inefficient, since any of the depth-
first search it runs can potentially explore an exponential
number of paths. However, our evaluation (§7.1) shows
that KPS takes milliseconds to process paths in real net-
works, due to their sparsity and the limited path lengths.

Stroboscope also supports MIRROR queries defined
on regions, i.e., connected components of the network
graph. Such queries are answered by creating sub-queries
for all the paths in the region and applying the above pro-
cedure to each sub-query.

4.2 Surrounding algorithm
To find mirroring locations to answer CONFINE queries,
Stroboscope runs the surrounding algorithm.

Goal Given a CONFINE query on a region R (which we
call confinement region), the surrounding algorithm se-
lects mirroring locations (routers or network interfaces)
which will mirror any packet exiting the region.

Computing these locations while complying with the
above goal is trickier than what it may look like. One
challenge is to avoid capturing interfering traffic, that is,
packets for the prefix in the query not traversing the con-
finement region. In Fig. 2, for example, P could not be a

2The result of this check is cached, to possibly skip the depth-first
search while re-evaluating the same sub-path in other concatenations.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 471

A L

F

C

B

J

H

I

U

D

P

K

E1

E2

E3

outgoing 
interface  
mirroring

confinement
region

(a) Default mirroring locations computed by the
surrounding algorithm on CONFINE queries de-
fined on the region [A B L C D].

A L

F

C

B

J

H

I

U

D

P

K

E1

E2

E3

per-node
mirroring

(b) Optimized placement if no flow for the
queried destination crosses neighbors of the
region [A B L C D] (no interfering traffic).

A L

F

C

B

J

H

I

U

D

P

K

E1

E2

E3

(c) Optimized placement in the absence of
both interfering traffic and network anoma-
lies (blackholes, forwarding loops).

Figure 3: Depending on properties of the network graph and knowledge about the correctness of the network,
we can reduce the number of mirroring locations and keep the same guarantees.

mirroring location for Q1 if additional traffic (not shown
in the figure) for 1.2.3.0/24 enters in E1 and is forwarded
on the path [E1 P E2]—remember that the region speci-
fied in the query may not include all and only the actual
forwarding paths for a prefix.

General solution Given a confinement region R, we de-
fine the edge surrounding of R as the set of directed edges
(r,n) such that r ∈ R and n 6∈ R. By default, the surround-
ing algorithm returns as mirroring locations the set of
outgoing interfaces of routers in R that correspond to any
element of the edge surrounding. Fig. 3a visualizes the
output of this algorithm for Q1 in Fig. 2. The following
theorem (proved in Appendix A.2) states that the default
output of the surrounding algorithm is correct.

Theorem 2. CONFINE queries on a region R can be cor-
rectly answered if and only if the set of mirroring loca-
tions is the edge surrounding of R.

Intuitively, the theorem holds because: (i) to exit R, any
packet must be forwarded from a router in R to another
outside R, hence over a link in the edge surrounding; and
(ii) all the captured packets are mirrored when exiting R.

First optimizations Mirroring on links in the edge sur-
rounding of the confinement region copies no packet if
traffic is indeed confined to that specified region. Never-
theless, a minimal number of locations would reduce the
control-plane overhead, as Stroboscope periodically re-
installs mirroring rules—keeping them alive while guar-
anteeing their autonomous deactivation (§6).

The surrounding algorithm uses routing information
(when available) to reduce the number of mirroring loca-
tions. Knowing all the possible forwarding paths for the
queried prefixes can indeed enable to safely push mir-
roring locations one hop away, from outgoing interfaces
of routers in R to neighboring routers. In Fig. 3a for in-
stance, if no forwarding path for 1.2.3.0/24 (from Fig. 2a)

crosses F, F itself can be added to the set of mirroring
locations and we can remove all the outgoing interfaces
facing F—saving 2 mirroring rules.

We define the node surrounding of a region R as the
set of routers that are directly connected to at least one
router in R. Starting from the edge surrounding of R, the
surrounding algorithm systematically replaces links end-
ing on any router x in the node surrounding of R every
time x is part of no forwarding path for the prefix in the
query. Possibly, the entire edge surrounding is replaced
by the node surrounding, as shown in Fig. 3b assuming
that the region defined by A, B, L, C and D contains all
forwarding paths for 1.2.3.0/24. A simple extension of
Theorem 2 proves the correctness of this selection.
Optimal solution The surrounding algorithm further re-
duces the number of mirroring rules in the guaranteed
absence of forwarding anomalies3, that is, no blackholes
and no forwarding loops within the monitored network.

We define a mixed-egress path for a region R as a sim-
ple path starting from a router in R, traversing at least
one router outside R and ending in any egress point. The
following theorem holds, as proved in Appendix A.3.

Theorem 3. In the absence of forwarding anomalies, a
CONFINE query on a region R can be correctly answered
if and only if every mixed-egress path for R contains at
least one mirroring location. 4

The proof of Theorem 3 is based on the fact that in
general, any packet exiting a region R either reaches an
egress point (including those in R), or is dropped before.
In the absence of forwarding anomalies, only the former
case can happen, hence it is sufficient and necessary for
mirroring locations to cover all the paths ending in an

3This property can for example be checked by leveraging the results
of other MIRROR queries given as input to our system.

4This statement does not conflict with Theorem 2, since edge and
node surroundings guarantee that the condition of Theorem 3 holds.

472 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

egress point and not entirely in R. Consider, for exam-
ple, Fig. 3c. If nodes P, H, and F mirror traffic, then
no packet can exit the region [A B L C D] without travers-
ing some mirroring location, or incurring a forwarding-
anomaly—e.g., looping on some routers to re-enter the
region, or be incorrectly discarded by an internal router.

Algorithm Determining the default set of mirroring lo-
cations in the presence and absence of interfering traffic
mainly requires to compute edge and node surroundings,
respectively: both sets can be calculated by simply iter-
ating over all the links of the input network.

In the absence of forwarding anomaly, the surround-
ing algorithm returns a minimal set of locations compli-
ant with Theorem 3. To this end, it computes a set of
nodes disconnecting the input region from every egress.
This is a variant of the minimal multi-terminals cut prob-
lem. Stroboscope solves this variant in polynomial time
running the algorithm described in [7].

The algorithm in [7] requires an upper bound of the
size of the cut to be computed. In our case, the cardinal-
ity of the node surrounding would provide such a bound.
To further improve its efficiency, Stroboscope however
computes a tighter bound by heuristically removing re-
dundant elements from the node surrounding. It initial-
izes the cut to the node surrounding. For every node n in
the current cut, Stroboscope computes a simplified graph
that does not include any node in the current cut except
n, nor any link in the confinement region. For example,
when considering router U in Fig. 3b, the algorithm re-
moves F , K, J, H (as they are in the node surround-
ing) and all the links in the region {A, B, L, C, D}. On this
simplified graph, the algorithm computes the connected
component including n—which is, U, C in our example.
If there is no path in this connected component between
any node in the component and an egress point (as it is
for U in our example), all mixed-egress paths must in-
clude at least another router in the current cut; hence,
being redundant n is removed from the current cut.

5 Computing Measurement Campaigns

Combining the information on the prefix to monitor (§3)
and the result of the location algorithms (§4), we end
up with a group of mirroring rules for every query. The
next step performed by Stroboscope is to schedule those
groups of rules, producing measurement campaigns.

Answering a query requires to simultaneously activate
all its mirroring rules during a given amount of time.
Also, to maximize the accuracy of measurements across
queries, different groups of rules should be packed to-
gether as much as possible, but respecting the traffic and
time budget. We detail how Stroboscope computes a mir-
roring schedule in §5.1, and adapts it at runtime in §5.2.

5.1 Building a Measurement Schedule

Any schedule computed by Stroboscope is made of a fi-
nite number of timeslots, and assigns every group of mir-
roring rules to one or more timeslots. A timeslot repre-
sents an interval of time, not overlapping with any other
timeslot; all the mirroring rules assigned to a timeslot s
must be active during the time corresponding to s.

To meet the traffic budget, Stroboscope assigns a cost
to every rule, reflecting the expected rate (e.g., 5 Mb/s) of
traffic mirrored when the rule is active. For every MIRROR
query on a prefix p, the corresponding rules are expected
to mirror traffic for p; hence, the cost assigned to such
rules is equal to the traffic rate for p, as estimated in the
query pre-processing (see §3), multiplied by the num-
ber of mirroring locations (see §4.1). The cost of any
CONFINE query is set to zero. In fact, mirroring rules for
a CONFINE query are heavily rate-limited, hence at most
a few packets per mirroring location are mirrored in the
worst case—and zero if the query is correct. Note that
setting the cost of CONFINE queries to zero implies that
Stroboscope always schedules these queries in all times-
lots. Stroboscope’s scheduling problem then consists in
assigning the groups of rules corresponding to MIRROR
queries to every timeslot, so that the sum of the costs of
all rules scheduled at every timeslot does not exceed the
traffic budget defined in the queries.

Stroboscope first derives the number of timeslots, du-
ration and spacing from the router-to-collector latencies
and the monitoring time defined in the query through
the DURING keyword. Then, to scale to a large num-
ber of queries and schedule sizes, Stroboscope splits the
scheduling problem in two phases (see Fig. 4): a first
phase where rules are scheduled as tight as possible, in a
schedule of minimal duration; and a second phase, where
the minimal schedule is replicated as much as possible, to
maximize the usage of the budget, hence increasing mon-
itoring accuracy. In both phases, Stroboscope can restrict
to an approximate solution (e.g., for fast inclusion of new
queries), as shown in the bottom part of Fig. 4.

Timeslot duration and spacing Timeslot durations
must be long enough to ensure that packets copied at the
ingress routers of any MIRROR query can also be mirrored
at the corresponding egress routers. Stroboscope derives
the duration of timeslots in a schedule from: (i) the mini-
mal traffic slice duration, according to the used mirroring
technology (see §6 and §7.3); and (ii) the observed max-
imal latency in the network, either defined statically or
estimated as shown in §8. Also, to let in-flights packets
arrive at the collector at the end of a timeslot, schedules
generated by Stroboscope must include spacing between
consecutive timeslots. We conservatively set this spacing
to the maximum router-to-collector latency.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 473

Monitoring
budget

Input query
costs

Preferred query

Minimal sub-schedule
extraction

Upper-bound
estimation

Optimal
bin-packing

Schedule
replication

Maximal
filling

Budget usage
maximisation

Faster approximation

More optimized schedule

Figure 4: Stroboscope scheduling algorithm.

Minimal schedule extraction In the first phase, the
scheduling algorithm assigns each group of rules to ex-
actly one timeslot, with the goal of minimizing the num-
ber of timeslots. This is a bin packing problem, and it
is therefore NP-hard. To improve time efficiency, Stro-
boscope first computes an upper bound on the size of
the minimal schedule, using the well studied First-Fit-
Decreasing heuristic—which has been proved to ap-
proximate optimum solutions with a tight bound of ∼
1.22OPT [8]. The computed upper bound is then ex-
ploited to compute a minimal schedule, using a standard
Integer Linear Program (ILP) formulation for bin pack-
ing problems (as detailed in Appendix B.1).

Budget usage maximization In the second phase, the
scheduling algorithm replicates the minimal schedule as
much as possible, increasing the number of timeslots al-
located to all queries in an uniform way. The duration
of the schedule might not be fully consumed by such
replication—for example, the schedule in Fig.4 encom-
passes 5 timeslots, which allows to replicate its mini-
mal schedule at most twice while wasting 1 timeslot.
To fill the remaining timeslot(s), Stroboscope solves an-
other ILP, whose objective function is to fit the maximum
number of groups of rules into the input timeslots. Ap-
pendix B.2 contains a detailed description of this ILP.

5.2 Adapting the Schedule at Runtime
There are two possible outcomes for the scheduling just
described. If Stroboscope cannot compute a schedule,
it returns an error to the operator specifying the reason
why the schedule could not be computed (e.g., because
the time or bandwidth budget are too low). Otherwise,
it starts mirroring packets according to the computed
schedule. While collecting packets, it further adapts the
schedule in specific cases, that we now detail.

Guarantees on limited budget overflow Stroboscope
schedules rule activations to match the budget on the ba-
sis of traffic estimations which can be wrong (e.g., unpre-

dictable traffic variations). While estimation errors can
balance across different prefixes, using a static schedule
comes with the risk of mirroring much more traffic than
the budget if the predictions are greatly underestimating
the actual traffic volume for some prefix.

To minimize budget overflow, Stroboscope tracks the
total amount of traffic mirrored after every timeslot.
Then, it compares such a total with the budget for 1 sec-
ond (e.g., 1 Gb if the budget is 1 Gbps). Whenever the to-
tal mirrored traffic exceeds the 1-second budget, Strobo-
scope stops the ongoing measurement campaign, waits
for the remaining time in the 1-second interval while
computing a new schedule, and finally runs a new cam-
paign. For example, if it detects that 1.1 Gb of traffic are
mirrored in 0.7 seconds, for queries with a budget of
1 Gb/s, Stroboscope stops the measurement campaign,
waits for 0.3 seconds, and then starts a new campaign.

Since the inter-timeslot spacing ensures that the col-
lector receives all the mirrored packets before starting the
next measurements (see §5.1), the runtime behavior just
described yields the following property.

Property 1. Stroboscope exceeds the budget in any
query for at most 1 timeslot per measurement campaign.

Note that traffic estimates are updated after the
stopped campaign, so the successive campaign is much
more likely not to exceed the budget again.

6 Implementation

We built a complete prototype of Stroboscope in∼ 5,000
lines of Python code, and 650 of C code5. Our implemen-
tation covers the entire compilation pipeline along with
the logic to trigger mirroring rules on routers (Cisco or
Linux-based), as well as benchmarks.
Mirroring packets Packet mirroring is supported by
most commercial routers [9, 10]. It enables routers to du-
plicate packets matching given criteria (expressed using
route-maps) and to send such copies to another device
(e.g., over a GRE tunnel) directly in the data plane. Since
packet mirroring is typically implemented in hardware,
it has been experimentally shown to work at scale, with
negligible CPU load and without degrading forwarding
performance of mirroring routers [11].

Unfortunately, most routers only support 2 criteria to
be used on all mirroring rules at the same time [9], which
would prevent Stroboscope from capturing more than 2
flows per router, hence answer many real queries.

Stroboscope overcomes this limitation by indirectly
triggering the mirroring of a flow, complementing mir-
ror matching criteria with dynamic ACLs. More specif-
ically, packet duplication primitives are pre-configured

5available at https://github.com/net-stroboscope

474 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/net-stroboscope

to match a single specific tag (e.g., a VLAN tag or a
DSCP value), which we call mirroring tag. Stroboscope
then dynamically updates ACLs to add that tag to all
and only the packets to be mirrored. We use two dif-
ferent tag values: one for MIRROR queries, and another
one for CONFINE queries which is heavily rate-limited.
As CONFINE queries only need a single packet from a
flow to report a violation, this mitigates the increase of
mirrored traffic without losing information.

Our implementation activates mirroring rules by exe-
cuting a pre-loaded script on each router, as readily possi-
ble in commercial routers (see, e.g., [12, 13]). The script
takes two arguments: (i) a list of flows; and (ii) a mirror-
ing duration. When invoked, it dynamically configures
the ACL to tag all the packets in the input flow list. It then
sets a timer based on the provided mirroring duration. On
its expiration, it removes the configured ACL, deactivat-
ing the mirroring process. This technique requires only
a single interaction between Stroboscope and the router,
and no separate deactivation message. The deactivation
after the predefined time interval is guaranteed.

Mechanisms like configuring ACLs through BGP
Flowspec [14] or Netconf [15], or directly programming
the IGP [16] to switch between VLANs [4], can all be
used in Stroboscope, instead of our current in-router
scripting approach. However, such alternatives impose a
bigger overhead and cannot guarantee a slice duration
(as the mirroring process has to be stopped remotely).
We experimentally confirmed that our implementation
can activate a large number of mirroring rules in a short
amount of time (e.g., consistently with [17]), and evalu-
ated the control over the slice duration in §7.3.

Processing mirrored packets For each mirrored packet,
Stroboscope’s implementation extracts: (i) the router ID
originating it; (ii) its original destination IP; and (iii) the
NIC timestamp at which it was received. At the end of
each timeslot, Stroboscope outputs the collected traf-
fic slices (possibly empty), grouped by queries, with all
meta-data associated to the mirrored packets. Further-
more, it includes if packets were following the expected
paths, and which packets match others.

7 Evaluation

We now evaluate our implementation of Stroboscope.
First, we start by evaluating the algorithmic pipeline us-
ing synthetic benchmarks on realistic ISP topologies, to
confirm that: (i) it can compute measurement campaigns
in a timeframe suitable for online use; and (ii) it is able
to maximize the accuracy of each query. We observe that
the placement algorithms (§7.1) optimize mirroring lo-
cations in milliseconds, and reduces the number of mir-
roring rules by up to 50%. While the scheduling algo-

rithm (§7.2) approximates schedules in milliseconds, op-
timized schedules increase accuracy by 15% for half the
experiments. Second, we present measurements on real
routers (§7.3) which confirm their ability to capture traf-
fic slices as small as 23 ms. Finally, we validate the abil-
ity of Stroboscope to react to unexpected traffic changes
within one timeslot using Mininet [18] (§7.4).

7.1 Placement algorithms performance

Fig. 5 shows execution time and mirroring location re-
duction of the placement algorithms (see §4) when run
on all Rocketfuel topologies [19] and on the largest
topologies from the Internet Topology Zoo [20]. We per-
formed more than 4,000 experiments for each algorithm.
We remind that the speed of the algorithms affects Stro-
boscope’s ability to recompute a new schedule online
(i.e., to react to routing changes). However, reducing mir-
roring locations enables to increase the number of times-
lots per schedule, hence the accuracy of query answers.

Key-points sampling (§4.1) We evaluate the algorithm
by defining monitoring paths as random shortest-paths
(according to the IGP weights for the Rocketfuel topolo-
gies, and edge count on the Topology Zoo ones), and
random deviations from these (i.e., paths longer by up
to 50% with the same end points).

Fig. 5a shows box plots of the measured execution
time in function of the path length. As expected, the al-
gorithm exhibits an exponential behavior. Yet, even for
longer paths, it still completes in milliseconds: paths of
13 hops have a median runtime of only ∼ 20 ms. Fig. 5b
displays the CDF of the mirroring-rule reduction with re-
spect to mirroring on every hop in the input path (i.e.,
1− output

input). We see that∼ 80% of the experiments resulted
in a gain of over 30%. KPS returned only 2 to 4 mirroring
rules in most of the experiments.

Surrounding algorithm (§4.2) We run the surrounding
algorithm in similar experiments as above, except that
for each topology, we randomly select connected compo-
nents as regions to monitor, and 25% of the nodes having
2 or less outgoing edges as egress points.

Fig. 5c shows the measured execution times, in func-
tion of the region size. We observe that: (i) computing
node surrounding runs in hundreds of microseconds, and
is an order of magnitude faster than the further optimized
placement; and (ii) execution times do not depend on the
input region but rather on the network size and its aver-
age node degree. Fig. 5d shows the measured optimiza-
tion gains with respect to edge surrounding. Both algo-
rithms reduce the number of mirroring locations by at
least 30% in half of the experiments, and the optimal one
can provide an extra gain of 20%.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 475

3 5 7 9 11 13 15
Input path length

0.01

0.1

1

10

100
200

1000

Ti
m

e
[m

s]

(a) The key-points sampling algo-
rithm runs quickly, even for longer
input paths in large graphs.

10 30 50 70 90
Optimization gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
ex

pe
rim

en
ts

(b) The key-points sampling algo-
rithm reduced the number of mir-
roring rules in all experiments.

15 20 25 30 40 50 60
Region size

0.05
0.1

1

5
15

50
100

Ti
m

e
[m

s]

Minimal surrounding
Node surrounding

(c) The surrounding algorithm run-
ning times depend on the size of the
graph and not the input region.

10 30 50 70
Optimization gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
ex

pe
rim

en
ts Minimal surrounding

Node surrounding

(d) The surrounding algorithm re-
duce greatly the number of mirror-
ing rules.

Figure 5: Computing mirroring rule locations is fast, and the total number of mirroring rules can be drastically
reduced, minimizing the mirroring cost for each query and enabling to increase the overall accuracy.

10 50 100 200 500 1000
Input query count

0.0001
0.001

0.01

1
10

100
1000

Ti
m

e
[s

]

Approximation
Optimized

(a) The scheduling pipeline can
produce an approximation at a
time-scale suited for online recom-
putations, even on larger inputs.

0 10 20 30 40 50 60 70 80
Optimization gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
ex

pe
rim

en
ts

(b) By increasing the total number
of slot allocations, the optimized
schedule maximizes the accuracy
of the measurement campaign.

Figure 6: Stroboscope can compute a quick approxi-
mated schedule, or one that maximizes accuracy.

7.2 Scheduling performance
We now evaluate the scalability of our scheduling
pipeline on an increasing number of queries. We se-
lect a random, normally distributed cost for each query.
We vary the time budget for all queries between 20 and
400 timeslots (corresponding to 10 s and 500 ms respec-
tively), and the maximal bandwidth usage per slot be-
tween 2 to 100 times the average query cost. We use 10
of those selections per query size.

Fig. 6a shows the running times of the approximated
and optimized scheduling algorithm. We confirm that
the approximated schedule can indeed be used for on-
line events, as it is computed in microseconds, even
for 1,000 queries. The large variance of the optimized
pipeline is due to the variation of the maximal band-
width usage across experiments. If this value is low, it
increases the estimated upper bound for the bin-packing
problem, which makes computing an optimized schedule
exponentially slower. The optimized schedule, however,
leads to improved accuracy. Fig. 6b shows the CDF of
the relative increase of slot allocation (number of times
a query is scheduled in a timeslot), when using the op-
timized pipeline instead of the approximation. For about

half of the experiments the optimized schedule contains
15% more slot allocations than the approximated one, up
to 40% for 10% of the experiments.

7.3 Real routers mirroring performance
We now present experimental measures on two physi-
cal routers (Cisco C7018). Each router mirrors packets
to Stroboscope. We connect a traffic generator on the
first router, and send test traffic towards the IP address
of Stroboscope which is connected to the second router.
Slice size We first measure the minimal achievable traf-
fic slice (i.e., activating and immediately deactivating the
underlying ACL) and estimate the precision with which
we could control the slice duration (by delaying the deac-
tivation of the ACL). Fig. 7 shows the measured duration
of the traffic slices depending on the deactivation delay.
Each experiment is repeated 50 times. The minimal slice
duration is 23−25ms. We verify that we precisely con-
trol the duration of the traffic slice as it linearly increases
with the deactivation delay.
Mirroring delay We then measure the time needed by
routers to mirror packets by computing the delay be-
tween the arrival time of the original and the mirrored
packet. The mean mirroring delay over roughly 100,000
measurements is µ = 2.6 µs, with a standard deviation
of σ = 1.6 µs. Such small values indicate that routers
mirror packets in constant time.

7.4 Reaction to unexpected traffic volume
Finally, we experimentally validate the ability of Strobo-
scope to react to unexpected traffic increases. In an emu-
lated environment, we configured Stroboscope to mirror
a flow of 1 Mb/s at two locations, using at most 5 Mb/s.
We then evaluate the ability of Stroboscope to quickly
adapt traffic mirroring during a sudden throughput in-
crease. We configured the time during which recorded
peak values are used for traffic estimations to 5 seconds.

476 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6 7 8 9 10
Pre-specified delay before

automatic deactivation in ms

23

26

29

32

35

S
lic

e
du

ra
tio

n
in

m
s

Figure 7: Existing Cisco routers (C7018) have a min-
imal slice duration of 23 ms.

Fig. 8 shows the evolution of (i) the real traffic volume
of the monitored flow; (ii) its predicted traffic demand;
and (iii) the volume of mirrored traffic. Initially, the pre-
diction starts at the budget value, causing little mirrored
traffic as Stroboscope performs the estimation described
in §3. After 1 s, the prediction is updated to reflect the
last observed peak demand. This increases the amount
of mirrored traffic as the query is scheduled more often.
At t = 10s, the real traffic volume spikes, increasing the
mirrored traffic. Eventually, the mirrored traffic exceeds
the predicted volume, and measurements are interrupted.
Traffic prediction is then updated. The same happens af-
ter t = 11s, where the query exceeds the monitoring bud-
get during one timeslot. This causes the traffic estimation
from t = 12s to t = 17s to be the whole budget, schedul-
ing the query in a single timeslot. In total, the mirrored
traffic exceeded the budget for 25 ms.

8 Case study: Monitoring transit traffic

We implemented three monitoring applications building
upon the measurement stream provided by Stroboscope.
Namely, we run our Stroboscope implementation on the
queries from Fig. 2 and attach it to router U in the em-
ulated network. Each link has a delay of 5 ms and a
loss probability of 1%. We stress that the flow towards
1.2.3.0/24 in the example can be any flow—even a tiny
one, extremely unlikely to be captured by NetFlow.

Estimating loss rates Stroboscope can estimate losses
over paths by combining MIRROR and CONFINE queries.
Indeed, there are only three reasons causing a packet cap-
tured at the ingress of a path (A) to not have a match-
ing copy at the egress (D): (i) the timeslot completed be-
fore the packet reached the egress, which only happens
if no packet afterwards is seen at both A and D; (ii) the
CONFINE query detected a violation; or (iii) the packet
was dropped. Using this information, we estimated loss
rates across [A->D] to be 7%—slightly higher than the
real value (5%) as some mirrored packets were also lost.

0 1 10 12 20
Time [s]

50
1000
2000

5000

Tr
af

fic
Vo

lu
m

e
[K

b/
s] real

mirrored
predicted

11.225 11.25

Figure 8: Stroboscope dynamically estimates traffic
demands and swiftly reacts upon budget violation.

Estimating load-balancing ratios ECMP hash function
polarization [21] causes suboptimal network usage and
is hard to detect. We confirmed that Stroboscope can de-
tect such issues by computing a load-balancing ratio: in
this setup, the ratio of matching packets seen at {A,B,C}
over those seen only at {A,C}, which should be close to
50%. In our case, the monitored prefix had a single flow
causing the computed ratio to be about 90% (recall that
there are losses in the network). This unusual ratio should
prompt operators to observe the captured packet headers.

Estimating one-way delays First, Stroboscope esti-
mates router-to-collector latencies. For that, each router
has a mirroring rule matching its own loopback address.
The collector sends probes towards these loopbacks, and
receives copies echoed by the NIC (with no CPU fall-
back on the routers). Stroboscope finds the router-to-
collector latency by comparing the probe and echo time-
stamps. Second, Stroboscope estimates one-way delays
between routers (A and D) by: (i) identifying matching
packets in their traffic slices; (ii) reconstructing the time
at which the packets traversed each router by subtract-
ing the router-to-collector latency from the time at which
the mirrored packet copy was received at the collec-
tor; (iii) computing the difference between these traver-
sal times. Using this procedure, we confirmed that the
latency of [A->D] was 15 ms. Note that this estimation
does not require to use any form of clock synchronization
between the routers and the collector.

9 Related Work

Stream-based monitoring Stroboscope relates to Gi-
gascope [24], a stream-based system which provides a
SQL-like query language to stream packet-based mea-
surements from any router interface. In contrast to Stro-
boscope, Gigascope lacks higher-level constructs such as
path-based queries and the ability to adhere to a moni-
toring budget. It also supports fewer concurrent queries
as changing the packet dissectors they execute on the
routers is slow.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 477

Feature Stro
bosco

pe

Everfl
ow [22]

Plan
ck

[23]

Query-based mirroring 3 3 7

Monitoring on a budget 3 7 7

Runs on commodity hardware 3 3 3

Independence from active probing 3 7 3

Independence from header bits 3 7 3

Table 1: Comparison between Stroboscope and other
mirroring-based techniques.

Mirroring-based monitoring Stroboscope is not the
first system to use packet mirroring for monitoring
purposes. For example, [11] relies on packet mirror-
ing to selectively monitor control-plane traffic. In Ta-
ble 1, we compare Stroboscope with Everflow [22] and
Planck [23], the two mirroring-based systems which are
the closest to Stroboscope. Only Stroboscope can com-
ply with a mirroring budget. Also, Stroboscope does not
require active packet marking or special header flags as
Everflow’s [22] “guided probe” approach does.
Monitoring with programmable hardware Progress
in programmable hardware (e.g., P4 [25]) and virtual
network devices (e.g., Open vSwitch [26]) enables new
monitoring possibilities. SketchVisor [27] is a sketch-
based measurement framework built on virtual switches.
Basat et al. [28] present a randomized constant time algo-
rithm to identify hierarchical heavy hitters. NetQRE [29]
uses regular expressions over packet streams to express
flow-level and application-level policies. All three ap-
proaches could directly be built on top of Stroboscope.
Other works focus on compiling high-level queries into
specific actions of programmable devices. In [30, 31],
path queries are supported by encoding the path traversed
by packets in the packets header. Narayana et al. [32]
introduce a performance query language, Marple, inter-
acting with a key-value store running on the switches.
By scheduling mirroring rules network-wide, Strobo-
scope supports path or Marple queries without the need
for rewriting packets or special network data structures.
More generally, our work shows that hardware capa-
bilities of current routers are sufficient to build pro-
grammable monitoring systems.
Monitoring flow statistics Tools like NetFlow [1] are of-
ten used in ISP networks and provide coarse-grained flow
statistics by randomly sampling traffic. FlowRadar [33]
and ProgME [34] provide per-flow packet counters.
While they can also bound the monitoring overhead,
these approaches lack the capability of Stroboscope to
track individual packets across the network, and thus
cannot measure fine-grained statistics such as one-way
delays or load-balancing ratios.

Data-center monitoring Many research contributions
on network monitoring provide fine-grained traffic vis-
ibility in settings different from ISPs, mainly data cen-
ters. They exploit degrees of freedom that are unavail-
able in ISP networks, especially control of end-hosts,
e.g., to collect fine-grained statistics [35] or probe the
network [36]. Stroboscope is a more general in-network
solution, viable in any network, including ISP ones. We
note that some Stroboscope building blocks can be use-
ful in other settings as well. For example, its internal al-
gorithms could be used in a new version of Everflow [22]
which keeps the mirrored traffic volume under control.
Network Verification Stroboscope complements recent
initiatives in data-plane [37, 38, 30, 39, 40, 41] and
control-plane [42, 43, 44, 45] verification by enabling
dynamic testing of runtime-based predicates such as per-
formance metrics (e.g., measuring packet loss). Strobo-
scope similarly complements recent efforts for building
debugging tools for software defined networks [46, 47].

10 Conclusions

As networks grow in complexity, they require flexible
monitoring tools able to measure precise metrics about
their traffic flows while scaling to ever-growing traf-
fic volumes. In this paper, we show how Stroboscope
achieves these objectives by combining the visibility
benefits of traffic mirroring with the scalability of traf-
fic sampling. Specifically, Stroboscope enables to collect
fined-grained measurements of any traffic flow while ad-
hering to a monitoring budget. Stroboscope works with
existing routers, and is well-suited for ISP networks. We
believe that Stroboscope monitoring capabilities could
address the visibility needs of many future network ap-
plications, including self-driving network control loops.

Acknowledgements

We are grateful to NSDI anonymous reviewers, our shep-
herd Boon Thau Loo, Lynne Salameh and Roland Meier
for their insightful comments. O. Tilmans is supported
by a grant from F.R.S.-FNRS FRIA. This project has
received funding from the European Union’s Horizon
2020 research and innovation programme under grant
agreement No 688421, and was supported by the Swiss
State Secretariat for Education, Research and Innovation
(SERI) under contract number 15.0268. The opinions
expressed and arguments employed reflect only the au-
thors’ views. The European Commission is not respon-
sible for any use that may be made of that information.
Further, the opinions expressed and arguments employed
herein do not necessarily reflect the official views of the
Swiss Government.

478 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Benoit Claise. Cisco Systems NetFlow Services Export Version

9. RFC 3954 (Informational), October 2004. http://www.
ietf.org/rfc/rfc3954.txt.

[2] Peter Phaal, Sonia Panchen, and Neil McKee. InMon Corpora-
tion’s sFlow: A Method for Monitoring Traffic in Switched and
Routed Networks. RFC 3176 (Informational), September 2001.
http://www.ietf.org/rfc/rfc3176.txt.

[3] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, and
Carsten Lund. Online identification of hierarchical heavy hitters:
algorithms, evaluation, and applications. In SIGCOMM, pages
101–114, 2004.

[4] Olivier Tilmans, Tobias Bühler, Stefano Vissicchio, and Laurent
Vanbever. Mille-Feuille: Putting ISP Traffic Under the Scalpel.
In HotNets, pages 113–119, 2016.

[5] Jon Postel. Internet protocol darpa internet program protocol
specification. RFC 791, September 1981. https://tools.
ietf.org/rfc/rfc791.txt.

[6] Puneet Agarwal and Bora Akyol. Time To Live (TTL) Process-
ing in Multi-Protocol Label Switching (MPLS) Networks. RFC
3443, January 2003. https://tools.ietf.org/rfc/
rfc3443.txt.

[7] Jianer Chen, Yang Liu, and Songjian Lu. An improved parame-
terized algorithm for the minimum node multiway cut problem.
Algorithmica, 55:1–13, 2009.

[8] György Dósa. The tight bound of first fit decreasing bin-packing
algorithm is ffd (i) ≤ 11/9 opt (i)+ 6/9. Combinatorics, Algo-
rithms, Probabilistic and Experimental Methodologies, pages 1–
11, 2007.

[9] Cisco Systems. Configuring ERSPAN, 2016. https://goo.
gl/h3qaGL.

[10] Juniper Networks. Layer 2 Port Mirroring Overview, 2014.
https://goo.gl/YxgZuY.

[11] Stefano Vissicchio, Luca Vergantini, Luca Cittadini, Valerio Mez-
zapesa, Maurizio Pizzonia, and Maria Luisa Papagni. Beyond the
Best: Real-time Non-invasive Collection of BGP Messages. In
INM/WREN, 2010.

[12] Cisco Python API. http://bit.ly/2fMgyKP.

[13] Junos Automation Scripts Overview, 2017. https://goo.
gl/WpjAcX.

[14] Pedro Marques, Nischal Sheth, Robert Raszuk, Barry Greene,
Jared Mauch, and Danny McPherson. Dissemination of Flow
Specification Rules. RFC 5575 (Proposed Standard), August
2009. http://www.ietf.org/rfc/rfc5575.txt.

[15] R. Enns et al. NETCONF Configuration Protocol. RFC
4741, December 2006. https://tools.ietf.org/rfc/
rfc4741.txt.

[16] Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jen-
nifer Rexford. Central Control Over Distributed Routing. In SIG-
COMM, pages 43–56, 2015.

[17] A. Bobyshev, P. DeMar, and D. Lamore. Effect of dynamic ACL
(access control list) loading on performance of Cisco routers. In
Computing in High Energy Physics, 2004.

[18] Mininet: An Instant Virtual Network on your Laptop (or other
PC). 2012. http://www.mininet.org/.

[19] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring
ISP Topologies with Rocketfuel. In SIGCOMM, pages 133–145,
2002.

[20] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bow-
den, and Matthew Roughan. The internet topology zoo. IEEE
Journal on Selected Areas in Communications, 29:1765 –1775,
2011.

[21] Cisco Tech Support. CEF Polarization. 2013. https://goo.
gl/b7ZSMy.

[22] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan
Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y.
Zhao, and Haitao Zheng. Packet-Level Telemetry in Large Data-
center Networks. In SIGCOMM, pages 479–491, 2015.

[23] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Fel-
ter, Kanak Agarwal, John Carter, and Rodrigo Fonseca. Planck:
Millisecond-scale Monitoring and Control for Commodity Net-
works. In SIGCOMM, pages 407–418, 2014.

[24] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and
Vladislav Shkapenyuk. Gigascope: a stream database for network
applications. In SIGMOD, pages 647–651, 2003.

[25] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McK-
eown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. P4: Programming
Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev., 44:87–95, 2014.

[26] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy
Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer,
Pravin Shelar, et al. The Design and Implementation of Open
vSwitch. In NSDI, pages 117–130, 2015.

[27] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-
Chao Chen, and Gong Zhang. SketchVisor: Robust Network
Measurement for Software Packet Processing. In SIGCOMM,
pages 113–126, 2017.

[28] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C. Luizelli,
and Erez Waisbard. Constant Time Updates in Hierarchical
Heavy Hitters. In SIGCOMM, pages 127–140, 2017.

[29] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev
Alur, and Boon Thau Loo. Quantitative Network Monitoring with
NetQRE. In SIGCOMM, pages 99–112, 2017.

[30] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Vargh-
ese, Nick McKeown, and Scott Whyte. Real Time Network Pol-
icy Checking Using Header Space Analysis. In NSDI, pages 99–
111, 2013.

[31] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David
Walker. Compiling Path Queries. In NSDI, pages 207–222, 2016.

[32] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyaku-
mar, and Changhoon Kim. Language-Directed Hardware Design
for Network Performance Monitoring. In SIGCOMM, pages 85–
98, 2017.

[33] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
FlowRadar: A Better NetFlow for Data Centers. In NSDI, pages
311–324, 2016.

[34] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. Progme:
towards programmable network measurement. IEEE/ACM Trans-
actions on Networking (TON), 19:115–128, 2011.

[35] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vah-
dat. Trumpet: Timely and Precise Triggers in Data Centers. In
SIGCOMM, pages 129–143, 2016.

[36] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
Zhi-Wei Lin, and Varugis Kurien. Pingmesh: A Large-Scale Sys-
tem for Data Center Network Latency Measurement and Analy-
sis. In SIGCOMM, pages 139–152, 2015.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 479

http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc3176.txt
https://tools.ietf.org/rfc/rfc791.txt
https://tools.ietf.org/rfc/rfc791.txt
https://tools.ietf.org/rfc/rfc3443.txt
https://tools.ietf.org/rfc/rfc3443.txt
https://goo.gl/h3qaGL
https://goo.gl/h3qaGL
https://goo.gl/YxgZuY
http://bit.ly/2fMgyKP
https://goo.gl/WpjAcX
https://goo.gl/WpjAcX
http://www.ietf.org/rfc/rfc5575.txt
https://tools.ietf.org/rfc/rfc4741.txt
https://tools.ietf.org/rfc/rfc4741.txt
http://www.mininet.org/
https://goo.gl/b7ZSMy
https://goo.gl/b7ZSMy

[37] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. Debugging the
Data Plane with Anteater. SIGCOMM Comput. Commun. Rev.,
41:290–301, 2011.

[38] Peyman Kazemian, George Varghese, and Nick McKeown.
Header Space Analysis: Static Checking for Networks. In NSDI,
pages 113–126, 2012.

[39] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar,
and P. Brighten Godfrey. VeriFlow: Verifying Network-Wide In-
variants in Real Time. In NSDI, pages 49–54, 2013.

[40] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Ja-
yaraman, and George Varghese. Checking Beliefs in Dynamic
Networks. In NSDI, pages 499–512, 2015.

[41] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin
Raiciu. SymNet: Scalable Symbolic Execution for Modern Net-
works. In SIGCOMM, pages 314–327, 2016.

[42] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan,
Ramesh Govindan, Ratul Mahajan, and Todd Millstein. A Gen-
eral Approach to Network Configuration Analysis. In NSDI,
pages 469–483, 2015.

[43] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella,
and Ratul Mahajan. Fast Control Plane Analysis Using an Ab-
stract Representation. In SIGCOMM, pages 300–313, 2016.

[44] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst,
Arvind Krishnamurthy, and Zachary Tatlock. Scalable Verifica-
tion of Border Gateway Protocol Configurations with an SMT
Solver. ACM SIGPLAN Notices, 51:765–780, 2016.

[45] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker.
A General Approach to Network Configuration Verification. In
SIGCOMM, pages 155–168, 2017.

[46] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja
Feldmann. OFRewind: Enabling Record and Replay Trou-
bleshooting for Networks. In USENIX ATC, pages 15–17, 2011.

[47] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David
Mazières, and Nick McKeown. I Know What Your Packet Did
Last Hop: Using Packet Histories to Troubleshoot Networks. In
NSDI, pages 71–85, 2014.

480 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Proofs for the placements algorithms

A.1 Proof for Theorem 1
Theorem. Let a forwarding path P be the concatena-
tion of sub-paths Q1, . . . ,Qn. MIRROR queries on P can
be correctly answered by mirroring only on the endpoints
si and ti of all Qi such that no other forwarding path from
si to ti has the same length as Qi.

Proof. First, we show that if any Q ⊆ P is the only path
of length x from p to s, we can always distinguish mir-
rored packets that have been forwarded over Q by just
mirroring on p and s. Let l be the length of Q, and let
tp and ts be the TTL values of any packet mirrored from
p and s. Under the assumption that the TTL is properly
decreased (by one) at each forwarding hop, we can un-
ambiguously determine if the packet has been forwarded
over Q: If ts = tp− l, then Q must be the traversed sub-
path because Q is the only path of length l between p and
s by hypothesis.

The statement of the theorem then follows by noting
that the same property applies to any sub-path Qi, as well
as to their concatenation—i.e., P.

A.2 Proof for Theorem 2
Theorem. CONFINE queries on a region R can be cor-
rectly answered if and only if the set of mirroring loca-
tions is the edge surrounding of R.

The following lemma proves Theorem 2.

Lemma 1. Given a region R, its edge surrounding E(R)
and any prefix d, it is guaranteed to capture all and only
packets for d that exit R if and only if mirroring rules
matching d are active on every edge in E(R).

Proof. We first show that all packets exiting R are cap-
tured if and only if rules are placed on all the edges in
S(R). Consider any packet p entering from an ingress
node i in R. For p to exit R, there must be a node r in
R (possibly r = i) that forwards p to a node o outside R.
The packet will then traverse the edge (r,o) with r ∈ R
and o 6∈ R. If mirroring rules are active on all the edges
in S(R), then p is detected, by definition of S(R). In con-
trast, if a mirroring rule is not active on any edge (rm,o1)
with rm ∈ R and o1 6∈ R, then a packet p′ will not be
mirrored if it exits R through (rm,o1) and never enters
R again – e.g., following a path [r1 . . .rmo1 . . .ok], where
∀i = 1, . . . ,m ri ∈ R and ∀ j = 1, . . . ,k o j 6∈ R.

In addition, if a packet is captured by a rule placed
on an edge (x,y) in S(R), then it must have crossed a
node x in R and be forwarded to a node y outside R, by
definition of S(R). This implies that only packets leaving
R are mirrored, which yields the statement.

A.3 Proof for Theorem 3
Theorem. In the absence of forwarding anomalies, a
CONFINE query on a region R can be correctly answered
if and only if every mixed-egress path for R contains at
least one mirroring location.

The following lemma proves Theorem 3.

Lemma 2. In the absence of forwarding anomalies, any
packet not confined to a region R is guaranteed to be
mirrored if and only if every simple path starting from a
node in R, traversing a node outside R and ending in any
egress point crosses at least one active mirroring rule
matching the packet destination.

Proof. We separately prove sufficiency and necessity of
the condition expressed by the theorem.

Sufficiency: Proof by contradiction. Assume that some
packets not confined to R are not mirrored despite mir-
roring rules matching the condition in the theorem state-
ment. In the absence of forwarding anomalies, those
packets are guaranteed to be delivered to an egress
point. Not to be confined to R, they must follow a path
[r1 . . .rno1 . . .ol . . .e], where e is an egress point, nodes
ri ∈ R ∀i = 1, . . . ,n, and nodes o j 6∈ R ∀ j = 1, . . . , l. By
hypothesis, an active mirroring rule must be on this path
and must mirror the packets, contradicting the assump-
tion that packets are not mirrored.

Necessity: Proof by contradiction. Assume that it is
guaranteed to mirror all packets confined to R but no mir-
roring rule is active on a given path P = [rm . . .o . . .e]
from a node rm ∈ R to an egress point e including a
node o 6∈ R (possibly o = e). Consider now any path
[r1 . . .rm], where m≥ 1, r1 is an ingress point, and ri ∈ R
∀i = 1, . . . ,m. This path must exist since a region is de-
fined as a connected component (see §2). Packets for-
warded on the concatenation of the previous two paths
(i.e., [r0 . . .rm . . .o . . .e]) are not confined to R, as they
cross o 6∈ R. However, they are not mirrored, contradict-
ing the assumption.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 481

B Scheduling ILP formulations

B.1 Optimal bin-packing

Input All queries and their associated costs, an upper
bound on the number of of timeslots needed.

Decision Variables Let Q be the set of input queries and
S the set of all time slots in the measurement campaign.
We define:

Rqs as the binary variable representing the decision to
schedule the query q ∈ Q in timeslot s ∈ S when
Rqs = 1;

Us as the binary variable representing whether the times-
lot s ∈ S has any assigned query when Us = 1.

Parameters

B The maximal available bandwidth in a single timeslot;

aq The expected traffic volume generated by the mirror-
ing rules for the query q.

Objective Function Minimize the length of the sub-
schedule

min
S

∑
s

Us

Constraints

C1 In any timeslot s, the expected traffic generated by
the mirroring rules across all queries activated in s
must be lesser or equal than the budget.

∀s :
Q

∑
q
(Rqsaq)≤UsB

C2 Every query must be scheduled.

∀q :
S

∑
s

Rqs = 1

C3 Track used slots.

∀q, s : Us ≥ Rqs

C4 Timeslots should be used in sequence
(tie-breaking constraint).

∀s, s′, s < s′ : Us ≤ Ss′

B.2 Maximal filling

Input A list of queries and their associated cost, a list
of time slot and leftover budget. Queries are pruned such
that any query whose cost is greater than the biggest left-
over budget available is excluded.
Decision Variables Let Q be the set of input queries and
S the set of all time slots in the measurement campaign.
We define:

Rqs as the binary variable representing the decision to
schedule the query q ∈ Q in timeslot s ∈ S when
Rqs = 1;

M as the continuous variable representing the minimal
number of slots allocated to any query.

Parameters

βs The available leftover bandwidth in the timeslot s,
thus βs ≤ B;

Ω The spreading factor, which lets the operator favor
schedules where all queries have a similar number
of timeslots (high value) or schedules maximizing
the absolute number of allocation;

wq The preference level of the query q. Queries with
a higher preference are scheduled preferably to
queries with a lower preference;

aq The expected traffic volume generated by the mirror-
ing rules for the query q.

Objective Function Maximize the utilization of the bud-
get, either by maximizing the number of allocations of
some queries, according to their preference level, or by
spreading the budget across all queries (thus maximizing
the minimal allocation).

max

[
Q

∑
q

(
S

∑
s

Rqs

)
wq + MΩ

]

Constraints

C1 In any timeslot s, the expected traffic generated by
the mirroring rules across all queries activated in s
must be lesser or equal than the leftover budget.

∀s :
Q

∑
q
(Rqsaq)≤Usβs

C2 M should represent the minimal number of allo-
cated slots across all queries.

∀q : M ≤
S

∑
s

Rqs

482 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PLOVER: Fast, Multi-core Scalable Virtual Machine Fault-tolerance
Cheng Wang∗, Xusheng Chen∗, Weiwei Jia, Boxuan Li,

Haoran Qiu, Shixiong Zhao, and Heming Cui
The University of Hong Kong

Abstract
Cloud computing enables a vast deployment of online

services in virtualized infrastructures, making it crucial
to provide fast fault-tolerance for virtual machines (VM).
Unfortunately, despite much effort, achieving fast and
multi-core scalable VM fault-tolerance is still an open
problem. A main reason is that the dominant primary-
backup approach (e.g., REMUS) transfers an excessive
amount of memory pages, all of them, updated by a ser-
vice replicated on the primary VM and the backup VM.
This approach makes the two VMs identical but greatly
degrades the performance of services.

State machine replication (SMR) enforces the same to-
tal order of inputs for a service replicated across physical
hosts. This makes most updated memory pages across
hosts the same and they do not need to be transferred.
We present Virtualized SMR (VSMR), a new approach
to tackle this open problem. VSMR enforces the same
order of inputs for a VM replicated across hosts. It
uses commodity hardware to efficiently compute up-
dated page hashes and to compare them across repli-
cas. Therefore, VSMR can efficiently enforce identi-
cal VMs by transferring only divergent pages. An ex-
tensive evaluation on PLOVER, the first VSMR system,
shows that PLOVER’s throughput on multi-core is 2.2X
to 3.8X higher than three popular primary-backup sys-
tems. Meanwhile, PLOVER consumed 9.2X less net-
work bandwidth than both of them. PLOVER’s source
code and raw results are released on github.com/
hku-systems/plover.

1 Introduction
The cloud computing paradigm enables a pervasive de-
ployment of online services in virtualized infrastructures
(e.g., Xen [26]). Meanwhile, a virtual machine (VM)
is incorporating more and more virtual CPUs (vCPU)
on multi-core hardware because online services process
many requests concurrently. This rapid growth of cloud
computing components implies that hardware failures
become commonplace [18] rather than occasional. A fast
and multi-core scalable VM fault-tolerance approach is
highly desirable for online services.

Primary-backup (e.g., REMUS [36]), a dominant VM
fault-tolerance approach, works in a physical time slot
manner. In each slot, it runs a service in the primary VM

∗The first two authors contributed equally to this work.

to process client requests, tracks updated VM states (e.g.,
dirty memory pages), and buffers network outputs. When
a slot ends, a syncvm operation is invoked to transfer
dirty pages from the primary to backup. Once the transfer
succeeds, network outputs are sent to clients. By doing
so, primary-backup ensures external consistency [36]:
primary and backup have the same states and a primary
failure will not be observed by clients.

Unfortunately, despite much effort [13, 36, 42, 64,
82], achieving fast and multi-core scalable VM fault-
tolerance remains an open problem [5, 38, 42, 82] . A
main reason is that the primary-backup approach often
has to transfer an excessive amount of dirty memory
pages, which greatly degrades the performance of a ser-
vice and occupies prohibitive network bandwidth.

For instance, if a program updates 20K dirty memory
pages within a 100ms slot, transferring these pages con-
sumes a huge network bandwidth of 6.4 Gbps. Both our
evaluation (§6) and prior study [36, 40, 42, 60] show that
many programs access even more dirty pages on over
four CPU cores. vSphereFT-6.5 [17], a latest primary-
backup product, permits up to four vCPUs per VM and
only two of such VMs per physical host [5]. Therefore, to
enable fault-tolerance, people often sacrifice multi-vCPU
speedup and VM consolidation [34].

As a service includes multiple programs (e.g., a web-
site deployed in one VM can include an Nginx web
server, a Python interpreter, and MySQL), and a program
scales better on more CPU cores and accesses more
memory, this problem becomes even more challenging.

Another approach, state machine replication (SMR),
appears a promising solution for this open problem.
SMR [68] models a program as a deterministic state
machine and replicates it on different physical hosts
(or replicas). It uses a distributed consensus protocol
(typically, PAXOS [56]) to enforce the same total or-
der of program inputs across replicas, making them per-
form the same sequence of state transitions. SMR sys-
tems [35, 45, 50] often incur low performance overhead
with popular programs on 16 CPU cores.

However, to ensure external consistency, SMR re-
quires extra mechanisms to resolve divergent executions
(i.e., multithreading nondeterminism [60]) across repli-
cas. Extisting SMR systems provide two major mech-
anisms. First, EVE [50] requires program developers
to manually annotate variables shared by threads, and
it detects divergent variable states at runtime. Second,

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 483

github.com/hku-systems/plover
github.com/hku-systems/plover

REX [45] and CRANE [35] enforce the same order of
inter-thread synchronization (e.g., locks) across replicas.
If no data race occurs, determinism is ensured; otherwise,
developers’ diagnosis [51, 75] may be needed. There-
fore, neither of the two mechanisms is fully automatic.

Our key observation is that by enforcing the same total
order of inputs for a VM replicated across hosts, almost
all updated memory pages across the hosts are the same
and they do not need to be transferred. Intuitively, if a
VM containing a key-value service is replicated across
hosts and it receives the same order of requests, all these
hosts should contain roughly the same data in memory.
Empirically, we enforced the same total order of client
requests for 8 diverse services running on two VMs, and
72% to 97% of the services’ dirty pages were the same
after processing these requests.

This paper presents Virtualized SMR (VSMR), a new
SMR approach that can achieve fast, multi-core scalable
VM fault-tolerance. VSMR enforces same total order of
network inputs for a VM replicated across hosts. It then
periodically invokes a syncvm operation to efficiently
compute updated page hashes, to compare them across
the replicas, and to transfer only the divergent pages.

In a conceptual level, VSMR replicates an entire guest
VM as a state machine and achieves the strengths of both
SMR and primary-backup. By transferring only those
divergent pages, VSMR automatically and efficiently
ensures external consistency. Leveraging the powerful
fault-tolerance of PAXOS, VSMR tackles a notorious
“split-brain problem” (§2.2) in primary-backup systems.

We implemented PLOVER,1 the first VSMR system in
Linux. PLOVER uses APUS [92], a fast, RDMA-powered
PAXOS implementation. PLOVER intercepts inbound net-
work packets in the KVM QEMU hypervisor [80] and
replicates them to other VM hypervisors using PAXOS.
PLOVER’s syncvm operation (§4) is built on top of
PAXOS for robustness, and it uses RDMA to efficiently
compare page hashes across replicas. PLOVER does not
modify the underlying PAXOS protocol, so it is generic
to work with other fast consensus protocols [58, 78].

We evaluated PLOVER on 12 widely used programs,
including 8 servers (e.g., SSDB [85] and Tomcat [3])
and 4 dynamic language interpreters (e.g., PHP). We
group these programs into 8 practical services, includ-
ing DjCMS [7], a content management system (CMS)
that consists of Nginx [73], Python, and MySQL [22].
We compared PLOVER with three well-engineered
primary-backup systems QEMU-MicroCheckpoint [13]
(for short, MC) , COLO [38], and STR [63]. Evaluation
shows that:

1. On average, PLOVER’s throughput is 2.2X higher

1The Pacific golden plover is well known for her strong tolerance to
the extreme weather in Alaska.

than MC, STR, and COLO on 4-vCPU VMs, 3.8X
higher on 16-vCPU VMs. Compared to unrepli-
cated executions, PLOVER’s overhead on response
time is modest. PLOVER has reasonable CPU usage.

2. PLOVER consumes 9.2X less network bandwidth
than both MC, STR, and COLO on average. It en-
ables consolidating multiple fault-tolerant VMs on
one host.

3. PLOVER is robust to various failures.

Our major contribution is VSMR, a new SMR ap-
proach, which automatically achieves much faster and
more scalable VM fault-tolerance. Our other contribu-
tions include the PLOVER implementation and an exten-
sive evaluation on diverse, sophisticated online services.
Moreover, by efficiently enforcing the same VM across
hosts, PLOVER can be broadly applied to other research
areas. For instance, page-level false-sharing [28, 61] is
a notorious performance problem in multithreading re-
play [40, 54, 67]. PLOVER can be an effective template to
alleviate this problem, because most false-shared pages
across the record and replay hosts should have the same
contents and they do not need to be transferred.

The remaining of the paper is organized as follows. §2
introduces the background of RDMA, VM, and PAXOS.
§3 gives an overview on PLOVER’s architecture and
its advantages over the primary-backup approach. §4
presents PLOVER’s runtime system. §5 describes imple-
mentation details, §6 presents evaluation results, §7 in-
troduces related work, and §8 concludes.

2 Background
2.1 RDMA

RDMA (Remote Direct Memory Access) [2] can di-
rectly write from the userspace memory of a host to the
userspace memory of a remote host, bypassing the OS
and CPU on both hosts. RDMA architectures (e.g., In-
finiband [2] and RoCE [11]) are commonplace within a
datacenter due to their ultra low latency and decreasing
costs. RDMA’s ultra low latency comes from not only
its OS bypassing feature, but also its dedicated network
stack implemented in hardware. RDMA latency is sev-
eral times smaller than software-only OS bypassing tech-
niques (e.g., DPDK [6] and Arrakis [77]).

The advantage of RDMA latency is especially signif-
icant when transferring messages of small sizes. Bench-
marks [4, 10] show that, with the same network inter-
face card (NIC), transferring messages of less than 2KB
on RDMA is about 10X∼30X faster than on TCP. If the
message size becomes larger (e.g., over 8KB), RDMA
latency is merely about 30% faster than TCP because
network bandwidth becomes a bottleneck for both. This

484 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

suggests that RDMA is attractive for invoking consen-
sus on inputs and sending hashes of memory pages, and
it is less beneficial for transferring pages. PLOVER uses
RDMA for invoking PAXOS consensus, exchanging page
hashes across replicas, and transferring divergent pages.

2.2 Virtual Machine and Its Fault-tolerance

VMs [26, 52, 91] are widely used in clouds and dat-
acenters due to their low performance overhead [42],
platform independence, performance isolation [47], etc.
For instance, KVM [52] is an accelerator that uses the
hardware virtualization features of various CPUs, while
QEMU [80] emulates the hardware for VMs. PLOVER
uses KVM-QEMU for three main reasons. First, KVM-
QEMU incurs little performance overhead compared to
bare-metal. Second, QEMU works in userspace and is
suitable for RDMA-based PAXOS to intercept inputs
(RDMA currently only supports userspace memory).
PLOVER uses QEMU’s tap send() API to intercept
network inputs. Third, the QEMU virtual threads that act
as vCPUs are spawned from the QEMU main process,
which enables PLOVER to monitor programs running in
a guest VM non-intrusively [87] without modifying the
guest.

Moreover, VM platform independence enables consol-
idation [34]: people can migrate many VMs [32, 72] to a
small number of physical hosts to save energy and ease
management. However, consolidation also implies that
many VMs are prone to hardware failures. Therefore, a
fast, scalable, and network bandwidth friendly VM fault-
tolerance approach is highly desirable.

Existing VM fault-tolerance systems [13, 17, 36, 38,
63, 64, 82] are mainly based on the primary-backup ap-
proach. To maintain external consistency, the primary
must transfer the dirty memory modified by a program
within one time slot to the backup before releasing out-
puts, the so called “output commit problem” [86]. There-
fore, the major performance bottleneck of this approach
is the time taken to transfer dirty pages, because local
memory access speed can be 10X∼100X faster [14] than
network speed. As real-world programs become increas-
ingly scalable on multi-core and access more memory
per second, this bottleneck becomes even more signifi-
cant. An evaluation [42] shows that this transfer time can
be much bigger than a syncvm time slot, greatly degrad-
ing the performance of services.

Synchronization Traffic Reduction (STR) [63] is a
heuristic for reducing the number of transferred pages.
It runs both primary and secondary VMs in parallel to
process the same network inputs in the same order. STR
uses a 25ms syncvm interval and only transfers diver-
gent pages in each syncvm operation. However, both our
evaluation and STR’s show that this heuristic is ineffec-
tive because of the static syncvm interval (§6.2).

COLO is a primary-backup system deployed in
Huawei [20]. It runs the same service on both primary
and backup, compares per-connection network outputs,
and does a syncvm if there is any network output di-
vergence. COLO can safely skip the syncvm operation
if network outputs remain identical. Nevertheless, both
our evaluation and COLO’s show that its performance
severely degrades when the number of client connections
is large.

vSphereFT used to take a record-replay approach [29,
83] for uni-vCPU, but it switches to the REMUS approach
since vSphereFT 6.0 [9, 17]. If fault-tolerance is enabled,
vSphereFT permits at most four vCPUs per VM and only
two of such VMs per host [5]. This affects multi-vCPU
speedup and VM consolidation.

Since primary-backup has only two replicas, when net-
work partition occurs, neither the primary nor backup
can determine whether the other one fails forever or is
temporarily partitioned. Therefore, they both may serve
client requests, breaking external consistency. This is the
notorious “split-brain problem” [23, 24, 83].

2.3 PAXOS and SMR Systems

PAXOS [55, 56, 68] is a major protocol to enforce the
same, totally ordered inputs across replicas. For effi-
ciency, typical PAXOS implementations [68, 74] take the
Multi-Paxos approach [55]: it elects a dedicated leader in
each view to invoke consensus on new inputs, and other
replicas work as witnesses to agree on inputs. In PAXOS,
the value of each agreed input is flexible, and PLOVER
takes advantage of this flexibility. PAXOS can be used to
maintain different roles consistently for different repli-
cas [58, 71], and replicas with different roles can inter-
pret the same agreed input value differently according to
the (consistent) roles. E.g., the leader of NOPaxos [58]
executes inputs; its witnesses agree on inputs and inter-
pret inputs as no-operation (NOP).

To maintain roles for replicas consistently, PAXOS
replicas send periodical heartbeats [68, 74] to other repli-
cas and track the number of heartbeat failures with a
threshold. If a replica finds that its threshold is reached,
it suspects the replica on the other end failed and it in-
vokes a new consensus (e.g., leader election); otherwise,
a replica can safely intercept inputs or logical operations
on its own safely. During leader election, the node with
the most up-to-date state wins [74, 78].

Three recent SMR protocols, NOPaxos [58],
APUS [92], and DARE [78] incur a low consen-
sus latency of tens of µs. PLOVER uses APUS
for three main reasons: (1) it provides a flexible
paxos op(void *val) API to propose a consensus
request with val as the proposed value; (2) its consensus
protocol includes a durable storage (DARE works purely
in memory); and (3) it is open source.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 485

3 Overview
3.1 Deployment Suggestion

PLOVER’s deployment follows typical SMR systems:
three replicas are connected with RDMA networks, and
each replica runs a PLOVER VM instance containing a
set of programs. We suggest each replica have 16+ CPU
cores. By running three replicas, PLOVER can tolerate
hardware failures or network partitions of one replica.
This fault-tolerance guarantee is sufficient because: (1) a
VM can already tolerate various failures in guest OS, and
(2) tolerating one failure is a common guarantee in VM
fault-tolerance systems [17, 36].

We suggest more CPU cores because PLOVER uses
spare cores to compute dirty page hashes. Our evalua-
tion used 24-core hosts and PLOVER performance was
already reasonable. In addition, RDMA becomes preva-
lent [69, 78]. RDMA is just a requirement for current
PLOVER implementation, not a requirement for VSMR.
One can implement VSMR using other fast PAXOS pro-
tocols (e.g., NOPaxos [58]) and using other OS bypass
techniques (e.g., Arrakis [77]) to send page hashes.

3.2 PLOVER Architecture

...

Leader Secondary Witness

VM syncvm

 PaxosOuput Guard

Qemuservice

Client 1

syncvm VM

serviceQemu

Paxos

RDMA

PaxosOuput Guard

RDMA

Client n....

log log log

page page

... ...

Figure 1: PLOVER Architecture. Key components are in
blue, inputs are in green, divergent dirty pages are in red.

We designed PLOVER to be simple and generic for var-
ious PAXOS implementations. To this end, PLOVER has
two unique features compared to regular SMR systems.

First, unlike regular SMR systems which maintain
two replica roles (leader and witness), PLOVER in-
vokes PAXOS to consistently maintain three replica roles:
leader, secondary, and witness. In PLOVER’s underlying
PAXOS level, both PLOVER’s secondary and witness are
“PAXOS witnesses” which simply agree on consensus re-
quests. The only difference is about interpreting syncvm

in the upper PLOVER system level: the PLOVER leader
and secondary involve the syncvm, and the PLOVER wit-
ness interprets syncvm as NOP. We made this design
choice because transferring divergent pages to only the
secondary is efficient.

Second, to minimize service downtime during the
leader’s failures, rather than letting the remaining nodes

compete to be the new leader, PLOVER elevates its sec-
ondary to be the leader because the secondary’s state
is more up-to-date than the witness’s. PLOVER has the
same safety guarantee as PAXOS by ensuring there is one
unique leader in each view and all the replicas are consis-
tent with their roles (§4.5). To preserve the fault tolerance
guarantee, the new leader will do a VM migration to the
witness, elevate the witness to be the secondary, and then
begin to serve client requests.

Figure 1 shows PLOVER’s architecture with four key
components: the PAXOS input coordinator (PAXOS), the
consensus log (log), the output buffering guard (guard),
and the syncvm component. The PAXOS coordinators re-
side in all three replicas to maintain a consensus log with
the same order of SMR operations, including input re-
quests, syncvm, and role changes (§4.2).

When PLOVER starts, PAXOS elects one replica as the
leader, which is dedicated to receive and make consen-
sus on client requests. When the leader receives a new
network input, it invokes PAXOS to replicate this input
on PLOVER’s replicas. §6.3 shows that, by enforcing the
same total order of realistic workload inputs for differ-
ent VM replicas for 8 services, 72% ∼97% of the pro-
grams’ memory are already the same and do not need to
be transferred.

The leader periodically invokes consensuses on
syncvm operations to synchronize the VM states of the
VMs. PLOVER uses an adaptive algorithm to determine
the intervals between two syncvm operations based on
current workloads, which effectively reduces transferred
states and improves performance (§4.3). On successful
consensus on a syncvm operation, the syncvm compo-
nents of the leader and secondary interpret it with three
steps: (1) they exchange dirty page bitmaps and compute
hashes of each dirty physical pages concurrently; (2) the
leader receives hashes from the secondary and compare
hashes; (3) the leader transfers only the divergent pages.
§4.4 describes our syncvm protocol in detail.

The guards on both leader and secondary buffer net-
work outputs since the last syncvm operation. When a
new syncvm succeeds, the leader’s guard releases out-
puts to clients, while the secondary discards outputs.

PLOVER ensures external consistency. Suppose the
leader fails in the nth slot (i.e., PLOVER has finished
n− 1 syncvm operations), the secondary becomes the
new leader, and the old leader and the new leader have
the same states in the last n− 1 slots. Since the old
leader’s output in the nth slot has not been released by
PLOVER, clients will not observe any inconsistency even
if the new leader’s state in the nth slot differs from the
old leader’s. Thus, the new leader can take over without
perturbing clients.

486 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Primary-backup
Approach

Plover
Approach

phase 1

phase 1: copy dirty pages
phase 2: transfer dirty pages

phase a: compute dirty page hashes
phase b: compare hashes
phase c: transfer divergent pages

phase 2

phase a phase b phase c

pause/resume VM

release output

pause/resume VM

release output

time axis

time axis

Figure 2: Comparing syncvm operation in VSMR and MC.

3.3 Comparing PLOVER and primary-backup

We design PLOVER to gain the same fault-tolerance
strength as regular SMR. By using PAXOS to maintain
the roles of replicas, PLOVER can consistently maintain
a leader. By running three PAXOS replicas, PLOVER is
also able to consistently detect an outdated leader caused
by transient network partitions. In contrast, primary-
backup is known unable to handle network partition, the
so called “split-brain problem” (§2.2). Because hardware
failures may cause transient network partitions (e.g.,
NIC or network switch errors), PAXOS’s strong fault-
tolerance is increasingly useful.

To illustrate why PLOVER can be faster than a typi-
cal primary-backup approach, Figure 2 shows the leader
or primary’s workflow in PLOVER and in MC [13],
a recent REMUS-based implementation developed in
QEMU [80]. Within a primary-backup syncvm opera-
tion, the time taken in MC’s primary can be divided into
two major phases: (1) tcopy, time taken for copying dirty
pages to another memory region; and (2) ttrans f er, time
taken for transferring dirty pages. The primary resumes
its guest VM after phase (1), but it must release outputs
after phase (2) for external consistency. ttrans f er is of-
ten much longer than tcopy and becomes the bottleneck
(§6.2).

The time taken in a PLOVER leader’s syncvm opera-
tion can be divided into three major phases: (a) tcompute,
time taken to compute hashes for local dirty pages; (b)
tcompare, time taken to compare hashes between leader
and secondary; and (c) tdivergent , time taken to transfer
only divergent pages. PLOVER resumes its guest VM and
releases outputs after transferring the divergent pages.
PLOVER resumes the guest VM after the transfer because
it saves the page copy time by using RDMA to directly
write divergent pages to the secondary.

Compared to primary-backup, PLOVER’s phase (a) can
be fast by leveraging CPU cores, and phase (b) can be
fast by leveraging RDMA. Phase (c) can be fast if most
dirty pages between the PLOVER leader and secondary
are the same. Our evaluation shows that PLOVER’s
tdivergent is up to 12.8X faster than MC’s ttrans f er.

API Argument API Semantic
paxos second secondary ID Propose the secondary
paxos input input packets Propose client requests
paxos syncvm syncvm Propose a syncvm operation

Table 1: PLOVER’s consensus operations, all built on top of
APUS’s paxos op(void *val) API (§2.3) .

4 The PLOVER Runtime System
This section introduces PLOVER’s runtime System. Ta-
ble 1 shows all the three types of consensus operation
APIs that PLOVER’s leader invokes.

4.1 Terminology Setup

A PLOVER replica maintains a <role,vid,log, nerr >
tuple on its local QEMU hypervisor. role is a replica’s
role (leader, secondary, or witness) that has been agreed
by PAXOS; vid is the current PAXOS view ID [68]; log
is the current PAXOS consensus log (§3.2), and nerr is
the current number of communication failures recorded
in PAXOS (e.g., a PAXOS heartbeat failure will increment
nerr by 1). vid, log, and nerr are all exposed from the un-
derlying PAXOS implementation, and PLOVER only up-
dates nerr if a syncvm has an error. In short, PLOVER runs
on top of PAXOS without modifying its implementation.

4.2 SMR Operation Types

As an SMR system, all PLOVER operations run on top of
the underlying PAXOS protocol. PLOVER has three SMR
operations in total: paxos second, paxos input, and
paxos syncvm (Table 1).

The paxos second API is invoked by the PLOVER
leader to assign one replica as the secondary, ensuring
that the new secondary is consistently agreed among
PLOVER replicas. This API is invoked when a new
PLOVER leader is elected or the secondary is suspected
to fail. PLOVER’s leader randomly proposes a replica in
its current PAXOS group as the secondary. This opera-
tion complies with PAXOS safety guarantee even if the
proposed secondary fails, because the leader’s syncvm

operations can detect the new secondary’s failure by in-
crementing nerr (§4.4).

The paxos input operations are invoked by the
leader when inbound network packets arrive at local hy-
pervisor. Both PLOVER secondary and witness act as
“PAXOS witnesses” to agree on the proposed packet,
achieving a standard PAXOS consensus.

The paxos syncvm is used to invoke a syncvm oper-
ation in PLOVER. When the primary finds that the ser-
vice running in local VM has finished processing in-
puts and become idle (§4.3), it invokes a consensus on
syncvm by invoking a paxos syncvm operation. Invok-
ing a syncvm with consensus is beneficial: it makes the
leader and secondary receive exactly the same sequence
of client requests between every two consecutive syncvm

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 487

operations, greatly reducing memory divergence (§6.3).

4.3 Efficiently Determining Slot Boundary

Similar to primary-backup for ensuring external con-
sistency [86], PLOVER leader must buffer all outbound
packets before a syncvm succeeds, including client re-
sponses and TCP ACKs. Client programs will stop send-
ing new packets when their TCP congestion windows are
met, even server programs have finished processing re-
quests and become idle. This leads to unnecessary time
slots. In practical workloads with concurrent connec-
tions, arrival times of requests are often unpredictable,
thus a static syncvm time slot configuration (e.g., 25ms
in REMUS and 100ms in MC) can often cause an idle
service and unnecessary time slots.

To avoid unnecessary time slots, PLOVER develops an
adaptive-slot algorithm by inserting syncvm operations
when its leader determines idle status of programs run-
ning in guest VM. PLOVER leverages QEMU’s thread-
ing hierarchy to spawn an internal thread that checks the
CPU usage of the guest VM to determine whether it is
idle. §5.1 describes implementation details. This simple,
non-intrusive algorithm helps PLOVER quickly proceed
its slots, and our evaluation shows that this algorithm is
effective in improving PLOVER’s performance (§6.2).

4.4 Protocol for syncvm

PLOVER’s syncvm contains three phases (§3.3). The first
phase is compute. On executing the paxos syncvm op-
eration, the leader pauses its VM immediately, while the
secondary does the pause when its programs become idle
(§4.3). When both VMs are paused, leader and secondary
exchange their dirty page bitmap and compute a union
of the two bitmaps. Then, leader and secondary concur-
rently compute page hashes according to the union.

The second phase is compare. The secondary sends its
hash list to the leader, and the leader does a comparison
to identify all divergent pages.

The third phase is transfer. The leader uses RDMA
to transfer all divergent pages to secondary and append
a special EOF at the end. The secondary saves the pages
in a static buffer, sends an ACK to the leader, and applies
divergent pages to its guest VM in an atomic manner.
This is crucial for PLOVER’s correctness because if the
secondary starts applying pages while receiving, and the
leader fails in the middle, the secondary will end in a cor-
rupted state. On receiving the ACK, the leader releases
outputs since the last syncvm and resumes its guest VM.

All the three phases carry the sender’s vid and the re-
ceiver checks vid as a standard PAXOS way [35, 68].
If any communication error happens during a syncvm, a
local replica increments nerr by 1. If this replica is the
leader, it re-invokes a syncvm consensus (§4.2). PAXOS
will be involved once nerr reaches its re-election thresh-

old. Although updating nerr in both PLOVER and in the
underlying PAXOS may have data races, nerr is just a
statistic variable and there is no a correctness issue.

4.5 Handling Replica Failures

PLOVER automatically tolerates one replica failure. If the
secondary fails, the leader will invoke a standard VM mi-
gration to bring the witness’s states up-to-date and ele-
vate the witness to be the secondary. If the witness fails,
no PLOVER actions are needed because the leader can
continue to serve client requests and ensure fault toler-
ance.

If the leader is suspected to fail, a new leader will
be elected. Because the secondary’s state is more up-
to-date, PLOVER ensures if a secondary is working nor-
mally, it will always be the new leader. To do so, PLOVER
doesn’t let the witness become the leader in the leader
election. After the secondary becomes the leader, it will
do a VM migration from itself to the witness, elevate the
witness to be the secondary, and start to serve client re-
quests.

4.6 Correctness

PLOVER is designed to handle the same failure model as
regular SMR, where network messages may be lost but
will not be corrupted, network may be partitioned, and
hosts may fail. As an SMR system with three replicas,
PLOVER can tolerate the failure of one replica.

PLOVER guarantees external consistency: if a client re-
ceives a reply for its requests, the execution states gener-
ating this reply will not be lost. Prior work [36, 38] shows
that this guarantee is sufficient for VM fault-tolerance in
a client-server model.

We give a proof sketch of PLOVER’s external consis-
tency guarantee in three steps. First, all replies are sent
from PLOVER’s leader. PLOVER’s underlying PAXOS
protocol ensures one strongly consistent leader among
the replicas. Moreover, only the leader invokes syncvm
operations and network outputs will not be released until
a syncvm finishes.

Second, PLOVER does not affect the correctness of
its underlying PAXOS. We made only two modifications
to the underlying PAXOS protocol: always elevating the
secondary to be the new leader and increasing nerr on
a syncvm error (§4.1). These two modifications do not
hurt PAXOS’s correctness because it guarantees there is
one unique leader in each view, and nerr is just a counter
of observed communication errors on a local host.

Third, before sending out a reply, the leader has fin-
ished a syncvm and successfully replicated the states
that generate this reply to the secondary. No matter
which replica fails, the states will not be lost. Therefore,
PLOVER ensures external consistency.

We also carefully designed PLOVER for reasonable

488 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

liveness. If the leader is alive, its syncvm operation has
a timeout-and-retry mechanism and its program-idle de-
termination (§4.3) has a bounded waiting time.

5 Implementation Details
Much of PLOVER implementation code was inherited
from well-engineered VM systems [13, 38, 52], includ-
ing replicating file system [38]. Our implementation
found and fixed two new bugs that crashed MC [13]:
one bug was an integer overflow on the number of dirty
pages, the other was an inconsistent states between the
PCI device and bus on restarting replicas. QEMU devel-
opers confirmed both our bug reports.

5.1 Determining Server Program Idle Status

When clients connect with services running in a VM
fault-tolerance system (e.g., REMUS and PLOVER) using
TCP, the system buffers network outputs and causes the
clients’ TCP windows to become full and to stop sending
requests. This will result in an idle service and a wasted
time slot. Therefore, a mechanism is needed to determine
when the service is idle, so that a syncvm is invoked.

To efficiently find the idle status of a service, PLOVER
creates a simple, non-intrusive algorithm without modi-
fying guest OS. This algorithm uses the threading hier-
archy of QEMU: all QEMU virtual threads (threads that
emulate vCPUs) are spawned from the QEMU hypervi-
sor process (§2.2). PLOVER creates an internal thread in
the process to call clock(), which gets the total CPU
clock of a process and its children. If PLOVER finds that
the increment rate of this clock is as small as an vacant
VM for a threshold (100µs), it finds the service idle.

This eliminates wasted time slots in PLOVER and lets
services run almost in full speed. Moreover, because both
the PLOVER leader and secondary finish processing cur-
rent requests, their memory should be mostly the same.
This simple algorithm is already effective for reducing
page divergence (§6.3) and achieved reasonable perfor-
mance overhead (§6.2) in our evaluation, and it can be
further extended to handle straggler requests.

5.2 Computing Dirty Page Hashes Concurrently

We leveraged multi-core hardware and implemented a
multi-threaded dirty page hash computing mechanism.
The mechanism detects the number of CPU cores on
local host creates same number of threads to com-
pute hashes of dirty physical pages since the last
PLOVER syncvm operation. We used Google’s City-
Hash [43], because it is fast. Our evaluation shows that
computing hashes has reasonable CPU footprint (§6.4)
because it takes only about 6.3µs for each page.

5.3 Fast Consensus in Hypervisor

PLOVER uses APUS [92] to achieve consensus on net-
work inputs among replicas. A naive approach for imple-

menting this is to let APUS intercept network packets and
synchronously achieve consensus in QEMU’s inbound
network device (e.g., TAP device). However, this ap-
proach causes severe performance degradation. QEMU’s
network is implemented in an event driven model. On re-
ceiving a network packet, the event handler needs to ac-
quire a global lock and feed the packet into the VM. The
whole process takes less than 1µs. On the other hand,
APUS takes over 10µs to reach consensus. As a result,
this naive approach would hold the global lock for a long
period and block the handling of other events, causing
great performance degradation to the VM.

To address this problem, we implemented a non-
blocking consensus mechanism in QEMU. On receiv-
ing a network packet, rather than directly feed it into the
guest VM, the event handler only appends the packet to
a buffer. PLOVER asynchronously reads packets from the
buffer, invokes APUS to achieve consensus, and lever-
ages QEMU’s event driven loop to feed the packet into
the VM.

6 Evaluation
Our evaluation hosts were nine Dell R430 servers with
Linux 3.16.0, 2.6 GHz Intel Xeon CPU with 24 hyper-
threading cores, 64GB memory, and 1TB SSD. All NICs
are Mellanox ConnectX-3 Pro 40Gbps connected with
Infiniband [2]. To mitigate LAN/WAN network variance,
all client benchmarks and VMs were run in these hosts.
Running clients in WAN will further mask PLOVER over-
head compared to unreplicated executions.

We evaluated PLOVER on 12 widely used programs,
including 8 server programs (Redis [81], SSDB [85],
MediaTomb [21], Nginx [73], MySQL [22], Tomcat [3],
PgSql [79], and lighttpd [59]) and 4 dynamic lan-
guage interpreters (Node.js, PHP, Python, and JSP). To
be close to real-world deployments, we group these pro-
grams into 8 practical services, including DjCMS [7], a
large, sophisticated content management system (CMS)
consisting of Nginx, Python, and MySQL.

We used popular workloads that make these services
run at their peak throughputs and then collected results.
Prior study [76, 88] shows that hardware errors occur
more frequently when services have higher load, thus the
fault-tolerance of PLOVER is more crucial. Table 2 shows
our workloads. For each workload, we spawned different
number of clients to saturate the services and collected
the curve of throughputs for unreplicated executions.

For Redis and SSDB, each request contains a batch
of 1K operations of 50% SET and 50% GET; for the
other six services, each request contains one operation.
We found sending operations in batches for Redis and
SSDB made them reach peak throughput. For instance,
when each request for Redis contains only one SET or
GET operation, Redis’s throughput is only 43K oper-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 489

ation/s for 64 connections; when each request is a 1K-
operation batch, its throughput reaches a peak value of
481K operation/s for 64 connections.

Service Workload
Redis 50% SET, 50% GET requests arriving in batches.
SSDB 50% SET, 50% GET requests arriving in batches.
MediaT Concurrent requests on transcoding a 50MB video.
DjCMS Concurrent requests on a dashboard page [8].
PgSql PgBench [79] with TPC-B benchmark.
Tomcat Concurrent requests on a shopping store page [15].
lighttpd Concurrent requests using PHP to watermark images [1].
Node.js Concurrent requests on a messenger bot [12].

Table 2: Eight services and workloads used in experiments.

We compared PLOVER with four fault-tolerance sys-
tems: CRANE [35], an open-source SMR system among
recent ones [35, 45, 50]; QEMU-MicroCheckpoint [13]
(for short, MC), a REMUS-based primary-backup system
carried in QEMU [80]; Synchronization Traffic Reduc-
tion (STR) [63], a primary-backup system designed to
reduce the number of transfered pages; and COLO [38],
a primary-backup system deployed in Huawei [20]. MC
has an RDMA implementation [14], but it is being ac-
tively developed and not runnable on our hosts. We did
not use REMUS because it was built before 2008 and did
not run on our hosts. This section focuses on six ques-
tions:
§6.1: Can PLOVER correctly enforce deterministic execu-

tions by transferring only divergent pages?
§6.2: How fast is PLOVER compared to MC, STR, and

COLO? How does it scale to multi-core?
§6.3: How effective is each PLOVER technique on reduc-

ing divergence of dirty pages?
§6.4: What is PLOVER’s CPU footprint and how well

does it support VM consolidation?
§6.5: Can PLOVER efficiently handle replica failures?
§6.6: What did we learn from VSMR and its implemen-

tation PLOVER? What are PLOVER’s limitations?

6.1 Verifying Correctness

To check whether PLOVER can capture all divergent
memory pages, we took Racey [48], a nondeterminism
stress testing benchmark. Racey generates many data
race accesses by using multiple threads to access an in-
memory array concurrently without acquiring any locks,
and it computes an output based on the array content.

We wrote a shell script to repetitively launch the Racey
program in PLOVER leader VM for 3K times and ap-
pended its output to a file in local VM. We compared
the files between PLOVER’s leader and secondary and
found the files had the same content. Thus, PLOVER in-
deed captured and transfered all divergent pages.

VMware’s documentation [9, 17] states that
vSphereFT-6.5 works similar to MC. Since vSphereFT
is not open source and has restrictions on publishing
evaluation results [16], we compared PLOVER with MC

instead.

6.2 Performance and Scalability on Multi-core

Figure 3 shows PLOVER, MC, STR, and COLO’s
throughput on 8 services with different number of clients.
MC used 100ms-slot (MC’s default) and STR used
25ms-slot (STR’s own default). All experiments ran on
4-vCPU per VM (unless specified) because COLO [38]
and REMUS [36] evaluated up to 4 vCPUs per VM. On
average, PLOVER’s throughput is 2.2X higher than MC,
STR, and COLO.

As the number of clients increases, PLOVER’s through-
put overhead becomes less obvious. The overhead
mainly comes from the syncvm operations, which is de-
termined by the syncvm frequency and the time spent on
each syncvm. When the load on the service increases,
the VM takes more time to be idle, so the syncvm fre-
quency becomes smaller. On the other hand, the time
spent on each syncvm remains almost the same because
PLOVER only transfers divergent pages. Therefore the
syncvm overhead becomes smaller when the number of
client increases.
PgSql is the only service for which PLOVER is slower

than COLO. COLO compares per-connection outputs be-
tween its primary and backup and skips syncvm if out-
puts did not diverge. PgSql ran SQL transaction work-
loads and its outputs were mostly the same. Except for
PgSql, PLOVER was several times faster than COLO.

To analyze COLO, we also looked into SSDB, which
had concurrent SET/GET requests. We found that
COLO’s output divergence was frequent when data de-
pendencies exist among connections (i.e., GET requests
frequently got different responses when SET and GET
requests on the same key arrived at SSDB concurrently).
When any output in any connection had an output diver-
gence, COLO did a syncvm. COLO evaluation shows that
it greatly slowed down when the number of client con-
nections was large. PLOVER is not sensitive to outputs.

Intuitively, STR should perform better than MC be-
cause it only transfers divergent dirty pages in syncvm.
However, our evaluation found that sometimes STR’s
throughput is lower than MC (e.g., 64 clients in Redis).
This comes from two aspects. First, STR uses a static
syncvm interval and this causes many divergent dirty
pages to be transferred. Second, compared to MC, STR
requires extra time to compute and compare dirty page
hashes.

All eight services’ unreplicated executions reach their
peak throughput on 64 clients except for PgSql; PgSql
reaches its peak throughput on 32 clients. For the re-
maining of the paper, we use the peak throughput points
of unreplicated executions of each service as our sample
points.

Figure 4 shows the response time of the four systems

490 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 100000

 200000

 300000

 400000

 500000

8 16 32 48 64 80

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(a) Redis

Unreplicated

Plover

COLO

MC

STR

 0

 10000

 20000

 30000

 40000

 50000

8 16 32 48 64 80 96 112

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(b) SSDB

 0

 3

 6

 9

 12

 15

8 16 32 48 64 80

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(c) MediaTomb

 0

 50

 100

 150

 200

 250

8 16 32 48 64 80

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(d) DjCMS

 0

 50

 100

 150

 200

 250

 300

8 16 32 48 64

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(e) pgsql

 0

 200

 400

 600

 800

 1000

8 16 32 48 64 80 96 112 128
th

ro
ug

hp
ut

 (r
eq

/s
ec

)
number of clients

(f) Tomcat

 0

 300

 600

 900

8 16 32 48 64 80 96 112 128

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(g) lighthttpd

 0

 20

 40

 60

 80

 100

 120

 140

 160

8 16 32 48 64 80

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(h) Node.js

Figure 3: Throughput comparison (4 vCPUs per VM). The error bars represent 95% confidence intervals about the mean.
For the remaining figures and tables, we use the peak throughput points of unreplicated executions as our sample points.

100

200

400

Redis SSDB MediaT DjCMS PGSQL Tomcat lighttpd Node.js

N
or

m
al

iz
ed

 L
at

en
cy

 (%
)

Plover

MC

STR

COLO

Figure 4: Response times normalized to unreplicated execu-
tions (4 vCPUs per VM). 100% means no overhead.
normalized to unreplicated executions. For six services
(excluding Redis and SSDB), PLOVER’s overhead of re-
sponse time follows the same trend as the overhead of
throughput because each client connection in these six
services sends requests one by one. For Redis and SSDB,
because the requests arrive in batches in order to saturate
the two services, all four systems incur high overhead on
response time. Specifically, PLOVER incurred the highest
latency overhead for SSDB, because its same dirty page
rate was only 77% (Table 3).

Figure 5 explains why PLOVER’s performance was
higher. PLOVER consumes 9.2X less bandwidth than
MC, STR, and COLO on average. This reduction makes
PLOVER the first VM fault-tolerance system that sup-
ports consolidating multiple VMs on a host (§6.4).

0

1

2

3

4

5

6

7

8

Redis SSDB MediaT DjCMS PGSQL Tomcat lighttpd Node.js

N
et

w
or

k
B

an
dw

id
th

 C
on

su
m

pt
io

n
(G

bp
s)

Plover

MC

STR

COLO

Figure 5: PLOVER network bandwidth consumption com-
pared with STR, MC and COLO (four vCPUs per VM).

To understand PLOVER’s performance, Table 3 shows
its micro events. For all evaluated services, we ob-
served that 72%∼97% pages between leader and sec-

ondary were the same. This greatly reduced page trans-
ferring time, a major performance bottleneck in primary-
backup systems such as MC. The time between every
two syncvm operations largely varied, which reflects that
PLOVER can automatically detect service idle time (§5.1)
for diverse workloads.

Table 4 shows that MC-25ms and MC-100ms have
similar performance: a larger syncvm time slot accu-
mulates more dirty pages, and thus much longer copy
time and transfer time (§3.3). Combining Table 3 and Ta-
ble 4 explains why PLOVER was much faster than MC:
PLOVER only needs to transfer 3%∼ 28% of dirty pages.

The results of STR-25ms and STR-100ms are similar.
In our experiments, the throughput difference between
these two systems was 18% on average. This is because
STR uses a static syncvm interval, in which primary and
secondary process different number of client requests.
As a result, both STR-25ms and STR-100ms have low
same dirty page rate and need to transfer most of the
dirty pages. Therefore, we only focus on evaluating MC-
100ms and STR-25ms (their own default settings) in the
following sections.

To evaluate the effectiveness of RDMA in PLOVER’s
implementation, we changed PLOVER’s dirty page
bitmap and divergent page transfer mechanisms from
RDMA to TCP (PLOVER-TCP). We ran the 8 ser-
vices with PLOVER-TCP and found that, compared to
PLOVER, PLOVER-TCP’s overall throughput dropped
by 2.1% ∼ 9.8%. We found that PLOVER-TCP in-
creased the time spent in the two transfer mechanisms
by 35.1% ∼ 74.2%. Because neither of the two mecha-
nisms is PLOVER’s performance bottleneck, PLOVER’s
high performance mainly stems from greatly reducing
the pages that need to be transferred rather than RDMA.

We also evaluated PLOVER scalability on up to 16
vCPUs per VM. Figure 6 shows the scalability results
on four services, normalized to PLOVER throughput on
four vCPUs. The throughputs of the other four services
were not scalable to multi-core (e.g., PgSql is I/O bound
and its throughput increased by only 14.7% when we
changed the number of vCPUs per VM from 4 to 16),

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 491

Service Compute Compare Trans Interval Page Same
Redis 3.5ms 1.9ms 2.8ms 153ms 13.5k 93%
SSDB 2.3ms 1.4ms 6.2ms 180ms 9.1k 77%
MediaT 7.9ms 4.0ms 17.1ms 914ms 29.2k 86%
DjCMS 0.9ms 1.3ms 3.3ms 90ms 3.6k 74%
PgSql 2.8ms 1.5ms 8.3ms 93ms 11.1k 76%
Tomcat 1.1ms 0.6ms 3.6ms 78ms 4.3k 72%
lighttpd 9.4ms 5.0ms 2.8ms 86ms 33.9k 97%
Node.js 9.6ms 5.5ms 28.8ms 375ms 37.8k 74%

Table 3: PLOVER performance analysis for each syncvm op-
eration (on average). “Compute” means the time of comput-
ing hashes for dirty pages; “Compare” means the time of
comparing hashes between leader and secondary; “Trans”
means the time of transferring divergent pages; “Interval”
means the time between two syncvm detected by PLOVER
(§4.3); “Page” means the number of dirty pages in each
syncvm; “Same” means the same rate of dirty pages.

MC-25ms MC-100ms
Program Page Copy Transfer Page Copy Transfer
Redis 6.1k 6.6ms 30.2ms 11.0k 11.9ms 35.1ms
SSDB 2.7k 2.9ms 7.8ms 4.8k 5.2ms 20.0ms
mediaT 4.6k 5.1ms 20.5ms 3.8k 4.2ms 16.5ms
DjCMS 2.8k 3.1ms 9.0ms 3.8k 4.1ms 13.2ms
PgSql 7.9k 8.5ms 39.0ms 8.2k 8.9ms 40.9ms
Tomcat 6.5k 6.5ms 15.6ms 12.2k 13.2ms 39.8ms
lighttpd 33.3k 23.9ms 53.5ms 33.9k 11.6ms 55.7ms
Node.js 11.3k 11.6ms 36.7ms 21.3k 14.9ms 42.5ms

Table 4: MC performance analysis for each syncvm oper-
ation (on average) with 25ms and 100ms time slot. “Page”
means the number of dirty pages in each syncvm; “Copy”
means the time for copying dirty pages (§3.3); “Transfer”
means the time for transferring ditry pages.
so the four services do not need the 16-vCPU speedup.
Overall, PLOVER scaled well for all four services, and its
throughput was 3.8X higher than MC, STR, and COLO
on 16-vCPU VMs. When the number of virtual CPUs
increased from 1 to 16, the throughput for COLO, STR,
and MC reached a bottleneck at 4 cores and even dropped
for SSDB and MediaTomb. Prior study [36, 40, 42] points
out a main reason of this huge drop: the number of dirty
pages a primary-backup approach has to transfer will in-
crease greatly when more vCPUs are added into one VM.

10
0%

1 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of vCPUs

(a) SSDB

Plover
MC

COLO
STR

10
0%

1 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of vCPUs

(b) Mediatomb

Plover
MC

COLO
STR

10
0%

1 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of vCPUs

(c) Tomcat

Plover
MC

COLO
STR

10
0%

1 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of vCPUs

(d) lighttpd

Plover
MC

COLO
STR

Figure 6: Throughput scalability on the number of vCPUs
per VM, normalized to PLOVER’s 4-vCPU throughput. The
more vCPUs per VM, the faster PLOVER than STR, MC
and COLO.

6.3 Effectiveness of PLOVER Reduction Techniques

PLOVER’s high performance is mainly brought by two
techniques: same total order of inputs and efficiently de-
termining service idle time (§4.3). To assess their effec-
tiveness, we used three plans.

First (Plan1), we implemented a per-TCP-connection
input forwarding mechanism between leader and sec-
ondary to order each TCP connection separately and used
a 25ms syncvm time slot. Second (Plan2), we enforced
a total order of inputs for all connections between leader
and secondary, and used a 25ms syncvm time slot. Third
(Plan3), we ran the full PLOVER.

For all three plans, we measured Same Dirty Page Rate
(SDPR): the percentage of same dirty physical pages be-
tween two replicas. The difference between Plan1 and
Plan2 shows the effectiveness of total ordering of net-
work inputs between leader and secondary. The differ-
ence between Plan2 and Plan3 (PLOVER) shows the
effectiveness of determining service idle time. When
PLOVER is configured with a static syncvm interval
(25ms), it has an average of 5.1% higher SDPR than
Plan2. This shows that using PAXOS instead of STR to
order network inputs incurs only a small cost.

Figure 7 shows that, the SDPR for 8 services differed
by 25.5% on average between Plan1 and Plan2, and the
difference between Plan2 and Plan3 was 29.2% on aver-
age. Both PLOVER’s two techniques were quite effective
on improving SDPR and the performance of services.

0

10

20

30

40

50

60

70

80

90

100

Redis SSDB MediaT DjCMS PGSQL Tomcat lighttpd Node.js

S
am

e
D

irt
y

P
ag

e
R

at
e

(S
D

P
R

) (
%

) Plan1 (25ms syncvm)

Plan2 (total order + 25ms syncvm)

Plan3 (total order + adaptive syncvm)

Figure 7: Effectiveness of PLOVER techniques on reducing
divergent pages.

6.4 CPU Footprint and Consolidation

Figure 8 shows PLOVER’s CPU footprint on the 8 ser-
vices compared with unreplicated execution in KVM,
MC and COLO. STR’s CPU footprint is not included
in the figure because it is similar to PLOVER’s. Both
PLOVER and COLO let their leaders and secondaries exe-
cute clients’ requests concurrently. MC’s secondary does
not execute clients’ requests but is busy applying updated
states. Different from COLO and MC, PLOVER has a wit-
ness which consumed 7% ∼ 15% CPU to agree on net-
work inputs without executing them.

Except for Redis, PLOVER’s leader and secondary in-
curred 2.7%∼ 9.2% and 5.3%∼ 18.3% more CPU than

492 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

unreplicated executions, including computing hashes,
comparing hashes and transferring divergent pages.
PLOVER’s CPU footprint was not significant for two
reasons. First, computing hash for each page only took
6.3µs. Second, by transferring only divergent pages,
PLOVER saved much CPU on transferring pages. For
Redis, all three systems incurred obvious CPU footprint
because Redis is single threaded, so its unreplicated ex-
ecution only used 1 out of the 4 vCPUs.

We also evaluated PLOVER’s performance on VM con-
solidation. We deployed one to five PLOVER leader VMs
(each with 4 vCPUs) on a 24-core host, ran PgSql in
each VM, and spawned the same number of clients for
each VM. We found the total throughputs of all VMs in
the host increased from 230 (one VM) to 1089 requests/s
(five VMs) and the network bandwidth consumption in-
creased from 1.8 Gbps to 10.1 Gbps. These results sug-
gest that PLOVER is friendly to consolidating multiple
fault-tolerant VMs on the same host due to its greatly re-
duced network bandwidth consumption compared to MC
and COLO. Neither MC [13] nor COLO [38] evaluated
consolidation. vSphereFT-6.5 [5] currently supports up
to two 4-vCPU VMs on each physical host.

0

100

200

300

400

500

600

700

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

C
P

U
 U

sa
ge

 (%
)

Leader or UnRep

Secondary or Backup

Plover’s Witness

Node.jslighttpdTomcatPgSQLDjCMSMediaTSSDBRedis

Figure 8: CPU footprint on 4-vCPU VMs. “UnRep” means
unreplicated execution. PLOVER has 3 replicas; MC and
COLO have 2. PLOVER and COLO have similar footprint.

6.5 Handling Hardware Failures

We measured the performance of PLOVER when various
failures happened. We killed the leader, secondary, and
witness in each experiment and monitored the real-time
throughput of Redis. When the witness was killed, we
did not observe performance impacts for Redis.

Figure 9 shows Redis’s throughput fluctuation when
we killed the leader at the 3rd second and then added a
new replica after a few seconds. The APUS leader elec-
tion protocol [92] employed by PLOVER took a 100ms
timeout to detect the leader’s failure and 16.3µs to elect
the secondary as the new leader. Then the new leader did
a full VM migration to make the witness’s guest VM up-
to-date, which took about 2.8s. We also partitioned the
leader out and then added it back after a second, and we

found the new leader was elected almost as quickly as
the leader’s failure case without having a split-brain is-
sue. Unlike existing SMR systems [35, 74] which need
complex mechanisms to find the new leader’s IP address,
clients were not perturbed during a PLOVER leader elec-
tion because VSMR replicates an entire guest VM (in-
cluding its IP address) as a state machine.

0

200K

250K

300K

350K

400K

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

/ s
ec

)

Time (sec)

Figure 9: Redis’s performance on handling PLOVER’s
leader failure and adding a new replica.

6.6 Lessons Learned

We found VM a promising abstraction to enforce same
executions among SMR replicas. This owes to three main
reasons. First, the VM abstraction can efficiently and sys-
tematically capture state changes in the guest OS, includ-
ing both userspace and kernel memory. We also found
VM useful on synchronizing systems nondeterminism
(e.g., enforcing same physical times and ASLR layouts)
across our replicas. Second, a VM carries a rich set of
management primitives (e.g., migration), which makes
SMR recovery easy to implement.

Third, a VM itself has several transparency features
that SMR needs. For instance, the same VM replicated
on different physical hosts can maintain the same IP
and MAC addresses, making client connections transpar-
ently switch to the new PLOVER leader if current leader
fails. In contrast, traditional SMR implementations (e.g.,
Raft [74]) require complex mechanisms to find the new
leader. In this regard, VSMR makes SMR simpler.

PLOVER has two limitations. First, it requires the
leader VM and the secondary VM to occupy the same
amount of computation resources, so that they can fin-
ish processing current requests roughly at the same time
and do syncvm efficiently. We deemed this requirement
reasonable due to three reasons: (1) it is much easier
to achieve in VM deployments than on bare-metal, be-
cause VMs have performance isolation and they will not
overuse resources; (2) PLOVER has greatly reduced net-
work bandwidth consumption, a major resource that may
cause performance contention among VMs on the same
host; and (3) requiring primary and backup to run on
roughly the same amount of computation resources is a
common requirement in primary-backup systems [17].

Second, as an SMR approach, VSMR requires three
replicas and thus it consumes more CPU than primary-
backup systems. Our evaluation shows that PLOVER’s
CPU consumption is compatible to COLO, about twice as

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 493

big as unreplicated executions. Nevertheless, PLOVER’s
robust fault-tolerance, modest performance overhead,
and low network bandwidth consumption could make its
extra CPU usage worthwhile.

7 Related Work
VM-based Fault-tolerance. Existing VM-based fault-
tolerance systems [13, 36, 42, 62–64, 82] typically take
the primary-backup approach: they propagate incremen-
tal updates from the primary VM to the backup VM.
Primary-backup is more scalable than the log-replay
[83] approach on multi-core because the latter needs
to record exact interleavings of shared memory ac-
cess. However, all typical VM fault-tolerance systems
(REMUS, COLO, MC and vSphereFT) evaluated up to
4 vCPUs per VM. As most programs scale to more and
more cores and access increasingly larger memory work-
ing set, transferring these dirty pages becomes a noto-
rious problem [36, 38, 42] for the primary-backup ap-
proach, greatly degrading program performance and hi-
jacking excessive network bandwidth.

Four recent papers aim to alleviate the open problem.
First, COLO [38] lets primary and backup compare per-
TCP-connection outputs and avoid dirty page propaga-
tion if no outputs diverge. COLO has effectively scaled
the Remus-based approach to up to four vCPUs per VM.
As shown in both COLO’s and our evaluation, when the
number of client connections is large or when data de-
pendency among connections exists, COLO does many
more syncvm operations than REMUS. PLOVER is not
sensitive to output divergence.

Second, Gerofi et al. [42] shows that using copy-on-
write during the dirty memory copying (tcopy in §3.3),
primary-backup can resume VMs faster than REMUS;
this work also shows that using a 10Gbps RDMA NIC
can transfer dirty page faster than using a 1Gbps Ethernet
NIC. Another latest work [82] also shows that RDMA
can mitigate tcopy. These two works [42, 82] are comple-
mentary to PLOVER because PLOVER focuses on greatly
reducing the amount of transferred dirty pages.

Third, Adaptive-Remus [37] shows that REMUS can
monitor its output buffer and do a syncvm once notic-
ing outputs. This work improves REMUS’s performance
by 29% when the number of client connections was
small. However, with many connections, it will invoke
a syncvm for almost every network output and incur pro-
hibitive performance overhead.

Fourth, Tardigrade [62] uses lightweight VM (LVMs)
to decrease the memory footprint on the primary to re-
duce checkpoint costs. On the other hand, PLOVER fo-
cuses on transferring only the divergent pages between
primary and secondary to alleviate the checkpoint over-
head. Besides, Tardigrade typically runs a single-process
application, while PLOVER runs multiple processes (pro-

grams) in a guest VM.
State Machine Replication (SMR). Fault-tolerance is
an essential technique in distributed systems [27, 29, 68].
SMR [68] is a powerful fault-tolerance technique: it typ-
ically uses PAXOS [55, 56, 68, 71, 89]) to enforce a
total order of inputs for the replicated service, tolerat-
ing various failures. Many PAXOS implementation pro-
tocols [30, 31, 35, 68] exist. Consensus is widely used in
datacenters [19, 49, 94] and worldwide Internet [33, 65].
Much work is done to improve specific aspects, includ-
ing commutativity [66, 71], understandability [56, 74],
and verification [44, 93].

To make SMR work with modern parallel programs,
extra mechanisms are needed to ensure same program
executions across replicas. Existing SMR systems pro-
pose a few fast mechanisms, including annotating global
variables in program code [50] and enforcing same order
of inter-thread synchronization [35, 45]. These mecha-
nisms have shown reasonable performance on real-world
programs, but they may require developer intervention
(e.g., incorrect annotation or data races). Moreover, these
mechanisms only enforce best-effort determinisms on
userspace, not in kernel. PLOVER implements the new
VSMR approach to realize an automatic, faster, and more
scalable SMR system.
Multi-core Replay. Deterministic replay [25, 39–41, 46,
53, 54, 70, 75, 84, 90] aims to replay the exact recorded
executions. Scribe tracks page ownership to enforce de-
terministic memory access [54]. Respec [57] uses online
replay to keep multiple replicas of a multithreaded pro-
gram in sync. In these record-replay systems, a false-
sharing problem exists: recording becomes expensive
even if multiple threads access different portions of same
page. As most false-shared pages should have same con-
tents, PLOVER may mitigate this problem.

8 Conclusion
We have presented VSMR, a novel SMR approach that
makes VM fault-tolerance much faster and more scal-
able on multi-core. We have described PLOVER, the first
VSMR system implementation and its evaluation on a
wide range of real-world server programs and services.
PLOVER runs several times faster than three popular
primary-backup systems and it saves much bandwidth.
PLOVER has the potential to greatly improve the reliabil-
ity of real-world online services, and it can be applied to
other research areas (e.g., multi-core replay).

Acknowledgments
We thank Jay Lorch (our shepherd) and anonymous re-
viewers for their many helpful comments. This paper is
funded in part by a research grant from the Huawei In-
novation Research Program (HIRP) 2017, HK RGC ECS
(No. 27200916), HK RGC GRF (No. 17207117), and a
Croucher innovation award.

494 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Adding watermarks to images using alpha

channels. http://php.net/manual/en/
image.examples-watermark.php.

[2] An Introduction to the InfiniBand Architec-
ture. http://buyya.com/superstorage/
chap42.pdf.

[3] Apache tomcat. http://tomcat.apache.
org/.

[4] Comparison of 40G RDMA and Traditional
Ethernet Technologies. https://www.nas.
nasa.gov/assets/pdf/papers/40_Gig_
Whitepaper_11-2013.pdf.

[5] Configuration Maximums (vSphere 6.5). https:
//www.vmware.com/pdf/vsphere6/r65/
vsphere-65-configuration-maximums.
pdf.

[6] Data Plane Development Kit (DPDK). http://
dpdk.org/.

[7] django cms - enterprise content management with
django. https://www.django-cms.org/
en/.

[8] Django fluent dashboard. https:
//github.com/django-fluent/
django-fluent-dashboard.

[9] Fault Tolerance Performance in vSphere
6. https://blogs.vmware.
com/performance/2016/01/
vsphere6-fault-tolerance-perf.
html.

[10] Implementing TCP Sockets over RDMA.
https://www.openfabrics.org/
images/eventpresos/workshops2014/
IBUG/presos/Thursday/PDF/09_
Sockets-over-rdma.pdf.

[11] Mellanox Products: RDMA over Converged Ether-
net (RoCE). http://www.mellanox.com/
page/products_dyn?product_family=
79.

[12] Pokdex messenger bot for pokmon go. https:
//github.com/zwacky/pokedex-go.

[13] QEMU MicroCheckpoint. https:
//wiki.qemu.org/Features/
MicroCheckpointing.

[14] RDMA migration and rdma fault tolerance for
QEMU. http://www.linux-kvm.org/
images/0/09/Kvm-forum-2013-rdma.
pdf.

[15] Simple shopping store. https:
//github.com/SaiUpadhyayula/
SimpleShoppingStore.

[16] VMware End User License Agreements.
http://www.vmware.com/download/
eula.html.

[17] VMware vSphere 6 Fault Tolerance: Archi-
tecture and Performance. http://www.
vmware.com/files/pdf/techpaper/
VMware-vSphere6-FT-arch-perf.pdf.

[18] Which Hardware Fails the Most and Why.
http://www.storagecraft.com/blog/
hardware-failure/.

[19] Why the data center needs an operating system.
https://cs.stanford.edu/˜matei/
papers/2011/hotcloud_datacenter_
os.pdf.

[20] Huawei FusionSphere. https://www.
youtube.com/watch?v=yvsVuLAOhCo,
2014.

[21] MediaTomb - Free UPnP MediaServer. http://
mediatomb.cc/, 2014.

[22] MySQL Database. http://www.mysql.
com/, 2014.

[23] Intermediate Course In Operating System:
High Availability. www.cs.cornell.edu/
ken/book/New%20514%20slide%20set/
12-HighAvailability.ppt, 2015.

[24] The OTHER way of recovering
from VMware ESXi Split Brain.
https://www.pei.com/2017/02/
way-recovering-vmware-esxi-split-brain/,
2017.

[25] G. Altekar and I. Stoica. ODR: output-
deterministic replay for multicore debugging. In
Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles (SOSP ’09), pages 193–
206, Oct. 2009.

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In SOSP ’03: Pro-
ceedings of the nineteenth ACM symposium on Op-
erating systems principles, pages 164–177, 2003.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 495

http://php.net/manual/en/image.examples-watermark.php
http://php.net/manual/en/image.examples-watermark.php
http://buyya.com/superstorage/chap42.pdf
http://buyya.com/superstorage/chap42.pdf
http://tomcat.apache.org/
http://tomcat.apache.org/
 https://www.nas.nasa.gov/assets/pdf/papers/40_Gig_Whitepaper_11-2013.pdf
 https://www.nas.nasa.gov/assets/pdf/papers/40_Gig_Whitepaper_11-2013.pdf
 https://www.nas.nasa.gov/assets/pdf/papers/40_Gig_Whitepaper_11-2013.pdf
 https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf
 https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf
 https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf
 https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf
http://dpdk.org/
http://dpdk.org/
https://www.django-cms.org/en/
https://www.django-cms.org/en/
https://github.com/django-fluent/django-fluent-dashboard
https://github.com/django-fluent/django-fluent-dashboard
https://github.com/django-fluent/django-fluent-dashboard
 https://blogs.vmware.com/performance/2016/01/vsphere6-fault-tolerance-perf.html
 https://blogs.vmware.com/performance/2016/01/vsphere6-fault-tolerance-perf.html
 https://blogs.vmware.com/performance/2016/01/vsphere6-fault-tolerance-perf.html
 https://blogs.vmware.com/performance/2016/01/vsphere6-fault-tolerance-perf.html
 https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursda y/PDF/09_Sockets-over-rdma.pdf
 https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursda y/PDF/09_Sockets-over-rdma.pdf
 https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursda y/PDF/09_Sockets-over-rdma.pdf
 https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursda y/PDF/09_Sockets-over-rdma.pdf
http://www.mellanox.com/page/products_dyn?product_family=79
http://www.mellanox.com/page/products_dyn?product_family=79
http://www.mellanox.com/page/products_dyn?product_family=79
https://github.com/zwacky/pokedex-go
https://github.com/zwacky/pokedex-go
 https://wiki.qemu.org/Features/MicroCheckpointing
 https://wiki.qemu.org/Features/MicroCheckpointing
 https://wiki.qemu.org/Features/MicroCheckpointing
 http://www.linux-kvm.org/images/0/09/Kvm-forum-2013-rdma.pdf
 http://www.linux-kvm.org/images/0/09/Kvm-forum-2013-rdma.pdf
 http://www.linux-kvm.org/images/0/09/Kvm-forum-2013-rdma.pdf
https://github.com/SaiUpadhyayula/SimpleShoppingStore
https://github.com/SaiUpadhyayula/SimpleShoppingStore
https://github.com/SaiUpadhyayula/SimpleShoppingStore
 http://www.vmware.com/download/eula.html
 http://www.vmware.com/download/eula.html
 http://www.vmware.com/files/pdf/techpaper/VMware-vSphere6-FT-arch-perf.pdf
 http://www.vmware.com/files/pdf/techpaper/VMware-vSphere6-FT-arch-perf.pdf
 http://www.vmware.com/files/pdf/techpaper/VMware-vSphere6-FT-arch-perf.pdf
 http://www.storagecraft.com/blog/hardware-failure/
 http://www.storagecraft.com/blog/hardware-failure/
 https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
 https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
 https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
https://www.youtube.com/watch?v=yvsVuLAOhCo
https://www.youtube.com/watch?v=yvsVuLAOhCo
http://mediatomb.cc/
http://mediatomb.cc/
http://www.mysql.com/
http://www.mysql.com/
www.cs.cornell.edu/ken/book/New%20514%20slide%20set/12-HighAvailability.ppt
www.cs.cornell.edu/ken/book/New%20514%20slide%20set/12-HighAvailability.ppt
www.cs.cornell.edu/ken/book/New%20514%20slide%20set/12-HighAvailability.ppt
https://www.pei.com/2017/02/way-recovering-vmware-esxi-split-brain/
https://www.pei.com/2017/02/way-recovering-vmware-esxi-split-brain/

[27] K. P. Birman. Replication and fault-tolerance in the
isis system. In Proceedings of the Tenth ACM Sym-
posium on Operating Systems Principles, SOSP
’85, 1985.

[28] W. J. Bolosky and M. L. Scott. False sharing and its
effect on shared memory performance. In USENIX
Systems on USENIX Experiences with Distributed
and Multiprocessor Systems - Volume 4, Sedms’93,
1993.

[29] T. C. Bressoud and F. B. Schneider. Hypervisor-
based fault tolerance. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles
(SOSP ’95), Dec. 1995.

[30] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
Seventh Symposium on Operating Systems Design
and Implementation (OSDI ’06), pages 335–350,
2006.

[31] T. D. Chandra, R. Griesemer, and J. Redstone.
Paxos made live: An engineering perspective. In
Proceedings of the Twenty-sixth Annual ACM Sym-
posium on Principles of Distributed Computing
(PODC ’07), Aug. 2007.

[32] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migra-
tion of virtual machines. In Proceedings of the 2Nd
Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05,
2005.

[33] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig,
Y. Saito, M. Szymaniak, C. Taylor, R. Wang,
and D. Woodford. Spanner: Google’s globally-
distributed database. In Proceedings of the 12th
Symposium on Operating Systems Design and Im-
plementation (OSDI ’16), Oct. 2012.

[34] A. Corradi, M. Fanelli, and L. Foschini. Vm con-
solidation: A real case based on openstack cloud.
Future Gener. Comput. Syst., Mar. 2014.

[35] H. Cui, R. Gu, C. Liu, and J. Yang. Paxos made
transparent. In Proceedings of the 25th ACM Sym-
posium on Operating Systems Principles (SOSP
’15), Oct. 2015.

[36] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: High

availability via asynchronous virtual machine repli-
cation. In Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation, pages 161–174. San Francisco, 2008.

[37] M. P. da Silva, R. R. Obelheiro, and G. P. Koslovski.
Adaptive remus: adaptive checkpointing for xen-
based virtual machine replication. International
Journal of Parallel, Emergent and Distributed Sys-
tems, 32(4):348–367, 2017.

[38] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and
H. Guan. Colo: Coarse-grained lock-stepping vir-
tual machines for non-stop service. In Proceedings
of the 4th Annual Symposium on Cloud Computing,
SOCC ’13, 2013.

[39] G. Dunlap, S. T. King, S. Cinar, M. Basrat, and
P. Chen. ReVirt: enabling intrusion analysis
through virtual-machine logging and replay. In
Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI ’02),
pages 211–224, Dec. 2002.

[40] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman,
and P. M. Chen. Execution replay of multiproces-
sor virtual machines. In Proceedings of the 4th In-
ternational Conference on Virtual Execution Envi-
ronments (VEE ’08), pages 121–130, Mar. 2008.

[41] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and
I. Stoica. Friday: global comprehension for dis-
tributed replay. In Proceedings of the Fourth Sym-
posium on Networked Systems Design and Imple-
mentation (NSDI ’07), Apr. 2007.

[42] B. Gerofi and Y. Ishikawa. Rdma based replica-
tion of multiprocessor virtual machines over high-
performance interconnects. In Proceedings of the
2011 IEEE International Conference on Cluster
Computing, CLUSTER ’11, 2011.

[43] https://github.com/google/
cityhash.

[44] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and
L. Zhang. Practical software model checking via
dynamic interface reduction. In Proceedings of the
23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP ’11), pages 265–278, Oct. 2011.

[45] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and
L. Zhuang. Rex: Replication at the speed of multi-
core. In Proceedings of the 2014 ACM European
Conference on Computer Systems (EUROSYS ’14),
page 11. ACM, 2014.

496 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 https://github.com/google/cityhash
 https://github.com/google/cityhash

[46] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu,
M. F. Kaashoek, and Z. Zhang. R2: An application-
level kernel for record and replay. In Proceedings
of the Eighth Symposium on Operating Systems De-
sign and Implementation (OSDI ’08), pages 193–
208, Dec. 2008.

[47] D. Gupta, L. Cherkasova, R. Gardner, and A. Vah-
dat. Enforcing performance isolation across vir-
tual machines in xen. In Proceedings of the
ACM/IFIP/USENIX 2006 International Conference
on Middleware, Middleware ’06, 2006.

[48] M. D. Hill and M. Xu. Racey: A stress test for de-
terministic execution. http://www.cs.wisc.
edu/˜markhill/racey.html, 2009.

[49] B. Hindman, A. Konwinski, M. Zaharia, A. Gh-
odsi, A. D. Joseph, R. Katz, S. Shenker, and I. Sto-
ica. Mesos: A platform for fine-grained resource
sharing in the data center. In Proceedings of the
8th USENIX conference on Networked Systems De-
sign and Implementation, NSDI’11, Berkeley, CA,
USA, 2011. USENIX Association.

[50] M. Kapritsos, Y. Wang, V. Quema, A. Clement,
L. Alvisi, M. Dahlin, et al. All about eve: Execute-
verify replication for multi-core servers. In Pro-
ceedings of the Tenth Symposium on Operating Sys-
tems Design and Implementation (OSDI ’12), vol-
ume 12, pages 237–250, 2012.

[51] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and
G. Candea. Failure sketching: A technique for au-
tomated root cause diagnosis of in-production fail-
ures. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles (SOSP ’15), Oct.
2015.

[52] http://www.linux-kvm.org/.

[53] R. Konuru, H. Srinivasan, and J.-D. Choi. Deter-
ministic replay of distributed Java applications. In
Proceedings of the 14th International Symposium
on Parallel and Distributed Processing (IPDPS
’00), pages 219–228, May 2000.

[54] O. Laadan, N. Viennot, and J. Nieh. Transparent,
lightweight application execution replay on com-
modity multiprocessor operating systems. In Pro-
ceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS ’10), pages 155–166, June 2010.

[55] L. Lamport. Paxos made simple.
http://research.microsoft.com/
en-us/um/people/lamport/pubs/
paxos-simple.pdf.

[56] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[57] D. Lee, B. Wester, K. Veeraraghavan,
S. Narayanasamy, P. M. Chen, and J. Flinn.
Respec: efficient online multiprocessor replayvia
speculation and external determinism. In Fifteenth
International Conference on Architecture Support
for Programming Languages and Operating
Systems (ASPLOS ’10), pages 77–90, Mar. 2010.

[58] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Fast replication with nopaxos: Re-
placing consensus with network ordering. In Pro-
ceedings of the 12th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’16), Nov.
2016.

[59] https://www.lighttpd.net/.

[60] T. Liu, C. Curtsinger, and E. D. Berger.
DTHREADS: efficient deterministic multithread-
ing. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11),
pages 327–336, Oct. 2011.

[61] T. Liu, C. Tian, Z. Hu, and E. D. Berger. Predator:
Predictive false sharing detection. SIGPLAN Not.,
49(8), Feb. 2014.

[62] J. R. Lorch, A. Baumann, L. Glendenning, D. T.
Meyer, and A. Warfield. Tardigrade: Leverag-
ing lightweight virtual machines to easily and
efficiently construct fault-tolerant services. In
Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’15, 2015.

[63] M. Lu and T.-c. Chiueh. Fast memory state syn-
chronization for virtualization-based fault toler-
ance. In Dependable Systems & Networks, 2009.
DSN’09. IEEE/IFIP International Conference on,
pages 534–543. IEEE, 2009.

[64] M. Lu and T.-c. Chiueh. Speculative memory state
transfer for active-active fault tolerance. In Pro-
ceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(Ccgrid 2012), CCGRID ’12, 2012.

[65] Y. Mao, F. P. Junqueira, and K. Marzullo. Men-
cius: building efficient replicated state machines for
wans. In Proceedings of the 8th USENIX confer-
ence on Operating systems design and implementa-
tion, volume 8, pages 369–384, 2008.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 497

http://www.cs.wisc.edu/~markhill/racey.html
http://www.cs.wisc.edu/~markhill/racey.html
http://www.linux-kvm.org/
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
https://www.lighttpd.net/

[66] P. J. Marandi, C. E. Bezerra, and F. Pedone. Re-
thinking state-machine replication for parallelism.
In Proceedings of the 2014 IEEE 34th Interna-
tional Conference on Distributed Computing Sys-
tems, ICDCS ’14, 2014.

[67] A. J. Mashtizadeh, T. Garfinkel, D. Terei,
D. Mazieres, and M. Rosenblum. Towards practical
default-on multi-core record/replay. In Proceedings
of the Twenty-Second International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, 2017.

[68] D. Mazieres. Paxos made practical. Technical re-
port, Technical report, 2007. http://www. scs. stan-
ford. edu/dm/home/papers, 2007.

[69] C. Mitchell, Y. Geng, and J. Li. Using one-sided
rdma reads to build a fast, cpu-efficient key-value
store. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ’14), June 2013.

[70] P. Montesinos, M. Hicks, S. T. King, and J. Tor-
rellas. Capo: a software-hardware interface for
practical deterministic multiprocessor replay. In
Fourteenth International Conference on Architec-
ture Support for Programming Languages and Op-
erating Systems (ASPLOS ’09), pages 73–84, Mar.
2009.

[71] I. Moraru, D. G. Andersen, and M. Kaminsky.
There is more consensus in egalitarian parliaments.
In Proceedings of the 13th ACM Symposium on Op-
erating Systems Principles (SOSP ’91), Nov. 2013.

[72] M. Nelson, B.-H. Lim, and G. Hutchins. Fast trans-
parent migration for virtual machines. In Proceed-
ings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’05, 2005.

[73] Nginx web server. https://nginx.org/,
2012.

[74] D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In Proceed-
ings of the USENIX Annual Technical Conference
(USENIX ’14), June 2014.

[75] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik,
K. H. Lee, and S. Lu. PRES: probabilistic replay
with execution sketching on multiprocessors. In
Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles (SOSP ’09), pages 177–
192, Oct. 2009.

[76] S. Pertet and P. Narasimhan. Causes of failure in
web applications (cmu-pdl-05-109). Parallel Data
Laboratory, page 48, 2005.

[77] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-
rakis: The operating system is the control plane. In
Proceedings of the Eleventh Symposium on Oper-
ating Systems Design and Implementation (OSDI
’14), Oct. 2014.

[78] M. Poke and T. Hoefler. Dare: High-performance
state machine replication on rdma networks. In
Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed
Computing, HPDC ’15, 2015.

[79] Postgresql. https://www.postgresql.
org, 2012.

[80] http://www.qemu.org.

[81] http://redis.io/.

[82] V. A. Sartakov and R. Kapitza. Multi-site syn-
chronous vm replication for persistent systems with
asymmetric read/write latencies.

[83] D. J. Scales, M. Nelson, and G. Venkitachalam. The
design of a practical system for fault-tolerant vir-
tual machines. SIGOPS Oper. Syst. Rev., Dec. 2010.

[84] S. M. Srinivasan, S. Kandula, C. R. Andrews, and
Y. Zhou. Flashback: A lightweight extension for
rollback and deterministic replay for software de-
bugging. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’04), pages 29–44,
June 2004.

[85] ssdb.io/.

[86] R. E. Strom, D. F. Bacon, and S. Yemini. Volatile
logging in n-fault-tolerant distributed systems.
IBM Thomas J. Watson Research Division, 1987.

[87] S. Suneja, C. Isci, V. Bala, E. de Lara, and T. Mum-
mert. Non-intrusive, out-of-band and out-of-the-
box systems monitoring in the cloud. SIGMET-
RICS Perform. Eval. Rev., June 2014.

[88] S. Technologies. Transient error protection. 2005.

[89] R. Van Renesse and D. Altinbuken. Paxos made
moderately complex. ACM Computing Surveys
(CSUR), 47(3):42:1–42:36, 2015.

[90] http://www.vmware.com/solutions/
vla/.

[91] C. A. Waldspurger. Memory resource management
in VMware ESX server. In Proceedings of the Fifth
Symposium on Operating Systems Design and Im-
plementation (OSDI ’02), 2002.

498 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://nginx.org/
https://www.postgresql.org
https://www.postgresql.org
http://www.qemu.org
http://redis.io/
ssdb.io/
http://www.vmware.com/solutions/vla/
http://www.vmware.com/solutions/vla/

[92] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui.
APUS: Fast and scalable Paxos on RDMA. In Pro-
ceedings of the Eighth ACM Symposium on Cloud
Computing (Santa Clara, CA, USA, 2017.

[93] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang, and L. Zhou.
MODIST: Transparent model checking of unmod-
ified distributed systems. In Proceedings of the
Sixth Symposium on Networked Systems Design

and Implementation (NSDI ’09), pages 213–228,
Apr. 2009.

[94] M. Zaharia, B. Hindman, A. Konwinski, A. Gh-
odsi, A. D. Joesph, R. Katz, S. Shenker, and I. Sto-
ica. The datacenter needs an operating system. In
Proceedings of the 3rd USENIX Conference on Hot
Topics in Cloud Computing, 2011.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 499

Odin: Microsoft’s Scalable Fault-Tolerant CDN Measurement System

Matt Calder,†? Manuel Schröder,† Ryan Gao,† Ryan Stewart,† Jitendra Padhye†

Ratul Mahajan,# Ganesh Ananthanarayanan,† Ethan Katz-Bassett§

Microsoft† USC? Intentionet# Columbia University§

Abstract

Content delivery networks (CDNs) are critical for deliv-
ering high performance Internet services. Using world-
wide deployments of front-ends, CDNs can direct users
to the front-end that provides them with the best latency
and availability. The key challenges arise from the het-
erogeneous connectivity of clients and the dynamic na-
ture of the Internet that influences latency and availabil-
ity. Without continuous insight on performance between
users, front-ends, and external networks, CDNs will not
be able to attain their full potential performance.

We describe Odin, Microsoft’s Internet measure-
ment platform for its first-party and third-party cus-
tomers. Odin is designed to handle Microsoft’s large user
base and need for large-scale measurements from users
around the world. Odin integrates with Microsoft’s var-
ied suite of web-client and thick-client applications, all
while being mindful of the regulatory and privacy con-
cerns of enterprise customers. Odin has been operational
for 2 years. We present the first detailed study of an Inter-
net measurement platform of this scale and complexity.

1 Introduction
Content delivery networks (CDNs) are a key part of the
Internet ecosystem. The primary function of a CDN is
to deliver highly-available content at high performance.
To accomplish this, CDNs deploy Points of Presence
(PoPs) around the world that interconnect with other Au-
tonomous Systems (ASes) to provide short, high quality
paths between content and end users.

While a CDN’s goal is to deliver the best performance
to all users in a cost-effective manner, the dynamic, het-
erogeneous, and distributed nature of the Internet makes
this difficult. CDNs serve content to users all over the
world, across tens of thousands of ASes, using various
forms of Internet access and connection quality. User
performance is impacted by Internet routing changes,
outages, and congestion, all of which can be outside the
control of the CDN. Without constant insight into user
performance, a CDN can suffer from low availability and
poor performance. To gain insight into user performance,
CDNs need large-scale measurements for critical CDN
operations such as traffic management [1,2,3,4,5], Inter-
net path performance debugging [6, 7], and deployment
modeling [8].

Microsoft operates a CDN with over 100 PoPs around
the world to host applications critical to Microsoft’s busi-
ness such as Office, Skype, Bing, Xbox, and Windows
Update. This work presents our experience designing a
system to meet the measurement needs of Microsoft’s
global CDN. We first describe the key requirements
needed to support Microsoft’s CDN operations. Existing
approaches to collecting measurements were unsuitable
for at least one of two reasons:

• Unrepresentative performance. Existing approaches
lack coverage of Microsoft users or use measurement
techniques that do not reflect user performance.

• Insensitive to Internet events. Existing approaches
fail to offer high measurement volume, explicit outage
notification, and comparative measurements to satisfy
key Microsoft CDN use cases.

Next we present the design of Odin, our scalable,
fault-tolerant CDN measurement system. Odin issues
active measurements from popular Microsoft applica-
tions to provide high coverage of Internet paths from
Microsoft users. It measures to configurable endpoints,
which are hostnames or IP addresses of remote target
destinations and can be in Microsoft or external net-
works. Measurement allocation is controlled by a dis-
tributed web service, enabling many network experi-
ments to run simultaneously, tailoring measurements on
a per-use-case basis as necessary. Odin is able to collect
measurements even in the presence of Microsoft network
failures, by exploiting the high availability and path di-
versity offered by third party CDNs. Last, we demon-
strate that Odin enables important Microsoft CDN use
cases, including improving performance.

There are two key insights that make our design dis-
tinct and effective. Firstly, first-party CDNs have an
enormous advantage over third-party CDNs in gathering
rich measurement data from their own clients. Secondly,
integration with external networks provides a valuable
opportunity for rich path coverage to assist with network
debugging and for enabling fault-tolerance.

2 Background

This section provides background about content delivery
networks and Microsoft’s deployment.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 501

2.1 Content Delivery Networks

Architecture. A content delivery network (CDN)
has geographically distributed server clusters (known as
front-ends, edges, or proxies), each serving nearby users
to shorten paths and improve performance [3, 9, 10, 11]
(see Figure 1). Many front-ends are in CDN “points of
presence” (PoPs), physical interconnection points where
the CDN peers with other ISPs. CDNs typically de-
ploy PoPs at major metro areas. Some CDNs also de-
ploy front-ends in end-user networks or in datacenters. A
front-end serves cached content immediately and fetches
other content from a back-end. Back-ends can be com-
plex web applications. Some CDNs operate backbone
networks to interconnect PoPs and back-ends.

Figure 1: High-level architecture of many CDNs.

Microsoft’s CDN is a “hybrid cloud“ CDN, i.e., it is
used for both its own first-party content as well as for
other large third-party customers such as streaming ser-
vices and online newspapers.

CDN services. Two CDN services are relevant to
our paper. Front-ends cache static content such as im-
ages, JavaScript, CSS, and video. Front-ends also serve
as reverse proxies, terminating users’ TCP connections
and multiplexing the requests to the appropriate back-
ends via pre-established warm TCP connections [12,13].
The back-ends forward their responses back to the same
front-ends, which relay the responses to the users. Re-
verse proxies accelerate websites because shorter round-
trip times between clients and front-ends enable faster
congestion window growth and TCP loss recovery [9].

Client redirection. This work considers the two most
common redirection mechanisms CDNs use to direct a
client request to a front-end for latency sensitive traffic:
anycast and DNS. With both mechanisms, when a user
desires CDN-hosted content, it issues a request to its lo-
cal DNS resolver (LDNS) for the hostname of the con-
tent. The LDNS forwards the request to the CDN’s au-
thoritative DNS resolver, and the authoritative resolver
returns a record with an IP address of a front-end that
can serve the content. With anycast, this IP address
is announced by multiple PoPs, and BGP routes a re-
quest to a PoP based on BGP’s notion of best path. The

front-end collocated with that PoP then serves the re-
quest. With DNS-based redirection, the CDN’s author-
itative resolver returns an IP address for the particular
front-end the CDN wants to serve the user from. Be-
cause the request to the authoritative resolver generally
includes the LDNS (but not user’s) IP address, CDN per-
formance benefits from knowledge of which users the
LDNS serves (§8.1.1).

2.2 Microsoft’s network

Microsoft provides high performance and availability to
its customers using a global network with 100+ PoPs,
many datacenters, and a Microsoft-operated backbone
network interconnecting them. Microsoft operates two
types of datacenters. One set is Microsoft’s Azure pub-
lic cloud compute platform [14] which currently has 36
regions. The second consists of legacy datacenters, pre-
dating Azure. Third-party cloud tenants only run in the
Azure datacenters, whereas first-party services operated
by Microsoft run in both types. Figure 1 shows Azure
regions as “Cloud Back-ends” and private datacenters as
“Internal Back-ends”.

Redirection of first-party and third-party clients Mi-
crosoft currently runs two independent CDNs. A first-
party anycast CDN runs Microsoft services such as Bing,
Office, and XBox [15, 16]. It has more than 100 front-
end locations around the world, collocated with all PoPs
and several Microsoft public and private datacenters. The
second CDN is an Azure traffic management service of-
fered to Azure customers with applications deployed in
multiple regions. Whereas Microsoft’s first party CDN
uses anycast to steer clients, its Azure service uses DNS
to direct users to the lowest-latency region. After receiv-
ing the DNS response, users connect directly to an Azure
region.

2.3 Comparison to other CDNs

Microsoft’s architecture closely mirrors other CDNs, es-
pecially hybrid-cloud CDNs from Google and Amazon.
End-user applications. All three have web, mobile, and
desktop application deployments with large global user
bases. Google’s include the Chrome Browser, Android
OS, Search, YouTube, and Gmail. Amazon’s include the
Store, Audible, and Prime Video. Microsoft’s include
Office, Windows OS, Skype, and XBox.
CDN and cloud services. Like Microsoft, Amazon and
Google run multiple types of CDNs. Google runs a first-
party CDN [6, 7, 9], a third-party CDN [17], and appli-
cation load balancing across Google Cloud regions [18].
Amazon’s equivalent services are CloudFront [19] and
Route 53 [20]. Amazon Web Services [21] and Google
Cloud Platform [22] are similar to Microsoft Azure [14].
Amazon [10] and Google [23] also run backbone net-
works.

502 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Because of these similarities, we believe our goals, re-
quirements, and design are applicable to networks be-
yond Microsoft.

3 Goals and Requirements
We need measurements to support Microsoft’s CDN op-
erations and experimentation, leading to the following
goals and resulting requirements.

Goal-1: Representative performance reflecting what
users could achieve on current and alternate routes.

Requirement: High coverage of paths between Mi-
crosoft’s users and Microsoft is critical for traffic engi-
neering, alerts on performance degradation, and “what-
if” experimentation on CDN configurations, to avoid
limited or biased insight into the performance of our
network. In particular, our measurements should cover
paths to /24 prefixes that combine to account for 90% of
the traffic from Microsoft. In addition, they should cover
paths to 99% of designated “high revenue” /24 prefixes,
which primarily are enterprise customers.

Requirement: Coverage of paths between Microsoft
users and external networks to help detect whether a
problem is localized to Microsoft and to assess the per-
formance impact of expanding Microsoft’s footprint to
new sites. External networks may be any CDN, cloud
provider, or virtual private server hosting service.

Requirement: Measurements reflect user-perceived
performance, correlating with application metrics and re-
flecting failure scenarios experienced by production traf-
fic, to enable decisions that improve user experience.

Goal-2: Sensitive and quick detection of Internet
events.

Requirement: High measurement volume in order to
quickly detect events across a large number of users and
cloud endpoints, even if the events impact only a small
number. Without high measurements counts, events can
be missed entirely, or data quality can be too poor to
confidently make measurement-driven traffic engineer-
ing choices. A reasonable level of sensitivity is the abil-
ity to detect an availability incident that doubles the base-
line failure rate, e.g., from 0.1% to 0.2%. Figure 12 in
Appendix A shows, if we assume measurements fail in-
dependently according to a base failure rate, detecting
this change would require at least 700 measurements,
and detecting a change from 0.01% to 0.02% would re-
quire at least 7000 measurements. For confidentiality
reasons, we cannot describe our baseline failure rates,
but we consider several thousand measurements within a
five minute window from clients served by an ISP within
one metropolitan region sufficient for our needs.

Requirement: Explicit outage signals, in order to de-
tect events that impact small groups of clients. Historical

trends are too noisy to detect the gray failures that make
up the majority of cloud provider incidents [24].

Requirement: Fault tolerance in data collection, to
collect operation-critical measurements in the presence
of network failures between the client and collector.

Requirement: Comparative measurements in same
user session for experimentation, providing accurate
“apples-to-apples” comparisons when performing an
A/B test and minimizing the chance of changing clients
or network conditions coloring the comparison between
test and control measurements.

Goal-3: Compatible with operational realities of ex-
isting systems and applications.

Requirement: Measurements of client-LDNS associ-
ations, which are needed to operate both anycast and
DNS-redirection CDNs effectively (§2.1,7.1.1,7.2.1).

Requirement: Minimal updates to user-facing produc-
tion systems, given that network configuration changes
are a common cause of online service outages [25].

Requirement: Application compliance across vary-
ing requirements. Each Microsoft application indepen-
dently determines the level of compliance certifications
(FISMA, SOC 1-3, ISO 27018, etc.), physical and log-
ical security, and user privacy protections. Application
requirements determine the endpoints that can be mea-
sured, set of front-ends that can process the measure-
ments, requirements for data scrubbing and aggregation
(e.g., IP blocks), and duration of data retention. These
strict security policies stem from Microsoft’s enterprise
customers. Any cloud provider or CDN that serves en-
terprises, such as Akamai [26], also need to meet these
compliance requirements.

4 Limitations of Existing Solutions
This section describes how existing approaches fail to
meet our requirements, summarized in Table 1.

1) Third-party measurements platforms provide in-
sufficient measurement coverage of Microsoft users.
Non-commercial measurement platforms such as Planet-
lab, MLab, Caida ARK, and RIPE Atlas have insufficient
coverage, with only a few hundred to few thousand van-
tage points. The largest, RIPE Atlas, has vantage points
in 3,589 IPv4 ASes [27], less than 10% of the number of
ASes seen by Microsoft’s CDN on a standard weekday.

Commercial measurement platforms also lack suffi-
cient coverage. Platforms including Dynatrace [28],
ThousandEyes [29], and Catchpoint [30] offer measure-
ments and alerting from cloud-based agents in tier 1 and
“middle-mile” (tier 2 and tier 3) ISPs. Cedexis uses
a different approach, providing customers with layer 7
measurements collected from users of Cedexis partner
websites [31]. However, none of the platforms provides
measurements from more than 45% of Microsoft client

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 503

http://planet-lab.org/
http://planet-lab.org/
http://www.measurementlab.net/
http://www.caida.org/projects/ark/locations/
https://atlas.ripe.net/results/maps/network-coverage/

Goals Requirements
Third-party

measurement
platforms

Layer 3 mea-
surements
from CDN

infrastructure

Layer 3,
DNS from

users

Server-side
measure-
ments of

client
connections

Odin

Representative
Performance

Coverage of paths between Microsoft
users and Microsoft D D

Coverage of paths between Microsoft
users and external networks D D

Measurements reflect user-perceived
performance D D D

Sensitive to
Internet Events High measurement volume D D D D

Explicit outage signal D D D D

Fault tolerance D D D D

Comparative measurements in same
user session for experimentation D D D D

Compatible
with

Measurements of client-LDNS
associations D D D D

Operational
Realities

Minimal updates to user-facing
production systems D D D D

Application compliance D D D D

Table 1: Goals of Odin and requirements to meet our operational CDN needs. No existing approach satisfies all the requirements.

/24 networks. On top of missing over half the networks,
the platform with the best coverage provides 10+ mea-
surements a day from less than 12% of the networks and
100+ measurements a day from only 0.5% of them, not
enough to meet Microsoft’s operational need for sensi-
tivity to Internet events.

2) Layer 3 measurements from CDN infrastructure
cannot provide representative coverage of the perfor-
mance of Microsoft users. A CDN can issue measure-
ments such as traceroutes and pings from its front-ends
or datacenters to hosts across the Internet. For example,
Entact measures the performance along different routes
by issuing pings from servers in datacenters to respon-
sive addresses in prefixes across the Internet [1]. One
measurement technique used by Akamai is to traceroute
from CDN servers to LDNSes to discover routers along
the path, then ping those routers as a proxy for CDN to
LDNS or end-user latency [32].

However, these measurements cannot provide a good
understanding of user performance. Many destinations
do not respond to these probes, so Entact was unable to
find enough responsive addresses in the networks respon-
sible for 74% of MSN traffic. Similarly, previous work
has shown that 45% of LDNS do not respond to ICMP
ping or to DNS queries from random hosts [33], and
40% of end users do not respond to ICMP probes [34].
Routers are more responsive than LDNS, with 85% re-
sponding to ping [35], but measurements to routers may
not reflect a client’s application performance because
ICMP packets may be deprioritized or rate-limited [36].
All of the above fail to exercise critical layer 7 behaviors
including SSL/TLS and HTTP redirection.

3) Layer 3 and DNS measurement from clients may
not reflect user-perceived performance and do not
provide sufficient coverage. Many systems perform
layer 3 measurements from end user devices [37, 38, 39,

40, 41].1 These measurements are generally dropped
by the strict network security policies of enterprise net-
works. Further, these measurements generally cannot be
generated from in-browser JavaScript and instead require
installing an application, keeping them from providing
measurements from Microsoft’s many web users.

4) Server-side measurements of client connections can
satisfy some but not all of our use cases. Google [2,
6,7,42], Facebook [3], Microsoft [43], and other content
providers and CDNs collect TCP- and application-layer
statistics on client connections made to their servers [44].
To measure between users and alternate PoPs or paths,
CDNs use DNS or routing to direct a small fraction of
traffic or client requests to alternate servers or paths.
These measurements are useful for performance com-
parisons, and DNS redirection could steer some of the
measurements to measurement servers hosted in external
cloud providers. However, if a user cannot reach a server,
the outage will not register in server-side measurements,
and so these measurements cannot be used to measure
fine-grained availability. There are also several practi-
cal challenges with only using server-side measurements.
While Table 1 shows that technically server-side mea-
surements can be collected on external networks, there
are a number of engineering and operational trade-offs
that make client-side measurements a better solution for
large content providers. The first is that measuring to ex-
ternal networks would mean hosting alternate front-ends
on an external provider which immediately raises serious
compliance and production concerns. The second issue
is that doing A/B network testing with production traffic
is considered too high risk with an enterprise customer
base.

1Ono [37] and Netalyzr [39] also measure throughput.

504 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 Design Decisions
To meet our goals (§3) and overcome the limitations of

other approaches (§4), Odin uses user-side, application-
layer measurements of client connections, combining the
explicit outage signaling and fault tolerance of user-side
measurements (as with layer 3 measurements from users
in §4) with the representative performance and cover-
age achieved by measuring client connections (as with
server-side measurements in §4).

Client-side active measurement from Microsoft users.
Odin embeds a measurement client into some Microsoft
thick clients and web applications. It directs measure-
ment clients to fetch web objects.

This approach helps achieve a number of our require-
ments. Odin issues measurements from Microsoft users,
achieving coverage important to Microsoft’s businesses
and (by issuing measurements at a rate similar to the use
of Microsoft’s applications) sensitivity to Internet events,
even events that impact only a small fraction of users or
connections. By embedding our measurement client into
thick clients, Odin can issue measurements even from
users unable to reach a Microsoft web server.

Application layer measurements. Odin clients per-
form DNS resolutions and fetch web objects, measuring
availability and timing of these application-layer actions
and reporting the results to Odin. The clients can use
http and https, allowing integration with Microsoft ap-
plications that require https. Unlike ping and tracer-
oute, the measurements are compatible with enterprise
networks that host many Microsoft services and users.

These measurements capture the application-layer
user performance that we care about, exercising mech-
anisms across the network stack that can impact per-
formance and availability, including TLS/SSL, web
caching, TCP settings, and browser choice. http and
https measurements also provide status code errors that
are useful for debugging. They also suffice to uncover
user-LDNS associations [45], a key need for both our
anycast and DNS redirection CDNs (§7).

External services and smarter clients. We design
the clients to conduct measurements and report results
even when they cannot reach Microsoft services, as out-
age reports are some of the most valuable measurements
and measurement-dependent operations must continue to
function. To build this fault tolerance, clients that can-
not fetch measurement configuration or report results fall
back to using third-party CDNs for these operations. We
use the third-party CDNs to proxy requests to Microsoft
and to host static measurement configuration.

Flexible measurement orchestration and aggregation.
We built a measurement orchestration system for Odin
that supports parallel experiments with different config-

urations, helping meet a variety of requirements. To ac-
commodate the unique business constraints and compli-
ance requirements of each application that Odin mea-
sures to or from, the system provides control over which
endpoints an application’s users may be given to mea-
sure and which servers they upload reports to. When ap-
propriate, experiments can measure to servers in external
(non-Microsoft) networks, and clients conduct multiple
measurements in a session to allow direct comparisons.
By having clients fetch instructions on which active mea-
surements to run, new experiments generally do not re-
quire changes to operational services or to clients, reduc-
ing operational risk. We also allow for flexibility in ag-
gregation of the measurements (e.g., in 5 minute buckets)
for faster upload to our real-time alerting system.

6 System Design

Figure 2: Odin Architecture Overview: CDN clients down-
load measurement config, perform measurements, and upload
results. If first-party network sites are unreachable, third-party
sites can cache config and relay upload requests.

Figure 2 outlines the Odin measurement process. A
number of Microsoft applications embed the Odin client
(§6.1). Odin clients in thick applications support a range
of measurements. This paper focuses on measuring la-
tency and availability, our highest priorities, supported
by thick and web applications.
Step 1: The client uses a background process to fetch a
measurement configuration from the Orchestration Ser-
vice (§6.2). The configuration defines the type of mea-
surements and the targets (measurement endpoints).
Step 2: The client issues the measurements. To mea-
sure latency and availability, endpoints host a small im-
age on a web server for clients to download. Many Mi-
crosoft applications require https requests, so measure-
ment endpoints have valid certificates. The endpoints
can be in Microsoft front-ends, Microsoft data centers,
or third-party cloud/collocation facilities.
Step 3: When the client completes its measurements,
it uploads the measurement results to a Report Upload
Endpoint (§6.3). The Report Upload Endpoint forwards
the measurements to Odin’s two analysis pipelines.
Step 4: The real-time pipeline performs alerting and net-
work diagnostics, and the offline pipeline enriches mea-
surements with metadata for big data analysis (§6.4).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 505

Figure 3: Odin supports two measurement types for latency.
Measurement a measures the test domain directly. Measure-
ment b contacts an Odin authoritative DNS first, which re-
sponds with the endpoint to measure. This gives Odin client-
LDNS association for a measurement.

6.1 Client

Measurements can vary along 3 dimensions: http or
https, direct or DNS-based, and warm or cold. Fig-
ure 3 illustrates direct and DNS-based measurements.
The first type has the client performing DNS resolu-
tion of test.domain2.com in a1 and fetching the im-
age and recording the latency in a2. The measurement
to <randid>.contoso.com is an example of the sec-
ond type, which we refer to as a DNS-based measure-
ment and which we use to measure web fetch latency and
client-LDNS association. The domain (contoso.com)
is one that we control. We design the clients to
recognize the <randid> scheme and substitute in a
unique, transient, random identifier $(RandID).2 The
client then issues a DNS request via the user’s LDNS
for $(RandID).contoso.com (step b1). The DNS re-
quest goes to our authoritative DNS server, which re-
turns a record for the endpoint Odin wants to mea-
sure (test.domain1.com) and logs its response as-
sociated with the $(RandID). The client then fetches
http://test.domain1.com/tiny.gif. In step c, the
client reports its measurements, reporting the ID for the
second measurement as $(RandID). The measurement
back-end uses $(RandID) to join the client’s IP address
with the DNS log, learning the user-LDNS association.

The Orchestration Service can ask clients to perform
“cold” and/or “warm” measurements. A cold measure-
ment initiates a new TCP connection to fetch the im-
age. A warm measurement fetches the image twice and
reports the second result, which will benefit from DNS
caching and from a warm TCP connection.3

2Generating the $(RandID) at the client rather than at the Orches-
tration Service lets caches serve the measurement configuration.

3The client prevents browser caching by appending a random pa-
rameter to the image request (e.g. tiny.gif?abcde12345).

Web client vs. thick client measurements. Web clients
default to measuring latency using the request start and
end times in JavaScript, which is known to be impre-
cise [46]. If the browser supports the W3C resource-
timing API [46], then the client reports that more precise
measurement instead, along with a flag that signals that it
used the more precise option. If the image fetch fails, the
client reports the HTTP error code if one occurred, other-
wise it reports a general failure error code. A limitation
of in-browser measurements is that low-level network-
ing errors are not exposed to JavaScript. For example,
we cannot distinguish between a DNS resolution failure
and a TCP connection timeout. Thick clients issue mea-
surements through an Odin application SDK. Unlike web
clients, the SDK can report specific low-level networking
errors which are valuable in debugging.

6.2 Orchestration Service

The Orchestration Service coordinates and dispatches
measurements. It is a RESTful API service that Odin
clients invoke to learn which measurements to perform.
The service returns a small JSON object specifying the
measurements. In the rare case of major incidents with
Odin or target Microsoft services, the Orchestration Ser-
vice has the option to instruct the client to issue no mea-
surements to avoid aggravating the issues.

NumMeasurements: 3,

MeasurementEndpoints: [

{type:1, weight:10, endpoint:"m1.contoso.com"},

{type:1, weight:20, endpoint:"m2.microsoft.com"},

{type:2, weight:30, endpoint:"m3.azure.com"},

{type:3, weight:10, endpoint:"m4.azure.com"},

{type:2, weight:30, endpoint:"m5.azure.com"},

{type:1. weight:15, endpoint:"m6.microsoft.com"}],

ReportEndpoints: ["r1.azure.com","r2.othercdn.com"]

Listing 1: Example measurement configuration that is served
by the orchestration service to the client.

Listing 1 shows an example configuration that spec-
ifies three measurements to be run against three out of
six potential endpoints. The ability to specify more end-
points than measurements simplifies configurations that
need to “spray” measurements to destinations with dif-
ferent probabilities, as is common in CDN A/B test-
ing [16]. The client performs a weighted random selec-
tion of three endpoints.

The other component of orchestration is the
customized authoritative DNS server for DNS-
based measurements (§6.1). When a client re-
quests DNS resolution for a domain such as
12345abcdef.test.contoso.com, the DNS server
responds with a random record to a target endpoint,
with the random choice weighted to achieve a desired
measurement distribution.

506 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Even a unique hostname used for client-LDNS map-
ping can generate multiple DNS queries. Our measure-
ments reveal that 75% of unique hostnames result in mul-
tiple LDNS requests, and 70% result in requests from
multiple LDNS IP addresses. If our authoritative DNS
returned different responses for a single hostname, we
would be unable to determine from logs which target
endpoint the client actually measured. To overcome this
issue, we use consistent hashing to always returns the
same response for the same DNS query.

The Orchestration Service allocates measurements to
clients based on experiments. An experiment has an Or-
chestration Service configuration that specifies the end-
points to be measured, which applications’ users will
participate, and which report endpoints to use based on
compliance requirements of the applications. Experi-
ment owners configure endpoint measurement allocation
percentages, and the Orchestration Service converts them
into weights in the configuration. The Orchestration Ser-
vice runs multiple experiments, and experiments may be
added or removed at any time.

The Orchestration Service allows Odin to tailor con-
figurations to meet different measurement needs and use
cases. For example, the service can generate specialized
configuration for clients depending on their geography,
connection type, AS, or IP prefix. When experimenting
with CDN settings, we tailor Odin configurations to exer-
cise the experimental settings from clients in a particular
metropolitan area and ASN. When debugging a perfor-
mance issue, we tailor configurations to target measure-
ments to an endpoint experiencing problems.

If the Orchestration Service is unavailable, proxies in
third-party networks may be used instead. The proxies
may act as reverse proxies for the first-party system. Al-
ternatively, if the first-party system is unavailable, a fall-
back to a cached default configuration can be returned to
clients.

6.3 Reporting

Listing 1 shows that the measurement configuration re-
turned by the Orchestration Service also specifies the
primary and backup ReportEndpoints for the client
to upload measurement results. ReportEndpoints are
hosted across the 100+ front-ends of Microsoft’s first-
party CDN. When a ReportEndpoint receives client mea-
surement results, it forwards them to two Microsoft data
pipelines, as shown in Figure 2. If for some reason the
Microsoft CDN is unavailable, the client will fall back to
using proxies hosted in third-party networks. The prox-
ies forward to a set of front-ends that are not part of the
primary set of front-ends.

Fault-tolerant measurement reporting is necessary to
support our requirement of an explicit outage signal,
since we cannot measure the true availability of Mi-

Figure 4: Three types of
Internet faults that may oc-
cur when fetching measure-
ment configuration or upload-
ing reports.

Figure 5: Topology of
backup paths when FE1 is un-
reachable. FE1 is a front-end
collocated with a PoP while
FEDC is a front-end in a dat-
acenter.

crosoft’s first-party CDN if we also report measurements
there. Odin’s fault-tolerant approach for fetching mea-
surement configuration and uploading results will suc-
ceed if the backup reporting channel(s) use a path that
avoids the failure and fail if both the primary and backup
paths encounter the failure. As long as the client can
reach a backup, and the backup can reach at least one
of the Odin servers at Microsoft, Odin receives the re-
sult, tolerating all but widespread failures that are de-
tectable with traditional approaches and are often out-
side of Microsoft’s control to fix. From operational ex-
perience, Odin’s handling of faults provides a high level
of resilience for our measurement data. We now discuss
Odin’s behavior in the face of three fault scenarios. We
do not consider this an exhaustive treatment of all possi-
ble fault scenarios.

Interconnection faults impact an individual link(s) be-
tween an end-user ISP and the CDN, caused by issues
such as peering misconfiguration or congestion. Connec-
tivity to other ISPs is not impacted. Figure 4(A) shows
an interconnection fault between PoPs A and B. Figure 5
shows that, when these faults occur, the client will send
a backup request using path 2,3 to Proxy 1. The proxy
then forwards the request back to the CDN by path 3,4,
through D, to a datacenter front-end FEDC instead of
FE1.

Front-end system faults are failures of a front-end
due to software or hardware problems, as shown in Fig-
ure 4(B). Because the backup proxies connect to a dis-
tinct set of front-ends (hosted in datacenters), we gain
resilience to front-end system faults, as seen in Figure 5.

PoP-Level faults impact multiple ISPs and a large vol-
ume of traffic exchanged at that facility. These faults may
be caused by a border router or middle-box misconfigu-
ration or a DDoS attack. In our experience, these faults
are rare and short-lived, and so we did not design Odin
to be resilient to them. Figure 5 shows that Proxy 1’s
path to FEDC goes through the same PoP as the client’s

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 507

path to FE1, whereas Proxy 2 avoids it. We present a
preliminary evaluation of this scenario in Section 8.2.

6.4 Analysis Pipeline

Measurement reports get sent to two analysis pipelines.

Offline Pipeline. The measurement reports include a
report ID, metadata about the client (version number of
client software, ID of Microsoft application it was em-
bedded in, whether it used the W3C Resource Timing
API), and the measurement results, each of which in-
cludes a measurement ID, the measurement latency (or
failure information), and whether it was a cold or warm
measurement. The offline pipeline enriches measure-
ments with metadata including the client’s LDNS and the
user’s location (metropolitan region), ASN, and network
connection type. This enriched data is the basis for most
operational applications (§7).

Real-time Alerting Pipeline. Many of the target
endpoints that Odin monitors are business-critical so
must react quickly to fix high latency or unavailabil-
ity. To ensure fast data transfer to the back-end real-
time data analytics cluster, each reporting endpoint re-
duces data volume by aggregating measurements within
short time windows. It annotates each measurement
with the client’s metropolitan region and ASN, using in-
memory lookup tables. Within each window, it groups all
measurements to a particular endpoint from clients in a
particular 〈metropolitan region, ASN〉, then reports fixed
percentiles of latency from that set of measurements, as
well as the total number of measurements and the frac-
tion of measurements that failed.

7 Supporting CDN Operations with Odin
We use Odin to support key operational concerns of
CDNs – performance and availability, plus CDN expan-
sion/evolution and how it impacts the other concerns.
The two CDNs we support have sizes of over a hundred
sites (which is more than most CDNs) and few dozen
sites (which is common for CDNs [47]).

7.1 Directing users to the CDN front-ends

Low latency web services correlate with higher user sat-
isfaction and service revenue. A central proposition of a
CDN is that distributed servers can serve users over short
distances, lowering latency, but deploying the servers
alone does not suffice to achieve that goal.

Odin continuously monitors client performance for
both of Microsoft’s CDNs. Previous work demonstrated
the value of comparing performance of our CDN to an-
other to guard against latency regressions [15]; of com-
paring performance from one client to multiple CDN
servers [16], and of comparing the performance from a
CDN to multiple clients in the same city [6]. Odin pro-
vides measurements for all these analyses, which can un-

cover performance problems stemming from circuitous
routing in either direction or from poor server selec-
tion. This section describes how we use Odin to cre-
ate high-performance redirection maps for DNS redirec-
tion (§7.1.1) and to identify cases in which Internet rout-
ing selects poor performing anycast routes (§7.1.2).

7.1.1 Generating low latency DNS redirection maps

Azure’s traffic manager service (§2.2) directs a user to a
particular Azure region [14] by returning a DNS record
for that region. When determining which DNS record
to return, the traffic manager knows which LDNS issued
the request but not which user.4 We refer to an instance
of the DNS redirection policy as a map (from LDNS to
IP addresses of Azure regions).

To achieve low latency for users, we need to under-
stand which use each LDNS and their performance to the
various regions. Microsoft constructs maps using Odin
data as the primary data source, as follows:

(1) Data Aggregation. The offline pipeline annotates
each DNS-based measurement with the LDNS the client
used (§6.4). We use this associate to group the measure-
ments directed by each LDNS to each Azure region and
calculate the median latency to each region from each
LDNS. (In practice, before finding the median latency,
we aggregate all LDNS within the same /26 IP prefix,
which we found balances precision because of IP local-
ization and statistical power from measurement aggrega-
tion.)

(2) Filtering. Next, we filter out LDNS-region pairs
which do not have enough measurements. Our minimum
threshold was chosen using statistical power analysis. If
we filter the region that was lowest latency for the LDNS
in the currently-deployed map, we do not update the map
for the LDNS, to prevent us from making the best deci-
sion from a set of bad choices.

(3) Ranking Results. For each LDNS, we rank the
regions by latency. At query resolution time, the traf-
fic management authoritative DNS responds to an LDNS
with the lowest latency region that is currently online.

(4) Applying the Overrides. The final step is to apply
the per-LDNS changes to the currently deployed map,
resulting in the new map. The map generation process
takes care of prefix slicing, merging, and aggregation to
produce a map with a small memory footprint.

7.1.2 Identifying and patching poor anycast routing

Microsoft’s first-party CDN uses anycast (§2.2). Any-
cast inherits from BGP an obliviousness to network per-
formance and so can direct user requests to suboptimal
front-ends. We identify incidents of poor anycast routing
in Microsoft’s anycast CDN by using Odin to measure

4Except for the few LDNS that are ECS-enabled [48, 49].

508 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

performance of anycast and unicast alternatives from the
same user. Our previous study used this methodology for
a one-off analysis using measurements from a small frac-
tion of Bing users [16]. Odin now continuously measures
at a large scale and automatically generates daily results.
As with our earlier work, we find that anycast works well
for most–but not all–requests. The traditional approach
to resolving poor anycast routing is to reconfigure route
announcements and/or work with ISPs to improve their
routing towards the anycast address.

While Microsoft pursues this traditional approach, an-
nouncements can be difficult to tune, and other ISPs may
not be responsive, and so we also patch instances of poor
anycast performance using a hybrid scheme that we pro-
posed (but did not implement) in our previous work [16].
The intuition is that both DNS redirection and anycast
work well most of the time, but each performs poorly for
a small fraction of users. DNS redirection cannot achieve
good performance if an LDNS serves widely distributed
clients [32], and anycast performs poorly in cases of in-
direct Internet routing [16]. Since the underlying causes
do not strongly correlate, most clients that have poor any-
cast performance can have good DNS redirection per-
formance. We use Odin measurements to identify these
clients, and a prominent Microsoft application now re-
turns unicast addresses to the small fraction of LDNS
that serve clients with poor anycast routing.

7.2 Monitoring and improving service availability

The first concern of most user-facing web services is to
maintain high availability for users, but it can be chal-
lenging to quickly detect outages, especially those that
impact only a small volume of requests.

Odin’s design allows it to monitor availability with
high coverage and fast detection. By issuing measure-
ments from the combined user base of a number of ser-
vices, it can detect issues sooner than any individual
service. By having a single client session issue mea-
surements to multiple endpoints, sometimes including an
endpoint outside of Microsoft’s network, it can under-
stand the scope of outages and differentiate client-side
problems from issues with a client contacting a particu-
lar service or server. By providing resilient data collec-
tion even in the face of disruptions, Odin gathers these
valuable measurements even from clients who cannot
reach Microsoft services. Anycast introduces challenges
to maintaining high availability. This section discusses
how Odin helps address them.

7.2.1 Preventing anycast overload

Monitoring a front-end’s ability to control its load.
Previous work from our collaborators demonstrated how
Microsoft’s anycast CDN prevents overload [50]. The
approach works by configuring multiple anycast IP ad-

dresses and organizing them into a series of “rings” of
front-ends. All front-ends are part of the largest ring,
and then each subsequent ring contains only a subset
of the front-ends in the previous one, generally those
with higher capacity. The innermost ring contains only
high capacity data centers. Each front-end also hosts an
authoritative nameserver. If a front-end becomes over-
loaded, its authoritative nameserver “sheds” load by di-
recting a fraction of DNS queries to a CNAME for the
next ring. These local shedding decisions work well if
anycast routes a client’s LDNS’s queries and the client’s
HTTP requests to the same front-end, in which case the
authoritative nameserver can shed the client’s requests.

The previous work used measurements from Odin to
evaluate how well HTTP and DNS queries correlate for
each front-end [50], a measure of how controllable its
traffic is. Odin now continuously measures the correla-
tions and controllability of each front-end, based on its
measurements of client-to-LDNS associations.

Designing rings with sufficient controllability. We
use Odin data on per front-end controllability to design
anycast rings that can properly deal with load. The data
feeds a traffic forecasting model that is part of our daily
operation. The model predicts per front-end peak load,
broken down by application, given a set of rings.

Two scenarios can compromise a front-end’s ability
to relieve its overload. First, the above approach sheds
load at DNS resolution time, so it does not move exist-
ing connections. This property is an advantage in that it
does not sever existing connections, but it means that it
cannot shed the load of applications with long-lived TCP
connections. Second, if a front-end receives many HTTP
queries from users whose DNS queries are not served
from the front-end, it can potentially be overwhelmed
by new connections that it does not control, even if it
is shedding all DNS requests to a different ring.

We use Odin measurements in a process we call ring
tuning to proactively guard against these two situations.
For the first, we use measurements to identify a high-
correlation set of front-ends to use as the outermost any-
cast ring for applications with long-lived connections.
The high-correlation allows a front-end that is approach-
ing overload to quickly shed any new connections, both
from the long-lived application and other applications it
hosts on other anycast addresses. To guard against the
second situation, we use measurements to design rings
that avoid instances of uncontrollable load, and we con-
figure nameservers at certain front-ends to shed all re-
quests from certain LDNS to inner rings, to protect an-
other front-end that does not control its own fate.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 509

Figure 6: In a regional anycast scenario, if a user’s LDNS is
served by a front-end in the user’s region, the user’s perfor-
mance is unaffected. If the user’s LDNS is served by a front-
end in a different region, then the user will be served from the
distant region, likely degrading performance.

7.2.2 Monitoring the impact of anycast route
changes on availability

Long-lived TCP connections present another challenge
to anycast: an Internet route change can shift ongoing
TCP connections from one anycast front-end to another,
severing the connections [51, 52, 53, 54]. Odin measure-
ments address this concern in two ways. First, by hav-
ing clients fetch an object from both an anycast address
and a unicast address, we can monitor for problems with
anycast availability. Second, we use Odin to monitor the
availability of different candidate anycast rings in order
to identify subsets of front-ends with stable routing.

7.3 Using measurements to plan CDN evolution

7.3.1 Comparing global vs regional anycast

In a basic anycast design, all front-ends share the same
global IP address. However, this address presents a sin-
gle point of failure, and a routing configuration mistake
at Microsoft or one of our peers has the potential to
blackhole a large portion of our customer traffic. An al-
ternate approach is to use multiple regional anycast ad-
dresses, each announced by only a subset of front-ends.
Such an approach reduces the “blast radius” of a poten-
tial mistake, but it can also change the performance of
the CDN. A user’s request can only end up at one of the
front-ends that announces the anycast address given to its
LDNS, which might prevent the request from using the
best performing front-end . . . or prevent Internet routing
from delivering requests to distant front-ends.

Figure 6 shows the three scenarios that can occur
when partitioning a global anycast into regions. A user’s
LDNS may be served by the same front-end as the user
or by a different one. If different, the front-ends may be
assigned to the same or different regions. If they are as-
signed to different regions, then the user will be directed
away from its global front-end to a different one, likely
degrading performance.

In a use case similar to anycast ring tuning, we used
Odin to collect data, then used a graph partitioning algo-
rithm to construct regions that minimize the likelihood
that a user and their LDNS are served by front-ends
in different regions. We construct a graph where ver-

Country P75
Imp.

P95
Imp. Country P75

Imp.
P95
Imp.

Spain 30.68% 10.79% Switzerland 10.67% 22.18%
Italy 29.92% 17.95% Netherlands 7.22% 24.94%
Japan 28.14% 32.02% France 6.60% 18.14%
Australia 20.05% 16.82% Norway 5.61% 14.93%
Canada 19.17% 5.10% U.K. 4.44% 12.39%
Sweden 14.14% 24.02% Germany 2.82% 5.49%
U.S.A. 14.04% 8.81% Finland 1.56% 12.97%
South Africa 13.97% 6.33% Brazil 0.68% 6.18%
India 13.97% 6.08%

Table 2: The performance improvement in the 75th and 95th
percentile from a 2 month roll-out using the Odin-based map-
ping technique over May and June 2017.

tices represent front-ends and edges between vertices are
weighted proportional to the traffic volume where one
endpoint serves the DNS query and the other serves the
HTTP response. We use an off-the-shelf graph partition-
ing heuristic package to define 5 regions, each with ap-
proximately the same number of front-ends, that mini-
mizes the number of clients directed to distant regions.
We compare the performance of regional versus global
anycast in Section 8.3.

8 Evaluation and Production Results
Odin has been running as a production service for 2
years. It has been incorporated into a handful of Mi-
crosoft applications, measuring around 120 endpoints.

8.1 Odin improves service performance

8.1.1 Odin’s DNS redirection maps reduce latency

In May 2017, the Azure traffic manager began direct-
ing production traffic using maps generated as described
in Section 7.1.1, replacing a proprietary approach that
combined geolocation databases with pings from CDN
infrastructure. We evaluated the performance of the
two maps by running an Odin experiment that had each
client issue two measurements, one according to each
map. Table 2 shows the latency change at the 75th and
95th percentile for the countries with the most measure-
ments. Finland and Brazil saw negligible latency in-
creases (1.56%, 0.68%) at the 75th percentile, but all
other high traffic countries saw reductions at both per-
centiles, with a number improving by 20% or more.

0 50 100 150
Global Latency Difference (geomap - Odin) (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 1
0

m
in

ut
e

W
in

do
w

s

P50
P75
P90
P95
P99

Figure 7: Difference in global performance over one day be-
tween a Odin map and a map generated from LDNS locations
(geomap). Values less than 0 show the fraction of time that the
geomap performed better.

510 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Comparison with alternative DNS mapping tech-
niques. A simple approach to generating a redirec-
tion map for a CDN is to use the locations of LDNSes.
To test the performance difference between this and the
Odin approach, we generated a map using a proprietary
Microsoft geolocation database that aggregates locations
from many sources. For every IPv4 address, we find
the geographically closest front-end and choose that for
the map entry. We aggregate neighboring IP addresses
with the same map entry and convert this into a set of
DNS records. We then configured Odin to measure both
this map and the current Odin-based map for 24 hours
on Sept. 21, 2017. We bucketed measurements into 10-
minute bins. For each bin, we calculated the latency dif-
ferences at different percentiles. Figure 7 depicts a CDF
over all 10 minute bins. Most of the time there is no real
difference at the median. The difference is also small at
the 75th percentile, although Odin is better around 65%
of the time. The real improvement of using Odin comes
at the 90th, 95th, and 99th percentile. At P95, Odin’s
map is better by 65ms half the time.

Dispelling mistaken conventional wisdom. Prior work
on CDN performance sometimes exhibited misconcep-
tions about DNS redirection, because operational prac-
tices were not transparent to the research community.
We distill some takeaways from our work that contradict
prior claims and elucidate realities of modern CDNs.

• For many CDNs, measurements of user connections
suffice as the key input to map generation, whereas
previous work often describes mapping as a com-
plex process requiring many different types of Inter-
net measurements [4], including measurements from
infrastructure to the Internet [6, 55]. This reality is
especially true for CDNs that host popular first-party
services, as the CDN has measurement flexibility and
control over first party services.

• The geographic or network location of an LDNS does
not impact the quality of redirection, even though redi-
rection occurs at the granularity of an LDNS. Previous
work claimed that redirection decisions were based on
the location of or measurements to the LDNS [55],
or that good decisions depending on users being near
their LDNS [45, 56, 57]. In reality, techniques for
measuring associations between users and LDNS have
been known for years [45], allowing decisions based
on the performance of the users of an LDNS to vari-
ous front-ends, which provides good performance as
long as the users of an LDNS experience good perfor-
mance from the same front-end as each other.

• Most redirection still must occur on a per LDNS ba-
sis, even though EDNS client-subnet (ECS) enables
user prefix-granularity decisions [32, 48, 55, 58]. Our

0 10 20 30 40 50 60 70
Hours

0.0

0.2

0.4

0.6

0.8

1.0

Av
ai

la
bi

lit
y

AS1759-DC
AS1759-Front-end
AS1759-External
AS719-DC
AS719-Front-end
AS719-External

Figure 8: Debugging 2017 availability drop between Helsinki
front-end and AS1759 users in Finland.

measurements reveal that, outside of large public re-
solvers, almost no LDNS operators have adopted ECS.

8.1.2 Odin patches anycast performance

Due to space constraints, we summarize the results from
our earlier work [16]. Anycast directed 60% of requests
to the optimal front-end, but it also directed 20% of re-
quests to front-ends that were more than 25ms worse
than the optimal one. Today we use Odin measurements
to derive unicast “patches” for many of those clients.

8.2 Using Odin to identify outages

An outage example. Figure 8 visualizes Odin mea-
surements showing an availability drop for Finnish users
in AS1759 during a 24 hour period in 2017. The avail-
ability issue was between users in that ISP and a Mi-
crosoft front-end in Helsinki. Because Odin measures
from many Microsoft users to many endpoints in Mi-
crosoft and external networks, it provides information
that assists with fault localization. First, we can exam-
ine measurements from multiple client ISPs in the same
region towards the same endpoint. For readability, we
limit the figure to one other ISP, AS719, which the fig-
ure shows did not experience an availability drop to the
front-end. So, the front-end is still able to serve some
user populations as expected. Second, the figure indi-
cates that AS1759 maintains high availability to a dif-
ferent endpoint in Microsoft’s network, a nearby data-
center. So, there is no global connectivity issue between
Microsoft and AS1759. Last, the figure indicates that
availability remains high between clients in AS1759 and
an external network. The rich data from Odin allows us
to localize the issue to being between clients in AS1759
and our Helsinki front-end.

Reporting in the presence of failures. Odin success-
fully reports measurements despite failures between end-
users and Microsoft. Figure 9 shows the fraction of re-
sults reported via backup paths for representative coun-
tries in different regions, normalized by the minimum
fraction across countries (for confidentiality). During
our evaluation period, there were no significant outages
so the figure captures transient failures that occur during
normal business operations. All countries show a strong

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 511

09:00
21:00

09:00
21:00

09:00
21:00

09:00
21:00

Local Time

1x

2x

3x

4x

5x

6x

7x

8x

9x

R
el

at
iv

e
D

iff
er

en
ce

 in
 p

er
ce

nt
 o

f
re

po
rts

 fr
om

 b
ac

ku
p

pa
th

United States
Germany

India
Brazil

Japan
Australia

Figure 9: Relative difference per hour in percentage of reports
received through the backup path across four weekdays.

diurnal pattern with peaks around midnight and valleys
around 8 a.m. local time. Interestingly, the peaks of high-
est failover reports occur well outside of working hours,
when Microsoft’s traffic volume is low. This is consistent
with previous work which found that search performance
degraded outside business hours, because of an increase
in traffic from lower quality home broadband networks
relative to traffic from well-provisioned businesses [43].

The percentage of reports uploaded through third-
parties varies significantly across countries. For exam-
ple, at peak, Brazil have 3x and 4x the percentage of
backup reports as compared to Germany and Japan. An-
other distinguishing characteristic across countries is the
large difference in range between peaks and valleys. In-
dia ranges from ≈ 3× to ≈ 8× the baseline, Australia
from ≈ 2× to ≈ 4×, and Japan from ≈ 1× to ≈ 2×
Backup path scenarios. Backup proxies forward report
uploads to datacenter front-ends instead of front-ends
collocated with PoPs (§6). To illustrate why this is neces-
sary, we allocated a small fraction of Odin measurements
to use an alternate configuration in which the third-party
proxies instead forward traffic to an anycast ring con-
sisting of front-ends at the same PoPs as the primary
ReportEndpoints. The third party CDN has roughly
the same number of front-end sites as Microsoft. Out
of 2.7 billion measurements collected globally over sev-
eral days in January 2018, around 50% were forwarded
to the same front-end by both the third-party proxies and
the primary reporting pathway, meaning that the reports
could be lost in cases of front-end faults.

Fault-tolerance for PoP-level failures. Figure 4(C)
shows an entire PoP failing. It is likely that the nearest
front-end and nearest backup proxy to the end-user are
also relatively close to each other. When the proxy for-
wards the request, it will likely ingress at the same failing
PoP, even though the destination is different.

To route around PoP-level faults, we want the end-
user to send the backup request to a topologically distant
proxy, such as Proxy 2 in Figure 5. The proxy will for-
ward the request through nearby CDN PoP F and avoid
the failure. To test this, we configured two proxy in-

Figure 10: Latency degradation of 5-region vs. global anycast.

stances in a popular cloud provider, on the East and West
Coasts of the United States. These proxies forward re-
quests to the set of front-ends collocated at Microsoft
PoPs. We configured a load balancing service to send all
requests to the East Coast instance by default, but with an
exception to direct all requests from East Coast clients to
the West Coast proxy. After collecting data globally for
several days, we observed that only 3% of backup re-
quests enter Microsoft’s network at the same PoP as the
primary, as opposed to the 50% above. This prototype
is not scalable with so few proxy instances, but demon-
strates an approach to mitigate PoP-level faults that we
will develop in a future release.

8.3 Using Odin to evaluate CDN configuration

This section uses Odin to evaluate the performance im-
pact of regional rings as compared to a global anycast
ring (§7.3.1). The cross-region issue illustrated in Fig-
ure 6 still has the potential to introduce poor anycast per-
formance, even though our graph partitioning attempts
to minimize it. To measure the impact to end users, we
configure an Odin experiment that compares the latency
of the regional anycast ring with our standard “all front-
ends” ring. Figure 10 shows that performance change
at the median is relatively small – just about 2%. The
75th percentile consistently shows the highest percentage
of degradation over time, fluctuating around 3%. While
the median and 75th percentiles are stable over the five
months, both 90th and 99th percentiles begin to trend
higher in the starting in May, suggesting that static region
performance may change over time at higher percentiles.

8.4 Evaluating Odin coverage

In this section we examine Odin’s coverage of Mi-
crosoft’s users as part of our requirement to cover paths
between Microsoft users, Microsoft, and external net-
works. We will examine four applications which we have
integrated with Odin. We have categorized them by their
user base: General, Consumer, and Enterprise.

We first look at how much of Microsoft’s user base is
covered by individual and combined applications. Fig-
ure 11 shows Consumer1, Consumer2, and Enterprise1
have similar percent coverage of Microsoft end users by

512 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 11: Percentages of ASes and /24s with measurements
based on 4 properties with different user populations.

AS. The benefit of multiple applications is more appar-
ent when looking at /24 coverage. We see that all four
applications combined cover 85% of /24s whereas indi-
vidually all except for General1 cover much less. We
also examined the overlap between application coverage
and found that the four properties only see around 42%
pairwise overlap in /24 coverage, meaning that individual
applications contribute a substantial amount of user di-
versity to Odin. General1 is the highest distinct contrib-
utor by providing about 18% of distinct /24s observed.

Breaking down the coverage by “high revenue” (e.g.
Reverse Proxy for Enterprise scenarios), “medium rev-
enue” (e.g. Consumer email, ad-supported content)
and “low revenue” (commodity caching workloads), we
observe a higher /24 prefix coverage with Odin for
“high revenue” (95%) compared to “medium” (91%) and
“low” (90%). This suggests that the missing coverage of
Odin is in the tail of relatively low-value traffic.

9 Related Work
There has been a considerable prior work on improving
and evaluating general CDN performance [4, 56, 59, 60,
61, 62, 63]. Prior work has also explored cooperation
between ISPs and CDNs. Specifically, the efficacy of
ISPs releasing distance maps to CDNs to enable more
accurate client to server mappings [59], or ISPs hosting
CDN servers on demand [60]. WISE [8] is a tool that
predicts the deployment implications of new infrastruc-
ture in CDNs by using machine learning. WhyHigh [6]
and LatLong [7] focus on automating troubleshooting for
large content providers like Google, using active mea-
surements and passive latency data, respectively.

Entact [1], EdgeFabric [3], Espresso [2] measure the
quality of egress paths from a CDN to the Internet. En-
tact describes a technique to measure alternative paths
to Internet prefixes by injecting specific routes (/32) at
border routers to force egress traffic through a particu-
lar location. These paths are utilized by a collection of
“pinger” machines deployed in DCs to target IPs likely to
be responsive within a prefix. EdgeFabric and Espresso
direct a small percent of user traffic through alternative
egress paths to measure alternate path performance.

Fathom [41], Netalyzr [39], Ono [37], Via [64],
Dasu [38] are thick client applications that run measure-
ments from end user machines; BISmark [40] measures
from the home routers. Akamai collects client-side mea-
surements using their Media Analytics Plugin [65] and
peer-assisted NetSession [32, 66] platform. From com-
mercial measurement platforms, Cedexis is the closest
in nature to Odin. Cedexis partners with popular web-
sites with large user bases such as LinkedIn and Tum-
blr that embed Cedexis’ measurement JavaScript beacon
into their page. Cedexis customers register their own
endpoints to be measured by a portion of end-users of
Cedexis’ partners. In this way, a customer collects mea-
surements to their endpoints from a relatively large user
base. Conviva is a commercial platform which uses ex-
tensive client-side measurements from video players to
optimize video delivery for content publishers [67, 68].

Akamai published a study on DNS-based redirec-
tion [32] showing that enabling ECS [48] greatly im-
proved the performance of user. Alzoubi et al. [51, 53]
have examined properties of anycast CDNs. Follow up
work focuses on handling anycast TCP session disrup-
tion due to BGP path changes [52]. Our work is com-
plementary and orthogonal to our colleagues’ work, Fas-
tRoute [50], that load balances within an anycast CDN.

Odin uses a user-to-LDNS association technique sim-
ilar to [34, 45] whereas Akamai uses their NetSession
download manager software to obtain client-to-LDNS
mappings [32]. Measuring latency using JavaScript bea-
cons is a well established technique [16, 69].

10 Conclusion
CDNs are critical to the performance of large-scale In-
ternet services. Microsoft operates two CDNs, one with
100+ endpoints that uses anycast and one for Azure-
based services that uses DNS-redirection. This paper
describes Odin, our measurement system that supports
Microsoft’s CDN operations. These operations span a
wide variety of use cases across first- and third-party
customers, with clients spread out worldwide. Odin has
helped improve the performance of major services like
Bing search and guided capacity planning of Microsoft’s
CDN. We believe that the key design choices we made
in building and operating Odin at scale address the defi-
ciencies of many prior Internet measurement platforms.

Acknowledgements
We thank the anonymous NSDI reviewers for a construc-
tive set of reviews. We thank our shepherd, Michael
Kaminsky, for providing insightful recommendations
and thorough comments on multiple drafts. The work
was partially supported by NSF awards CNS-1564242,
CNS-1413978, and CNS-1351100.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 513

References
[1] Z. Zhang, M. Zhang, A. G. Greenberg, Y. C. Hu, R. Ma-

hajan, and B. Christian, “Optimizing Cost and Perfor-
mance in Online Service Provider Networks,” in NSDI,
pp. 33–48, 2010.

[2] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holli-
man, G. Baldus, M. Hines, T. Kim, A. Narayanan, A. Jain,
et al., “Taking the Edge off with Espresso: Scale, Relia-
bility and Programmability for Global Internet Peering,”
in SIGCOMM, pp. 432–445, ACM, 2017.

[3] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Mad-
hyastha, I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and
H. Zeng, “Engineering Egress with Edge Fabric,” in SIG-
COMM, 2017.

[4] V. Valancius, B. Ravi, N. Feamster, and A. C. Snoeren,
“Quantifying the benefits of joint content and network
routing,” in SIGMETRICS, pp. 243–254, ACM, 2013.

[5] H. H. Liu, R. Viswanathan, M. Calder, A. Akella, R. Ma-
hajan, J. Padhye, and M. Zhang, “Efficiently Delivering
Online Services over Integrated Infrastructure,” in NSDI,
pp. 77–90, 2016.

[6] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain,
A. Krishnamurthy, T. Anderson, and J. Gao, “Moving
Beyond End-to-End Path Information to Optimize CDN
Performance,” in IMC, 2009.

[7] Y. Zhu, B. Helsley, J. Rexford, A. Siganporia, and
S. Srinivasan, “LatLong: Diagnosing wide-area latency
changes for CDNs,” in Transactions on Network and Ser-
vice Management, 2012.

[8] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and
M. Ammar, “Answering What-If Deployment and Con-
figuration Questions with WISE,” in SIGCOMM, pp. 99–
110, ACM, 2008.

[9] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Card-
well, Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and
R. Govindan, “Reducing Web Latency: The Virtue of
Gentle Aggression,” SIGCOMM, vol. 43, no. 4, pp. 159–
170, 2013.

[10] J. Hamilton, “AWS re:Invent 2016: Amazon Global Net-
work Overview.” https://www.youtube.com/watch?

v=uj7Ting6Ckk.

[11] “Netflix Open Connect.” https://media.netflix.

com/en/company-blog/how-netflix-works-with-

isps-around-the-globe-to-deliver-a-great-

viewing-experience.

[12] Y. Chen, S. Jain, V. K. Adhikari, and Z.-L. Zhang, “Char-
acterizing Roles of Front-end Servers in End-to-End Per-
formance of Dynamic Content Distribution,” in IMC,
pp. 559–568, ACM, 2011.

[13] A. Pathak, Y. A. Wang, C. Huang, A. Greenberg, Y. C.
Hu, R. Kern, J. Li, and K. W. Ross, “Measuring and Eval-
uating TCP Splitting for Cloud Services,” in PAM, pp. 41–
50, Springer, 2010.

[14] “Azure regions.” https://azure.microsoft.com/

en-us/regions/.

[15] A. Flavel, P. Mani, D. A. Maltz, N. Holt, J. Liu, Y. Chen,
and O. Surmachev, “Fastroute: A Scalable Load-aware
Anycast Routing Architecture for Modern CDNs,” in
NSDI, vol. 27, p. 19, 2015.

[16] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and
J. Padhye, “Analyzing the Performance of an Anycast
CDN,” in IMC, pp. 531–537, ACM, 2015.

[17] “Google Cloud CDN.” https://cloud.google.com/

cdn/.

[18] “Google Cloud Load Balancer.” https://cloud.

google.com/load-balancing/.

[19] “Amazon CloudFront.” https://aws.amazon.com/

cloudfront/.

[20] “Amazon AWS Route53.” https://aws.amazon.com/
route53/.

[21] “Amazon Web Services.” https://aws.amazon.com/.

[22] “Google Cloud Platform.” https://cloud.google.

com/.

[23] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al.,
“B4: Experience with a Globally-deployed Software De-
fined WAN,” in SIGCOMM, pp. 3–14, ACM, 2013.

[24] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang,
M. Chintalapati, and R. Yao, “Gray Failure: The Achilles’
Heel of Cloud-Scale Systems,” in HotOS, 2017.

[25] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and
A. Vahdat, “Evolve or Die: High-Availability Design
Principles Drawn from Googles Network Infrastructure,”
in SIGCOMM, pp. 58–72, ACM, 2016.

[26] “Akamai Compliance Management.” https://www.

akamai.com/uk/en/multimedia/documents/

product-brief/akamai-for-compliance-

management-feature-sheet.pdf.

[27] “Ripe atlas network coverage.” https://atlas.ripe.

net/results/maps/network-coverage/.

[28] “Dynatrace.” https://www.dynatrace.com/

capabilities/synthetic-monitoring/.

[29] “Thousandeyes.” https://www.thousandeyes.com/.

[30] “Catchpoint.” https://www.catchpoint.com.

[31] “Cedexis.” https://www.cedexis.com/.

[32] F. Chen, R. K. Sitaraman, and M. Torres, “End-user Map-
ping: Next Generation Request Routing for Content De-
livery,” in SIGCOMM, vol. 45, pp. 167–181, ACM, 2015.

[33] C. Huang, N. Holt, A. Wang, A. G. Greenberg, J. Li, and
K. W. Ross, “A DNS Reflection Method for Global Traf-
fic Management.,” in USENIX ATC, 2010.

[34] C. Huang, D. A. Maltz, J. Li, and A. Greenberg, “Public
DNS System and Global Traffic Management,” in INFO-
COM, pp. 2615–2623, IEEE, 2011.

[35] M. H. Gunes and K. Sarac, “Analyzing Router Respon-
siveness to Active Measurement Probes,” in PAM, pp. 23–
32, Springer, 2009.

514 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.youtube.com/watch?v=uj7Ting6Ckk
https://www.youtube.com/watch?v=uj7Ting6Ckk
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://azure.microsoft.com/en-us/regions/
https://azure.microsoft.com/en-us/regions/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/load-balancing/
https://cloud.google.com/load-balancing/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/
https://www.akamai.com/uk/en/multimedia/documents/product-brief/akamai-for-compliance-management-feature-sheet.pdf
https://www.akamai.com/uk/en/multimedia/documents/product-brief/akamai-for-compliance-management-feature-sheet.pdf
https://www.akamai.com/uk/en/multimedia/documents/product-brief/akamai-for-compliance-management-feature-sheet.pdf
https://www.akamai.com/uk/en/multimedia/documents/product-brief/akamai-for-compliance-management-feature-sheet.pdf
https://atlas.ripe.net/results/maps/network-coverage/
https://atlas.ripe.net/results/maps/network-coverage/
https://www.dynatrace.com/capabilities/synthetic-monitoring/
https://www.dynatrace.com/capabilities/synthetic-monitoring/
https://www.thousandeyes.com/
https://www.catchpoint.com
https://www.cedexis.com/

[36] R. A. Steenbergen, “A Practical Guide to (correctly)
Troubleshooting with Traceroute,” NANOG 37, pp. 1–49,
2009.

[37] D. Choffnes and F. E. Bustamante, “Taming the Torrent:
A Practical Approach to Reducing Cross-ISP Traffic in
Peer-to-Peer Systems,” in SIGCOMM, 2008.

[38] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes,
F. E. Bustamante, B. Krishnamurthy, and W. Willinger,
“Dasu: Pushing Experiments to the Internet’s Edge,” in
NSDI, pp. 487–499, 2013.

[39] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Ne-
talyzr: Illuminating the Edge Network,” in IMC, pp. 246–
259, ACM, 2010.

[40] S. Sundaresan, S. Burnett, N. Feamster, and W. De Do-
nato, “BISmark: A Testbed for Deploying Measurements
and Applications in Broadband Access Networks.,” in
USENIX ATC, pp. 383–394, 2014.

[41] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. All-
man, N. Weaver, and V. Paxson, “Fathom: A Browser-
based Network Measurement Platform,” in IMC, pp. 73–
86, ACM, 2012.

[42] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng,
T. Karim, E. Katz-Bassett, and R. Govindan, “An
Internet-wide Analysis of Traffic Policing,” in SIG-
COMM, pp. 468–482, ACM, 2016.

[43] Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang, “A
Provider-side View of Web Search Response Time,” in
SIGCOMM, pp. 243–254, ACM, 2013.

[44] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, and
F. Zane, “Clustering and Server Selection Using Passive
Monitoring,” in INFOCOM, vol. 3, pp. 1717–1725, IEEE,
2002.

[45] Z. M. Mao, C. D. Cranor, F. Douglis, M. Rabinovich,
O. Spatscheck, and J. Wang, “A Precise and Efficient
Evaluation of the Proximity Between Web Clients and
Their Local DNS Servers.,” in USENIX ATC, pp. 229–
242, 2002.

[46] A. Jain, J. Mann, Z. Wang, and A. Quach,
“W3C Resource Timing Working Draft.”
https://www.w3.org/TR/resource-timing-1/, July 2017.

[47] “USC CDN Coverage.” http://usc-nsl.github.io/
cdn-coverage.

[48] C. Contavalli, W. van der Gaast, S. Leach, and E. Lewis,
“RFC7871: Client Subnet in DNS Queries.” https://

tools.ietf.org/html/rfc7871.

[49] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heide-
mann, and R. Govindan, “Mapping the Expansion of
Google’s Serving Infrastructure,” in IMC, pp. 313–326,
ACM, 2013.

[50] A. Flavel, P. Mani, D. Maltz, N. Holt, J. Liu, Y. Chen, and
O. Surmachev, “FastRoute: A Scalable Load-Aware Any-
cast Routing Architecture for Modern CDNs,” in NSDI
’15, 2015.

[51] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck,
and J. Van der Merwe, “Anycast CDNs Revisited,” in
WWW, 2008.

[52] Z. Al-Qudah, S. Lee, M. Rabinovich, O. Spatscheck, and
J. Van der Merwe, “Anycast-aware Transport for Content
Delivery Networks,” in WWW, 2009.

[53] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck,
and J. Van Der Merwe, “A Practical Architecture for an
Anycast CDN,” ACM Transactions on the Web (TWEB),
2011.

[54] L. Wei and J. Heidemann, “Does Anycast Hang up on
You?,” in TMA, IEEE, 2017.

[55] G. Gürsun, “Routing-aware Partitioning of the Internet
Address Space for Server Ranking in CDNs,” Computer
Communications, vol. 106, pp. 86–99, 2017.

[56] J. S. Otto, M. A. Sánchez, J. P. Rula, and F. E. Busta-
mante, “Content Delivery and the Natural Evolution of
DNS,” in IMC, 2012.

[57] J. S. Otto, M. A. Sánchez, J. P. Rula, T. Stein, and
F. E. Bustamante, “namehelp: Intelligent Client-side
DNS Resolution,” in SIGCOMM, pp. 287–288, ACM,
2012.

[58] “A Faster Internet.” http://www.afasterinternet.

com/participants.htm.

[59] I. Poese, B. Frank, B. Ager, G. Smaragdakis, S. Uh-
lig, and A. Feldmann, “Improving Content Delivery with
PaDIS,” Internet Computing, vol. 16, no. 3, pp. 46–52,
2012.

[60] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feld-
mann, B. Maggs, J. Rake, S. Uhlig, and R. Weber, “Push-
ing CDN-ISP Collaboration to the Limit,” CCR, vol. 43,
no. 3, pp. 34–44, 2013.

[61] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig,
“Web Content Cartography,” in IMC, 2011.

[62] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai
Network: A Platform for High-performance Internet Ap-
plications,” in SIGOPS, pp. 2–19, ACM, 2010.

[63] M. J. Freedman, E. Freudenthal, and D. Mazieres, “De-
mocratizing Content Publication with Coral,” in NSDI,
vol. 4, pp. 18–18, 2004.

[64] J. Jiang, R. Das, G. Ananthanarayanan, P. Chou, V. Pad-
manabhan, V. Sekar, E. Dominique, M. Goliszewski,
D. Kukoleca, R. Vafin, and H. Zhang, “Via: Improving
internet telephony call quality using predictive relay se-
lection,” in SIGCOMM, 2016.

[65] S. S. Krishnan and R. K. Sitaraman, “Video Stream Qual-
ity Impacts Viewer Behavior: Inferring Causality using
Quasi-experimental Designs,” Transactions on Network-
ing, vol. 21, no. 6, pp. 2001–2014, 2013.

[66] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen,
P. Druschel, B. Maggs, B. Wishon, and M. Ponec, “Peer-
assisted Content Distribution in Akamai NetSession,” in
IMC, pp. 31–42, ACM, 2013.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 515

http://usc-nsl.github.io/cdn-coverage
http://usc-nsl.github.io/cdn-coverage
https://tools.ietf.org/html/rfc7871
https://tools.ietf.org/html/rfc7871
http://www.afasterinternet.com/participants.htm
http://www.afasterinternet.com/participants.htm

[67] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang,
V. Sekar, and H. Zhang, “C3: Internet-Scale Control
Plane for Video Quality Optimization,” in NSDI, vol. 15,
pp. 131–144, 2015.

[68] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and
H. Zhang, “CFA: A Practical Prediction System for Video
QoE Optimization,” in NSDI, pp. 137–150, 2016.

[69] Adnan Ahmed, Zubair Shafiq, Harkeerat Bedi, Amir
Khakpour, “Peering vs. Transit: Performance Compari-
son of Peering and Transit Interconnections,” in ICNP,
2017.

516 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendices
A Measurement Counts
Let the number of measurements be n and the true fail-
ure rate be p. Analytically, the observed failure rate p̂ is
distributed as Bin(n, p)/n, so the average error is

E [|p̂− p|] = E
[∣∣∣∣Bin(n, p)

n
− p

∣∣∣∣] .
Figure 12, however, is generated computationally via
Monte Carlo simulations. For example, to find the value
described in the caption, we simulated a large number
(107) of draws from the binomial distribution

p̂∼ Bin(n = 200, p = 0.01)/200,

then found the average value of |p̂− p| ≈ 54%.

30 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0

10
00

00

Measurement Counts

0

50

100

150

200

250

300

Av
er

ag
e

Er
ro

r (
%

)

0.001% Failure Rate
0.010% Failure Rate
0.100% Failure Rate
1.000% Failure Rate

Figure 12: The average error of observed failure rate, as a
function of number of measurements and true failure rate. For
example, if the true failure rate of a service is 1.0% (red dot-
ted line), then a sample of 200 measurements would yield an
average error of about 50%, i.e., 1.0±0.5%.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 517

Deepview: Virtual Disk Failure Diagnosis and Pattern Detection for Azure

Qiao Zhang1, Guo Yu2, Chuanxiong Guo3, Yingnong Dang4, Nick Swanson4, Xinsheng Yang4,
Randolph Yao4, Murali Chintalapati4, Arvind Krishnamurthy1, and Thomas Anderson1

1University of Washington, 2Cornell University, 3Toutiao (Bytedance), 4Microsoft

Abstract
In Infrastructure as a Service (IaaS), virtual machines
(VMs) use virtual hard disks (VHDs) provided by a re-
mote storage service via the network. Due to separation
of VMs and their VHDs, a new type of failure, called
VHD failure, which may be caused by various compo-
nents in the IaaS stack, becomes the dominating factor
that reduces VM availability. The current state-of-the-art
approaches fall short in localizing VHD failures because
they only look at individual components.

In this paper, we designed and implemented a system
called Deepview for VHD failure localization. Deepview
composes a global picture of the system by connecting
all the components together, using individual VHD fail-
ure events. It then uses a novel algorithm which inte-
grates Lasso regression and hypothesis testing for accu-
rate and timely failure localization.

We have deployed Deepview at Microsoft Azure, one
of the largest IaaS providers. Deepview reduced the
number of unclassified VHD failure events from tens of
thousands to several hundreds. It unveiled new patterns
including unplanned top-of-rack switch (ToR) reboots
and storage gray failures. Deepview reduced the time-
to-detection for incidents to under 10 minutes. Deepview
further helped us quantify the implications of some key
architectural decisions for the first time, including ToR
switches as a single-point-of-failure and the compute-
storage separation.

1 Introduction
Infrastructure-as-a-Service (IaaS) is one of the largest
cloud services today. Customers rent virtual machines
(VMs) hosted in large-scale datacenters, instead of man-
aging their own physical servers. VMs are hosted in
compute clusters, and mount OS and data VHDs (virtual
hard disks) from remote storage clusters via datacenter
networks. Resources can be scaled up and down elasti-
cally since compute and storage are separated by design.

Achieving high availability is arguably the most im-
portant goal for IaaS. Recently, large-scale system de-
sign [18, 33, 27], failure detection and mitigation tech-
niques [23, 43, 25, 7, 6, 29, 36], and better engineering
practices [10] have been applied to improve cloud system
availability. Yet, attaining the gold standard of five-nines
(99.999%) VM availability remains a challenge [32, 12].

At Microsoft Azure, there are on the order of thou-
sands of VM down events daily. The biggest category of
down events (52%) is what we call VHD failures. Due to
compute-storage separation, when a VM cannot access
its remote VHDs, the hypervisor has to crash the VM, re-
sulting in a VHD failure. Those VHD failures are caused
by various failures in the IaaS stack and constitute the
biggest obstacle towards attaining five-nines availability
for our IaaS 1.

Compute-storage separation brings unique challenges
to locating VHD failures. First, it is hard to find the
failing component in a timely fashion, among a large
number of interconnected components across compute,
storage, and network. The current practice of monitor-
ing individual components is not sufficient. The com-
plex dependencies and interactions among components
in our IaaS mean that a single root cause can have mul-
tiple symptoms at different places. A network or stor-
age failure may ripple through many other components
and affect many VMs and applications. It becomes hard
to distinguish causes from effects, resulting in a lengthy
troubleshooting process as the incidents get ping-ponged
among different teams.

Second, many component failures in the IaaS stack are
gray in nature and hard to detect [27]. For failures such as
intermittent packet drops and storage performance degra-
dation, some VHD requests that pass through the compo-
nent can fail but not others. The failure signals in these
cases are weak and sporadic in time and space, making
fast and accurate detection difficult.

1Azure has 34 regions and attains 99.9979% uptime in 2016. [41]

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 519

To address these challenges, we have designed and
deployed a system called Deepview. Deepview takes a
global view: it gathers VHD failure events as well as the
VHD paths between the VMs and their storage as inputs,
and constructs a model that connects the compute, stor-
age, and network components together. We further intro-
duce an algorithm which integrates Lasso regression [39]
and hypothesis testing [14] for principled and accurate
failure localization.

We implement the Deepview system for near-real-time
VHD failure localization on top of a high-performance
log analytics engine. To meet the near-real-time require-
ment, we add streaming support to the engine. Our im-
plementation can run the Deepview failure localization
algorithm in seconds, at the scale of thousands of com-
pute and storage clusters, tens of thousands of network
switches, and millions of servers and VMs.

Now in deployment at Azure, Deepview helped us
identify many new VHD failure root causes which were
previously unknown such as gray storage cluster failure
and unplanned Top of Rack switch (ToR) reboot. With
Deepview, unclassified VHD failure events dropped
from several thousands per day to less than 500, and the
Time to Detection (TTD) for incidents was reduced from
tens of minutes and sometimes hours to under 10 min-
utes.

Contributions. We identified VHD failures as the
biggest obstacle to five-nines VM availability for our
IaaS cloud, and proposed a system to quickly detect and
localize them. In particular, we
• Introduce a global-view-based algorithm that accu-

rately localizes VHD failures, even for gray failures.

• Build and deploy a near-real-time system that localizes
VHD failures in a timely manner.

• Quantify the implications of key IaaS architectural
design decisions, including ToR as a single-point-of-
failure and compute-storage separation (Section 7).

2 Background and Motivation

In this section, we first provide background on Azure’s
IaaS architecture. We explain how compute-storage sep-
aration can result in a new type of failure—VHD failures.
Then, we introduce the state-of-the-art industry practice
in localizing VHD failures and explain how it is slow and
inaccurate. Finally, we motivate the approach Deepview
takes and explain the challenges for putting the system
into production uses.

2.1 Compute-Storage Separation in IaaS
Figure 1 shows Azure’s IaaS architecture. A similar
architecture seems to be used at Amazon for instances

Compute Cluster Storage Cluster

T3

T2

T1

ToR

Frontend

Partition

Store

VM VM

Hypervisor

VHD Driver

Host

Figure 1: Azure’s IaaS architecture. A region has tens to
hundreds of compute/storage clusters. Each Tier2 (T2)
switch connects some subset of clusters, while Tier3 (T3)
switches connect the T2 switches. T3 switches are con-
nected by inter-region network (not drawn).

backed by the elastic block store [1]. Every VM has
one OS VHD and one or more data VHDs attached.
One key design decision is to separate compute and stor-
age physically—VMs and their VHDs are provisioned
from different physical clusters.

The main benefit of this separation is to keep customer
data available when their VMs become unavailable, e.g.,
due to a localized power failure. As a result, VM mi-
gration becomes easy as we only need to create a new
VM (possibly on a different host or cluster) and attach
the same VHDs.

In our datacenters, VHDs are provisioned and served
from a highly available, distributed storage service [13,
21]. Azure’s storage service is deployed in self-
contained units of clusters with their own Clos-like net-
work [5, 24, 13], software load balancers, frontend ma-
chines and disk/SSD-equipped servers. Similarly, VMs
are hosted on physical servers grouped in what we call
compute clusters. Each metro region typically has tens
to hundreds of compute clusters and storage clusters, in-
terconnected by a datacenter network.

Another benefit is load-balancing. A VM in a compute
cluster can remotely mount VHDs from many different
storage clusters. A compute cluster therefore uses VHDs
from multiple storage clusters, and a storage cluster can
serve many VMs from different compute clusters. As we
will see later in section 3, this many-to-many relationship
is leveraged by Deepview.

VHD Access is Remote. Compute-storage separation
requires all VMs to access their VHDs over the network.
When a VM accesses its disks, it is unaware that they are
remotely mounted. The VHD driver in the host hyper-
visor provides the needed disk virtualization layer. The
driver intercepts VM disk accesses, and turns them into
VHD remote procedure call (RPC) requests to the remote
storage service. The VHD requests and responses tra-
verse over multiple system components (e.g., the VHD
driver and the remote storage stack) and through multi-
ple network hops (e.g., ToR/T1/T2/T3 switches).

520 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

VHD Failure SW Failure HW Failure Unknown

52% 41% 6% 1%

Table 1: Breakdown of the causes of VM downtime.
VHD failures cause the majority of VM downtime.

1

2

3

0 25 50 75
Day

N
o

rm
a
li
z
e
d

 D
a
il
y
 V

H
D

 F
a
il
u

re
s

Figure 2: Daily VHD failures normalized the by 3-month
average. Every day had at least one failure. On the worst
day there were 3.5x more failures than average.

2.2 A New Type of Failure: VHD Failure

Compute-storage separation causes a new type of fail-
ure. In our datacenter, whenever VHD accesses are too
slow to respond (the default timeout is 2 minutes), the
hypervisor crashes the guest OS. In order to protect data
integrity, when VHDs do not respond, the guest OS must
be paused. But the pause cannot be indefinite—an unre-
sponsive VM can cause customers to fail their own ap-
plication level SLAs. After some wait, one reasonable
option is to surface the underlying VHD access failure
to the customer by crashing the guest OS. We call this
VHD failure caused by Compute-Storage Separation
or VHD failure for short.

VHD failure is the biggest cause of unplanned VM
downtime. We analyzed an entire year’s of IaaS VM
down events, including their durations and causes (an in-
ternal team finds root causes for VM down events). Ta-
ble 1 shows that 52% of VM downtime is due to VHD
Failures, 41% due to Software Failures (data-plane soft-
ware and host OS), and 6% due to Hardware Failures,
and 1% due to unknown causes.

Figure 2 further shows the daily number of VHD fail-
ures normalized by the 3-month average across tens of
regions. VHD failures happen daily. Occassionally, they
are particularly numerous. The worst day over the 3-
month period saw a 3.5x spike in volume.

To minimize the impact of VHD failures and improve
VM availability, the most direct approach is to quickly
localize and mitigate these failures. Next, we explain the
prior VHD failure handling approach and its drawbacks.

C1

C2

C3

C4

S1

S2

S3

(a) Bipartite model

C1

C2

C3

C4

S1 S2 S3

(b) Matrix view

Figure 3: The bipartite model and the corresponding ma-
trix view of a downtime event.

2.3 State-of-the-Art: Component View

Our datacenter operators prioritize by the impact of each
incident. A large rise in VHD failure events would auto-
matically trigger incident tickets and set off an investiga-
tion.

The site reliability engineers (SREs) look at system
components individually and locally, to see if any local
component anomaly coincides in time with the VHD fail-
ure incident. The Compute team might look for missed
heartbeats to see if the impacted physical machines have
failed. The Storage team might look at performance
counters to see if the storage system is experiencing an
overload. The Network team might look at network la-
tency and link packet discard rates to determine if some
network devices/links could be at fault. Once the fail-
ure location is confirmed, the responsible team often has
standard procedures for quick mitigation.

Prior to Deepview, failure localization was slow. It
was common that we needed tens of minutes, sometimes
more than one hour, to localize and mitigate big inci-
dents, and hours to tens of hours to detect and localize
gray failures. When a big incident happened, often more
than one component had an anomaly because a single
root cause could cascade to other services. For example,
one big network incident caused as many as 363 related
incidents from different services! As a result, the inci-
dent ticket could get ping-ponged among the teams.

Further, localization for gray failures [27] was often
inaccurate and slow. For example, while we know ToR
uplink packet discards can cause VHD requests to fail, it
was unclear how severe the discard rate has to be. Setting
a threshold to catch those failures became an art: too low
generated too many false positives, while too high de-
layed diagnosis or missed the issue.

3 Our Approach: Global View

Our key insight is that rather than looking at the compo-
nents individually and locally, we should take a global
view. The intuition can be illustrated by the bipartite
model in Figure 3a. In this model, we put compute clus-
ters on the left side and storage clusters on the right. We

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 521

draw an edge from a compute cluster to a storage cluster
if it has VMs that mount VHDs from the storage cluster.
We also assign an edge weight equal to the fraction of
VMs that have experienced VHD failures.

For a compute cluster issue such as an unplanned ToR
reboot that causes all VMs under the ToR to crash regard-
less of what storage clusters they use, we see the edges
(highlighted in red) from the impacted compute cluster
with high VHD failure rates, as in Figure 3a. When a
storage cluster fails, causing all VMs using that storage
cluster to experience VHD failures, we see edges with
high VHD failure rates coming to the impacted storage
cluster.

If we put the compute clusters along the y-axis and the
storage clusters along the x-axis, we get a matrix view
as shown in Figure 3b. In this matrix view, a horizontal
pattern points the incident to the computer cluster, while
a vertical pattern points to the storage cluster.

Challenges. Though the bipartite model looks intuitive
and promising, there are several challenges to use that
insight in a production setting. First, since the bipar-
tite model cannot be easily extended to model the multi-
tier network layers, we cannot use it to diagnose fail-
ures in the network. Second, while we can use some
voting/scoring heuristics to automate the visual pattern
recognition, they work well only when the failures are
fail-stop. For gray failures [27], fewer VMs would crash
so the VHD failure signals are often weaker, and the
VHD failure patterns are less clear cut. Third, when big
incidents happen, many customers may feel the impact,
making timely failure localization imperative. Our sys-
tem must therefore operate in near-real-time.

Problem Statement. Our goal is to localize VHD fail-
ures for both fail-stop and gray failures to component
failures in compute, storage or network, at the finest
granularity possible (clusters, ToRs and network tiers),
all within a TTD target of 15 minutes, in line with our
availability objectives.

4 Deepview Algorithm

In this section, we explain how the Deepview algorithm
solves the first two challenges—handling network and
gray failures. We first describe our new model, a gen-
eralization of the bipartite model to include network de-
vices. Then, we introduce our inference algorithm with
two main techniques: 1) Lasso regression [39] to select
a small subset of components as candidates to blame; 2)
hypothesis testing [14] as a principled and interpretable
way to handle strong and weak signals and decide on the
components to flag to operators. There are other failure
localization algorithms that can be adapted for our prob-
lem. We compare Deepview with them in Section 6.2,

Compute Cluster Storage Cluster

Aggregated
T3

Aggregated
T2

Aggregated
T1
ToR

Fronted

Partition

Store

Figure 4: Transforming the Clos network to a tree. Not
shown: each aggregated T2 switch connects to many
compute/storage clusters and each aggregated T3 switch
connects to many aggregated T2 switches.

and show that our approach has better recall and preci-
sion.

4.1 Model
In Section 3, we introduced a bipartite model that takes
a global view of compute and storage clusters. Here we
generalize the model to include network devices.

In this new model, we have three types of components:
compute clusters, network devices and storage clusters.
Figure 1 shows that compute clusters and storage clusters
are interconnected by a number of Tier-2 (T2 for short)
and Tier-3 (T3) switches in a Clos topology. ToR and
Tier-1 (T1) switches are within the clusters, and are part
of the clusters. To model the network, we replace each
edge in the bipartite model with a path through the net-
work that connects a compute cluster to a storage cluster.
Here we describe the model at the level of clusters (which
we call Cluster View in Section 6). We have also ex-
tended the model to the granularity of ToRs inside com-
pute clusters (ToR View). For this work, we keep the
storage cluster as a blackbox due to its complexity. As
future work, we plan to apply our approach to the host
level and the storage clusters internals.

4.1.1 Simplify the Clos Network to a Tree

One complication in modeling the network is that each
compute/storage cluster pair is connected by many paths.
Due to Equal-Cost Multi-path (ECMP) routing [24, 38],
we do not know precisely which path a VHD request
takes, and therefore, we do not know which path to blame
when the request fails.

Our solution is to transform the Clos topology (Fig-
ure 1) to a tree topology (Figure 4) so that there is a
unique shortest path between each cluster pair. We start
from the bottom and go up for each cluster and aggregate
the network devices by tiers, and then use shortest path
routing to find the lowest overlap between each cluster
pair.

The detailed procedure is as follows. First, we start
with ToR switches in a cluster and find the T1 switches

522 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

they connect to. Then, we group those T1 switches as
an aggregated T1 group for that cluster. Similarly, we
can find the connected T2 switches for those T1 switches
and group them as an aggregated T2 group for that clus-
ter. We repeat this procedure to find the aggregated T3
groups. At the end of the aggregation, we have deter-
mined the aggregated T1, T2, T3 groups for each cluster
in a region. The next step is to find the shortest path for
each compute-storage pair . If the aggregated T2 groups
of a cluster pair overlap, the midpoint is that overlapped
aggregated T2 group; if their aggregated T2 groups do
not overlap but their aggregated T3 groups do, the mid-
point is the T3 group.

Due to the simplification, we cannot pinpoint to a spe-
cific network device, but only to within a network tier. In
practice, Deepview is mainly used to decide which SRE
teams to notify when VMs crash. Upon notification, net-
work teams have other tools (e.g. Traceroute) to further
narrow down to a device for mitigation.

4.1.2 From Paths to Components

Next, we use our observations of VHD failure occur-
rences to pinpoint which component has failed. We
assume that components fail independently, which is a
practical and reasonable approximation of the real world.
For example, a compute cluster failure is unlikely to be
correlated with a storage cluster failure. We can write
down a simple probabilistic equation for a path consist-
ing of compute, storage and network components:

P(path i is fine) = ∏
j∈path(i)

P(component j is fine) (1)

We approximate 1−P(path i is fine) using the rate of
VHD failures observed for that path:

ni− ei

ni
≈ ∏

j∈path(i)
p j (2)

where ni is the total number of VMs, ei is the number of
VMs that have VHD failures for a given time window,
and p j is the probability that component j is fine. We get
a system of equations by writing down (2) for every path.
Next, we infer the values of p j for all components.

We know there is noise in our measurement, so we
cannot directly solve the system of equations and would
need to explicitly model the noise. Specifically, after tak-
ing log on both sides of equation (2) and adding a noise
term εi, we get a set of linear models:

yi =
N

∑
j=1

β jxi j + εi, εi
i.i.d.∼ N(0,σ2) (3)

where yi = log
(

ni−ei
ni

)
, β j = log p j, and the binary vari-

able xi j = 1 iff i-th path goes through the j-th component.

Net

C1 C2 S1 S2

Figure 5: Example where multiple solutions may exist.

Interpretation of β j: Once we get estimates for β j, the
probability that component j is fine can be computed
from β j because p j := exp(β j). If β j is close to 0, we
can clear component j from blame. Otherwise, if β j is
unusually negative, we have strong evidence to blame
component j (see Section 4.3). We would ensure β ≤ 0.

Next, we answer the following two questions: (1) how
to get fast, accurate, and interpretable estimates for β j;
(2) given the estimates, how to decide which component
to blame in a principled and interpretable manner?

4.2 Prefer Simpler Explanation
In practice, the number of unknown variables (β ’s) can
be larger than the number of equations. We illustrate this
in a simple example shown in Figure 5. We can list 4
equations with 5 free variables (the β s):

y1 = βc1 +βnet +βs1 + ε1

y2 = βc1 +βnet +βs2 + ε2

y3 = βc2 +βnet +βs1 + ε3

y4 = βc2 +βnet +βs2 + ε4. (4)

Suppose all four paths saw equal probability of VHD
failures. The blame can be pushed to the compute clus-
ters C1 and C2, or the storage clusters S1 and S2, or the
network, or a mix of those. Traditional least-square re-
gression cannot give a solution in this case. But our ex-
perience tells us that multiple simultaneous failures are
rare for a short window of time (e.g., 1 hour) because
individual incidents are rare and failures are (mostly) in-
dependent. How do we encode this domain knowledge
into our model to help us identify the most likely solu-
tion?

To prefer a small number of failures is mathematically
equivalent to prefer the estimates β = (β1, · · · ,βN) to be
sparse (mostly zeros). We express this preference by im-
posing a constraint on model parameters β . By asking
the sum of absolute values of β , i.e., ‖β‖1 to be small,
we can force most of the components of β to zero, leav-
ing only a small number of components of β remain-
ing. This technique of adding a L1-norm constraint is
known as Lasso [39], a computationally efficient tech-
nique widely used when sparse solutions are needed. We
also ensure β ≤ 0 to get valid probabilities. The esti-
mate procedure that encodes all our beliefs in our model
is thus the following convex program,

β̂ = argmin
β∈RN ,β≤0

‖y−Xβ‖2
2 +λ ‖β‖1 . (5)

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 523

Simplicity vs. Goodness-of-fit via λ : This loss function
tries to strike a balance between goodness-of-fit in the
first term (i.e., how well the model explains the observa-
tion) and sparsity in the second term (i.e., fewer failing
components are more likely). The regularization param-
eter λ is the knob. Larger λ prefers fewer components
to be blamed at potentially worse goodness-of-fit. The
optimal value of λ is set by an automatic (data-adaptive)
cross-validation procedure [26].

4.3 Decide Who To Blame
While big incidents are relatively easy to localize with a
fixed threshold, it is much harder to find a threshold that
can discriminate gray failures from normal components
when there are random measurement errors. The esti-
mated failure probabilities for gray failures can be very
close to zero (see Section 6.1). The challenge then be-
comes how big an estimated failure probability is for a
gray failure versus just measurement error. Setting such
a threshold manually requires laborious data-fitting and
is often based on some vague notions of anomaly. In
practice, it can be difficult and fragile.

Can we use data to find the decision threshold in a
principled and automatic way? Intuitively, the larger the
magnitude a (negative) Lasso estimate has, the higher its
estimated failure probability, and correspondingly more
likely the component has failed. We had a painful experi-
ence manually tuning the threshold, but the process gave
us some experience in distinguishing true failures (big
incidents and gray failures) from measurement noise.
We found that if a component’s Lasso estimate is much
worse than the average, then it is likely a real failure and
should be flagged. The further from average, the more
confident we are that the component has failed.

This decision can be automated in a hypothesis testing
framework. Consider the following one-sided test:

H0(j) : β j = β̄ v.s. HA(j) : β j < β̄ (6)

The null hypothesis H0(j) says the true probability that
component j is fine is no different from the grand average
of all components. We then use the data to tell us if we
can reject H0(j) or not. If the data allow us to reject
H0(j) in favor of the alternative hypothesis HA(j), then
we can blame component j. Otherwise, we do not blame
component j. The hypothesis test has three steps.

Step 1: Compute Test Statistic. Given Lasso estimates
for components in a region, we find the mean ¯̂

β and stan-
dard deviation σ

β̂
. Then we compute a modified Z-score

for each component j,

z j =
β̂ j− ¯̂

β

σ
β̂
/
√

N
. (7)

Under the assumptions that the measurement error is
Gaussian, and other caveats,2 we approximate the dis-
tribution of z j as a Gaussian distribution with mean zero
(under H0(j)) and certain variance.

Step 2: Compute p-value. We then compute the p-
value [14] for each component j. The p-value is the prob-
ability of seeing a failure probability for component j as
extreme as currently observed simply by chance assum-
ing that it is no different from the average. If the p-value
is really small, then we do not believe the failure prob-
ability for component j is just about average. See the
Appendix for more discussion on p-value.

Step 3: Make a Decision. Finally, we apply a standard
threshold of 1% on p-value.3 It expresses our tolerance
for false positive rate. For example, if the p-value for
component j is less 1%, we blame the component with at
most 1% false positive rate. Otherwise, we have insuffi-
cient evidence to blame component j.

Avoid the Pitfalls in Multiple Testing. We test every
component in a region and flag them based on p-values.
For every test, we may falsely blame a normal compo-
nent with a small chance. But with a large number of
components in every region, we are bound to commit an
actual false positive if not careful. This is called the mul-
tiple testing problem. We use the Benjamini-Hochberg
procedure [9] to control the False Discovery Rate. See
Appendix for details.

5 Deepview Design and Implementation

We have two main system requirements:

• Near-real-time (NRT) processing: VHD failures re-
sult in customer VM downtime, so failure localization
must be speedy and accurate. We have the requirement
that the time-to-detection (TTD) be within 15 minutes.

• Speedy iteration: VHD failures are the biggest obsta-
cle to higher VM availability, so there is an immediate
need by the operations team for better diagnosis. Our
system is designed for quick iteration.

Our system requires two types of input data: non-real-
time structural data and real-time event data. The former
include the compute and storage clusters information,
all the VMs and their VHD storage account information
and related context, the paths for all the compute-storage
pairs, and the network topology. Taking periodic snap-
shots of those every few hours suffices for our purposes.

2Testing on Lasso estimates is an active research area. We fit a
Lasso model to obtain a set of nonzero variables, and refit these vari-
ables with least squares. See [46].

3Another common threshold is 5%, but it generates too many false
positives for testing multiple hypotheses in our setting. See Appendix.

524 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Deepview
algorithm

NRT
Scheduler

VHD
Failure
Table

VM Info
Table

Storage
Account

Table

Network
Topo
Table

Real-time
Path

Kusto

Alert

Non-real-time
Path

Visualization

FailurePattern
Table

VHD failure events from servers Non-real-time structural data

VMsPerPath
Table

ClusterRawData
TorRawData

Tables

Ingestion Pipelines

Figure 6: Deepview system architecture. Data schema is
given in Table 2.

The latter are the VHD failure signals from servers. To
meet near-real-time requirements, our algorithm needs to
see VHD failure signals within minutes, ideally through
a streaming system.

We need to scale to thousands of compute and storage
clusters, tens of thousands of VHD failures per day, tens
of thousands of network switches, hundreds of thousands
paths, and millions of VMs.

The non-real-time information is either already in our
in-house log analytics engine called Azure Kusto [3, 2],
or can be generated and ingested into Kusto. Kusto stores
data as tables but the tables are append-only, and it sup-
ports a SQL-like declarative query language. Kusto is
backed by reliable persistent storage from a distributed
storage service, using memory and SSD for a read-only
cache. By default, it builds indices for all columns to
improve query speed.

VHD failure events are generated by hypervisors.
They are collected by a real-time pipeline. Since most of
our data is already in Kusto, and Kusto provides highly
expressive declarative language and fast data analysis,
we ingest the VHD failure events into Kusto and build
Deepview system on top of it.

System Architecture: The resulting system architecture
is shown in Figure 6. It has four components. The real-
time path and non-real-time path are for the input data in-
gestion for the Deepview algorithm. The Kusto platform
provides both data analysis and storage for input, inter-
mediate, and output data. The visualization and alert are
tools for the consumption of Deepview results. The NRT
scheduler is what we build on top of Kusto to support
stream processing for the Deepview algorithm.

5.1 Stream Processing

We build our own stream processing system on top of
Kusto because most of our data are already there; a few

Table Name Schema

VHDFailure (ts, vm id, vhd, str account)
VMInfo (ts, vm id, comp cluster, tor)
StorageAccount (ts, str account, str cluster)
NetworkTopo (ts, cluster, tor list, t1 list,

t2 list, t3 list)
VMsPerPath (tstart, tend, num vms)
ClusterRawData (tstart, tend, comp cluster,

str cluster, num vms,
num failed vms)

TorRawData (tstart, tend, comp cluser,
tor, str cluster, num vms,
num failed vms)

FailurePattern (tstart, tend, region, type, loc,
pval, visual url)

Table 2: Kusto schemas for the Deepview data.

additions to satisfy our needs. We do not claim novelty
compared to existing research and commercial streaming
systems [44, 8, 4].

To support stream processing on top of Kusto tables,
we use two abstractions:

• A computation directed-acyclic-graph (DAG) de-
clared as a set of SQL-like queries with their output
tables.

• A scheduler that runs each query at a given frequency.

We store the DAG and its scheduling policy as tables,
since tables are Kusto’s only supported data structure.

Computation DAG. The computation DAG consists of a
set of queries that read from input tables and produce one
or multiple output tables. The queries are the “edges”
and the input/output tables are the “nodes”. To maintain
the DAG in Kusto, we give each query a name and store
the query definition and the query output table name in
yet another table.

NRT Scheduler. To provide a streaming window ab-
straction, we use a schedule to describe when each query
in the DAG should be executed. The schedule describes
how often it should run and how many times to retry. To
meet availability requirements, we use a one-hour sliding
window that moves forward every 5 minutes.

5.2 Algorithm Implementation
The algorithm implementation has three parts: first, con-
struct the model—instantiate the design matrix xi j and
observation yi based on the Deepview raw data tables,
then run Lasso regression to infer β , and finally carry
out hypothesis testing to pinpoint the failures.

Sparse Matrix and Region Filtering. The scale of our
data poses some challenges for algorithm running time

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 525

and memory footprint. Constructing a full design matrix
requires filling in entries for every path and every com-
ponent with either zero or one. This can be slow and
has high memory usage. However, xi j are mostly zeros
since each path has at most tens of components, so we
only need to store the non-zero entries. Another simple
technique is to only get data from Kusto for regions with
non-zero VHD failure occurrences. Since simultaneous
failures are rare, region filtering can avoid running the
algorithm for some regions without hurting accuracy.

Coordinate Descent. Lasso regression has no closed
form solution. Coordinate descent [22] is one of the
fastest algorithms to solve the Lasso regression. We min-
imize the loss function as in Equation 5 with respect to
each coordinate β j while holding all others constant. We
cycle among the coordinates until all coefficients stabi-
lize. In practice, with warm start, we found that coor-
dinate descent almost always converges in only a few
rounds.

Cross-Validation with Warm Start to Set λ . We set
the regularization parameter λ for Lasso using a data-
adaptive method, i.e., cross-validation [26]. We use 5-
fold cross validation where we split the data by paths into
5 partitions, and use any four of them to fit β for a given
choice of λ and then compute the mean squared error
(MSE) on the holdout partition using the fitted β . The
optimal λ is the one that minimizes the average MSE.
We speed up cross validation using a warm start tech-
nique [22]. Recall that a larger λ meant fewer non-zero
β j. We start with the smallest λ that turns off all β j, and
then we gradually decrease λ . Since β tends to change
only slightly for a small change in λ , we reduce the num-
ber of rounds for coordinate descent by reusing β (λk−1)
as the initial values for β (λk).

6 Evaluation
We have deployed Deepview in production at Azure.
Here, we first evaluate how well Deepview localizes
VHD failures using production case studies. Then, we
compare Deepview’s accuracy with other algorithms.
Next, we analyze various techniques proposed for Deep-
view and ask how useful each is. Finally, we evaluate
how Deepview’s runtime efficiency.

6.1 Deepview Case Studies
In this subsection, we ask how effective Deepview is at
detecting and diagnosing incidents in production use.

6.1.1 Statistics

We examined the Deepview results for one month. The
number of VHD failures generated per day can be up to
tens of thousands. For this month, Deepview detected
100 patterns, and reduced the number of unclassified

ToR_11

ToR_12

ToR_13

ToR_14

ToR_15

ST
R
_0
1

ST
R
_0
2

ST
R
_0
3

ST
R
_0
4

ST
R
_0
5

ST
R
_0
6

ST
R
_0
7

Figure 7: Deepview pattern for an unplanned ToR reboot.

VHD failure events to less than 500 per day. We also
tried to associate the detected patterns with incident tick-
ets: 70 of the patterns were directly associated with in-
cident tickets. The other 30 patterns were not associated
with tickets. These 30 patterns turned out to be gener-
ated by weak VHD failure signals. They were all real
underlying component failures that escaped the previous
alerting system, either because of their smaller impact
(e.g., unplanned ToR reboot) or their gray failure nature
(e.g., gray storage failure).

Next we examine some of the representative patterns
we found and discuss the insight we learn from them.

6.1.2 Unplanned ToR Reboot

From time to time, ToRs undergo scheduled downtime
for firmware upgrade or other maintenance operations.
Impacted customers are notified in advance, with their
VMs safely migrated to other places. However, occa-
sionally, a ToR may experience an unplanned reboot due
to a hardware or software bug. Since each server con-
nects to only one ToR, the VMs under the ToR will not
be able to access their VHDs. We get VHD failures as a
result. To detect unplanned ToR reboots, Deepview first
estimates the failure probability and p-value for the ToR,
and then checks the following conditions for confirma-
tion: all the VMs under the ToR get VHD failures, the
ToR OS boot time matches the failure time detected by
Deepview, and the neighboring ToRs are working fine.

Figure 7 shows one such unplanned ToR reboot de-
tected by Deepview in a small region.4 It shows a por-
tion of the Deepview UI, which we call ToR view. It
clearly shows a horizontal pattern. The ToR switches in
the compute cluster are listed on the y-axis and the stor-
age clusters are listed on the x-axis. Each cell in the fig-
ure shows the status of the ToR and storage cluster pair.
Gray means the VMs under the ToR do not use the cor-
responding storage cluster; green means the VMs do not
have VHD failures; red means the VMs are experiencing
VHD failures.

Deepview blamed the right ToR among 288 compo-
nents in the region (ToRs, T1/T2/T3 switch groups and

4Readers may wonder how VHD failure events can be identified
when the ToRs are single point of failure. They are in fact stored locally
in the servers and are retrieved once network connectivity is restored
(typically within 10 minutes for software failures).

526 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10

20

0 20 40 60

Hour

N
u

m
b

e
r

o
f

V
M

s
 w

it
h

 V

H
D

 F
a

ilu
re

s
 p

e
r

H
o

u
r

Figure 8: The number of VMs with VHD failures per
hour during a storage cluster gray failure.

compute/storage clusters). Deepview estimated the fail-
ure probability for the failed ToR to be 100% with a p-
value of 1.84E−64, which is much less than 0.01.

Deepview therefore makes it possible to study how of-
ten ToRs cause downtime. We discuss this in detail in
Section 7.1.

6.1.3 Storage Cluster Gray Failure

Our storage cluster runs a full storage stack including
load balancer/frontend, meta-data management, storage
layer, etc. VHD failures can happen due to a variety of
failure modes in the storage stack. When storage cluster
failures are non-fail-stop, the VHD signals can be weak
and noisy. For example, the load balancer could discard
VHD requests to shed load, and in other cases, software
bugs could cause some VHDs to become unavailable,
impacting only a subset of VMs.

We next discuss such a storage gray failure case. A
new storage cluster was brought online, but with a mis-
configuration that allowed a test feature in the caching
subsystem to be enabled. This bug mistakenly put some
VHDs in negative cache (denoting deletion), rendering
them “invisible” and unavailable for VM access.

Based on the VHD failure events at hour 0 in Figure 8,
Deepview found three non-zero failure probability enti-
ties in the region, 0.34 for storage cluster S0, 0.002 and
0.047 for compute clusters C0 and C1. Notice that be-
cause this storage cluster failure only affected a small
number of VMs, we did not get a failure probability of
1 for S0. Further, the two compute clusters saw non-
zero failure probabilities because they also saw VHD
failure events. However, despite the weak signal, our al-
gorithm was able to correctly pinpoint the failure to S0.
Our hypothesis testing procedure computed a p-value of
3.9E−34 for S0, identifying it as a failed cluster with
very high confidence. On the other hand, C0 and C1
had p-values 0.51 and 0.54, respectively, and signifying
a lack of evidence. Using our prior threshold method
for detection, we would have delayed the detection by
22 hours. As shown in Figure 8, the signal is weak: the
number of VMs affected per hour in the beginning was

Figure 9: Deepview pattern for a network incident.

only around 10, and the peak number was only 28.

6.1.4 Network Failure

In our datacenter, switches other than ToRs have repli-
cas. Single switch failures thus seldom lead to wide im-
pact outages. However, in rare cases, a combination of
capacity loss and traffic surge can cause network failures.

In one region, we have over 100 compute clusters and
50 storage clusters. They are connected by four T2 ag-
gregated switches (numbered T2 0 to T2 3) with a T3
aggregated switch (T3 0) on top, as annotated along the
axes in Figure 9. Each aggregated switch contains multi-
ple switches. One day, a T3 0 switch underwent a major
maintenance event, which triggered some T2 switches in
T2 0 to mistakenly detect Frame Check Sequence (FCS)
errors on the links to T3 0. Our automatic network ser-
vice then kicked in and shut down most of links between
the T3 0 switch and T2 0 except for three links saved by
a built-in safety mechanism.

This loss in capacity together with a surge in storage
replication traffic caused significant congestion between
T2 0 and T3 0. As a consequence, we saw a significant
increase in VHD failures experienced by customer VMs.

Figure 9 shows the pattern in the Deepview UI (partial
Cluster View) with compute clusters on the y-axis and
storage clusters on the x-axis. The switch aggregated per
cluster is annotated on each axis. Yellow cells have a
VHD failure rate at most 5%. The VHD failure rates
are moderate because the VHD failures in this case were
caused by network congestion; most of the time network
connectivity was still working.

Deepview identified three aggregated switches with
non-zero failure probabilities: 0.21%, 0.11%, 0.03% for
T3 0, T2 0, and T2 2, respectively. Their corresponding
p-values are 9.91E−12, 4.25E−04, 0.221. We point to
T3 0 and T2 0 as the faulty network layers. The failure
location is correct, as the root cause is the link conges-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 527

tion between these two network layers. We note Deep-
view gave small failure probabilities because the VHD
failure signals are weak: only a very small percentage of
affected VMs crashed. But since T3 0 and T2 0 are high
in the network hierarchy, they impact a large number of
VMs.

We also experienced network incidents where network
connectivity for many VMs were lost. They were easy
for Deepview to detect and localize, as the signals were
strong: many VMs died at the same time. We present
this gray failure case to show the strength of Deepview.

To summarize, we have shown that Deepview can lo-
calize various incidents in which the signals can be weak
or strong. Deepview has also deepened our understand-
ing of VHD failures by identifying various patterns in-
cluding horizontal patterns caused by incidents including
unplanned ToR reboot, vertical patterns caused by stor-
age outages, and network failure patterns.

6.2 Algorithm Comparison
Several algorithms that have been previously used to lo-
calize failures in the network can be extended to localize
VHD failures. We compare with two tomography algo-
rithms and a Bayesian network algorithm:

• Boolean-Tomo [20, 19]: Classify paths into good and
bad paths based on a threshold (bad if at least γ VHD
failures). Iteratively find the component on the largest
number of unexplained bad paths, as the top suspect
until all bad paths are explained. For the threshold γ ,
we tried γ = 1,2,3,4,5, and picked γ = 1 to maximize
its recall and then precision.

• SCORE [31]: Classify paths into good and bad paths
based on a threshold (γ). Iteratively compute for each
component its hit ratio numBadPaths(c)

numPaths(c) and coverage ra-

tio numUnexplainedBadPaths(c)
totalNumUnexplainedBadPaths . Only consider compo-

nents above a hit ratio threshold (η). Take the compo-
nent with the highest coverage ratio as the top suspect.
For the threshold γ and η , we tried γ = 1,2,3,4,5 and
η = 0.001,0.01,0.1, and picked γ = 1 and η = 0.01
to maximize its recall and then precision.

• Approximate Bayesian Network [35]: The runtime
to compute exact Bayesian network is exponential in
the number of components, and thus is infeasible for
us. We tried an approximation [35]. It uses mean-
field variational inference to approximate the Bayesian
network with a Noisy-OR model, and estimates the
component j’s failure rate as the posterior mean of a
Beta distribution B(α j,β j). A component is blamed if

α̂ j

α̂ j+β̂ j
is above certain threshold. We do not include

its accuracy numbers, because we are unable to make
it give meaningful results on our data. The estimated

Boolean-Tomo SCORE Deepview
0

0.2

0.4

0.6

0.8

1

0.6

0.3

0.9

0.67

0.88
1

Pr
ec

is
io

n/
R

ec
al

l

Precision Recall

Figure 10: Precision/Recall comparison.

Compute Storage Net ToR

Precision 0.85 0.875 1.0 1.0
Recall 1.0 1.0 1.0 1.0

Table 3: Precision/Recall by failure type for Deepview.

posterior means of component failure rate allows us to
apply a threshold. The computation takes 10 minutes
for a single region, so this approach is not fast enough
for our problem.

Dataset. As we cannot run the other algorithms in pro-
duction, we use trace data to compare algorithms. We
had already hand-curated 42 incidents from a detailed
study of tickets, so we use trace data from those inci-
dents. They consist of 16 compute cluster issues (not
ToR-related), 14 storage cluster issues, 10 unplanned
ToR reboots, and 2 network issues. Only time periods
when there is an incident are considered because a ran-
dom sample is too sparse. Thus, we may overestimate
the precision. But our comparison is fair since all algo-
rithms use the same baseline ground truth.

Metrics. We compare each algorithm on recall and pre-
cision. Recall is the percentage of true failures that have
been localized and precision is the percentage of local-
izations that are correct. In other words, high recall
means we can localize most real failures, while high pre-
cision means we have few false positives.

Figure 10 summarizes the precision and recall for the
42 incidents. SCORE achieves a recall of 0.88, beating
Boolean-Tomo, but it gives many false positives. Deep-
view, achieves both a high precision of 0.90 and a high
recall of 1.0, beating both alternatives. Table 3 shows
a breakdown of the precision and recall by failure types
for Deepview. Overall, Deepview handles cases with a
strong failure signal (Compute/ToR) and those with a
weak failure signal (Storage/Network) well. Deepview
also does well for unplanned ToR reboots and Network
incidents. However, there were fewer of these incidents,
so the estimates are to be taken with a grain of salt.

The other advantage of Deepview is that its param-
eters needs no manual tuning. Parameters are set by
cross-validation (for λ) or using a standard interpretable
criterion (false positive tolerance of 1% for p-value).

528 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Boolean-Tomo and SCORE, instead, need careful tun-
ing of their thresholds. In fact, we find that their preci-
sion and recall are sensitive to the thresholds. We picked
those that maximize recall (as recall is typically more im-
portant than precision in production), while keeping pre-
cision as high as possible. We note that Deepview beats
the performance of Boolean-Tomo and SCORE for all
combinations of thresholds (omitted for lack of space).

6.3 Deepview Algorithm Analysis

We have introduced a set of techniques for our algorithm.
Here, we analyze how useful each technique is.

Cross-validation and λ in Lasso Regression. The regu-
larization parameter λ is set by cross-validation for each
region. The optimal values found for incidents in Sec-
tion 6.2 span three orders of magnitude with a minimum
of 0.00012 and a maximum of 0.48. In fact, it is well
known in statistical literature that choosing a universally
optimal λ for all problems is impossible. The theoretical
optimal [11] depends on the number of paths, the num-
ber of components, the structure of the network, and the
error variance (i.e., how stable are VHD failures among
different paths). When cross-validation is fast, it is pre-
ferred to a manual threshold.

Hypothesis Testing and Gray Failures. We use hypoth-
esis testing to find a decision threshold to localize both
big incidents and gray failures in the presence of ran-
dom noise. The gray failure case studies in Section 6.1
show that hypothesis testing is essential. For the storage
case, the failure probabilities are 0.34 for the truly failed
storage cluster S0, and 0.002 and 0.047 for two normal
compute clusters. Their p-values 3.9E−34 and 0.51 and
0.54 are needed to accentuate the difference and allow us
to pick only S0. Similarly, for the network case, looking
at p-values allow us to filter out T2 2.

6.4 Deepview Running Time

Algorithm Running Time. We measure the running
time for Deepview algorithm in production. The worst-
case running time is 18.3 seconds on a single server. It
includes the time to read input data from Kusto, execute
the algorithm and write the output data to Kusto.

Time to Detection (TTD) TTD is defined as the time
between when an incident happens and when the fail-
ure is localized. The average time from a VHD failure
event to its appearance in Kusto is 3.5 minutes. Adding
the 5 minutes windowing time and the processing time,
Kusto achieves a TTD under 10 minutes. This is a sig-
nificant improvement over the previous TTD which typ-
ically lasted from tens of minutes to hours.

7 Discussion

Several architectural decisions were made when our IaaS
was built. One is that a server connects to only a single
ToR via a single NIC. While this makes ToR a single-
point-of-failure (SPOF), the decision dramatically re-
duces networking cost. Another decision is that a VM
can host its VHDs in any storage cluster in the same
region. This makes load-balancing for storage clusters
easy, but with potentially higher network latency and
lower throughput. Further, both decisions may adversely
impact VM availability. Using the data collected from
Deepview, we can now study the impact of these deci-
sions quantitatively.

7.1 ToR as a Single-Point-of-Failure

As we have described in Section 6.1, Deepview can de-
tect unplanned ToR reboots. From the failure patterns,
we find that there are two types of ToR failures: soft fail-
ures and hard failures. Soft failures can be recovered by
rebooting the ToR, while hard failures cannot.

Our data shows that: (1) less than 0.1% switches expe-
rience unplanned reboots in a month; (2) 90% of the fail-
ures are soft failures, with the rest hard failures. The hard
failure rate agrees with our ToR Return Merchandise
Authorization (RMA) rate, which indicates that 0.1%
switches need to be RMAed in one year. These numbers
are obtained from a fleet of tens of thousands of ToRs.

The impact of a soft failure typically lasts for less than
20 minutes: 10 minutes for the ToRs to come up and 10
minutes for the VMs to recover. The impact of a hard
failure lasts longer as the failed switch needs to be physi-
cally replaced. The impact to VMs can be shorter though
as the VMs can be migrated to other hosts due to the sep-
aration of compute and storage. We conservatively use 2
hours as the impact period for hard failures.

If the ToR is the only failure source for VMs on that
rack, the availability of our IaaS is no better than

1− 0.9×20+0.1×120
1000×30×24×60

= 99.99993%

Even with ToR as the single point of failure, the ser-
vice can achieve six-nines. This meets the rule of thumb
that critical dependencies need to offer one additional 9
relative to the target service [40].

Thanks to Deepview data, for the first time, we are
able to show that ToR as a single point of failure is an ac-
ceptable design choice for IaaS as it is not on the critical
path for five-nines availability.

Note that simply examining ToR logs would not
have given us these numbers, as many ToR reboots are
planned, with no impact on VM availability.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 529

0

100

200

300

0 25 50 75

Day

P
e

rc
e

n
ta

g
e

 I
n

c
re

a
s
e

 o

f
V

H
D

 F
a

ilu
re

 R
a

te

Figure 11: Daily percentage increase in VHD failure rate
for VMs crossing T3 and above compared to those that
only cross T2 for a 3-month period.

7.2 Co-locate or Disaggregate?
A VM can use VHDs from any storage cluster in the
same region, due to the separation of compute and stor-
age. We look at the network distance between VMs and
the storage clusters for their VHDs. We find that some
51.8% of VHD paths go through T2, 41.0% need to go
through T3 and the rest go above T3 in Azure.

A longer network path may result in higher network
latency and packet drop rate. However, it is not clear
whether it will also negatively affect VM availability.

Here we use the Deepview data to answer this quanti-
tatively. We look at our data for three months. For each
day, we first compute the VHD failure rates r0 and r1
for VMs crossing T2 only and VMs crossing T3 and
above, respectively. Then, we find the percentage in-
crease (r1− r0)/r0.

Figure 11 shows the daily percentage increase over a
3-month period. VMs whose network paths cross T3 net-
work layer or above see a higher VHD failure rate than
those that only need to cross T2 on most days. There is a
11.4% increase ((r1− r0)/r0) in the VHD failure rate if
the VHD access needs to cross T3 or above.

One possible explanation is that as VHD requests go
up the network tiers, they traverse more switches which
may become oversubscribed. Thus VHD requests may
become more likely to fail when network path lengths
get longer. An implication of this study is that there
is some benefit to colocating VMs and their VHDs in
nearby clusters for availability.

8 Related Work
Machine Learning. Machine learning techniques have
been used for failure localization, such as decision
trees [6, 17], Naive Bayes [45], SVM [42], correla-
tions [43], clustering [16], and outlier detection [36].
They allow domain knowledge to be encoded as features,
but in general require a rich set of signals to discrimi-
nate different failure cases and may rely on assumptions
about traffic that are not generally applicable. The most
relevant work is NetPoirot [6], which targets a similar

scenario as ours, but with a very different approach. Net-
Poirot is a single node solution where end-hosts indepen-
dently run pre-trained classification models on local TCP
statistics to infer failure locations. We believe NetPoirot
and Deepview are complementary—TCP metrics from
IaaS VMs may provide a useful signal to Deepview.

Tomography. There has been a large body work in net-
work tomography (see [15] for a survey), and specifically
binary tomography and its variants [20, 19, 31] for net-
work failure localization. Typically, greedy heuristics are
used to select among multiple solutions that all explain
the observations. Various thresholds are often needed to
tradeoff between precision and recall ratios. Compared
with those approaches, Deepview avoids manual thresh-
old tuning and achieves both higher recall and precision
as shown in section 6.2.

Bayesian Network. Bayesian network [34] is a prin-
cipled probabilistic approach to failure localization. It
can model complex system behaviors [7] and handle
measurement errors [28]. While exact inference is in-
tractable [30], there are various approximation tech-
niques such as using noisy-or to simplify conditional
probability calculation [35, 7, 37], considering k-subset
root-causes to shortcut marginalization [28, 7], using a
simple factored form for joint posterior [35], or using
message passing for faster inference [37]. For our prob-
lem, we find that using a combination of approxima-
tion techniques (we tried two [35]) was essential. It is
future work to compare Deepview with some practical
Bayesian network approach.

9 Conclusion

We identified VHD failures caused by compute-storage-
separation as the main factor that reduces VM availabil-
ity at our IaaS cloud. We introduced Deepview, a sys-
tem that quickly localizes failures from a global view of
different system components and a novel algorithm in-
tegrating Lasso regression and hypothesis testing. Data
from production allowed us to quantitatively evaluate
precision and recall across many failure events. We also
used Deepview data to evaluate the impact of system ar-
chitecture on VM availability.

Acknowledgement
We thank our Azure colleagues Brent Jensen, Girish
Bablani, Dongming Bi, Rituparna Paul, Abhishek
Mishra, Dong Xiang for their valuable discussions and
support. We thank our MSR colleagues Pu Zhang,
Myeongjae Jeon and Lidong Zhou, and intern Jin Ze for
their contributions to an early prototype of Deepview.
We thank our shepherd Mike Freedman and the anony-
mous reviewers for their feedback. This work was par-
tially supported by the NSF (CNS-1616774).

530 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Amazon EC2 Root Device Volume. http://

docs.aws.amazon.com/AWSEC2/latest/UserGuide/
RootDeviceStorage.html#RootDeviceStorageConcepts.

[2] Azure Kusto (Preview). https://docs.microsoft.com/en-
us/connectors/kusto/.

[3] Introducing Application Insights Analytics. https:

//blogs.msdn.microsoft.com/bharry/2016/03/28/
introducing-application-analytics/.

[4] ABADI, D. J., CARNEY, D., ETINTEMEL, U., CHERNIACK, M.,
CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL, N., AND
ZDONIK, S. B. Aurora: a New Model and Architecture for Data
Stream Management. The VLDB Journal 12 (2003), 120–139.

[5] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A Scalable,
Commodity Data Center Network Architecture. In SIGCOMM
(2008).

[6] ARZANI, B., CIRACI, S., LOO, B. T., SCHUSTER, A., AND
OUTHRED, G. Taking the Blame Game Out of Data Centers
Operations with NetPoirot. In SIGCOMM (2016).

[7] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S.,
MALTZ, D. A., AND ZHANG, M. Towards Highly Reliable En-
terprise Network Services via Inference of Multi-level Dependen-
cies. In SIGCOMM (2007).

[8] BALAZINSKA, M., BALAKRISHNAN, H., MADDEN, S., AND
STONEBRAKER, M. Fault-tolerance in the Borealis Distributed
Stream Processing System. In SIGMOD Conference (2005).

[9] BENJAMINI, Y., AND HOCHBERG, Y. Controlling the False Dis-
covery Rate: a Practical and Powerful Approach to Multiple Test-
ing. Journal of the Royal Statistical Society. Series B (Method-
ological) (1995), 289–300.

[10] BEYER, B., JONES, C., PETOFF, J., AND MURPHY, N. R. Site
Reliability Engineering: How Google Runs Production Systems.
O’Reilly Media, 2016.

[11] BICKEL, P. J., RITOV, Y., AND TSYBAKOV, A. B. Simultaneous
Analysis of Lasso and Dantzig Selector. The Annals of Statistics
(2009), 1705–1732.

[12] BISHOP, T. Microsoft Says Google’s Cloud Reliability Claim
vs. Azure and Amazon Web Services Does Not Compute, 2017.
https://www.geekwire.com/2017/microsoft-says-
googles-cloud-reliability-claim-vs-azure-amazon-

web-services-not-compute.

[13] CALDER, B., ET AL. Windows Azure Storage: a Highly Avail-
able Cloud Storage Service with Strong Consistency. In SOSP
(2011).

[14] CASELLA, G., AND BERGER, R. L. Statistical Inference, vol. 2.
Duxbury Pacific Grove, CA, 2002.

[15] CASTRO, R., COATES, M., LIANG, G., NOWAK, R., AND YU,
B. Network Tomography: Recent Developments.

[16] CHEN, M. Y. ., KICIMAN, E., FRATKIN, E., FOX, A., AND
BREWER, E. Pinpoint: Problem Determination in Large, Dy-
namic Internet Services. In DSN (2002).

[17] CHEN, M. Y., ZHENG, A. X., LLOYD, J., JORDAN, M. I., AND
BREWER, E. A. Failure Diagnosis Using Decision Trees. In
ICAC (2004).

[18] DEAN, J. Designs, Lessons and Advice From Building Large
Distributed Systems. Keynote from LADIS 1 (2009).

[19] DHAMDHERE, A., TEIXEIRA, R., DOVROLIS, C., AND DIOT,
C. NetDiagnoser: Troubleshooting Network Unreachabilities
Using End-to-end Probes and Routing Data. In CoNEXT (2007).

[20] DUFFIELD, N. Network Tomography of Binary Network Perfor-
mance Characteristics. IEEE Transactions on Information Theory
52.

[21] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY, M.,
TRUONG, V.-A., BARROSO, L., GRIMES, C., AND QUINLAN,
S. Availability in Globally Distributed Storage Systems. In OSDI
(2010).

[22] FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. Regular-
ization Paths for Generalized Linear Models via Coordinate De-
scent. Journal of statistical software 33, 1 (2010), 1.

[23] GOVINDAN, R., MINEI, I., KALLAHALLA, M., KOLEY, B.,
AND VAHDAT, A. Evolve or Die: High-Availability Design Prin-
ciples Drawn From Googles Network Infrastructure. In SIG-
COMM (2016).

[24] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. VL2: A Scalable and Flexible Data Center Network.
In SIGCOMM (2009).

[25] GUO, C., ET AL. Pingmesh: A Large-Scale System for Data Cen-
ter Network Latency Measurement and Analysis. In SIGCOMM
(2015).

[26] HASTIE, T. J., TIBSHIRANI, R., AND FRIEDMAN, J. H. The
elements of statistical learning: data mining, inference, and pre-
diction, 2nd Edition. In Springer series in statistics (2009).

[27] HUANG, P., GUO, C., ZHOU, L., LORCH, J. R., DANG, Y.,
CHINTALAPATI, M., AND YAO, R. Gray Failure: The Achilles’
Heel of Cloud-Scale Systems. In HotOS (2017).

[28] KANDULA, S., KATABI, D., AND VASSEUR, J.-P. Shrink: a
Tool for Failure Diagnosis in IP Networks. In MineNet (2005).

[29] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S.,
PADHYE, J., AND BAHL, P. Detailed Diagnosis in Enterprise
Networks. In SIGCOMM (2009).

[30] KOLLER, D., AND FRIEDMAN, N. Probabilistic Graphical Mod-
els - Principles and Techniques.

[31] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNO-
EREN, A. C. IP Fault Localization via Risk Modeling. In NSDI
(2005).

[32] LEOPOLD, G. AWS Rates Highest on Cloud Reliabil-
ity, 2015. https://www.enterprisetech.com/2015/01/06/
aws-rates-highest-cloud-reliability.

[33] MOGUL, J. C., ISAACS, R., AND WELCH, B. Thinking About
Availability in Large Service Infrastructures. In HotOS (2017).

[34] PEARL, J. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. 1988.

[35] PLATT, J. C., KICIMAN, E., AND MALTZ, D. A. Fast Vari-
ational Inference for Large-scale Internet Diagnosis. In NIPS
(2007).

[36] ROY, A., ZENG, H., BAGGA, J., AND SNOEREN, A. C. Passive
Realtime Datacenter Fault Detection and Localization. In NSDI
(2017).

[37] STEINDER, M., AND SETHI, A. S. End-to-end Service Failure
Diagnosis using Belief Networks. In NOMS (2002).

[38] THALER, D., AND HOPPS, C. Multipath Issues in Unicast and
Multicast Next-Hop Selection, 2000. IETF RFC 2991.

[39] TIBSHIRANI, R. Regression Shrinkage and Selection via the
Lasso. Journal of the Royal Statistical Society. Series B (Method-
ological) (1996), 267–288.

[40] TREYNOR, B., DAHLIN, M., RAU, V., AND BEYER, B. The
Calculus of Service Availability. ACM Queue 15 (2017).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 531

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html#RootDeviceStorageConcepts
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html#RootDeviceStorageConcepts
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html#RootDeviceStorageConcepts
https://docs.microsoft.com/en-us/connectors/kusto/
https://docs.microsoft.com/en-us/connectors/kusto/
https://blogs.msdn.microsoft.com/bharry/2016/03/28/introducing-application-analytics/
https://blogs.msdn.microsoft.com/bharry/2016/03/28/introducing-application-analytics/
https://blogs.msdn.microsoft.com/bharry/2016/03/28/introducing-application-analytics/
https://www.geekwire.com/2017/microsoft-says-googles-cloud-reliability-claim-vs-azure-amazon-web-services-not-compute
https://www.geekwire.com/2017/microsoft-says-googles-cloud-reliability-claim-vs-azure-amazon-web-services-not-compute
https://www.geekwire.com/2017/microsoft-says-googles-cloud-reliability-claim-vs-azure-amazon-web-services-not-compute
https://www.enterprisetech.com/2015/01/06/aws-rates-highest-cloud-reliability
https://www.enterprisetech.com/2015/01/06/aws-rates-highest-cloud-reliability

[41] VISWAV, P. Microsoft Dismisses Google’s Cloud Reliabil-
ity Claim, 2017. https://mspoweruser.com/microsoft-
dismisses-googles-cloud-reliability-claim.

[42] WIDANAPATHIRANA, C., LI, J. C., SEKERCIOGLU, Y. A.,
IVANOVICH, M. V., AND FITZPATRICK, P. G. Intelligent Auto-
mated Diagnosis of Client Device Bottlenecks in Private Clouds.
2011 Fourth IEEE International Conference on Utility and Cloud
Computing (2011), 261–266.

[43] YU, M., GREENBERG, A. G., MALTZ, D. A., REXFORD, J.,
YUAN, L., KANDULA, S., AND KIM, C. Profiling Network
Performance for Multi-tier Data Center Applications. In NSDI
(2011).

[44] ZAHARIA, M., DAS, T., LI, H., HUNTER, T., SHENKER, S.,
AND STOICA, I. Discretized Streams: Fault-tolerant Streaming
Computation at Scale. In SOSP (2013).

[45] ZHANG, S., COHEN, I., GOLDSZMIDT, M., SYMONS, J., AND
FOX, A. Ensembles of Models for Automated Diagnosis of Sys-
tem Performance Problems. In DSN (2005).

[46] ZHAO, S., SHOJAIE, A., AND WITTEN, D. In Defense of the
Indefensible: A Very Naive Approach to High-Dimensional In-
ference. arXiv preprint arXiv:1705.05543 (2017).

A P-value Correction for Multiple Testing

To decide if a component has failed, we could make a
decision based on a threshold for the estimated failure
probability for that component. But we can make a more
principled decision by conducting a hypothesis test for
each component as specified in (6). In this appendix, we
explain the details in doing this testing. We explain our
p-value, and motivate and explain how we do multiple
testing.

A.1 Interpretation of p-values

To conduct the test for each component, we construct the
test statistics as in (7) for each of the N components. We
then compute the p-value for each test to decide whether
to reject the null hypothesis. The p-value is defined as,
the probability, assuming the null hypothesis is true, of
the sampling test statistic having a value at least as ex-
treme as observed. If the null hypothesis is true, we
should expect a moderate p-value. However, if the com-
puted p-value is small, we have evidence to believe that
the null hypothesis is false. In fact, when the p-value is
too small (e.g., below the conventional 1%, 5%, and 10%
significance level), we should reject the null hypothesis
H0(j), since it is highly unlikely that it can explain the
values we have observed.

If the p-value is greater than the significance level,
then the test is inconclusive. However, we give extra
attention to borderline cases to decrease the false neg-
ative rate. For example, we produce warnings with lower
priority for those components whose p-values are only
slightly greater than the significance level.

A.2 Choice of Significance Level
How to choose an appropriate significance level? For
testing a single hypothesis, conventional choices of sig-
nificance level include 1%, 5%, and 10%.

However, when testing multiple hypotheses, we need
to be more careful about false positives. Suppose we
are testing 100 null hypotheses, all of which are true.
If we use 5% as the significance level, then there is
roughly 5% probability that we incorrectly reject the
null hypothesis—committing a false positive. Further,
if these 100 tests are independent, then we are almost
certain to make at least one false positive:

P(at least one false positive) = 1−P(no false positive)

= 1−0.95100 = 0.994.
(8)

Intuitively, the more hypotheses we test simultaneously,
the more likely we are to make a mistake.

To reduce the tendency of making mistakes when test-
ing multiple hypotheses, we need to provide a stricter
significance level than a single test. This is called the
multiple testing correction.

A.3 Multiple Testing Correction
There are two approaches to multiple testing correction:
family-wise error rate (FWER) control correction or false
discovery rate (FDR) control correction. We use FDR
control in Deepview algorithm since it is the more pow-
erful alternative.

Let V be the number of false positives (the healthy
components that we falsely blame), and R be the num-
ber of rejected hypotheses (the total number of compo-
nents we blame). Then the false discovery rate (FDR) is
defined as

FDR := E[Q] := E [V/R] (9)

The Benjamini-Hochberg procedure [9] is the most
popular FDR control procedure due to its simplicity and
effectiveness. The procedure is as follows:

1. Do N individual tests and get their p-values P1,
P2, . . . , PN corresponding to null hypothesis H0(1),
H0(2), . . . , H0(N).

2. Sort these p-values in ascending order and denote
them by P(1),P(2), · · · ,P(N).

3. For a given threshold on FDR α , find the largest K
such that P(K) ≤ K

N α .

4. Reject all null hypotheses for which their p-values
are smaller than or equal to P(K).

This procedure controls the FDR under α .

532 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://mspoweruser.com/microsoft-dismisses-googles-cloud-reliability-claim
https://mspoweruser.com/microsoft-dismisses-googles-cloud-reliability-claim

LiveTag: Sensing Human-Object Interaction Through
Passive Chipless WiFi Tags

Chuhan Gao and Yilong Li
University of Wisconsin-Madison
{cgao57, yli758}@wisc.edu

Xinyu Zhang
University of California San Diego

xyzhang@ucsd.edu

Abstract
Many types of human activities involve interaction with
passive objects. Thus, by wirelessly sensing human in-
teraction with them, one can infer activities at a fine reso-
lution, enabling a new wave of ubiquitous computing ap-
plications. In this paper, we propose LiveTag to achieve
this vision. LiveTag is a fully passive, thin metal tag that
can be printed on paper-like substrates and attached on
objects. It has no batteries, silicon chips or discrete elec-
tronic components. But when touched by fingers, it dis-
turbs ambient WiFi channel in a deterministic way. Mul-
tiple metallic structures can be printed on the same tag
to create unique touch points. Further, LiveTag incorpo-
rates customized multi-antenna beamforming algorithms
that allow WiFi receivers to sense the tag and discrimi-
nate the touch events, amid multipath reflections/interferences.
Our prototypes of LiveTag have verified its feasibility
and performance. We have further applied LiveTag to
real-world usage scenarios to showcase its effectiveness
in sensing human-object interaction.

1. Introduction
Information about the objects a person touches is an

essential input to many applications in ubiquitous com-
puting. On one hand, the ability to sense touch in the
physical world can form the basis of the tangible user
interface [17], which allows human to use omnipresent
objects as a command-and-control interface to the digital
world. On the other hand, the sequence of objects used
can enable inference of human activities [32, 47]. Logs
of objects touched can become the basis of “experience
sampling” [3] or “life-logging” [11,16,52] that try to re-
construct a user’s day. Post-processing of the logs can
support many activity-aware applications, such as stroke
rehabilitation assessment in homes, consumer analytics
for retail stores [12, 28], etc.

To harvest these benefits, a practical system needs to
sense touches on different objects, and on different spots
of the same object. The system should be inexpensive
for ubiquitous deployment, and should be unobtrusive—
always functioning but without distracting users and with
little maintenance cost. In addition, it should preserve
privacy, capturing nothing more than the user’s interest.
These salient properties will embody Mark Weiser’s vi-
sion of ubiquitous computing by weaving the system into
physical environment, rendering the underlying technol-
ogy invisible [51]. Although many conventional sensors
can detect object use (e.g., motion sensors [43, 47] and

Tag Detection
Touch Detection

2200 2300 2400 2500 2600 2700
-8

-7

-6

-5

-4

-3

-2

-1

Fading Suppression
Beam Nulling

Frequency

G
ai
n

Substrate

Ground Layer

Metallic
conductive layer

Figure 1: Overview of LiveTag.

Figure 2: Printed thin, flexible LiveTag tags, in compar-
ison with a piece of photo paper.

cameras [9, 15, 54]), they often require augmenting the
objects with batteries/circuits, or may provoke strong vi-
sual privacy concerns.

In this paper, we propose LiveTag, a new wireless sens-
ing modality to detect manipulation with physical ob-
jects. Fig. 1 illustrates the working principle. LiveTag
uses thin radio-frequency (RF) tags as a user interface,
either attached on the objects, or working independently
as a thin keypad or control panel. These tags are fully
passive, chipless, and battery-free, only made of a layer
of metal foil printed on a thin substrate (e.g., flexible
ceramic-PTEF laminate commonly used for thin PCB
printing, as shown in Fig. 2). Touch commands on the
tags are detected remotely by WiFi devices which can
react accordingly. More specifically, the tag is designed
as a strong reflector for 2.4/5 GHz signals from a cooper-
ating WiFi transmitter, and touches upon its metal struc-
ture create a known non-linear channel distortion which
can be remotely detected by a WiFi receiver.

To satisfy the targeted use cases of LiveTag, the tags
need to be sensitive to WiFi signals, contain multiple dis-
tinguishable touch points, and bear identifiable charac-
teristics. In meeting these requirements, we create RF
surface capacitors/inductors/resistors by printing metal
structures with special geometries. These surface elec-
tronic components eventually form a resonator that ab-
sorbs WiFi signals of specific frequency, acting like a
bandstop filter to create a “notch” on the WiFi channel
response. Multiple resonators can be co-located on the
same tag with different notch positions. Together, these
resonators create a spectrum signature that makes the en-
tire tag uniquely distinguishable from others. In addition,

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 533

finger touch on each resonator nullifies the notch, result-
ing in a unique change in the WiFi channel response.

To realize these salient properties, we empirically model
the relation between tag geometry and corresponding fre-
quency characteristics, as well as the impact of touching.
These models allow us to make tradeoffs between the tag
size, capacity (i.e., number of touch points), and number
of coexisting tags. We have also fabricated the tags us-
ing thin PCB laminates. Under controlled setup where
the signals directly pass through the tag, we observe up
to 35 dB of attenuation at the desired notch points.

In practical over-the-air usage scenarios, however, de-
tecting the tags and touch events entails a number of chal-
lenges unseen in conventional communication systems
or actively modulated RFID systems. First, the line-of-
sight (LOS) channel between the WiFi transmitter and
receiver is much stronger and can easily overwhelm the
signals reflected by the tag. Second, due to frequency-
selective fading caused by ambient multipath reflections,
the spectrum signatures tend to be interfered by random
channel gain variations across the frequency band. To
tackle such uncertainties, we design redundancies into
the tag and combine multiple resonators to enhance the
spectrum signature. To enable robust detection, we de-
sign a fading suppression and LOS nulling mechanism,
taking advantage of the multiple antennas on the WiFi
transceivers. The touch event is then detected as a known
change in the spectrum, following a stochastic model that
guarantees a prescribed false alarm rate.

We have verified these solutions through an enhanced
tag design, as well as a tag detection system comprised
of a pair of WiFi-compatible transceivers. Our experi-
ments in practical indoor scenarios demonstrate that both
the presence of and touch upon a multi-resonator tag can
be detected accurately, even when the tag is placed 4.8
m away from the transmitter. The miss detection rate
(Pm) and false alarm rate (Pf) is only around 3%, and
approach 0 with multi-resonator redundancy. The tag-
to-receiver distance needs to be shorter (around 0.5 m).
So a user-carried WiFi device like smartphone is mostly
suitable as a LiveTag receiver. In terms of tag capacity,
each tag is able to provide up to 8 touch points, created
by 8 frequency notches that span the entire WiFi band.
We have also conducted 3 case studies of LiveTag in-
volving human-object interaction: a batteryless keypad,
on-clothes music controller, and water-level detector at-
tached to a cup, which demonstrate LiveTag’s capabili-
ties in augmenting everyday life in a non-intrusive way.

In summary, the main contributions of LiveTag include:
(i) Tag design. Although the concept of passive RF

tags has existed for long, existing designs mainly focused
on manipulating the tag signatures to embed more in-
formation, and they need dedicated ultra-wideband, full-
duplex readers. To our knowledge, LiveTag represents

the first system to design touch-sensitive, WiFi-detectable
tags that can sense human-object interaction.

(ii) Tag detection. We design new beamforming mech-
anisms to suppress ambient multipath and LOS interfer-
ence, enabling a pair of WiFi Tx/Rx to detect the passive
tag and multipoint touch events in practical environment.

(iii) Implementation and experimental validation. We
implement the tags using standard PCB printing tech-
nique (which allows mass production and tag customiza-
tion). Our experiments verify LiveTag’s feasibility and
accuracy, and its usefulness in enabling new sensing ap-
plications that involve human-object interaction.
2. Related Work

Sensing interaction with objects. Existing techniques
for detecting object manipulation either monitor the ob-
jects directly or augment/modify the objects using sen-
sors. The former is represented by computer vision so-
lutions that extract humans-object relations from images
[9,15,54]. Whereas image-features lead to high detection
accuracy in controlled settings, practical systems have
proved very difficult to engineer, especially under un-
known background, moving scenes, and challenging light
conditions. The computational cost is also high and un-
suitable for real-time touch-command applications. Bar-
code [30] may reduce the feature processing time, but re-
quires scanning in line-of-sight with a handheld device.

On the other hand, active sensors [39,43,47], while ex-
tremely accurate, carry circuit components and need bat-
tery maintenance, rendering them unsuitable for scaling
to a large number of low-value objects. RFID can over-
come such limitation by attaching energy-harvesting tags
on objects. Early research embedded an RFID reader
into a glove to sense interaction with tagged objects [41].
Recent work augmented RFID tags with low-power sen-
sors that live on the energy harvested from interrogat-
ing signals [27, 40, 46]. IDSense [25] can discriminate
touch and movement of an RFID tag, by learning the
RSS/phase features. RIO [35] detects gestures by recog-
nizing phase changes caused by finger contact. PaperID
[24] creates an ungrounded monopole antenna, which
can respond to the reader only upon human touch (and
hence grounding). These RFID solutions require an ex-
pensive, dedicated reader, and cannot distinguish differ-
ent touch positions on one tag.

Overall, LiveTag can be considered a blended tech-
nology that inherits the advantages of aforementioned
two categories. It augments the objects with lightweight,
WiFi-readable tags that have no silicon chips, batteries,
or discrete circuit components. LiveTag also overcomes
all the aforementioned limitations of video/image pro-
cessing, enabling ubiquitous, real-time sensing even in
low-light and non-line-of-sight (NLOS) conditions.

Chipless RFID tags. LiveTag is inspired by the chip-
less RFID tags [31]—passive reflectors made from sur-

534 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

face metallic structures with identifiable electromagnetic
properties. Chipless RFID is motivated by the vision
of bringing RF tags’ cost to a level comparable to vis-
ible barcode [10, 38]. Chipless tags encode information
either in time or frequency domain. Time-domain ap-
proaches use multiple RF circulators to induce differ-
ent delays to passing signals, thus creating signatures.
Frequency-domain approaches create signatures on the
tag’s frequency response using multiple RF filters with
different stopband frequencies. Existing literature in chip-
less RFID primarily focused on improving the tag capac-
ity, i.e., number of bits encoded. Since it is extremely
challenging to create narrowband surface filters, embed-
ding multiple filters on the tag requires huge spectrum
bandwidth. High-end ultra-wide-band (UWB) readers
(on the 3.1-10.6 GHz band) [37] have to be used, which
are costly and can only achieve sub-meter range [37]
due to the FCC’s transmission power regulation on the
UWB band. State-of-the-art research in chipless RFID
[37, 45] mostly uses dedicated radios or network analyz-
ers as readers, and omits ambient multipath reflections
considering the short tag-reader distance.

LiveTag differs from conventional chipless RFID tags
in two fundamental ways: (i) It aims to make the tags
responsive to touch, rather than increase the tag capac-
ity. (ii) Through customized tag design and detection al-
gorithms, it can repurpose commodity WiFi transceivers
as readers, which work even in practical multipath en-
vironment. Recent advances in backscatter communica-
tions have enabled a new species of radios that communi-
cate by modulating ambient RF signals [18–20], and can
harvest RF energy to power touch sensors [26]. These
backscatter radios build on discrete circuit components.
In contrast, LiveTag is a low-profile, fully-passive, paper-
like substrate that obviates discrete circuit componnets.
It can potentially be mass produced through conductive
inkjet printing at extremely low cost.

3. Designing Touch-Sensitive Passive Tags
The 3D structure of a LiveTag tag is illustrated in Fig. 1.

When the interrogation signal reaches the tag, it is first
received by one antenna, and then passed through a trans-
mission line and filtered by a multi-resonator network.
The resulting signal is eventually emitted through the
other antenna. The signal path is bidirectional—Each an-
tenna simultaneously receives interrogating signals and
propagates them towards the opposite direction. Ulti-
mately, the entire tag acts as a reflector that backscatters
the interrogating signals. The key design goal of the tag
is to maximize the change of spectrum upon touch, by
optimizing each resonator’s filter gain, defined as the ra-
tio between incidental and emitting signal strength. Be-
low we describe how LiveTag approaches this objective.

3.1 Resonator Model

The resonator is essentially a 2D bandstop filter printed
on a planar substrate. Such an RF filter can be real-
ized using a variety of geometrical structures (Fig. 3),
all with similar working mechanisms [31, 36]. At reso-
nance frequency, microwaves form standing waves in the
resonator, oscillating with large amplitudes, thus confin-
ing the energy within the resonator. The resonator can be
modeled by an equivalent circuit (Fig. 4), comprised of
a cascade of capacitor Cr, inductor Lr, and resistor Rr,
whose values are determined by the resonator’s material
and geometry [22, 23]. When placed next to a transmis-
sion line with impedance ZL, the resonator is coupled
through parallel-line coupling or equivalently mutual in-
ductance coupling [5]. The coupled circuit can be mod-
eled as a grounded cascade RLC (Fig. 4) structure [44].
The equivalent impedance can be straightforwardly for-
mulated as a function of the angular frequency ω:

ZR(ω) = Rr + jωL′r − j
1

ωCr
= Rr + jωL′r

(ω2 − ω2
c

ω2

)
, (1)

where the ωc = 1/
√
L′rCr. The impedance |ZR(ω)|

reaches its minimum at ω = ωc. So ωc is the resonance
frequency of the resonator, i.e., the center frequency of
its stopband. The frequency response of the above circuit
model can be formulated as,

20 log (
Vout

Vin
) = 20 log (

|ZR(ω)|
|ZR(ω)|+ ZL

). (2)

Obviously, the frequency response reaches its minimum
at the resonance frequency ωc, when |ZR(ω)| reaches its
minimum value Rr. We remark that this circuit model
is highly simplified, and an accurate characterization can
be obtained only via electromagnetic simulation [44].

3.2 Single Resonator Design
Ideal resonators for LiveTag should meet 3 require-

ments. (i) A resonator’s frequency response should not
be affected by other adjacent ones (i.e., minimum mutual
coupling). (ii) The filter bandwidth of the resonator must
be narrow, so that we can pack multiple stopbands into
the limited WiFi spectrum. (iii) The filter gain at reso-
nance frequency should be large, allowing the tag pres-
ence and touch events to be easily detectable. Fig. 1 pro-
vides an example of the frequency response that consists
of two notches, which correspond to two stopbands.

To support multi-touch, multiple resonators must be
co-located, but with no mutual coupling. Prior research
[36, 37] has shown that the interference between planar
resonators becomes negligible if they are coupled to a
common transmission line in a non-contact manner. To
satisfy this condition, LiveTag adopts the spiral and L-
shaped resonators (Fig. 3), whose resonating frequency
is independent of their relative positions along the trans-
mission line [36]. On the other hand, the frequency re-
sponse of each resonator is determined by three factors:
the substrate, material of the conductive layer, and the
resonator’s geometry, which we elaborate on below.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 535

a

L

w
1

w
2

s
1

s
2 s
2

w
2

w1

a

b

L

Transmission Line

Spiral Resonator
L-shaped Resonator

Figure 3: Spiral and L-shaped res-
onators.

LL

Lr

Cr
Rr

Vin Vout

ZL Rr

Cr

L0
r

Vin Vout

ZL

Figure 4: Circuit model of a single
resonator.

-10
-8

-6
-4

-2
 0

 1500 2000 2500 3000 3500

Fr
eq

ue
nc

y
R

es
po

ns
e

(d
B)

Frequency (MHz)

Spiral
L-Shaped

Stopband
80 MHz
82 MHz

Filter
Gain

8.
2
dB

9.
2
dB

Figure 5: Frequency response
curves of resonator structures.

Material of substrate and conductive layer. Live-
Tag adopts either the woven glass (FR-4) or ceramic-
PTEF flexible PCB as substrate. The thickness and di-
electric constant of substrate affect the center frequency
of the stopbands. Therefore, given a new substrate, the
resonator structure should be adjusted to keep center fre-
quency to the desired value. The resonator, transmission
line and antennas are realized by printing a thin copper
layer onto the substrate. The thickness and electrical re-
sistivity of the copper material affect the conductivity,
and hence the loss of EM waves propagating through.
However, it does not affect the resonating frequency in a
noticeable way, since the conductivity of printable metal
materials (e.g., copper and silver) is sufficiently high.

To isolate the tag from other objects behind, we ground
the tag by printing a thin copper layer on the back of the
substrate. The conductive ground layer shields the EM
wave from external materials behind the tag.

Impact of the resonator’s geometrical parameters.
To identify the geometry that approaches the desired fre-
quency response, conventional planar antenna design of-
ten undergoes multiple iterations of empirical design and
validation [31]. Following this common practice, we em-
ploy a mix of simulation and empirical models to design
the geometry of our tag. We use Advanced Design Sys-
tem (ADS) [1], an RF electronic design automation tool,
to simulate the frequency response of a conductive layer,
using its geometry, substrate thickness H and dielectric
constant εr as input.

In designing RF systems, the impedances of series con-
nected systems should match in order to maximize the
power transfer from input to output. Specific to Live-
Tag, the impedance of the multi-resonator structure must
match that of the antenna (designed as 50Ω following the
common practice). The impedance of microstrip trans-
mission line follows a well-known model [34]:

Z =
87

√
εr + 1.41

· ln
(

5.98H

0.8w2 + T

)
, (3)

where w2 and T are the width and thickness of the trans-
mission line. εr,H and T are fixed and known at fabrica-
tion time. Therefore, for impedance matching, we only
need to compute w2 so that Z = 50Ω. The line length
(L) only affects the phase of the EM wave, and does not
impact the spectrum signature which only concerns the
magnitude of the CSI. Therefore, we can flexibly extend
or twist the transmission line, depending on the specific
outline needed by the touch interface.

On the other hand, the impact of the resonator’s geom-
etry can be characterized through ADS simulation. Our
simulation focuses on 3 key metrics: center frequency,
bandwidth of the stopband, and filter gain. Although
such metrics have been partly studied in simulating pla-
nar RF filters [33,34], a comprehensive quantitative study
is still critical to make LiveTag work in the WiFi band.
To this end, we first empirically configure the resonator
geometry so that a stop-filtering effect appears on the
2.4/5 GHz spectrum. We then fine-tune the geometri-
cal parameters to optimize the resonator performance.
Under default settings, Fig. 5 depicts the simulated fre-
quency response of the spiral and L-shaped resonators.

(i) Resonator size a: Our simulation results in Fig. 6(a)
indicate that a larger resonator leads to lower resonance
frequencies, because it increases the wavelength of the
standing wave. Equivalently, both theL′r andC ′r increase
in the circuit model (Fig. 4), which leads to a smaller ωc.
In addition, the L-shaped resonator is generally much
larger (a = 15 mm) than spiral resonator (a = 7 mm)
when operating at the same 2.4 GHz band. On the other
hand, the equivalent RLC bandstop filter (Fig. 4) has a
3 dB bandwidth of approximately Rr

L′r
[34], so a larger

a (and hence larger L′r) decreases the bandwidth of the
notch. Fig. 6 (b) further shows that the resonator size
does not affect the filter gain significantly.

(ii) Gap between resonator and transmission line s2:
Intuitively, the properties of the stopband, i.e., center fre-
quency and notch bandwidth, only depend on the res-
onator itself. Our simulation results in Fig. 7(a) indeed
corroborate this. On the other hand, as s2 increases, the
coupling between the resonator and the transmission line
weakens, resulting in less signal energy being passed to
the resonator, and hence a sharp reduction in the filter
gain, as shown in Fig. 7 (b).

Under the same simulation setup, we also found that
the other parameters, w1, s1, Nt and b (Fig. 3), have neg-
ligible impacts on the frequency response. Since the fre-
quency response is primarily determined by the patterns
of micro strip lines, we find slightly bending the tag does
not affect the tag’s response or tag/touch detection. We
omit the details for the sake of space. To summarize the
foregoing exploration, the resonance frequency can be
controlled by adjusting the resonator size, while the gap
between resonator and transmission line should always
be kept as small as possible to achieve a high filter gain
and small bandwidth occupation. Note that alternative

536 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 500

 1500

 2500

 3500

 4500

 4 6 8 10 12 14 16 18
 0

 40

 80

 120

 160
C

e
n

te
r

fr
e
q
u

e
n
c
y
 (

M
H

z
)

B
a
n

d
w

id
th

 (
M

H
z
)

a (mm)

Center Frequency
Bandwidth

(a)
 4

 6

 8

 10

 12

 5 7 9 11 13 15 17

F
ilt

e
r

g
a
in

 (
d
B

)

a (mm)

Spiral L-Shaped

(b)
Figure 6: Impact of resonator size a on: (a) center fre-
quency and bandwidth, (b) filter gain.

 500

 1500

 2500

 3500

 4500

 0 0.1 0.2 0.3 0.4 0.5
 40

 80

 120

 160

 200

C
e
n
te

r
fr

e
q
u
e
n

c
y
 (

M
H

z
)

B
a

n
d
w

id
th

 (
M

H
z
)

s2 (mm)(a)
 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5

F
ilt

e
r

g
a

in
 (

d
B

)

s2 (mm)(b)
Figure 7: Impact of gap between resonator and trans-
mission line s2 on: (a) center frequency and bandwidth,
(b) filter gain.

RF resonator structures may further improve the perfor-
mance, but are out of this paper’s scope.

3.3 Resonator Responses to Touch
The human body can be modeled as an RC network

consisting of resistors and capacitors [8]. So a finger
touching the resonator can be approximated as adding
a capacitor and a resistor in parallel to the original res-
onator’s components, and then to the ground. This leads
to an equivalent increase of Cr, thus making the notch’s
center frequency disappear from its original position.

We quantitatively verify the touch impact under a con-
trolled setup, where the two ends of a transmission line
are connected to an Agilent E8364A (50 GHz) network
analyzer via SMA adapters. This isolates the multipath
effects and measures the tag’s intrinsic frequency response.
Fig. 8 shows that the notch indeed disappears from its
original position after the touch, likely due to the over-
whelming attenuation effect that neutralizes the filter gain.
We also found that touching part of the resonator has the
same impact as touching its whole body. The same figure
also plots the simulated frequency response before touch,
which matches the measurement well.

3.4 Tag Antennas
LiveTag adopts two types of planar antennas—patch

and monopole—whose front-side structures are shown in
Fig. 9, whereas the back side is a metal foil acting as the
ground. The design principles of such 2D antenna struc-
tures are well established [7, 29]. Both antennas have
been designed to have high gain on both 2.4 GHz and 5
GHz WiFi bands. The monopole antenna has a close to
omni-directional radiation pattern, while patch antenna
provides higher directionality. The different gain pat-
terns (Fig. 10) imply that, the patch antenna is suitable
for scenarios where less than half-space need to be cov-
ered, whereas the monopole fits mobile tags with spo-
radic pointing directions.

w/o touch
Measured

w/ touch
Measured

w/o touch
Simulated

-12
-10

-8
-6
-4
-2
 0

 2200 2300 2400 2500 2600
Frequency (MHz)

-10
-8

-6
-4

-2
 0

 2200 2300 2400 2500 2600

Fr
eq

ue
nc

y
R

es
po

ns
e

(d
B)

Frequency (MHz)

Figure 8: Impact of finger touch on spiral (left) and L-
shaped (right) resonator.

20.4 mm

29
.9

m
m

61
.4

m
m

27.5 mm

Quarter
Wavelength

Figure 9: Monopole (left)
and patch (right) antenna.

-16

-12

-8

-4

 0

 4

-180 -120 -60 0 60 120 180

G
a

in
 (

d
B

i)

Angle

Monopole
Patch

Figure 10: Radiation pat-
tern of tag antennas.

4. Creating Multiple Touch Points and Tags
4.1 Embedding Multiple Resonators in a Tag

Multiple resonators: creating spectrum signatures
and enhancing filter gain. To create multiple touch
points, we extend the single-resonator design (Sec. 3.2)
by placing multiple resonators with different resonance
frequencies along side the transmission line. In addi-
tion, we place multiple identical resonators with the same
resonance frequency close to each other, to form a com-
pound touch point. This is equivalent to connecting mul-
tiple identical bandstop filters in series, which increases
the filter gain multiplicatively. Fig. 11 plots the filter gain
of tags with different number of spiral resonators, mea-
sured using the network analyzer. We observe that the
filter gain increases linearly (in dB scale) with the num-
ber of redundant resonators. In practice, we can simply
use the central area among these resonators as the touch
point, so that a single touch detunes them simultaneously.

To profile the mutli-resonator structure’s sensitivity,
we use the network analyzer to measure the difference
of its frequency response before and after touch. We use
an actual tag with 5 pairs of resonators, creating 5 differ-
ent notches at 5170 MHz, 5305 MHz, 5515 MHz, 5665
MHz, and 5800 MHz. The measurement results (Fig. 13)
verify that touching each pair creates 6-9.5 dB of filter
gain change on the resonating frequency. We also design
a tag with 6 identical resonators. Our measurement re-
sult in Fig. 14 shows that the total filter gain decreases
dramatically with the number of resontors being simul-
taneously touched.

Coupling between resonators. The coupling effect
occurs when signals backscattered from a resonator gen-
erate resonant current in an adjacent resonator through
inductive coupling, which may distort the frequency re-
sponse. Fortunately, coupling happens only in the near-
field when the resonators are placed in close proximity.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 537

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6

F
ilt

e
r

g
a

in
 (

d
B

)

Number of resonators

Figure 11: Filter gain with
redundant resonators.

-7

-6

-5

-4

-3

-2

-1

 0

 2200 2300 2400 2500 2600 2700

F
re

q
u

e
n

c
y
 R

e
s
p

o
n

s
e

 (
d

B
)

Frequency (MHz)

1 mm
2 mm
3 mm
4 mm
5 mm

10 mm

Figure 12: Impact of res-
onator separation distance.

-4

-2

 0

 2

 4

 6

 8

 10

 5000 5200 5400 5600 5800 6000

C
h

a
n

g
e

 (
d

B
)

Frequency (MHz)

R1 R2 R3 R4 R5

Figure 13: Change of
frequency response after
touching each pair of res-
onators.

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6

F
ilt

e
r

g
a

in
 (

d
B

)

Number of touched resonators

Figure 14: Filter gain
when touching different
number of identical res-
onators.

To quantify the impact, we simulate the frequency re-
sponse of a tag under the same default parameter con-
figuration as in Sec. 3.2, except that two resonators are
used with center frequencies 2415 MHz and 2489 MHz.
Fig. 12 shows the spectrum signature as the resonators’
separation varies. The center frequencies of the two notches
drift away from the original values as the resonators are
placed closer than 5 mm. But, as long as the separation
exceeds 5 mm, the drifting effect becomes negligible. A
similar experiment shows that the minimum separation is
4 mm for resonators at 5 GHz.

4.2 Tag Capacity and Multi-Tag Coexistence
Tag capacity. The number of resonators that can be

packed into the tag depends on two factors.
(i) Area capacity, which is constrained by physical

size of the tag and each resonator. Each 5 GHz spiral
resonator occupies 3.5×3.5 mm2, and needs a minimum
separation of 4 mm from other resonators and negligi-
ble separation from the transmission line. For impedance
matching, the transmission line width needs to be 3 mm.
Since the resonators can be placed on both sides of the
transmission line, the maximum 1D occupation of one
resonator is approximately 3.5+3/2+4/2 = 7 mm, i.e.,
it only occupies 7× 7 mm2.

(ii) Frequency capacity, which is constrained by the
usable spectrum width, and the bandwidth of the notch
created by each resonator. At the 2.4 GHz and 5 GHz un-
licensed band, the available spectrum is around 85 MHz
and 480 MHz [4], whereas the stopband bandwidth cre-
ated by the resonator is around 80 MHz (Fig. 7) and 180
MHz (Fig. 13), respectively. To pack more notches into
the spectrum, we design the resonators such that the ad-
jacent notches have an overlap of half of the notch band-
width. In addition, only the center of each notch needs

to fall inside the WiFi spectrum band. This enables us to
pack up to 3 notches and 6 notches, in the 2.4 GHz and 5
GHz band, respectively.

Multi-tag coexistence. When multiple tags coexist,
the mutual interference is negligible as long as one tag
is always much closer to the WiFi receiver than the oth-
ers. This is the case when the WiFi receiver is a mo-
bile device (e.g., smartphone) that always accompanies
the user that touches the tags. Otherwise, when multiple
tags exist in close proximity, they have to use orthogonal
spectrum signatures, in the same way as placing distinct
resonators on the same tag. We will quantify the impact
of tag separation in Sec. 7.

5. Detecting Touches on Tag with WiFi
Once a tag is deployed, LiveTag executes three mech-

anisms to detect and discriminate the touch events. First,
the WiFi transmitter continuously runs a joint beamform-
ing and beam nulling algorithm to suppress multipath
fading, making the tag-induced channel features more
pronounced. Second, the WiFi receiver continuously mea-
sures the CSI, and detects the presence of a tag with
known spectrum signature using a maximum likelihood
algorithm. Once a tag is identified, the WiFi receiver
continues to detect touch based on the pattern of CSI
changes. Below we describe these mechanisms in detail.

5.1 Extracting Frequency Response of a Tag
LiveTag’s transmitter beamforming mechanism facili-

tates over-the-air estimation of a tag’s frequency response,
and isolates it from the LOS or ambient multipath sig-
nals. Unlike conventional beamforming, the key chal-
lenge lies in the fully passive tag, which cannot process
incoming signals or estimate its own channel response.

Creating artificial fading with orthogonal beamform-
ing. To isolate the ambient multipath, our key idea is
to use multiple transmit antennas to create artificial fast
fading effects, by generating multiple transmit beam pat-
terns with minimum correlation. Different beams may
encounter different ambient reflectors, resulting in di-
verse paths and destructive/constructive effects across dif-
ferent frequencies. From the perspective of the tag, al-
though the beams may come from different angles, the
resonator will cause the same notch position on the CSI
(measured by the WiFi receiver). Thus, the WiFi receiver
can smooth out the fading effect by taking advantage of
the CSI diversity of all these beams.

The question is: given a certain number of antennas,
how many, and which beam directions should be used?
Since the beamwidth depends on the number of antennas
and cannot be arbitrarily small, increasing the number of
beams blindly would result in overlapped beam patterns
and hence correlated channel. To minimize the correla-
tion of for a fixed number of AP antennas, LiveTag steers
the beams’ main lobe directions to be equally spaced,

538 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and uses a delay-sum beamformer [49] for beam steer-
ing. Without loss of generality, consider a linear antenna
array with half-wavelength separation between elements.
Then each beam is mirror symmetric relative to the ar-
ray dimension, so we only consider the angle range from
−90◦ to 90◦, where 0◦ is the direction perpendicular to
the antenna array. To generate K beam directions, Live-
Tag sets the ith main lobe direction to be 180◦

K i − 90◦,
where i = 0, 1, · · · ,K − 1. To harness the benefits of
beamforming with minimal beam correlation, we always
set K to be equal to the number of AP antennas.

It’s worth noting that since the reflection and fading
experienced by each beam is determined by the environ-
ment, our beamforming technique does not provide hard
performance guarantee on fading suppression, although
our empirical evaluation shows it works well even under
environment dynamics (Sec. 7.1.1).

Smoothing CSI with PCA. In order to extract the cor-
related tag response among CSI with uncorrelated fad-
ing, we apply principal component analysis (PCA) on the
CSI. Then theK components after PCA is ordered by the
amount of information contained, or variance. We find
that preserving only the 2nd and 3rd component tends
to generate the best results. The first component is dis-
carded because it turns out to contain strong correlated
noises, which is most likely contributed by the common
fading notches that affect multiple beams’ CSI.

Simultaneously suppressing the LOS channel. While
suppressing the ambient multipaths, LiveTag needs to
simultaneously suppress the LOS channel from the AP
to the client. Conventional MIMO beam nulling tech-
niques, commonly used to suppress certain receivers [2],
are not directly applicable for LiveTag—since the WiFi
receiver can only estimate the compound channel, a di-
rect beam nulling will suppress the tag-to-receiver chan-
nel as well. To isolate the LOS channel, LiveTag adopts
a two-stage beamforming method. In the first stage, the
WiFi client device transmits a packet, while the AP pro-
cesses the CSI and estimates the Angle of Arrival (AoA)
profile using the classical MUSIC algorithm [42]. In the
second stage, the AP nullifies the angle with the strongest
signal strength (most likely to be the LOS angle), de-
noted as θj . Suppose θi is the beam direction used for
the fading-suppression. For a linear array with N half-
wavelength spaced antennas, to create a beam with main
lobe steered towards angle θ, the weight vector applied
to all antennas should follow [49]:

a(θ) = [1 ejπ sin(θ) ej2π sin(θ) · · · ej(N−1))π sin(θ)]T (4)

To steer the beam towards θi, the weight vector a(θi)
should be applied. Meanwhile, to nullify the signals to-
wards angle θj , the weight vectors can be obtained by

anull(θi, θj) = P⊥θj · a(θi), (5)

where P⊥θj is the operator that projects the original beam-
forming weights onto the subspace that is orthogonal to

the subspace spanned by the LOS direction θj . Follow-
ing the definition, P⊥θj can be computed as,

P⊥θj = I −
a(θj)a

H(θj)

aH(θj)a(θj)
, (6)

where a(θj)a
H(θj) projects a vector onto its own sub-

space. Therefore, anull(θi, θj) can be reorganized as,
anull(θi, θj) = a(θi)− a(θj) ·

aH(θj)a(θi)

aH(θj)a(θj)
. (7)

Note that the LOS path between the AP and client
might be blocked, and another multipath reflection may
become the strongest. The beam nulling mechanism will
suppress this path in the same way as the LOS, and en-
hance detection performance except in the rare case when
the tag reflection becomes strongest. We will empirically
verify LiveTag in practical environment in Sec. 7.

It should be noted that LiveTag does not require the
tag or ambient environment to be static, because such
dynamics do not affect the frequency response of the tag,
which solely depends on the resonators and touch event.
In fact, just like the artificial fading effects, such environ-
ment dynamics randomize the irrelevant fading, making
the tag’s spectrum signatures more prominent.

WiFi channel stitching and antenna calibration. To
effectively use the available spectrum, the WiFi AP in
LiveTag interrogates the tag by switching across 3 (11)
non-overlapping channels on the 2.4 GHz (5 GHz) band.
The measured CSI of each channel is stitched together
to obtain the frequency response of the tag. In addi-
tion, the resonators’ frequency notches are designed in-
tentionally to avoid the DC and guard-band subcarriers
which carry no CSI. Note that the AP and client can
switch across multiple channels with coarse synchroniza-
tion [50]. Also, since the antenna does not have uniform
gain across 2.4/5 GHz band (Sec. 3.4), we always nor-
malize the frequency response curve by the gain of the
antenna at corresponding frequencies. The antenna gain
can be measured as a one-time initialization step.

Coexisting with communications. Similar to all ac-
tive WiFi sensing applications, LiveTag needs to coex-
ist with data transmissions, which can be achieved in
two ways. Since LiveTag only needs the CSI of each
WiFi channel as input, we can piggyback the sensing
onto communication. Each WiFi packet has a known
preamble which enables the receiver to extract the CSI.
An alternative approach is to treat sensing as normal data
communication, and have our system contend for chan-
nel access in the same way as normal data communi-
cation in 802.11. This will not burden the network, as
our system only needs to send an extremely short frame
(without payload) on each channel.

5.2 Tag Presence Detection and Identification
LiveTag identifies the presence of a tag by comparing

the measured CSI with the ground-truth spectrum sig-
nature of each deployed tag. The ground-truth can be

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 539

obtained and stored either at design time, or through a
one-time initial measurement. Tags in different environ-
ments (e.g., home vs. office) can have the same signa-
tures, as long as certain coarse context/location informa-
tion is available to distinguish them.

To compare the measured/ground-truth response, the
simplest way is curve matching. However, classical curve
matching methods, like nearest neighbor based on Eu-
clidean distance, or dynamic time warping [21], either
involve high computational complexity or are vulnerable
to noise from irrelevant features. To alleviate such limi-
tations, we design a model based on signal space repre-
sentation (SSR) of the spectrum signature. Instead of us-
ing the entire frequency response curve as a tag’s feature,
we first reduce the feature dimension and only preserve
the points that set different tags apart. Suppose there are
B tags deployed in the given environment, whose fre-
quency responses can be stacked to form a matrix

HS =
[
h1 h2 · · · hB

]
, (8)

where hi, i = 1 · · ·B, represents the spectrum signature
of the ith tag, containing C frequency domain sampling
points. In our implementation, we sample the CSI of 129
and 768 subcarriers on the 2.4 GHz and 5 GHz band,
which makes C = 897.

A singular value decomposition (SVD) of HS yields
HS = UΣV T , where U and V contain orthogonal
column vectors ui and vi, and Σ is a diagonal matrix
containing the singular values σi. Then the frequency
response can be represented as hk =

∑B
i=1 σivi(k)ui,

where ui are the bases of the new signal space, and σivi(k) =
hTkui, ∀i = 1 · · ·B, are the representation of hk in this
space. We remark that the SVD can run offline, and only
takes the ground truth spectrum signature as input. At
run time, we only need to compare the signature in theB
dimension signal space, which is much smaller than C.

Further, note that the frequency response curves of
different tags are only different in notch positions and
shapes. Therefore, only the first L out of B singular val-
ues may be dominant (L < B), i.e., hk ≈

∑L
i=1 σivi(k)ui,

In this way, the dimension of the signal space is reduced
from B to the L most discriminative points, and the sig-
nature of the kth tag can now be represented as

sk =
[
σ1v1(k) σ2v2(k) · · · σLvL(k)

]
. (9)

In our implementation, we pick the value of L so that∑L
i=1 σi = 0.9 ·

∑B
i=1 σi, which preserves the features

that contribute to 90% of the covariance (differences) be-
tween frequency response curves.

At run time, the LiveTag client first measures the fre-
quency response hr of a tag (Sec. 5.1), and reduces it to
anL dimension vector sr, where the ith element sr(i) =
hTr ui. It then compares sr(i) with the signatures sk of
each known tag k, using the Euclidean distance metric.
To discriminate the case where no tag is present, we also
add a special frequency signature with no notches. Over-

all, the matching complexity is onlyO(BL2), where com-
puting the Euclidean distance between two L dimension
vectors is O(L2), and the obtained frequency response
should be compared to the B ones stored.

5.3 Touch Detection
Once the tag is identified, LiveTag can detect touch

events by monitoring the disappearance of its notches. To
make the detection robust to channel fading and avoid the
need for a constant threshold, we formulate it as a Con-
stant False Alarm Rate (CFAR) [6] detection problem,
which is commonly adopted in radar signal processing.

Given a measured frequency response h, each of the
element h(i) represents the CSI of one subcarrier. Each
subcarrier has a very narrow width, and can be modeled
as a flat fading channel, i.e., the real and imaginary part
of h(i) follow Gaussian distributionN (µi, %i

2) [48]. We
assume each subcarrier bears the same level of noise,
i.e., %i = %. But the mean values µi differ due to the
frequency-selective fading.

To identify a touch event, LiveTag tracks the change
across two consecutive snapshots of the frequency re-
sponse, denoted as ht and ht−∆t, respectively. The
change can be quantified as

h′t = ht − ht−∆t, where (10)

Re{h′t(i)} ∼ N (0, 2%2), Im{h′t(i)} ∼ N (0, 2%2) (11)

Therefore, the amplitude ‖h′t(i)‖ follows a Rayleigh
distribution with scale parameter

√
2%, and the CDF

F (x) = 1− exp

(
−
x2

4%2

)
, x ≥ 0. (12)

When the notch point disappears due to touch, ||h′t(i)||
will experience a peak centered at the notch frequency.
Thus, LiveTag confirms the detection of touch if ‖h′t(i)‖ >
Vth, where the threshold Vth can be configured based on
the target false alarm rate:

Pf (Vth) = exp

(
−
Vth

2

4%2

)
. (13)

% is estimated and kept updated by measuring the mean
value of ||h′t||. According to the property of Rayleigh
distribution [13], % =

E||h′
t||√
π

. Note that a small Pf (Vth)

may lead to large miss-detection rate (Pm). The intrinsic
tradeoff will be evaluated empirically in Sec. 7.

Improving robustness through redundancy. To fur-
ther improve the robustness of touch detection, LiveTag
adds redundancy to the touch point, through frequency
and temporal diversity. First, LiveTag can use multiple
co-located resonators with different frequency notches
to represent one compound touch point. A touch event
is detected if over half of the notches are detected to
change. Such diversity benefit comes at the cost of re-
ducing tag capacity, but is desirable if robustness is of
first concern. Second, in mobile scenarios, the variation
of CSI leads to temporal diversity, and LiveTag can sam-
ple more than one set of CSI over time, before applying

540 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 15: Experiment setup with commodity WiFi.
the PCA to obtain the final tag response. This weakens
more fading profiles that are likely to be uncorrelated,
albeit at the cost of increasing detection latency.

6. Implementation and Experimental Setup
Printing tags. To produce the tag with the desired fre-

quency response, we first conduct ADS simulations fol-
lowing Sec. 3 to design the tag geometries. For fabrica-
tion, we use two types of substrates that are common for
microwave systems: FR-4 and RT/duroid 6010 laminates
(shown in Fig. 2). A laminate board consists of two cop-
per layers and the dielectric substrate in between. The
thickness and relative permittivity is 1.588 mm and 4.6
for FR-4, and 0.254 mm and 10.7 for RT/duroid 6010,
respectively. We employ standard PCB milling technol-
ogy to fabricate the 2D layout of the conductive layer on
one side of the laminate, whereas the back side is directly
used as the ground layer.

To verify each tag fabrication, we first fabricate one
version where the transmission line ends with SMA con-
nectors (without the two antennas). Then we follow the
network analyzer setup (Sec. 3.3) to measure the intrin-
sic frequency response. Once the measurement matches
simulation, we proceed to design a full-fledged tag that
replaces the SMA interface with the patch/monopole an-
tenna for over-the-air experiments.

Detection algorithms. We use the Atheros AR9462
WiFi cards, with the ath9k driver, to implement and test a
basic version of LiveTag without beamforming (Fig. 15).
Since the WiFi cards do not support customized beam-
forming, we use a 6-antenna WARP software radio as
AP, and a single-antenna WARP board as client, to im-
plement and test LiveTag’s beamforming mechanism. The
implementation realizes 802.11ac-compatible preamble
generation, packet detection/synchronization, and per sub-
carrier, per-antenna CSI estimation. The LiveTag sig-
nal processing modules build atop this WiFi PHY. The
transmitter-side fading suppression and LOS nulling al-
gorithms replace the beamforming weights of the nor-
mal 802.11ac beamforming with the customized weights
specified in Sec. 5. The receiver-side processes the CSI
following the tag identification and touch detection algo-
rithms (Sec. 5). Our tests show that it only takes 105 ms
on average to stitch the CSI by transmitting one packet
per channel, and sequentially switch across all channels.

We conduct all the experiments in a 14 m ×7 m of-
fice, with walls and various objects together creating a
reflection-rich multipath environment. Ordinary human
activities are always present in the room. There also exist

-25

-20

-15

-10

-5

 0

 2402 2422 2442 2462 2482

F
re

q
u

e
n

c
y
 R

e
s
p

o
n

s
e

 (
d

B
)

Frequency (MHz)

Beam 1
Beam 2
Beam 3
Beam 4

Figure 16: Frequency re-
sponse obtained from 4 in-
dividual beams.

-20

-15

-10

-5

 0

 2402 2422 2442 2462 2482

F
re

q
u

e
n

c
y
 R

e
s
p

o
n

s
e

 (
d

B
)

Frequency (MHz)

W/ beamforming
W/O beamforming

Figure 17: Beamforming
strengthens the spectrum
signature.

10 external WiFi APs nearby, mostly with moderate traf-
fic. Although our experiments occasionally experience
such external interferences, the impacts are negligible
because of the short packet duration. The interference
can be automatically avoided once we migrate LiveTag
to normal 802.11 nodes with a full-fledged MAC layer.

When evaluating LiveTag, we use filter gain as a mi-
croscopic metric, and miss detection (Pm), false alarm
(Pf) rate as system level metrics. Given the frequency
response, the filter gain is computed using the average
gain of the passband minus the gain at the center fre-
quency point of the notch.

7. Evaluation

7.1 Microbenchmarks on Tag/Touch Detection

7.1.1 Fading Suppression and LOS Nulling
Microscopic verification. We first verify LiveTag’s

transmitter side function using a 5-resonator tag with 2
patch antennas and 5 identical L-shaped resonators, with
center frequency 2.42 GHz and absolute filter gain 35 dB
according to our network analyzer measurement. The tag
is 1.5 m and 0.3 m from the AP and client, respectively.

For clarity, we define air filter gain as the filter gain
detected over wireless, which is usually different from
the one measured by network analyzer due to noise, fad-
ing as well as LiveTag’s signal processing algorithm.

We use 4 antennas on the AP to run the fading sup-
pression and LOS nulling, and measure the over-the-air
frequency response (CSI) at the client. Fig. 16 plots
the result, where each frequency response curve is nor-
malized to 0 dB relative to its peak value. Although
all the curves manifest a notch at the resonator’s cen-
ter frequency, each suffers from frequency selective fad-
ing, resulting in random notches across the spectrum.
Thus, using the frequency response of a single beam may
lead to severe false alarms. In contrast, LiveTag’s fading
suppression smooths out the multipath artifacts, making
the resonator notch much more pronounced, as shown
in Fig. 17. When LiveTag’s beamforming mechanisms
are disabled, the tag notch becomes unobservable (dot-
ted curve), which again verifies the critical role of fading
suppression and beam nulling.

Fig. 19 (a) also shows that nulling alone increases the

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 541

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

2 3 4 5 6

A
ir
 f

ilt
e

r
g

a
in

 (
d

B
)

Number of antennas(a)
-2

 2

 6

 10

 14

2 3 4 5 6 7 8
 0

 250

 500

 750

 1000

A
ir
 F

ilt
e

r
g

a
in

 (
d

B
)

T
o

ta
l
L

a
te

n
c
y
 (

m
s
)

Number of beams

Filter gain
Latency

(b)

Figure 18: Performance of beamforming with different
number of (a) antennas and (b) beams. Error bars denote
max/min across 10 runs.
filter gain by 3-5 dB. Without it, the LOS signals over-
whelm the tag reflection, so the air filter gain drops sharply
to below 4 dB, even at an AP-to-tag distance of 1 m.

Impact of the number of AP antennas. Due to the
limited number of antennas, the beams generated by the
AP tend to span a wide angle and bear multiple side lobes
[53]. So the corresponding fading profiles are not com-
pletely uncorrelated. In general, using more antennas
can narrow the beamwidth, which can improve the ef-
fectiveness of fading suppression. Under the same setup
as above, our measurement shows that the filter gain in-
creases significantly with the number of antennas (Fig. 18
(a)), from around 0 dB with 2 antennas, to 13 dB with
6 antennas. This verifies the effectiveness of LiveTag’s
beamforming, as higher air filter gain directly translates
into higher detection accuracy. In the rest of the exper-
iments we all use 4 antennas, which most commodity
802.11ac APs have.

Impact of beam selection. Now we rerun the fad-
ing suppression but vary the number of beam patternsK.
The result (Fig. 18 (b)) shows that, given 4 Tx antennas,
increasing K beyond 4 only offers marginal benefit. On
the other hand, the total packet transmission latency in-
creases linearly with K, e.g., up to around 800 ms for
K = 8, which may be intolerable for use cases with
quick touches. This tradeoff justifies the design choice of
setting K equal to the number of Tx antennas (Sec. 5.1).
In the following experiments, we will use 4 Tx antennas
and 4 beams by default.

Detection range. To test the working range of Live-
Tag, we first fix the tag-to-client distance at 0.3 m, while
varying the AP-to-tag distance. Fig. 19 (a) shows that,
as the tag moves away from the AP, the air filter gain
decreases. This is because a smaller fraction of signals
are affected by the tag, resulting in lower impact on the
channel response measured at the client. Nonetheless,
even at a distance of 4 m, LiveTag achieves 6 dB air fil-
ter gain, which will be shown to be enough for achieving
high detection accuracy (Sec. 7.1.2).

Now we fix the AP-to-tag distance at 2 m, and in-
crease the tag-to-client distance. Fig. 19 (b) shows that
the air filter gain drops accordingly, but at a much dra-
matic rate—to below 6 dB at 0.5 m. This implies that
the detectability of LiveTag is more sensitive to the tag-
to-client distance. It happens because the client only has

-2

 2

 6

 10

 14

 18

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ir
 f

ilt
e

r
g

a
in

 (
d

B
)

Distance from AP to tag

w/o beam nulling
w/ beam nulling

(a)
 2

 4

 6

 8
 10

 12

 14

 16

0.1 0.2 0.3 0.4 0.5

A
ir
 f

ilt
e

r
g

a
in

 (
d

B
)

Distance from tag to client(b)

Figure 19: Performance of beamforming under different
(a) AP-to-tag (b) tag-to-client range. Error bars denote
max/min across 10 runs.

a single antenna, and the muiltipath fading between the
tag and client is not suppressed as effectively as that of
the AP-to-tag.

These experiments imply that the WiFi client should
be within close proximity to the tag to ensure high de-
tection performance. However, this requirement does
not restrict the applications of LiveTag, because the user
must be close to the tagged object when interacting with
it, and LiveTag can leverage the user’s WiFi device (e.g.,
smartphone in a pocket) as the client. In addition, this re-
quirement enables many tags to coexist within the same
space, because only the tag close to the user would have
a high air filter gain, and generate a detectable signature.

Detecting tag with commodity WiFi. We repeat the
over-the-air tag response measurement using the Atheros
WiFi devices and two tags—one with a single notch at
2420 MHz, and the other with 5 notches at 5 GHz band
(the same tag as used for Fig. 13). The extracted CSI
amplitude is plotted in Fig. 20 (Note the 5360 MHz to
5460 MHz band is unaccessible due to FCC regulation).
The results demonstrate that the spectrum signatures are
clearly distinguishable even with single-antenna commod-
ity WiFi devices. We expect the air filter gains can be
even higher once we have control over the beamforming
functions on such devices.

7.1.2 Performance of Tag Identification
Tag identification accuracy. To evaluate LiveTag’s

tag identification performance, we use a multiresonator
tag with 8 compound touch points (Fig. 27), and hence
8 notches in its spectrum signature. To create multiple
sets of spectrum signatures to represent different tags,
we can short-circuit any resonator with a copper wire,
thus eliminating its frequency notch. We create 11 tags
in total, including a dummy tag with no signatures. By
default, the tag is placed 2 m away from the Tx and 0.2 m
from the Rx. We run LiveTag’s identification algorithm,
along with the nearest-neighbor (NN) and DTW algo-
rithm (Sec. 5.2), every 1.2 minutes for 100 times over a
period of 2 hours, with natural human activities around.
The results show that LiveTag achieves over 95% accu-
racy, followed by NN (73%), and DTW (28%). DTW
is designed to tolerate the shift/misalignment between
curves, but it often erroneously matches two tags with
different notch positions, and tends to overrate the fre-

542 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-12
-8
-4

 5140 5320 5500 5680 5860Notch

-10
-8

-6
-4

-2
 0

 2400 2420 2440 2460 2480

C
S

I A
m

pl
itu

de
 (d

B
)

Frequency (MHz)

-10
-5
 0

 2400 2420 2440 2460 2480
Frequency (MHz)

Designed(Notch

Figure 20: Tag response
measured by WiFi card.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
e
te

c
ti
o
n
 a

c
c
u
ra

c
y

Distance between tags (m)

w/o interference tag
w/ interference tag

Figure 21: Detection of
co-existing tags.

quency notches created by the multipath artifacts. Live-
Tag’s signal-space transformation best harnesses the known
spectrum signatures of the tags, by weighting on the points
near the tag’s intrinsic frequency notches.

Multi-tag coexistence. Next, we place a 5-resonator
tag (target tag) at a fix location, 1.5 m (0.2 m) away
from the AP (client). We then add a second tag (inter-
ference tag) and vary its distance from the target tag.
Both tags have frequency notch at 2470 MHz. Fig. 21
shows that, without the interference tag, LiveTag detects
the target tag with 98% accuracy. When the interference
tag falls within 1.4 m, the detection accuracy drops to
around 45%. Nonetheless, the accuracy improves as the
interference tag moves away, and reaches above 94% at
a distance beyond 1.8 m. Overall, a minimum separation
of 2 m would ensure harmonious multi-tag coexistence.

7.1.3 Performance of Touch Detection
Our microbenchmarks focused on the filter gain met-

ric. Now we create different air filter gains and measure
the the actual Pf and Pm. We set the Vth to achieve
Pf = 3%. For each distance setting, the tag is touched
100 times across 1 hour, with human activities around.
The same tag with 5 identical L-shaped resonators at 2.42
GHz is used. To adjust filter gain, we simply short dif-
ferent number of resonators with copper foil. Fig. 22(a)
shows that the measured Pf is indeed kept close to the
target. In addition, when the detected air filter gain is
above 8 dB, the Pm is extremely low (<3%). As the
air filter gain decreases, Pm increases rapidly (to 9% un-
der 6 dB air filter gain and 28% under 4 dB), because
the change of frequency response upon touch occurs at
a similar level as channel noise/fading. We also found
that increasing Pf decreases Pm, but the effect becomes
negligible when Pf > 3%, which can be used as a sweet
spot to configure Vth.

Fig. 22(b) further shows the touch detection perfor-
mance in NLOS scenarios. Without blockage, the mea-
sured air filter gain is 8 dB and Pm = 3%. When a
human body blocks the Tx-to-tag or tag-to-Rx path, Pm
increases to 11% and 14%, respectively, whereas Pf still
remains low due to the use of CFAR. Thus, to ensure
consistently low Pm in NLOS, the tags and AP should
be deployed to minimize the likelihood of blockage.

To verify the frequency-domain redundancy mecha-
nism (Sec. 5.2), we add up to 6 additional resonators.
The results show that the Pm decreases from 9% (under

 0

 0.1

 0.2

 0.3

 0.4

 0.5

14 12 10 8 6 4

P
ro

b
a

b
ili

ty

Air filter gain (dB)

False alarm rate
Missed detection rate

(a)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

w/o blocking

Tx Blocked
Rx Blocked

P
ro

b
a

b
ili

ty

False alarm rate
Missed detection rate

(b)

Figure 22: Performance of touch detection under (a)
LOS and (b) NLOS scenarios.

 0
 0.1
 0.2

0 2 4 6
Redundant notches

Pf Pm

 0
 0.1
 0.2

0 1 2
Redundant sets of CSI

(a)

(b)

Pr
ob
ab
ilit
y

Figure 23: Touch detec-
tion under redundant (a)
notches (b) CSI.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4

D
e
te

c
ti
o
n
 r

a
n
g
e
 (

m
)

Number of redundant resonators

Figure 24: Detection
range with redundant
resonators.

6dB air filter gain in Fig. 22) down to 0 (Fig.23(a)). We
further verify the time-domain redundancy by walking
with the tag and Rx at 1 m/s. By aggregating 2 addi-
tional CSI measurements, the Pm can reduce from 15%
to 2% (Fig.23(b)).

To verify the redundancy benefits brought by multi-
ple redundant resonators, we repeat the experiment in
Fig. 22, but measure the effective detection range be-
tween Tx to tag (a point where Pm < 10% when Pf
is set to 3%). Fig. 24 shows that the range increases sig-
nificantly, from 1.1 m to 4.8 m, as the number of redun-
dant resonators increases from 0 to 4. Therefore, Live-
Tag can harness redundant resonators to significantly
improve the range and robustness of touch detection, al-
beit at the cost of tag size.

7.2 Case Studies
We conduct three case studies, using to 3 different

tags printed on the thin RT/duroid 6010 substrate, to ver-
ify LiveTag’s ability to sense human-object interaction.
Our experiments run in the same dynamic environment
as above, where the tag is 1.5 m away from the Tx, and
0.3 m from the Rx. The Pf is configured to 3% by de-
fault.

Ubiquitous batteryless touch-pad and control panel.
In smart-home environment, one can use LiveTag to cre-
ate ad-hoc keypad or control panels, attached on walls
in kitchen/bathroom, to remotely operate music players,
lights, door locks, and numerous other IoT appliances.
We have designed an example tag (Fig. 25) consisting
of 9 compound touch points, each with 4 identical res-
onators. Following the same experimental methods in
Sec. 7.1.3, we measure the detection accuracy. The re-
sults (Fig. 26) show that the Pm and Pf typically fall
below 5%, which verifies the effectiveness of LiveTag in
practical usage scenarios.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 543

Figure 25: Control panel.

 0

 0.05

 0.1

 0.15

1 2 3 4 5 6 7 8 9

P
ro

b
a

b
ili

ty

Button index

False alarm rate

Missed detection rate

Figure 26: Performance of
control panel tag.

Figure 27: Music con-
troller tag.

 0

 0.05

 0.1

 0.15

Button 1
Button 2

Slide left

Slide right

P
ro

b
a

b
ili

ty

False alarm rate

Missed detection rate

Figure 28: Performance of
music controller tag.

We have also designed a LiveTag-enabled music con-
troller, with a start/pause button, next-track button, and a
sliding bar for tuning volume (Fig. 27). The sliding bar
comprises 6 resonators with different notch frequencies
at 5 GHz band. The tag can be attached to a nightstand,
kitchen wall, couch armrest, or even clothes, to remotely
control WiFi-connected speakers or music players.

In our implementation, a sliding event is detected if
at least 4 of the touch points on the sliding bar are de-
tected sequentially. Our measurement (Fig. 28) shows
that the detection accuracy of the two buttons is similar
to Fig. 22. But the sliding detection is more robust, with
Pf ≈ 0, due to the joint effects of multiple touch points.

Augmenting everyday objects with touch-sensitivity.
Since LiveTag is printable on thin, flexible substrates,
it can be easily attached to plain objects, making them
alive and enabling touch-related activity tracking. Here
we adapt LiveTag to design a water level detector, which
infers a user’s water intake by tracking the water level in
a cup. This simple application can deliver reminders to
the user’s WiFi device, alleviating the dehydration issue
that many people suffer from1.

Specifically, we design a tag with 2 monopole anten-
nas and 12 L-shaped resonators, all with the same reso-
nance frequency of 5.6 GHz. The tag is attached verti-
cally to a water bottle, with its conductive layer facing in-
wards (Fig. 29). The water can affect the tag’s frequency
response, in the same way as finger touch, as long as the
bottle is not made of metal which has a shielding effect.
To avoid the impact of water on the antenna, we fold the
antenna part outward.

Fig. 30 shows the detected filter gain over different
water levels. The first resonator is detuned by the water
when water level reaches 4 cm. With higher water lev-
els, more resonators are disabled, causing the filter gain
to drop proportionally. This simple relation can be har-
143% of the US adults suffer from dehydration without being
aware of it [14].

Figure 29: Layout of wa-
ter level detector tag.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

F
ilt

e
r

g
a

in
 (

d
B

)

Water level (cm)

Figure 30: Detected filter
gain over water level.

nessed by LiveTag to detect the water level. Note that the
bottle movement may also affect the filter gain, but Live-
Tag can still track the short-term relative change within
a period when the bottle remains stable. Due to space
constraint, we leave a full-fledged design and implemen-
tation of this application as future work.

8. Limitations and Future Work
Detection range and reliability. Our experiments in-

dicate that LiveTag can reliably detect touches up to a
Tx-to-tag distance of 4.8 m. The detection accuracy drops
to below 90% at longer ranges, in NLOS conditions, or
when the tag-to-Rx distance increases. There exist multi-
ple potential ways to mitigate the performance loss, e.g.,
increasing number of Tx antennas, designing detection
algorithms that accommodate multiple Rx antennas, and
incorporating redundant interrogating packets/signals to
improve reliability. We plan to explore these mecha-
nisms as future work.

Other use cases. Although our main focus lies in
touch detection, LiveTag does show high potential in other
usage scenarios such as inter-object interaction. Besides,
owing to the ability to detect the presence and identity of
different tags, LiveTag itself can act as a low-cost WiFi-
detectable chipless RFID tag, which brings the vision of
chipless RFID closer to everyday life. To make LiveTag
more lightweight, we will explore inkjet printing [45],
with conductive ink and photopaper as fabrication mate-
rials, which can make LiveTag easily available for cus-
tomizing wireless sensing.

9. Conclusion
We have demonstrated the feasibility and effective-

ness of LiveTag, a passive, batteryless, chipless metallic
tag which responds to touches in a way that can be re-
motely detected by WiFi receivers. LiveTag marks the
first step in achieving two visions: (i) Reconfigurable
wireless sensing. Since LiveTag holds potential to be
inkjet-printed on photopapers, it allows users to customize
various types of WiFi-detectable touch interfaces in smart
home environment. (ii) Converting dumb objects into
smart ones. By attaching the tag, even plain everyday
objects can be “smart”, track human activities, and be-
come part of the Internet of Things through the LiveTag
WiFi detector. A more in-depth exploration of these vi-
sions is a matter of our future work.

544 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Advanced Design system (ADS).

http://www.keysight.com/en/pc-1297113/advanced-design-
system,
2016.

[2] ANAND, N., LEE, S.-J., AND KNIGHTLY, E. W. STROBE:
Actively Securing Wireless Communications Using
Zero-Forcing Beamforming. In Proceedings of IEEE INFOCOM
(2012).

[3] BARRETT, L. F., AND BARRETT, D. J. An Introduction to
Computerized Experience Sampling in Psychology. Social
Science Computer Review 19, 2 (2001).

[4] BEJARANO, O., KNIGHTLY, E. W., AND PARK, M. Ieee 802.11
ac: from channelization to multi-user mimo. IEEE
Communications Magazine 51, 10 (2013), 84–90.

[5] BELL, H. C. L-resonator bandstop filters. IEEE transactions on
microwave theory and techniques 44, 12 (1996), 2669–2672.

[6] BLUM, R. S., KASSAM, S. A., AND POOR, H. V. Distributed
detection with multiple sensors ii. advanced topics. Proceedings
of the IEEE 85, 1 (1997), 64–79.

[7] CHEN, Z. N., AND CHIA, M. Y. W. Broadband planar
antennas: design and applications. John Wiley & Sons, 2006.

[8] CHO, N., YOO, J., SONG, S.-J., LEE, J., JEON, S., AND YOO,
H.-J. The human body characteristics as a signal transmission
medium for intrabody communication. IEEE transactions on
microwave theory and techniques 55, 5 (2007), 1080–1086.

[9] DELAITRE, V., SIVIC, J., AND LAPTEV, I. Learning
Person-object Interactions for Action Recognition in Still
Images. In International Conference on Neural Information
Processing Systems (NIPS) (2011).

[10] DEY, S., SAHA, J. K., AND KARMAKAR, N. C. Smart Sensing:
Chipless RFID Solutions for the Internet of Everything. IEEE
Microwave Magazine 16, 10 (2015).

[11] FORBES. Adventures in Self-Surveillance, aka The Quantified
Self, aka Extreme Navel-Gazing, Apr. 2011.

[12] GARCIA-PERATE, G., DALTON, N., CONROY-DALTON, R.,
AND WILSON, D. Ambient Recommendations in the Pop-up
Shop. In ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp) (2013).

[13] GARDINER, C. W. Stochastic methods. Springer-Verlag,
Berlin–Heidelberg–New York–Tokyo, 1985.

[14] GOODMAN, A. B. Behaviors and Attitudes Associated with
Low Drinking Water Intake among US adults, Food Attitudes
and Behaviors Survey. Preventing Chronic Disease 10 (2013).

[15] GUPTA, A., KEMBHAVI, A., AND DAVIS, L. S. Observing
Human-Object Interactions: Using Spatial and Functional
Compatibility for Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31, 10 (2009).

[16] HOYLE, R., TEMPLEMAN, R., ARMES, S., ANTHONY, D.,
CRANDALL, D., AND KAPADIA, A. Privacy Behaviors of
Lifeloggers Using Wearable Cameras. In ACM International
Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp) (2014).

[17] ISHII, H. The Tangible User Interface and Its Evolution.
Communications of the ACM 51, 6 (2008).

[18] IYER, V., CHAN, J., AND GOLLAKOTA, S. 3D Printing
Wireless Connected Objects. In Proceedings of ACM
SIGGRAPH Asia (2017).

[19] KELLOGG, B., PARKS, A., GOLLAKOTA, S., SMITH, J. R.,
AND WETHERALL, D. Wi-Fi Backscatter: Internet Connectivity
for RF-powered Devices.

[20] KELLOGG, B., TALLA, V., GOLLAKOTA, S., AND SMITH, J.
Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2016).

[21] KEOGH, E., AND RATANAMAHATANA, A. Everything You
Know About Dynamic Time Warping is Wrong. SIG-KDD
Workshop on Mining Temporal and Sequential Data (2004).

[22] KHANNA, A., AND GARAULT, Y. Determination of loaded,
unloaded, and external quality factors of a dielectric resonator

coupled to a microstrip line. IEEE Transactions on Microwave
Theory and Techniques 31, 3 (1983), 261–264.

[23] LEE, Y.-T., LIM, J.-S., KIM, C.-S., AHN, D., AND NAM, S. A
compact-size microstrip spiral resonator and its application to
microwave oscillator. IEEE microwave and wireless components
letters 12, 10 (2002), 375–377.

[24] LI, H., BROCKMEYER, E., CARTER, E. J., FROMM, J.,
HUDSON, S. E., PATEL, S. N., AND SAMPLE, A. PaperID: A
Technique for Drawing Functional Battery-Free Wireless
Interfaces on Paper. In CHI Conference on Human Factors in
Computing Systems (CHI) (2016).

[25] LI, H., YE, C., AND SAMPLE, A. P. IDSense: A Human Object
Interaction Detection System Based on Passive UHF RFID. In
Proc. of ACM Conference on Human Factors in Computing
Systems (CHI) (2015).

[26] LIU, V., PARKS, A., TALLA, V., GOLLAKOTA, S.,
WETHERALL, D., AND SMITH, J. R. Ambient Backscatter:
Wireless Communication Out of Thin Air. In Proc. of ACM
SIGCOMM (2013).

[27] MARQUARDT, N., TAYLOR, A. S., VILLAR, N., AND
GREENBERG, S. Rethinking RFID: Awareness and Control for
Interaction with RFID Systems. In ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI) (2010).

[28] MELI-SEGU, J., AND POUS, R. Human-Object Interaction
Reasoning Using RFID-Enabled Smart Shelf. In International
Conference on the Internet of Things (IOT) (2014).

[29] MILLIGAN, T. A. Modern antenna design. John Wiley & Sons,
2005.

[30] NISHI, T., SATO, Y., AND KOIKE, H. SnapLink: Interactive
Object Registration and Recognition for Augmented Desk
Interface. In Proc. of IFIP Conference on HCI (2001).

[31] PERRET, E. Radio Frequency Identification and Sensors: From
RFID to Chipless RFID. Willey-ISTE, 2014.

[32] PHILIPOSE, M., FISHKIN, K. P., PERKOWITZ, M.,
PATTERSON, D. J., FOX, D., KAUTZ, H., AND HAHNEL, D.
Inferring Activities from Interactions with Objects. IEEE
Pervasive Computing 3, 4 (2004).

[33] POZAR, D. M. Microwave and Rf Design of Wireless Systems,
1st ed. Wiley, 2000.

[34] POZAR, D. M. Microwave Engineering. Wiley, 2012.
[35] PRADHAN, S., CHAI, E., SUNDARESAN, K., QIU, L.,

KHOJASTEPOUR, M. A., AND RANGARAJAN, S. Rio: A
pervasive rfid-based touch gesture interface. In Proceedings of
the 23rd Annual International Conference on Mobile Computing
and Networking (2017).

[36] PRERADOVIC, S., BALBIN, I., KARMAKAR, N. C., AND
SWIEGERS, G. F. Multiresonator-based chipless rfid system for
low-cost item tracking. IEEE Transactions on Microwave
Theory and Techniques 57, 5 (2009), 1411–1419.

[37] PRERADOVIC, S., AND KARMAKAR, N. C. Design of fully
printable planar chipless rfid transponder with 35-bit data
capacity. In Microwave Conference, 2009. EuMC 2009.
European (2009), IEEE, pp. 013–016.

[38] PRERADOVIC, S., AND KARMAKAR, N. C. Chipless RFID: Bar
Code of the Future. IEEE Microwave Magazine 11, 7 (2010).

[39] RANJAN, J., AND WHITEHOUSE, K. Object Hallmarks:
Identifying Object Users Using Wearable Wrist Sensors. In ACM
International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp) (2015).

[40] SAMPLE, A. P., YEAGER, D. J., AND SMITH, J. R. A
Capacitive Touch Interface for Passive RFID Tags. In IEEE
International Conference on RFID (2009).

[41] SCHMIDT, A., GELLERSEN, H. W., AND MERZ, C. Enabling
Implicit Human Computer Interaction: a Wearable RFID-Tag
Reader. In International Symposium on Wearable Computers
(ISWC) (2000).

[42] SCHMIDT, R. Multiple emitter location and signal parameter
estimation. IEEE transactions on antennas and propagation 34,
3 (1986), 276–280.

[43] SCHMITZ, M., BAUS, J., AND DÖRR, R. The Digital

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 545

Sommelier: Interacting with Intelligent Products. 2008.
[44] SEDRA, A. S., AND SMITH, K. C. Microelectronic circuits,

vol. 1. New York: Oxford University Press, 1998.
[45] SHAO, B. Fully Printed Chipless RFID Tags towards Item-Level

Tracking Applications. PhD thesis, Royal Institute of
Technology, 2014.

[46] SIMON, T. M., THOMAS, B. H., SMITH, R. T., AND SMITH,
M. Adding input controls and sensors to rfid tags to support
dynamic tangible user interfaces. In Proceedings of the
International Conference on Tangible, Embedded and Embodied
Interaction (TEI) (2013).

[47] TAPIA, E. M., INTILLE, S. S., AND LARSON, K. Activity
Recognition in the Home Using Simple and Ubiquitous Sensors.
In Proceedings of the Second International Conference on
Pervasive Computing (PERVASIVE) (2004).

[48] TSE, D., AND VISWANATH, P. Fundamentals of wireless
communication. Cambridge university press, 2005.

[49] VAN VEEN, B. D., AND BUCKLEY, K. M. Beamforming: A
Versatile Approach to Spatial Filtering. IEEE ASSP Magazine 5,

2 (1988).
[50] VASISHT, D., KUMAR, S., AND KATABI, D. Decimeter-level

localization with a single wifi access point. In USENIX NSDI
(2016).

[51] WEISER, M. The Computer for the 21st Century (Reprint). ACM
SIGMOBILE Mobile Computing and Communications Review 3,
3 (1999).

[52] WILSON, H. J. You, By the Numbers. Harvard Business Review
(Sep. 2012).

[53] XIE, X., CHAI, E., ZHANG, X., SUNDARESAN, K.,
KHOJASTEPOUR, A., AND RANGARAJAN, S. Hekaton:
Efficient and practical large-scale mimo. In Proceedings of the
21st Annual International Conference on Mobile Computing and
Networking (2015), ACM, pp. 304–316.

[54] YAO, B., AND FEI-FEI, L. Grouplet: A Structured Image
Representation for Recognizing Human and Object Interactions.
In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR) (2010).

546 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Inaudible Voice Commands: The Long-Range Attack and Defense

Nirupam Roy, Sheng Shen, Haitham Hassanieh, Romit Roy Choudhury
University of Illinois at Urbana-Champaign

Abstract
Recent work has shown that inaudible signals (at ultra-
sound frequencies) can be designed in a way that they
become audible to microphones. Designed well, this can
empower an adversary to stand on the road and silently
control Amazon Echo and Google Home-like devices in
people’s homes. A voice command like “Alexa, open the
garage door” can be a serious threat.

While recent work has demonstrated feasibility, two is-
sues remain open: (1) The attacks can only be launched
from within 5 f t of Amazon Echo, and increasing this
range makes the attack audible. (2) There is no clear so-
lution against these ultrasound attacks, since they exploit
a recently discovered loophole in hardware non-linearity.

This paper is an attempt to close both these gaps. We
begin by developing an attack that achieves 25 f t range,
limited by the power of our amplifier. We then develop
a defense against this class of voice attacks that exploit
non-linearity. Our core ideas emerge from a careful
forensics on voice, i.e., finding indelible traces of non-
linearity in recorded voice signals. Our system, LipRead,
demonstrates the inaudible attack in various conditions,
followed by defenses that only require software changes
to the microphone.

1 Introduction
A number of recent research papers have focused on the
topic of inaudible voice commands [37, 48, 39]. Back-
door [37] showed how hardware non-linearities in micro-
phones can be exploited, such that inaudible ultrasound
signals can become audible to any microphone. Dolphi-
nAttack [48] developed on Backdoor to demonstrate that
no software is needed at the microphone, i.e., a voice en-
abled device like Amazon Echo can be made to respond
to inaudible voice commands. A similar paper indepen-
dently emerged in arXiv [39], with a video demonstration
of such an attack [3]. These attacks are becoming in-
creasingly relevant, particularly with the proliferation of
voice enabled devices including Amazon Echo, Google
Home, Apple Home Pod, Samsung refrigerators, etc.

While creative and exciting, these attacks are still defi-
cient on an important parameter: range. DolphinAttack

can launch from a distance of 5 f t to Amazon Echo [48]
while the attack in [39] achieves 10 f t by becoming par-
tially audible. In attempting to enhance range, we real-
ized strong tradeoffs with inaudibility, i.e., the output of
the speaker no longer remains silent. This implies that
currently known attacks are viable in short ranges, such
as Alice’s friend visiting Alice’s home and silently at-
tacking her Amazon Echo [11, 48]. However, the gen-
eral, and perhaps more alarming attack, is the one in
which the attacker parks his car on the road and controls
voice-enabled devices in the neighborhood, and even a
person standing next to him does not hear it. This paper
is an attempt to achieve such an attack radius, followed
by defenses against them. We formulate the core prob-
lem next and outline our intuitions and techniques for
solving them.

Briefly, non-linearity is a hardware property that makes
high frequency signals arriving at a microphone, say shi,
get shifted to lower frequencies slow (see Figure 1). If shi
is designed carefully, then slow can be almost identical
to shi but shifted to within the audibility cutoff of 20kHz
inside the microphone. As a result, even though humans
do not hear shi, non-linearity in microphones produces
slow, which then become legitimate voice commands to
devices like Amazon Echo. This is the root opportunity
that empowers today’s attacks.

Am
pl
.	

Freq.	
Freq.	

Inaudible	
voice	signal	

Filter	
(LPF)	 Nonlinearity	

causes	shi?	

Audible	
range	

40	kHz	40	kHz	 Microphone	Audible	
range	

Am
pl
.	

Figure 1: Hardware non-linearity creates frequency shift.
Voice commands transmitted over inaudible ultrasound fre-
quencies get shifted into the lower audible bands after passing
through the non-linear microphone hardware.

Two important points need mention at this point. (1)
Non-linearity triggers at high frequencies and at high
power – if shi is a soft signal, then the non-linear ef-
fects do not surface. (2) Non-linearity is fundamental to
acoustic hardware and is equally present in speakers as
in microphones. Thus, when shi is played through speak-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 547

ers, it will also undergo the frequency shift, producing
an audible slow. Dolphin and other attacks sidestep this
problem by operating at low power, thereby forcing the
output of the speaker to be almost inaudible. This inher-
ently limits the range of the attack to 5 f t; any attempt to
increase this range will result in audibility.

This paper breaks away from the zero sum game between
range and audibility by an alternative transmitter design.
Our core idea is to use multiple speakers, and stripe seg-
ments of the voice signal across them such that leakage
from each speaker is narrow band, and confined to low
frequencies. This still produces a garbled, audible sound.
To achieve true inaudibility, we solve a min-max opti-
mization problem on the length of the voice segments.
The optimization picks the segment lengths in a way such
that the aggregate leakage function is completely below
the human auditory response curve (i.e., the minimum
separation between the leakage and the human audibility
curve is maximized). This ensures, by design, the attack
is inaudible.

Defending against this class of non-linearity attacks is
not difficult if one were to assume hardware changes
to the receiver (e.g., Amazon Echo or Google Home).
An additional ultrasound microphone will suffice since
it can detect the shi signals in air. However, with soft-
ware changes alone, the problem becomes a question of
forensics, i.e., can the shifted signal slow be discriminated
from the same legitimate voice command, sleg. In other
words, does non-linearity leave an indelible trace on slow
that would otherwise not be present in sleg.

Our defense relies on the observation that voice signals
exhibit well-understood structure, composed of funda-
mental frequencies and harmonics. When this structure
passes through non-linearity, part of it remains preserved
in the shifted and blended low frequency signals. In con-
trast, legitimate human voice projects almost no energy
in these low frequency bands. An attacker that injects
distortion to hide the traces of voice, either pollutes the
core voice command, or raises the energy floor in these
bands. This forces the attacker into a zero-sum game,
disallowing him from erasing the traces of non-linearity
without raising suspicion.

Our measurements confirm the possibility to detect
voice traces, i.e., even though non-linearity superim-
poses many harmonics and noise signals on top of each
other, and attenuates them significantly, cross-correlation
still reveals the latent voice fingerprint. Of course, var-
ious intermediate steps of contour tracking, filtering,
frequency-selective compensation, and phoneme correla-
tion are necessary to extract out the evidence. Nonethe-
less, our final classifier is transparent and does not re-
quire any training at all, but succeeds for voice signals

only, as opposed to the general class of inaudible mi-
crophone attacks (such as jamming [37]). We leave this
broader problem to future work.

Our overall system LipRead is built on multiple plat-
forms. For the inaudible attack at long ranges, we have
developed an ultrasound speaker array powered by our
custom-made amplifier. The attacker types a command
on the laptop, MATLAB converts the command to a
voice signal, and the laptop sends this through our am-
plifier to the speaker. We demonstrate controlling Ama-
zon Echo, iPhone Siri, and Samsung devices from a dis-
tance of 25 f t, limited by the power of our amplifier. For
defense, we record signals from Android Samsung S6
phones, as well as from off-the-shelf microphone chips
(popular in today’s devices). We attack the system with
various ultrasound commands, both from literature as
well as our own. LipRead demonstrates defense against
all attacks with 97% precision and 98% recall. The per-
formance remains robust across varying parameters, in-
cluding multipath, power, attack location, and various
signal manipulations.

Current limitations: Our long-range attacks have been
launched from within a large room, or from outside a
house with open windows. When doors and windows
were closed, the attack was unsuccessful since our high-
frequency signals attenuated while passing through the
wall/glass. We believe this is a function of power, how-
ever, a deeper treatment is necessary around this ques-
tion. In particular: (1) Will high power amplifiers be
powerful enough for high-frequency signals to penetrate
such barriers? (2) Will high-power and high-frequency
signals trigger non-linearity inside human ears? (3) Are
there other leakages that will emerge in such high power
and high frequency regimes. We leave these questions to
future work.

In sum, our core contributions may be summarized as
follows:

• A transmitter design that breaks away from the tradeoff
between attack range and audibility. The core ideas per-
tain to carefully striping frequency bands across an array
of speakers, such that individual speakers are silent but
the microphone is activated.

• A defense that identifies human voice traces at very low
frequencies (where such traces should not be present)
and uses them to protect against attacks that attempt to
erase or disturb these traces.

The subsequent sections elaborate on these ideas, be-
ginning with some relevant background on non-linearity,
followed by threat model, attack design, and defense.

548 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Background: Acoustic Non-linearity
Microphones and speakers are in general designed to be
linear systems, meaning that the output signals are linear
combinations of the input. In the case of power ampli-
fiers inside microphones and speakers, if the input sound
signal is s(t), then the output should ideally be:

sout(t) = A1s(t)

where A1 is the amplifier gain. In practice, however,
acoustic components in microphones and speakers (like
diaphragms, amplifiers, etc.) are linear only in the au-
dible frequency range (< 20kHz). In ultrasound bands
(> 25kHz), the responses exhibit non-linearity [28, 19,
16, 38, 22]. Thus, for ultrasound signals, the output of
the amplifier becomes:

sout(t) =
∞

∑
i=1

Aisi(t) = A1s(t)+A2s2(t)+A3s3(t)+ ...

≈ A1s(t)+A2s2(t)
(1)

Higher order terms are typically extremely weak since
A4+� A3� A2 and hence can be ignored.

Recent work [37] has shown ways to exploit this phe-
nomenon, i.e., it is possible to play ultrasound signals
that cannot be heard by humans but can be directly
recorded by any microphone. Specifically, an ultrasound
speaker can play two inaudible tones: s1(t) = cos(2π f1t)
at frequency f1 = 38kHz and s2 = cos(2π f2t) at fre-
quency f2 = 40kHz. Once the combined signal shi(t) =
s1(t)+ s2(t) passes through the microphone’s nonlinear
hardware, the output becomes:

sout(t) = A1shi(t)+A2s2
hi(t)

= A1(s1(t)+ s2(t))+A2(s1(t)+ s2(t))2

= A1 cos(2π f1t)+A1 cos(2π f2t)

+ A2 cos2(2π f1t)+A2 cos2(2π f2t)

+ 2A2 cos(2π f1t)cos(2π f2t)

The above signal has frequency components at f1, f2,
2 f1, 2 f2, f2 + f1, and f2− f1. This can be seen by ex-
panding the equation:

sout(t) = A1 cos(2π f1t)+A1 cos(2π f2t)

+ A2 +0.5A2 cos(2π2 f1t)+0.5A2 cos(2π2 f2t)

+ A2 cos(2π(f1 + f2)t)+A2 cos(2π(f2− f1)t)

Before digitizing and recording the signal, the micro-
phone applies a low pass filter to remove frequency com-
ponents above the microphone’s cutoff of 24KHz. Ob-
serve that f1, f2, 2 f1, 2 f2, and f1 + f2 are all > 24kHz.
Hence, what remains (as acceptable signal) is:

slow(t) = A2 +A2 cos(2π(f2− f1)t) (2)

This is essentially a f2− f1 = 2kHz tone which will be
recorded by the microphone. However, this demonstrates
the core opportunity, i.e., by sending a completely in-
audible signal, we are able to generate an audible “copy”
of it inside any unmodified off-the-shelf microphone.

3 Inaudible Voice Attack
We begin by explaining how the above non-linearity can
be exploited to send inaudible commands to voice en-
abled devices (VEDs) at a short range. We identify de-
ficiencies in such an attack and then design the longer
range, truly inaudible attack.

3.1 Short Range Attack
Let v(t) be a baseband voice signal that once decoded
translates to the command: “Alexa, mute yourself”. An
attacker moves this baseband signal to a high frequency
fhi = 40kHz (by modulating a carrier signal), and plays
it through an ultrasound speaker. The attacker also plays
a tone at fhi = 40kHz. The played signal is:

shi(t) = cos(2π fhit)+ v(t)cos(2π fhit) (3)

After this signal passes through the non-linear hardware
and low-pass filter of the microphone, the microphone
will record:

slow(t) =
A2

2
(
1+ v2(t)+2v(t)

)
(4)

This shifted signal contains a strong component of v(t)
(due to more power in the speech components), and
hence, gets decoded correctly by almost all microphones.

� What happens to v2(t)?
Figure 2 shows the power spectrum V (f) correspond-
ing to the voice command v(t) =“Alexa, mute yourself”.
Here the power spectrum corresponding to v2(t) which
is equal to V (f)∗V (f) where (∗) is the convolution op-
eration. Observe that the spectrum of the human voice is
between [50− 8000]Hz and the relatively weak compo-
nents of v2(t) line up underneath the voice frequencies
after convolution. A component of v2(t) also falls at DC,
however, degrades sharply. The overall weak presence
of v2(t) leaves the v(t) signal mostly unharmed, allow-
ing VEDs to decode the command correctly.
However, to help v(t) enter the microphone through the
“non-linear inlet”, shi(t) must be transmitted at suffi-
ciently high power. Otherwise, slow(t) will be buried in
noise (due to small A2). Unfortunately, increasing the
transmit power at the speaker triggers non-linearities at
the speaker’s own diaphragm and amplifier, resulting in
an audible slow(t) at the output of the speaker. Since
slow(t) contains the voice command v(t), the attack be-
comes audible. Past attacks sidestep this problem by op-
erating at low power, thereby forcing the output of the

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 549

50Hz

Non-overlapping V2(t)

V2(t) overlaps
with V(t)

Figure 2: Spectrum of V (f) ∗V (f) which is the non-linear
leakage after passing through the microphone

speaker to be almost inaudible [49]. This inherently lim-
its the radius of attack to a short range of 5 f t. Attempts
to increase this range results in audibility, defeating the
purpose of the attack.

Figure 3 confirms this with experiments in our build-
ing. Five volunteers visited marked locations and
recorded their perceived loudness of the speaker’s leak-
age. Clearly, speaker non-linearity produces audibility, a
key problem for long range attacks.

Figure 3: Heatmap showing locations at which v(t) leakage
from the speaker is audible.

3.2 Long Range Attack
Before developing the long range attack, we concisely
present the assumptions and constraints on the attacker.

� Threat Model: We assume that:

• The attacker cannot enter the home to launch the attack,
otherwise, the above short range attack suffices.

• The attacker cannot leak any audible signals (even in a
beamformed manner), otherwise such inaudible attacks
are not needed in the first place.

• The attacker is resourceful in terms of hardware and en-
ergy (perhaps the attacking speaker can be carried in his
car or placed at his balcony, pointed at VEDs in sur-
rounding apartments or pedestrians).

• In case the receiver device (e.g., Google Home) is voice
fingerprinted, we assume the attacker can synthesize the
legitimate user’s voice signal using known techniques
[46, 5] to launch the attack.

• The attacker cannot estimate the precise channel im-
pulse response (CIR) from its speaker to the voice en-
abled device (VED) that it intends to attack.

� Core Attack Method:
LipRead develops a new speaker design that facilitates
considerably longer attack range, while eliminating the
audible leakage at the speaker. Instead of using one ul-
trasound speaker, LipRead uses multiple of them, physi-
cally separated in space. Then, LipRead splices the spec-
trum of the voice command V (f) into carefully selected
segments and plays each segment on a different speaker,
thereby limiting the leakage from each speaker.

� The Need for Multiple Speakers:
To better understand the motivation, let us first con-
sider using two ultrasound speakers. Instead of playing
shi(t) = cos(2π fhit) + v(t)cos(2π fhit) on one speaker,
we now play s1(t) = cos(2π fhit) on the first speaker
and s2(t) = v(t)cos(2π fhit) on the second speaker where
fhi = 40kHz. In this case, the 2 speakers will output:

sout1 = cos(2π fhit)+ cos2(2π fhit)

sout2 = v(t)cos(2π fhit)+ v2(t)cos2(2π fhit)
(5)

For simplicity, we ignore the terms A1 and A2 (since
they do not affect our understanding of frequency com-
ponents). Thus, when sout1 and sout2 emerge from the two
speakers, human ears filter out all frequencies > 20kHz.
What remains audible is only:

slow1 = 1/2

slow2 = v2(t)/2

Observe that neither slow1 nor slow2 contains the voice
signal v(t), hence the actual attack command is no longer
audible with two speakers. However, the microphone
under attack will still receive the aggregate ultrasound
signal from the two speakers, shi(t) = s1(t)+ s2(t), and
its own non-linearity will cause a “copy” of v(t) to get
shifted into the audible range (recall Equation 4). Thus,
this 2-speaker attack activates VEDs from greater dis-
tances, while the actual voice command remains inaudi-
ble to bystanders.

Although the voice signal v(t) is inaudible, signal v2(t)
still leaks and becomes audible (especially at higher
power). This undermines the attack.

� Suppressing v2(t) Leakage:
To suppress the audibility of v2(t), LipRead expands to N
ultrasound speakers. It first partitions the audio spectrum

550 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

V (f) of the command signal v(t), ranging from f0 to fN ,
into N frequency bins: [f0, f1], [f1, f2], · · · , [fN−1, fN] as
shown in Fig. 4. This can be achieved by computing an
FFT of the signal v(t) to obtain V (f). V (f) is then multi-
plied with a rectangle function rect(fi, fi+1) which gives
a filtered V[fi, fi+1](f). An IFFT is then used to gener-
ate v[fi, fi+1](t) which is multiplied by an ultrasound tone
cos(2π fhit) and outputted on the ith ultrasound speaker
as shown in Fig. 4.

0 0.5 1 1.5 2!" !# !$!% !& !' !(!) !*

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

!" !#

0 0.5 1 1.5 2

!# !$

!$!%

!% !&

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

!& !'

!' !(

!(!)

!) !*

+(!)

+[/0,/2] !
×

40789

×
40789

×
40789

×
40789

×
40789

×
40789

×
40789

×
40789

40789

+[/2,/:] !

+[/:,/;] !

+[/;,/<] !

+[/<,/=] !

+[/=,/>] !

+[/>,/?] !

+[/?,/@] !

Figure 4: Spectrum Splicing: optimally segmenting the voice
command frequencies and playing it through separate speakers
so that the net speaker-output is silent.

In this case, the audible leakage from ith ultrasound
speaker will be slow,i(t) = v2

[fi, fi+1]
(t). In the frequency

domain, we can write this leakage as:

Slow,i(f) = V[fi, fi+1](f)∗V[fi, fi+1](f)

This leakage has two important properties:

(1) E
[
|Slow,i(f)|2

]
≤ E

[
|V (f)∗V (f)|2

]
(2) BW (Slow,i(f))≤ BW (V (f)∗V (f))

where E[|.|2] is the power of audible leakage and BW (.)
is the bandwidth of the audible leakage due to non-
linearities at each speaker. The above properties imply
that splicing the spectrum into multiple speakers reduces
the audible leakage from any given speaker. It also re-
duces the bandwidth and hence concentrates the audible
leakage in a smaller band below 50 Hz.

While per-speaker leakage is smaller, they can still add
up to become audible. The total leakage power can be

written as:

L(f) =

∣∣∣∣∣ N

∑
i=1

V[fi, fi+1](f)∗V[fi, fi+1](f)

∣∣∣∣∣
2

To achieve true inaudibility, we need to ensure that the
total leakage is not audible. To address this challenge,
we leverage the fact that humans cannot hear the sound
if the sound intensity falls below certain threshold, which
is frequency dependent. This is known as the “Threshold
of Hearing Curve”, T (f). Fig. 5 shows T (f) in dB as
function of frequency. Any sound with intensity below
the threshold of hearing will be inaudible.

So
un

d
Pr

es
su

re
 L

ev
el

 in
 d

B

Frequency in Hz
15.6 31.2 62.5 125 250 500 1000 2000 4000 8000 16000

80

60

40

20

0

-20

Threshold of Hearing Curve

Figure 5: Threshold of Hearing Curve

LipRead aims to push the total leakage spectrum, L(f),
below the “Threshold of Hearing Curve” T (f). To this
end, LipRead finds the best partitioning of the spectrum,
such that the leakage is below the threshold of hearing. If
multiple partitions satisfy this constraint, LipRead picks
the one that has the largest gap from the threshold of
hearing curve. Formally, we solve the below optimiza-
tion problem:

maximize
{ f1, f2,··· , fN−1}

min
f
[T (f)−L(f)]

subject to f0 ≤ f1 ≤ f2 ≤ ·· · ≤ fN

(6)

The solution partitions the frequency spectrum to ensure
that the leakage energy is below the hearing threshold
for every frequency bin. This ensures inaudibility at any
human ear.

� Increasing Attack Range:
It should be possible to increase attack range with more
speakers, while also limiting audible leakage below the
required hearing threshold. This holds in principle due
to the following reason. For a desired attack range, say r,
we can compute the minimum power density (i.e., power
per frequency) necessary to invoke the VED. This power
Pr needs to be high since the non-linear channel will
strongly attenuate it by the factor A2. Now consider the
worst case where a voice command has equal magnitude
in all frequencies. Given each frequency needs power Pr
and each speaker’s output needs to be below threshold

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 551

of hearing for all frequencies, we can run our min-max
optimization for increasing values of N, where N is the
number of speakers. The minimum N that gives a fea-
sible solution is the answer. Of course, this is the upper
bound; for a specific voice signal, N will be lower.

Increasing speakers can be viewed as beamforming the
energy towards the VED. In the extreme case for exam-
ple, every speaker will play one frequency tone, resulting
in a strong DC component at the speaker’s output which
would still be inaudible. In practice, our experiments are
bottlenecked by ADCs, amplifiers, speakers, etc., hence
we will report results with an array of 61 small ultra-
sound speakers.

4 Defending Inaudible Voice Commands
Recognizing inaudible voice attacks is essentially a prob-
lem of acoustic forensics, i.e., detecting evidence of non-
linearity in the signal received at the microphone. Of
course, we assume the attacker knows our defense tech-
niques and hence will try to remove any such evidence.
Thus, the core question comes down to: is there any trace
of non-linearity that just cannot be removed or masked?

To quantify this, let v(t) denote a human voice command
signal, say “Alexa, mute yourself”. When a human is-
sues this command, the recorded signal sleg = v(t)+n(t),
where n(t) is noise from the microphone. When an at-
tacker plays this signal over ultrasound (to launch the
non-linear attack), the recorded signal snl is:

snl =
A2

2
(1+2v(t)+ v2(t))+n(t) (7)

Figure 6 shows an example of sleg and snl . Evidently,
both are very similar, and both invoke the same response
in VEDs (i.e., the text-to-speech converter outputs the
same text for both sleg and snl). A defense mechanism
would need to examine any incoming signal s and tell
if it is low-frequency legitimate or a shifted copy of the
high-frequency attack.

4.1 Failed Defenses
Before we describe LipRead’s defense, we mention a few
other possible defenses which we have explored before
converging on our final defense system. We concisely
summarize 4 of these ideas.

� Decompose Incoming Signal s(t):
One solution is to solve for s(t) = A2

2 (1+2v̂(t)+ v̂2(t)),
and test if the resulting v̂(t) produces the same text-to-
speech (T2S) output as s(t). However, this proved to be
a fallacious argument because, if such a v̂(t) exists, it
will always produce the same T2S output as s(t). This
is because such a v̂(t) would be a cleaner version of the

Time (Sec)
0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y
(H

z)

1250

1000

750

500

250

Time (Sec)
0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y
(H

z)

1250

1000

750

500

250

Figure 6: Spectrogram for sleg and snl for voice command
“Alexa, mute yourself”.

voice command (without the non-linear component); if
the polluted version s passes the T2S test, the cleaner
version obviously will.

� Energy at Low Frequencies from v2(t):
Another solution is to extract portions of s(t) from the
lower frequencies – since regular voice signals do not
contain sub-50Hz components, energy detection should
offer evidence. Unfortunately, environmental noise (e.g.,
fans, A/C machines, wind) leaves non-marginal residue
in these low bands. Moreover, an attacker could delib-
erately reduce the power of its signal so that its leakage
into sub-50Hz is small. Our experiments showed non-
marginal false positives in the presence of environmental
sound and soft attack signals.

� Amplitude Degradation at Higher Frequencies:
The air absorbs ultrasound frequencies far more than
voice (which translates to sharper reduction in amplitude
as the ultrasound signal propagates). Measured across
different microphones separated by ≈ 7.3cm in Amazon
Echo and Google Home, the amplitude difference should
be far greater for ultrasound. We designed a defense that
utilized the maximum amplitude slope between micro-
phone pairs – this proved to be a robust discriminator
between sleg and snl . However, we were also able to
point two (reasonably synchronized) ultrasound beams
from opposite directions. This reduced the amplitude
gradient, making it comparable to legitimate voice sig-
nals (Alexa treated the signals as multipath). In the real-
world, we envisioned 2 attackers launching this attack by
standing at 2 opposite sides of a house. Finally, this solu-
tion would require an array of microphones on the voice
enabled device. Hence, it is inapplicable to one or two
microphone systems (like phones, wearables, refrigera-
tors).

� Phase Based Separation of Speakers:
Given that long range attacks need to use at least 2 speak-
ers (to bypass speaker non-linearity), we designed an
angle-of-arrival (AoA) based technique to estimate the
physical separation of speakers. In comparison to human
voice, the source separation consistently showed success,
so long as the speakers are more than 2cm apart. While
practical attacks would certainly require multiple speak-
ers, easily making them 2cm apart, we aimed at solving

552 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the short range attack as well (i.e., where the attack is
launched from a single speaker). Put differently, the right
evidence of non-linearity should be one that is present re-
gardless of the number of speakers used.

4.2 LipRead Defense Design
Our final defense is to search for traces of v2(t) in sub-
50Hz. However, we now focus on exploiting the struc-
ture of human voice. The core observation is simple:
voice signals exhibit well-understood patterns of funda-
mental frequencies, added to multiple higher order har-
monics (see Figure 6). We expect this structure to partly
reflect in the sub-50Hz band of s(t) (that contains v2(t)),
and hence correlate with carefully extracted spectrum
above-50Hz (which contains the dominant v(t)). With
appropriate signal scrubbing, we expect the correlation to
emerge reliably, however, if the attacker attempts to dis-
rupt correlation by injecting sub-50Hz noise, the stronger
energy in this low band should give away the attack. We
intend to force the attacker into this zero sum game.

� Key Question: Why Should v2(t) Correlate?
Figure 7(a) shows a simplified abstraction of a legitimate
voice spectrum, with a narrow fundamental frequency
band around f j and harmonics at integer multiples n f j.
The lower bound on f j is > 50Hz [41]. Now recall that
when this voice spectrum undergoes non-linearity, each
of f j and n f j will self-convolve to produce “copies” of
themselves around DC (Figure 7(b)). Of course, the A2
term from non-linearity strongly attenuates this “copy”.
However, given the fundamental band around f j and the
harmonics around n f j are very similar in structure, each
of ≈ 20Hz bandwidth, the energy between [0,20kHz] su-
perimposes. This can be expressed as:

E[0,20] ≈ E

[
A2

N

∑
n=1
|V[n f j−20, n f j+20] ∗V[n f j−20, n f j+20]|2

]
(8)

The net result is distinct traces of energy in sub-20Hz
bands, and importantly, this energy variation (over time)
mimics that of f j. For a legitimate attack, on the other
hand, the sub-20Hz is dominantly uncorrelated hardware
and environmental noise.

Figure 8(a) and (b) zoom into sub-50Hz and compare
the traces of energy for sleg and snl , respectively. The
snl signal clearly shows more energy concentration, par-
ticularly when the actual voice signal is strong. Figure
9 plots the power in the sub-50Hz band with increas-
ing voice loudness levels for both sleg and snl . Note that
loudness level is expressed in dBSpl, where Spl denotes
“sound pressure level”, the standard metric for measur-
ing sound. Evidently, non-linearity shows increasing
power due to the self-convolved spectrum overlapping in

Figure 7: (a) A simplified voice spectrum showing the struc-
ture. (b) Voice spectra after non-linear attack.

Time (Sec)
0 0.2 0.4 0.8 1.0

Fr
eq

ue
nc

y
(H

z)

300

250

200

150

100

50

25

Time (Sec)
0 0.2 0.4 0.8 1.0

Fr
eq

ue
nc

y
(H

z)

300

250

200

150

100

50

25

(a) (b)
Figure 8: Spectrogram of the (a) audible and (b) inaudible
attack voice. The attack signal contains higher power below
50Hz, indicated by lighter color.

the lower band. Legitimate voice signals generate signif-
icantly less energy in these bands, thereby remaining flat
for higher loudness.

� Correlation Design
The width of the fundamental frequencies and harmonics
are time-varying, however, at any given time, if it is B Hz,
then the self-convolved signal gets shifted into [0,B]Hz
as well. Note that this is independent of the actual val-
ues of center frequencies, f j and n f j. Now, let s<B(t)
denote the sub-B Hz signal received by the microphone
and s>B(t) be the signal above B Hz that contains the
voice command. LipRead seeks to correlate the energy
variation over time in s<B(t) with the energy variation at
the fundamental frequency, f j in s>B(t). We track the
fundamental frequency in s>B(t) using standard acous-
tic libraries, but then average the power around B Hz
of this frequency. This produces a power profile over
time, Pf j . For s<B(t), we also track the average power

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 553

Loudness of received sound (dBSpl)
50 60 70 80

Po
w

er
 b

el
ow

 5
0H

z
(d

B)

-70

-60

-50

-40

-30

-20
Attack voice
Legitimate voice

Figure 9: The loudness vs sub-50Hz band power plot.

Loudness of received sound (dBSpl)
50 60 70 80

N
or

m
al

iz
ed

 c
or

re
la

tio
n

co
ef

f.

-0.2

0

0.2

0.4

0.6

0.8

1
Attack voice
Legitimate voice

Figure 10: The loudness vs correlation between Pf j and
s<B(t), denoting the power variation of the fundamental fre-
quency and the sub 20Hz band, respectively.

over time. However, to avoid weak signals and disrup-
tion from noise, we remove time windows in which f j’s
power is below its average. We stitch together the re-
maining windows from both Pf j and s<B(t) and compute
their correlation co-efficient. We use an average value of
B = 20Hz.

Figure 10 shows the correlation for increasing loudness
levels of the recorded signal (loudness below 60dBSpl
is not audible). The comparison is against a legitimate
voice command. Evidently, we recorded consistent cor-
relation gap, implying that non-linearity is leaving some
trace in the low-frequency bands, and this trace preserves
some structure of the actual voice signal. Of course, we
have not yet accounted for the possibility that the attacker
can inject noise to disrupt correlation.

� Improved Attack via Signal Shaping
The natural question for the attacker is how to mod-
ify/add signals such that the correlation gap gets nar-
rowed. Several possibilities arise:

(1) Signal −v2(t) can be added to the speaker in the low
frequency band and transmitted with the high frequency
ultrasound v(t). Given that ultrasound will produce v2(t)
after non-linearity, and −v2(t) will remain as is, the two
should interact at the microphone and cancel. Unfortu-

nately, channels for low frequencies and ultrasound are
different and unknown, hence it is almost impossible to
design the precise −v2(t) signal. Of course, we will still
attempt to attack with such a deliberately shaped signal.

(2) Assuming the ultrasound v(t) has been up-converted
to [40, 44]kHz, the attacker could potentially concate-
nate spurious frequencies from say [44, 46]kHz. These
frequencies would also self-convolve and get “copied”
around DC. This certainly affects correlation since these
spurious frequencies would not correlate well (in fact,
they can be designed to not correlate). The attacker’s
hope should be to lower correlation while maintaining a
low energy footprint below 20Hz.

The attacker can use the above approaches to try to de-
feat the zero-sum game. Figure 11 plots results from
4000 attempts to achieve low correlation and low energy.
Of these, 3500 are random noises injected in legitimate
voice commands, while the remaining 500 are more care-
fully designed distortions (such as frequency concatena-
tion, phase distortions, low frequency injection, etc.). Of
course, in all these cases, the distorted signal was still
correct, i.e., the VED device responded as it should.

On the other hand, 450 different legitimate words were
spoken by different humans (shown as hollow dots), at
various loudness levels, and accents, and styles. Clus-
ters emerge suggesting promise of separation. However,
some commands were still too close, implying the need
for greater margin of separation.

Correlation coeff.
-0.4 0 0.4 0.8

Su
b-

50
H

z
po

w
er

-70

-60

-50

-40

-30

-20 Attack voice
Legitimate voice

Figure 11: Zero sum game between correlation and power at
sub-50Hz bands. Attacker attempts to reduce correlation by
signal shaping or noise injection at sub-50Hz band.

� Leveraging Amplitude Skew from v2(t)
In order to increase the separation margin, LipRead
leverages the amplitude skew resulting from v2(t).
Specifically, two observations emerge: (1) When the har-
monics in voice signals self-convolve to form v2(t), they
fall at the same frequencies of the harmonics (since the
gaps between the harmonics are quite homogeneous). (2)
The signal v2(t) is a time domain signal with only posi-

554 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Time (s)
0.5 1 1.5

Am
pl

itu
de

-0.2

0

0.2

0.4

0.6

Time (s)
0.5 1 1.5

Am
pl

itu
de

-0.2

0

0.2

0.4

0.6

Recording #
20 60 100 140

Am
pl

itu
de

 s
ke

w

1

1.5

2

2.5

3
Attack voice
Legitimate voice

(a) (b) (c)
Figure 12: (a) Sound signals in time domain from sleg and (b) snl , demonstrating a case of amplitude skew. (c) Amplitude skew
for various attack and legitimate voice commands.

tive amplitude. Combining these together, we postulated
that amplitudes of the harmonics would be positively bi-
ased, especially for those that are strong (since v2(t) will
be relatively stronger at that location). In contrast, ampli-
tudes of legitimate voice signals should be well balanced
on the positive and negative. Figure 12(a,b) shows one
contrast between a legitimate voice sleg and the recorded
attack signal snl . In pursuit of this opportunity, we ex-
tract the ratio of the maximum and minimum amplitude
(we average over the top 10% for robustness against out-
liers). Using this as the third dimension for separation,
Figure 12(c) re-plots the sleg and snl clusters. While the
separation margin is close, combining it with correlation
and power, the separation becomes satisfactory.

� LipRead’s Elliptical Classifier
LipRead leverages 3 features to detect an attack: power
in sub-50Hz, correlation coefficient, and amplitude skew.
Analyzing the False Acceptance Rate (FAR) and False
Rejection Rate (FRR), as a function of these 3 parame-
ters, we have converged on a ellipsoidal-based separation
technique. To determine the optimal decision boundary,
we compute False Acceptance Rate (FAR) and False Re-
jection Rate (FRR) for each candidate ellipsoid. Our aim
is to pick the parameters of the ellipse that minimize both
FAR and FRR. Figure 13 plots the FAR and FRR as inter-
secting planes in a logarithmic scale (Note that we show
only two features since it is not possible to visualize the
4D graph). The coordinate with minimum value along
the canyon – indicating the equal error rates – gives the
optimal selection of ellipsoid. Since it targets speech
commands, this classifier is designed offline, one-time,
and need not be trained for each device or individual.

5 Evaluation
We evaluate LipRead on 3 main metrics: (1) attack range,
(2) inaudibility of the attack, and the recorded sound
quality (i.e., whether the attacker’s command sounds
human-like), and (3) accuracy of the defense under vari-
ous environments. We summarize our findings below.

Correlation Coeff. (Icorr)
FA

R/
FR

R FRR

FAR

Figure 13: The False Acceptance Rate plane (dark color) and
the False Rejection Rate plane (light color) for different sub-
50Hz power and correlation values.
• We test our attack prototype with 984 commands to

Amazon Echo and 200 commands to smartphones – the
attacks are launched from various distances with 130
different background noises. Figure 15 shows attack
success at 24 f t for Amazon Echo and 30 f t for smart-
phones at a power of 6watt.

• We record 12 hours of microphone data – 5 hours of hu-
man voice commands and 7 hours of attack commands
through ultrasound speakers. Figure 16(c) shows that
attack words are recognized by VEDs with equal accu-
racy as legitimate human words. Figure 16(b) confirms
that all attacks are inaudible, i.e., the leakage from our
speaker array is 5-10dB below human hearing threshold.

• Figure 17(a) shows the precision and recall of our de-
fense technique, as 98% and 99%, respectively, when
the attacker does not manipulate the attack command.
Importantly, precision and recall remain steady even un-
der signal manipulation.

Before elaborating on these results, we first describe our
evaluation platforms and methodology.

5.1 Platform and Methodology
(1) Attack speakers: Figure 14(b) shows our custom-
designed speaker system consisting of 61 ultrasonic
piezoelectric speakers arranged as a hexagonal planar ar-
ray. The elements of the array are internally connected

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 555

in two separate clusters. A dual channel waveform gen-
erator (Keysight 33500b series [4]) drives the first cluster
with the voice signal, modulated at the center frequency
of 40kHz. This cluster forms smaller sub-clusters to
transmit separate segments of the spliced spectrum. The
second cluster transmits the pure 40kHz tone through
each speaker. The signals are amplified to 30 Volts us-
ing a custom-made NE5534AP op-amp based amplifier
circuit. This prototype is limited to a maximum power
of 6watt because of the power ratings of the operational
amplifiers. More powerful amplifiers are certainly avail-
able to a resourceful attacker.

(2) Target VEDs: We test our attack on 3 different VEDs
– Amazon Echo, Samsung S6 smartphone running An-
droid v7.0, and Siri on an iPhone 5S running iOS v10.3.
Unlike Echo, Samsung S-voice and Siri requires person-
alization of the wake-word with user’s voice – adding a
layer of security through voice authentication. However,
voice synthesis is known to be possible [46, 5], and we
assume that the synthesized wake-word is already avail-
able to the attacker.

Experiment setup: We run our experiments in a lab
space occupied by 5 members and also in an open cor-
ridor. We place the VEDs and the ultrasonic speaker at
various distances ranging up to 30 f t. During each at-
tack, we play varying degrees of interfering signals from
6 speakers scattered across the area, emulating natural
home/office noises. The attack signals were designed by
first collecting real human voice commands from 10 dif-
ferent individuals; MATLAB is used to modulate them
to ultrasound frequencies. For speech quality of the at-
tack signals, we used the open-source Sphinx4 speech
processing tool [1].

(a) (b)
Figure 14: LipRead evaluation setup: (a) Ultrasonic speaker
and voice enabled devices. (b) The ultrasonic speaker array for
attack.

5.2 Attack Performance
Activation distance: This experiment attempts to ac-
tivate the VEDs from various distances. We repeat-
edly play the inaudible wake-word from the ultrasound
speaker system at regular intervals and count the fraction
of successful activation. Figure 15(a) shows the activa-

tion hit rate against increasing distance – higher hit-rates
indicate success with less number of attempts. The aver-
age distance achieved for 50% hit rate is 24 f t, while the
maximum for Siri and Samsung S-voice are measured to
be 27 and 30 f t respectively.

Figure 15(b) plots the attack range again, but for the
entire voice command. We declare “success” if the
text to speech translation produces every single word in
the command. The range degrades slightly due to the
stronger need to decode every word correctly.

Attack distance (ft)
10 20 30

W
ak

e-
w

or
d

hi
t r

at
e

0

0.2

0.4

0.6

0.8

1

Alexa
S-Voice
Siri

Attack distance (ft)
10 20 30

C
om

m
an

d
ac

cu
ra

cy

0

0.2

0.4

0.6

0.8

1

Alexa
S-Voice
Siri

Figure 15: (a) The wake-word hit rate and (b) the command
detection accuracy against increasing distances.

Figure 16(a) reports the attack range to Echo for increas-
ing input power to the speaker system. As expected, the
range continues to increase, limited by the power of our
6Watt amplifiers. More powerful amplifiers would cer-
tainly enhance the attack range, however, for the pur-
poses of prototyping, we designed our hardware in the
lower power regime.

Leakage audibility: Figure 16(b) plots the efficacy of
our spectrum splicing optimization, i.e., how effectively
does LipRead achieve speaker-side inaudibility for dif-
ferent ultrasound commands. Observe that without splic-
ing (i.e., “no partition”), the ultrasound voice signal is
almost 5dB above the human hearing threshold. As the
number of segments increase, audibility falls below the
hearing curve. With 60 speakers in our array, we use 6
segments, each played through 5 speakers; the remain-
ing 31 were used for the second cos(2π fct) signal. Note
that the graph plots the minimum gap between the hear-
ing threshold and the audio playback, implying that this
is a conservative worst case analysis. Finally, we show
results from 20 example attack commands – the other
commands are below the threshold.

Received speech quality: Given 6 speakers were trans-
mitting each spliced segment of the voice command, we
intend to understand if this distorts speech quality. Figure
16(c) plots the word recognition accuracy via Sphinx [1],
an automatic speech recognition software. Evidently,
LipRead’s attack quality is comparable to human quality,
implying that our multi-speaker beamforming preserves
the speech’s structure. In other words, speech quality is
not the bottleneck for attack range.

556 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Power (W)
2 3 4 5 6

D
is

ta
nc

e
(ft

)

0

5

10

15

20

25

Audible

Inaudible

Loudness (dbSpl)
60 65 70 75 80

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Attack
Legitimate

(a) (b) (c)
Figure 16: (a) Maximum activation distance for different input power. (b) Worst case audibility of the leakage sound after optimal
spectrum partitioning. (c) Word recognition accuracy with automatic speech recognition software for attack and legitimate voices.

5.3 Defense Performance
Metrics: Our defense technique essentially attempts to
classify the attack scenarios distinctly from the legiti-
mate voice commands. We report the “Recall’ and “Pre-
cision” of this classifier for various sound pressure levels
(measured in dBSPL), varying degrees of ambient sounds
as interference, and deliberate signal manipulation. Re-
call that our metrics refer to:

• Precision: What fraction of our detected attacks are
correct?
• Recall: What fraction of the attacks did we detect?

We now present the graphs beginning with the basic clas-
sification performance.

Basic attack detection: Figure 17(a) shows the at-
tack detection performance in normal home environment
without significant interference. The average precision
and recall of the system is 99% across various loudness
of the received voice. This result indicates best case per-
formance of our system with minimum false alarm.

Impact of ambient noise: In this section we test our de-
fense system for common household sounds that can po-
tentially mix with the received voice signal and change
its features leading to misclassification. To this end,
we played 130 noise sounds through multiple speakers
while recording attack and legitimate voice signals with a
smartphone. We replayed the noises at 4 different sound
pressure levels starting from a typical value of 50 dBSPL
to extremely loud 80 dBSPL, while the voice loudness is
kept constant at 65 dBSpl. Figure 17(b) reports the pre-
cision and recall for this experiment. The recall remains
close to 1 for all these noise levels, indicating that we do
not miss attacks. However, at higher interference levels,
the precision slightly degrades since the false detection
rate increases a bit when noise levels are extremely high
which is not common in practice.

Impact of injected noise: Next, we test the defense per-
formance against deliberate attempts to eliminate nonlin-
earity features from the attack signal. Here the attackers

strategy is to eliminate the v2(t) correlation by injecting
noise in the attack signal. We considered four different
categories of noise – white Gaussian noise to raise the
noise floor, band-limited noise on the Sub-50Hz region,
water-filling noise power at low frequencies to mask the
correlated power variations, and intermittent frequencies
below 50 Hz. As shown, in Figure 17(c), the process
does not significantly impact the performance because of
the power-correlation trade-off exploited by the defense
classifier. Figure 17(d) shows that the overall accuracy
of the system is also above 99% across all experiments.

6 Points of Discussion
We discuss several dimensions of improvement.

� Lack of formal guarantee: We have not formally
proved our defense. Although LipRead is systematic and
transparent (i.e., we understand why it should succeed)
it still leaves the possibility that an attack may breach
the defense. Our attempts to mathematically model the
self-convolution and correlation did not succeed since
frequency and phase responses for general voice com-
mands were difficult to model, as were real-world noises.
A deeper treatment is necessary, perhaps with help from
speech experts who can model the phase variabilities in
speech. We leave this to future work.

� Generalizing to any signal: Our defense is designed
for the class of voice signals, which applies well to in-
audible voice attacks. A better defense should find the
true trace of non-linearity, not just for the special case of
voice. This remains an open problem.

� Is air non-linear as well? There is literature that
claims air is also a non-linear medium [17, 10, 45]. When
excited by adequately powerful ultrasound signals, self-
convolution occurs, ultimately making sounds audible.
Authors in [36, 2] are designing acoustic spotlighting
systems where the idea is to make ultrasound signals au-
dible only along a direction. We have encountered traces
of air non-linearity, although in rare occasions. This cer-
tainly call for a separate treatment in the future.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 557

Loudness (dbSpl)
60 70 80

Pr
ec

is
io

n/
R

ec
al

l

0.7

0.8

0.9

1

Precision
Recall

Ambient noise level (dbSpl)
50 60 70 80

Pr
ec

is
io

n/
R

ec
al

l

0.7

0.8

0.9

1

Precision
Recall

Loudness (dbSpl)
60 70 80

Pr
ec

isi
on

/R
ec

al
l

0.7

0.8

0.9

1

Precision
Recall

Loudness (dbSpl)
50 60 70 80 90

Ac
cu

ra
cy

0.7

0.8

0.9

1

Figure 17: Precision and Recall of defense performance under various condition: (a) basic performance without external interfer-
ence, (b) performance under ambient noise, and (c) performance under injected noise. (d) Overall accuracy across all experiments.

� Through-wall attack: Due to the limited maximum
power (6watt) of our amplifiers, we tested our system in
non-blocking scenarios. If the target device is partially
blocked (e.g. furnitures in the room blocking line-of-
sight), the SNR reduces and our attack range will reduce.
This level of power has not allowed us to launch through-
wall attacks yet. We leave this to future work.

7 Related Work
� Attack on Voice Recognition Systems: Recent re-
search [11, 42] shows that spoken words can be man-
gled such that they are unrecognizable to humans, yet de-
codable by voice recognition (VR) systems. GVS-Attack
[14] exploits this by creating a smartphone app that gives
adversarial commands to its voice assistant. More re-
cently, BackDoor [37] has taken advantage of the micro-
phone’s nonlinearity to design ultrasonic sounds which
are inaudible to humans, but becomes recordable inside
the off-the-shelf microphones. The application includes
preventing acoustic eavesdropping with inaudible jam-
ming signals. As follow up, [48, 39] show that the prin-
ciples of BackDoor can be used to send inaudible attack
commands to a VED, but requires physical proximity
to remain audible. LipRead demonstrates the feasibility
to increase the inaudible attack range, but more impor-
tantly, designs a defense against the inaudible attacks.

In past, researchers use near-ultrasound [27, 32, 40, 9,
21, 30] and exploited aliasing to record inaudible sound
with microphone. A number of papers use other sound
to camouflage audible signal in order to make it indis-
tinguishable to human [24, 20, 12]. CovertBand [33]
use music to hide audible harmonic components at the
speaker. LipRead, on the other hand, use high frequency
ultrasound as inaudible signal and leverages hardware
nonlinearity to make them recordable to microphone.

� Acoustic Non-linearity: A body of research [17, 10,
45], inspired by Westervelt’s seminal theory [44, 43]
on nonlinear Acoustics, studies the distortions of sound
while moving through nonlinear mediums including the
air. This raises the possibility that ultrasonic sound can
naturally self-demodulate in the air to generate audible
sounds, making it possible to develop a highly direc-
tional speaker [17, 10, 45]. Recently, AudioSpotlight

[2], SoundLazer [7, 6], and other projects [47, 8, 34]
have rolled out commercial products based on this con-
cept. Ultrasonic hearing aids [29, 13, 15, 35, 31] and
headphones [25] explore the human body as a nonlinear
medium to enable voice transfer through bone conduc-
tion. Our work, however, is opposite of these efforts –
we attempt to retain the inaudible nature of ultrasound
while making it recordable inside electronic circuits.

� Speaker Linearization: A number of research [23,
26, 18] studies the possibility of adaptive linearization of
general speakers. Through simulations, the authors have
shown that by pre-processing the input signal, they can
achieve as much as 27dB reduction [18] of the nonlinear
distortion in the noise-free case. Their techniques are not
yet readily applicable to real speakers, since they have all
assumed very weak nonlinearities, and over-simplified
electrical and mechanical structures of speakers. With
real speakers, especially ultrasonic piezoelectric speak-
ers, it is difficult to fully characterize the parameters of
the nonlinear model. Of course, if future techniques can
fully characterize such models, our system can be made
to achieve longer range with fewer speakers.

8 Conclusion
This paper builds on existing work to show that inaudi-
ble voice commands are viable from distances of 25+
f t. Of course, careful design is necessary to ensure the
attack is truly inaudible – small leakages from the at-
tacker’s speakers can raise suspicion, defeating the at-
tack. This paper also develops a defense against in-
audible voice commands that exploit microphone non-
linearity. We show that non-linearity leaves traces in the
recorded voice signal, that are difficult to erase even with
deliberate signal manipulation. Our future work is aimed
at solving the broader class of non-linearity attacks for
any signals, not just voice.

Acknowledgement
We sincerely thank our shepherd Prof. Shyamnath Gol-
lakota and the anonymous reviewers for their valuable
feedback. We are grateful to the Joan and Lalit Bahl
Fellowship, Qualcomm, IBM, and NSF (award number:
1619313) for partially funding this research.

558 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Cmu sphinx. http://cmusphinx.sourceforge.net. Last ac-

cessed 6 December 2015.

[2] Holosonics webpage. https://holosonics.com. Last ac-
cessed 28 November 2016.

[3] Inaudible voice commands demo. https://www.youtube.

com/watch?v=wF-DuVkQNQQ&feature=youtu.be. Last ac-
cessed 24 September 2017.

[4] Keysight waveform generator. http://literature.cdn.

keysight.com/litweb/pdf/5991-0692EN.pdf. Last ac-
cessed 24 September 2017.

[5] Lyrebird. https://lyrebird.ai. Last accessed 24 September
2017.

[6] Soundlazer kickstarter. https://www.kickstarter.com/

projects/richardhaberkern/soundlazer. Last accessed
28 November 2016.

[7] Soundlazer webpage. http://www.soundlazer.com. Last ac-
cessed 28 November 2016.

[8] Woody norris ted talk. https://www.ted.com/speakers/

woody_norris. Last accessed 28 November 2016.

[9] AUMI, M. T. I., GUPTA, S., GOEL, M., LARSON, E., AND
PATEL, S. Doplink: Using the doppler effect for multi-device
interaction. In Proceedings of the 2013 ACM international joint
conference on Pervasive and ubiquitous computing (2013), ACM,
pp. 583–586.

[10] BJØRNØ, L. Parametric acoustic arrays. In Aspects of Signal
Processing. Springer, 1977, pp. 33–59.

[11] CARLINI, N., MISHRA, P., VAIDYA, T., ZHANG, Y., SHERR,
M., SHIELDS, C., WAGNER, D., AND ZHOU, W. Hidden voice
commands. In USENIX Security Symposium (2016), pp. 513–
530.

[12] CONSTANDACHE, I., AGARWAL, S., TASHEV, I., AND CHOUD-
HURY, R. R. Daredevil: indoor location using sound. ACM SIG-
MOBILE Mobile Computing and Communications Review 18, 2
(2014), 9–19.

[13] DEATHERAGE, B. H., JEFFRESS, L. A., AND BLODGETT,
H. C. A note on the audibility of intense ultrasonic sound. The
Journal of the Acoustical Society of America 26, 4 (1954), 582–
582.

[14] DIAO, W., LIU, X., ZHOU, Z., AND ZHANG, K. Your voice
assistant is mine: How to abuse speakers to steal information and
control your phone. In Proceedings of the 4th ACM Workshop on
Security and Privacy in Smartphones & Mobile Devices (2014),
ACM, pp. 63–74.

[15] DOBIE, R. A., AND WIEDERHOLD, M. L. Ultrasonic hearing.
Science 255, 5051 (1992), 1584–1585.

[16] DOBRUCKI, A. Nonlinear distortions in electroacoustic devices.
Archives of Acoustics 36, 2 (2011), 437–460.

[17] FOX, C., AND AKERVOLD, O. Parametric acoustic arrays. The
Journal of the Acoustical Society of America 53, 1 (1973), 382–
382.

[18] GAO, F. X., AND SNELGROVE, W. M. Adaptive linearization
of a loudspeaker. In Acoustics, Speech, and Signal Processing,
1991. ICASSP-91., 1991 International Conference on (1991),
IEEE, pp. 3589–3592.

[19] GONZÁLEZ, G. G. G., AND NÄSSI, I. M. S. V. Measurements
for modelling of wideband nonlinear power amplifiers for wire-
less communications. Department of Electrical and Communica-
tions Engineering, Helsinki University of Technology (2004).

[20] GRUHL, D., LU, A., AND BENDER, W. Echo hiding. In In-
ternational Workshop on Information Hiding (1996), Springer,
pp. 295–315.

[21] GUPTA, S., MORRIS, D., PATEL, S., AND TAN, D. Soundwave:
using the doppler effect to sense gestures. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(2012), ACM, pp. 1911–1914.

[22] HAWKSFORD, M. J. Distortion correction in audio power am-
plifiers. Journal of the Audio Engineering Society 29, 1/2 (1981),
27–30.

[23] JAKOBSSON, D., AND LARSSON, M. Modelling and compensa-
tion of nonlinear loudspeaker.

[24] JAYARAM, P., RANGANATHA, H., AND ANUPAMA, H. Infor-
mation hiding using audio steganography–a survey. The Inter-
national Journal of Multimedia & Its Applications (IJMA) Vol 3
(2011), 86–96.

[25] KIM, S., HWANG, J., KANG, T., KANG, S., AND SOHN, S.
Generation of audible sound with ultrasonic signals through the
human body. In Consumer Electronics (ISCE), 2012 IEEE 16th
International Symposium on (2012), IEEE, pp. 1–3.

[26] KLIPPEL, W. J. Active reduction of nonlinear loudspeaker dis-
tortion. In INTER-NOISE and NOISE-CON Congress and Con-
ference Proceedings (1999), vol. 1999, Institute of Noise Control
Engineering, pp. 1135–1146.

[27] LAZIK, P., AND ROWE, A. Indoor pseudo-ranging of mobile
devices using ultrasonic chirps. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems (2012), ACM,
pp. 99–112.

[28] LEE, K.-L., AND MAYER, R. Low-distortion switched-capacitor
filter design techniques. IEEE Journal of Solid-State Circuits 20,
6 (1985), 1103–1113.

[29] LENHARDT, M. L., SKELLETT, R., WANG, P., AND CLARKE,
A. M. Human ultrasonic speech perception. Science 253, 5015
(1991), 82–85.

[30] LIN, Q., YANG, L., AND LIU, Y. Tagscreen: Synchroniz-
ing social televisions through hidden sound markers. In IN-
FOCOM 2017-IEEE Conference on Computer Communications,
IEEE (2017), IEEE, pp. 1–9.

[31] NAKAGAWA, S., OKAMOTO, Y., AND FUJISAKA, Y.-I. Devel-
opment of a bone-conducted ultrasonic hearing aid for the pro-
foundly sensorineural deaf. Transactions of Japanese Society for
Medical and Biological Engineering 44, 1 (2006), 184–189.

[32] NANDAKUMAR, R., GOLLAKOTA, S., AND WATSON, N. Con-
tactless sleep apnea detection on smartphones. In Proceedings
of the 13th Annual International Conference on Mobile Systems,
Applications, and Services (2015), ACM, pp. 45–57.

[33] NANDAKUMAR, R., TAKAKUWA, A., KOHNO, T., AND GOL-
LAKOTA, S. Covertband: Activity information leakage using mu-
sic. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 1, 3 (2017), 87.

[34] NORRIS, E. Parametric transducer and related methods, May 6
2014. US Patent 8,718,297.

[35] OKAMOTO, Y., NAKAGAWA, S., FUJIMOTO, K., AND
TONOIKE, M. Intelligibility of bone-conducted ultrasonic
speech. Hearing research 208, 1 (2005), 107–113.

[36] POMPEI, F. J. Sound from ultrasound: The parametric array as
an audible sound source. PhD thesis, Massachusetts Institute of
Technology, 2002.

[37] ROY, N., HASSANIEH, H., AND CHOUDHURY, R. R. Back-
door: Making microphones hear inaudible sounds. In Proceed-
ings of the 15th Annual International Conference on Mobile Sys-
tems, Applications, and Services (2017), ACM.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 559

[38] SELF, D. Audio power amplifier design handbook. Taylor &
Francis, 2006.

[39] SONG, L., AND MITTAL, P. Inaudible voice commands, 2017.
[40] SUN, Z., PUROHIT, A., BOSE, R., AND ZHANG, P. Spartacus:

spatially-aware interaction for mobile devices through energy-
efficient audio sensing. In Proceeding of the 11th annual interna-
tional conference on Mobile systems, applications, and services
(2013), ACM, pp. 263–276.

[41] TITZE, I. R., AND MARTIN, D. W. Principles of voice produc-
tion. The Journal of the Acoustical Society of America 104, 3
(1998), 1148–1148.

[42] VAIDYA, T., ZHANG, Y., SHERR, M., AND SHIELDS, C. Co-
caine noodles: Exploiting the gap between human and machine
speech recognition. In 9th USENIX Workshop on Offensive Tech-
nologies (WOOT 15) (Washington, D.C., 2015), USENIX Asso-
ciation.

[43] WESTERVELT, P. J. The theory of steady forces caused by sound
waves. The Journal of the Acoustical Society of America 23, 3
(1951), 312–315.

[44] WESTERVELT, P. J. Scattering of sound by sound. The Journal
of the Acoustical Society of America 29, 2 (1957), 199–203.

[45] YANG, J., TAN, K.-S., GAN, W.-S., ER, M.-H., AND YAN,
Y.-H. Beamwidth control in parametric acoustic array. Japanese
Journal of Applied Physics 44, 9R (2005), 6817.

[46] YE, H., AND YOUNG, S. High quality voice morphing.
In Acoustics, Speech, and Signal Processing, 2004. Proceed-
ings.(ICASSP’04). IEEE International Conference on (2004),
vol. 1, IEEE, pp. I–9.

[47] YONEYAMA, M., FUJIMOTO, J.-I., KAWAMO, Y., AND
SASABE, S. The audio spotlight: An application of nonlinear
interaction of sound waves to a new type of loudspeaker design.
The Journal of the Acoustical Society of America 73, 5 (1983),
1532–1536.

[48] ZHANG, G., YAN, C., JI, X., ZHANG, T., ZHANG, T., AND XU,
W. Dolphinatack: Inaudible voice commands. arXiv preprint
arXiv:1708.09537 (2017).

[49] ZHANG, G., YAN, C., JI, X., ZHANG, T., ZHANG, T., AND XU,
W. Dolphinattack: Inaudible voice commands. In Proceedings of
the ACM Conference on Computer and Communications Security
(CCS) (2017), ACM.

560 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PowerMan: An Out-of-Band Management Network for Datacenters using
Power Line Communication

Li Chen, Jiacheng Xia, Bairen Yi, Kai Chen
SING Group, Hong Kong University of Science and Technology

Abstract
Management tasks in datacenters are usually executed
in-band with the data plane applications, making them
susceptible to faults and failures in the data plane. In this
paper, we introduce power line communication (PLC) to
datacenters as an out-of-band management channel. We
design PowerMan, a novel datacenter management net-
work that can be readily built into existing datacenter po-
wer systems. With commercially available PLC devices,
we implement a small 2-layer PowerMan prototype with
12 servers. Using this real testbed, as well as large-scale
simulations, we demonstrate the potential of PowerMan
as a management network in terms of performance, reli-
ability, and cost.

1 Introduction
A typical datacenter [29, 65, 67] contains more than
thousands of servers, switches, storage units, etc. Data-
center operations and management tasks [42, 52, 85] in-
clude device installation, bring-up/restart, configuration,
monitoring, diagnostics, and Software Defined Networ-
king (SDN) applications [58], etc. At such scale, delive-
ring management traffic is a critical task.

In existing datacenters, management traffic is usually
carried in-band with the data plane traffic. Separate ser-
vice queues and/or VLANs [11] may be reserved for
reliable and timely delivery of management messages.
However, this approach introduces fate sharing [85] bet-
ween the data plane traffic and management traffic: failu-
res in data plane network will cut off management traffic
to the exact network regions at fault, rendering important
and relevant management tasks, such as diagnostics and
recovery, impossible.

Therefore, an out-of-band management network (MN)
is desirable for datacenter operations. A practical out-of-
band MN for datacenters should be:
• Survivable: MN should be always available, and

should survive faults and failures in the datacenter, in
order to perform diagnostic and recovery tasks.

• Scalable: MN should be scalable enough to access all
the devices in the datacenter.

• Deployable: MN should be deployable at low cost,
and compatible with existing infrastructure.
Prior proposals do not meet these requirements simul-

taneously. Out-of-band MNs can be constructed as a
parallel electrical network1 using the same networking
equipments as the data plane. To reach all devices, this
parallel network needs a port count larger than the data
plane network; because this fabric not only accesses all
the servers like a data plane network, it also needs to re-
ach the management ports of all the switches and other
devices. Thus, the cost is prohibitive to build an parallel
high port count electric fabric as a MN.

Non-electrical communication channels in data-
centers, such as WiFi [36, 47, 84, 85] and free space op-
tics (FSO) [41, 48], are usually built to accommodate dy-
namic data plane traffic demands. As out-of-band MNs
(parallel to data plane network), deploying them results
in significant changes to datacenter infrastructure (e.g.,
raising the ceiling [48, 84], installing reflective surfa-
ces [36, 41, 48, 84], etc). Furthermore, it is also expen-
sive to build a wireless or FSO fabric that reaches the port
count required by MNs with current technologies (§6.3).

We believe, for a datacenter MN, power line com-
munication (PLC) technology is an appealing option.
PLC [39], proposed in 1900s [66], allows communica-
tion between devices connected by power lines. PLC
is known to be challenging [60, 69]. However, over
short distances and among limited nodes, current PLC
modems for home-use can support Gigabit connections
using OFDM [61] in PHY layer and CSMA/CA [33] in
the MAC layer, providing Ethernet networking to home
appliances, e.g., smart TVs, WiFi extender, home net-
working, etc. We believe these emerging technologies

1Although PLC also uses electrical components and electrical wi-
ring to transmit data, for clarity, we use ”electrical network” to refer
to the electrical packet switching network [19, 43] in the data plane of
current datacenters [65, 67].

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 561

Figure 1: Datacenter Power System with PowerMan
(described by HomePlug standards [24, 56, 81]) open up
the opportunity of building a low-cost PLC network with
necessary bandwidth and latency for management appli-
cations in datacenters.

First of all, a MN using PLC technology naturally
meets the survivability requirement, as power system is
foundational to any datacenter. A built-in PLC manage-
ment network is always available, long-term survivable,
reaching every device, and independent of the data plane.
Furthermore, deployment of PLC network reuses the po-
wer system wiring, and requires no change to the existing
room designs or floor plan, which is economic.

Yet, one question remains: can a MN using PLC also
meet the other two requirements—being scalable and de-
ployable in existing datacenters? To answer this ques-
tion, we build a PLC testbed (§3) with commodity-off-
the-shelf (COTS) PLC modems designed for households
(using OFDM in PHY layer and CSMA/CA in the MAC
layer). Our experiments show that task completion times
and user experience of real management applications on
PLC network is comparable to that on a Gigabit electrical
network. However, we also conclude that a MN directly
using COTS PLC devices cannot meet the above two re-
quirements: 1) additional in-rack wiring may exceed ex-
isting rack designs; 2) due to PLC signal interference, the
network can only scale to 6 nodes within a small range
(usually 100s of meters [13]) on a single power circuit.

To tackle these problems, we design PowerMan (§4),
a MN that can be constructed with existing PLC techno-
logy, to support datacenters with more than 105 servers.
As shown in Figure 1, PowerMan redesigns and replaces
two key components in existing datacenter power sys-
tems (Figure 2): a power supply unit (PSU) for servers
and switches, and a power distribution unit (PDU).
• PowerMan PSU lowers the wiring complexity by in-

creasing the integration level. It combines a normal
PSU module with a PLC modem module, and acts as
a network interface to the server OS. Using Power-
Man PSU, PLC network can be deployed easily in the
current server racks.

• PowerMan PDU addresses the scalability issue. Due
to available carrier frequencies and signal quality con-
straints, COTS PLC modems designed for home-use
only support communication within 64 nodes in the

Figure 2: Typical Datacenter Power System (DCPS)
same PLC LAN (PLAN) within limited range (§2.2).
To scale beyond this, PowerMan PDU eliminates sig-
nal interference on the boundary of PLANs using low
pass filters, enabling the reuse of the same carrier fre-
quencies across different PLANs. By connecting mul-
tiple PLANs into a tree topology, we can scale the
PLC network to reach potentially >105 servers, pro-
viding datacenter-wide coverage.
We have implemented a 2-layer PowerMan prototype

(§5) connecting 12 servers across two racks. The pro-
totype is built with existing PLC technology in an acade-
mic datacenter without any modification to the existing
infrastructure, e.g., room plan, power line wiring, and
ceiling height. We demonstrate the potential of Power-
Man as a datacenter MN (in terms of performance (§6.1),
availability (§6.2), and cost (§6.3)) by running real mana-
gement applications in our small testbed as well as large-
scale simulations. Our key contributions are:
• We introduce PLC as an out-of-band channel for data-

center MN. To validate the idea, we build a real small-
scale PLC testbed to quantify the throughput, latency,
and packet loss conditions for management applicati-
ons (§3). We find that, due to various sources of in-
terference in datacenter [60], PLC testbed exhibits lo-
wer performance than advertised (e.g. ≤50Mbps TCP
throughput (measured) v.s. 1000Mbps PHY bit-rate
(advertised)). We further expose the wiring complex-
ity and scalability issues that cannot be addressed with
existing PLC devices.

• We design PowerMan to address the wiring complex-
ity and scalability problems identified above. We va-
lidate the design by implementing a PowerMan pro-
totype. On the prototype, our experiments with pro-
duction traces show <24ms average flow completion
time (FCT) and >10Mbps throughput for the 1-to-
N/N-to-1 management traffic patterns. Experiments
with real management tasks show that, compared to a
Gigabit electrical network, the completion times of all
tasks are prolonged by <40.62% on PowerMan, with
a minimum of 1.57% (66.43s→ 67.47s) for a Human-
in-the-Loop task, and a maximum of 40.62% (32ms
→ 45ms) for a SDN task. We also confirm Power-
Man’s utility at large scale with simulations, and find
that for a PowerMan with 120K servers, the round-trip

562 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

time (RTT) for management applications is ∼40ms.
• Cost comparisons with other technologies show that,

apart from saving infrastructure modification costs,
PowerMan can be constructed with low equipment
cost (1/2∼1/3 of the cost of related designs at the
same scale). PowerMan is also power-efficient in ope-
ration: its power consumption is 6%∼9% of other
technologies.

Caveat: PowerMan is suitable for many management
applications given its performance characteristics. Ho-
wever, we acknowledge that, for some applications, de-
livering control messages with low latency is crucial:
fine-grained load balancing [62, 82] and flow schedu-
ling [20, 30] need to configure data plane on millisecond
time scale. PowerMan alone is not suitable for such ap-
plications. For them, we suggest dual-homing the con-
troller with access to both the data plane network and
PowerMan network. Latency-sensitive traffic can use the
fast data plane, while PowerMan can serve other mana-
gement applications. We believe PowerMan is also va-
luable as a back-up/diagnostic network to fall-back on in
case of failures.

2 Background
2.1 Power System in Datacenters
The power system [35, 44] is the most fundamental sy-
stem in a datacenter. A typical DCPS is shown in Fi-
gure 2, and it is composed of:
• The main switch board (MSB) directs electricity from

one or more sources of supply to several smaller regi-
ons of usage. It feeds into all loads in the datacenter.

• The uninterruptible power supply (UPS) provides con-
sistent power to critical loads without interruption. It
contains energy storage, which supplies power to the
load when the utility power is down.

• A power distribution unit (PDU) is an electrical dis-
tribution device, and it can be free-standing or rack-
mounted. The PDU houses circuit breakers that are
used to create multiple branch circuits from a single
feeder circuit, and can also contain transformers, surge
protection devices, and power monitoring/controls.

• A power supply unit (PSU) rectifies AC power from
the connected PDU to DC power. For reliability, cri-
tical servers and switches are usually equipped with
two PSUs in case of failure.
DCPS is often classified as belonging to ”Tier I-IV”

[71] depending on the power distribution, UPS, redun-
dancy, etc. [15, 18] For example, in a Tier-III DCPS [35,
44], each critical load device has two power distribution
paths (including redundancy components), and the po-
wer system in Figure 2 is replicated for each PSU. In
what follows, for clarity, our design of PLC networking
is limited to the primary power system depicted in Fi-

gure 2 by default, and we discuss how all tiers of DCPS
can adopt PowerMan in §4.4.

2.2 Power Line Communication
PLC uses electrical wires to simultaneously carry high
frequency data signals and 50∼60Hz AC power trans-
mission. PLC has been widely used in power systems
for protection, telemetering, and industrial control appli-
cations [39, 40, 45, 83] with data rate of a few Kbps.

In recent years, we witness a rapid growth of PLC ap-
pliances for home networking, due to its ubiquity (home
power systems provide sockets in every room) and ease
of deployment (no new wire needed). The home net-
working market drives PLC technology to reach higher
bandwidth, in order to support popular use cases such
as broadband Internet access, video streaming, gaming,
etc. Through standardization efforts from the US Ho-
mePlug Powerline Alliance and European Home System
Consortium, vendors have converged to use Orthogonal
Frequency Division Multiplexing (OFDM) [61] as the
modulation scheme in PHY layer, and CSMA/CA [33]
as the MAC layer protocol. Adopting the HomePlug pro-
tocols (HomePlug 1.0 [56]/AV [24]/AV2 [81]), PLC mo-
dems and adapters can form a communication network
providing Ethernet connectivity to TVs, gaming console,
and PCs. Currently, many vendors offer PLC modems
with up to 1200Mbps PHY layer bit-rate [8, 16, 17], and
up to 64 devices in one PLC network [13, 16, 17].

In academia, there have been continuous efforts in
PHY [60, 69] and MAC [74, 75, 76, 77, 78] layers for
PLC to achieve higher throughput and lower latency.
Orthogonal to prior work, we focus on the application of
PLC in the context of datacenter MN. We believe PLC is
a suitable candidate for MN as a built-in communication
network in DCPS for the following reasons:

• Power system is the last-to-fail system in datacenters,
and is independent of the data plane network. A MN
within the power system therefore can survive data
plane failures, and is ready for immediate diagnosis
and recovery.

• Power system reaches every device in datacenters,
providing full visibility for management applications.

• PLC reuses the wires in the power system, and there
is no need to change the existing room plans, ceiling
height, and rack dimensions. This compatibility with
existing datacenter designs greatly reduces the deploy-
ment cost.

In the following, leveraging the technology advan-
ces in household PLC appliances, we are motivated to:
1) understand performance characteristics of PLC net-
works (§3), 2) expand PLC network from home-scale to
datacenter-scale (§4), and 3) evaluate our design for data-
center MN using PLC (§6).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 563

Figure 3: COTS PLC Testbed & PLC Modem
3 Building a PLC Testbed
In this section, we first build a small-scale PLC testbed.
Then, we perform a series of experiments and measure-
ments to learn the communication characteristics of the
PLC channel in a datacenter environment.

3.1 Building a PLC Testbed
We describe the devices we use and how they are con-
nected to build the testbed.
Server & switch: We use Huawei FusionServer
RH1288 with Intel E5-2630 and 64GB memory (1 Rack
Unit). Each server has a NetXtreme BCM5719 Ethernet
Network interface card (NIC) with 4×1 GbE ports. The
servers are all connected to a Gigabit Ethernet switch via
their first Ethernet interface (Eth0).
PLC modem: We obtained 16 Netgear Powerline 1000
(PL1000) PLC modems (US$ 30.3 per piece) via local
home appliance vendors. As in Figure 3, each modem
has one built-in power plug and one RJ-45 port for Ether-
net connection. The max power consumption of PL1000
is 3.73 watts (0.49 watts in standby mode). It is compa-
tible with HomePlug AV protocols. For OFDM, it uses
frequencies in the range from 2 MHz to 86 MHz.
PDU: The rack-mounted servers and Ethernet switch are
plugged into the in-rack PDU with no empty sockets. We
use a separate Thomson TM-EC6 8-socket power exten-
sion cord for PLC modems.
Interconnection & wiring: We connect the PLC mo-
dems to the power extension cord, and then plug them
into the power outlets on the in-rack PDU. Each server
is connected to one PLC modem via its second Ethernet
interface (Eth1).

In summary, as shown in Figure 3, we build a PLC tes-
tbed using commodity components. Each server is both
connected to an electrical ToR Ethernet switch via Eth0,
and to a PLC modem via Eth1. These modems are con-
nected via a power strip, forming a PLC network.

Through building the testbed, we identify the first dif-
ficulty for practical deployment of PLC networking in
datacenters: wiring. This is because each of these ex-
ternal PLC modems requires an additional power socket
slot and a network cable, resulting in 2× socket count
on the in-rack PDU and 1.5× space for cabling. As the
current rack design does not anticipate the usage of PLC
devices, we find it difficult to organize the additional ca-
bles, and the PLC modems have to be attached to a power

Figure 4: Flow Size Distributions

Pattern CDF AFCT-us 99% FCT-us Thruput-Mbps Pkt Loss%
1-to-1 DM 3887 (233) 8631 (327) 48.15 (484.56) 0.00% (0.00%)
1-to-5 DM 12914 (686) 29552 (1146) 35.39 (791.49) 0.13% (0.00%)
5-to-1 DM 16429 (606) 43210 (944) 33.52 (931.06) 0.12% (0.00%)
1-to-1 UNI 3972 (223) 8686 (331) 25.00 (444.11) 0.00% (0.00%)
1-to-5 UNI 11590 (618) 26798 (1143) 30.48 (763.02) 0.13% (0.00%)
5-to-1 UNI 15728 (532) 39639 (870) 31.13 (928.74) 0.13% (0.00%)
1-to-1 WS 2895 (187) 7900 (321) 13.11 (202.57) 0.00% (0.00%)
1-to-5 WS 9234 (337) 31049 (1117) 13.98 (522.98) 0.23% (0.00%)
5-to-1 WS 11021 (296) 36435 (618) 17.00 (635.87) 0.17% (0.00%)

Table 1: Measurements of Synthetic Traffic on PLC
Testbed. The results of a gigabit electrical network
are shown in the parentheses.
extension cord. We will address this in §4.1.

3.2 Testbed Experiments
Next, we measure its performance using both synthetic
traffic and real management applications.
3.2.1 Scalability
We first investigate how many PLC modems can coexist
in a PLC network. We add PLC modems to the power
strip one by one (IP addresses and subnet masks are as-
signed beforehand), and then monitor the indicator lig-
hts on the modems for successful connections. Finally,
we verify the connection on the servers via ping utility.
We observe that the network can accommodate at most 6
PLC modems. When there are more than 6 modems in
the network, the first 6 modems are connected.
3.2.2 Experiments with Production Traces
Setting: For the flow size, we adopt 2 realistic flow
size distributions used in prior work [21, 22, 25, 43]: one
from a web search cluster [21] and the other from a data
mining cluster [43], respectively. We also include a uni-
form distribution for reference. All distributions, shown
in Figure 4 are capped at 25KB, as we are mainly inte-
rested in management applications, which tend to have
shorter flow sizes.

We use the following traffic patterns:
• 1-to-N: This pattern occurs in management applicati-

ons where a master pushes configurations to slaves.
• N-to-1: This pattern occurs in monitoring applicati-

ons where a server collects statistics from clients.
Among the 6 connected servers, we create traffic pat-

terns using a traffic generator [6], which is a client/server
application for generating user-defined traffic. The ser-
ver listens for incoming requests on the specified ports,
and replies with a flow with the requested size for each
request. The client connects to a list of servers, and ge-
nerates requests to randomly chosen servers. For each

564 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

request, it samples from the input request size and fanout
distributions to determine the request size and how many
flows to generate in parallel for the request. All packets
use the same default priority.

In each experiment, we use a different combination of
patterns and distributions, and each client generates 25K
requests. We measure the flow completion time (FCT),
throughput, and packet loss rate for each flow, and Ta-
ble 1 summarizes the results. The average round-trip
time (RTT, grouped by traffic patterns) is shown in Fi-
gure 5. We then repeat the experiments using the Gigabit
electrical network (via Eth0), and the results are shown
in the parentheses in Table 1.

Results: We make the following observations:

• Latency: The average FCT on PLC testbed is around
2 order-of-magnitude (OoM) larger than that on the
electrical network. We observe the same trend for 99th
percentile FCT. For RTT, the smallest one (2.2ms,
from 1-to-1 pattern) is also around 2 OoM larger
(∼20us on the electrical network).

• Throughput:The advertised 1000Mbps bandwidth is
in fact the maximum PHY bit-rate, and we cannot
obtain more than 50Mbps TCP throughput on the tes-
tbed, which matches field-tested results [23]. The
throughput is about 1 OoM less than that on the elec-
trical network.

• Packet loss rate: The packet loss rates are less than
0.5% for PLC testbed across all cases, while the elec-
trical network shows near-zero packet loss rates.

Implications: As expected, the PLC testbed we con-
structed shows much lower throughput and longer la-
tency compared to the Gigabit electrical network. This is
because PLC is an “extremely harsh environment” [60]
for the high-bandwidth, high-frequency communication
signals, as critical channel parameters (e.g., noise, impe-
dance, and attenuation) are highly unpredictable and va-
ried with time, frequency and location [69]. As a result,
the PLC network is clearly inappropriate for time-critical
tasks (e.g., fine-grained load balancing [62, 82] and flow
scheduling [20, 30]).

However, the PLC testbed is shown to deliver <10ms
average FCT and >10Mbps throughput for N-to-1/1-to-
N patterns, which are common for management appli-
cations. Thus, for latency-insensitive management tasks
(e.g., device installation, bring-up/restart, configuration,
monitoring, diagnostics, etc), the PLC network remains
attractive, due to its other benefits such as survivability
in case of data plane failure, compatibility with existing
datacenter design, and economy.

Therefore, we proceed to evaluate the end-to-end ap-
plication performance of the PLC testbed with latency-
insensitive management tasks.

Figure 5: RTT measurements on PLC testbed
3.2.3 Experiments with Management Applications
Setting: Based on the communication model, we
choose two management platforms for on-premise data-
centers and cloud virtual clusters: push-based Ansi-
ble [1]), and pull-based Chef [3]. As SDN is an important
class of applications, we also include a SDN controller,
Ryu [12]. We perform tasks with real usage scenarios.
• Ansible [1] is an automation engine for clusters. An-

sible is push-based and agentless: from the master
node, it manages slave nodes through SSH connecti-
ons. We deploy Ansible 1.7.2 on our testbed, and per-
form one automated task and one Human-in-the-Loop
(HitL) task:
• AnsibleLAMP: An automated LAMP deployment

with two web severs, two load balancers, and two
database servers. The playbook is based on Ansible
official examples [2].

• AnsibleHitL: A HitL setting with an operator
checking configurations of servers. Via Ansible ad-
hoc commands [7], in each experiment, the opera-
tor sequentially executes df, route, and lsmod
on all servers.

• Chef [3] is an automation platform for cluster mana-
gement. Chef is a pull-based: clients poll a centralized
master periodically for updates. On our testbed, we in-
stall a Chef Server 12.11 in standalone mode on one of
the servers, and the rest are installed with Chef Client
12.17. We perform two automated tasks described by
Chef cookbooks.
• ChefReload: This cookbook [4] automatically re-

loads the Apache service on all servers.
• ChefNginx: This cookbook [10] automatically dis-

tributes the install file (889KB), installs, and confi-
gures nginx [9] 1.10.2 on all servers.

• Ryu [12] is a SDN framework. It can be integrated
with OpenStack Neutron [5] for SDN applications.
We installed OpenVSwitch 2.5.1 [63] on all servers
and a Ryu 3.26 controller on one of them. We run two
tasks in official documentation [14]:
• RyuRate: We use curl to query the Ryu control-

ler via its RESTful API, and the controller replies
with the current rates of all ports.

• RyuFWConf: We add a firewall rule via RESTful
API, and the Ryu controller replies with the result.

We run the above 6 management tasks (each for 10
times) and measure their completion times with milli-
second precision on both the PLC network and Gigabit

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 565

AnsibleLAMP AnsibleHitL ChefReload ChefNginx RyuRate RyuFWConf
Elec. Network 273.45s 66.43s 17.91s 14.77s 0.032s 0.040s
PLC Testbed 313.70s 67.32s 20.97s 16.76s 0.040s 0.052s

Figure 6: Management Applications on PLC testbed
electrical network. We use percentage increase in com-
pletion time as the metric: for a task, denote its comple-
tion time on Gigabit electrical network as Te and on PLC
testbed Tp, the metric is defined as: Tp−Te

Te
×100%.

Results: In Figure 6, we observe encouraging applica-
tion performance delivered by the PLC network. Over-
all, we find that using PLC results in less than 30% incre-
ase in completion time compared to the Gigabit electrical
network for all the tasks, and this increase is mainly due
to the latency introduced by the PLC network. In the best
case, we notice that, for AnsibleHitL task, the PLC net-
work performs almost the same as the electrical network
(only 1.34% longer). This is because human response
time is the main contributor of latency in this task. In the
worst case, the completion time of RyuFWConf is incre-
ased by 30%, which is because it performs only HTTP
query/response and network latency contributes the most
to the completion time. In summary, our results of end-
to-end application performance on PLC network is pro-
mising for latency-insensitive management tasks.

3.3 Lessons Learnt
We conclude: 1) It is possible to use commodity PLC
modems to form a PLC network that provides Ethernet
connectivity for all connected servers. 2) PLC perfor-
mance is promising for management applications: it pro-
vides <10ms average FCT and >10Mbps throughput for
N-to-1/1-to-N patterns, which are common for manage-
ment applications; the management tasks also have si-
milar user experience. 3) This PLC network, however,
cannot be directly used in real datacenters due to the de-
ployability (wiring) and scalability problems.

Therefore, we are motivated to tackle the wiring and
scalability issues, so that the PLC technology can be de-
ployed in real datacenters.

4 PowerMan Design
To tackle the wiring and scalability issues, we design Po-
werMan. To ensure deployability, our guiding principle
is to respect the existing datacenter designs, and preserve
the floor plan, room design, rack dimensions, and power
line wiring. To this end, PowerMan only replaces two
types of components in existing DCPS: PSU and PDU.

4.1 Power Supply Unit (PSU)
In the PLC testbed, each server needs two network ca-
bles: one for data plane connectivity, and one for PLC

Figure 7: PowerMan PSU

Figure 8: PowerMan PDU
modem to access MN. It also needs two power sockets:
one for its PSU, and one for the PLC modem. Thus, a
PLC MN requires 1.5× cable space and 2× power soc-
kets per rack. Given a rack hosts 20∼40 servers [65, 67],
it is infeasible to accommodate this additional wiring
with existing rack design. To address the problem, we
design a novel PSU for rack-mounted servers and swit-
ches in datacenters (Figure 7). The key idea is to increase
the integration level in the PSU to reduce external wiring.

We present two designs of PowerMan PSU to fit diffe-
rent deployment scenarios: Full-Integration and Bump-
in-the-Wire. Full-Integration is designed for new instal-
lation of datacenters, as the datacenter operator has the
freedom to customize the hardware configuration of each
server/switch. We combine a normal PSU module (nPSU
in Figure 7), a PLC modem module, and a network in-
terface module in the PowerMan PSU. It connects to the
mainboard of the server via a PCIe interface, and appears
as another NIC to the OS, which allows users to use fa-
miliar networking stack to access the PLC network.

The Bump-in-the-Wire design is for incremental de-
ployment in existing datacenters, and it leverages the in-
tegrated NIC on the mainboard of rack-mounted servers,
which is exposed as the management port on the server
back panel. The PLC modem attaches to the PSU exter-
nally, and acts as a “bump” in the power cable from the
PDU socket to the PSU. The power to the server is fed
into its PSU through the PLC modem via a bypass cir-
cuit. The PLC modem connects to the management port
via a RJ-45 network cable, so that the integrated NIC
can access the PLC network. This network cable travels
a short distance from the power port to the management
port on the back panel, and thus does not tangle with ot-
her in-rack cables.

Via PowerMan PSU, a server can connect to a PLC
MN without complicated wiring and additional power
sockets, thus is compatible with the design and dimen-
sions of the current racks.

566 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.2 Power Distribution Unit (PDU)
The scale of PLC network on our testbed is limited to
6 nodes. We refer the PLC network within the PDU
as PLC LAN (PLAN). Manufacturers of more advanced
models claim that the scale can be as large as 64 no-
des [13, 16, 17]. However, this is still too small for pro-
duction datacenters [65, 67]. The main reason for such
limited scalability is that these devices are designed for
home-use, where network size is not the main concern.

To scale, we design a novel rack PDU (Figure 8). The
key idea is to remove cross-PDU PLC signal interference
but maintains network connectivity. PowerMan PDU
achieves this with two main components, a low pass filter
(LPF) and a PLC gateway.

We keep the circuit of a normal PDU, and add a LPF
between the circuit and the external power line. Since
the OFDM frequencies used in the PLC modem is ≥
1.8MHz [60] and the AC power frequency is 50∼60Hz,
a LPF with appropriate cut-off frequency (between 60Hz
to 1.8MHz) can greatly attenuate the outgoing and inco-
ming high frequency PLC signals, thus effectively elimi-
nating the interference from/to other PLANs.

While the PLC signals are mostly eliminated across
the LPF, the network connectivity is preserved using a
PLC gateway. The PLC gateway consists of a packet-
forwarding hardware gateway and two PLC modems.
One modem is connected to the PLC network inside the
PDU, and the other is connected to the PLC network on
the external, upper-layer PDU. The PLC gateway is the-
refore connecting the PDU’s PLAN and the upper-layer
PDU’s PLAN by forwarding packets between them, with
no PLC signal interference.

PowerMan PDU replaces the rack PDU and retains the
same cable and socket count. It acts as a switch for the
PLC network devices on the same rack.

4.3 Interconnection & Scalability
With the new PowerMan PDUs developed, we can now
connect them and scale the PLC network to support real
datacenters. We leverage DCPS to interconnect the PLC
devices. Since PDUs in DCPS are connected in a tree to-
pology (Figure 2), we also choose to use the same topo-
logy to scale. Other topologies (e.g. ring, mesh, hyper-
cube, etc.) requires changing the wiring of the power
system. Take ring topology as an example, each PDU
connects to more than one other PDUs, requiring an ad-
ditional power cable for each PDU. Other topologies also
requires a different power allocation scheme, both inside
the PDU and across PDUs.

As shown in Figure 9, we construct the PowerMan
PDUs into a (k−1)-ary tree topology, where k is the num-
ber of PLC devices supported in a PLAN. For our cur-
rent PLC modems, k=6; up to k=64 have been reported
for other COTS PLC modem models [13]. With height

Figure 9: Scaling PLC with PowerMan

Figure 10: PowerMan Fault-Tolerance: Example of
Tier-III DCPS with AB Dual-Bus [44]
h, this topology can connect (k−1)h PowerMan PSUs.
With a tree height of h=3 and k=64, 250K PSUs can be
connected.

4.4 Fault-tolerance
PowerMan leverages the redundancy in existing DCPS to
achieve high availability. As mentioned in §2, DCPS can
be classified into 4 tiers [71], and all can be integrated
with PowerMan.
• Tier-I DCPS have a single path for power distribution

without redundant components, and PowerMan can be
integrated as in Figure 9.

• Tier-II adds redundant components to this design (N
+ 1), improving availability, and PowerMan can be in-
tegrated into the main distribution path as for Tier-I
DCPS, the PDUs in the redundant components should
also be replaced with PowerMan PDUs.

• Tier-III datacenters have one active and one alternate
distribution path for utilities. Each path has redundant
components and are concurrently maintainable, pro-
viding redundancy during maintenance. PowerMan
can be integrated into both distribution paths. As an
example, Figure 10 showcases how PowerMan can
be integrated with Tier-III DCPS [44]. This archi-
tecture is configured with two sides, A and B. Each
side can include multiple UPSs, and either side can
handle 100% load. If one side has a problem, the load

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 567

Figure 11: Two-Layer PowerMan Prototype
is automatically switched to the other side. Automa-
tic load transfer switches can reside upstream of the
UPS for maintenance isolation purpose. This design
ensures a high level of system availability even du-
ring maintenance or component failure. PowerMan
can therefore be replicated in both sides; the control-
ler node where management applications are located
should also connect to the root PowerMan PDUs on
both sides, so that when failure (either PowerMan or
DCPS) in either side happens, management applicati-
ons can still access the servers and switches.

• Tier-IV DCPS have two simultaneously active po-
wer distribution paths, redundant components in each
path, and are supposed to tolerate any single equip-
ment failure without impacting the load. PowerMan
can be integrated in the same way as Tier-III.

Embedded in DCPS, PowerMan share the redundancy
and availability mechanisms, thus is expected survive
even partial power outages in Tier-II (or higher) DCPS.

5 Prototype Implementation
We implement a PowerMan prototype to validate the de-
sign, and its schematic is shown in Figure 11. We have
not yet constructed a PowerMan PSU that can be fit into
our rack-mounted servers, but its functionality can be
emulated using the same setting as §3.1: each server con-
nects to a PLC modem via one of its NIC ports (Eth1).

PDU has two components: a LPF and a PLC gateway.
For the LPF, instead of implementing LPF circuits and
installing them on the power extension cords, we iden-
tify that power extension cords with surge protection can
serve as low cost alternatives2. This is because surge pro-

2This choice is inspired by the product FAQ [13] from the vendor of
our PLC modem. The FAQ advices against the usage of surge protec-
tors with the PLC modems, because surge protector may remove high

Figure 12: PLC Network Components of PowerMan
prototype
tector removes voltage spikes and high frequency noise.
We note that the use of surge protector as LPF is only for
prototyping, and real deployment of PowerMan should
use properly designed LPF in the PDU. We obtained Tar-
gus SmartSurge 6 power extension cords from local ven-
dors, and our testing shows that two PLC modems can-
not establish connection across two such cords, which
indicates that they have the correct cut-off frequency. In
this way, the PLC modems can form a PLAN within the
power extension cord that they are attached to, without
interference of PLC signals from other PLANs.

Next, we implement the PLC gateway with two PLC
modems and a rack-mounted server. The server con-
nects to the two modems via Eth1 and Eth2 ports. The
modems are attached to different power extension cords
with surge protection. Therefore, their signals are iso-
lated, and can only propagate within their own PLANs.
With routing rules correctly configured, the server acts as
a packet forwarding gateway between the two PLANs.

We construct 3 prototype PowerMan PDUs, which
form a tree topology with 2 layers, as shown in Fi-
gure 11&12. In Layer-0, the prototype has two racks,
and each rack forms a PLAN on its own PDU. The two
Layer-0 racks are connected to a Layer-1 PLAN via their
PLC gateways. In addition to the gateways of the two
racks, we connect another two servers to act as gateways
on the Layer-1 PLAN. The routing tables and IP addres-
ses are properly configured in all the servers and gate-
ways, so that each server can reach all the other servers
on this PowerMan PLC network.

6 Evaluation
In this section, we evaluate three aspects of PowerMan:
performance, reliability, and cost.
Summary of results:
• Experiments with production traces show <24ms

average FCT and >10Mbps throughput for 1-to-N/N-
to-1 traffic patterns.

frequency signals.

568 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Experiments with real management applications de-
monstrate that, compared to the Gigabit Etherent, the
completion times of all tasks are only prolonged by
<40.62% on PowerMan.

• By simulating a year of operation, PowerMan is
shown to achieve >99.9977% availability (leveraging
the redundancy in DCPS) at the scale of 250K servers.

• Apart from saving infrastructure modification costs,
PowerMan can be constructed with low initial cost
(1/2∼1/3 of the cost of other technologies at the same
scale), with 6%∼9% operating power usage.

6.1 Performance
6.1.1 Prototype Experiments
On the PowerMan prototype, we perform the same set of
experiments as in §3.2.
Experiments with Production Traces: In addition
to the setting in §3.2.2, our experiments here include
another parameter: distance, which refers to the num-
ber of PLC gateways (i.e., hops) between the servers and
clients. For example, for 1-to-5 pattern with distance=1,
a client in Rack 1 will only send requests to the traffic
generator server hosted in gateways in Layer-1 PLAN3.
To understand this parameter in real PowerMan deploy-
ments, for a controller node connected to the root with
tree height h=3, its distance to all PSUs is merely 2. We
summarize the results from the experiments on the pro-
totype in Table 13. We make the following observations.
• Latency: Compared to Table 1, we see on average

3.04ms increase in FCT if distance increases by 1, and
4.13ms if distance increases by 2. This corresponds to
our RTT measurements on the prototype in Figure 14:
when distance increases from 0 to 1, the RTT increa-
ses on average 2.19ms, and 2.92ms from 1 to 2.

• Throughput: Increasing distance by 1 (2) decreases
the throughput by 3.27Mbps (6.80Mbps) on average.
Still, the prototype provides >10Mbps for 1-to-N/N-
to-1 patterns.

• Packet loss: interestingly, increasing distance lowers
the packet loss rate: 1 (2) increase in distance decrea-
ses the packet loss rate by 0.05% (0.05%) on average.
This is because the inter-PLAN flows converge at the
gateway, and from there, are forwarded to their des-
tinations. This store-and-forward behavior for flows
across PLAN results in lower packet loss rate compa-
red to the flows within a PLAN running CSMA/CA.

In summary, PowerMan prototype demonstrates <24ms
average FCT and >10Mbps throughput for common ma-
nagement application traffic patterns (1-to-N/N-to-1) for
distance=2. This indicates that, a PowerMan with tree
height h=3 can support management applications with

3The setting for the results in Table 1 can be considered as
distance=0 (within the same PLAN).

Pattern CDF Distance AFCT (us) 99% FCT (us) Thruput (Mbps) Pkt Loss%
1-to-1 DM 1 7963 15671 32.54 0.00%
1-to-1 DM 2 13856 26245 31.35 0.01%
1-to-5 DM 1 14736 30747 27.52 0.04%
1-to-5 DM 2 19701 39326 24.55 0.03%
5-to-1 DM 1 17418 38063 31.93 0.04%
5-to-1 DM 2 23046 48150 23.89 0.02%
1-to-1 UNI 1 7529 16575 13.19 0.01%
1-to-1 UNI 2 11841 24255 8.39 0.01%
1-to-5 UNI 1 14231 31086 26.22 0.06%
1-to-5 UNI 2 19715 41289 20.46 0.03%
5-to-1 UNI 1 17148 40939 28.29 0.05%
5-to-1 UNI 2 21833 47630 22.25 0.03%
1-to-1 WS 1 5825 15648 6.52 0.02%
1-to-1 WS 2 9601 25792 3.96 0.05%
1-to-5 WS 1 11574 33556 12.19 0.14%
1-to-5 WS 2 14657 38995 10.56 0.07%
5-to-1 WS 1 11783 33270 15.62 0.06%
5-to-1 WS 2 15561 40009 12.13 0.04%

Figure 13: Measurements of trace-based experiments
on PowerMan prototype

Figure 14: RTT on PowerMan prototype

AnsibleLAMP AnsibleHitL ChefReload ChefNginx RyuRate RyuFWConf
Elec. Network 273.45s 66.43s 17.91s 14.77s 0.032s 0.040s

PowerMan 350.39s 67.47s 23.03s 17.65s 0.045s 0.056s

Figure 15: Management Applications on PowerMan
prototype
reasonable latency4 and throughput.
Experiments with Real Management Applications:
Next, we evaluate the end-to-end applications perfor-
mance. We perform the tasks in §3.2.2 again on both
PowerMan prototype and the Gigabit electrical network.
We scale the set of tasks in §3.2.3 so that they can co-
ver all 10 servers in the testbed. For example, the An-
sibleLAMP task now configures 4 web servers, 2 load
balancers, and 4 database servers. We assign one of the
gateway server in Layer-1 PLAN as the master node for
Ansible, Chef, and Ryu, which is the darkened gateway
in Figure 11. We plot the results in Figure 15.

As expected, due to the need of traversing one PLC
gateway, the completion times increase for all the tasks.
Among them, for AnsibleHitL, the PLC network per-
forms almost the same with the electrical network (only
1.57% slower) as distance increases.Also, as explained
in §3.2.2, network latency dominates the completion ti-
mes of the two Ryu tasks, so their metrics increase the
most, i.e., 40.62% and 40% respectively. Furthermore,
using PowerMan results in <30% increase in comple-

4We consider soft real-time constraints for interactive systems, e.g.
300ms [28, 72], are reasonable latency targets.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 569

Figure 16: Large Scale Simulations: RTT and
throughput
tion times for Chef tasks. Overall, adding one more tier
in PowerMan prototype compared to §3’s testbed results
in less than 5% increase in task completion time.

6.1.2 Large-scale Simulations
The current prototype is still too small to reveal Power-
Man’s performance in actual deployments. Using ns-
3 [50] simulator, we perform simulations at the scale of
real datacenters [65, 67] to infer the user experience of
PowerMan in actual deployments.
Setting: Since each PowerMan PDU corresponds to a
PLAN that uses CSMA/CA (§2.2), we simulate PLAN
using the CSMA network implementation in ns-3 with
parameters in [73, 79]. We interconnect PLANs with
point-to-point links, which corresponds to the PLC ga-
teways in our design. We assume that a controller con-
nects to the root of the PowerMan tree topology with a
1Gbps network interface. We fix the tree height h=3, so
the distance from the controller to every PSU is 2. We
first tune the parameters to fit the results in Figure 5&14,
so that the RTT within a PLAN is 8ms and the latency
across a point-to-point link is 3ms. Then we run the si-
mulations for different scale of the network (number of
servers) from 125 (k=6) to 12167 (k=24).
Results: We create 1-to-1 and 1-to-N patterns from the
controller using TCP connections, and measure the RTT
and throughput per-server for different network scales.
The results are plotted in Figure 16. For 1-to-1 con-
nection from the controller to a server, we observe con-
sistent throughput >328.64Mbps. For 1-to-N pattern, we
create connections from the controller to all servers, and
see that the per server throughput quickly drops as more
and more servers shares the out-going bandwidth of the
controller. At maximum network scale (12167), the per-
server throughput is 29.8Kbps. For latency, we observe
that the average RTT is smaller than 40ms even when
network scales beyond 105 servers. This is as expected
as the overall distance is only 2.

6.2 Availability
We use availability to characterize the system reliability
of PowerMan, which is the percentage of reachable ser-
vers. The key component in PowerMan PDU and PSU
is the PLC modem, so we model availability of the en-
tire system at the resolution of an PLC modem. We use a
Poisson process [27] to characterize the failure process of

Figure 17: Availability of PowerMan
a PLC modem. The Mean Time Before Failure (MTBF)
is the key metric in this model, and it is a common me-
asure of reliability of a hardware component [27, 53].
A higher MTBF means the component is more reliable.
Our PLC testbed and prototype have been running for 2
months without failure (1440 hours); using this as refe-
rence, we vary the MTBF of PLC modem from 500 to
9000 hours. The MBTF of packet forwarding gateway is
assumed to be 3000 hours [37].

We implement an event-driven failure simulation, mo-
deling the entire network of PLC modems in PowerMan.
In each run, we vary the scale of network (by increa-
sing k from 5 to 64, h=3), the MTBF of PLC modem
(from 1000 to 9000), and simulate a year of PowerMan
operation with the failure model describe above. We
plot the average availability of PowerMan in Figure 17.
We observe that PowerMan is highly available at large
scale: For k=64 (network scale is 250K), the availabi-
lity is 99.9943% (using the least reliable modem with
MBTF=500hrs). High availability provides consistent
global visibility to management applications, allowing
them to perform monitoring and diagnostic tasks.

In Figure 17, we also plot the availability of a Power-
Man in a DCPS with Dual Bus redundancy as shown in
Figure 10. In this setting, we have PLC networks replica-
ted in both sides, and the controller attaches to the roots
of both trees. We can see that, by integrating with the
redundant power systems, PowerMan can achieve higher
availability for varying network scales.

Since PowerMan is embedded in DCPS, servi-
cing/replacing components is similar to that in a typical
DCPS. Tier II-IV DCPSs are designed with redundancy
(§4.4), so when parts of the system fail, the operations
can continue, as back-up units will take over. In the me-
antime, faulty components can be repaired/replaced. Po-
werMan adopts the same recovery strategy.

6.3 Cost Comparisons
Next we compare the construction, equipment, and ope-
rational costs of PowerMan and other related designs that
can be used as out-of-band MNs. The comparison is
done at the same scale of 16000 servers. We compare
with these proposals for datacenters: 3D-Beamforming
(3DBF) [84], Firefly [48], Diamond [36], and Fat-
Tree [19]. We emphasize that this is not a direct com-
parison: these designs are complete datacenter networks
with both data plane and in-band control plane, and we

570 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Components FatTree 3D-Beamforming Firefly Diamond PowerMan
NIC (k$) 80 80 80 240 80

Switch (k$) 2080 2080 416 832 0
Wireless (k$) 0 192 2400 1920 0

Cable (k$) 80 80 0 32 0
PLC Modem (k$) 0 0 0 0 787

Gateway (k$) 0 0 0 0 351
Total (k$) 2240 2432 2896 3024 1218

Table 2: Comparison of Equipment Costs
use them as proxy for comparing different technology
that can be used to construct out-of-band MNs: 60GHz
WiFi, FSO, and electrical packet switching.
Construction cost: Wireless designs (3DBF, Firefly, &
Diamond; as well as other WiFi and FSO designs [41,
47]) have various requirements on the datacenter in-
terior designs. For example, reflective surfaces (sta-
tic [36, 48, 84] or mechanically controlled [41]) must be
installed for connectivity. In addition,3DBF has ceiling
height requirements [84], which may incur room modi-
fications in deployment. Furthermore, Diamond also re-
quires the spacing between racks. This limits the number
of racks per room, and Diamond deployments may need
more rooms to hold the same number of servers.

In contrast, PowerMan leverages the wiring in existing
DCPS to achieve scalable connectivity for MN, and only
replaces the PDUs and PSUs in the DCPS. Thus, con-
structing PowerMan should incur no cost in modificati-
ons of room design or floor plan, which greatly reduces
the cost of deployment compared to the other proposals.
Equipment cost: Next, we compare the equipment
costs in Table 2, and we explain the assumptions as fol-
lows. For PowerMan, we assume PSU uses Design 1,
which incurs no cable cost. The tree topology of Po-
werMan is configured as h=3,k=27. Each PLC modem
is $305. Each Gateway is $500. For other designs, we
consider the cost of NICs on the server, switches, wire-
less radios and cables. We adopt the conservative es-
timates in [36], and make the following cost assump-
tions: each wireless radio component costs $60 [85],
each 40-port switch costs $1040, each NIC port costs
$5 [46], each FSO device port costs $150 [48], and an
average cost of $1 per meter for cabling [48] and $1 per
square meter of absorbing paper. We assume the reflec-
tors used [36, 48, 84] have negligible cost as equipments.

Overall, PowerMan can be constructed with 1/2∼1/3
of the cost of other proposals at the same scale, confir-
ming PowerMan as a cost-effective option for MN.
Power consumption: Power consumption is an im-
portant component of operational cost. In Figure 18,
we compare the operational power consumption of dif-
ferent designs. We assume each NIC consumes 5 Watts
(W) [36], each PLC modem 3.73W (§3.1), each switch
170W [36], and each gateway 300W6. For wireless de-

5We use retail price here. The per-unit price are dependent on many
factors: quantity, availability, distance, etc. With large quantity, the
price tend to decrease.

6We use a rack-mounted server as the packet-forwarding hardware

Figure 18: Comparison of Power Consumption
signs, each FSO component in Firefly consumes 3W [48]
and the WiFi module in Diamond 60W [36].

In general, PowerMan consumes much lower power at
the same scale, using 6%∼9% power of other designs.
This is because PowerMan is mostly composed of PLC
modems with lower power usage.

7 Discussion
In this section, we discuss the limitations of Power-
Man and experiences from constructing and operating
the PLC testbed and PowerMan prototype.
Interference in DCPS: The major contributor to the
loss of performance (§3.2) is high-frequency noise from
sources of interference in DCPS, including lighting,
cooling, mechanical system, etc. As pointed out in [60],
PLC is an extremely harsh environment for the high-
bandwidth, high-frequency communication signals, as
critical channel parameters (e.g. noise, impedance, and
attenuation) are highly unpredictable [69]. Given the se-
verity of the interference, in the design of PowerMan, we
aim to limit the PLC signal within each PDU (i.e. within
a PLC LAN (PLAN)) which reduces the signals exposure
to interference, as the signal only travels short distances
within the PDU. The LPF in each layer also removes high
frequency noises from non-PLC sources.
Low Throughput Alternatives to PLC: Our experi-
ments and simulations (6) exhibit low throughput for va-
rious traffic patterns, and as we have discussed, the rea-
sons include noise, signal attenuation, MAC layer over-
head, etc. Due to the low throughput of PowerMan, it is
natural to consider using low cost, low bandwidth WiFi
or Ethernet devices as alternatives. Compared to low cost
alternatives, we believe PLC is advantageous in the three
goals we outlined for an out-of-band MN (§1): surviva-
bility, deployability, and scalability.
• Survivability: PLC can leverage the robustness in ex-

isting power systems. Power system is the last-to-fail
system in datacenters, and is independent of the data
plane network. Embedded in DCPS, PowerMan can
survive data plane failures, or even power system fai-
lures in Tier-II to IV datacenters, and is ready for im-
mediate diagnosis and recovery. Other low cost al-
ternatives do not share this quality. For example, a
separate WiFi network requires additional monitoring
and management systems to achieve the same level of
robustness of power system.

in the prototype, thus the high power usage. This can be reduced with
a typical packet-forwarding device.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 571

• Deployability: PowerMan reuses wiring in existing
DCPS, thus there is no need to change ceiling height,
and rack dimensions. This compatibility with exis-
ting datacenter designs greatly reduces the deploy-
ment cost. In contrast, WiFi-based solutions require
changes in the rack dimensions to accommodate an-
tennae of servers and access points. Ethernet-based
solutions require additional rack space and cabling.

• Scalability: PowerMan reaches every device in the
datacenter, as it reuses wiring in DCPS. Ethernet-
based solutions with the same topology as PowerMan
can reach the same port count, but at the cost of much
more cabling. Like PLC, WiFi also suffers from the
interference, which is more difficult to manage than
that in a wired network. PowerMan is able to use sig-
nal filters on the border of two PLANs to eliminate in-
terference between them. Such is not so easy in a wi-
reless network, as there is no clear border between two
broadcast domains. For WiFi-based solutions, hand-
ling interference requires careful planning of anten-
nae direction, AP radio power, location, and channel
selection. At the scale of a modern datacenter, the ma-
nagement of WiFi-based solution is challenging.

DC datacenters: Many modern datacenters are using
DC power [31, 55, 68]. Our design can also work on
such DCPS, because PowerMan is a design that utilizes
power lines, which is the same in both DC and AC power
systems. The carrier frequencies in PLC devices (assu-
ming compliance with HomePlug standards) come from
OFDM circuitries, and are not the 50-60Hz AC power.
Security Concerns: Datacenter MN is a high value
target, and a MN using PLC may be vulnerable to on-
premise attacks. PowerMan can adopt security mecha-
nisms on MAC, network, transport, application layers.
For example, in the PLC MAC layer, HomePlug 1.0 [56]
supports 56-bit DES encryption, and later versions (Ho-
mePlug AV/AV2 [24, 81]) support 128-bit AES.
Cooling: Even with intensive experiments on Power-
Man prototype, we have not yet witnessed any over-
heating issues for PLC modems. This is because: 1) the
PLC modems have low power profile, and 2) the PLC
modems are placed outside of the servers. Bump-in-the-
Wire PSU design may benefit from the same reasons; but
it is still important to investigate the heat dissipation of
the Full-Integration design inside a rack-mounted server
or switch as future work.

8 Related works
We summarize the related work in three broad catego-
ries: datacenter management, alternative datacenter net-
working architectures, and PLC networking.
Datacenter Management: There is vast literature on
the management and control planes of datacenter net-
works [20, 42, 49, 52, 70, 85]. They often assume that

the management traffic can be delivered, and PowerMan
complements these works with an out-of-band MN that
offers necessary latency and bandwidth, while being sur-
vivable, scalable, and deployable.
Datacenter Networking Architectures: Datacenter
networks in production usually use the Clos network [19,
43, 54, 65, 67] to achieve high bisection bandwidth.
Using flexible networking technology such as optical
switching [32, 34, 38, 57, 59, 64, 80], FSO [41, 48], and
60GHz wireless radios [36, 47], dynamic network topo-
logies are proposed to mitigate traffic hotspots and chan-
ging demands. We differ from them in our technology
choice. In terms of datacenter MN, Angora [85] propo-
sed using 60GHz wireless radio to construct a datacenter
”facility network”, which is a MN but with much stricter
latency requirements. In contrast, PowerMan is the first
attempt to employ PLC in the datacenter MN setting, and
as our cost comparisons (§6.3) suggest, PowerMan has
lower initial cost and operating power consumption than
the other technologies at the same scale.
PLC Networking: In PLC PHY [60, 69] and MAC [51,
74, 75, 76, 77, 78] layer, many efforts have been made
to improve the bandwidth, reliability, and latency [83].
In comparison, PowerMan focuses on the application of
PLC in MN, exploring networking (§3.1) and scalability
(§4.3) for datacenter management. PowerMan can bene-
fit from all PHY and MAC layer optimizations (e.g. pa-
rameter setting, dynamic bandwidth allocation scheme),
as they improve the PLANs in PowerMan.

9 Conclusion
This paper has introduced PLC as an out-of-band ma-
nagement channel for datacenters. We build a small-
scale PLC testbed, and demonstrate the potential of PLC
with deployment of actual management applications. In
the process, we identified the wiring and scalability is-
sues which prevent deployment of PLC in datacenters.
To tackle these problems, we design PowerMan, a data-
center MN using PLC that can be implemented using
commercially available PLC devices. We build a Power-
Man prototype on a small testbed of 12 servers. Using
experiments and large-scale simulations, we evaluate its
performance, reliability, and cost-effectiveness.

For future work, we plan to 1) investigate custom PLC
devices with optimized PHY/MAC layers to improve la-
tency, throughput, scalability, and reliability; 2) integrate
PSU with single-board computer, so as to provide isola-
tion from local OS-related failures.

Acknowledgements: This work is supported in part
by Hong Kong RGC ECS-26200014, GRF-16203715,
GRF-613113, CRF-C703615G, & China 973 Program
No.2014CB340303. We thank the anonymous NSDI re-
viewers and our shepherd Shyam Gollakota for their con-
structive feedback and suggestions.

572 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Ansible. https://www.ansible.com/.

(Accessed on 01/08/2017).

[2] ansible/ansible-examples. https:
//github.com/ansible/ansible-
examples/. (Accessed on 01/19/2017).

[3] Chef. https://www.chef.io/chef/. (Acces-
sed on 01/08/2017).

[4] chef-web-docs/resource examples.rst at
master chef/chef-web-docs. https:
//github.com/chef/chef-web-docs/
blob/master/chef master/source/
resource examples.rst. (Accessed on
01/19/2017).

[5] Configuration openstack havana with ryu.
https://github.com/osrg/ryu/wiki/
configuration openstack havana with ryu.
(Accessed on 01/08/2017).

[6] datacenter/empirical-traffic-gen: Simple client-
server application for generating user-defined
traffic patterns. https://github.com/
datacenter/empirical-traffic-gen.
(Accessed on 01/08/2017).

[7] Introduction to ad-hoc commands ansible do-
cumentation. http://docs.ansible.com/
ansible/intro adhoc.html. (Accessed on
01/20/2017).

[8] Netgear pl1200. https://www.netgear.com/
home/products/networking/
powerline/PL1200.aspx?cid=
wmt netgear organic. (Accessed on
01/24/2017).

[9] Nginx. https://www.nginx.com/. (Accessed
on 01/19/2017).

[10] nginx cookbook - chef supermarket. https:
//supermarket.chef.io/cookbooks/
nginx. (Accessed on 01/19/2017).

[11] Openstack docs: Network design. http:
//docs.openstack.org/ops-guide/
arch-network-design.html. (Accessed on
01/07/2017).

[12] osrg/ryu: Ryu component-based software
defined networking framework. https:
//github.com/osrg/ryu. (Accessed on
01/08/2017).

[13] Product faq powerline adapters. http:
//kb.netgear.com/20233/Product-
FAQ-Powerline-Adapters?cid=
wmt netgear organic. (Accessed on
01/15/2017).

[14] Ryubook.pdf. https://osrg.github.io/
ryu-book/en/Ryubook.pdf. (Accessed on
01/19/2017).

[15] Tia-942 telecommunications infrastruc-
ture set. https://global.ihs.com/
tia telecom infrastructure.cfm?RID=
Z56&MID=5280. (Accessed on 09/25/2017).

[16] Tp-link av1200 gigabit passthrough powerline
starter kit. http://www.tp-link.com/
ph/products/details/cat-18 TL-
PA8010P-KIT.html. (Accessed on
01/24/2017).

[17] Trendnet powerline 1200 av2 adapter kit.
https://www.trendnet.com/products/
powerline-1200/TPL-420E2K. (Accessed
on 01/24/2017).

[18] Data center site infrastructure tier standard: Topo-
logy. Uptime Institute (2012).

[19] AL-FARES, M., LOUKISSAS, A., AND VAHDAT,
A. A scalable, commodity data center network ar-
chitecture. In ACM SIGCOMM (2008).

[20] AL-FARES, M., RADHAKRISHNAN, S., RAGHA-
VAN, B., HUANG, N., AND VAHDAT, A. Hedera:
Dynamic flow scheduling for data center networks.
In USENIX NSDI (2010).

[21] ALIZADEH, M., GREENBERG, A., MALTZ,
D. A., PADHYE, J., PATEL, P., PRABHAKAR, B.,
SENGUPTA, S., AND SRIDHARAN, M. Data center
tcp (dctcp). ACM SIGCOMM Computer Communi-
cation Review 41, 4 (2011), 63–74.

[22] ALIZADEH, M., YANG, S., SHARIF, M., KATTI,
S., MCKEOWN, N., PRABHAKAR, B., AND
SHENKER, S. pfabric: Minimal near-optimal data-
center transport. In ACM SIGCOMM (2013).

[23] ALLIANCE, H. Home-
plug av2 whitepaper 20130909.pdf. https:
//www.codico.com/fxdata/codico/
prod/media/Datenblaetter/AKT/
HomePlug AV2 whitepaper 20130909.pdf.
(Accessed on 02/10/2018).

[24] ALLIANCE, H. Homeplug av specification. Version
1, 2006.12 (2007), 16.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 573

https://www.ansible.com/
https://github.com/ansible/ansible-examples/
https://github.com/ansible/ansible-examples/
https://github.com/ansible/ansible-examples/
https://www.chef.io/chef/
https://github.com/chef/chef-web-docs/blob/master/chef_master/source/resource_examples.rst
https://github.com/chef/chef-web-docs/blob/master/chef_master/source/resource_examples.rst
https://github.com/chef/chef-web-docs/blob/master/chef_master/source/resource_examples.rst
https://github.com/chef/chef-web-docs/blob/master/chef_master/source/resource_examples.rst
https://github.com/osrg/ryu/wiki/configuration_openstack_havana_with_ryu
https://github.com/osrg/ryu/wiki/configuration_openstack_havana_with_ryu
https://github.com/datacenter/empirical-traffic-gen
https://github.com/datacenter/empirical-traffic-gen
http://docs.ansible.com/ansible/intro_adhoc.html
http://docs.ansible.com/ansible/intro_adhoc.html
https://www.netgear.com/home/products/networking/powerline/PL1200.aspx?cid=wmt_netgear_organic
https://www.netgear.com/home/products/networking/powerline/PL1200.aspx?cid=wmt_netgear_organic
https://www.netgear.com/home/products/networking/powerline/PL1200.aspx?cid=wmt_netgear_organic
https://www.netgear.com/home/products/networking/powerline/PL1200.aspx?cid=wmt_netgear_organic
https://www.nginx.com/
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
http://docs.openstack.org/ops-guide/arch-network-design.html
http://docs.openstack.org/ops-guide/arch-network-design.html
http://docs.openstack.org/ops-guide/arch-network-design.html
https://github.com/osrg/ryu
https://github.com/osrg/ryu
http://kb.netgear.com/20233/Product-FAQ-Powerline-Adapters?cid=wmt_netgear_organic
http://kb.netgear.com/20233/Product-FAQ-Powerline-Adapters?cid=wmt_netgear_organic
http://kb.netgear.com/20233/Product-FAQ-Powerline-Adapters?cid=wmt_netgear_organic
http://kb.netgear.com/20233/Product-FAQ-Powerline-Adapters?cid=wmt_netgear_organic
https://osrg.github.io/ryu-book/en/Ryubook.pdf
https://osrg.github.io/ryu-book/en/Ryubook.pdf
https://global.ihs.com/tia_telecom_infrastructure.cfm?RID=Z56&MID=5280
https://global.ihs.com/tia_telecom_infrastructure.cfm?RID=Z56&MID=5280
https://global.ihs.com/tia_telecom_infrastructure.cfm?RID=Z56&MID=5280
http://www.tp-link.com/ph/products/details/cat-18_TL-PA8010P-KIT.html
http://www.tp-link.com/ph/products/details/cat-18_TL-PA8010P-KIT.html
http://www.tp-link.com/ph/products/details/cat-18_TL-PA8010P-KIT.html
https://www.trendnet.com/products/powerline-1200/TPL-420E2K
https://www.trendnet.com/products/powerline-1200/TPL-420E2K
https://www.codico.com/fxdata/codico/prod/media/Datenblaetter/AKT/HomePlug_AV2_whitepaper_20130909.pdf
https://www.codico.com/fxdata/codico/prod/media/Datenblaetter/AKT/HomePlug_AV2_whitepaper_20130909.pdf
https://www.codico.com/fxdata/codico/prod/media/Datenblaetter/AKT/HomePlug_AV2_whitepaper_20130909.pdf
https://www.codico.com/fxdata/codico/prod/media/Datenblaetter/AKT/HomePlug_AV2_whitepaper_20130909.pdf

[25] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN,
C., AND SUN, W. Information-agnostic flow sche-
duling for commodity data centers. In USENIX
NSDI (2015).

[26] BANERJEE, S., BHATTACHARJEE, B., AND KOM-
MAREDDY, C. Scalable application layer multi-
cast, vol. 32. ACM, 2002.

[27] BARLOW, R. E., AND PROSCHAN, F. Mathemati-
cal theory of reliability. SIAM, 1996.

[28] BARROSO, L., DEAN, J., AND HOEZLE, U. Web
search for a planet: the architecture of the google
cluster. IEEE Micro 23, 2 (2003), 22–28.

[29] BARROSO, L. A., CLIDARAS, J., AND HÖLZLE,
U. The datacenter as a computer: An introduction
to the design of warehouse-scale machines. Synt-
hesis lectures on computer architecture 8, 3 (2013),
1–154.

[30] BENSON, T., ANAND, A., AKELLA, A., AND
ZHANG, M. Microte: Fine grained traffic engi-
neering for data centers. In CoNEXT (2010).

[31] BORS, D. Data center power system
design debate: Ac or dc? http:
//www.ecmweb.com/power-quality-
archive/data-center-power-system-
design-debate-ac-or-dc. (Accessed on
02/10/2018).

[32] CHEN, K., SINGLA, A., SINGH, A., RAMA-
CHANDRAN, K., XU, L., ZHANG, Y., WEN, X.,
AND CHEN, Y. Osa: An optical switching architec-
ture for data center networks with unprecedented
flexibility. In USENIX NSDI (2012).

[33] CHEN, K.-C. Medium access control of wireless
lans for mobile computing. IEEE Network 8, 5
(1994), 50–63.

[34] CHEN, L., CHEN, K., ZHU, Z., YU, M., POR-
TER, G., QIAO, C., AND ZHONG, S. Enabling
wide-spread communications on optical fabric with
megaswitch. In NSDI (2017).

[35] CISCO. Data center power and cooling.
http://www.cisco.com/c/en/us/
solutions/collateral/data-center-
virtualization/unified-computing/
white paper c11-680202.pdf. (Accessed
on 01/24/2017).

[36] CUI, Y., XIAO, S., WANG, X., YANG, Z., ZHU,
C., LI, X., YANG, L., AND GE, N. Diamond:
Nesting the data center network with wireless rings
in 3d space. In USENIX NSDI (2016).

[37] DEAN, J. Software engineering advice from buil-
ding large-scale distributed systems.

[38] FARRINGTON, N., PORTER, G., RADHA-
KRISHNAN, S., BAZZAZ, H. H., SUBRAMANYA,
V., FAINMAN, Y., PAPEN, G., AND VAHDAT,
A. Helios: A hybrid electrical/optical switch
architecture for modular data centers. In ACM
SIGCOMM (2010).

[39] FERREIRA, H. C., GROVE, H., HOOIJEN, O.,
AND VINCK, A. H. Power line communications:
an overview. In AFRICON, 1996., IEEE AFRICON
4th (1996), vol. 2, IEEE, pp. 558–563.

[40] GALLI, S., SCAGLIONE, A., AND WANG, Z. For
the grid and through the grid: The role of power line
communications in the smart grid. Proceedings of
the IEEE 99, 6 (2011), 998–1027.

[41] GHOBADI, M., MAHAJAN, R., PHANISHAYEE,
A., DEVANUR, N., KULKARNI, J., RANADE, G.,
BLANCHE, P.-A., RASTEGARFAR, H., GLICK,
M., AND KILPER, D. Projector: Agile reconfigu-
rable data center interconnect. In ACM SIGCOMM
(2016).

[42] GREENBERG, A., HAMILTON, J., MALTZ, D. A.,
AND PATEL, P. The cost of a cloud: research pro-
blems in data center networks. ACM SIGCOMM
computer communication review 39, 1 (2008), 68–
73.

[43] GREENBERG, A., HAMILTON, J. R., JAIN, N.,
KANDULA, S., KIM, C., LAHIRI, P., MALTZ,
D. A., PATEL, P., AND SENGUPTA, S. VL2: A
scalable and flexible data center network. In ACM
SIGCOMM (2009).

[44] GRID, T. G. Power equipment and data center
design. https://www.thegreengrid.org/
en/resources/library-and-tools/
382-Power-Equipment-and-Data-
Center-Design. (Accessed on 01/24/2017).

[45] GUNGOR, V. C., AND LAMBERT, F. C. A survey
on communication networks for electric system au-
tomation. Computer Networks 50, 7 (2006), 877–
897.

[46] GUO, C., LU, G., LI, D., WU, H., ZHANG,
X., SHI, Y., TIAN, C., ZHANG, Y., AND LU,
S. BCube: A high performance, server-centric net-
work architecture for modular data centers. In SIG-
COMM (2009).

574 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.ecmweb.com/power-quality-archive/data-center-power-system-design-debate-ac-or-dc
http://www.ecmweb.com/power-quality-archive/data-center-power-system-design-debate-ac-or-dc
http://www.ecmweb.com/power-quality-archive/data-center-power-system-design-debate-ac-or-dc
http://www.ecmweb.com/power-quality-archive/data-center-power-system-design-debate-ac-or-dc
http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/unified-computing/white_paper_c11-680202.pdf
http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/unified-computing/white_paper_c11-680202.pdf
http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/unified-computing/white_paper_c11-680202.pdf
http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/unified-computing/white_paper_c11-680202.pdf
https://www.thegreengrid.org/en/resources/library-and-tools/382-Power-Equipment-and-Data-Center-Design
https://www.thegreengrid.org/en/resources/library-and-tools/382-Power-Equipment-and-Data-Center-Design
https://www.thegreengrid.org/en/resources/library-and-tools/382-Power-Equipment-and-Data-Center-Design
https://www.thegreengrid.org/en/resources/library-and-tools/382-Power-Equipment-and-Data-Center-Design

[47] HALPERIN, D., KANDULA, S., PADHYE, J.,
BAHL, P., AND WETHERALL, D. Augmenting
data center networks with multi-gigabit wireless
links. In ACM SIGCOMM Computer Communica-
tion Review (2011), vol. 41, ACM, pp. 38–49.

[48] HAMEDAZIMI, N., QAZI, Z., GUPTA, H., SE-
KAR, V., DAS, S. R., LONGTIN, J. P., SHAH, H.,
AND TANWERY, A. Firefly: A reconfigurable wi-
reless data center fabric using free-space optics. In
ACM SIGCOMM (2014).

[49] HASSAS YEGANEH, S., AND GANJALI, Y. Kan-
doo: a framework for efficient and scalable offlo-
ading of control applications. In ACM HotNets
(2012).

[50] HENDERSON, T. R., LACAGE, M., RILEY, G. F.,
DOWELL, C., AND KOPENA, J. Network simula-
tions with the ns-3 simulator. SIGCOMM demon-
stration 15 (2008), 17.

[51] HENRI, S., VLACHOU, C., HERZEN, J., AND
THIRAN, P. Empower hybrid networks: Exploi-
ting multiple paths over wireless and electrical me-
diums. In ACM CoNEXT (2016).

[52] ISARD, M. Autopilot: automatic data center mana-
gement. ACM SIGOPS Operating Systems Review
41, 2 (2007), 60–67.

[53] KALBFLEISCH, J. D., AND PRENTICE, R. L. The
statistical analysis of failure time data, vol. 360.
John Wiley & Sons, 2011.

[54] KASSING, S., VALADARSKY, A., SHAHAF, G.,
SCHAPIRA, M., AND SINGLA, A. Beyond fat-
trees without antennae, mirrors, and disco-balls. In
ACM SIGCOMM (2017).

[55] KASSNER, M. P. Dc distribution
is not just for the giants. http:
//www.datacenterdynamics.com/
content-tracks/design-build/dc-
distribution-is-not-just-for-the-
giants/95037.fullarticle. (Accessed on
02/10/2018).

[56] LEE, M., NEWMAN, R. E., LATCHMAN, H. A.,
KATAR, S., AND YONGE, L. Homeplug 1.0 po-
werline communication lans: protocol description
and performance results. International Journal of
Communication Systems 16, 5 (2003), 447–473.

[57] LIU, Y. J., GAO, P. X., WONG, B., AND KESHAV,
S. Quartz: a new design element for low-latency
dcns. In ACM SIGCOMM (2014).

[58] MCKEOWN, N., ANDERSON, T., BALA-
KRISHNAN, H., PARULKAR, G., PETERSON,
L., REXFORD, J., SHENKER, S., AND TURNER,
J. Openflow: Enabling innovation in campus
networks. ACM Computer Communication Review
(2008).

[59] MELLETTE, W. M., MCGUINNESS, R., ROY, A.,
FORENCICH, A., PAPEN, G., SNOEREN, A. C.,
AND PORTER, G. Rotornet: A scalable, low-
complexity, optical datacenter network. In ACM
SIGCOMM (2017).

[60] MENG, H., CHEN, S., GUAN, Y., LAW, C., SO,
P., GUNAWAN, E., AND LIE, T. Modeling of trans-
fer characteristics for the broadband power line
communication channel. IEEE Transactions on Po-
wer delivery 19, 3 (2004), 1057–1064.

[61] NEE, R. V., AND PRASAD, R. OFDM for wireless
multimedia communications. Artech House, Inc.,
2000.

[62] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN,
H., SHAH, D., AND FUGAL, H. Fastpass: A cen-
tralized zero-queue datacenter network. In ACM
SIGCOMM (2014).

[63] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON,
E. J., ZHOU, A., RAJAHALME, J., GROSS, J.,
WANG, A., STRINGER, J., SHELAR, P., ET AL.
The design and implementation of open vswitch. In
USENIX NSDI (2015).

[64] PORTER, G., STRONG, R., FARRINGTON, N.,
FORENCICH, A., SUN, P.-C., ROSING, T., FAI-
NMAN, Y., PAPEN, G., AND VAHDAT, A. Inte-
grating microsecond circuit switching into the data
center. In ACM SIGCOMM (2013).

[65] ROY, A., ZENG, H., BAGGA, J., PORTER, G.,
AND SNOEREN, A. C. Inside the social network’s
(datacenter) network. In ACM SIGCOMM (2015).

[66] SCHWARTZ, M. Carrier-wave telephony over po-
wer lines: Early history [history of communica-
tions]. IEEE Communications Magazine 47, 1
(2009), 14–18.

[67] SINGH, A., ONG, J., AGARWAL, A., ANDER-
SON, G., ARMISTEAD, A., BANNON, R., BO-
VING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., ET AL. Jupiter rising: A decade of clos
topologies and centralized control in google’s data-
center network. In ACM SIGCOMM (2015).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 575

http://www.datacenterdynamics.com/content-tracks/design-build/dc-distribution-is-not-just-for-the-giants/95037.fullarticle
http://www.datacenterdynamics.com/content-tracks/design-build/dc-distribution-is-not-just-for-the-giants/95037.fullarticle
http://www.datacenterdynamics.com/content-tracks/design-build/dc-distribution-is-not-just-for-the-giants/95037.fullarticle
http://www.datacenterdynamics.com/content-tracks/design-build/dc-distribution-is-not-just-for-the-giants/95037.fullarticle
http://www.datacenterdynamics.com/content-tracks/design-build/dc-distribution-is-not-just-for-the-giants/95037.fullarticle

[68] STARK, J. 380v dc power: Shaping the
future of data center energy efficiency.
http://www.datacenterknowledge.com/
archives/2015/06/25/380v-dc-
power-shaping-future-data-center-
energy-efficiency. (Accessed on
02/10/2018).

[69] TANG, L., SO, P., GUNAWAN, E., CHEN, S.,
LIE, T., AND GUAN, Y. Characterization of in-
house power distribution lines for high-speed data
transmission. In Proc. 5th Int. Power Engineering
Conf.(IPEC 2001) (2001), pp. 7–12.

[70] TOOTOONCHIAN, A., AND GANJALI, Y. Hyper-
flow: A distributed control plane for openflow. In
Proceedings of the 2010 internet network manage-
ment conference on Research on enterprise networ-
king (2010), pp. 3–3.

[71] TURNER IV, W. P., PE, J., SEADER, P., AND
BRILL, K. Tier classifications define site infra-
structure performance. Uptime Institute (2006).

[72] VAMANAN, B., HASAN, J., AND VIJAYKU-
MAR, T. Deadline-aware datacenter tcp (d2tcp).
ACM SIGCOMM Computer Communication Re-
view (2012).

[73] VLACHOU, C. plc-click-elements/plcstats.h.
https://github.com/christinavl/
plc-click-elements/blob/master/
PLCStats.h. (Accessed on 02/10/2018).

[74] VLACHOU, C., BANCHS, A., HERZEN, J., AND
THIRAN, P. Analyzing and boosting the perfor-
mance of power-line communication networks. In
ACM CoNEXT (2014).

[75] VLACHOU, C., BANCHS, A., HERZEN, J., AND
THIRAN, P. On the mac for power-line commu-
nications: Modeling assumptions and performance
tradeoffs. In IEEE ICNP (2014).

[76] VLACHOU, C., BANCHS, A., HERZEN, J., AND
THIRAN, P. Performance analysis of mac for
power-line communications. ACM SIGMETRICS
Performance Evaluation Review 42, 1 (2014), 585–
586.

[77] VLACHOU, C., BANCHS, A., SALVADOR, P.,
HERZEN, J., AND THIRAN, P. Analysis and en-
hancement of csma/ca with deferral in power-line
communications. IEEE Journal on Selected Areas
in Communications (2016).

[78] VLACHOU, C., HERZEN, J., AND THIRAN, P.
Fairness of mac protocols: Ieee 1901 vs. 802.11. In
Power Line Communications and Its Applications
(ISPLC), 2013 17th IEEE International Symposium
on (2013), IEEE, pp. 58–63.

[79] VLACHOU, C., HERZEN, J., AND THIRAN, P. Si-
mulator and experimental framework for the mac
of power-line communications. EPFL-REPORT-
205770.

[80] WANG, G., ANDERSEN, D., KAMINSKY, M., PA-
PAGIANNAKI, K., NG, T., KOZUCH, M., AND
RYAN, M. c-Through: Part-time optics in data cen-
ters. In ACM SIGCOMM (2010).

[81] YONGE, L., ABAD, J., AFKHAMIE, K., GUER-
RIERI, L., KATAR, S., LIOE, H., PAGANI, P.,
RIVA, R., SCHNEIDER, D. M., AND SCHWAGER,
A. An overview of the homeplug av2 technology.
Journal of Electrical and Computer Engineering
2013 (2013).

[82] ZATS, D., DAS, T., MOHAN, P., BORTHAKUR,
D., AND KATZ, R. Detail: reducing the flow
completion time tail in datacenter networks. ACM
SIGCOMM Computer Communication Review 42,
4 (2012), 139–150.

[83] ZHAO, Z., CHEN, I., ET AL. Moving homeplug
to industrial applications with power-line commu-
nication network.

[84] ZHOU, X., ZHANG, Z., ZHU, Y., LI, Y., KUMAR,
S., VAHDAT, A., ZHAO, B. Y., AND ZHENG, H.
Mirror mirror on the ceiling: Flexible wireless links
for data centers. ACM SIGCOMM Computer Com-
munication Review 42, 4 (2012), 443–454.

[85] ZHU, Y., ZHOU, X., ZHANG, Z., ZHOU, L., VA-
HDAT, A., ZHAO, B. Y., AND ZHENG, H. Cut-
ting the cord: a robust wireless facilities network
for data centers. In ACM MobiCom (2014).

576 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.datacenterknowledge.com/archives/2015/06/25/380v-dc-power-shaping-future-data-center-energy-efficiency
http://www.datacenterknowledge.com/archives/2015/06/25/380v-dc-power-shaping-future-data-center-energy-efficiency
http://www.datacenterknowledge.com/archives/2015/06/25/380v-dc-power-shaping-future-data-center-energy-efficiency
http://www.datacenterknowledge.com/archives/2015/06/25/380v-dc-power-shaping-future-data-center-energy-efficiency
https://github.com/christinavl/plc-click-elements/blob/master/PLCStats.h
https://github.com/christinavl/plc-click-elements/blob/master/PLCStats.h
https://github.com/christinavl/plc-click-elements/blob/master/PLCStats.h

Appendix
Management Traffic Optimizations
As discussed in §3.2.2, two common traffic patterns of
management application is 1-to-N (e.g. configuration
tasks) and N-to-1 (e.g. monitoring tasks). The expe-
riments in §3.2&6.1 shows that such patterns perform
poorly on PowerMan. In the following, we propose
application-layer traffic optimizations to reduce the com-
pletion times of these two patterns on PowerMan. We
assume the controller is located at the root of the tree.

Accelerating 1-To-N Pattern
As shown in Figure 16, PowerMan has low per-server
bandwidth at large scale. This is because the controller
node needs to maintain connection to all servers, so the
per-server bandwidth is constrained by the interface ca-
pacity of the controller. Low per-server bandwidth can
prolong completion times of configuration tasks.

Figure 19: Accelerating Management Application
Traffic Patterns

We propose to construct an application-layer multicast
(ALM) overlay network [26] in PowerMan for manage-
ment tasks with 1-to-N distribution pattern, where the
gateway in each PDU act as a distribution agent in corre-
sponding PLAN. As shown in Figure 19, the distribution
from controller to all server is divided into multiple dis-
tributions within different PLANs.

We evaluate the performance of ALM. We use the pro-
duction traces in §3.2.2. For baseline performance, we
create 1-to-N traffic patterns using the traffic generator
with different numbers of receivers. For ALM, we mo-
dify the traffic generator to include an implementation of
ALM agent, and enable the agents in the gateways. We
collect the FCTs and the results are plotted in Figure 20.
We observe that ALM reduces the FCT for 1-to-N pat-
tern, and the performance gap increases with the number
of total receivers. For 10 receivers, the FCT is reduced
by 15.38% on average. The main reason is that the total
traffic volume is reduced with ALM, as copies of the flow
are created by the agent in each gateway, which reduces
the traffic volume at higher layers.

Accelerating N-to-1 Pattern
Information collection tasks include monitoring, diag-
nostics, and measurement, which exhibit N-to-1 pattern

Figure 20: Accelerate 1-to-N Pattern with
Application-Layer Multicast: Average FCT

Figure 21: Accelerate N-to-1 Pattern with Local Ag-
gregation: Average FCT

Figure 22: Accelerate N-to-1 Pattern with Local Ag-
gregation: 99 percentile FCT
from the servers to the controller. As the dual of ALM,
we propose local aggregation (LA) at each layer (PLAN)
of the tree. An agent at each gateway collects the in-
formation from all servers/agents in its PLAN, and then
sends the aggregated information to the agent in upper-
layer gateway.

We then evaluate the performance of LA. For baseline,
we create N-to-1 patterns using the same flow size distri-
butions as above. For LA, we implemented a LA agent
for the traffic generator, and enable them on all gateways.
We collect the FCTs and plot the average in Figure 21
with respect to the number of senders. We can see that,
although LA in general outperforms baseline, the per-
formance gap is smaller than that of Figure 20. This is
because the total traffic volume is not reduced with LA.
However, LA on PowerMan effectively reduces the num-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 577

ber of contending flows at the controller from N (total
number of servers) to k−1 (number of nodes in a PLAN).
This can be observed in Figure 22, which summarizes the
tail latencies (99th percentile FCTs). Tail latencies cap-
ture the worst performing flows whose completion times
are prolonged by events such as packet loss, reordering,
frame collision. Using LA to reduce the number of con-
tending flows at the receiver decreases the occurrences
of tail latency events, which improves the completion ti-
mes. Finally, a further optimization is to compress local
information before sending. Compression of locally col-
lected information can reduce total traffic volume, and it
would be beneficial if the computation overhead on the
gateway is acceptable.

578 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion

Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin Vechev
ETH Zürich

netcomplete.ethz.ch

Abstract

Network operators often need to adapt the configuration
of a network in order to comply with changing rout-
ing policies. Evolving existing configurations, however,
is a complex task as local changes can have unforeseen
global effects. Not surprisingly, this often leads to mis-
takes that result in network downtimes.

We present NetComplete, a system that assists oper-
ators in modifying existing network-wide configurations
to comply with new routing policies. NetComplete takes
as input configurations with “holes” that identify the
parameters to be completed and “autocompletes” these
with concrete values. The use of a partial configuration
addresses two important challenges inherent to existing
synthesis solutions: (i) it allows the operators to precisely
control how configurations should be changed; and (ii) it
allows the synthesizer to leverage the existing configura-
tions to gain performance. To scale, NetComplete relies
on powerful techniques such as counter-example guided
inductive synthesis (for link-state protocols) and partial
evaluation (for path-vector protocols).

We implemented NetComplete and showed that it can
autocomplete configurations using static routes, OSPF,
and BGP. Our implementation also scales to realistic net-
works and complex routing policies. Among others, it is
able to synthesize configurations for networks with up to
200 routers within few minutes.

1 Introduction

In a world where more and more critical services con-
verge on IP, even slight network downtimes can cause
large financial or reputational losses. This strategic im-
portance contrasts with the fact that managing a net-
work is surprisingly hard and brittle. Out of high-level
requirements, network operators have to come up (often
manually) with low-level configurations specifying the
behavior of hundreds of devices running complex dis-

tributed protocols. A single misconfiguration can bring
down the network infrastructure, or worse, a piece of
the Internet in case of BGP-related misconfigurations.
Every few months downtimes involving major players
such as NYSE [1], Google [2], Facebook [3], or United
Airlines [4] make the news. Actually, studies show that
human-induced misconfigurations, not physical failures,
explain the majority of downtimes [5].

To address these challenges, recently there has been
an increased interest in configuration verification [6, 7,
8, 9, 10, 11, 12, 13] and synthesis [14, 15, 16, 17, 18,
19, 20]. Configuration synthesis in particular promises
to alleviate most of the operator’s burdens by deriving
correct configurations out of high-level objectives.

Challenges in network synthesis While promising, net-
work operators can still be reluctant to use existing syn-
thesis systems for at least three reasons: (i) interpretabil-
ity: the synthesizer can produce configurations that differ
wildly from manually provided ones, making it hard to
understand what the resulting configuration does. More-
over, small policy changes can cause the synthesized
configuration (or configuration templates in the case of
PropaneAT [16]) to change radically; (ii) protocol cov-
erage: existing systems [15, 16] are restricted to produc-
ing BGP-only configurations, while most networks rely
on multiple routing protocols (e.g., to leverage OSPF’s
fast-convergence capabilities); and (iii) scalability: re-
cent synthesizers such as SyNET [20] handle multiple
protocols but do not scale to realistic networks.

NetComplete We present a system, NetComplete,
which addresses the above challenges with partial syn-
thesis. Rather than synthesizing a new configuration
from scratch, NetComplete allows network operators
to express their intent by sketching parts of the ex-
isting configuration that should remain intact (captur-
ing a high-level insight) and “holes” represented with
symbolic values which the synthesizer should instanti-
ate (e.g., OSPF weights, BGP import/export policies).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 579

mailto:eahmed@ethz.ch
mailto:petar.tsankov@inf.ethz.ch
mailto:lvanbever@ethz.ch
mailto:martin.vechev@inf.ethz.ch
https://netcomplete.ethz.ch

NetComplete then autocompletes these “holes” such that
the resulting configuration leads to a network that ex-
hibits the required behavior. Our approach supports a
practically relevant scenario as few operators ever start
from scratch but rather modify their existing configu-
rations (e.g., OSPF weights) to handle new routing re-
quirements. This evolving approach also has the benefit
of better explainability as large parts of the existing con-
figuration are preserved in the newly synthesized config-
uration. Further, because we focus on synthesizing parts
of the configuration, there is an opportunity to scale the
synthesizer to realistic networks. This opportunity arises
even though NetComplete is quite expressive: it han-
dles static routes, OSPF, and BGP1 as well as a variety
of essential routing requirements such as waypointing,
failure-resilience, load-balancing, and traffic isolation.
NetComplete reduces the autocompletion problem to

a constraint satisfaction problem that it solves with
SMT solvers (e.g., Z3 [21]). The main challenge is
that a naive encoding of the problem leads to com-
plex constraints that cannot be solved in reasonable
time (e.g., within a day). To scale, NetComplete relies
on two key insights: (i) partial evaluation along with
(ii) network-specific heuristics to efficiently navigate the
search space. Specifically, it speeds up BGP synthesis
by propagating symbolic announcements through partial
BGP policies allowing it to eliminate many variables. For
OSPF, NetComplete is 100x faster than a naive encod-
ing via a new counter-example guided inductive synthe-
sis algorithm. Overall, NetComplete autocompletes con-
figurations for networks with up to 200 routers in few
minutes.

Contributions Our main contributions are:

• A new approach to network-wide configuration syn-
thesis based on autocompletion of partial configura-
tions. It enables operators to evolve existing config-
urations so they match new requirements.

• A scalable synthesis procedure based on SMT con-
straints which relies on partial evaluation tech-
niques along with domain-specific heuristics and
counter-example guided inductive synthesis.

• An end-to-end implementation of our approach in
a system called NetComplete which outputs actual
Cisco configurations.

• A comprehensive evaluation of NetComplete us-
ing a variety of real-world topologies and com-
plex requirements. Our results demonstrate that
NetComplete can effectively autocomplete partial
configurations for large networks with up to 200
routers within few minutes.

1We plan to add support for more protocols and mechanisms in fu-
ture work, including MPLS and route redistribution.

2 Motivating Scenarios

In this section, we motivate the need for NetComplete
through three practical use cases rooted within existing
network management practices. These use cases are dif-
ficult or practically impossible to solve today.

Scenario 1: Evolving configurations preserving exist-
ing semantics. Existing configurations typically embed
deep knowledge of semantics and design guidelines. For
instance, operators often use specific OSPF weights to
identify primary/backup links, and specific BGP local-
preferences or communities to identify their peers. This
(often unwritten) semantic helps them reason about the
network-wide configuration. At the same time, these
rules also reduce the operators flexibility as it can com-
plexify the implementation of new routing requirements,
e.g., by requiring the modification of multiple weights
instead of one.

NetComplete allows operators to communicate such
semantics as constraints on the configuration sketch and
let the synthesizer find a valid network-wide configura-
tion that adheres to the operators style.

Scenario 2: Simplifying federated or constrained man-
agement. Network configurations are often maintained
by multiple teams of operators [22, 23], each responsi-
ble for some parts (e.g., edge vs core) or functionalities.
Coordinating changes in these federated configurations
tends to be challenging as multiple teams need to come
together. With NetComplete, the operators can easily ex-
plore whether there is a way to implement the policy lo-
cally, for instance, without adapting the BGP configura-
tion (i.e., by restricting changes to the OSPF configura-
tion). Similar requirements appear in heterogeneous net-
works where not all routers support all protocols (e.g.,
due to licensing issues or device capabilities).

NetComplete allows operators to simply communi-
cate such constraints as part of the sketch and let the syn-
thesizer find a multi-protocol configuration.

Scenario 3: Configuration Refactoring and Network
Merging. Configurations evolve over time and this in-
creases their complexity. Design decisions that made
sense in the past may no longer do, requiring refactor-
ing. Other examples calling for large refactoring include
merging and acquisitions; e.g., when a company buys an-
other one and wishes to integrate their networks [24].

NetComplete helps operators to refactor configura-
tions by enabling them to morph entire pieces of their
existing configurations, e.g., to adopt the configuration
guidelines of one network and let the synthesizer com-
pute and propagate the changes network-wide.

580 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Overview

We now show how given a network topology, high-
level routing requirements, and a partial configuration,
NetComplete autocompletes the partial configuration to
a correct network-wide configuration. First, we present
a small running example and define NetComplete’s in-
puts. We then present the key synthesis steps to produce
the output configuration before explaining the more com-
plex steps in detail in the following sections.

3.1 Running Example

In Fig. 2, we show how a network operator would use
NetComplete to synthesize a network-wide configura-
tion that enforces routing requirements. We consider that
the Autonomous System (AS) of the operator’s network
is AS500 and consists of four routers: A, B, C, and D. This
network is further connected to one customer peer AS100
and three external peers: AS200, AS300, and AS400.

High-level Routing Policy The policy for our example
is given in Fig. 1. Rule (1) disallows transit traffic be-
tween external peers; e.g., AS200 cannot send traffic to
AS300 through the network. Rule (2) defines how the
customer peer accesses prefixes announced by external
peers: AS300 is most preferred, followed by AS400, and
then AS200. Traffic to AS200 may exit via B or C, where
B is preferred. Rules (3) and (4) capture traffic engineer-
ing requirements. Note that this policy can be formalized
in a high-level SDN-like language, such as Propane [15],
Genesis [18], Frenetic [25], or SyNET [20].

3.2 NetComplete Inputs

NetComplete takes three inputs: (i) network topology,
(ii) routing requirements, and (iii) a configuration sketch.

(1) Network Topology The network topology is given
via a graph over the set of routers (A, B, C, and D) and
external peers (AS100, AS200, AS300, and AS400). An
edge represents a physical link that connects two nodes.

(2) Routing Requirements We now describe the type
of requirements supported by NetComplete. We start
with some basic notation. A routing path is of the form:
P ::= Src → R1 → ··· → Rn → Dst, where Src and
Dst are source and destination routers, respectively, and
R1, . . . ,Rn are router identifiers. We use a wildcard no-
tation to denote sets of simple paths, i.e., paths without
repeated nodes. For example, Src→∗→ Dst denotes all
simple paths from Src to Dst.

NetComplete supports positive and negative require-
ments. Positive requirements have the form

Req ::= (P, · · · ,P) | (P = · · ·= P) | Req� Req

Rule 1 No transit between AS200, AS300, and AS400;
Rule 2 Traffic from the customer peer AS100 to the ex-

ternal peers prefers exit routers in order: AS300,
AS400, AS200 via B, AS200 via C;

Rule 3 Traffic from AS100 to AS300 is load-balanced
along A→C and A→ D→C; if both paths are un-
available, then the path A→ B→C is used;

Rule 4 Traffic from AS100 to AS400 must follow the
path A→ B→C.

Figure 1: High-level policy for our running example

where P is a routing path. All routing paths that appear in
a requirement must have identical source and destination.
The semantics of requirements is as follows:

An any-path requirement (P1, . . . ,Pk) is satisfied if the
traffic from the source to the destination is forwarded
along any available path in {P1, . . . ,Pk}. The requirement
is not-applicable if all paths P1, . . . ,Pk are unavailable.
We remark that any-path requirements are used to ensure
failure-resilience. We will refer to any-path requirements
(P) consisting of a single path P as simple requirements.

An ECMP requirement (P1 = · · · = Pk) is satisfied if
the traffic from Src to Dst is load-balanced among all
available paths in the set {P1, . . . ,Pk}. The requirement
is not-applicable if all paths P1, . . . ,Pk are unavailable.
We remark that ECMP requirements are useful to capture
load-balancing.

An ordered requirement Req1 � Req2 defines a pref-
erence over requirements. This requirement is satisfied
if the most preferred applicable requirement is satisfied,
and it is not-applicable if both requirements are not-
applicable. For example:

(AS100→ A→ B→C→ AS300)
� (AS100→ A→C→ AS300)

is satisfied if traffic from AS100 to AS300 is forwarded
along this path if it is available:

AS100→ A→ B→C→ AS300

Otherwise traffic is forwarded along the path:

AS100→ A→C→ AS300

NetComplete also supports negative requirements of
the form !{P1, . . . ,Pk}, where {P1, . . . ,Pk} is a set of rout-
ing paths. This requirement is satisfied if traffic is not for-
warded along any path in this set. Negative requirements
are useful to express traffic isolation.

The requirements for our running example are given
in Fig. 2b. We interpret sets of paths, such as AS100→
∗→ AS300, as any-path requirements. Policy rules 1, 2,
3, and 4, given Fig. 1, are specified as requirements 1,
2−7, 8, and 9, respectively. We use a natural assignment

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 581

(a) Network topology

! B Configuration Sketch
! 10G interface to C
interface TenGigabitEthernet1/1/1
 ip address ?
 ip ospf cost
router ospf 100

 ...
router bgp 6500
...
 neighbor AS200 import route-map imp-p1
 neighbor AS200 export route-map exp-p1
 ...
ip community-list C1 permit
ip community-list C2 permit
route-map imp-p1 permit 10
 set
 set
route-map exp-p1 10
 match community C2
route-map exp-p2 20
 match community C1
...

(c) Configuration sketch for router B (e) Synthesized configuration for router B

?

?
10 < ? < 100

?

?

?

?

(b) Routing requirements

Link connectivity and
static routes synthesis

BGP Synthesis (§4)

OSPF Synthesis (§5)

(d) Configuration synthesis flow

BGP requirements:
 1. (AS100→*→AS300 >> AS100→*→C-AS400 >>
 >> AS100→*→B→AS200 >> AS100→*→C→AS200)
 2. !AS200→*→AS300 4. !AS300→*→AS200 6. !AS400→*→AS200
 3. !AS200→*→AS400 5. !AS300→*→AS400 7. !AS400→*→AS300

OSPF requirements:
 8. (AS100→A→C→AS300 = AS100→A→D→C→AS300) >> AS100→A→B→C→AS300

Static routes:
 9. AS100→A→B→C→AS400

Additional OSPF
requirements

NetComplete

?

Input

In
pu

t

O
ut

pu
t

! B Configuration Sketch
! 10G interface to C
interface TenGigabitEthernet1/1/1
 ip address 10.0.0.0 255.255.255.254
 ip ospf cost 15
router ospf 100
 network 10.0.0.1 0.0.0.1 area 0.0.0.0
 ...
router bgp 6500
...
 neighbor AS200 import route-map imp-p1
 neighbor AS200 export route-map exp-p1
 ...
ip community-list C1 permit 6500:1
ip community-list C2 permit 6500:2
route-map imp-p1 permit 10
 set community 6500:1
 set local-pref 50
route-map exp-p1 permit 10
 match community C2
route-map exp-p1 deny 20
 match community C1
...

B C

A D

AS200

AS300

AS400

AS100

AS500

?

?

Figure 2: Overview of NetComplete. The inputs are: (a) network topology, (b) routing requirements, and (c) a config-
uration sketch. The output is a configuration for each router; for the configuration of router B see (e).

of requirements to protocols. For example, requirements
1− 7 pertain to external peers and they are assigned to
the Border Gateway Protocol (BGP). Requirement 8 per-
tains to traffic engineering within the network and is as-
signed to the Open-Shortest Path First (OSPF) protocol,
which forwards traffic along the shortest path. Note that
requirements 8 and 9 cannot be both enforced by OSPF.
To enforce requirement 9, the cost of A→ B→ C must
be lower than that of A→C and A→ D→C. However,
this would also divert traffic from AS100 to AS300 to be
forwarded along routers A→ B→ C, which would vio-
late requirement 8. To this end, requirement 9 is enforced
using a static route.

We remark that the requirements above can be spec-
ified manually by the operator, or using existing sys-
tems [15, 16, 18, 25] that compile high-level policies to
forwarding paths.

(3) Configuration Sketch Configuration sketches are
router configurations where some of the parameters are
left symbolic. To specify symbolic values, the operator
tags parts of the configurations with a question mark

symbol ? (instead of writing concrete values). The sym-
bol ? represents: (i) specific attributes (e.g., OSPF link
cost, BGP local preferences2); or (ii) entire import / ex-
port policies, e.g., match ? , action ? .

As an example, we depict the sketch of router B’s con-
figuration in Fig. 2c. We remark that operators can write
additional constraints to restrict how NetComplete in-
stantiates symbolic parameters. For example, the sym-
bolic OSPF link cost in the sketch of router B is con-
strained to values between 10 and 100.

This sketching language enables NetComplete to be
used in different scenarios. For example, changes can be
restricted to certain parts of the network [Scenario 2]. By
leaving most of the configurations symbolic, an opera-
tor can explore a large range of possible configurations
that implement a given set of requirements [Scenarios 1
and 3]. Moreover, an operator can also provide a fully
concrete configuration to verify its correctness.

2Except BGP AS numbers, which are assigned based on higher-
level considerations that are not captured in the requirements.

582 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.3 Configuration Synthesis

NetComplete synthesizes a network-wide configuration
that enforces the requirements in three steps.

First, it synthesizes the sessions between routers that
have a physical link between them and may be necessary
to enforce the routing requirements. Further, it config-
ures any static routes defined in the requirements. For ex-
ample, for requirement AS100→ A→ B→C→ AS400,
NetComplete establishes a session between A− B and
B−C, and configures static routes at A and B.

Second, NetComplete synthesizes router-level BGP
configurations based on the BGP routing requirements.
To this end, NetComplete computes a propagation graph
that captures which BGP announcements are exchanged
between the routers and in what order they must be se-
lected. NetComplete then synthesizes BGP configura-
tions that enforce the constructed propagation graph. We
explain this step in detail in §4. Note that BGP may select
routes based on path costs (computed by OSPF). There-
fore, whenever this is necessary to enforce the require-
ments, the BGP synthesizer outputs additional OSPF re-
quirements to be enforced by the OSPF synthesizer.

Third, NetComplete synthesizes OSPF costs that en-
force all OSPF requirements. This is a well-known hard
problem that is difficult to scale to large networks. We
solve the problem in §5 via a novel counter-example
guided inductive synthesis algorithm.

If all synthesis steps succeed, NetComplete outputs a
configuration that is guaranteed to enforce the require-
ments. Otherwise, a counter-example is returned to in-
dicate that the requirements cannot be enforced for the
given inputs. Based on this counter-example, the network
operator can modify the partial configuration (by making
more parameters symbolic) or adapt the requirements.
We present a detailed evaluation of NetComplete with
practical topologies and requirements in §6.

4 BGP Synthesis

We now present NetComplete’s BGP synthesizer which
takes as input BGP requirements and computes router-
level BGP policies. It also outputs a set of OSPF re-
quirements (to be fed to NetComplete’s OSPF synthe-
sizer) if the BGP requirements cannot be enforced by
BGP policies alone. In the following, we first overview
the BGP protocol (§4.1), then present the construction
of a BGP propagation graph which defines correct prop-
agation of BGP announcements (§4.2). We illustrate
NetComplete’s BGP sketches in §4.3 and propagation of
(symbolic) announcements over them in §4.4. Finally, we
describe our BGP synthesis procedure (§4.5).

Name Description

Prefix A value that represents a set of destination
IPs that belong to the same traffic class

LocalPref A positive integer that indicates the degree of
preference for one route over the other routes

Origin The origin of the announcement: IGP, EGP,
or Incomplete

MED (Multi-Exit Discriminator) A positive in-
teger that indicates which of the multiple
routes received from the same AS is selected

ASPath The AS path to reach the destination
ASPathLen The length of the AS path to the destination
NextHop The router to which to forward packets
Communities A list of tags carried with the announcement.

Figure 3: BGP attributes supported by NetComplete.

4.1 BGP Protocol

The BGP protocol is used to exchange information be-
tween ASes. An AS sends announcements to its neigh-
boring ASes to inform them that it can carry traffic to
prefixes (i.e., sets of IP addresses). Announcements are
also exchanged within an AS to disseminate routing in-
formation among routers. Note that operators may parti-
tion their network into multiple ASes to use BGP to en-
force routing requirements within the network. We refer
to the ASes under the operator’s control as private and to
the remaining as public ASes.

Announcements have attributes, which are used to se-
lect a single best route out of (possibly) multiple routes
to the same prefix; see Fig. 3. A router processes each
received announcement using import filters, which may
drop the announcement or modify its attributes. Then,
the router selects the best route according to a local BGP
policy, processes it using export filters, and forwards the
result to its neighboring routers.

Each router uses the following preferences when se-
lecting the best route:

1. Prefer higher LocalPref;
2. Prefer shorter ASPathLen;
3. Prefer lower origin type: IGP < EGP < Incomplete;
4. Prefer lower MED;
5. Prefer announcements from external routers;
6. Prefer lower IGPCost, calculated by the network’s

Internal Gateway Protocol (IGP), such as OSPF.
We assume prefixes in announcements do not overlap (as
we can use known techniques [8] to ensure this).

4.2 BGP Propagation Graph

We present how NetComplete builds, for each prefix, a
propagation graph that defines a correct enforcement of
the BGP routing requirements for that prefix. In more

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 583

AS100→∗→AS300 � AS100→∗→AS400
� AS100→∗→B→AS200 � AS100→∗→C→AS200

(a) Positive BGP requirements

!AS200→∗→AS300 !AS300→∗→AS200 !AS400→∗→AS200
!AS200→∗→AS400 !AS300→∗→AS400 !AS400→∗→AS300

(b) Negative BGP requirements

Propagate edge Block edge

 Forward graph Gfwd BGP propagation graph Gebgp BGP propagation graph Gbgp

B

AS200

AS300

AS400

AS100

AS500
C

DA
AS300 > AS400 > B-AS200 > C-AS200

B

AS200

AS300

AS400

AS100

AS500
C

DA

AS200

AS300

AS400

AS100

AS500

AS300 > AS400 > AS200

!AS300
!AS400

!AS200,!AS400
!AS200,!AS300

!AS200,!AS400
!AS200,!AS300

!AS300
!AS400

!AS300
!AS400

AS300

> AS400

> AS200

AS300

> AS400

> AS200

AS300 > AS400

> B-AS200 > C-AS200

Figure 4: Deriving a BGP propagation graph from BGP requirements and a network topology.

details, NetComplete first constructs a graph Gebgp that
only considers announcements learned over eBGP. Then,
it refines Gebgp into Gbgp, which also defines how an-
nouncements are propagated internally (using iBGP). In
Fig. 4, we illustrate the steps on our running example.
Construct eBGP propagation graph The graph Gebgp
contains one node for each private/public AS. For our ex-
ample, Gebgp has one private AS, AS500, and four public
ones AS100, . . . ,AS400; see Fig. 4.

The graph Gebgp has two kinds of labeled edges: prop-
agate and block edges, labeled with the preference order
over announcements and, respectively, announcements
that must be dropped.

To add propagate edges, NetComplete traverses each
positive BGP requirement backwards and appends edges
along the traversed ASes. For example, for the re-
quirement AS100→∗→ AS300, NetComplete traverses
three ASes and adds the propagate edges AS300 →
AS500 and AS500→ AS100. While adding these edges,
NetComplete tracks the set of announcements that must
be propagated along them and labels the edges with the
preference order based on the requirements.

To add block edges, NetComplete traverses each neg-
ative requirement and adds block edges to enforce it. For
example, for the requirement !AS200→∗→ AS300, it
adds the block edge AS500→ AS200, label with !AS300,
to enforce the requirement.

Once Gebgp is fully constructed, NetComplete checks
if preferences over announcements are consistent. To il-
lustrate, suppose AS1 must select announcements from
AS2, and AS2 must select from AS3. Then, the pref-
erences over announcements labeled along the edges
AS3→ AS2 and AS2→ AS1 must match.

Construct iBGP propagation graph Next,
NetComplete refines Gebgp into a detailed propaga-
tion graph, Gbgp, that also accounts for iBGP.

First, for each private AS in Gebgp, NetComplete adds
to Gbgp all BGP-enabled routers within that AS. For our
example, NetComplete adds the routers A, B, C, and D.

Second, NetComplete connects the neighbor routers
between ASes that have an edge in Gebgp. For example,
for edge AS200→AS500 in Gebgp, NetComplete adds the
edges AS200→B and AS200→C to Gbgp.

Finally, NetComplete extends the paths learned via
eBGP. Note that in iBGP routers will not export routes
learned from another iBGP router.3 Similar to Gebgp,
nodes in Gbgp are labeled with the preferences over an-
nouncements and NetComplete check if the preferences
over announcements are consistent.

4.3 BGP Policies
We now present the semantics of BGP policies. A BGP
policy applies on a set of announcements and has a match
expression followed by zero or more actions. The match
expression is a boolean formula over the announcement’s
attributes. If the match expression holds for the input an-
nouncement, then the actions are executed which modify
the announcement’s attributes or drop the announcement.
For example, the following policy:

1 BGPPolicy

2 match next -hop AS200

3 set local -pref 10

matches an announcement whose NextHop attribute is set
to AS200 and sets the value of attribute LocalPref to 10.

3While NetComplete does not support Route Reflectors, we plan
to add support for them as their functionality is similar to eBGP.

584 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 AttributesSketch

2 match next -hop AS200

3 set local -pref ? < 50

(a) Attributes sketch Sattr

1 AbstractSketch

2 match ?

3 set ?

(b) Abstract sketch Sabs

Figure 5: Example of two BGP policy sketches.

Sketching BGP Policies NetComplete allows the net-
work operator to define the policy sketch at three levels
of details; (i) everything is concrete (no holes), (ii) de-
fine the types of matches and actions but leave the spe-
cific values empty (see Fig. 5a), (iii) or leave the matches
and actions as holes (see Fig. 5b). We formalize the en-
coding of such sketches using SMT constraints in Ap-
pendix B. In §4.5, we show how NetComplete synthe-
sizes BGP policy and instantiates the symbolic values in
the given sketch to enforce the BGP propagation graph.

4.4 Processing Symbolic Announcements
We present how NetComplete processes symbolic BGP
announcements passing through the various BGP policy
sketches in the network. Given an announcement A, we
write attrA to denote the attribute attr of A. For in-
stance, LocalPrefA returns A’s local preference. Each an-
nouncement attribute either has a concrete value, if its
value is fixed by the partial configuration, or a symbolic
value, if a correct concrete value is yet to be discovered
by the BGP synthesizer.

We represent announcements symbolically as their at-
tribute values are constrained by the BGP policies, which
are yet to be synthesized by NetComplete. Each an-
nouncement A is represented with symbolic variables
PrefixA, . . . ,NextHopA. The set of possible attribute val-
ues of A is captured by a conjunction of constraints over
these variables. For example, the constraint

(NextHopA = AS200)∧ (0 < LocalPrefA < 50)

captures all announcements whose next hop is AS200 and
local preference is a positive integer smaller than 50.

In addition to the attributes listed in Fig. 3 we intro-
duce two boolean variables: PermittedA, which indicates
whether the announcement A is dropped, and eBGPA,
which indicates whether A is sent via eBGP or iBGP.

Processing Announcements with Policy Sketches A
BGP policy sketch takes as input a symbolic announce-
ment Ain (a set of constraints over Ain’s attributes) and
outputs another symbolic announcement Aout. To com-
pute the set of possible output announcements for a given
input announcement, we take the conjunction of the BGP
sketch constraints with the constraint that captures the set
of possible concrete input announcements.

To illustrate this step, consider the input announce-
ment NextHopAin

= AS200 and the BGP sketch in Fig. 5a.
Since the NextHop attribute is concrete and equal to
AS200, NetComplete knows that the input announce-
ment would match this policy. Therefore, NetComplete
captures the set of possible output announcements with
the constraint:

(LocalPrefAout = Var1)∧ (0 < Var1 < 50)
∧ (NextHopAout = NextHopAin

) ∧ ·· ·

Namely, the local preference of the output announce-
ment is set to the value of Var1, which is constrained
to positive values below 50 (to be synthesized by
NetComplete), and all remaining attributes are identical
to those in the input announcement (captured with equal-
ity constraints, such as NextHopAout = NextHopAin

).
As another example, consider the input announcement

NextHopAin
= Var1 where the NextHop attribute is sym-

bolic. When evaluating this announcement with the BGP
sketch in Fig. 5a, NetComplete captures the set of possi-
ble output announcements with the following constraint:

if Var1 = AS200
then (LocalPrefAout = Var2)∧ (0 < Var2 < 50)

∧ (NextHopAout = NextHopAin
)∧ ·· ·

else (NextHopAout = NextHopAin
)∧ ·· ·

This constraint is more complex because the result of
the match expression depends on the symbolic next hop
(Var1). If the next hop is AS200, then the local prefer-
ence is set to Var2 and all remaining attributes remain
unchanged. Otherwise, all attributes in the output an-
nouncement Aout are identical to those in the input an-
nouncement Ain.
Encoding Selection of Announcements When a BGP
router receives different announcements for the same
prefix, it uses the preference ordering to select the best
route; see §4.1. We encode the selection process into two
SMT predicates: PrefNoIGP(A1,A2) and Pref(A1,A2).
The predicate PrefNoIGP(A1,A2) holds if and only if A1
is preferred over A2 without considering the IGP costs
of A1 and A2. While the predicate Pref(A1,A2) holds if
and only if A1 is preferred over A2 with considering the
IGP costs of A1 and A2. We show the encoding of these
predicates in Appendix A.

4.5 BGP Policy Synthesis
We now describe how NetComplete synthesizes BGP
policies from requirements and policy sketches.
Encoding Requirements Suppose that a router receives
multiple announcements A1, . . . ,An to the same prefix.
The BGP propagation graph identifies a preference with
which the announcements must be selected by the router.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 585

Suppose the router must select announcements A1,A2,
and A3 in the order A1 � A2 � A3. We encode this re-
quirement with the following constraint:

Pref(A1,A2)∧Pref(A2,A3)∧
(
∀i ∈ [4, ..,n].Pref(A3,Ai)

)
Note that simpler requirements that do not stipulate a par-
ticular order are a special case. For example, if a require-
ment stipulates that an announcement Ak is selected as
the best route, the above constraint becomes:

∀i ∈ [1,n]. k 6= i =⇒ Pref(Ak,Ai)

Overall Synthesis Algorithm Putting all pieces
together, the complete algorithm employed by
NetComplete to synthesize concrete BGP policies
is as follows:
Step 1 (§4.2): Construct a BGP propagation graph Gbgp

from the given requirements and network topology.
Step 2 (§4.3): Encode the routers’ BGP policy sketches.

The result is a constraint ϕS over variables S. Each
concrete instantiation of the variables S identifies
concrete BGP policies.

Step 3 (§4.4): Declare symbolic variables A to represent
all announcements propagated through the BGP
propagation graph.
Propagate all symbolic announcements through the
policy sketches. The result is an SMT constraint
ϕannouncements over the variables S and A.

Step 4 (Synthesis without additional OSPF requirements):
Encode the route selection process and the require-
ments with the selection predicate PrefNoIGP,
resulting in SMT constraints ϕselect and ϕreq over
the variables A. If a model of ϕselect ∧ ϕreq exists,
then derive concrete BGP policies and return;
otherwise, go to Step 5.

Step 5 (Synthesis with additional OSPF requirements):
Find the unsatisfiable core of ϕselect ∧ϕreq and de-
rive a set S of pairs (A1,A2) of announcements that
cannot be correctly selected without considering
their IGP costs. Modify the constraint to:(∧
(A1,A2)∈S

IGPCostA1 < IGPCostA2

)
⇒ ϕselect∧ϕreq

If a model of this constraint exists, then derive BGP
policies, create OSPF requirements from the set S,
and return; otherwise, return that the requirements
cannot be satisfied.

5 OSPF Synthesis

We now present NetComplete’s OSPF synthesizer.
OSPF is a Dijskstra-based routing protocol that forwards
traffic along the shortest path, where path costs are com-
puted based on the OSPF cost attached to each link.

OSPF Requirement:

(AS100→ A→C→ AS300
= AS100→ A→ D→C→ AS300)

� AS100→ A→ B→C→ AS300

B C

A D

AS300

AS100

AS500

20

10

20

1010

Figure 6: Example of correct assignment of link costs
with respect to OSPF requirements.

NetComplete features a new counter-example guided in-
ductive synthesis (CEGIS) [26] algorithm for OSPF that,
given a set of OSPF requirements and a network topol-
ogy, outputs OSPF link costs that enforce the require-
ments. Our algorithm can be tailored to support other
Dijkstra-based routing protocols, such as IS-IS [27].

5.1 SMT Encoding
We phrase the OSPF synthesis problem as a constraint
solving problem as follows. For any link that connects
two nodes R to R′ we introduce an integer variable CR,R′

to represent the cost of link R→ R′. The cost of a path
is given by the sum of the link costs along that path. For
example, the cost of AS100→ A→ B→ C → AS300,
denoted by Cost(A→ B→ C), is CA,B +CB,C. We also
denote the (finite) set of all simple paths between two
nodes R and R′ with Paths(R,R′). We can encode that the
path P = AS100→ A→C→ AS300 has the lowest cost
among all other simple paths from AS100 to AS300 via:

∀X ∈Paths(AS100,AS300)\{P}. Cost(A→C)<Cost(X)

We can directly use this method to encode the enforce-
ment of OSPF requirements; see Fig. 6. For our example
requirements, we obtain:

Cost(A→C) = Cost(A→ D→C)
∧
(
Cost(A→C)< Cost(A→ B→C)

)
∧
(
∀X ∈ Paths(AS100,AS300)\S.

Cost(A→ B→C)< Cost(X)
)
, where

S = {A→C,A→ D→C,A→ B→C}

This constraint captures that: (i) AS100 → A → C →
AS300 and AS100 → A → D → C → AS300 must
have equal costs, (ii) path AS100 → A → C →
AS300 has lower cost than AS100 → A → B → C →
AS300, and (iii) all other paths have higher cost than

586 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AS100 → A → B → C → AS300. Note, in this ex-
ample, Paths(AS100,AS300) = S. Therefore, we have
Paths(AS100,AS300) \ S = /0 and condition (iii) vacu-
ously holds.
Naive OSPF Synthesis A naive synthesis solution is to
encode all requirements with constraints, as described
above, and to then use a constraint solver to discover
a model that identifies correct link costs. Unfortunately,
phrasing the OSPF synthesis problem directly into SMT
does not scale to large networks; cf. [20]. The main issue
is the for-all (∀) quantifier in the constraints used to en-
code that a path has a lower cost among all other simple
paths with the same source and destination.

5.2 Counter-Example Guided Inductive
Synthesis for OSPF

We now present our new counter-example guided induc-
tive synthesis (CEGIS) algorithm for OSPF. CEGIS is a
contemporary approach to synthesis, where a correct so-
lution is iteratively learned from counter-examples [26].
CEGIS algorithms tend to work quite well in practice be-
cause often a small number of counter-examples (that is,
few iterations) is sufficient to discover a correct solution.

The OSPF synthesis problem amounts to finding a
model of logical constraints of the form:

∃C. ENCODEOSPF(C,r,Paths(r))

where C is the set of variables that represent link costs,
r is an OSPF requirement, Paths(r) is the set of all
paths from the source Src and destination Dst provided
in the requirement r, and ENCODEOSPF(C,r,Paths(r))
returns a logical formula that encodes the requirement’s
satisfaction (as described in §5.1). Finding a model of
this formula directly using a constraint solver is difficult
due to the large number of paths in Paths(r). To avoid
this quantifier, CEGIS restricts the constraint to a (small)
set of paths S = {P1, . . . ,Pn} ⊆ Paths(r). The resulting
constraint is:

∃C. ENCODEOSPF(C,r,S)

which is easier to solve by existing constraint solvers. A
model of this constraint identifies link costs that imply
that the requirement holds over the paths in S. However,
it may not hold over all paths in Paths(r). The idea of
CEGIS is to check the requirement over all paths and
to obtain a concrete counter-example that violates it, if
one exists; we remark that the step of checking is usu-
ally efficient. The set S is then iteratively expanded with
counter-examples until a correct solution is found.
Algorithm We show the main steps of our CEGIS al-
gorithm in Alg. 1. For each requirement r ∈ Reqs, the
algorithm declares a set Sr (line 3). The algorithm then

Algorithm 1: CEGIS algorithm for synthesizing
OSPF link costs with respect to OSPF requirements.

Input: OSPF requirements Reqs =
⋃

i ri, link cost
variables C, bound b

Output: OSPF link costs
1 begin
2 for r ∈ Reqs do
3 Sr = /0

4 while true do
5 ϕ = true
6 for r ∈ Reqs do
7 Sr← Sr ∪SAMPLEPATHS(r,b)
8 ϕr← ENCODEOSPF(C,r,Sr)
9 ϕ ← ϕ ∧ϕr

10 if UNSAT(ϕ) then
11 return ⊥
12 M←MODEL(ϕ)
13 if CHECKREQS(M,Reqs) then
14 return M(C)

15 (r,path)← COUNTEREXAMPLE(M,Reqs)
16 Sr← Sr ∪{path}

iteratively repeats the following steps. For each require-
ment r ∈ Reqs, the algorithm samples b paths from the
source to the destination of the requirement r and adds
these to Sr (line 7). It then encodes the requirement’s sat-
isfaction with respect to Sr (line 8) and conjoins the result
to ϕ (line 9). If the resulting constraint ϕ is unsatisfiable,
it means the requirements cannot be satisfied and the al-
gorithm returns ⊥ to indicate this. Otherwise, it obtains
a model M of the constraints ϕ (line 12), which defines a
concrete value for each link cost variable.

The algorithm then checks whether these costs defined
by M enforce the requirements Reqs (over all paths).
If the requirements are satisfied, the algorithm returns
M(C) (line 14), i.e. it returns the values associated to
the link cost variables C. Otherwise, it obtains a con-
crete counter-example as a pair (r,path) of a path path
that violates a requirement r, and expands the set Sr with
path (line 16). This ensures that the counter-example is
avoided in the next iteraion. Further, to reach a solution
faster, the algorithm samples additional b paths for each
requirement r and adds them to Sr. These steps are re-
peated until a solution is found or the requirements are
deemed unsatisfiable.

6 Implementation and Evaluation

We implemented NetComplete in around 10K lines of
Python code using SMT-LIB v2 [28] and Z3 [21]. Our
implementation is based on the theories of linear in-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 587

2 requirements 8 requirements 16 requirements
Network Req. 50% symbolic 100% symbolic 50% symbolic 100% symbolic 50% symbolic 100% symbolic
size type CEGIS Naive CEGIS Naive CEGIS Naive CEGIS Naive CEGIS Naive CEGIS Naive

Small Simple 0.41 0.93 0.43 1.04 1.66 2.42 1.67 2.73 3.33 6.95 3.39 8.02
Any-path 0.62 2.00 0.67 2.38 2.31 12.27 2.38 14.48 4.63 7.22 4.76 8.58
ECMP 0.48 0.84 0.53 0.94 1.72 5.02 1.77 5.76 3.44 3.16 3.48 3.61
Ordered 0.55 0.54 0.68 0.64 2.90 2.93 5.49 3.50 4.76 5.07 7.93 6.05

Medium Simple 0.79 790.04 0.81 1554.81 3.06 19613.55 3.10 20.60 6.17 3238.46 6.18 6039.24
Any-path 1.27 1677.30 1.28 4208.68 4.89 18758.02 4.94 66.10 9.70 107.13 9.83 122.68
ECMP 0.85 567.02 0.86 1370.70 3.16 5643.60 3.24 22272.88 6.34 45.32 6.39 51.61
Ordered 1.76 450.64 2.81 732.60 30.83 2942.83 33.60 8636.21 31.08 49.43 43.63 58.54

Large Simple 1.78 > 24h 1.85 > 24h 7.35 > 24h 7.40 > 24h 13.90 > 24h 14.03 > 24h
Any-path 4.23 > 24h 4.33 > 24h 16.59 > 24h 16.89 > 24h 32.61 > 24h 33.01 > 24h
ECMP 1.83 > 24h 1.89 > 24h 7.07 > 24h 7.14 > 24h 13.37 > 24h 13.52 > 24h
Ordered 6.90 > 24h 15.00 > 24h 33.81 > 24h 44.72 > 24h 249.48 > 24h 1155.19 > 24h

Figure 7: Using Counter-Example Guided Inductive Synthesis (CEGIS) to synthesize OSPF weights is considerably
faster than a naive OSPF algorithm which aims to solve all constraints at once.

teger arithmetic and quantifier-free uninterpreted func-
tions. Our prototype takes as input partial configurations
(combining OSPF, BGP, and static routes) and outputs
completed ones. We support standard Cisco commands
for setting OSPF costs and BGP policies and can easily
extend our code base to support other languages.

In the following, we show that our NetComplete im-
plementation is practical and scales to realistic networks.
Specifically, we measure: (i) NetComplete OSPF and
BGP synthesis times in growing network topologies; (ii)
the impact of having more or less symbolic variables
in the sketches; and (iii) how NetComplete compares
against competing approaches such as SyNET [20].

6.1 Methodology and datasets

Topologies We sample 15 network topologies from
Topology Zoo [29] that we classify according to their
size: small (from 32 to 34 routers), medium (from 68 to
74 routers), and large (from 145 to 197 routers). We se-
lect 5 topologies per category.

Requirements We generate four types of routing re-
quirements (simple, any-path, ECMP, and ordered) in
each topology. Each requirement is defined between a
randomly selected source Src and destination Dst pair.
For simple path requirements, we choose a random fea-
sible path from Src to Dst. For the other requirements,
we first choose two paths P1 and P2 from Src to Dst
and then we construct (P1,P2) for any-path requirements,
(P1 = P2) for ECMP, or P1 � P2 for ordered require-
ments. For each topology, we generate multiple sets of
requirements of size 2, 8, and 16. We generate all four
types of requirements for the OSPF evaluation, and only
generate simple and ordered path requirements for the
BGP evaluation. Indeed, any-path and ECMP require-

ments are typically internal requirements and are there-
fore typically enforced by IGP protocols.

Sketches We construct configuration sketches for each
topology from a fully concrete configuration (which we
synthesize using NetComplete) for which we randomly
make a given percentage of the variables symbolic. For
instance, to generate partial OSPF (resp. BGP) configu-
rations that are 50% symbolic, we randomly make 50%
of the edges (resp. BGP import/export policies) in the
synthesized concrete configurations symbolic.

Validation We validate that our synthesized configura-
tions comply with the corresponding requirements in an
emulated environment composed of Cisco routers [30].

6.2 Results

We now present our results focusing first on OSPF syn-
thesis, before considering BGP synthesis, and finishing
with a comparison with SyNET. We run all our exper-
iments on a server with 128GB of RAM and a 12-core
dual-processors running at 2.3GHz. Unless indicated, we
report averaged results over 5 runs and across topologies
of the same class.

OSPF Synthesis We first illustrate the effectiveness of
synthesizing OSPF configuration using our CEGIS algo-
rithm versus a naive algorithm in which the entire ∃∀ϕ
constraint is directly fed to the solver. We then evaluate
how sketches affect synthesis time.

Our results are reported in Fig. 7 and convey four
important insights. First, CEGIS significantly outper-
forms naive OSPF synthesis, especially in large networks
where naive synthesis does not even terminate within
a day. Second, we see that the synthesis time is pro-
portional to the topology size and the number of re-
quirements. Indeed, the number of symbolic variables

588 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100

Percentage of symbolic edge costs

0

500

1000

1500

2000

T
im

e
[s

]

Figure 8: NetComplete synthesizes ordered path require-
ments faster when the configuration sketch provides
more concrete values for edge costs.

is equal to the number of symbolic edge costs, while
the number of constraints is proportional to the require-
ments size and the number of available paths. Third, or-
dered path requirements take more time to synthesize
than the other requirements. This is expected as such
requirements specify a strict sequence of paths mak-
ing the search space more sparse. Fourth, the use of
more concrete values significantly reduces the synthe-
sis time, especially for ordered path requirements with
reductions up to 70%. We further illustrate this behav-
ior in Fig. 8 which depicts the times required to synthe-
size 16 ordered path requirements for the large networks
as a function of the percentage of symbolic values. We
see that NetComplete indeed leverages the concrete vari-
ables and the reduced search space to synthesize config-
urations faster.

BGP Synthesis We now evaluate the effectiveness of the
BGP synthesizer and how it leverages partial evaluation
to concretize up to 25% of the symbolic variables and
therefore speed up the overall synthesis time.

In Fig. 9, we show the average number of generated
symbolic variables for each group (see Appendix C for
detailed numbers). We see that the number of generated
symbolic variables is not directly related to the topol-
ogy size and the number of requirements: the number
of variables for medium topologies can exceed the ones
of larger topologies. For BGP, the number of variables
indeed depends on: (i) the number of routers (and their
connectivity) in the computed propagation graph; (ii) the
complexity of the configuration sketch; and (iii) the ef-
fectiveness of partial evaluation.

Regarding partial evaluation, we observe that
NetComplete manages to evaluate between 7% and
25% of the generated symbolic variables (Fig. 9), which
makes BGP synthesis proportionally faster. Indeed, in
Fig. 10, we show how the BGP synthesis time evolves
linearly as a function of the number of symbolic vari-
ables. We also see that NetComplete always manages to

Topo Req. 16 reqs.
type Total Min % Eval Max % Eval

Small Simple 58578 9.62% 18.76%
Ordered 37662 16.75% 18.76%

Medium Simple 98683 7.27% 13.54%
Ordered 58924 10.02% 22.81%

Large Simple 83832 11.93% 14.57%
Ordered 29565 22.56% 25.07%

Figure 9: Number of generated symbolic variables.
Thanks to partial evaluation, NetComplete is able
to evaluate between 7% and 25% of the symbolic
variables—making BGP synthesis significantly faster.

synthesize BGP configurations in less than 14min.

Comparison to SyNET We now compare the syn-
thesis time of NetComplete to SyNET. Specifically,
we compare NetComplete and SyNET running times
for the worst-case scenario reported in [20] involving
10 requirements defined in topologies with 49 and 64
routers. Since SyNET defines requirements in terms of
the number of traffic classes and not forwarding paths
as NetComplete, we first translate each traffic class to
a set of simple path requirements. To ensure a fair com-
parison, we provide NetComplete with entirely symbolic
sketch since SyNET does not accept sketches.

Our results (Fig. 11) shows that NetComplete is at
least 600× faster than SyNET and is able to synthesize
configurations for larger topologies that SyNET timed
out on. This speed up stems from two factors. First,
NetComplete does not use an SMT solver for the re-
quirements that it can solve directly (such as synthesizing
static routes). Second, NetComplete relies on domain-
specific heuristics (CEGIS and partial evaluation) to re-
duce the search space, while SyNET relies on the generic
optimizations of the underlying SMT solver.

7 Related Work

Intent-based Networking and SDN Languages The
importance of relying on high-level abstractions in net-
work management has received considerable attention,
specifically in the context of Software-Defined Network-
ing (SDN) [18, 25, 31, 32, 33, 34, 35, 36, 37]. This influ-
ence goes beyond academic with two of the largest SDN
controllers (ONOS and OpenDayLight) now providing
declarative network management [38, 39].

Our work brings programmability to traditional net-
works, by enabling operators to enforce policies ex-
pressed in high-level SDN-like languages such as Gen-
esis [18] or Frenetic [25]. Our work, therefore, comple-
ments the above initiatives and enables them to be used

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 589

0 50k 100k 150k

Number of symbolic variables

0

200

400

600

800

T
im

e
[s

]

Figure 10: BGP synthesis time grows linearly with re-
spect to the number of symbolic variables.

beyond OpenFlow or P4-enabled networks.
Network Verification Network verification approaches
are used to check a configuration with respect to require-
ments. FSR [40] encodes BGP preferences using routing
algebra [41] and verifies safety properties (e.g., BGP sta-
bility) using SMT solvers. Batfish [6] encodes routing
protocols in Datalog and uses Datalog solvers to check
conformance with routing requirements. Bagpipe [9] and
Minesweeper [8] formalize BGP and present an analyzer
for BGP configurations. In contrast, NetComplete fo-
cuses on synthesis, which subsumes verification.
Network Configuration Synthesis Recently, multiple
works have aimed at synthesizing configurations out of
high-level requirements [14, 15, 16, 20].

ConfigAssure [14] supports requirements expressed
using first-order constraints. As shown in our evalua-
tion, a direct encoding of routing computations into con-
straints goes beyond what existing solvers can handle.

Route Shepherd [41, 42] takes a partial specification of
BGP preferences and derives constraints over link costs
that capture the absence of BGP instability. In contrast,
NetComplete models the derivation of BGP preferences
and also synthesizes the BGP configuration.

Propane [15] and PropaneAT [16] produce BGP con-
figurations out of high-level requirements. Having the
freedom to output any configuration enables these sys-
tems to use templates and, in turn, to scale to large net-
works. In contrast, NetComplete supports partial config-
urations for multiple protocols (OSPF, BGP, and static
routes), which prevents us from leveraging specific tem-
plates. While NetComplete pays for this flexibility in
terms scalability, it is still fast, synthesizing configura-
tions within seconds.

SyNET [20] is another network-wide configuration
synthesizer supporting multiple protocols. It differs from
NetComplete in two ways. First, SyNET supports any
protocol that can be specified in stratified Datalog [43],
while NetComplete supports specific protocols (OSPF,
BGP). Since BGP cannot be fully captured in strati-

Rtrs Protocol SyNET NetComplete

49 Static 14m11s 0.05s
Static + OSPF 5h22m56s 2m1s
Static + OSPF + BGP timeout (> 24h) 44m2s

64 Static 49m22s 0.06s
Static + OSPF 21h13m16s 2m22s
Static + OSPF + BGP timeout (> 24h) 6h6m30s

Figure 11: NetComplete is > 600× faster than [20].

fied Datalog, SyNET supports a simplified BGP though,
while NetComplete supports it fully. Second, SyNET
uses a generic synthesis procedure for Datalog, while
NetComplete uses custom procedures for each protocol.
Consequently, SyNET does not scale to large networks
and is orders of magnitude slower than NetComplete.

Synthesizers such as NetEgg [19, 44] and NetGen [17]
target SDN environments and aim to derive controller
programs (instead of configurations) out of requirements.
While their goal is similar to ours, our target is different
(distributed protocols vs. centralized controller).
Program Synthesis Our work also relates to program
synthesis. In particular, we showed a novel instantiation
of counter-example guided inductive synthesis (CEGIS)
[26] for synthesizing weights in OSPF. CEGIS is a gen-
eral concept that has become popular in the program syn-
thesis community. A key challenge in using it is finding
effective ways to specialize it (e.g., efficient representa-
tion of the hypothesis space, interaction with the SMT
solver) to the particular application domain (e.g., net-
working and the OSPF protocol in our case).

8 Conclusion

We presented NetComplete, the first scalable network-
wide configuration synthesizer to support multiple pro-
tocols and a partial sketch of the desired configuration.

NetComplete features a new BGP synthesis procedure
that supports BGP configuration sketches and partial
computations over symbolic announcements. It also in-
troduces an efficient synthesis procedure for the widely-
used OSPF protocol. This procedure is based on counter-
example guided inductive synthesis and achieves signifi-
cant speedups (> 100x) over existing solutions.

Finally, we presented a comprehensive set of experi-
mental results, which demonstrate that NetComplete can
autocomplete configurations for large networks with up
to 200 routers within few minutes.

Acknowledgments

We are grateful to our shepherd, Vyas Sekar, and the
anonymous reviewers for their constructive feedback.

590 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Stock trading closed on NYSE after glitch
caused major outage. https://www.

theguardian.com/business/live/2015/jul/

08/new-york-stock-exchange-wall-street.

[2] Google routing blunder sent Japan’s Internet dark on
Friday. https://www.theregister.co.uk/2017/

08/27/google_routing_blunder_sent_japans_

internet_dark/, 2017.

[3] Facebook, Tinder, Instagram suffer widespread is-
sues. http://mashable.com/2015/01/27/

facebook-tinder-instagram-issues/.

[4] United Airlines jets grounded by computer
router glitch. http://www.bbc.com/news/

technology-33449693.

[5] Juniper Networks. Whats Behind Network Downtime?
Proactive Steps to Reduce Human Error and Improve
Availability of Networks. Technical report, May 2008.

[6] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd D
Millstein. A General Approach to Network Configura-
tion Analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’15), 2015.

[7] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast Control Plane Analy-
sis Using an Abstract Representation. In Proceedings of
the 2016 ACM SIGCOMM Conference SIGCOMM ’16,
2016.

[8] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A General Approach to Network Configuration
Verification. In Proceedings of the 2017 ACM SIGCOMM
Conference SIGCOMM ’17, 2017.

[9] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D.
Ernst, Arvind Krishnamurthy, and Zachary Tatlock. Scal-
able Verification of Border Gateway Protocol Configura-
tions with an SMT Solver. In ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, (OOPSLA’16), 2016.

[10] Peyman Kazemian, George Varghese, and Nick McKe-
own. Header Space Analysis: Static Checking for Net-
works. In 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’12), 2012.

[11] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P. Brighten Godfrey. VeriFlow: Verifying
Network-Wide Invariants in Real Time. In 10th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI ’13), 2013.

[12] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. SymNet: Scalable Symbolic Execution for
Modern Networks. In Proceedings of the 2016 ACM SIG-
COMM Conference SIGCOMM ’16, 2016.

[13] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid,
Karthick Jayaraman, and George Varghese. Checking Be-
liefs in Dynamic Networks. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
’15), 2015.

[14] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram
Kaul. Declarative Infrastructure Configuration Synthesis
and Debugging. Journal of Network and Systems Man-
agement, 16(3):235–258, 2008.

[15] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t Mind the Gap: Bridg-
ing Network-wide Objectives and Device-level Config-
urations. In Proceedings of the 2016 ACM SIGCOMM
Conference SIGCOMM ’16, 2016.

[16] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Network Configuration Syn-
thesis with Abstract Topologies. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation PLDI ’17, 2017.

[17] Shambwaditya Saha, Santhosh Prabhu, and P Madhusu-
dan. NetGen: Synthesizing Data-plane Configurations for
Network Policies. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Re-
search SOSR ’15, 2015.

[18] Kausik Subramanian, Loris D’Antoni, and Aditya Akella.
Genesis: Synthesizing Forwarding Tables in Multi-tenant
Networks. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages
POPL ’17, 2017.

[19] Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau
Loo. Scenario-based Programming for SDN Policies. In
Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies CoNEXT ’15,
2015.

[20] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Network-Wide Configuration Syn-
thesis. In Proceedings of the 29th International Confer-
ence on Computer Aided Verification CAV ’17. Springer,
2017.

[21] L. De Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems
TACAS ’08, 2008.

[22] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan,
Ming Zhang, and Ahsan Arefin. A Network-State Man-
agement Service. In Proceedings of the 2016 ACM SIG-
COMM Conference SIGCOMM ’15, 2015.

[23] Nanxi Kang, Ori Rottenstreich, Sanjay G Rao, and Jen-
nifer Rexford. Alpaca: Compact Network Policies With
Attribute-Encoded Addresses. IEEE/ACM Transactions
on Networking, 2017.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 591

https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
http://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
http://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
http://www.bbc.com/news/technology-33449693
http://www.bbc.com/news/technology-33449693

[24] G Gonzalo et al. Network Mergers and Migrations: Junos
Design and Implementation, volume 45. John Wiley &
Sons, 2011.

[25] Nate Foster, Rob Harrison, Michael J Freedman, Christo-
pher Monsanto, Jennifer Rexford, Alec Story, and David
Walker. Frenetic: A Network Programming Language.
In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming ICFP ’11, 2011.

[26] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vijay Saraswat. Combinatorial Sketch-
ing for Finite Programs. In Proceedings of the 12th in-
ternational conference on Architectural support for pro-
gramming languages and operating systems ASPLOS XII,
2006.

[27] R. W. Callon. RFC 1195: Use of OSI IS-IS for Routing
in TCP/IP and Dual Environments, 1990.

[28] C. Barrett et al. The SMT-LIB Standard: Version 2.0,
2010.

[29] Simon Knight, Hung X. Nguyen, Nick Falkner, Rhys Al-
istair Bowden, and Matthew Roughan. The Internet
Topology Zoo. IEEE Journal on Selected Areas in Com-
munications, 2011.

[30] Graphical Network Simulator-3 (GNS3). https://www.
gns3.com/.

[31] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-
Myung Kang, Aditya Akella, Sujata Banerjee, Charles
Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. PGA:
Using Graphs to Express and Automatically Reconcile
Network Policies. In Proceedings of the 2015 ACM SIG-
COMM Conference SIGCOMM ’15, 2015.

[32] Christopher Monsanto, Joshua Reich, Nate Foster, Jen-
nifer Rexford, and David Walker. Composing Software
Defined Networks. In 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’13),
2013.

[33] Andreas Voellmy, Junchang Wang, Y Richard Yang,
Bryan Ford, and Paul Hudak. Maple: Simplifying SDN
Programming Using Algorithmic Policies. In Proceed-
ings of the 2016 ACM SIGCOMM Conference SIGCOMM
’13, 2013.

[34] Tim Nelson, Andrew D Ferguson, Michael JG Scheer, and
Shriram Krishnamurthi. Tierless Programming and Rea-
soning for Software-Defined Networks. In 11th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI ’14), 2014.

[35] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-
Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and
David Walker. NetKAT: Semantic Foundations for Net-
works. In Proceedings of the 41st ACM SIGPLAN Sym-
posium on Principles of Programming Languages POPL
’14, 2014.

[36] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra
Silva, and Laure Thompson. A Coalgebraic Decision Pro-
cedure for NetKAT. In Proceedings of the 42st ACM SIG-
PLAN Symposium on Principles of Programming Lan-
guages POPL ’15, 2015.

[37] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fer-
nando Pedone, Robert Kleinberg, Emin Gun Sirer, and
Nate Foster. Merlin: A Language for Provisioning Net-
work Resources. In Proceedings of the 10th ACM Con-
ference on Emerging Networking Experiments and Tech-
nologies CoNEXT ’14, 2014.

[38] Open Network Operating System (ONOS) Intent Frame-
work. https://wiki.onosproject.org/display/

ONOS/The+Intent+Framework.

[39] OpenDayLight (ODL) Group-Based Policy. https:

//wiki.opendaylight.org/view/Group_Policy:

Main.

[40] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rex-
ford, V. Nigam, A. Scedrov, and C. Talcott. FSR: For-
mal Analysis and Implementation Toolkit for Safe Inter-
domain Routing. IEEE/ACM Transactions on Network-
ing, 20(6):1814–1827, 2012.

[41] Alexander J., T. Gurney, Anduo Wang Limin Jia, and
Boon Thau Loo. Partial Specification of Routing Config-
urations. In Workshop on Rigorous Protocol Engineering,
2011.

[42] Alexander J.T. Gurney, Xianglong Han, Yang Li, and
Boon Thau Loo. Route Shepherd: Stability Hints for the
Control Plane. In Proceedings of the 2016 ACM SIG-
COMM Conference SIGCOMM ’12, 2012.

[43] Serge Abiteboul, Richard Hull, and Victor Vianu, editors.
Foundations of Databases: The Logical Level. Addison-
Wesley Longman Publishing Co., Inc., 1995.

[44] Yifei Yuan, Rajeev Alur, and Boon Thau Loo. NetEgg:
Programming Network Policies by Examples. In Pro-
ceedings of the 13th ACM Workshop on Hot Topics in
Networks HotNets ’14, 2014.

592 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.gns3.com/
https://www.gns3.com/
https://wiki.onosproject.org/display/ONOS/The+Intent+Framework
https://wiki.onosproject.org/display/ONOS/The+Intent+Framework
https://wiki.opendaylight.org/view/Group_Policy:Main
https://wiki.opendaylight.org/view/Group_Policy:Main
https://wiki.opendaylight.org/view/Group_Policy:Main

PrefNoIGP(A1,A2)⇔
// 0) A1 is received and A2 is dropped
(permittedA1

∧ ¬permittedA2
)

// 1) Higher local preference
∨
(
permittedA1

∧ permittedA2
∧ (LocalPrefA1 > LocalPrefA2)

)
// 2) Lower AS path length
∨
(
permittedA1

∧ permittedA2
∧ (LocalPrefA1 = LocalPrefA2)

∧ (AsPathLenA1 > AsPathLenA2)
)

...
// 5) Prefer routes learned over eBGP
∨
(
permittedA1

∧ permittedA2
∧ (LocalPrefA1 = LocalPrefA2)

· · ·∧ (eBGPA1 ∧¬eBGPA2)
)

Pref(A1,A2)⇔ PrefNoIGP(A1,A2)∨
// 6) Lower IGP cost(
permittedA1

∧ permittedA2
∧ (LocalPrefA1 = LocalPrefA2)

· · ·∧ (IGPCostA1 < IGPCostA2)
)

Figure 12: SMT encoding of the preference over BGP
announcements with the same prefix

A SMT Encoding of the BGP Selection
Process

Encoding Selection of Announcements When a BGP
router receives different announcements for the same
prefix, it uses the preference ordering to select the best
route. We encode the logic used by routers to select the
best route in Fig. 12. The predicate PrefNoIGP(A1,A2)
holds if and only if announcement A1 is preferred over
A2 without considering the IGP costs of A1 and A2. The
constraint is a disjunction over the different cases defined
by the BGP selection process. First, if A2 is dropped, then
A1 is selected as a best route. Second, if both announce-
ments are permitted, the router selects A1 over A2 if A1’s
local preference is lower than that of A2. Analogously,
the constraint encodes cases 3−5 described in §4.4.

In addition, we define the constraint Pref(A1,A2) that
also compares the announcements’ IGP costs. The con-
straint Pref(A1,A2) holds if announcement A1 is pre-
ferred over A2 without considering IGP costs (i.e.,
PrefNoIGP(A1,A2) holds) or the IGP cost of A1 is lower
than that of A2.

B SMT Encoding of BGP sketches

We illustrate the encoding of BGP sketches using SMT
constraints. Consider the following BGP sketch:

1 AttributesSketch

2 match next -hop AS200

3 set local -pref ? < 50

This sketch would match any announcement that has
the value AS200 set for the next hop attribute. If an an-
nouncement is matched, this policy would set the local

preference of the output announcement to a value that is
yet to be synthesized by the BGP synthesizer. As defined
by the sketch, this local preference value must be smaller
than 50. Note that this BGP policy does not change the
remaining attributes (as there are no further actions).

We encode this BGP sketch as follows:

if NextHopAin
=AS200

then
(
(LocalPrefAout = Var1)∧ (0 < Var1 < 50)
∧(∀X ∈ Attrs\{LocalPref}. XAout = XAin)

)
else ∀X ∈ Attrs. XAout = XAin

where Attrs = {NextHop, . . .} and Var1 are fresh variables

Here, the variable Var1 represents the local preference
value that will be set by the BGP policy. Ain represents
the input announcement (before it is processed by the
BGP policy) and Aout the output one. The constraint for-
malizes that only input announcements with next hop
equal to AS200 are matched. For matched announce-
ments, the then constraint encodes that the output an-
nouncement has local preference set to Var1, which is
a value smaller than 50, and all remaining attributes are
identical to those in the input announcement (and thus re-
main unchanged). Finally, the else constraint ensures that
if an announcement is not matched (its local preference
is not AS200), then all attributes remain unchanged.

C Symbolic Variables in BGP Synthesis

In Fig. 13, we show the number of generated symbolic
variables when synthesizing BGP configurations for each
topology we used in our data set. We observe that the
number of generated variables depends on the number of
routers (and their connectivity) in the computed propa-
gation graph, the complexity of the configuration sketch,
and on the effectiveness of partial evaluation.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 593

Size Topo Req. 2 reqs. 8 reqs. 16 reqs.
type Total 100% 50% Total 100% 50% Total 100% 50%

Small Arnes simple 1997 488 482 13565 2466 2397 68355 7205 7126
order 962 224 200 11759 2394 2352 35993 6541 6380

Bics simple 2045 515 503 17960 2592 2553 51890 6930 6760
order 758 206 197 10313 2462 2423 40581 7302 7223

Canerie simple 764 210 198 16451 2569 2478 55787 6394 6233
order 1238 316 300 10775 2457 2424 40243 6981 6981

CrlNet simple 653 179 170 13112 2078 2078 41693 5476 5288
order 854 228 210 6728 1634 1562 27607 5204 5055

Renater simple 2717 669 651 18983 2884 2884 75167 7189 7104
order 758 206 188 13283 2642 2558 43884 7333 7251

Medium Columbus simple 2057 556 540 13400 2520 2421 52672 7159 7010
order 854 228 219 6728 1634 1595 28545 6510 6361

Esnet simple 2324 543 536 28403 4206 4110 105879 10298 10125
order 1526 382 370 13295 2888 2849 51135 9885 9805

Latnet simple 5111 1052 1043 44012 4921 4825 149394 10778 10590
order 3530 837 834 27626 3990 3903 104606 10482 10482

Sinet simple 1139 293 281 33905 4339 4230 114648 10466 10278
order 2966 712 703 29552 4978 4933 77823 11276 11203

Uninett2011 simple 2705 696 678 24275 3317 3224 70821 8752 8585
order 1610 397 388 14333 3011 2933 32511 7122 7122

Large Cogentco simple 3293 837 828 22565 4420 4348 85708 11441 11371
order 1046 272 272 7115 1819 1743 29726 6982 6821

Colt simple 3578 866 845 47795 6087 6024 85997 12524 12362
order 662 184 184 9992 2544 2475 33887 7819 7737

GtsCe simple 3566 861 861 29627 4948 4855 67705 9450 9356
order 854 228 210 8621 2060 2023 31073 7011 7011

TataNld simple 2348 624 608 20330 3861 3822 75380 10575 10405
order 662 184 181 6650 1680 1602 31424 7393 7316

UsCarrier simple 1460 412 391 19643 3776 3737 104371 12202 12017
order 758 206 199 5438 1445 1415 21715 5440 5361

Figure 13: The number of symbolic variables generated for each topology and the number of partially evaluated
variables when the configuration sketch is 100% and 50% symbolic.

594 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Automatically Correcting Networks with NEAt

Wenxuan Zhou, Jason Croft, Bingzhe Liu, Elaine Ang, Matthew Caesar
University of Illinois at Urbana-Champaign

{wzhou10, croft1, bingzhe, ranang2, caesar}@illinois.edu

Abstract
Configuring and maintaining an enterprise network is

a challenging and error-prone process. Administrators
often need to consider security policies from a variety of
sources such as regulatory requirements, industry stan-
dards, and mitigating attack vectors. Erroneous config-
uration or network application could violet crucial poli-
cies, and result in costly data breaches and intrusions.
Relying on humans to discover and troubleshoot viola-
tions is slow and prone to error, considering the speed at
which new attack vectors propagate and the increasing
network dynamics, partly an effect of SDN.

To address this problem, we present NEAt, a system
analogous to a smartphone’s autocorrect feature that en-
ables on-the-fly repair to policy-violating updates. It
does so by modifying the forwarding behavior of updates
to automatically repair violations of policies such as
reachability, service chaining, and segmentation. NEAt
takes as input a set of administrator-defined high-level
policies, and formulates these policies as directed graphs.
Sitting between an SDN controller and the forwarding
devices, NEAt intercepts updates proposed by SDN ap-
plications. If an update violates a policy, NEAt trans-
forms the update into one that complies with the pol-
icy. Unlike domain-specific languages or synthesis plat-
forms, NEAt allows enterprise networks to leverage the
advanced functionality of SDN applications while simul-
taneously achieving strong, automated enforcement of
general policies. Based on a prototype implementation
and experimentation using Mininet and operation trace
of a large enterprise network we demonstrate that NEAt
achieves promising performance in real-time bug-fixing.

1 Introduction

Modern enterprise networks must comply with highly
stringent security demands that merge together demands
from a variety of sources and standards. As a result,
network administrators must carefully design and main-
tain their networks to follow these policies, by mapping
out device contexts and access to sensitive resources, as-
sessing risk, and installing access control policies that
effectively mitigate that risk. However, mistakes and
errors in implementing the policies can result in costly

data breaches, segmentation violations, and infiltrations.
Through 2020, Gartner predicts 99% of firewall breaches
will be caused by misconfigurations [1, 2].

While discovering and troubleshooting these bugs is
essential to maintaining network security, doing so is
notoriously hard. Relying on humans to configure and
maintain the network configuration is not only prone to
mistakes, but slow. Given the sophistication and speed
at which new attack vectors propagate, manually updat-
ing and testing new configurations leaves the network in
a vulnerable state until the attack vector is fully secured.
Further, maintaining a security posture in the presence of
software-defined networking (SDN) is even more chal-
lenging. While SDN enables new functionality, applica-
tion designers may not be aware of the policy or security
requirements of the networks on which their applications
will be deployed. Worse yet, SDN applications written
in general-purpose languages such as Java or Python can
be arbitrarily complex. Requiring applications to imple-
ment and modify their behavior to support a broad spec-
trum of policies needed across a broad spectrum of net-
works presents an almost insurmountable challenge.

To this end, we present NEAt, a transparent layer
to automatically repair policy-violating updates in real-
time. NEAt secures the network with a mechanism sim-
ilar to a smartphone’s autocorrect feature, which enables
on-the-fly repair to policy violating updates and ensures
the network is always in a state consistent with pol-
icy. Unlike prior work on update synthesis, NEAt main-
tains backward compatibility and flexibility to run gen-
eral SDN application code. To do this, NEAt does not
synthesize network state from scratch, but rather influ-
ences updates from an existing SDN application toward a
correct specification. In particular, NEAt enforces a con-
crete definition of correctness by influencing and con-
straining dynamically arriving network instructions. To
formulate those correctness criteria, we construct a set
of policy graphs to represent humans’ correctness intent,
which is based on the observation that important error
conditions can be caught by a concise set of boundary
conditions. NEAt sits between an SDN controller and
the forwarding devices, and intercepts the updates pro-
posed by the running SDN applications. If the update
violates an administrator’s defined policy, such as reach-
ability or segmentation, NEAt transforms the update into

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 595

one that complies with the policy.
A key challenge is discovering update repairs in real-

time. In NEAt, we build on prior work on verification to
efficiently model packet forwarding behavior as a set of
Equivalence Classes (ECs) [19, 30]. Upon receiving an
update from an SDN controller, NEAt computes the set
of affected ECs and checks for a violation in the same
manner as [19]. To repair the violation, we cast the prob-
lem as an optimization problem, to find the minimum
number of changes (added or deleted edges) to repair the
violating EC’s forwarding graph. To rapidly compute re-
pairs on arbitrarily large networks, we exploit two opti-
mization techniques, topology limitation which “slices”
away irrelevant part of the network, and graph compres-
sion, to compress both an EC’s forwarding graph and the
topology. Then we solve the optimization problem on
the sliced and compressed graphs.

Furthermore, as NEAt repairs policy-violating up-
dates, stateful applications — without knowledge of the
violating or repaired updates — will diverge from the un-
derlying network state. To address this problem, applica-
tions can interactively propose updates to NEAt and re-
ceive notifications of repairs with minor modifications to
application code. Thus, applications can remain unmod-
ified and leverage NEAt transparently in a pass-through
mode, with a risk of state divergence, or propose updates
in an interactive mode.

A preliminary evaluation of our prototype shows
promising results. On topologies with up to 125 switches
and 250 hosts, NEAt can discover repairs in under one
second for applications with non-overlapping rules, and
under two seconds for applications with more complex
dependencies. Furthermore, we find NEAt can verify
and repair updates on realistic data planes. On a large
enterprise network with 1M forwarding rules, NEAt dis-
covered and repaired 28 loop violations. Simulations on
this data set show NEAt can verify and repair reachabil-
ity and loop freedom policies in under a second.

2 Motivation

Enterprise network policies must compose together re-
quirements from a variety of demands to mitigate risk
for attack vectors and limit access to sensitive resources.
As a result, network administrators must take into ac-
count complex, composed policies configuring or updat-
ing a network. This is a slow and often error-prone pro-
cess for a human operator. The operator may introduce
errors translating the demands into high-level policies,
or translating the policies into low-level routing config-
urations. While tools [17, 19] exist to automatically dis-
cover misconfigurations in real-time, they offer the oper-
ator no guidance on how to repair the misconfiguration
beyond the type of correctness property that is violated.

Rather, these tools block updates from introducing viola-
tions into the data plane state, at the cost of functionality.

Instead, a system to automatically repair updates, en-
suring the network always remains consistent with the
administrator’s policy, can relieve a slow and error-prone
process from the configuration process. If an update vi-
olates a given property in the network, a repair should
fix the cause of the violation while maintaining the origi-
nal purpose of the update. We argue a minimal change is
best, to repair the update with the least number of added
or removed edges. Furthermore, such a system should
improve upon a manual effort with transparency in both
architecture and performance. A system that requires
hours or days to verify and repair a network is not useful
if the process can be completed manually in just a few
minutes. It should also not require modifying existing
applications or redesigning infrastructure.

Efficiently discovering repairs is not a trivial addition
on top of data plane verification tools, such as [17, 19].
Due to the size of the network and data plane state, per-
formance is a key challenge in repairing policy viola-
tions in real-time. Consider a naive approach built on
top of VeriFlow that separates the forwarding behavior
into Equivalence Classes (ECs) of packets. All packets
within an EC are forwarded in precisely the same man-
ner. Each EC defines a configuration graph that captures
the the forwarding packets for packets within the EC.
The number of ECs is dependent on the number of de-
vices and forwarding rules in the network, and the time
to discover a repair is dependent on the number of ECs
and the number of edges in the network. A brute force
approach might discover repairs by testing all permuta-
tions of edge additions and removals to an EC’s config-
uration graph. A repair that requires only adding edges,
from 10 possible unused topology edges, would need to
explore 10! (˜3.6M) permutations. If the violating prop-
erty can be checked in just 1ms, each EC could take up
to 10 minutes to find a repair.

3 Design

NEAt operates between the controller and switches, in-
tercepting and verifying updates against a set of correct-
ness properties specified by a network operator. NEAt
takes these properties as input in the form of a directed
graph called a policy graph (1 in Figure 1). Policy
graphs can express properties including reachability, seg-
mentation, and waypointing, as described in §4.

To verify updates conform to the operator’s intended
policies, each update is applied to a model of the data
plane state and checked using NEAt’s verification en-
gine. a policy violation, the correction engine transforms
the update or existing data plane state to satisfy the vi-
olated policy. This ensures only updates conforming to

596 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the network policies are sent onto the network.
NEAt can integrate with the existing SDN control in-

frastructure in two ways. It can serve as a transparent
layer in a pass-through mode, or can interact with con-
troller applications in an interactive mode with minor
changes to the applications.

Policy

X

X

NEAt
Network Model

Verification
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

3.1 Verification and Repair
To verify updates and efficiently reason about the current
data plane states, NEAt builds on our previous work in
data plane verification [19,30] that separates the forward-
ing behavior into Equivalence Classes (ECs) of packets.
From each EC, we can extract a configuration graph that
defines the forwarding behavior for packets within the
EC. A repair for a given EC must then explore additions
or deletions of links in the configuration graph. Finding
a link addition requires examining the topology graph
defined by the edges in the physical topology. To ef-
ficiently discover repairs, we propose two optimization
techniques to compress the configuration and topology
graphs, described in §6. We refer to the outcome of these
techniques as the compressed configuration graph and
compressed topology graph.

With each update (2), NEAt applies the change to a
network model, from which the ECs affected by the up-
date are computed. Using the policy graph, NEAt checks
each affected EC in the network model for policy viola-
tions using the verification engine (3). If the update
does not introduce any violations, it is sent onto the net-
work. However, if it does introduce a violation, the con-
figuration graph and topology graph are compressed and
passed to the correction engine (4). The optimizer re-
turns a set of edges to be added or removed to the EC’s
configuration graph, which are then applied to the net-
work model, converted to OpenFlow rules, and sent to
the forwarding devices (5).

3.2 Interaction Modes
To prevent applications from diverging from the underly-
ing network state, NEAt exposes two integration modes:
pass-through and interactive.

Controller

NEAt

Stream of
Updates

App App

Suggested

Changes

Proposed
Updates

Interactive

Pass-
Through

Figure 2: Interaction modes of NEAt.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modification to controller or SDN applications. Both
these applications and the controller are unaware of
NEAt. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes them to the verification and correction
engines. The corrected updates abide by correct network
policies, and are directly applied to the network.

It’s possible for applications to have a different view
with NEAt about the current network state in pass-
through mode. But this does not violate consistency,
since NEAt acts as an arbitrator during rule insertion,
and will diligently verify and correct updates regard-
less of the application’s intention. The original intention
of an application is well preserved if the application is
written with full knowledge of, and in accordance with,
the network-wide correctness criteria. Otherwise, NEAt
may sacrifice application correctness for the benefit of
enforcing correct network policies.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted changes.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

4 Policy as Graphs

Many existing tools reason about individual network
paths [18, 19]. While this approach has proven effec-
tive for network verification, synthesizing network state
changes requires viewing the entire network as a whole

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 597

(i.e., a graph), as changes that repair one path may influ-
ence the correctness of other paths. In addition, express-
ing network correctness conditions as a graph instead of
a collection of paths enables dealing with a richer set of
policies, for instance, path consistency and load balanc-
ing. Based on this intuition, NEAt takes as input a set
of intended policies, and formulates these policies as di-
rected graphs called policy graphs.

A policy graph is defined on a packet header pattern,
for example, ip dst 10.0.1.0/24, port 443. Each node on
a policy graph is a traffic footprint matching a particu-
lar packet header pattern at a certain network location,
e.g., a switch, a routing table, an ACL table. Edges are
marked with labels denoting different types of reachabil-
ity constraints. For example, the graph in Figure 3 re-
quires that at least m paths exist from node A to B when
m > 0, each bounded by n hops, or no path exists from A
to B when m = 0. For simplicity, packet header patterns
are not depicted. Next, we show how to represent several
commonly-used network policies as policy graphs.

A B(m,n)

Figure 3: Policy edge

A B
(1,*)

D C(2,5)

E

(0,*)

(1,*)

Figure 4: Policy graph

S1

S2

S3

S4

S5

C

(1 ⁄5,*)

(1 ⁄5,*)

(1 ⁄5,*)
(1 ⁄5,*)

(1 ⁄5,*)

Figure 5: Load balancing policy

Reachability This policy requires that at least one path
exists from one node to another. It is expressed with
m = 1 and n unspecified (shown as “*”), for example,
the edges A→ B and B→C in Figure 4.
Bounded path length This policy defines the maximum
number of hops between two reachable nodes. The path
length is specified using n. For instance, the path from D
to C in Figure 4 is bounded by 5 hops.

Shortest path This policy can be viewed as a special
case of the bounded path length policy, where each path
is bounded by the length of the corresponding shortest
path in the topology. Therefore, it can be encoded in a
similar way as bounded path length policy.
Multipath This policy requires multiple paths exist
from one node to another. It is expressed by assigning
m an integer larger than one. As shown in Figure 4, there
should be at least two paths from D to C (m = 2).
Isolation This policy prevents one node from reaching
another, which is expressed by specifying m = 0 on the
edge connecting the two isolated nodes.
Service chaining The policy defines a set of waypoints
that one flow must traverse in sequence. It is represented
by concatenating edges on a policy graph. For example,
in Figure 4, traffic from node A should traverse a way-
point B before reaching C.
Load balancing This policy requires distributing traffic
from a source to a pool of servers according to a speci-
fied distribution. In our policy model, it is expressed by
assigning m a fractional value . As an example, Figure 5
denotes a policy that requires traffic from client C to be
distributed evenly among five servers.

In summary, a policy graph is able to express both
qualitative and quantitative reachability constraints.

5 Repair Algorithm

In this section, we present NEAt’s core algorithm for re-
pairing violations at runtime constrained by a given pol-
icy graph. First, we introduce the network model and
give an overview of the algorithm. Next, we describe
our formulation of the repair problem for basic reach-
ability policies as an integer linear programming (ILP)
problem. We then generalize this approach to repair the
wider range of policies discussed in 4.

Network Model As described in §3, upon intercepting
an update, NEAt constructs a network graph model for
each affected EC that captures the configure forwarding
behavior for all packets within the EC. This directed con-
figuration graph `c, along with a topology graph T and
policy graph ℘ serve as inputs to the repair algorithm.

Each node in these graphs represents a host or a net-
working device, and each edge between a pair of nodes
defines reachability between them. The policy graph ℘,
as discussed in 4, is a directed graph constructed from a
set of conflict-free policies that represents the expected
behavior of the whole network and hence should not be
violated at runtime. Policy conflict freedom can be guar-
anteed by tools like PGA [23], which is out of the scope
of this paper. A topology graph T is an undirected graph
that represents the physical topology of the network.

598 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm Overview When the verification engine dis-
covers a violated EC, the algorithm is executed. Its goal
is to repair the detected violations optimally, i.e., with
the minimum number of changes to the original configu-
ration. NEAt formulates the problem as an optimization
problem: we aim to add or delete the minimum num-
ber of edges on `c so that the modified `c complies with
℘c. ℘c is a subgraph of ℘ that is relevant to EC c. Note
that the added edges are constrained within the topology
graph T . We solve the optimization problem using ILP.

Subsection §5.1 describes the repair algorithm for ba-
sic reachability policies, and subsection §5.2 enhances
the basic algorithm to cope with the entire set of policies
in §4. We complete the section with our repair algorithm
for forwarding loops (§5.3). Table 1 summarizes the key
notations used in this section and the next section §6.

Symbol Description
`c The configuration graph for EC c.
℘ The policy graph.
T The topology graph.
(i, j) The edge from node i to node j.
ρi j The paths between node i and node j.
Cc

i The cluster of node i for equivalence class c.
ci The compressed node i for Cc

i .
Ea The set of all edges in graph a.
N(Ea) Number of all edges in graph a.
NBa(i) The set of neighbors of node i in graph a.

Table 1: Key notations in problem formulation.

5.1 Repair Basic Reachability
We start with the basic case where ℘c contains only
reachability constraints. Our integer program has a set
of binary decision variables xi, j,p,q and xi, j where

xi, j,p,q,(i, j) ∈ ET ,(p,q) ∈ E℘c (1)

xi, j,(i, j) ∈ ET (2)

ET and E℘c denote the set of all edges in T and ℘c re-
spectively. Variable xi, j,p,q defines the mapping between
a physical edge and a policy graph edge. It is one if a
directed edge (i, j) is mapped to policy edge (p,q) for
the current EC c, i.e., the flow from p to q will be for-
warded through edge (i, j) from i to j. Variable xi, j de-
fines whether edge (i, j) is used for forwarding this EC’s
traffic regardless of which flow uses it. Edge (i, j) in T
is selected if any flow (p,q) is forwarded through (i, j)
(Equation 3). Similarly, for the other direction (j, i), we
have Equation 4. No physical link can be selected to for-
ward traffic for the same EC on both directions (Equation
5) to avoid loops.

∀(i, j) xi, j ≥ ∑
(p,q)∈E℘c

xi, j,p,q

N(E℘)
(3)

∀(j, i) x j,i ≥ ∑
(p,q)∈E℘c

x j,i,p,q

N(E℘)
(4)

∀(j, i) xi, j + x j,i ≤ 1 (5)

Equations 6-8 are the flow conservation equations for
policy level reachability (p,q). ∀(p,q),∀i ∈ T :{

∑ j∈NBT (i) xi, j,p,q = 1

∑ j∈NBT (i) x j,i,p,q = 0
if i = p (6){

∑ j∈NBT (i) xi, j,p,q = 0

∑ j∈NBT (i) x j,i,p,q = 1
if i = q (7){

∑ j∈NBT (i)(xi, j,p,q− x j,i,p,q) = 0 otherwise (8)

The optimization objective is to minimize the number
of changes (additions and deletions) on the original con-
figuration graph `c.

min (∑
(i, j)/∈E`c

xi, j− ∑
(i, j)∈E`c

xi, j) (9)

5.2 Generalizing the Algorithm
To support generalized reachability policies in §4, we
encode several additional constraints into the ILP.
Isolation We introduce a special DROP node. If two
nodes are required to be isolated, i.e., the nodes are con-
nected with a (0,∗) edge in the policy graph, we change
the way flow conservation equations are defined. In par-
ticular, we replace Equation 7 with Equations 10 and 11
below in the flow conservation equations. That is, a flow
from p to q should sink at DROP before reaching q.{

∑ j∈NBT (i) xi, j,p,q = 0

∑ j∈NBT (i) x j,i,p,q = 1
if i = DROP (10){

∑ j∈NBT (i) xi, j,p,q = 0 if i = q (11)

Service Chaining With service chaining, or waypoint-
ing, we enhance our flow conservation equations with
Equation 12. It extends the definition beyond individ-
ual reachability segments (policy graph edges), by taking
into account dependencies between policy edges. The
resulting mapping is guaranteed to satisfy chaining of
reachability requirements. For instance, if a policy node
i is required to reach q through p, because of this equa-
tion, node i in the configuration graph is not allowed to
carry flow from p to q. Without this equation, p might
be skipped on the path from i to q.{

∑ j∈NBT (i) xi, j,p,q = 0

∑ j∈NBT (i) x j,i,p,q = 0
if i ∈℘c and (∃ρi,por ∃ρq,i)

(12)
Bounded or Equal Path Length/Shortest Path If a
path length bound n is specified for a policy edge (p,q),
then a new constraint is added (Equation 13):

∑
(i, j)∈ET

(xi, j,p,q + x j,i,p,q)≤ n (13)

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 599

Multipath If at least m link-disjoint paths are required
for flow (p,q), then the flow conservation equations 6
and 7 are updated as Equation 14 and 15 respectively.
Multipath requirements are enforced throughout the dis-
tance between two end nodes by Equation 8.{

∑ j∈NBT (i) xi, j,p,q ≥ m

∑ j∈NBT (i) x j,i,p,q = 0
if i = p (14){

∑ j∈NBT (i) xi, j,p,q = 0

∑ j∈NBT (i) x j,i,p,q ≥ m
if i = q (15)

Load Balancing As discussed in §4, policy edges within
a load balancing policy are denoted with a decimal path
count. Correspondingly, in our optimization problem,
variables that map physical edges to policy edges are also
decimal values between zero and one, instead of binary
values. In addition, we introduce a new equation (Equa-
tion 16) to capture how flow distribution propagates.

∏
xi, j,p,q 6=0

xi, j,p,q = m (16)

For example, consider the network in Figure 6, where
there are two layers of load balancing between client C
and servers S1 S5. If the policy in Figure 5 is required,
the solutions for variables (xi, j) are shown in Figure 6.

LB1

LB2
(2 ⁄5,*)

LB3

(3 ⁄5,*)

S1
(1 ⁄2,*)

S2
(1 ⁄2,*)

S3(1 ⁄3,*)

S4
(1 ⁄3,*)

S5

(1 ⁄3,*)

C

Figure 6: Load Balancing Configuration.

5.3 Repairing Loops
The preceding repair algorithm operates on a loop-free
configuration graph. As such, we first check for and re-
move loops from each configuration graph before com-
pressing and repairing violations of any other property
type. Our objective for repairing loops is to minimize
change to the network, with a preference to affect few
equivalence classes as possible, as well as removed the
minimal number of rules. Thus, our algorithm will re-
move a forwarding rule matching packets destined to
10.0.0.1/32 over one for 10.0.0.0/8. Since loops are re-
paired first, and NEAt will later check reachability prop-
erties on each equivalence class, our loop repair algo-
rithm does not need to consider introducing permanent
reachability violations by removing rules.

Algorithm 1 presents our loop repair algorithm. Θ(c)
denotes the set of all loops appearing in a configuration
graph `c and N(Θ(c)) the number of loops in `c. θi is a

Algorithm 1 Loop repair
procedure REMOVELOOP(`c, Θ(c))

remove edges appearing in multiple loops
remove {(i, j) | (i, j) ∈ θk ∧ (i, j) ∈ θm∀k,m ∈Θ(c)}
if N(Θ(c)) = 0 then

return `c

for all θi ∈Θ(c) do
while N(θi)> 0 do

remove edges forwarded out the destination
remove (i, j) if i is destination

while N(θi)> 0 do
remove most specific forwarding rule
remove (i, j) ∈ θi with longest prefix

return `c

subgraph of `c, and N(θi) = 0 when the subgraph con-
tains no loops. The algorithm begins by finding and re-
moving all intersecting edges across `c’s loops. For each
loop in `c that is not repaired by removing these edges,
next remove an edge (i, j) where i’s IP address is the des-
tination, if such an edge exists. While θi still has loops,
remove an edge in the loop which has the most specific
match rule (e.g., longest prefix). Each edge is mapped to
a specific forwarding rule at a particular switch when we
compute the equivalence classes.

Removal of a forwarding rule is accomplished by re-
place it with a drop rule, to prevent a coarser match
from introducing another loop. For example, if a rule
matching destination IP 10.0.0.1/32 is simply deleted
from a switch’s forwarding table, another rule match-
ing 10.0.0.1/31 on the same switch and forwarding to
the same next hop could prevent the loop from being re-
paired. To conserve switch memory during in response
repairs, NEAt checks all coarser drop rules to determine
if multiple rules can be aggregated together.

6 Optimizations

While conceptually straightforward, the repair algorithm
in section 5 does not scale to well. In the optimization
problem formulation, the number of variables for one EC
is approximately the product of the number of topology
links and the number of policy graph edges, which can
easily exceed 100k. In this section, we present two tech-
niques that dramatically optimize the repair speed.

6.1 Topology Limitation

This technique aims to “slice” away irrelevant or redun-
dant part of the network, and thus shrink the size of
the optimization problem. After getting a configuration
graph that violates some policies, before passing it to the
optimizer, we first remove disconnected components on

600 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the physical topology. Next, we localize the potential af-
fected area on the topology. Fortunately, most modern
networks are designed in a hierarchical structure. Exam-
ples include data centers arranged in a fattree topology,
and enterprise networks divided into multiple sites joint
by a backbone network. Such a structure implies certain
communication pattern: communication within a subtree
should stay local, for example, and communication be-
tween subtrees normally doesn’t traverse other subtrees,
i.e., go through a valley. In our linear programming prob-
lem, typically only a subset of the topology edges is con-
sidered mappable to a policy edge. Results in section 8
shows the effectiveness of this technique.

6.2 Graph Compression
Besides hierarchical structures, most large networks are
designed in patterns that enforce symmetry to some ex-
tent [22] for load balancing or resilience reasons. For
example, in a data center fattree topology, devices on the
same layer (access, aggregate, core) are symmetrically
connected to multiple devices on the neighboring lay-
ers. We exploit such regularities to compress the graphs.
The key to the compression is that the compressed graphs
must be equivalent to the original graphs with respect to
the policies of interest. To this end, we leverage a graph
pattern preserving compression [10] as the major build-
ing block of NEAt’s compressor (Figure 1). The algo-
rithm compresses a labeled directed graph according to
the following bisimulation relation:
Bisimulation Relation [9] We denote G = (V,E,L) as
a labeled directed graph. V represents a set of node and
(u,v)∈ E represents a directed edge from node u to node
v. L(u) ∈ Γ represents the label of node u, where Γ is the
set of labels that applied to V . In the networked system
context, the labels may represent a set of similar func-
tional networking nodes, e.g. hosts, firewalls, load bal-
ancers. For example, in Figure 7(a), we label the network
nodes as Firewall, Edge Router and Core Router and we
label the two hosts as HostA and HostB.

A bisimulation relation on a graph G = (V,E,L) is a
binary relation BR⊆V ×V such that for all (u,v) ∈ BR:
(a) L(u) = L(v);
(b) ∀(u,u′) ∈ E, ∃(v,v′) ∈ E such that (u′,v′) ∈ BR;
(c) ∀(v,v′) ∈ E, ∃(u,u′) ∈ E such that (u′,v′) ∈ BR.

In Figure 7(a), Firewall2 and Firewall3 are bisimular to
each other, while Firewall1 is not bisimular to any other
firewall. Because HostB is solely in a bisimular clus-
ter, and hence EdgeRouter1 and EdgeRouter2 are bisim-
ular as they only has one child HostB. As Firewall2
and Firewall3 have the children that are bisimular, they
are also bisimular to each other. While Firewall1’s child
is Core Router, which has a different label than Edge
Router, Firewall1 is not bisimular to anyone.

Bisimulation Based Compression

(a) Configuration graph `c (b) Compressed configura-
tion graph `cp

c

Figure 7: Example of compression

Algorithm 2 presents the compression algorithm on
the given graphs `c, ℘c and T , where `c and T are
compressed according to ℘c. Before the compression,
we need to first label the nodes in `c and T according
to ℘c: all the nodes that are presented in ℘c are la-
beled uniquely. Therefore, the information in the pol-
icy graphs will not be lost after compression. We then
compute bisimulation relation on `c using the algorithms
presented in [9] and then compress the graphs based on
the bisimularity. However, unlike `c and ℘c, T is not a
directed graph, and thus the original algorithm is not ap-
plicable. To compute T cp, we first compress the parts in
T that overlap with `c according to the undirected version
of `cp

c . Then we draw edges between the non-overlapping
parts and the compressed parts with their original edges
in T . The time complexity of the compression algorithm
is O(|E|log|V |). Figure 7(b) shows the compression re-
sult on graph `c. Firewall2 and Firewall3 are bisimu-
lar and are compressed to a new clustering named FW2.
Firewall1 stays by itself as FW1.

Algorithm 2 Graph pattern preserving compression
procedure GRAPHCOMPRESSION(`c, ℘c, T)

compute the maximum bisimulation relation BR of `c
compute the clusters clusters = V/BR
collapse the nodes in the each cluster ∈ clusters
compute compressed `

cp
c , T cp

return `
cp
c , T cp

We evaluate the compression algorithm on a simulated
fattree topology and a large enterprise network. We de-
notes the compression rate rc as the ratio of the number
of the remaining nodes in `cp

c to the number of the nodes
in `c. From the compression result shown in Table 2, we
can conclude that the compression algorithm could result
in a much smaller graph for a large-scale network.

Topology 1− rc
Fattree (6750 hosts, 1125 switches) 99.38%
Enterprise (236 routers) 88.98%

Table 2: Compression results.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 601

Incremental Compression Further leveraging the in-
cremental compression algorithm from [10], we incre-
mentally maintain the compressed configuration graphs.
In response to changes to the original graphs, the incre-
mental algorithm computes the new compressed graph
using the changes and the compressed graph as input, in-
dependent of the original graph. That is there is no need
to decompress the graph to propagate the changes.
Repair Compressed Graphs With the compression
module in place, when a violation is detected, the graphs
are compressed first, then passed to the optimizer. Note
that one compressed edge may represent a collection of
edges in the original graph. This works fine with single-
path reachability type of policies, such as reachability,
isolation, service chaining. However, it will break Equa-
tion 14 and 15 for link-disjoint multipath policy. Our
solution is to label the predecessors of each multipath
policy destination node (E.g., q for policy edge (p,q))
differently, such that they are not compressed. In ad-
dition, T cp is modeled as a weighted graph, where the
weight on each edge is the number of original edges that
the compressed edge represents. Multipath policy con-
straint Equation 14 is modified as shown Equation 17,
while Equation 15 remains the same because there are
never multiple edges pointing to the destination node q.{

∑ j∈NBT cp (i)(xi, j,p,q ∗weighti, j)>= m

∑ j∈NBT cp (i) x j,i,p,q = 0
if i = p

(17)
Map Back The last step is to map the result back to
the original graph `c. The optimization result is a set
of changes (added or deleted edges) on the compressed
graph `cp

c . To map back to `c, a changed edge (ci,c j)
could become a set of changed edges between the clus-
ter Cc

i and cluster Cc
j . If an edge (ci,c j) is supposed to

be added to `cp
c , then on `c, for every node i in the source

cluster Cc
i , there should be an edge added from i to one of

its neighbor node j that is in the target cluster Cc
j . It does

not matter which neighbor node is chosen, because all
the nodes in Cc

j are equivalent with regard to the policies,
which is why they are clustered as one node. In the cur-
rent design, every policy node represents a physical node,
and thus a policy edge represents a one-to-one connec-
tion. However, in the future, we plan to also compress
the policy graphs, enabling a policy graph node repre-
senting a cluster of nodes with similar functions. This
enables policy graph edges to denote various types of
connection, for example, any-to-any, one-to-many. Af-
terwards, those computed changes will be translated into
forwarding instructions, and sent to the network devices.
Policy Perseverance Finally, we prove that the Graph-
Compression algorithm (Algorithm 2) preserves the
equivalence between the compressed graph Gc and the
original graph G with respect to the scope of policies

in section 4. As loops are repaired before the graph
is compressed (§5.3), the input (G) and output (GC) of
the compression algorithm are equivalent with respect to
the loop policy. Furthermore, on a loop-free graph, the
compressed graph is proven in [10] to be equivalent to
the original graph for graph pattern queries. Therefore,
single-path reachability policies with bounded length and
waypointing constraints are equivalent on both graphs.
More specifically, let us denote Qr(v,u) as the reachabil-
ity query between v and u. Intuitively, for each Qr(v,u)
for G, one can show by contradiction that there exists a
path from v to u in G if and only if cv can reach cu. Sim-
ilarly, the isolation policy is preserved, as ρcv,cu exists iff
ρv,u exists. Further, as reachability is preserved, for each
edge (m,n) ∈ G, there exists an edge (cm,cn) ∈ Gc, i.e.,
the length of any path is the same on G and Gc.

The load balancing and multi-path policies are more
complex. We can break the load balancing policy into
two requirements: pool and balancing. Pool in this con-
text denotes that traffic from a single source is distributed
to all of a fixed pool of nodes, which is naturally pre-
served as a reachability requirement. Balancing denotes
the amount of traffic distributed to each node in the pool
is equal to the amount specified by the operator. Bal-
ancing is enforced by Equation 16. Since paths are not
shortened by the compression algorithm, if Equation 16
holds on Gc, it also holds on G.

We prove that this conclusion also holds for multipath
policy in Appendix A. Intuitively, as the predecessors of
multipath destinations in are not compressed, the link-
disjoint multipath criteria is preserved after compression
through the bisimulation relation back propagation and
flow conservation constraints.

7 Implementation

We implemented a prototype of NEAt in Python. NEAt
requires no modifications to the controller or switches.
The verification engine is based on prior work [19] and
we use the Gurobi Optimizer [3] within our optimization
engine to solve the ILP.

NEAt’s pass-through mode is implemented as a proxy
between the controller and switches, listening for flow
modification messages. The interactive mode is imple-
mented as an XML-RPC API, allowing it to be compat-
ible with applications written in any language or for any
controller. In particular, NEAt exposes a check() func-
tion that accepts a set of OpenFlow flow modification
messages to check against the network policy. NEAt up-
dates the network model with the proposed changes, ver-
ifies the model, and searches for a set of repairs if any
violations are found. The application can choose to re-
ceive the repairs as a set of OpenFlow flow modification
messages or as a set of edge tuples. For example, a load

602 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

with both optimizations
with topology limitation

with clustering
w/o optimizations

Figure 8: Effect of optimizations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

one pod pair reachability
all pair reachability
policy combination

Figure 10: Different policies.

balancer application may wish to receive a repairs as a set
of tuples (e.g., [(s2, h1)]) to easily re-assign a client to
a particular server replica, rather than parsing an Open-
Flow message from NEAt.

8 Evaluation

In this section, we examine the performance of repairs
in NEAt, as well as the end-to-end latency experienced
by applications. All experiments were run on a Dell
Precision 5810 with a 2.6GHz Xeon E5-2697V3 CPU
and 128GB RAM. We use an unmodified version of
Gurobi [3] with default options in our experiments.

8.1 Repair Performance
To evaluate the feasibility and scalability of NEAt’s re-
pair process, we synthesized a set of fattree topologies
with various sizes, and used NEAt to maintain a vari-
ety of network-wide policies, including reachability, seg-
mentation, bounded path length and multipath policies.
More specifically, on each topology, under random re-
movals of rules, we measured the repair time for each
removal that caused a violation.

8.1.1 Exact matching rules

We first focus on flow-based traffic management appli-
cations, which are widely used in SDN [7, 12, 14–16].
Any forwarding rule produced by such applications at a
switch matches at most one flow. In our terms, each rule
only affects at most one EC.

For each fattree topology, we randomly selected a pair
of pods. Suppose the desired policy is that any host in

one of the pods should be able to reach every other host in
both selected pods, which we will refer to as a pod-pair
reachability policy. With random removals of rules, for
those removals resulting in violations to pod-pair reach-
ability, the optimization engine is triggered to perform
the repair. For testing purposes, we re-verify the policy
after each repair, and the check passed for all cases.

On a fattree topology with 250 hosts and 125 switches,
we measured the time taken to repair pod-pair reach-
ability policy by four mechanisms: (1) plain mapping,
(2) mapping with topology limitation, (3) mapping with
graph compression, and (4) mapping with both compres-
sion and topology limitation. Figure 8 compares the
CDFs of the repair time for these four repair mecha-
nisms: We can see the combination of graph compres-
sion and topology limitation (left most curve) brings ap-
proximately one order of magnitude speed-up over plain
mapping (right most curve). Figure 9 (a-e) shows the
amount of speed-up goes up as the network size scales.
Even on a network with 686 hosts and 245 switches, the
repair time is bounded under 0.1 second for the majority
case, close to 1/20 of the repair time by plain mapping.

We next explored how NEAt handles a larger set of
policies and a combination of different types of policies.
We first assumed the desired policy being every pair of
hosts should be able to reach each other , which we will
refer to as an all-pair reachability policy. Again, on a
fattree topology with 250 hosts and 125 switches, the re-
pair time under random rule removals against this all-
pair reachability policy was measured, as shown in Fig-
ure 10. The policy size is increased by approximately
10 times compared with pod-pair reachability policy, but
the repair time only increases slightly.

To test a even more complex setting, next we ran-
domly selected three pods in the fattree. Between the
first two pods, hosts should be isolated from each other
(segmentation), and between the first and third selected
pods, hosts are connected by at least two path (multi-
path). For host pairs that do not fall into the previous
two conditions, they are supposed to be able to reach
each other (all-pair reachability). Both multipath and
all-pair reachability are combined with a bounded path
length policy, to avoid flows between pods ”go through
a valley”. Note that unlike the previous pure single-path
reachability policy, where repairs are all edge additions,
in this case, a repair is sometimes a mix of edge additions
and deletions. What’s more, to satisfy multipath require-
ment, more additions are necessary. Due to this com-
plexity, the repair time is increased, but still on the same
order of magnitude of reachability policy cases, as shown
in Figure 10. As verified by the re-checks, changes for
fixing different types of policies keep other policy intact.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 603

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1

seconds

Opt
Plain

(a) 54 hosts, 45 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

seconds

Opt
Plain

(b) 128 hosts, 80 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

Opt
Plain

(c) 250 hosts, 125 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

Opt
Plain

(d) 432 hosts, 180 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

seconds

Opt
Plain

(e) 686 hosts, 245 switches

Figure 9: Repair time comparison under random removals of exactly matching rules

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

exact all-pair
subnet all-pair

Figure 11: Exact matching rules vs. overlapping rules

8.1.2 Overlapping rules

For networks that use wild-carded rules or longest pre-
fix matching, the assumption in the previous subsection
does not hold. One rule may affect multiple ECs, and
thus potentially trigger repairs on multiple graphs. For-
tunately, there is a trend to move such overlapping rules
to network edge or even hosts [5, 8, 20], leaving the core
with exactly matching rules. In order to study how NEAt
performs under this less preferable but less common sce-
nario, we assign IP addresses within the same prefix sub-
net to hosts within the same pod on the fattree topolo-
gies. We then aggregated rules on the switches as much
as possible. For example, each core switch has only k
forwarding rules, where k is the number of pods, and
each rule matches on one pod’s prefix. Similar to the
previous experiments, we used NEAt to guarantee an all-
pair reachability policy, and our engine discovered re-
pairs for all violations. Figure 11 compares the CDFs
of the repair time for overlapping rules and exact match-
ing rules on a 250-host-125-switch fattree topology. The
repair took longer compared to applications with exact
match rules because of the increased number of affected
ECs. With our graph compression and topology limita-
tion techniques, optimization is able to finish under 0.4
seconds in the worst case.

8.2 End-to-End Delay

Next, we examine the application-level delay introduced
by NEAt when using its interactive mode. We test NEAt
on various-sized fattree topologies using Mininet [4] and
the Pox controller [6]. A learning switch application
and load balancer application run on top of Pox. The
load balancer balances flows between the two replicas
in a round-robin fashion, and we modify it to leverage
NEAt’s API to check the assignment of clients to repli-

 0

 40

 80

 120

 160

 200

 240

 280

(16, 20, 96)

(54, 45, 324)

(128, 80, 768)

La
te

n
cy

 (
m

s)

Topology Size (#hosts, #switches, #links)

comp+limit
nocomp+limit
comp+nolimit

nocomp+nolimit

Figure 12: Application-perceived latency of NEAt, on vari-
ous fattree topologies, showing performance for a reachability
policy with/without graph compression and topology limitation

cas. If NEAt suggests a repair, the application updates its
client-to-replica mapping with one suggested by NEAt.
While the learning switch remains unmodified and un-
aware of NEAt, its updates are transparently checked by
NEAt. This setup demonstrates the ability of NEAt to
interact with the controller and applications simultane-
ously through its two interactive modes.

The load balancer application runs on an edge switch
in the fattree topology, with clients and server replicas
placed in different pods. To trigger an update, a client
pings the virtual IP of the load balancer. When the ap-
propriate event handler in the load balancer is execute, it
invokes NEAt’s check() function. We measure the to-
tal latency introduced by NEAt as the time to invoke the
check() function and apply it to the application’s state.
This includes the time to verify an update (i.e, calculate
equivalence classes affected by the update, compute their
configuration graphs, and verify them) and repair viola-
tions in any of the affected equivalence classes.

For each topology size, we examine the total latency
for a reachability policy, with and without our compres-
sion and topology limitation optimizations. Figure 12
shows the total delay experienced by the load balancer.
Topology limitation has the largest speed-up of our opti-
mizations, but when used in combination with compres-
sion of the topology and configuration graphs, NEAt can
verify and repair an update in under 120ms.

8.3 Enterprise Network Trace Study

Finally, we examine traces from a large enterprise net-
work, to examine NEAt’s performance on real forward-

604 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing graphs. We examine two dumps of the data plane
from 2014 and 2017. These datasets containing more
than one million forwarding rules across more than 200
forwarding devices. The 2014 dataset contains 27k
equivalence classes, while the 2017 trace contains 285k.

8.3.1 Bugs

For each dataset, we construct loop and reachability poli-
cies and check for violations. In the 2014 dataset, NEAt
finds nine different loops. In the 2017 dataset, NEAt
finds 19. We examine the forwarding table and find sev-
eral of these are caused by default routes with prefix
0.0.0.0/0. Only equivalence classes with more specific
rules on the device are free of loops in these cases. An-
other cause we discover is load balancing — a device can
forward packets out one of two ports, one of which will
result in a path containing a loop.

8.3.2 Synthetic Updates

Next, we use the 2017 dataset to evaluate NEAt’s on a
data plane with a realistic number of equivalence classes.
First, we repair any loops in the dataset’s 285k equiv-
alence classes. We then construct synthetic updates,
choosing a destination IP address and prefix length with
the same probability as they appear in the dataset’s for-
warding rules. An update can add a rule, delete a rule,
or introduce a loop. Loops are chosen from the list of
those that were discovered and repaired in the first step.
An update has a 10% chance of introducing one of these
loops for a particular update, which may introduce loops
in multiple ECs. We generated 100 updates in this man-
ner, which affected an average of eight ECs per update.

We apply the set of random updates to different com-
binations of policies, including loop-freedom, reachabil-
ity, and our compression and topology limitation opti-
mizations. Since the compression and topology limita-
tion optimizations only apply to the reachability policy,
we do not test loop freedom with compression or topol-
ogy limitation. Figure 13 shows a CDF of the total up-
date time, including verification and repairs (when nec-
essary). Of the 100 updates, 20 loops violations needed
repair, as well as 24 reachability violations. Median and
98th percentile update times were 10ms and 1300ms, re-
spectively, for a reachability policy with compression
and topology limitation enabled. For a loop freedom
property, median and 98th percentile update times were
35ms and 730ms, respectively. Combining these two
policies, without compression or topology limitation op-
timizations, resulted in median and 98th percentile times
of 36ms and 193 seconds. Adding our two optimizations
reduced these times to 36ms and six seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000 100000 1x106

latency (ms)

[loops]
[loop+reach]

[loops+reach]+comp+limit
[reach]+comp+limit

Figure 13: Total update time for different policies and opti-
mizations, on a model of a real-world data plane trace

Topology Size NEAt NetGen NetGen-C
(16, 20, 96) 5.9ms 743.2ms 513.2ms

(54, 45, 324) 7.2ms 4404.0ms 1160.8ms
(128, 80, 768) 9.0ms 16337.7ms 2056.3ms

Table 3: Repair time of an all-pair reachability property in
NEAt, NetGen [26], and NetGen using our clustering algo-
rithm (NetGen-C) on fattree topologies. Topology size is mea-
sured as (#hosts, #switches, #edges).

8.4 Repair vs. Synthesis
In the context of this work, we distinguish between re-
pair and synthesis based on the scope and urgency of the
change. We envision repair as a tool for temporary and
immediate application on a time scale too small for hu-
man intervention. For example, the scope of NEAt’s re-
pair is limited to forwarding actions after a single update
to the data plane. We consider synthesis, on the other
hand, to be useful for construction of longer-lived con-
figurations and programs, without the need for a partial
implementation, or changes of a larger scope.

In this section, we compare NEAt with NetGen [26],
a tool to synthesize data plane changes using an SMT
formulation. NetGen’s specification language uses reg-
ular expressions to both select candidate ECs and de-
scribe changes to paths within them. In Table 3, we
compare NEAt and NetGen under a repair scenario sim-
ilar to § 8.1.1. We remove a single forwarding rule from
the data plane on various-sized fattree topologies to in-
troduce a violation, and measure the median repair time
over 10 trials. For NEAt, we use both graph compres-
sion and topology limitation. For NetGen, we report
results for the original approach operating on uncom-
pressed configuration graphs, as well as a modified ver-
sion that leverages our graph compression. We can see
NEAt achieves performance up to two orders of magni-
tude faster than the modified version of NetGen, and up
to four orders of magnitude faster than the unmodified
version of NetGen.

In Table 4, we evaluate NEAt and NetGen under a syn-
thesis scenario and generate an entire data plane from
scratch. Specifically, we use NEAt and NetGen to “re-
pair” an empty configuration graph and report the to-
tal time to repair an all-pair reachability policy. Since

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 605

Topology Size NEAt NetGen
(16, 20, 96) 921.7ms 7.1min

(54, 45, 324) 16.3ms 381.7min
(128, 80, 768) 2.9min 173.2hrs

Table 4: Synthesis time of an all-pair reachability property on
an empty configuration graph using fattree topologies. Topol-
ogy size is measured as (#hosts, #switches, #edges).

NEAt’s policies are graph-based, we express the reach-
ability policy with a single policy graph. As NetGen’s
specification is path-based, we encode the policy as a
separate data plane change (i.e., regular expression) for
each pair of nodes. For NEAt, we report the repair time
with our topology limitation optimization. We do not
report results with our clustering algorithm, as it is not
applicable when the configuration graph is empty. We
can see NEAt repairs an empty configuration graph more
than 1000X faster than NetGen.

9 Related Work

SDN programming languages: Many programming
languages have been proposed to provide abstractions
to program SDNs, e.g., Frenetic [11], Pyretic [24] and
Maple [29]. These allow programmers to compose com-
plex rules without manually resolving conflicts between
rules. However, these languages face limitations of ex-
pressing general policies that deliver higher-level intent,
such as middleware functionality or QoS constraints.
SDN synthesis platforms: Network state can also be
synthesized from a set of pre-specified correctness crite-
ria. NetGen [26], for example, takes as input a specifi-
cation using regular expressions to define paths changes
and a set of ECs to modify. It uses an SMT solver to
find the minimal number of changes. However, similar
to Merlin [28] and FatTire [25], this tool is designed to
be used as compiler, with performance that is too slow
for real-time applications (i.e., minute-scale synthesis).
Instead, NEAT formulates repairs as an ILP and discov-
ers possible repairs in under a second. While using Net-
Gen in place of our ILP is possible, certain policies can-
not be expressed in NetGen’s language, such as multi-
path and load balancing. Similarly, Marham [13] pro-
poses a framework for automated repair, but with per-
formance on the order of several seconds for topologies
with dozens of nodes and links. Margrave [21] analyzes
changes to access control policy changes, highlighting to
an operator the effect it has on the policy, without sug-
gesting repairs to violations.

10 Limitation and Discussion

Stateful Network Applications Some stateful network
applications keep internal state to provide finer grained

control of network traffic. The internal state is normally
constructed based on the current network state. Under
pass-through mode, as NEAt verifies and corrects rule in-
sertions without notifying the application, network state
might become different from the application’s internal
state. If improperly written, the application might crash.
We note that this is true for many platforms which vir-
tualize the network [27]. This might sound unsatisfac-
tory yet it is likely desirable, since the application may
be developed by an untrusted third party, and NEAt can
protect the network from unforeseen bugs or undesir-
able behavior of that application. If desired, applications
could be implemented with NEAt in mind. We encour-
age developers to use interactive mode for stateful appli-
cations.

Evolving Policies In practice, the policy graph can
change over time, on human time scales as network oper-
ators revise and evolve earlier policy decisions. To sim-
plify processing, NEAt can pause updates while the pol-
icy graph is updated. Since loading a new policy graph
is a nearly-instantaneous process, this procedure intro-
duces minimal delay in updates reaching the network. In
future work, we plan to examine how NEAt handles such
scenarios, and make design improvements if needed.

Different Optimization Goals In the current design of
NEAt, the repair effort uses a minimal number of ed-
its as the optimization goal. In practice, there may be
other goals, for example, ensuring critical traffic free of
congestion, minimizing the amount of traffic shifts, etc.
We plan to extend the design in the future to optimize
user defined utility functions, and study how accurate
NEAt’s solution is under different scenarios, and under
what types of scenarios NEAt is applicable.

11 Conclusion

In this paper we presented NEAt, a system that pro-
vides network administrators with a network analogue
of a smartphone’s autocorrect. As a transparent layer,
NEAt repairs, in real-time, updates from an SDN con-
troller that violate generic policies such as reachability,
service-chaining, and segmentation. NEAt casts the re-
pair process as an optimization problem, and repairs each
update by adding or removing a minimal number of rules
to satisfy the policy. Experiments on large fattree topolo-
gies show our formulation can discover repairs in under
one second for applications with non-overlapping rules,
and two seconds for applications issuing rules with more
complex dependencies. Applying NEAt to a large enter-
prise network uncovered and repaired 28 loops

We thank NSF for supporting this work with grant
CNS 15-13906, and our shepherd Cole Schlesinger and
the anonymous reviewers for their valuable comments.

606 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Multipath Policy Perseverance

Theorem 1. (Multipath Equivalence): A multipath pol-
icy for a flow (p,q) holds in G iff the policy also holds
for (p,q) in Gc.

Proof. Consider a multipath policy that requires at least
m paths for flow (p,q). Trivially, if a flow (p,q) satisfies
the policy in G, the policy also holds for (p,q) in Gc, and
flow conservation equations (Equation 17, 15 and 8) are
satisfied.

Next, we need to prove when the policy holds in Gc,
i.e., when Equation 17, 15 and 8 are satisfied, it also
holds in G.

Let pathc
1, pathc

2, ... pathc
n (n≤ m) be the set of paths

from p to q in Gc that collectively satisfy Equation 17,
15 and 8. That is, the sum of weights of all paths’ start-
ing edges is m. If n equals m, then there are at least m
link-disjoint paths in Gc between p and q, and thus there
are at least m link-disjoint paths in G, i.e., the policy is
satisfied.

If n is less than m, then there must be at least one
path in Gc, whose starting edge’s weight is more than
one. Let such paths be pathc

m0, ..., pathc
m j, whose start-

ing weights are k0, ..., k j respectively. Consider path
pathc

m0 first. The starting weight being more than one
means that its starting edge is pointing from p to a clus-
ter Cnext which contains at least k0 nodes which are also
p’s successors. Because the predecessors of q are labeled
differently, each of them is a separate cluster. By the def-
inition of bisimulation relation, two nodes are bisimular
(and thus can be clustered together) only if their chil-
dren’s label set are the same. Via back propagation, and
the constraint of Equation 8, there must be at least k0
disjoint paths in G from p’s successors in Cnext to q’s pre-
decessors. When pathc

m0 is expanded in G, it becomes k0
link-disjoint paths. Similarly, suppose we iterate through
all the paths from p to q in Gc and expand each of them
in G. As the sum of the starting weights is equal to m,
there are at least m paths from p to q in G.

References

[1] http://www.infosecurity-
magazine.com/opinions/to-err-is-human-to-
automate-divine/.

[2] http://www.verizonenterprise.com/verizon-
insights-lab/dbir/2016/.

[3] Gurobi optimization. http://www.gurobi.com/.

[4] Mininet: Rapid prototyping
for software defined networks.
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet.

[5] Network virtualization for cloud data centers.
http://tinyurl.com/c9jbkuu.

[6] The pox controller. https://github.com/noxrepo/pox.

[7] BENSON, T., ANAND, A., AKELLA, A., AND ZHANG,
M. Microte: Fine grained traffic engineering for data
centers. In Proceedings of the Seventh Conference
on Emerging Networking Experiments and Technolo-
giesperiments and Technologiesnference on emerging
Networking EXperiments and Technologies (CoNEXT)
(2011), ACM, p. 8.

[8] B.RAGHAVAN, M.CASADO, T.KOPONEN,
S.RATNASAMY, AND A.GHODSI, A. S. S. Software-
defined Internet architecture: Decoupling architecture
from infrastructure. In HotNets (2012).

[9] DOVIER, A., PIAZZA, C., AND POLICRITI, A. A
fast bisimulation algorithm. In CAV (2001), vol. 2102,
Springer, pp. 79–90.

[10] FAN, W., LI, J., WANG, X., AND WU, Y. Query pre-
serving graph compression. In Proceedings of the 2012
ACM SIGMOD International Conference on Manage-
ment of Data (2012), ACM, pp. 157–168.

[11] FOSTER, N., HARRISON, R., FREEDMAN, M. J.,
MONSANTO, C., REXFORD, J., STORY, A., AND

WALKER, D. Frenetic: A network programming lan-
guage. In ICFP (2011).

[12] HELLER, B., SEETHARAMAN, S., MAHADEVAN, P.,
YIAKOUMIS, Y., SHARMA, P., BANERJEE, S., AND

MCKEOWN, N. ElasticTree: Saving energy in data cen-
ter networks. In NSDI (2010).

[13] HOJJAT, H., REUMMER, P., MCCLURGH, J., CERNY,
P., AND FOSTER, N. Optimizing horn solvers for net-
work repair. In FMCAD (2016).

[14] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG,
M., GILL, V., NANDURI, M., AND WATTENHOFER, R.
Achieving high utilization with software-driven wan. In
SIGCOMM (2013).

[15] JAIN, S., KUMAR, A., MANDAL, S., ONG, J.,
POUTIEVSKI, L., SINGH, A., VENKATA, S., WAN-
DERER, J., ZHOU, J., ZHU, M., ZOLLA, J., HOLZLE,
U., STUART, S., AND VAHDAT, A. B4: Experience with
a globally-deployed software defined wan. In SIGCOMM
(2013).

[16] JIN, X., MAHAJAN, R., LIU, H. H., GANDHI, R.,
KANDULA, S., ZHANG, M., REXFORD, J., AND WAT-
TENHOFER, R. Dynamic scheduling of network updates.
In SIGCOMM (2014).

[17] KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE,
G., MCKEOWN, N., AND WHYTE, S. Real time net-
work policy checking using header space analysis. In
NSDI (2013).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 607

[18] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N.
Header space analysis: Static checking for networks. In
NSDI (2012).

[19] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M.,
AND GODFREY, P. B. VeriFlow: Verifying network-
wide invariants in real time. In NSDI (2013).

[20] M.CASADO, T.KOPONEN, S.SHENKER, AND

A.TOOTOONCHIAN. Fabric: A retrospective on
evolving sdn. In HotSDN (2012).

[21] NELSON, T., BARRATT, C., DOUGHERTY, D. J.,
FISLER, K., AND KRISHNAMURTHI, S. The margrave
tool for firewall analysis. In LISA (2010).

[22] PLOTKIN, G. D., BJRNER, N., LOPES, N. P., RY-
BALCHENKO, A., AND VARGHESE, G. Scaling net-
work verification using symmetry and surgery. In POPL
(2016).

[23] PRAKASH, C., LEE, J., TURNER, Y., KANG, J.-M.,
AKELLA, A., BANERJEE, S., CLARK, C., MA, Y.,
SHARMA, P., AND ZHANG, Y. PGA: Using graphs to
express and automatically reconcile network policies. In
SIGCOMM (2015).

[24] REICH, J., MONSANTO, C., FOSTER, N., REXFORD,
J., AND WALKER, D. Modular sdn programming with

pyretic. In USENIX ;login, 38(5) (October 2013), pp. 40–
47.

[25] REITBLATT, M., CANINI, M., GUHA, A., AND FOS-
TER, N. Fattire: Declarative fault tolerance for software-
defined networks. In HotSDN (2013).

[26] SAHA, S., PRABHU, S., AND MADHUSUDAN, P. Net-
Gen: Synthesizing data-plane configurations for network
policies. In SOSR (2015).

[27] SHERWOOD, R., GIBB, G., YAP, K.-K., APPEN-
ZELLER, G., CASADO, M., MCKEOWN, N., AND

PARULKAR, G. Can the production network be the
testbed? In OSDI (2010).

[28] SOULE, R., BASU, S., MARANDI, P. J., PEDONE, F.,
KLEINBERG, R., SIRER, E. G., AND FOSTER, N. Mer-
lin: A language for provisioning network resources. In
CoNEXT (2014).

[29] VOELLMY, A., WANG, J., YANG, Y. R., FORD, B.,
AND HUDAK, P. Maple: Simplifying sdn programming
using algorithmic policies. In SIGCOMM (2013).

[30] ZHOU, W., JIN, D., CROFT, J., CAESAR, M., AND

GODFREY, P. B. Enforcing customizable consistency
properties in software-defined networks. In NSDI (2015).

608 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Net2Text: Query-Guided Summarization of Network Forwarding Behaviors

Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, Martin Vechev
ETH Zürich

net2text.ethz.ch

Abstract

Today network operators spend a significant amount of
time struggling to understand how their network for-
wards traffic. Even simple questions such as “How is my
network handling Google traffic?” often require opera-
tors to manually bridge large semantic gaps between low-
level forwarding rules distributed across many routers
and the corresponding high-level insights.

We introduce Net2Text, a system which assists net-
work operators in reasoning about network-wide for-
warding behaviors. Out of the raw forwarding state and a
query expressed in natural language, Net2Text automati-
cally produces succinct summaries, also in natural lan-
guage, which efficiently capture network-wide seman-
tics. Our key insight is to pose the problem of summa-
rizing (“captioning”) the network forwarding state as an
optimization problem that aims to balance coverage, by
describing as many paths as possible, and explainability,
by maximizing the information provided. As this prob-
lem is NP-hard, we also propose an approximation algo-
rithm which generates summaries based on a sample of
the forwarding state, with marginal loss of quality.

We implemented Net2Text and demonstrated its prac-
ticality and scalability. We show that Net2Text generates
high-quality interpretable summaries of the entire for-
warding state of hundreds of routers with full routing ta-
bles, in few seconds only.

1 Introduction

Put yourself in the shoes of a network operator working
for a large transit provider: you just received a call from
one of the largest Content Delivery Networks (CDN)
informing you that they observed bad performance for
flows crossing your network. As a cautious operator, you
run the latest control- and data-plane verification tech-
nologies and are confident that your network state is cor-
rect; you suspect a runtime problem. You start by col-

lecting the CDN routing advertisements and identify a
dozen of possible egress points used to reach them to-
gether with hundreds of ingresses. Analyzing some of
the internal paths, you do not observe any signs of loss.
Looking at traffic volumes, you realize that most of the
CDN traffic leaves via one egress connected to an Inter-
net Exchange Point (IXP). You suspect congestion inside
the fabric (invisible to you). Indeed, lowering the prefer-
ence for the CDN prefixes at the IXP solves the problem.

This example is loosely based on a real troubleshoot-
ing scenario observed at a Tier 1 and illustrates the chal-
lenges in understanding and reasoning about network-
wide forwarding behavior. The main issue lies in the
large semantic gaps that separate low-level forwarding
rules distributed across the entire network and actionable
high-level insights by network operators. Bridging this
gap manually (the default nowadays) is slow. Reasoning
about network behavior often takes hours (e.g., for the
case above)—even for the most skilled network opera-
tor. As networks grow more complex (e.g. as the number
of peering increases), so does the corresponding reason-
ing time. This tension is becoming even more palpable
as networks carry more and more critical services.

The example also illustrates that human insights and
domain-specific knowledge are fundamental for under-
standing non-trivial unwanted network behavior. Even
if the network control- [1–4] and data-plane [5–10] are
formally verified, subtle problems will arise at runtime.
Here, no observable signs were available to the operator.
The goal is therefore not to remove the human out of the
loop, but instead to assist her.

Net2Text In this paper, we introduce Net2Text, an inter-
active system which assists the network operator in rea-
soning about network-wide forwarding state. Out of the
low-level forwarding state and a query expressed in natu-
ral language, Net2Text automatically produces succinct,
natural language descriptions, which efficiently capture
network-wide semantics.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 609

mailto:rbirkner@ethz.ch
mailto:dana.drachsler@inf.ethz.ch
mailto:lvanbever@ethz.ch
mailto:martin.vechev@inf.ethz.ch
https://net2text.ethz.ch/

Relying on natural language ensures seamless human
interactions. We think of Net2Text as a “chatbot” for
networks. We confirmed the usefulness of such inter-
faces with the network operators themselves: all of them
liked the idea of having natural language descriptions of
their network. Of course, Net2Text’s reasoning capabili-
ties could also be integrated with other high-level inter-
faces such as graphs [11].

Coming back to the example above, the operator could
simply ask Net2Text: “What happens to the traffic des-
tined to CDN X?” to which Net2Text would answer:
“Traffic enters via n ingresses and mostly (85%) leaves
via IXP 1. Traffic is load-balanced between A and B.”.
Using this high-level insight, the operator could then ask
for more targeted information: “Tell me more about the
CDN traffic leaving via IXP 1”.

The main challenge behind Net2Text is to generate
concise summaries which “explain”’ as much as possible
out of the network forwarding state. We formulate this as
an optimization problem that aims to balance coverage
and explainability and show that it is NP-hard.

Fortunately, we show that the skewness of the network
forwarding state (i.e. its inherent redundancy) makes it
well-amenable to summarization in practice. This moti-
vates us to focus on a subspace of solutions which we can
prove contains good solutions. An important property of
this subspace is that every search path is of polynomial
size. This enables us to design an approximation algo-
rithm that traverses the space efficiently.

We designed and implemented Net2Text. Net2Text
takes a query in natural language, parses it to a database
query, runs the query on a network database, summa-
rizes the results, and translates the summarization back to
natural language. The operator can then pose follow-up
queries, and thereby interactively guide Net2Text towards
producing summaries focusing on particular aspects of
the network.

We evaluated Net2Text on a variety of realistic net-
works. Our results demonstrate that Net2Text is practi-
cal: it generates high-quality interpretable summaries of
the entire forwarding state of hundreds of routers and full
routing tables, in few seconds only.

Contributions Our main contributions are:

• A precise formulation of the network-wide summa-
rization problem as an optimization problem (§4).
• An approximation algorithm for generating high-

quality summaries (§5,§6), which scales to large
data sets, and a translation of the abstract summaries
to a description in natural language (§7).
• An implementation of Net2Text, along with a

comprehensive evaluation. Experiments show that
Net2Text can derive summaries for backbone net-
works with full routing tables within seconds (§9).

2 Overview

Consider an operator wondering how her network is for-
warding traffic towards Google:

“How is Google traffic being handled?”

Net2Text automatically parses the question expressed
in natural language and produces a concise description
(also in natural language) of the current forwarding be-
havior observed for Google:

“Google traffic experiences hot-potato routing. It
exits in New York (60%) and Washington (40%).
66% of the traffic exiting in New York follows the
shortest path and crosses Atlanta.”

Producing such a summary is challenging: the sys-
tem has to understand what the operator is interested in,
extract the relevant information, summarize it, and then
translate it to natural language. Extracting this informa-
tion goes beyond simply querying a database: it requires
processing the data to identify common path features
(e.g., the New York and Washington egresses) as well as
high-level features pertaining to different paths (e.g., hot-
potato routing, shared waypoints). In addition, the entire
process should be quick (even if the network is large) to
guarantee interactivity and deal with traffic dynamics.

In the following, we give a high-level overview of how
Net2Text manages to solve these challenges and go from
the above query to the final summary using a three-staged
process (see Fig. 1).

Parsing operator queries in natural language (§8)
Net2Text starts by parsing the operator query in natural
language using a context-free grammar. This grammar
defines a natural language fragment consisting of multi-
ple network features (e.g., ingress, egress, organization,
load-balancing) and possible feature values (e.g., New
York, Google) allowing a network operator to express a
wide range of queries. Our grammar consists of ∼ 150
derivation rules which are extended with semantic infer-
ence rules to infer implicit information. In the above ex-
ample, our grammar infers that the operator refers to traf-
fic destined to the organization Google. Net2Text also
understands other kinds of queries: (i) yes/no queries,
“Does all traffic to New York go through Atlanta?”; (ii)
counting queries, “How many egresses does traffic to
Facebook have?”; and (iii) data retrieval queries, “Where
does traffic to New York enter?”. Our grammar is extend-
able with new features, keywords, and names.

Net2Text maps the parsed query to an internal query
language, similar to SQL. Here, the query is mapped to:
SELECT * FROM paths WHERE org=GOOGLE. This
query is then run over a network database that stores
the entire forwarding state of the network. Afterwards,
the results are passed to the core part of Net2Text: the
summarization module.

610 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Live network

High-level query
in natural language

▁▂▃▅▂▇

▇▁▂▃▂▅

traffic vol.

▁▂▃▅▂▇

Google

Yahoo!

forwarding paths

How is Google's
traffic handled?

Network database

Google traffic experiences
hot-potato routing.  
It exits in New York (60%)
and Washington (40%).

66.6% of the traffic  
exiting in New York
follows the shortest path

and crosses Atlanta.”

SELECT * FROM paths

WHERE org=GOOGLE

Generated answer
in natural language

path 1

path 2

path n

…

egress lb? avg. bw

NEWY

BOST

SFO

true

false

true

98.4 Mbps

25.0 Mbps

0.4 Mbps

… … …

…
…

…

Parser

§8

Summarization

§3, §4, §5, §6

Translation

§7
“

Collected statistics

lb

bw>1Gbps

ingress

bw>1Gbps

{paths}

egress=NEWY

lb==T
included in
summary

egress!=NEWY

set of abstract explanations

optimal explanation

maximize information

low-level query

TextNet 2

Figure 1: Net2Text: Workflow and key components.

Summarizing forwarding states (§4, §5, and §6) Most
queries (including the one above) can and will return
a plethora of low-level forwarding entries. Net2Text as-
sists the operator in reasoning about forwarding state by
automatically generating high-quality interpretable sum-
maries out of low-level forwarding entries.

Summarizing network-wide forwarding states requires
overcoming a fundamental tradeoff between explainabil-
ity (how much detail a summary provides) and coverage
(how many paths a summary describes). By defining a
score function capturing both concepts analytically, we
show that we can formally phrase this problem as an
NP-hard optimization problem (§4). This renders both
exhaustive techniques along with techniques based on In-
teger Linear Programming impractical.

To scale, we leverage the insight that traffic is skewed
(heavy-tailed) across multiple levels: in the traffic dis-
tribution itself (few prefixes are typically responsible
for most of the traffic [12]) or at the routing level
(network topologies are usually built following guide-
lines, leading to repetitive forwarding patterns, e.g.,
edge/aggregation/core). This insight enables us to design
an approximate summarization algorithm, called Com-
Pass (§6), which explores a reduced search space that
we can prove contains good summaries (§5). In addition,
we show that ComPass can only summarize a sample of
the forwarding entries instead of all of them with only a
marginal loss in summarization quality.

Taken together, the reduced space and sampling opti-
mization enable Net2Text to generate high-quality inter-
pretable summaries for large networks (with hundreds of
routers) running with full routing tables in less than 2
seconds (§9).

Converting path specifications to concrete text (§7)
Given a set of path specifications, Net2Text finally pro-
duces a summary expressed in natural language in two
steps. It first extends the set with additional properties
inferred by examining the specifications as a whole. For
example, if the specifications imply that there are multi-
ple paths between the egress and ingress, Net2Text infers
that the traffic is load balanced. Net2Text then maps the
extended specifications to sentences in natural language.

3 Preliminaries

We now introduce the key terms we use in the paper.

Routing paths We model the network as a graph and
define a network path P as a finite sequence of links. A
routing path (d,P) is a pair of an IP prefix and a path,
which describes that traffic to prefix d can be routed on
P (a prefix can be routed on multiple paths). We denote
by R the set of all routing paths in the network.

Feature functions Feature functions describe path fea-
tures. Formally, a feature function q : R→Uq maps rout-
ing paths R to feature values from Uq. We denote
by vq a value in Uq. We focus on the following fea-
ture functions. Organization O : R→UO maps every
(d,P) to the organization owning d, e.g., Google. Egress
E : R→UE maps every (d,P) to the egress of P, and
ingress I : R→UI maps to P’s ingress. Shortest path
SP : R→{0,1} maps to 1 if P is a shortest path be-
tween its ingress and egress, and 0 otherwise. We use
the subscripts e, i, o, and sp to denote feature values of
the egress, ingress, organization, and shortest path fea-
ture functions, e.g., New Yorke ∈UE and 1sp ∈USP.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 611

Path specifications To explain the behavior of the net-
work and its routing paths, we define the concept of sets
of feature values called path specifications. Given a set
of l feature functions with disjoint ranges U1, ...,Ul

1 and
a bound t (for t ≤ l), a path specification is a (nonempty)
set of feature values where the size of the set is at most t
and each feature value describes a different feature func-
tion. Formally, a path specification is an element in:

St
U1,...,Ul

=
⋃

1≤m≤t

⋃
1≤ j1<...< jm≤l

U j1 × ...×U jm

Since the order of the feature values is not important
for our needs, we treat path specifications as sets, e.g.,
SG,NY = {Googleo,New Yorke}.

We say a routing path (d,P) meets a path specification
S, denoted (d,P) |= S, if for every feature value v ∈ S,
if v ∈Uq for a feature function q, then q(d,P) = v. We
define a specification set S as a set of path specifications,
i.e., S⊆ St

U1,...,Ul
. A routing path (d,P) meets a specifi-

cation set S, if there exists S ∈ S such that (d,P) |= S.

4 Problem Definition

Here, we formally phrase the problem of explaining net-
work behaviors as an optimization problem.

Our goal is to find a summary of a (large) set of routing
paths in the form of path specifications. The main chal-
lenge then is to infer a specification set that describes
as many routing paths as possible while providing max-
imal amount of information about them. To evaluate the
quality of a specification set, we define a score function.
Intuitively, the score of a specification set is the sum of
the “amount of explanation” of its routing paths. Given
a score function, we formulate the problem of network
summarization as constraint optimization.

We phrase our optimization problem as a MAP infer-
ence task [13], in which the goal is to find an assign-
ment that maximizes a score while satisfying a set of
constraints. In our context, an assignment consists of (up
to) k path specifications each with at most t feature val-
ues and over feature functions q1, ...,ql . The score of an
assignment is the weighted sum of the features the as-
signment describes for every routing path inR. We define
the score in two steps: (i) the score of a feature function
q ∈ {q1, ...,ql} and (ii) the score of all feature functions.

Feature score A score function of a feature function q
maps sets of up to k specifications to a real number score:

Φq :
(
St

U1,...,Ul
∪{ /0}

)k→ R

The domain consists of k-ary tuples, whose elements are
specification sets or the empty set. The empty set /0 de-

1This is not a limitation, because values can be uniquely annotated.

Specification set ΦE ΦSP ΦE,SP

{{NYe}} 1 0 1
{{LAe}} 2 0 2
{{1sp}} 0 3 3
{{NYe},{LAe,1sp}} 3 2 5

Table 1: Score functions for R = {(d1,P1),(d2,P2)},
where wd1,P1 = 1 and wd2,P2 = 2, E(d1,P1) = NYe and
E(d2,P2) = LAe, and SP(d1,P1) = SP(d2,P2) = 1sp.

notes “no specification”, and it enables us to cleanly cap-
ture specification sets with less than k specifications. To
simplify definitions, we assume: (d,P) 6|= /0 for all (d,P).
For a set S, the score Φq(S) is the weighted sum of rout-
ing paths in R for which q is described by a specification
in S. A path (d,P) is part of the sum if there is a speci-
fication S ∈ S containing a feature value of q that (d,P)
satisfies. The weight of a path wd,P is a positive number
(e.g., the traffic size). Formally:

Φq(S) = Σ
(d,P)∈R

wd,P · [
∨

S∈S : q(d,P)∈S(d,P) |= S] (1)

In this definition, [·] denotes the Iverson bracket that re-
turns 1 if the formula is satisfied or 0 otherwise.

Example 1 Table 1 shows an example for
R= {(d1,P1),(d2,P2)} with wd1,P1 = 1 and wd2,P2 = 2.
Assume E(d1,P1) = NYe, E(d2,P2) = LAe, and that P1
and P2 are shortest paths: SP(d1,P1) = SP(d2,P2) = 1sp.
Then, ΦE({{NYe}}) = 1 ·1+2 ·0 = 1 and similarly
ΦE({{LAe}}) = 1 ·0+2 ·1 = 2. Since both P1 and
P2 are shortest paths, ΦSP({{1sp}}) = 1 ·1+2 ·1 = 3.
However, ΦSP({{NYe},{LAe,1sp}}) = 1 ·0+2 ·1 = 2

Feature set score A score function of feature functions
q1, ...,ql maps k specifications of size at most t to a score:

Φq1,...,ql :
(
St

U1,...,Ul
∪{ /0}

)k→ R

The score is the sum of all the features’ scores:

Φq1,...,ql (S) = Σ
j : [1,l]

Φq j(S)

The last column of Table 1 shows the feature set score
of the previous example. We can now define the opti-
mization problem.

Definition 1 (Optimization Problem) Given a set of rout-
ing pathsR, weights wd,P for each (d,P)∈R, a set of fea-
ture functions q1, ...,ql , a constant k limiting the number
of path specifications, and a constant t limiting the size
of path specifications, we formulate the network summa-
rization problem as:

argmax
S∈(St

U1 ,...,Ul
∪{ /0})k

Φ(S)

612 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Example 2 Let R= {(Google,Pi)}100
i=1, each with weight

1, and k = t = 3. We assume that (i) if i ≤ 60,
E(Google,Pi) = NYe, and E(Google,Pi) = LAe other-
wise, (ii) for i ≤ 40, SP(Google,Pi) = 1sp, and (iii) all
other feature values are unique for every path. An op-
timal solution is: {{NYe},{Washingtone},{NYe,1sp}},
and its score is ΦE +ΦSP = 100+ 40 = 140. Another
optimal solution is {{NYe},{Washingtone},{1sp}}.
Though scores are identical, the operator is likely to pre-
fer the former specification set as it provides additional
information (e.g., all traffic following the shortest path
exits in New York). We leverage this insight in §5.

Definition 1 can be refined by extending the objective
function or adding constraints, as demonstrated in the
next section. Also, while this problem can be considered
as a general summarization problem suitable for other
contexts, the skewed nature of traffic makes our context
a better instantiation to this problem: the heavy traffic
is likely to share many feature values which can lead to
solutions that are clearly better than others. At the same
time, these properties are exactly the kind of information
that an operator needs in order to understand the behavior
of the main part of the traffic.

One approach to solving this optimization problem is
to phrase it as an integer linear program and use an off-
the-shelf solver. We show such a formulation and a per-
formance evaluation in Appendix A. Computing an exact
solution to this NP-hard optimization problem is (expect-
edly) too expensive for practical use when summarizing
a large number of paths. Instead, we introduce an approx-
imate and scalable optimization algorithm, which we de-
scribe in the next sections.

5 Approximate Optimization

A key challenge when designing an inference algorithm
for an NP-hard problem is dealing with the size of the
search space that is at least exponential. In our setting,
we show that the search space is exponential in both t and
k, making the search very challenging (§5.1). Intuitively,
this stems from the fact that we need to explore two di-
mensions: path coverage and path explainability. To ad-
dress the issue with the large search space, we leverage
the fact that traffic is skewed and focus on parts of it, en-
abling us to trade-off expressivity of the specification set
with the size of the search space. We show that the op-
timal solution for this part of the search space: (i) has at
least min{1/k,1/t} of the score of the optimal solution
for the full search space, (ii) the length of every search
path is polynomial in t, and (iii) the number of children
of every node is polynomial in the number of feature val-
ues (§5.2). We further identify an equivalence relation
over the path specifications and leverage it to define a
search space with solutions of higher quality (§5.3).

5.1 An Exponential Search Space
In this section, we analyze the size of the search space,
organize the solutions in a graph, and discuss the chal-
lenges of traversing it.

Size of search space We begin with showing that the
size of the search space is exponential in t and k.
The search space is the set of all specifications, that is
(St

U1,...,Ul
∪{ /0})k. Thus, it immediately follows that its

size is exponential in k. To conclude that the size is ex-
ponential in k and t, we show that the size of St

U1,...,Ul
is exponential in t. To prove this, we reduce this com-
putation to the combinatorial problem of choosing with-
out replacement up to t feature functions from l feature
functions (we assume l ≥ t) and then for each, picking a
feature value (we assume |Ui| ≥ 2 for all i). Then, using
a combinatorial identity [14, Vol. 2, (1.37)] we get:

t

∑
m=0

(
l
m

)
·2m ≥

t

∑
m=0

(
t
m

)
· 2m

m+1
=

3t+1−1
2(t +1)

Search space as a graph We organize the solutions in
a directed graph G. The nodes of G are the solutions:
(St

U1,...,Ul
∪{ /0})k. There is an edge (u,v) if v extends one

of u’s specifications with one feature value (Fig. 2). We
distinguish between two kinds of edges: edges that ex-
tend an empty specification (colored blue) and those that
extend an existing specification (colored red). Intuitively,
the blue edges try to increase coverage by including more
path specifications. This increases the number of routing
paths for which the overall specification set holds. The
red edges aim to increase the amount of detail captured
in a path specification, resulting in better explainability.
However, they can reduce the number of routing paths
that satisfy the specification set (and thus, have the oppo-
site effect of blue edges). Two extreme points in this cov-
erage versus explainability exploration are: (i) specifica-
tion sets that maximize explainability (specifications are
of size t) and (ii) specification sets that maximize cov-
erage (all specifications are of size 1). Depending on the
weights and number of routing paths, the optimal solu-
tion sits in-between these two extremes.

Example 3 {{New Yorke}} maximizes coverage, while
{{New Yorke, Dallasi, Googleo,1sp}} explainability.

Search challenge An important ingredient in any search
strategy is the solution scoring function, which guides
the search towards the optimal result, while effectively
pruning subspaces. In our setting, such a score function
is even more critical as the size of the search space is ex-
ponential in k and t. An immediate candidate for a score
function is Φ, as in Definition 1. However, Φ can guide
us towards a good solution only if we restrict our traver-
sal to nodes reachable through the blue edges. This is due

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 613

Ø,Ø,Ø

… {LAi},Ø,Ø{SFe},Ø,Ø

{LAi},{NYe},Ø

{LAi},{NYe},{Yo}

{SFe, LAi},Ø,Ø

…

{SFe, LAi, Go, 1sp}, 
{SFe, NYi, Yo, 1sp}, 
{LVe, NYi, Yo, 0sp} {SFe},{SFe, LAi},{SFe, LAi, Yo}

{SFe},{SFe, LAi},Ø

Maximal coverage

Maximal explainability
Coverage and explainability

…

…

G⊆

Figure 2: Part of the search space for k=3 specifications,
t=4 feature values per specification and features egress
(e), ingress (i), organization (o) and shortest path (sp).

to a monotonicity property guaranteeing that if v is reach-
able from u only through blue edges, then Φ(v) > Φ(u)
(since v includes all feature values described by u). How-
ever, the red edges do not have this property for Φ (as it
trades off path coverage with explainability). Even if we
consider a different scoring function, pruning is unlikely
to be effective and the traversal may end up exploring
an exponential number of nodes. Instead, we consider a
reduced subspace that has shorter paths and satisfies the
monotonicity property for every type of edge.

5.2 A Reduced Search Space

In this section, we define a reduced space G⊆, which
is a subspace of G. Our reduced space leverages the
fact that traffic is skewed, and thus the heavy part of
the traffic shares many feature values. This means that
specifications consisting of these common feature values
have higher score than other specifications and that these
higher-scored specifications intersect. This motivates us
to focus only on solutions whose specifications are con-
tained in one another. Such an approach guarantees that
the solutions balance path coverage (provided by the
shorter specifications) and explainability (provided by
the larger specifications). We show that G⊆ contains so-
lutions which are not significantly worse than an optimal
solution in G. Specifically, we show that G⊆ contains a
solution whose score is at least min{ 1

k ,
1
t } of an optimal

solution in G, in the worst case. In G⊆, the size of the
search paths is t (instead of t · k as in G), and every node
has at most ∑

l
i=1 |Ui| children (instead of k ·∑l

i=1 |Ui|).
The nodes of G⊆ are all specification sets whose

path specifications are extensions of one another. More
formally, a node has the property that its (nonempty)
specifications can be ordered to S1, ...,Sm such that
(i) S1 ⊂ ...⊂ Sm and (ii) for all 1≤ i≤ m, |Si|= i. For
example, {{New Yorke},{New Yorke,1sp}} is a node in
G⊆, while {{New Yorke},{Washingtone}} is not.

The edges of G⊆ combine both kinds of edges of G.
Concretely, there is an edge (u,v) if v contains all specifi-
cations of u and also contains a specification that extends

the largest specification of u with an additional feature
value. More formally, if the (nonempty) specifications of
u are ordered as defined before to S1, ...,Sm, then v has the
specifications S1, ...,Sm,Sm+1 such that Sm ⊂ Sm+1 and
|Sm+1|= m+1. Fig. 2 highlights the nodes of G⊆ with a
green background and shows the edges of G⊆ (which are
different from the edges of G) in green.

Optimality We now discuss how solution optimality in
G⊆ relates to that in G. Intuitively, there are two “worst
case scenarios”. First, if specifications are of size t, a so-
lution of G⊆ that contains any such specification con-
tains subsets of this specification as well, which “take the
spot” of the other specifications, without necessarily con-
tributing to the score. To illustrate this, consider the sce-
nario where k = 3, t = 4 and there are 3 paths, p1, p2, p3
with weight 1 whose feature values are {e1, i1,o1,sp1},
{e2, i2,o2,sp2},{e3, i3,o3,sp3}, respectively (where en is
an egress, in is an ingress, on is an organization, and spn
is an indicator for shortest path). An optimal solution is
to pick exactly these three feature values resulting in a
score of 12. However, in G⊆, a solution that includes one
of these specifications contains also its subsets, making
the score of the optimal solution only 3. The other ex-
treme is if all optimal solutions are of size 1. In this case,
sets of size greater than 1 may add little gain to the score.
To illustrate this, consider the scenario where k = 3, t = 4
and there are 12 paths, p1, . . . , p12 with weight 1 such that
p1, . . . , p4 have property e1, p5, . . . , p8 have property e2
and p9, . . . , p12 have property e3 (besides this, there are
no common feature values). An optimal solution is {e1},
{e2},{e3} whose score is 12. However, because of the
structure of our space, the optimal solution has score 6.

The next lemma states that the maximum gap between
the scores of the optimal solution in G⊆ and G is at most
a factor of min{ 1

t ,
1
k}. Proof is provided in Appendix B.

Lemma 1 Let OPTG,OPTG⊆ be the optimal solutions in
G and G⊆. Then, min{ 1

t ,
1
k} ·Φ(OPTG)≤Φ(OPTG⊆).

5.3 A Path Equivalent Space

In this section, we define a search space which is sim-
ilar to G⊆ but may contain solutions with higher score.
Intuitively, this is obtained by “merging” nodes in G⊆
that are equivalent with respect to the satisfying paths.
In other words, for every two nodes in this space, there
is at least one path satisfying one but not the other. Path
equivalence does not imply the same score. For example,
if {e1},{i1} are path equivalent, then {e1, i1} is also path
equivalent to them, but with a score twice as high from
each (because each path contributes its weight twice,
once per feature). By considering only nodes that are
not path equivalent, we can potentially obtain better so-
lutions, without sacrificing the lower bound of Lemma 1.

614 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We use this observation to modify G to a space G=
whose solutions consist of specifications that are (i) con-
tained in one another (like G⊆) and (ii) maximal with
respect to path equivalence. In our example, this means
that {e1},{i1} are not part of any solution in G=, but
{e1, i1} might be if its extensions are not equivalent to
it. In G=, there is an edge (u,v) if, for u whose specifi-
cations are S1 ⊆ ... ⊆ Sm, we have (i) the specifications
of v are S1, ...,Sm,Sm+1, (ii) Sm ⊂ Sm+1, and (iii) for any
subset S such that Sm ⊂ S ⊂ Sm+1, Sm+1 and S are path
equivalent. By construction, G= has solutions which are
at least as good as those in G⊆, which gives us:

Lemma 2 Let OG⊆ and OG= be optimal solutions in G⊆
and G=, respectively. Then, Φ(OG=)≥Φ(OG⊆).

By traversingG=, algorithms can return solutions with
larger path specifications than if they traversed G⊆. This
follows since the maximal size of a specification in G⊆
is k, while the size of specifications in G= is up to t.

6 The ComPass Algorithm

We now introduce ComPass, our algorithm for
computing path specifications by traversing the search
space G=. ComPass (Algorithm 1) lazily computes
nodes in G= and continues to the node with the highest
increase in score. It takes as input a set of routing paths
R, a set of feature functions q1, . . . ,ql , and constants k
and t denoting the maximal number of specifications and
the maximal size of each path specification. ComPass
starts by initializing the set of solutions S and the
current specification L to the empty set and Q to the set
of all candidate feature functions (Lines 1–3). In up to
k iterations, the best feature value is selected to extend
L according to the score function – namely, the feature
value that will maximize the score of S as defined by the
score function (Eq. (1)) when adding it to L . This can
be formalized as maximizing the function on Line 5.

Let v be this feature value and q its feature. Then, L is
extended with v and q is dropped as L cannot contain an-
other feature value from Uq. The paths in R not meeting
v are dropped as well, as these will not be described by
the next specifications (Lines 6–8). Then, if the size of L
reaches the bound t, the loop breaks as it is impossible
to extend L further (Line 9). Otherwise, ComPass com-
putes the maximal specification that is equivalent to L by
checking whether it can be extended with other feature
values (Lines 10–13). Finally, L is added to S (Line 14),
and the next iteration begins. To ensure the limit of t is
not exceeded, once L has reached this bound, ComPass
completes and returns the current specification sets. This
means that ComPass may return fewer than k specifica-
tions. It can be shown that this solution has a higher score
than a solution with k specifications that are not repre-

Algorithm 1: ComPass (R, q1, . . . ,ql , k, t)
Input : R: a set of routing paths.

q1, . . . ,ql : a set of feature functions.
k: limit on the number of specifications.
t: limit on the size of specifications.

Output: A set of specifications S.
1 S = /0 // The specification set

2 L = /0 // The last computed specification

3 Q = {q1, ...,ql} // Candidate features

4 while |S|< k do
5 q,v = argmaxq∈Q,vq∈Uq

Σ
(d,P)∈R

wd,P · [q(d,P) = vq]

6 L = L∪{v}
7 Q = Q\{q}
8 R = R\{(d,P) | q(d,P) 6= v}
9 if |L|= t then S = S∪{L}; break

10 while ∃v ∈UQ.(L∪{v} ≡ L) do
11 L = L∪{v}
12 if |L|= t then S = S∪{L}; break
13 Q = Q\{q}
14 S = S∪{L}
15 return S

sentative of their class. Intuitively, this follows since the
paths described by the descendants are subsumed by the
paths described by their ancestors.

Example 4 Consider R = {(Google,Pi)}100
i=1, each with

weight 1, and k = t = 2. As before, we assume that (i) if
i ≤ 60, E(Google,Pi) = NYe, and E(Google,Pi) = LAe
otherwise, (ii) for i ≤ 40, SP(Google,Pi) = 1sp, and
(iii) all other feature values are unique for every path. We
now show how ComPass computes the optimal solution
{NYe},{NYe,1sp}. In its first iteration, ComPass dis-
covers that the feature value NYe maximizes the score.
It thus extends L to {NYe}, prunes the egress feature E
fromQ, and removes fromR all paths whose egress is not
NY. Since {NYe} is the representative of its equivalence
class, it is added to S. In the second iteration, the feature
value 1sp maximizes the score. Hence, ComPass extends
L with 1sp. Since the limit t = 2 has been reached, the
loop breaks (Line 7), and {NYe},{NYe,1sp} is returned.

Finding the best feature value To avoid iterating every
feature value separately in Line 5 (which can incur high
overhead), we find the best feature value by iterating over
the feature functions in Q and the routing paths in R and
storing the score of each feature value in a hash table.
Then, with a single pass over the hash table, we find the
feature value with the highest score.

Guarantees Our next theorem states that ComPass com-
putes a solution whose score is at least 1− f

1− f min{t,k} of the
optimal solution in G=, where f ∈ (0,1) is the maximal
portion of paths that a child of a node can have. Note that

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 615

since ComPass explores G=, whose nodes are not path
equivalent, f cannot be 1. Proof is in Appendix B.

Theorem 1 Given that there is f ∈ (0,1) such that for
every pair of path specifications A,A′ if A ⊂ A′, then
Φ({A})≤ f ·Φ({A′}). Then, if O is the solution returned
by ComPass, we have 1− f

1− f min{t,k} ·OPTG= ≤ O.

Example 5 The factor f is determined by the pair of
nodes A⊂A′ whose scores are the closest. In the previous
example, A = {{NYe}, /0}, A′ = {{NYe},{NYe,1sp}}.
Since Φ(A) = 60 and Φ(A′) = 100, we get that f = 0.6.
By the theorem, ComPass returns a solution whose score
is at least 62.5% compared to the optimal solution in G.

Speeding up ComPass by sampling To compute the
best feature value, ComPass iterates in Line 5 over all
routing paths to determine the best feature value. This
step is very expensive, especially if the number of routing
paths and feature functions is large. To mitigate this prob-
lem, we leverage two observations that allow ComPass
to uniformly sample the routing paths instead of con-
sidering all routing paths. First, Internet traffic is heav-
ily skewed, which means that most traffic is directed to-
wards a few organizations (e.g., CDNs), and egresses see
different traffic volumes depending on the peering. This
means that sampling is likely to pick representative rout-
ing paths. Second, by the score function definition, op-
timal solutions consist of specifications describing the
main part of the traffic. This means that specifications
representing little traffic have little effect on the decisions
ComPass makes. This implies that sampling will perform
well as it is more likely to ignore the specifications with
few routing paths than the ones with many.

7 From Specifications to Summaries

In this section, we describe how Net2Text produces a nat-
ural language summary given a specification set S (gen-
erated by ComPass). It begins by augmenting S with ad-
ditional information in three steps. It then transforms the
path specifications in S to natural language sentences us-
ing templates. In the first two steps, Net2Text augments S
with information computed as a byproduct by ComPass
(i.e., additional specification sets and the amount of traf-
fic). In the third step, Net2Text extends S with high-level
features, which cannot be directly computed by Com-
Pass. We next describe these steps and exemplify them
on our running example, S= {{NYe}, {NYe,1sp}}.

Step 1: Adding path specifications Net2Text extends
every S ∈S with the next m (a parameter) best path spec-
ifications that have the same parent in G= and are val-
ues of the same feature function. These path specifica-
tions can be extracted from the computation of ComPass

(in Line 5). In our example, for m = 1, this step results
in adding {Washingtone} to S as NYe and Washingtone
have the same parent and same feature function (egress).
This will eventually be translated to a single sentence:
Google traffic exits in New York and Washington.

Step 2: Adding traffic size Then, Net2Text extends ev-
ery S ∈ S with the total weight of the paths it describes
to let the operator understand how much traffic the sum-
mary covers. In our example, this gives {(60%,{NYe}),
(40%,{Washingtone}), (39.6%,{NYe,1sp})}.

Step 3: Computing high-level features Next, we ex-
tend S with high-level features (e.g., load-balancing,
waypointing, or hot-potato routing) that are not prop-
erties of single paths but rather of sets of paths, i.e.,
entire specifications. Thus, these features can only be
identified after ComPass computed the best specifica-
tion set. Each high-level feature defines the criteria that
a specification has to meet for it to hold. For example,
for load-balancing, the ingress and egress of a specifi-
cation have to be fixed and the paths described by it
need to be disjoint. In our example, Net2Text inferred
that a common waypoint for (39.6%,{New Yorke,1sp})
is Atlanta as all the paths in this specification go
through Atlanta, and thus this specification is ex-
tended to (39.6%,{New Yorke,1sp,Atlantaw}). In addi-
tion, Net2Text inferred that the traffic to Google experi-
ences hot-potato routing as it has multiple egresses and
all the traffic is forwarded to the closest one.

Step 4: Translation to natural language Lastly, S is
translated to natural language sentences using templates.
The sentences are a composition of multiple basic tem-
plates. To create fluency in the summary, Net2Text con-
nects related sentences by building upon the previous
sentence. In addition, it does not repeat information. For
example, the second sentence in our example summary in
Section 2 does not repeat that it refers to Google traffic,
and the percentage shown is relative (i.e., 39.6%/60% =
66%). Namely, {(39.6%,NYe,1sp,Atlantaw)} is mapped
to: 66% of the traffic exiting in New York follows the
shortest path and crosses Atlanta.

8 Parsing Queries

To leverage Net2Text’s summarization capabilities, the
operator needs to provide the feature functions Q, t, k,
and the routing paths R. Typically, once Q, t and k are
specified, the operator queries the network database to
obtain R. To simplify this, Net2Text allows the opera-
tor to submit queries in natural language which it then
translates to SQL-like queries for the network database.
In the following, we describe how Net2Text parses these
queries expressed in natural language.

616 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Router

How is to traffic Google New York handled ?

Org. Terminal

EgressOrganization

Traffic IdentifierQuery Type

SELECT * FROM paths  
WHERE egress=New York  
AND org=Google

Q[SEM=()] -> How TI[SEM=?ti]

PC[SEM=(egress=?n)] -> To N[SEM=?n]

N[SEM=(NY)] -> New York

PC[SEM=(?pc1 and ?pc2)] -> PC[SEM=?pc1] PC[SEM=?pc2]

TI[SEM=(?pc)] -> PC[SEM=?pc]

SELECT * FROM

paths WHERE ?ti

(5)

(4)

(3)

(2)

(1)

Figure 3: A parse tree and rules in the network grammar.

Network grammar The grammar consists of rules spec-
ifying how constituents of the queries (e.g., clauses,
words) can be composed. The rules also specify the se-
mantics of the constituents (e.g., the network terms such
as “ingress”), which enables the parser to construct the
SQL-like query. The grammar consists of two parts: (i) a
structural part (∼ 70 rules), which defines the allowed
constituent compositions; and (ii) a domain-specific part
consisting of mapping rules (∼ 80 rules), which capture
the network specific features (e.g., egress, organization)
as well as keywords (e.g., router and location names).
This split enables the operator to easily extend the gram-
mar with new features and keywords without having to
deal with the structure of the queries.

Structural grammar This grammar defines the query
structure and its building blocks. We identify two main
building blocks: query type and traffic identifier. De-
pending on the query type, there may be additional
building blocks. There are four query types: yes/no
(“Is/Does...”), counting (“How many...”), data retrieval
(“What is/are...”), and explanation (“How is/does traf-
fic...”). The query type determines whether the answer
is yes/no, a count, a list, or a summary (obtained us-
ing ComPass). The traffic identifier defines the WHERE
clause of the SQL-like query. The attributes selected by
the query are either determined by the query (in data re-
trieval queries) or are simply a wildcard (i.e., ?).

Fig. 3 illustrates the structural parsing. “How” defines
the desired behavior of Net2Text (summarize the data
with ComPass), while “Google traffic to New York” is
the traffic identifier. The black rules (1-3) are part of the
structural grammar, while the blue rules (4 & 5) are part
of the domain-specific grammar, which we discuss next.

Domain-specific grammar This grammar defines a
mapping between keywords and names to features and
their values. For example, the grammar defines the rules
(i) “to N → egress=N” indicating that the natural lan-

guage phrase “to N” means that N is a name of an egress,
where N is a non-terminal and (ii) N→ NY,LA, ..., lists
the possible egress names. Using these rules, “to NY” is
parsed to egress=NY in the SQL-like query.

9 Evaluation

We evaluated Net2Text‘s scalability and usability. For
scalability, we show that Net2Text can summarize large
forwarding state (§9.2) and generate summaries of high
quality, even with sampling (§9.3). Worst-case queries
complete within 2 seconds in large networks (∼ 200
nodes). For usability, we show that Net2Text is useful for
operators by conducting interviews (§9.4) and showcase
its end-to-end implementation in a case study (§9.5).

9.1 Methodology

We run our Python-based prototype (∼ 3k lines of code)
on a machine with 24 cores at 2.3 GHz and 256 GB of
RAM. For the experiments, we implemented an ISP-like
forwarding state generator, which we use to produce re-
alistic forwarding state for various Topology Zoo [15]
topologies ranging from 25 to 197 nodes (Table 2). The
generator enables us to control how “summarizable” a
state is by varying how skewed it is.

Forwarding state generation Our generator synthesizes
network-wide forwarding states (i.e., the set of routing
paths R) for a given number of IP prefixes and a given
network topology in five consecutive steps. First, it ran-
domly chooses a set of egress nodes (see Table 2). Sec-
ond, it creates a prefix-to-organization mapping using
the CAIDA AS-to-organization dataset [16]) and a full
IPv4 RIB [17]. Third, for each organization, it chooses
the number of egresses using an exponential distribution
fitted according to real measurements [18, Fig.3.], after
which the actual egresses are uniformly chosen from the
set of egress nodes. Fourth, for each node, it computes
its forwarding state by picking for each prefix the closest
egress. Fifth, each routing path (d,P) is finally associ-
ated with an amount of traffic sampled from an exponen-
tial distribution. This leads to few organizations owning
many prefixes, carrying relatively more traffic than oth-
ers (as shown in [12]). The generator can also generate
extra features whose values are arbitrarily picked.

Generality While we generate the input forwarding
state, we stress that our results are representative be-
cause: (i) the scalability of ComPass does not depend on
the actual feature values but only on the number of fea-
tures (see §6); and (ii) the quality analysis does not de-
pend on the actual score but rather on the ratio compared
to other scores under the same setting.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 617

1k 10k 100k 625k

Number of Prefixes

10−5

10−4

10−3

10−2

10−1

100

101

102

T
im

e
[s

]

1

1/10

1/100

1/1000

3 6 9 12

Number of Features

10−3

10−2

10−1

100

101

102

103

T
im

e
[s

]

1

1/10

1/100

1/1000

1 100 10k 1M

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

uniform

skewed

(a) Time as a function of the number of
prefixes and sampling rate.

1k 10k 100k 625k

Number of Prefixes

10−5

10−4

10−3

10−2

10−1

100

101

102

T
im

e
[s

]

1

1/10

1/100

1/1000

3 6 9 12

Number of Features

10−3

10−2

10−1

100

101

102

103

T
im

e
[s

]

1

1/10

1/100

1/1000

1 100 10k 1M

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

uniform

skewed

(b) Time as a function of the number of
features and sampling rate.

1k 10k 100k 625k

Number of Prefixes

10−5

10−4

10−3

10−2

10−1

100

101

102

T
im

e
[s

]

1

1/10

1/100

1/1000

3 6 9 12

Number of Features

10−3

10−2

10−1

100

101

102

103

T
im

e
[s

]

1

1/10

1/100

1/1000

1 100 10k 1M

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

uniform

skewed

(c) Summary quality as a function of
sampling rate.

Figure 4: Net2Text scales—both in the size of the forwarding state (sub-second, even for 625k prefixes) (a) and the
number of features (sub-second, even for 12 features) (b)—while sampling affects the summary quality marginally (c).

Topology Nodes Egresses No sampling 1/1000

ATT NA 25 10 94.07 s 0.26 s
Switch 42 15 128.12 s 0.24 s
Sinet 74 30 223.91 s 0.50 s
GTS CE 149 40 611.81 s 1.18 s
Cogent 197 50 766.61 s 1.84 s

Table 2: With sampling (§6), Net2Text summarizes large
network forwarding states (> 600k prefixes), within 2
seconds, for networks with close to 200 nodes.

9.2 Scalability Analysis

We evaluate Net2Text scalability by measuring the time
it takes to summarize all routing paths (worst-case)
while varying the number of key dimensions: prefixes,
nodes, and feature functions. To evaluate the sam-
pling optimization of ComPass, we run ComPass four
times: without path sampling and with sampling rate of
1/10,1/100,1/1000. We repeated each experiment 10
times and report median results (std dev is small).

Fig. 4a shows the results when varying the number of
prefixes from 103 to 105 and the full RIB for the ATT
NA topology using 3 feature functions. The results indi-
cate that Net2Text scales linearly in the number of pre-
fixes. The running time decreases proportionally to the
sampling rate. Without sampling, summarizing forward-
ing states with 625k prefixes takes about 100 seconds
and less than one second with a sampling rate of 1/1000.
Fig. 4b shows a similar trend when varying the number
of features from 3 to 12 and using a full RIB.

Table 2 shows the results when considering different
topology sizes, with full routing tables (625k prefixes)
and 3 feature functions. The table also reports results
with (rate of 1/1000) and without sampling. We see that
the runtime is roughly linear in the number of nodes
in the network. More importantly, our results indicate
that Net2Text scales to large networks with hundreds of
nodes thanks to sampling: it takes less than 2 seconds for
Net2Text to summarize Cogent forwarding state.

9.3 Quality Analysis
We now evaluate the effect of sampling the input data
(i.e. the forwarding paths) and show that doing so only
marginally impacts the quality of the summary. In addi-
tion, we show that ComPass compares well against two
baselines both in terms of quality and running time.

We measure the quality of a summary using the score
function presented in §4. Intuitively, the score represents
the traffic volume of the paths covered by the resulting
summary, rewarding more detailed summaries by multi-
plying the volume of each path by the number of details
(feature values) present in the summary. When comput-
ing the score, we always account for all entries that match
the resulting summary and not just for the sampled en-
tries. As in §9.2, we consider the problem of summariz-
ing every single entry in the network database.

For the experiment, we generate forwarding state for
the ATT NA topology with a full routing table and vary
the sampling rate from 1 to 1/5,000,000. Note that we
have more entries in the network database than the total
number of prefixes as there is at least one path from every
node to every prefix. Hence, even with sampling rates
higher than the number of prefixes, we still have paths to
summarize. For this setup, we have more than 15 million
entries in the network database.

Fig. 4c shows the score of the summary for differ-
ent sampling rates normalized to the score without sam-
pling. We ran the experiment for two different scenarios:
(i) highly skewed traffic distributions among the feature
values, where the size difference between the feature val-
ues is high; and (ii) uniform distributions, where the dif-
ference between them is low. Our results show that the
sampling rate at which the score of the summary drops
significantly is very high. Even with sampling rates of
1/1000, ComPass still creates summaries whose qualities
are within 5% of the unsampled summary.

To further illustrate the quality of ComPass
summaries, we compare it against two baselines.
Both iterate once over the relevant routing paths

618 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100 120

Time [s]

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y 1

1/10

1/100

1/1000

Aggregate

Entry

ComPass

Figure 5: Net2Text produces summaries of higher quality
than two simple baselines.

and pick the most detailed specification (e.g.,
{New Yorke,Philadelphiai,Googleo}). From this speci-
fication, we build the full specification set by randomly
removing one feature value after the other to obtain
for example {{New Yorke}, {New Yorke, Googleo},
{New Yorke, Philadelphiai, Googleo}}. The baselines
differ in how they choose the most detailed specification:
Entry, takes the routing path with the highest weight and
uses it as the most detailed specification; and Aggregate,
aggregates all routing paths with the same feature values
and uses the largest aggregate. When computing the
quality of the summaries, we consider all routing paths
matching the resulting summary. Thanks to sampling,
ComPass produces higher quality summaries in the
same amount of time as the two baselines (see Fig. 5). If
we also consider the information added to the summary
by extending it as described in 7, we see that ComPass
outperforms the baselines by almost 5 times.

9.4 Usefulness

To better assess the usability of Net2Text, we conducted
five interviews with network operators of ISP networks
(research, Tier 1 and Tier 2) and one enterprise network.
We questioned them about four aspects.

Aspect 1: Need for virtual assistants All operators see
opportunities for virtual assistants in tasks requiring to
process a lot of data to identify and extract the relevant
information. An assistant allows them to focus on reme-
dying, rather than identifying and analyzing the event.

Aspect 2: Relevance of the NL input The possibility
to write queries in natural language was well-perceived.
Some operators, however, do not mind a fixed query lan-
guage or writing their own scripts.

Aspect 3: Relevance of the NL output Most operators
see value in natural language summaries as they are con-
cise and simple to understand, especially for less tech-
nical persons. Depending on the query, some operators
mentioned that they would like to see visualizations of
the summary (e.g., a graph) in addition to text.

Aspect 4: Usefulness of Net2Text queries All opera-
tors confirmed that the queries currently supported by
Net2Text are relevant. In particular, they appreciated the
ability to query about incoming traffic. In addition, most
operators testified interest in service-oriented queries, in-
stead of purely destination-oriented ones (e.g., traffic to
the Gmail-service instead of Google traffic in general).

In the discussions, we saw a clear difference between
the queries of ISP and enterprise network operators.
While the ISP operators were mostly concerned about
where traffic was entering and leaving the network, the
enterprise operator was more interested in the status of
the different applications running in the network and
their policies (e.g., is there always a firewall on the path).

9.5 Case Study
We showcase our end-to-end implementation of Net2Text
by running it in a Quagga-based network emulating In-
ternet2 (Fig. 6a). Routers in Seattle, Sunnyvale, New
York and Washington are connected to external peers.
The router in New York receives routes to both Google
and Facebook, the router in Washington only to Google.
All external routes have the same local-preference. We
generate transit traffic entering via Seattle and Sunny-
vale towards both destinations. The flows are highlighted
in Fig. 6a and the measured throughput is depicted in
Fig. 6b. Every ten seconds, Net2Text summarizes the en-
tire forwarding state as indicated by the grey bars.

Table 3 shows the 4 summaries produced by Net2Text.
We see that Net2Text is able to explain the current for-
warding behavior at different levels of detail and auto-
matically zoom in on the largest part of the traffic. At
the time of the second summary, for example, traffic for
Google has spiked (purple and red) and is now three
times larger than Facebook. We see that Net2Text auto-
matically focuses on the traffic to Google and provides
more details about it, yet it still mentions traffic to Face-
book. In the third summary, we see how Net2Text cap-
tures higher-level constructs that are not directly present
in the database such as “hot-potato routing” (§7).

10 Discussion

Why natural language? We believe that a chat-like in-
terface provides a familiar and intuitive way for operators
to interact with their network. That said, our summariza-
tion contribution is useful in its own right, independently
of the NLP interface. As an illustration, we could easily
translate Net2Text summaries to a graph-based represen-
tation (e.g. using PGA [11]) rather than natural language.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 619

FB

G

G

(a) Internet 2 Topology

0 10 20 30 40 50

Time [s]

0

20

40

60

T
hr

ou
gh

pu
t

[M
bp

s]

1 2 3 4

(b) Network Throughput

Figure 6: We ran our Net2Text implementation in a live
network emulating Internet 2 (a) and vary the network
throughput according to (b).

What about new feature functions? While we only
deal with a limited set of features in this paper, we stress
that ComPass is flexible and can deal with any features
defined over paths. Additional features (e.g. such as the
TCP port number) can be easily added by adding a new
field to the database. For the translation, the singular and
plural of the feature name also have to be added to the
rules. The operator can also add a mapping of feature
values to some string, e.g., TCP port 80 to HTTP.

What about the network database? We assume that the
network database is fed with high-quality and consistent
data and focus on the problem of summarizing it. This
is a strong assumption. Gathering high-quality state con-
sistently is challenging and the quality of our summaries
will inevitably suffer should the data be incomplete, out-
dated or inconsistent. Fortunately, multiple works have
looked at the problem of extracting network data in a
fast and consistent manner, which Net2Text can directly
leverage. In particular, Libra [19] tackles the problem of
capturing consistent snapshots of the network forwarding
state. Similarly, FlowRadar [20] and Stroboscope [21,22]
tackle the problem of quickly gathering fine-grained traf-
fic statistics. Yet, summarizing network-wide behavior in
the presence of incorrect or inconsistent data is an inter-
esting problem we plan to address in future work.

11 Related work

Network verification & testing Net2Text directly com-
plements previous initiatives on data-plane [5–10] and
control-plane verification [1–4] as it does not aim at veri-
fying, but explaining network-wide behavior. The reason
is that even perfectly correct networks might exhibit un-
wanted or suboptimal behaviors at runtime, for instance,
due to unforeseen traffic shifts or partial failures.

Network provenance Net2Text‘s high-level objectives
of explaining how networks behave bear similarities with
many works on Network Provenance (e.g., [23–29]). The
main difference between these works and Net2Text is
that Net2Text does not aim at explaining why a partic-

1 “Traffic has a single egress (New York), and goes to a
single destination (Facebook). It enters at the follow-
ing ingresses: Sunnyvale (76%) and Seattle (24%).”

2 “Traffic goes to the following destinations: Google
and Facebook. Traffic for Google exits through Wash-
ington (50%) and New York (50%).”

3 “Traffic is destined to Google. It experiences hot-
potato routing. It exits through the following egresses:
New York (50%) and Washington (50%).”

4 “Traffic leaves through Washington, has a single
ingress (Sunnyvale), and goes to Google.”

Table 3: Actual summaries produced by our Net2Text im-
plementation when run on the network depicted in Fig. 6.

ular state is observed (by following the derivation his-
tory), but rather summarizing what is the current state
being observed to make it understandable to human oper-
ators. Net2Text can therefore be seen as complementary
to these frameworks. Once the network operator under-
stands what is the network behavior, he or she can then
ask questions about why. We also believe that Net2Text‘s
summarizing capabilities can be applied to summarize
provenance explanations which often tend to be large.

Connecting natural languages and networks A prior
work [30] introduced NLP techniques to network man-
agement. It proposes to use natural language as inter-
face between operators and an SDN network. Unlike
Net2Text, it does not provide any abstraction capability
and is limited to simple yes/no questions/answers along
with simple control tasks such as rate limiting a flow.

12 Conclusions

We presented Net2Text, a novel approach to assist net-
work operators in reasoning about network forwarding
behaviors. Net2Text is based on efficient summarization
techniques which generate interpretable summaries (in
natural language) out of low-level forwarding rules. We
propose an efficient approximation algorithm (with prov-
able bounds) to solve the summarization problem. We
fully implemented Net2Text and showed that it is highly
effective—it only takes 2 seconds to summarize the state
of hundreds of routers carrying full routing tables.

Acknowledgements

We are grateful to our shepherd Ranjita Bhagwan, the
anonymous reviewers, Roland Meier and Dimitar Dim-
itrov for the constructive feedback and comments. We
are also grateful to all the network operators who pro-
vided feedback and insights about Net2Text.

620 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan,

Ramesh Govindan, Ratul Mahajan, and Todd D Millstein. A Gen-
eral Approach to Network Configuration Analysis. In USENIX
NSDI, Oakland, CA, USA, 2015.

[2] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella,
and Ratul Mahajan. Fast Control Plane Analysis Using an Ab-
stract Representation. In ACM SIGCOMM, Florianópolis, Brasil,
2016.

[3] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst,
Arvind Krishnamurthy, and Zachary Tatlock. Scalable Verifica-
tion of Border Gateway Protocol Configurations with an SMT
Solver. In ACM OOPSLA, Amsterdam, Netherlands, 2016.

[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker.
A General Approach to Network Configuration Verification. In
ACM SIGCOMM, Los Angeles, CA, USA, 2017.

[5] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. Debugging the
Data Plane with Anteater. In ACM SIGCOMM, Toronto, Canada,
2011.

[6] Peyman Kazemian, George Varghese, and Nick McKeown.
Header Space Analysis: Static Checking for Networks. In
USENIX NSDI, San Jose, CA, USA, 2012.

[7] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Vargh-
ese, Nick McKeown, and Scott Whyte. Real Time Network Pol-
icy Checking using Header Space Analysis. In USENIX NSDI,
Lombard, IL, USA, 2013.

[8] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar,
and P. Brighten Godfrey. VeriFlow: Verifying Network-Wide In-
variants in Real Time. In USENIX NSDI, Lombard, IL, USA,
2013.

[9] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Ja-
yaraman, and George Varghese. Checking Beliefs in Dynamic
Networks. In USENIX NSDI, Oakland, CA, USA, 2015.

[10] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin
Raiciu. SymNet: Scalable Symbolic Execution for Modern Net-
works. In ACM SIGCOMM, Florianópolis, Brasil, 2016.

[11] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung
Kang, Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma,
Puneet Sharma, and Ying Zhang. PGA: Using Graphs to Express
and Automatically Reconcile Network Policies. In ACM SIG-
COMM, London, United Kingdom, 2015.

[12] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. BGP
Routing Stability of Popular Destinations. In ACM IMC, Mar-
seille, France, 2002.

[13] Daphne Koller and Nir Friedman. Probabilistic Graphical Mod-
els: Principles and Techniques - Adaptive Computation and Ma-
chine Learning. The MIT Press, 2009.

[14] Henry Wadsworth Gould. Combinatorial Identities: A Standard-
ized Set of Tables Listing 500 Binomial Coefficient Summations.
Morgantown, 1972.

[15] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The Internet Topology Zoo. IEEE JSAC, October
2011.

[16] CAIDA. AS Organizations Dataset, 2017-04-01. http://www.
caida.org/data/as-organizations.

[17] CAIDA. BGPStream. https://bgpstream.caida.org/.

[18] Jaeyoung Choi, Jong Han Park, Pei-chun Cheng, Dorian Kim,
and Lixia Zhang. Understanding BGP Next-Hop Diversity. In
IEEE Global Internet Symposium, Shanghai, China, 2011.

[19] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar,
Mickey Ju, Junda Liu, Nick McKeown, and Amin Vahdat. Li-
bra: Divide and Conquer to Verify Forwarding Tables in Huge
Networks. In USENIX NSDI, Seattle, WA, USA, 2014.

[20] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
FlowRadar: A Better NetFlow for Data Centers. In USENIX
NSDI, Santa Clara, CA, USA, 2016.

[21] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissic-
chio, and Laurent Vanbever. Stroboscope: Declarative Network
Monitoring on a Budget. In USENIX NSDI, Renton, WA, USA,
2018.

[22] Olivier Tilmans, Tobias Bühler, Stefano Vissicchio, and Laurent
Vanbever. Mille-Feuille: Putting ISP Traffic under the scalpel. In
ACM Hotnets, Atlanta, GA, USA, 2016.

[23] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. The Good, the Bad, and the Differences: Bet-
ter Network Diagnostics with Differential Provenance. In ACM
SIGCOMM, Florianópolis, Brasil, 2016.

[24] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou,
and Boon Thau Loo. Diagnosing Missing Events in Distributed
Systems with Negative Provenance. In ACM SIGCOMMM,
Chicago, IL, USA, 2014.

[25] Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li, Andreas
Haeberlen, Zachary Ives, Boon Thau Loo, and Micah Sherr. Dis-
tributed Time-aware Provenance. In VLDB, Riva del Garda,
Trento, Italy, 2013.

[26] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau
Loo, and Yun Mao. Efficient Querying and Maintenance of Net-
work Provenance at Internet-Scale. In ACM SIGMOD, Indi-
anapolis, IN, USA, 2010.

[27] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja
Feldmann. OFRewind: Enabling Record and Replay Trou-
bleshooting for Networks. In USENIX ATC, Portland, OR, USA,
2011.

[28] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda,
Andrew Or, Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-
Hassany, Sam Whitlock, H.B. Acharya, Kyriakos Zarifis, and
Scott Shenker. Troubleshooting Blackbox SDN Control Soft-
ware with Minimal Causal Sequences. In ACM SIGCOMMM,
Chicago, IL, USA, 2014.

[29] Colin Scott, Vjekoslav Brajkovic, George Necula, Arvind Krish-
namurthy, and Scott Shenker. Minimizing Faulty Executions of
Distributed Systems. In USENIX NSDI, Santa Clara, CA, USA,
2016.

[30] Azzam Alsudais and Eric Keller. Hey Network, Can You Under-
stand Me? In IEEE INFOCOM Workshop on Software-Driven
Flexible and Agile Networking, Atlanta, GA, USA, 2017.

[31] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual,
2016.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 621

http://www.caida.org/data/as-organizations
http://www.caida.org/data/as-organizations
https://bgpstream.caida.org/

A ILP Formulation

max Σ
(d,P)∈R

Σ
1≤i≤k

Σ
v∈U1∪...∪Ul

wd,P · yd,P,i,v

Σ
v∈U j

xi,v ≤ 1 (1)

Σ
v∈U1∪...∪Ul

xi,v ≤ t (2)

yd,P,i− yd,P,v + xi,v ≤ 1 (3)
yd,P,i + xi,v− yd,P,i,v ≤ 1 (4.1)

yd,P,i,v− yd,P,i ≤ 0 (4.2)
yd,P,i,v− xi,v ≤ 0 (4.3)

Σ
1≤i≤k

yd,P,i ≤ 1 (5)

xi+1,v− xi,v ≥ 0 (6)
yd,P,i,xi,v,yd,P,i,v ∈ {0,1}

Figure 7: An integer program for computing a specifi-
cation set to explain the routing paths. i ∈ {1, ...,k}, j ∈
{1, ..., l},(d,P) ∈ R,v ∈ {U1∪ ...∪Ul}

In the following, we show how to formulate the infer-
ence problem from Section 4 as an integer linear program
(ILP) where the objective encodes the score function Φ

and the constraints encode the path specification search
space St

U1,...,Ul
.

Variables We have two kinds of variables: the x-
variables which encode the path specification set, and the
y-variables which encode the features and specifications
that paths meet. For each path specification, we introduce
a set of variables, one for every feature value that may be
in the path specification. Formally, we have a variable
xi,v for every 1 ≤ i ≤ k and v ∈U1∪ ...∪Ul . These vari-
ables are indicator functions and range over xi,v ∈ {0,1}.
That is, if xi,v = 1, it means that v is part of the ith path
specification (v ∈ Si), otherwise v is excluded. Thus, an
assignment to the x’s uniquely defines a path specifica-
tion set.

The y variables encode whether paths meet the path
specifications and which of their features are described
by the specs. Concretely, for every routing path (d,P) ∈
R, we maintain multiple binary variables:
• yd,P,i: encodes whether (d,P) meets the ith specifi-

cation.
• yd,P,v: indicates whether (d,P) contains a feature

value of v. Note that the values yd,P,v are known a-
priori and need not be computed during optimiza-
tion.

• yd,P,i,v: encodes whether the feature v of P is de-
scribed by the ith specification.

0 20 40 60 80 100

Number of Prefixes

0

5k

10k

15k

20k

25k

30k

T
im

e
[s

]

Figure 8: Running time using the ILP (optimal, but slow).

These variables allow us to capture precisely in what
detail a path is being described by a specification that
it meets. Note that yd,P,i,v can be 1 only if (d,P) meets
the ith specification and the ith specification has feature v
(i.e., yd,P,i = xi,v = 1). This requirement will be encoded
as part of the general constraints.

Objective function We encode the objective function
of Definition 1 as the weighted sum of yd,P,i,v variables.

Constraints The path specification space is expressed
as a set of constraints which states that each path speci-
fication can have at most one feature value for the same
feature (constraint set (1) in Fig. 7) and at most t features
across all features (constraint set (2) in Fig. 7). The next
constraint sets encode the score function. Constraint set
(3) encodes whether the routing path (d,P) meets the ith

specification. Intuitively, the constraints can be presented
as yd,P,i≤ 1+(yd,P,v−xi,v), which means that yd,P,i can be
1 (to indicate that (d,P) meets the ith specification) only
if yd,P,v ≥ xi,v for all v, which indicate that the routing
path meets all features in the ith specification. Constraint
set (4) in Fig. 7 encodes whether the feature value v of a
routing path (d,P) is described, which may only be true
if (d,P) meets the specification and that the specifica-
tion contains v. Lastly, the constraint set (5) guarantees
that each feature value v met by (d,P) is counted only
once. The total number of variables and constraints is
O(k · |R| · |U1∪ ...∪Ul |).

As we explain in Section 5, it is useful to impose a
certain shape or relation between the path specifications.
In particular, we will see why it is useful to require path
specifications to be extensions of one another. Constraint
set (6) in Fig. 7 encodes this optional requirement.

Scalability To show the need for an efficient algorithm
like ComPass, we evaluate the scalability of solving the
corresponding ILP (Fig. 7, with all constraints, includ-
ing (6)) using the gurobi solver [31]. Fig. 8 shows the
running times for the ATT North America network with

622 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a forwarding state encompassing between 10 to 100 pre-
fixes (up to three orders of magnitude smaller than the
experiments in §9.2). Unsurprisingly, the running time
quickly explodes due to the large number of variables
and constraints. With only 100 prefixes, the ILP already
requires more than 25k seconds to complete.

B Proofs

In this section, we provide the proofs for the lemmas and
theorems presented in the paper.

Lemma 1 proof sketch Denote the optimal solution as
the specification set: {x1

1, , ...,x
1
t1},. . . ,{xk

1, ...,x
k
tk}.

By the score definition and since ti ≤ t,
∀i, j. j

t Φ({xi
1, , ...,x

i
ti}) ≤ Φ({xi

1, ...,x
i
j}). W.l.o.g.,

assume that {x1
1, , ...,x

1
t1} has the highest score. Then,

Φ({x1
1, , ...,x

1
t1}) > OPT/k. We split to cases. If k ≤ t1,

then the score of {x1
1},{x1

1,x
1
2}, ...,{x1

1, ...,x
1
k} is at

least k/t · (OPT/k). Since {{x1
1}, ...,{x1

1, ...,x
k
1}} is a

node in G⊆, the claim follows. Otherwise, if t1 < k,
then {{x1

1}, ...,{x1
1, , ...,x

1
t1}} is a node in G⊆ and since

Φ({x1
1, , ...,x

1
t1})> OPT/k, the claim follows.

Theorem 1 proof sketch Let the optimal solution be
OPT = {{a},{a,b}, ...,{a,b, ...,m}} and the specifica-
tion set that ComPass returned be the specification set
SComPass = {{a′},{a′,b′}, ...,{a′,b′, ...,m′}}. By the as-
sumption, Φ({a,b}) ≤ f · Φ({a}) ≤ f · Φ({a′}). By
induction, Φ({a,b, ..., j}) ≤ f |{a,..., j}| · Φ({a′}). Since
the length of the largest specification in OPT is
min{k, t}, the length of the optimal solution is at most

Σ1≤ j≤min{k,t} f j ·Φ({a}) = 1− f min{t,k}

1− f ·Φ({a}). By the
greedy operation, we have Φ({a}) ≤ Φ({a′}). Since
Φ({a′})≤Φ(SComPass), we get Φ({a})≤Φ(SComPass)≤
1− f min{t,k}

1− f · Φ({a}), which means that ComPass is a
1− f

1− f min{t,k} -approximation algorithm.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 623

	nsdi18-sharma
	nsdi18-honda
	nsdi18-jin
	nsdi18-firestone
	nsdi18-narula
	1 Introduction
	2 Related Work
	2.1 Computing on Private Data
	2.2 Privacy-preserving blockchains

	3 zkLedger Overview
	3.1 Architecture
	3.2 Cryptographic building blocks
	3.3 Security Goals
	3.4 Threat model

	4 Design
	4.1 Transactions
	4.2 Auditing Protocol
	4.3 Final transaction construction
	4.4 Adding or removing banks
	4.5 Optimizations

	5 Auditing
	6 Implementation
	7 Evaluation
	7.1 Experimental setup
	7.2 Proof overhead in zkLedger
	7.3 Cost of auditing ledgers
	7.4 Scaling with more banks

	8 Future work
	9 Conclusion
	10 Acknowledgements
	A Auditing Queries
	B Zero-knowledge proofs and privacy guarantees
	C Privacy in the combined system

	nsdi18-geng
	nsdi18-hoffmann
	Introduction
	Critical Path Analysis background
	Online Critical Path Analysis
	Transient Critical Paths
	Critical Participation (CP metric)
	Comparison with existing methods

	Applicability to dataflow systems
	Activity types
	Instrumenting specific systems

	SnailTrail system implementation
	CP-based performance summaries
	Evaluation
	Experimental setting
	Instrumentation Overhead
	SnailTrail Performance
	Comparison with existing methods
	SnailTrail in practice

	Related Work
	Conclusion
	Appendix
	Model assumptions
	Instrumentation requirements
	Proofs for Equations of Section 3.2
	Clock alignment

	nsdi18-araujo
	nsdi18-olteanu
	nsdi18-chatzieleftheriou
	Introduction
	Local Reconfigurability
	Is Local Reconfigurability Useful?
	Design Challenges

	Overview of Larry
	The circuit switch
	The reconfigurable fabric
	Distributing the circuit switch
	Controller

	Discussion
	Evaluation
	Prototype
	Micro-benchmarks

	Simulations
	Workloads
	Base performance
	Performance per dollar
	Properties of reconfiguration

	Related Work
	Conclusion

	nsdi18-kumar
	Introduction
	System Model and Related Work
	Path Properties
	Related Work

	SMORE Design
	Path selection
	Rate adaptation

	Implementation
	IDN Deployment
	Yates Framework

	BigNet WAN
	Performance
	Latency
	Robustness
	Operational constraints

	Large-Scale Simulations
	Performance
	Robustness

	Conclusion

	nsdi18-katsikas
	Introduction
	NFV Processing Challenges
	Metron Research Contributions

	System Architecture
	Overview
	Metron Data Plane
	Metron Control Plane
	Synthesis of Packet Processing Graphs
	Initial Resource Allocation
	Placement
	Dynamic Scaling
	Integrating Blackbox NFs

	Routing (Updates) and Failures

	Evaluation
	Metron Large-Scale Deployment
	Deep Packet Inspection at 40 Gbps
	Stateful Service Chaining at 100 Gbps
	Metron's Placement in Large Networks

	Metron's Dynamic Scaling
	Deployment Micro-benchmarks
	Impact of Increasing # of Traffic Classes
	Diversity of Network Elements' Capabilities

	Related Work
	Conclusion
	Acknowledgments

	nsdi18-zhang-kai
	nsdi18-poddar
	Introduction
	Model and Threat Model
	Hardware enclaves
	Threat model for the cloud and enclaves
	Threat model for network functions

	SafeBricks: End-to-end Architecture
	Overview of the communication protocol

	Background
	Intel SGX
	NetBricks

	SafeBricks: Framework Design
	Partitioning NetBricks
	Packet I/O avoiding enclave transitions
	System calls and other illegal instructions
	Execution model

	SafeBricks: NF Isolation, Least Privilege
	Strawman scheme
	NF isolation in NetBricks
	Isolating NFs within the same enclave
	Ensuring memory safety
	Enforcing least privilege

	SafeBricks: System Bootstrap Protocol
	Phase 1: NF assembly
	Phase 2: NF deployment

	Security Guarantees
	Comparison to prior approaches

	Evaluation
	Setup
	Performance
	Framework overheads
	Impact on real NFs
	Cost of NF isolation

	Comparison with BlindBox and Embark
	TCB size

	Limitations and Future Work
	Related Work

	nsdi18-netravali-vesper
	nsdi18-naderiparizi
	nsdi18-netravali-prophecy
	nsdi18-fouladi
	Introduction
	Related work
	Design and Implementation
	Salsify's functional video codec
	Salsify's transport protocol

	Measurement testbed
	Requirements and metrics
	Design
	Implementation

	Evaluation of Salsify
	Setup, calibration, and method
	Results
	Modifications to systems under test

	Limitations and Future Work
	Limitations of Salsify
	Limitations of the evaluation

	Conclusion
	User studies to calibrate QoE metrics
	Numerical evaluation results

	nsdi18-tootoonchian
	nsdi18-woo
	nsdi18-khalid
	Introduction
	Background and Motivation
	Network traffic breaks isolation
	Putting Iron in context
	Impact of network traffic

	Design
	Accounting
	Enforcement

	Evaluation
	Macrobenchmarks
	Microbenchmarks

	Related Work
	Conclusion

	nsdi18-arun
	Introduction
	Copa Algorithm
	Target Rate and Update Rule
	Competing with Buffer-Filling Schemes

	Dynamics of Copa
	Justification of the Copa Target Rate
	Objective Function and Nash Equilibrium
	The Copa Update Rule Follows from the Equilibrium Rate
	Properties of the Equilibrium

	Evaluation
	Dynamic Behavior over Emulated Links
	Real-World Evaluation
	RTT-fairness
	Robustness to Packet Loss
	Simulated Datacenter Network
	Emulated Satellite Links
	Co-existence with Buffer-Filling Schemes

	Related Work
	Conclusion
	Application-Layer Benefits

	nsdi18-dong
	nsdi18-lu
	nsdi18-dalton
	nsdi18-beckmann
	nsdi18-ardelean
	nsdi18-arzani
	nsdi18-yuan
	nsdi18-tammana
	Introduction
	Motivation
	Too much traffic
	Too many red lights
	Traffic cascades
	Other SwitchPointer use cases

	SwitchPointer Overview
	SwitchPointer
	SwitchPointer switches
	Hierarchical data structure for pointers
	Maintaining updated pointers at line rate
	Embedding telemetry data

	SwitchPointer End-hosts
	Decoding telemetry data
	Event trigger and query execution

	SwitchPointer Analyzer

	SwitchPointer Applications
	Too much traffic
	Too many red lights
	Traffic cascades
	Load imbalance diagnosis

	SwitchPointer Evaluation
	Switch overheads
	Query performance

	Related Work
	Conclusion

	nsdi18-tilmans
	Introduction
	Overview
	From Abstract to Concrete Queries
	Optimizing Mirroring Locations
	Key-points Sampling algorithm
	Surrounding algorithm

	Computing Measurement Campaigns
	Building a Measurement Schedule
	Adapting the Schedule at Runtime

	Implementation
	Evaluation
	Placement algorithms performance
	Scheduling performance
	Real routers mirroring performance
	Reaction to unexpected traffic volume

	Case study: Monitoring transit traffic
	Related Work
	Conclusions
	Proofs for the placements algorithms
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Theorem 3

	Scheduling ILP formulations
	Optimal bin-packing
	Maximal filling

	nsdi18-wang
	nsdi18-calder
	nsdi18-zhang-qiao
	Introduction
	Background and Motivation
	Compute-Storage Separation in IaaS
	A New Type of Failure: VHD Failure
	State-of-the-Art: Component View

	Our Approach: Global View
	Deepview Algorithm
	Model
	Simplify the Clos Network to a Tree
	From Paths to Components

	Prefer Simpler Explanation
	Decide Who To Blame

	Deepview Design and Implementation
	Stream Processing
	Algorithm Implementation

	Evaluation
	Deepview Case Studies
	Statistics
	Unplanned ToR Reboot
	Storage Cluster Gray Failure
	Network Failure

	Algorithm Comparison
	Deepview Algorithm Analysis
	Deepview Running Time

	Discussion
	ToR as a Single-Point-of-Failure
	Co-locate or Disaggregate?

	Related Work
	Conclusion
	P-value Correction for Multiple Testing
	Interpretation of p-values
	Choice of Significance Level
	Multiple Testing Correction

	nsdi18-gao
	nsdi18-roy
	nsdi18-chen
	Introduction
	Background
	Power System in Datacenters
	Power Line Communication

	Building a PLC Testbed
	Building a PLC Testbed
	Testbed Experiments
	Scalability
	Experiments with Production Traces
	Experiments with Management Applications

	Lessons Learnt

	PowerMan Design
	Power Supply Unit (PSU)
	Power Distribution Unit (PDU)
	Interconnection & Scalability
	Fault-tolerance

	Prototype Implementation
	Evaluation
	Performance
	Prototype Experiments
	Large-scale Simulations

	Availability
	Cost Comparisons

	Discussion
	Related works
	Conclusion

	nsdi18-el-hassany
	Introduction
	Motivating Scenarios
	Overview
	Running Example
	NetComplete Inputs
	Configuration Synthesis

	BGP Synthesis
	BGP Protocol
	BGP Propagation Graph
	BGP Policies
	Processing Symbolic Announcements
	BGP Policy Synthesis

	OSPF Synthesis
	SMT Encoding
	Counter-Example Guided Inductive Synthesis for OSPF

	Implementation and Evaluation
	Methodology and datasets
	Results

	Related Work
	Conclusion
	SMT Encoding of the BGP Selection Process
	SMT Encoding of BGP sketches
	Symbolic Variables in BGP Synthesis

	nsdi18-zhou
	nsdi18-birkner
	Blank Page
	Blank Page

